summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/tangle.web
blob: d20bbd859280b37f7986a02bb169ee892e3c8764 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
% This program by D. E. Knuth is not copyrighted and can be used freely.
% Version 0 was released in December, 1981.
% Version 1 was released in September, 1982, with version 0 of TeX.
% Slight changes were made in October, 1982, for version 0.6 of TeX.
% Version 1.2 introduced {:nnn} comments, added @@= and @@\ (December, 1982).
% Version 1.4 added "history" (February, 1983).
% Version 1.5 conformed to TeX version 0.96 and fixed @@\ (March, 1983).
% Version 1.7 introduced the new change file format (June, 1983).
% Version 2.0 was released in July, 1983, with version 0.999 of TeX.
% Version 2.5 was released in November, 1983, with version 1.0 of TeX.
% Version 2.6 fixed a bug: force-line-break after a constant (August, 1984).
% Version 2.7 fixed the definition of check_sum_prime (May, 1985).
% Version 2.8 fixed a bug in change_buffer movement (August, 1985).
% Version 2.9 allows nonnumeric macros before their def (December, 1988).
% Version 3, for Sewell's book, fixed long-line bug in input_ln (March, 1989).
% Version 4 was major change to allow 8-bit input (September, 1989).
% Version 4.1 conforms to ANSI standard for-loop rules (September, 1990).
% Version 4.2 fixes stat report if phase one dies (March, 1991).
% Version 4.3 fixes @@ bug in verbatim, catches extra } (September, 1991).
% Version 4.4 activates debug_help on errors as advertised (February, 1993).
% Version 4.5 prevents modno-comments from being split across lines (Dec 2002).
% Version 4.6 fixes archaic @@z logic; is again big enough for TeX (Jan 2021).

% Here is TeX material that gets inserted after \input webmac
\def\hang{\hangindent 3em\indent\ignorespaces}
\font\ninerm=cmr9
\let\mc=\ninerm % medium caps for names like SAIL
\def\PASCAL{Pascal}
\def\pb{$\.|\ldots\.|$} % Pascal brackets (|...|)
\def\v{\.{\char'174}} % vertical (|) in typewriter font
\mathchardef\BA="3224 % double arrow
\def\({} % kludge for alphabetizing certain module names

\def\title{TANGLE}
\def\contentspagenumber{125} % should be odd
\def\topofcontents{\null\vfill
  \titlefalse % include headline on the contents page
  \def\rheader{\mainfont Appendix E\hfil \contentspagenumber}
  \centerline{\titlefont The {\ttitlefont TANGLE} processor}
  \vskip 15pt
  \centerline{(Version 4.6)}
  \vfill}
\pageno=\contentspagenumber \advance\pageno by 1

@* Introduction.
This program converts a \.{WEB} file to a \PASCAL\ file. It was written
by D. E. Knuth in September, 1981; a somewhat similar {\mc SAIL} program had
been developed in March, 1979. Since this program describes itself, a
bootstrapping process involving hand-translation had to be used to get started.

For large \.{WEB} files one should have a large memory, since \.{TANGLE} keeps
all the \PASCAL\ text in memory (in an abbreviated form). The program uses
a few features of the local \PASCAL\ compiler that may need to be changed in
other installations:

\yskip\item{1)} Case statements have a default.
\item{2)} Input-output routines may need to be adapted for use with a particular
character set and/or for printing messages on the user's terminal.

\yskip\noindent
These features are also present in the \PASCAL\ version of \TeX, where they
are used in a similar (but more complex) way. System-dependent portions
of \.{TANGLE} can be identified by looking at the entries for `system
dependencies' in the index below.
@!@^system dependencies@>

The ``banner line'' defined here should be changed whenever \.{TANGLE}
is modified.

@d banner=='This is TANGLE, Version 4.6'

@ The program begins with a fairly normal header, made up of pieces that
@^system dependencies@>
will mostly be filled in later. The \.{WEB} input comes from files |web_file|
and |change_file|, the \PASCAL\ output goes to file |Pascal_file|,
and the string pool output goes to file |pool|.

If it is necessary to abort the job because of a fatal error, the program
calls the `|jump_out|' procedure, which goes to the label |end_of_TANGLE|.

@d end_of_TANGLE = 9999 {go here to wrap it up}

@p @t\4@>@<Compiler directives@>@/
program TANGLE(@!web_file,@!change_file,@!Pascal_file,@!pool);
label end_of_TANGLE; {go here to finish}
const @<Constants in the outer block@>@/
type @<Types in the outer block@>@/
var @<Globals in the outer block@>@/
@<Error handling procedures@>@/
procedure initialize;
  var @<Local variables for initialization@>@/
  begin @<Set initial values@>@/
  end;

@ Some of this code is optional for use when debugging only;
such material is enclosed between the delimiters |debug| and $|gubed|$.
Other parts, delimited by |stat| and $|tats|$, are optionally included if
statistics about \.{TANGLE}'s memory usage are desired.

@d debug==@{ {change this to `$\\{debug}\equiv\null$' when debugging}
@d gubed==@t@>@} {change this to `$\\{gubed}\equiv\null$' when debugging}
@f debug==begin
@f gubed==end
@#
@d stat==@{ {change this to `$\\{stat}\equiv\null$'
  when gathering usage statistics}
@d tats==@t@>@} {change this to `$\\{tats}\equiv\null$'
  when gathering usage statistics}
@f stat==begin
@f tats==end

@ The \PASCAL\ compiler used to develop this system has ``compiler
directives'' that can appear in comments whose first character is a dollar sign.
In production versions of \.{TANGLE} these directives tell the compiler that
@^system dependencies@>
it is safe to avoid range checks and to leave out the extra code it inserts
for the \PASCAL\ debugger's benefit, although interrupts will occur if
there is arithmetic overflow.

@<Compiler directives@>=
@{@&$C-,A+,D-@} {no range check, catch arithmetic overflow, no debug overhead}
@!debug @{@&$C+,D+@}@+ gubed {but turn everything on when debugging}

@ Labels are given symbolic names by the following definitions. We insert
the label `|exit|:' just before the `\ignorespaces|end|\unskip' of a
procedure in which we have used the `|return|' statement defined below;
the label `|restart|' is occasionally used at the very beginning of a
procedure; and the label `|reswitch|' is occasionally used just prior to
a \&{case} statement in which some cases change the conditions and we wish to
branch to the newly applicable case.
Loops that are set up with the \&{loop} construction defined below are
commonly exited by going to `|done|' or to `|found|' or to `|not_found|',
and they are sometimes repeated by going to `|continue|'.

@d exit=10 {go here to leave a procedure}
@d restart=20 {go here to start a procedure again}
@d reswitch=21 {go here to start a case statement again}
@d continue=22 {go here to resume a loop}
@d done=30 {go here to exit a loop}
@d found=31 {go here when you've found it}
@d not_found=32 {go here when you've found something else}

@ Here are some macros for common programming idioms.

@d incr(#) == #:=#+1 {increase a variable by unity}
@d decr(#) == #:=#-1 {decrease a variable by unity}
@d loop == @+ while true do@+ {repeat over and over until a |goto| happens}
@d do_nothing == {empty statement}
@d return == goto exit {terminate a procedure call}
@f return == nil
@f loop == xclause

@ We assume that |case| statements may include a default case that applies
if no matching label is found. Thus, we shall use constructions like
@^system dependencies@>
$$\vbox{\halign{#\hfil\cr
|case x of|\cr
1: $\langle\,$code for $x=1\,\rangle$;\cr
3: $\langle\,$code for $x=3\,\rangle$;\cr
|othercases| $\langle\,$code for |x<>1| and |x<>3|$\,\rangle$\cr
|endcases|\cr}}$$
since most \PASCAL\ compilers have plugged this hole in the language by
incorporating some sort of default mechanism. For example, the compiler
used to develop \.{WEB} and \TeX\ allows `|others|:' as a default label,
and other \PASCAL s allow syntaxes like `\ignorespaces|else|\unskip' or
`\&{otherwise}' or `\\{otherwise}:', etc. The definitions of |othercases|
and |endcases| should be changed to agree with local conventions. (Of
course, if no default mechanism is available, the |case| statements of
this program must be extended by listing all remaining cases. The author
would have taken the trouble to modify \.{TANGLE} so that such extensions
were done automatically, if he had not wanted to encourage \PASCAL\
compiler writers to make this important change in \PASCAL, where it belongs.)

@d othercases == others: {default for cases not listed explicitly}
@d endcases == @+end {follows the default case in an extended |case| statement}
@f othercases == else
@f endcases == end

@ The following parameters are set big enough to handle \TeX, so they
should be sufficient for most applications of \.{TANGLE}.

@<Constants...@>=
@!buf_size=100; {maximum length of input line}
@!max_bytes=45000; {|1/ww| times the number of bytes in identifiers,
  strings, and module names; must be less than 65536}
@!max_toks=65000; {|1/zz| times the number of bytes in compressed \PASCAL\ code;
  must be less than 65536}
@!max_names=4000; {number of identifiers, strings, module names;
  must be less than 10240}
@!max_texts=2000; {number of replacement texts, must be less than 10240}
@!hash_size=353; {should be prime}
@!longest_name=400; {module names shouldn't be longer than this}
@!line_length=72; {lines of \PASCAL\ output have at most this many characters}
@!out_buf_size=144; {length of output buffer, should be twice |line_length|}
@!stack_size=50; {number of simultaneous levels of macro expansion}
@!max_id_length=12; {long identifiers are chopped to this length, which must
  not exceed |line_length|}
@!unambig_length=7; {identifiers must be unique if chopped to this length}
  {note that 7 is more strict than \PASCAL's 8, but this can be varied}

@ A global variable called |history| will contain one of four values
at the end of every run: |spotless| means that no unusual messages were
printed; |harmless_message| means that a message of possible interest
was printed but no serious errors were detected; |error_message| means that
at least one error was found; |fatal_message| means that the program
terminated abnormally. The value of |history| does not influence the
behavior of the program; it is simply computed for the convenience
of systems that might want to use such information.

@d spotless=0 {|history| value for normal jobs}
@d harmless_message=1 {|history| value when non-serious info was printed}
@d error_message=2 {|history| value when an error was noted}
@d fatal_message=3 {|history| value when we had to stop prematurely}
@#
@d mark_harmless==@t@>@+if history=spotless then history:=harmless_message
@d mark_error==history:=error_message
@d mark_fatal==history:=fatal_message

@<Glob...@>=@!history:spotless..fatal_message; {how bad was this run?}

@ @<Set init...@>=history:=spotless;

@* The character set.
One of the main goals in the design of \.{WEB} has been to make it readily
portable between a wide variety of computers. Yet \.{WEB} by its very
nature must use a greater variety of characters than most computer
programs deal with, and character encoding is one of the areas in which
existing machines differ most widely from each other.

To resolve this problem, all input to \.{WEAVE} and \.{TANGLE} is converted
to an internal eight-bit code that is essentially standard ASCII, the ``American
Standard Code for Information Interchange.''  The conversion is done
immediately when each character is read in. Conversely, characters are
converted from ASCII to the user's external representation just before
they are output. (The original ASCII code was seven bits only; \.{WEB} now
allows eight bits in an attempt to keep up with modern times.)

Such an internal code is relevant to users of \.{WEB} only because it is
the code used for preprocessed constants like \.{"A"}. If you are writing
a program in \.{WEB} that makes use of such one-character constants, you
should convert your input to ASCII form, like \.{WEAVE} and \.{TANGLE} do.
Otherwise \.{WEB}'s internal coding scheme does not affect you.
@^ASCII code@>

Here is a table of the standard visible ASCII codes:
$$\def\:{\char\count255\global\advance\count255 by 1}
\count255='40
\vbox{
\hbox{\hbox to 40pt{\it\hfill0\/\hfill}%
\hbox to 40pt{\it\hfill1\/\hfill}%
\hbox to 40pt{\it\hfill2\/\hfill}%
\hbox to 40pt{\it\hfill3\/\hfill}%
\hbox to 40pt{\it\hfill4\/\hfill}%
\hbox to 40pt{\it\hfill5\/\hfill}%
\hbox to 40pt{\it\hfill6\/\hfill}%
\hbox to 40pt{\it\hfill7\/\hfill}}
\vskip 4pt
\hrule
\def\^{\vrule height 10.5pt depth 4.5pt}
\halign{\hbox to 0pt{\hskip -24pt\O{#0}\hfill}&\^
\hbox to 40pt{\tt\hfill#\hfill\^}&
&\hbox to 40pt{\tt\hfill#\hfill\^}\cr
04&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
05&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
06&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
07&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
10&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
11&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
12&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
13&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
14&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
15&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
16&\:&\:&\:&\:&\:&\:&\:&\:\cr\noalign{\hrule}
17&\:&\:&\:&\:&\:&\:&\:\cr}
\hrule width 280pt}$$
(Actually, of course, code @'040 is an invisible blank space.)  Code @'136
was once an upward arrow (\.{\char'13}), and code @'137 was
once a left arrow (\.^^X), in olden times when the first draft
of ASCII code was prepared; but \.{WEB} works with today's standard
ASCII in which those codes represent circumflex and underline as shown.

@<Types...@>=
@!ASCII_code=0..255; {eight-bit numbers, a subrange of the integers}

@ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
character sets were common, so it did not make provision for lowercase
letters. Nowadays, of course, we need to deal with both capital and small
letters in a convenient way, so \.{WEB} assumes that it is being used
with a \PASCAL\ whose character set contains at least the characters of
standard ASCII as listed above. Some \PASCAL\ compilers use the original
name |char| for the data type associated with the characters in text files,
while other \PASCAL s consider |char| to be a 64-element subrange of a larger
data type that has some other name.

In order to accommodate this difference, we shall use the name |text_char|
to stand for the data type of the characters in the input and output
files.  We shall also assume that |text_char| consists of the elements
|chr(first_text_char)| through |chr(last_text_char)|, inclusive. The
following definitions should be adjusted if necessary.
@^system dependencies@>

@d text_char == char {the data type of characters in text files}
@d first_text_char=0 {ordinal number of the smallest element of |text_char|}
@d last_text_char=255 {ordinal number of the largest element of |text_char|}

@<Types...@>=
@!text_file=packed file of text_char;

@ The \.{WEAVE} and \.{TANGLE} processors convert between ASCII code and
the user's external character set by means of arrays |xord| and |xchr|
that are analogous to \PASCAL's |ord| and |chr| functions.

@<Globals...@>=
@!xord: array [text_char] of ASCII_code;
  {specifies conversion of input characters}
@!xchr: array [ASCII_code] of text_char;
  {specifies conversion of output characters}

@ If we assume that every system using \.{WEB} is able to read and write the
visible characters of standard ASCII (although not necessarily using the
ASCII codes to represent them), the following assignment statements initialize
most of the |xchr| array properly, without needing any system-dependent
changes. For example, the statement \.{xchr[@@\'101]:=\'A\'} that appears
in the present \.{WEB} file might be encoded in, say, {\mc EBCDIC} code
on the external medium on which it resides, but \.{TANGLE} will convert from
this external code to ASCII and back again. Therefore the assignment
statement \.{XCHR[65]:=\'A\'} will appear in the corresponding \PASCAL\ file,
and \PASCAL\ will compile this statement so that |xchr[65]| receives the
character \.A in the external (|char|) code. Note that it would be quite
incorrect to say \.{xchr[@@\'101]:="A"}, because |"A"| is a constant of
type |integer|, not |char|, and because we have $|"A"|=65$ regardless of
the external character set.

@<Set init...@>=
xchr[@'40]:=' ';
xchr[@'41]:='!';
xchr[@'42]:='"';
xchr[@'43]:='#';
xchr[@'44]:='$';
xchr[@'45]:='%';
xchr[@'46]:='&';
xchr[@'47]:='''';@/
xchr[@'50]:='(';
xchr[@'51]:=')';
xchr[@'52]:='*';
xchr[@'53]:='+';
xchr[@'54]:=',';
xchr[@'55]:='-';
xchr[@'56]:='.';
xchr[@'57]:='/';@/
xchr[@'60]:='0';
xchr[@'61]:='1';
xchr[@'62]:='2';
xchr[@'63]:='3';
xchr[@'64]:='4';
xchr[@'65]:='5';
xchr[@'66]:='6';
xchr[@'67]:='7';@/
xchr[@'70]:='8';
xchr[@'71]:='9';
xchr[@'72]:=':';
xchr[@'73]:=';';
xchr[@'74]:='<';
xchr[@'75]:='=';
xchr[@'76]:='>';
xchr[@'77]:='?';@/
xchr[@'100]:='@@';
xchr[@'101]:='A';
xchr[@'102]:='B';
xchr[@'103]:='C';
xchr[@'104]:='D';
xchr[@'105]:='E';
xchr[@'106]:='F';
xchr[@'107]:='G';@/
xchr[@'110]:='H';
xchr[@'111]:='I';
xchr[@'112]:='J';
xchr[@'113]:='K';
xchr[@'114]:='L';
xchr[@'115]:='M';
xchr[@'116]:='N';
xchr[@'117]:='O';@/
xchr[@'120]:='P';
xchr[@'121]:='Q';
xchr[@'122]:='R';
xchr[@'123]:='S';
xchr[@'124]:='T';
xchr[@'125]:='U';
xchr[@'126]:='V';
xchr[@'127]:='W';@/
xchr[@'130]:='X';
xchr[@'131]:='Y';
xchr[@'132]:='Z';
xchr[@'133]:='[';
xchr[@'134]:='\';
xchr[@'135]:=']';
xchr[@'136]:='^';
xchr[@'137]:='_';@/
xchr[@'140]:='`';
xchr[@'141]:='a';
xchr[@'142]:='b';
xchr[@'143]:='c';
xchr[@'144]:='d';
xchr[@'145]:='e';
xchr[@'146]:='f';
xchr[@'147]:='g';@/
xchr[@'150]:='h';
xchr[@'151]:='i';
xchr[@'152]:='j';
xchr[@'153]:='k';
xchr[@'154]:='l';
xchr[@'155]:='m';
xchr[@'156]:='n';
xchr[@'157]:='o';@/
xchr[@'160]:='p';
xchr[@'161]:='q';
xchr[@'162]:='r';
xchr[@'163]:='s';
xchr[@'164]:='t';
xchr[@'165]:='u';
xchr[@'166]:='v';
xchr[@'167]:='w';@/
xchr[@'170]:='x';
xchr[@'171]:='y';
xchr[@'172]:='z';
xchr[@'173]:='{';
xchr[@'174]:='|';
xchr[@'175]:='}';
xchr[@'176]:='~';@/
xchr[0]:=' '; xchr[@'177]:=' '; {these ASCII codes are not used}

@ Some of the ASCII codes below @'40 have been given symbolic names in
\.{WEAVE} and \.{TANGLE} because they are used with a special meaning.

@d and_sign=@'4 {equivalent to `\.{and}'}
@d not_sign=@'5 {equivalent to `\.{not}'}
@d set_element_sign=@'6 {equivalent to `\.{in}'}
@d tab_mark=@'11 {ASCII code used as tab-skip}
@d line_feed=@'12 {ASCII code thrown away at end of line}
@d form_feed=@'14 {ASCII code used at end of page}
@d carriage_return=@'15 {ASCII code used at end of line}
@d left_arrow=@'30 {equivalent to `\.{:=}'}
@d not_equal=@'32 {equivalent to `\.{<>}'}
@d less_or_equal=@'34 {equivalent to `\.{<=}'}
@d greater_or_equal=@'35 {equivalent to `\.{>=}'}
@d equivalence_sign=@'36 {equivalent to `\.{==}'}
@d or_sign=@'37 {equivalent to `\.{or}'}

@ When we initialize the |xord| array and the remaining parts of |xchr|,
it will be convenient to make use of an index variable, |i|.

@<Local variables for init...@>=
@!i:0..255;

@ Here now is the system-dependent part of the character set.
If \.{WEB} is being implemented on a garden-variety \PASCAL\ for which
only standard ASCII codes will appear in the input and output files, you
don't need to make any changes here. But if you have, for example, an extended
character set like the one in Appendix~C of {\sl The \TeX book}, the first
line of code in this module should be changed to
$$\hbox{|for i:=1 to @'37 do xchr[i]:=chr(i);|}$$
\.{WEB}'s character set is essentially identical to \TeX's, even with respect to
characters less than @'40.
@^system dependencies@>

Changes to the present module will make \.{WEB} more friendly on computers
that have an extended character set, so that one can type things like
\.^^Z\ instead of \.{<>}. If you have an extended set of characters that
are easily incorporated into text files, you can assign codes arbitrarily
here, giving an |xchr| equivalent to whatever characters the users of
\.{WEB} are allowed to have in their input files, provided that unsuitable
characters do not correspond to special codes like |carriage_return|
that are listed above.

(The present file \.{TANGLE.WEB} does not contain any of the non-ASCII
characters, because it is intended to be used with all implementations of
\.{WEB}.  It was originally created on a Stanford system that has a
convenient extended character set, then ``sanitized'' by applying another
program that transliterated all of the non-standard characters into
standard equivalents.)

@<Set init...@>=
for i:=1 to @'37 do xchr[i]:=' ';
for i:=@'200 to @'377 do xchr[i]:=' ';

@ The following system-independent code makes the |xord| array contain a
suitable inverse to the information in |xchr|.

@<Set init...@>=
for i:=first_text_char to last_text_char do xord[chr(i)]:=" ";
for i:=1 to @'377 do xord[xchr[i]]:=i;
xord[' ']:=" ";

@* Input and output.
The input conventions of this program are intended to be very much like those
of \TeX\ (except, of course, that they are much simpler, because much less
needs to be done). Furthermore they are identical to those of \.{WEAVE}.
Therefore people who need to make modifications to all three systems
should be able to do so without too many headaches.

We use the standard \PASCAL\ input/output procedures in several places that
\TeX\ cannot, since \.{TANGLE} does not have to deal with files that are named
dynamically by the user, and since there is no input from the terminal.

@ Terminal output is done by writing on file |term_out|, which is assumed to
consist of characters of type |text_char|:
@^system dependencies@>

@d print(#)==write(term_out,#) {`|print|' means write on the terminal}
@d print_ln(#)==write_ln(term_out,#) {`|print|' and then start new line}
@d new_line==write_ln(term_out) {start new line}
@d print_nl(#)==  {print information starting on a new line}
  begin new_line; print(#);
  end

@<Globals...@>=
@!term_out:text_file; {the terminal as an output file}

@ Different systems have different ways of specifying that the output on a
certain file will appear on the user's terminal. Here is one way to do this
on the \PASCAL\ system that was used in \.{TANGLE}'s initial development:
@^system dependencies@>

@<Set init...@>=
rewrite(term_out,'TTY:'); {send |term_out| output to the terminal}

@ The |update_terminal| procedure is called when we want
to make sure that everything we have output to the terminal so far has
actually left the computer's internal buffers and been sent.
@^system dependencies@>

@d update_terminal == break(term_out) {empty the terminal output buffer}

@ The main input comes from |web_file|; this input may be overridden
by changes in |change_file|. (If |change_file| is empty, there are no changes.)

@<Globals...@>=
@!web_file:text_file; {primary input}
@!change_file:text_file; {updates}

@ The following code opens the input files.  Since these files were listed
in the program header, we assume that the \PASCAL\ runtime system has
already checked that suitable file names have been given; therefore no
additional error checking needs to be done.
@^system dependencies@>

@p procedure open_input; {prepare to read |web_file| and |change_file|}
begin reset(web_file); reset(change_file);
end;

@ The main output goes to |Pascal_file|, and string pool constants are
written to the |pool| file.

@<Globals...@>=
@!Pascal_file: text_file;
@!pool: text_file;

@ The following code opens |Pascal_file| and |pool|.
Since these files were listed in the program header, we assume that the
\PASCAL\ runtime system has checked that suitable external file names have
been given.
@^system dependencies@>

@<Set init...@>=
rewrite(Pascal_file); rewrite(pool);

@ Input goes into an array called |buffer|.

@<Globals...@>=@!buffer: array[0..buf_size] of ASCII_code;

@ The |input_ln| procedure brings the next line of input from the specified
file into the |buffer| array and returns the value |true|, unless the file has
already been entirely read, in which case it returns |false|. The conventions
of \TeX\ are followed; i.e., |ASCII_code| numbers representing the next line
of the file are input into |buffer[0]|, |buffer[1]|, \dots,
|buffer[limit-1]|; trailing blanks are ignored;
and the global variable |limit| is set to the length of the
@^system dependencies@>
line. The value of |limit| must be strictly less than |buf_size|.

We assume that none of the |ASCII_code| values
of |buffer[j]| for |0<=j<limit| is equal to 0, @'177, |line_feed|, |form_feed|,
or |carriage_return|.

@p function input_ln(var f:text_file):boolean;
  {inputs a line or returns |false|}
var final_limit:0..buf_size; {|limit| without trailing blanks}
begin limit:=0; final_limit:=0;
if eof(f) then input_ln:=false
else  begin while not eoln(f) do
    begin buffer[limit]:=xord[f^]; get(f);
    incr(limit);
    if buffer[limit-1]<>" " then final_limit:=limit;
    if limit=buf_size then
      begin while not eoln(f) do get(f);
      decr(limit); {keep |buffer[buf_size]| empty}
      if final_limit>limit then final_limit:=limit;
      print_nl('! Input line too long'); loc:=0; error;
@.Input line too long@>
      end;
    end;
  read_ln(f); limit:=final_limit; input_ln:=true;
  end;
end;

@* Reporting errors to the user.
The \.{TANGLE} processor operates in two phases: first it inputs the source
file and stores a compressed representation of the program, then it produces
the \PASCAL\ output from the compressed representation.

The global variable |phase_one| tells whether we are in Phase I or not.

@<Globals...@>=
@!phase_one: boolean; {|true| in Phase I, |false| in Phase II}

@ If an error is detected while we are debugging,
we usually want to look at the contents of memory.
A special procedure will be declared later for this purpose.

@<Error handling...@>=
@!debug @+ procedure debug_help; forward;@+ gubed

@ During the first phase, syntax errors are reported to the user by saying
$$\hbox{`|err_print('! Error message')|'},$$
followed by `|jump_out|' if no recovery from the error is provided.
This will print the error message followed by an indication of where the error
was spotted in the source file. Note that no period follows the error message,
since the error routine will automatically supply a period.

Errors that are noticed during the second phase are reported to the user
in the same fashion, but the error message will be
followed by an indication of where the error was spotted in the output file.

The actual error indications are provided by a procedure called |error|.

@d err_print(#)==begin new_line; print(#); error;
  end

@<Error handling...@>=
procedure error; {prints '\..' and location of error message}
var j: 0..out_buf_size; {index into |out_buf|}
@!k,@!l: 0..buf_size; {indices into |buffer|}
begin if phase_one then @<Print error location based on input buffer@>
else @<Print error location based on output buffer@>;
update_terminal; mark_error;
@!debug debug_skipped:=debug_cycle; debug_help;@+gubed
end;

@ The error locations during Phase I can be indicated by using the global
variables |loc|, |line|, and |changing|, which tell respectively the first
unlooked-at position in |buffer|, the current line number, and whether or not
the current line is from |change_file| or |web_file|.
This routine should be modified on systems whose standard text editor
has special line-numbering conventions.
@^system dependencies@>

@<Print error location based on input buffer@>=
begin if changing then print('. (change file ')@+else print('. (');
print_ln('l.', line:1, ')');
if loc>=limit then l:=limit else l:=loc;
for k:=1 to l do
  if buffer[k-1]=tab_mark then print(' ')
  else print(xchr[buffer[k-1]]); {print the characters already read}
new_line;
for k:=1 to l do print(' '); {space out the next line}
for k:=l+1 to limit do print(xchr[buffer[k-1]]); {print the part not yet read}
print(' '); {this space separates the message from future asterisks}
end

@ The position of errors detected during the second phase can be indicated
by outputting the partially-filled output buffer, which contains |out_ptr|
entries.

@<Print error location based on output...@>=
begin print_ln('. (l.',line:1,')');
for j:=1 to out_ptr do print(xchr[out_buf[j-1]]); {print current partial line}
print('... '); {indicate that this information is partial}
end

@ The |jump_out| procedure just cuts across all active procedure levels
and jumps out of the program. This is the only non-local |goto| statement
in \.{TANGLE}. It is used when no recovery from a particular error has
been provided.

Some \PASCAL\ compilers do not implement non-local |goto| statements.
@^system dependencies@>
In such cases the code that appears at label |end_of_TANGLE| should be
copied into the |jump_out| procedure, followed by a call to a system procedure
that terminates the program.

@d fatal_error(#)==begin new_line; print(#); error; mark_fatal; jump_out;
  end

@<Error handling...@>=
procedure jump_out;
begin goto end_of_TANGLE;
end;

@ Sometimes the program's behavior is far different from what it should be,
and \.{TANGLE} prints an error message that is really for the \.{TANGLE}
maintenance person, not the user. In such cases the program says
|confusion('indication of where we are')|.

@d confusion(#)==fatal_error('! This can''t happen (',#,')')
@.This can't happen@>

@ An overflow stop occurs if \.{TANGLE}'s tables aren't large enough.

@d overflow(#)==fatal_error('! Sorry, ',#,' capacity exceeded')
@.Sorry, x capacity exceeded@>


@* Data structures.
Most of the user's \PASCAL\ code is packed into eight-bit integers
in two large arrays called |byte_mem| and |tok_mem|.
The |byte_mem| array holds the names of identifiers, strings, and modules;
the |tok_mem| array holds the replacement texts
for macros and modules. Allocation is sequential, since things are deleted only
during Phase II, and only in a last-in-first-out manner.

Auxiliary arrays |byte_start| and |tok_start| are used as directories to
|byte_mem| and |tok_mem|, and the |link|, |ilk|, |equiv|, and |text_link|
arrays give further information about names. These auxiliary arrays
consist of sixteen-bit items.

@<Types...@>=
@!eight_bits=0..255; {unsigned one-byte quantity}
@!sixteen_bits=0..65535; {unsigned two-byte quantity}

@ \.{TANGLE} has been designed to avoid the need for indices that are more
than sixteen bits wide, so that it can be used on most computers. But
there are programs that need more than 65536 tokens, and some programs
even need more than 65536 bytes; \TeX\ is one of these.  To get around
this problem, a slight complication has been added to the data structures:
|byte_mem| and |tok_mem| are two-dimensional arrays, whose first index is
either 0 or 1 or 2. (For generality, the first index is actually allowed to run
between 0 and |ww-1| in |byte_mem|, or between 0 and |zz-1| in |tok_mem|,
where |ww| and |zz| are set to 2 and~3; the program will work for any
positive values of |ww| and |zz|, and it can be simplified in obvious ways
if |ww=1| or |zz=1|.)

@d ww=2 {we multiply the byte capacity by approximately this amount}
@d zz=3 {we multiply the token capacity by approximately this amount}

@<Globals...@>=
@!byte_mem: packed array [0..ww-1,0..max_bytes] of ASCII_code;
  {characters of names}
@!tok_mem: packed array [0..zz-1,0..max_toks] of eight_bits; {tokens}
@!byte_start: array [0..max_names] of sixteen_bits; {directory into |byte_mem|}
@!tok_start: array [0..max_texts] of sixteen_bits; {directory into |tok_mem|}
@!link: array [0..max_names] of sixteen_bits; {hash table or tree links}
@!ilk: array [0..max_names] of sixteen_bits; {type codes or tree links}
@!equiv: array [0..max_names] of sixteen_bits; {info corresponding to names}
@!text_link: array [0..max_texts] of sixteen_bits; {relates replacement texts}

@ The names of identifiers are found by computing a hash address |h| and
then looking at strings of bytes signified by |hash[h]|, |link[hash[h]]|,
|link[link[hash[h]]]|, \dots, until either finding the desired name
or encountering a zero.

A `|name_pointer|' variable, which signifies a name, is an index into
|byte_start|. The actual sequence of characters in the name pointed to by
|p| appears in positions |byte_start[p]| to |byte_start[p+ww]-1|, inclusive,
in the segment of |byte_mem| whose first index is |p mod ww|. Thus, when
|ww=2| the even-numbered name bytes appear in |byte_mem[0,@t$*$@>]|
and the odd-numbered ones appear in |byte_mem[1,@t$*$@>]|.
The pointer 0 is used for undefined module names; we don't
want to use it for the names of identifiers, since 0 stands for a null
pointer in a linked list.

Strings are treated like identifiers; the first character (a double-quote)
distinguishes a string from an alphabetic name, but for \.{TANGLE}'s purposes
strings behave like numeric macros. (A `string' here refers to the
strings delimited by double-quotes that \.{TANGLE} processes. \PASCAL\
string constants delimited by single-quote marks are not given such special
treatment; they simply appear as sequences of characters in the \PASCAL\
texts.)  The total number of strings in the string
pool is called |string_ptr|, and the total number of names in |byte_mem|
is called |name_ptr|. The total number of bytes occupied in
|byte_mem[w,@t$*$@>]| is called |byte_ptr[w]|.

We usually have |byte_start[name_ptr+w]=byte_ptr[(name_ptr+w) mod ww]|
for |0<=w<ww|, since these are the starting positions for the next |ww|
names to be stored in |byte_mem|.

@d length(#)==byte_start[#+ww]-byte_start[#] {the length of a name}

@<Types...@>=
@!name_pointer=0..max_names; {identifies a name}

@ @<Global...@>=
@!name_ptr:name_pointer; {first unused position in |byte_start|}
@!string_ptr:name_pointer; {next number to be given to a string of length |<>1|}
@!byte_ptr:array [0..ww-1] of 0..max_bytes;
  {first unused position in |byte_mem|}
@!pool_check_sum:integer; {sort of a hash for the whole string pool}

@ @<Local variables for init...@>=
@!wi: 0..ww-1; {to initialize the |byte_mem| indices}

@ @<Set init...@>=
for wi:=0 to ww-1 do
  begin byte_start[wi]:=0; byte_ptr[wi]:=0;
  end;
byte_start[ww]:=0; {this makes name 0 of length zero}
name_ptr:=1; string_ptr:=256; pool_check_sum:=271828;

@ Replacement texts are stored in |tok_mem|, using similar conventions.
A `|text_pointer|' variable is an index into |tok_start|, and the
replacement text that corresponds to |p| runs from positions
|tok_start[p]| to |tok_start[p+zz]-1|, inclusive, in the segment of
|tok_mem| whose first index is |p mod zz|. Thus, when |zz=2| the
even-numbered replacement texts appear in |tok_mem[0,@t$*$@>]| and the
odd-numbered ones appear in |tok_mem[1,@t$*$@>]|.  Furthermore,
|text_link[p]| is used to connect pieces of text that have the same name,
as we shall see later. The pointer 0 is used for undefined replacement
texts.

The first position of |tok_mem[z,@t$*$@>]| that is unoccupied by
replacement text is called |tok_ptr[z]|, and the first unused location of
|tok_start| is called |text_ptr|.  We usually have the identity
|tok_start[text_ptr+z]=tok_ptr[(text_ptr+z) mod zz]|, for |0<=z<zz|, since
these are the starting positions for the next |zz| replacement texts to
be stored in |tok_mem|.

@<Types...@>=
@!text_pointer=0..max_texts; {identifies a replacement text}

@ It is convenient to maintain a variable |z| that is equal to |text_ptr
mod zz|, so that we always insert tokens into segment |z| of |tok_mem|.

@<Glob...@>=
@t\hskip1em@>@!text_ptr:text_pointer; {first unused position in |tok_start|}
@t\hskip1em@>@!tok_ptr:array[0..zz-1] of 0..max_toks;
  {first unused position in a given segment of |tok_mem|}
@t\hskip1em@>@!z:0..zz-1; {current segment of |tok_mem|}
stat @!max_tok_ptr:array[0..zz-1] of 0..max_toks;
  {largest values assumed by |tok_ptr|}
tats

@ @<Local variables for init...@>=
@!zi:0..zz-1; {to initialize the |tok_mem| indices}

@ @<Set init...@>=
for zi:=0 to zz-1 do
  begin tok_start[zi]:=0; tok_ptr[zi]:=0;
  end;
tok_start[zz]:=0; {this makes replacement text 0 of length zero}
text_ptr:=1; z:=1 mod zz;

@ Four types of identifiers are distinguished by their |ilk|:

\yskip\hang |normal| identifiers will appear in the \PASCAL\ program as
ordinary identifiers since they have not been defined to be macros; the
corresponding value in the |equiv| array
for such identifiers is a link in a secondary hash table that
is used to check whether any two of them agree in their first |unambig_length|
characters after underline symbols are removed and lowercase letters are
changed to uppercase.

\yskip\hang |numeric| identifiers have been defined to be numeric macros;
their |equiv| value contains the corresponding numeric value plus $2^{15}$.
Strings are treated as numeric macros.

\yskip\hang |simple| identifiers have been defined to be simple macros;
their |equiv| value points to the corresponding replacement text.

\yskip\hang |parametric| identifiers have been defined to be parametric macros;
like simple identifiers, their |equiv| value points to the replacement text.

@d normal=0 {ordinary identifiers have |normal| ilk}
@d numeric=1 {numeric macros and strings have |numeric| ilk}
@d simple=2 {simple macros have |simple| ilk}
@d parametric=3 {parametric macros have |parametric| ilk}

@ The names of modules are stored in |byte_mem| together
with the identifier names, but a hash table is not used for them because
\.{TANGLE} needs to be able to recognize a module name when given a prefix of
that name. A conventional binary search tree is used to retrieve module names,
with fields called |llink| and |rlink| in place of |link| and |ilk|. The
root of this tree is |rlink[0]|. If |p| is a pointer to a module name,
|equiv[p]| points to its replacement text, just as in simple and parametric
macros, unless this replacement text has not yet been defined (in which case
|equiv[p]=0|).

@d llink==link {left link in binary search tree for module names}
@d rlink==ilk {right link in binary search tree for module names}

@<Set init...@>=
rlink[0]:=0; {the binary search tree starts out with nothing in it}
equiv[0]:=0; {the undefined module has no replacement text}

@ Here is a little procedure that prints the text of a given name.

@p procedure print_id(@!p:name_pointer); {print identifier or module name}
var k:0..max_bytes; {index into |byte_mem|}
@!w:0..ww-1; {segment of |byte_mem|}
begin if p>=name_ptr then print('IMPOSSIBLE')
else  begin w:=p mod ww;
  for k:=byte_start[p] to byte_start[p+ww]-1 do print(xchr[byte_mem[w,k]]);
  end;
end;

@* Searching for identifiers.
The hash table described above is updated by the |id_lookup| procedure,
which finds a given identifier and returns a pointer to its index in
|byte_start|. If the identifier was not already present, it is inserted with
a given |ilk| code; and an error message is printed if the identifier is being
doubly defined.

Because of the way \.{TANGLE}'s scanning mechanism works, it is most convenient
to let |id_lookup| search for an identifier that is present in the |buffer|
array. Two other global variables specify its position in the buffer: the
first character is |buffer[id_first]|, and the last is |buffer[id_loc-1]|.
Furthermore, if the identifier is really a string, the global variable
|double_chars| tells how many of the characters in the buffer appear
twice (namely \.{@@@@} and \.{""}), since this additional information makes
it easy to calculate the true length of the string. The final double-quote
of the string is not included in its ``identifier,'' but the first one is,
so the string length is |id_loc-id_first-double_chars-1|.

We have mentioned that |normal| identifiers belong to two hash tables,
one for their true names as they appear in the \.{WEB} file and the other
when they have been reduced to their first |unambig_length| characters.
The hash tables are kept by the method of simple chaining, where the
heads of the individual lists appear in the |hash| and |chop_hash| arrays.
If |h| is a hash code, the primary hash table list starts at |hash[h]| and
proceeds through |link| pointers; the secondary hash table list starts at
|chop_hash[h]| and proceeds through |equiv| pointers. Of course, the same
identifier will probably have two different values of |h|.

The |id_lookup| procedure uses an auxiliary array called |chopped_id| to
contain up to |unambig_length| characters of the current identifier, if
it is necessary to compute the secondary hash code. (This array could be
declared local to |id_lookup|, but in general we are making all array
declarations global in this program, because some compilers and some machine
architectures make dynamic array allocation inefficient.)

@<Glob...@>=
@!id_first:0..buf_size; {where the current identifier begins in the buffer}
@!id_loc:0..buf_size; {just after the current identifier in the buffer}
@!double_chars:0..buf_size; {correction to length in case of strings}
@#
@!hash,@!chop_hash:array [0..hash_size] of sixteen_bits; {heads of hash lists}
@!chopped_id:array [0..unambig_length] of ASCII_code; {chopped identifier}

@ Initially all the hash lists are empty.

@<Local variables for init...@>=
@!h:0..hash_size; {index into hash-head arrays}

@ @<Set init...@>=
for h:=0 to hash_size-1 do
  begin hash[h]:=0; chop_hash[h]:=0;
  end;

@ Here now is the main procedure for finding identifiers (and strings).
The parameter |t| is set to |normal| except when the identifier is
a macro name that is just being defined; in the latter case, |t| will be
|numeric|, |simple|, or |parametric|.

@p function id_lookup(@!t:eight_bits):name_pointer; {finds current identifier}
label found, not_found;
var c:eight_bits; {byte being chopped}
@!i:0..buf_size; {index into |buffer|}
@!h:0..hash_size; {hash code}
@!k:0..max_bytes; {index into |byte_mem|}
@!w:0..ww-1; {segment of |byte_mem|}
@!l:0..buf_size; {length of the given identifier}
@!p,@!q:name_pointer; {where the identifier is being sought}
@!s:0..unambig_length; {index into |chopped_id|}
begin l:=id_loc-id_first; {compute the length}
@<Compute the hash code |h|@>;
@<Compute the name location |p|@>;
if (p=name_ptr)or(t<>normal) then
  @<Update the tables and check for possible errors@>;
id_lookup:=p;
end;

@ A simple hash code is used: If the sequence of
ASCII codes is $c_1c_2\ldots c_n$, its hash value will be
$$(2^{n-1}c_1+2^{n-2}c_2+\cdots+c_n)\,\bmod\,|hash_size|.$$

@<Compute the hash...@>=
h:=buffer[id_first]; i:=id_first+1;
while i<id_loc do
  begin h:=(h+h+buffer[i]) mod hash_size; incr(i);
  end

@ If the identifier is new, it will be placed in position |p=name_ptr|,
otherwise |p| will point to its existing location.

@<Compute the name location...@>=
p:=hash[h];
while p<>0 do
  begin if length(p)=l then
      @<Compare name |p| with current identifier, |goto found| if equal@>;
  p:=link[p];
  end;
p:=name_ptr; {the current identifier is new}
link[p]:=hash[h]; hash[h]:=p; {insert |p| at beginning of hash list}
found:

@ @<Compare name |p|...@>=
begin i:=id_first; k:=byte_start[p]; w:=p mod ww;
while (i<id_loc)and(buffer[i]=byte_mem[w,k]) do
  begin incr(i); incr(k);
  end;
if i=id_loc then goto found; {all characters agree}
end

@ @<Update the tables...@>=
begin if ((p<>name_ptr)and(t<>normal)and(ilk[p]=normal)) or
    ((p=name_ptr)and(t=normal)and(buffer[id_first]<>"""")) then
  @<Compute the secondary hash code |h| and put the first characters
  into the auxiliary array |chopped_id|@>;
if p<>name_ptr then
  @<Give double-definition error, if necessary, and change |p| to type |t|@>
else @<Enter a new identifier into the table at position |p|@>;
end

@ The following routine, which is called into play when it is necessary to
look at the secondary hash table, computes the same hash function as before
(but on the chopped data), and places a zero after the chopped identifier
in |chopped_id| to serve as a convenient sentinel.

@<Compute the secondary...@>=
begin i:=id_first; s:=0; h:=0;
while (i<id_loc)and(s<unambig_length) do
  begin if buffer[i]<>"_" then
    begin if buffer[i]>="a" then chopped_id[s]:=buffer[i]-@'40
    else chopped_id[s]:=buffer[i];
    h:=(h+h+chopped_id[s]) mod hash_size; incr(s);
    end;
  incr(i);
  end;
chopped_id[s]:=0;
end

@ If a nonnumeric macro has appeared before it was defined, \.{TANGLE}
will still work all right; after all, such behavior is typical of the
replacement texts for modules, which act very much like macros.
However, an undefined numeric macro may not be used on the right-hand
side of another numeric macro definition, so \.{TANGLE} finds it
simplest to make a blanket rule that numeric macros should be defined
before they are used. The following routine gives an error message and
also fixes up any damage that may have been caused.

@<Give double...@>= {now |p<>name_ptr| and |t<>normal|}
begin if ilk[p]=normal then
  begin if t=numeric then err_print('! This identifier has already appeared');
@.This identifier has already...@>
  @<Remove |p| from secondary hash table@>;
  end
else err_print('! This identifier was defined before');
@.This identifier was defined...@>
ilk[p]:=t;
end

@ When we have to remove a secondary hash entry, because a |normal| identifier
is changing to another |ilk|, the hash code |h| and chopped identifier have
already been computed.

@<Remove |p| from secondary...@>=
q:=chop_hash[h];
if q=p then chop_hash[h]:=equiv[p]
else  begin while equiv[q]<>p do q:=equiv[q];
  equiv[q]:=equiv[p];
  end

@ The following routine could make good use of a generalized |pack| procedure
that puts items into just part of a packed array instead of the whole thing.

@<Enter a new identifier...@>=
begin if (t=normal)and(buffer[id_first]<>"""") then
  @<Check for ambiguity and update secondary hash@>;
w:=name_ptr mod ww; k:=byte_ptr[w];
if k+l>max_bytes then overflow('byte memory');
if name_ptr>max_names-ww then overflow('name');
i:=id_first; {get ready to move the identifier into |byte_mem|}
while i<id_loc do
  begin byte_mem[w,k]:=buffer[i]; incr(k); incr(i);
  end;
byte_ptr[w]:=k; byte_start[name_ptr+ww]:=k; incr(name_ptr);
if buffer[id_first]<>"""" then ilk[p]:=t
else @<Define and output a new string of the pool@>;
end

@ @<Check for ambig...@>=
begin q:=chop_hash[h];
while q<>0 do
  begin @<Check if |q| conflicts with |p|@>;
  q:=equiv[q];
  end;
equiv[p]:=chop_hash[h]; chop_hash[h]:=p; {put |p| at front of secondary list}
end

@ @<Check if |q| conflicts...@>=
begin k:=byte_start[q]; s:=0; w:=q mod ww;
while (k<byte_start[q+ww]) and (s<unambig_length) do
  begin c:=byte_mem[w,k];
  if c<>"_" then
    begin if c>="a" then c:=c-@'40; {merge lowercase with uppercase}
    if chopped_id[s]<>c then goto not_found;
    incr(s);
    end;
  incr(k);
  end;
if (k=byte_start[q+ww])and(chopped_id[s]<>0) then goto not_found;
print_nl('! Identifier conflict with ');
@.Identifier conflict...@>
for k:=byte_start[q] to byte_start[q+ww]-1 do print(xchr[byte_mem[w,k]]);
error; q:=0; {only one conflict will be printed, since |equiv[0]=0|}
not_found:
end

@ We compute the string pool check sum by working modulo a prime number
that is large but not so large that overflow might occur.

@d check_sum_prime==@'3777777667 {$2^{29}-73$}
@^preprocessed strings@>

@<Define and output a new string...@>=
begin ilk[p]:=numeric; {strings are like numeric macros}
if l-double_chars=2 then {this string is for a single character}
  equiv[p]:=buffer[id_first+1]+@'100000
else  begin equiv[p]:=string_ptr+@'100000;
  l:=l-double_chars-1;
  if l>99 then err_print('! Preprocessed string is too long');
@.Preprocessed string is too long@>
  incr(string_ptr);
  write(pool,xchr["0"+l div 10],xchr["0"+l mod 10]); {output the length}
  pool_check_sum:=pool_check_sum+pool_check_sum+l;
  while pool_check_sum>check_sum_prime do
    pool_check_sum:=pool_check_sum-check_sum_prime;
  i:=id_first+1;
  while i<id_loc do
    begin write(pool,xchr[buffer[i]]); {output characters of string}
    pool_check_sum:=pool_check_sum+pool_check_sum+buffer[i];
    while pool_check_sum>check_sum_prime do
      pool_check_sum:=pool_check_sum-check_sum_prime;
    if (buffer[i]="""") or (buffer[i]="@@") then
      i:=i+2 {omit second appearance of doubled character}
    else incr(i);
    end;
  write_ln(pool);
  end;
end

@* Searching for module names.
The |mod_lookup| procedure finds the module name |mod_text[1..l]| in the
search tree, after inserting it if necessary, and returns a pointer to
where it was found.

@<Glob...@>=
@!mod_text:array [0..longest_name] of ASCII_code; {name being sought for}

@ According to the rules of \.{WEB}, no module name
should be a proper prefix of another, so a ``clean'' comparison should
occur between any two names. The result of |mod_lookup| is 0 if this
prefix condition is violated. An error message is printed when such violations
are detected during phase two of \.{WEAVE}.

@d less=0 {the first name is lexicographically less than the second}
@d equal=1 {the first name is equal to the second}
@d greater=2 {the first name is lexicographically greater than the second}
@d prefix=3 {the first name is a proper prefix of the second}
@d extension=4 {the first name is a proper extension of the second}

@p function mod_lookup(@!l:sixteen_bits):name_pointer; {finds module name}
label found;
var c:less..extension; {comparison between two names}
@!j:0..longest_name; {index into |mod_text|}
@!k:0..max_bytes; {index into |byte_mem|}
@!w:0..ww-1; {segment of |byte_mem|}
@!p:name_pointer; {current node of the search tree}
@!q:name_pointer; {father of node |p|}
begin c:=greater; q:=0; p:=rlink[0]; {|rlink[0]| is the root of the tree}
while p<>0 do
  begin @<Set \(|c| to the result of comparing the given name to
    name |p|@>;
  q:=p;
  if c=less then p:=llink[q]
  else if c=greater then p:=rlink[q]
  else goto found;
  end;
@<Enter a new module name into the tree@>;
found: if c<>equal then
  begin err_print('! Incompatible section names'); p:=0;
@.Incompatible module names@>
  end;
mod_lookup:=p;
end;

@ @<Enter a new module name...@>=
w:=name_ptr mod ww; k:=byte_ptr[w];
if k+l>max_bytes then overflow('byte memory');
if name_ptr>max_names-ww then overflow('name');
p:=name_ptr;
if c=less then llink[q]:=p else rlink[q]:=p;
llink[p]:=0; rlink[p]:=0; c:=equal; equiv[p]:=0;
for j:=1 to l do byte_mem[w,k+j-1]:=mod_text[j];
byte_ptr[w]:=k+l; byte_start[name_ptr+ww]:=k+l; incr(name_ptr);

@ @<Set \(|c|...@>=
begin k:=byte_start[p]; w:=p mod ww; c:=equal; j:=1;
while (k<byte_start[p+ww]) and (j<=l) and (mod_text[j]=byte_mem[w,k]) do
  begin incr(k); incr(j);
  end;
if k=byte_start[p+ww] then
  if j>l then c:=equal
  else c:=extension
else if j>l then c:=prefix
else if mod_text[j]<byte_mem[w,k] then c:=less
else c:=greater;
end

@ The |prefix_lookup| procedure is supposed to find exactly one module
name that has |mod_text[1..l]| as a prefix. Actually the algorithm silently
accepts also the situation that some module name is a prefix of
|mod_text[1..l]|, because the user who painstakingly typed in more than
necessary probably doesn't want to be told about the wasted effort.

@p function prefix_lookup(@!l:sixteen_bits):name_pointer; {finds name extension}
var c:less..extension; {comparison between two names}
@!count:0..max_names; {the number of hits}
@!j:0..longest_name; {index into |mod_text|}
@!k:0..max_bytes; {index into |byte_mem|}
@!w:0..ww-1; {segment of |byte_mem|}
@!p:name_pointer; {current node of the search tree}
@!q:name_pointer; {another place to resume the search after one branch is done}
@!r:name_pointer; {extension found}
begin q:=0; p:=rlink[0]; count:=0; r:=0; {begin search at root of tree}
while p<>0 do
  begin @<Set \(|c|...@>;
  if c=less then p:=llink[p]
  else if c=greater then p:=rlink[p]
  else  begin r:=p; incr(count); q:=rlink[p]; p:=llink[p];
    end;
  if p=0 then
    begin p:=q; q:=0;
    end;
  end;
if count<>1 then
  if count=0 then err_print('! Name does not match')
@.Name does not match@>
  else err_print('! Ambiguous prefix');
@.Ambiguous prefix@>
prefix_lookup:=r; {the result will be 0 if there was no match}
end;

@* Tokens.
Replacement texts, which represent \PASCAL\ code in a compressed format,
appear in |tok_mem| as mentioned above. The codes in
these texts are called `tokens'; some tokens occupy two consecutive
eight-bit byte positions, and the others take just one byte.

If $p>0$ points to a replacement text, |tok_start[p]| is the |tok_mem| position
of the first eight-bit code of that text. If |text_link[p]=0|,
this is the replacement text for a macro, otherwise it is the replacement
text for a module. In the latter case |text_link[p]| is either equal to
|module_flag|, which means that there is no further text for this module, or
|text_link[p]| points to a
continuation of this replacement text; such links are created when
several modules have \PASCAL\ texts with the same name, and they also
tie together all the \PASCAL\ texts of unnamed modules.
The replacement text pointer for the first unnamed module
appears in |text_link[0]|, and the most recent such pointer is |last_unnamed|.

@d module_flag==max_texts {final |text_link| in module replacement texts}

@<Glob...@>=
@!last_unnamed:text_pointer; {most recent replacement text of unnamed module}

@ @<Set init...@>= last_unnamed:=0; text_link[0]:=0;

@ If the first byte of a token is less than @'200, the token occupies a
single byte. Otherwise we make a sixteen-bit token by combining two consecutive
bytes |a| and |b|. If |@'200<=a<@'250|, then $(a-@'200)\times2^8+b$ points
to an identifier; if |@'250<=a<@'320|, then
$(a-@'250)\times2^8+b$ points to a module name; otherwise, i.e., if
|@'320<=a<@'400|, then $(a-@'320)\times2^8+b$ is the number of the module
in which the current replacement text appears.

Codes less than @'200 are 7-bit ASCII codes that represent themselves.
In particular, a single-character identifier like `|x|' will be a one-byte
token, while all longer identifiers will occupy two bytes.

Some of the 7-bit ASCII codes will not be present, however, so we can
use them for special purposes. The following symbolic names are used:

\yskip\hang |param| denotes insertion of a parameter. This occurs only in
the replacement texts of parametric macros, outside of single-quoted strings
in those texts.

\hang |begin_comment| denotes \.{@@\{}, which will become either
\.{\{} or \.{[}.

\hang |end_comment| denotes \.{@@\}}, which will become either
\.{\}} or \.{]}.

\hang |octal| denotes the \.{@@\'} that precedes an octal constant.

\hang |hex| denotes the \.{@@"} that precedes a hexadecimal constant.

\hang |check_sum| denotes the \.{@@\char'44} that denotes the string pool
check sum.

\hang |join| denotes the concatenation of adjacent items with no
space or line breaks allowed between them (the \.{@@\&} operation of \.{WEB}).

\hang |double_dot| denotes `\.{..}' in \PASCAL.

\hang |verbatim| denotes the \.{@@=} that begins a verbatim \PASCAL\ string.
The \.{@@>} at the end of such a string is also denoted by |verbatim|.

\hang |force_line| denotes the \.{@@\\} that forces a new line in the
\PASCAL\ output.
@^ASCII code@>

@d param=0 {ASCII null code will not appear}
@d verbatim=@'2 {extended ASCII alpha should not appear}
@d force_line=@'3 {extended ASCII beta should not appear}
@d begin_comment=@'11 {ASCII tab mark will not appear}
@d end_comment=@'12 {ASCII line feed will not appear}
@d octal=@'14 {ASCII form feed will not appear}
@d hex=@'15 {ASCII carriage return will not appear}
@d double_dot=@'40 {ASCII space will not appear except in strings}
@d check_sum=@'175 {will not be confused with right brace}
@d join=@'177 {ASCII delete will not appear}

@ The following procedure is used to enter a two-byte value into
|tok_mem| when a replacement text is being generated.

@p procedure store_two_bytes(@!x:sixteen_bits);
  {stores high byte, then low byte}
begin if tok_ptr[z]+2>max_toks then overflow('token');
tok_mem[z,tok_ptr[z]]:=x div@'400; {this could be done by a shift command}
tok_mem[z,tok_ptr[z]+1]:=x mod@'400; {this could be done by a logical and}
tok_ptr[z]:=tok_ptr[z]+2;
end;

@ When \.{TANGLE} is being operated in debug mode, it has a procedure to display
a replacement text in symbolic form. This procedure has not been spruced up to
generate a real great format, but at least the results are not as bad as
a memory dump.

@p @!debug procedure print_repl(@!p:text_pointer);
var k:0..max_toks; {index into |tok_mem|}
@!a: sixteen_bits; {current byte(s)}
@!zp: 0..zz-1; {segment of |tok_mem| being accessed}
begin if p>=text_ptr then print('BAD')
else  begin k:=tok_start[p]; zp:=p mod zz;
  while k<tok_start[p+zz] do
    begin a:=tok_mem[zp,k];
    if a>=@'200 then @<Display two-byte token starting with |a|@>
    else @<Display one-byte token |a|@>;
    incr(k);
    end;
  end;
end;
gubed

@ @<Display two-byte...@>=
begin incr(k);
if a<@'250 then {identifier or string}
  begin a:=(a-@'200)*@'400+tok_mem[zp,k]; print_id(a);
  if byte_mem[a mod ww,byte_start[a]]="""" then print('"')
  else print(' ');
  end
else if a<@'320 then {module name}
  begin print('@@<'); print_id((a-@'250)*@'400+tok_mem[zp,k]);
  print('@@>');
  end
else  begin a:=(a-@'320)*@'400+tok_mem[zp,k]; {module number}
  print('@@',xchr["{"],a:1,'@@',xchr["}"]); {can't use right brace
    between \&{debug} and \&{gubed}}
  end;
end

@ @<Display one-byte...@>=
case a of
begin_comment: print('@@',xchr["{"]);
end_comment: print('@@',xchr["}"]); {can't use right brace
    between \&{debug} and \&{gubed}}
octal: print('@@''');
hex: print('@@"');
check_sum: print('@@$');
param: print('#');
"@@": print('@@@@');
verbatim: print('@@=');
force_line: print('@@\');
othercases print(xchr[a])
endcases

@* Stacks for output.
Let's make sure that our data structures contain enough information to
produce the entire \PASCAL\ program as desired, by working next on the
algorithms that actually do produce that program.

@ The output process uses a stack to keep track of what is going on at
different ``levels'' as the macros are being expanded.
Entries on this stack have five parts:

\yskip\hang |end_field| is the |tok_mem| location where the replacement
text of a particular level will end;

\hang |byte_field| is the |tok_mem| location from which the next token
on a particular level will be read;

\hang |name_field| points to the name corresponding to a particular level;

\hang |repl_field| points to the replacement text currently being read
at a particular level;

\hang |mod_field| is the module number, or zero if this is a macro.

\yskip\noindent The current values of these five quantities are referred to
quite frequently, so they are stored in a separate place instead of in
the |stack| array. We call the current values |cur_end|, |cur_byte|,
|cur_name|, |cur_repl|, and |cur_mod|.

The global variable |stack_ptr| tells how many levels of output are
currently in progress. The end of all output occurs when the stack is
empty, i.e., when |stack_ptr=0|.

@<Types...@>=
@t\4@>@!output_state=record
  @!end_field: sixteen_bits; {ending location of replacement text}
  @!byte_field: sixteen_bits; {present location within replacement text}
  @!name_field: name_pointer; {|byte_start| index for text being output}
  @!repl_field: text_pointer; {|tok_start| index for text being output}
  @!mod_field: 0..@'27777; {module number or zero if not a module}
  end;

@ @d cur_end==cur_state.end_field {current ending location in |tok_mem|}
@d cur_byte==cur_state.byte_field {location of next output byte in |tok_mem|}
@d cur_name==cur_state.name_field {pointer to current name being expanded}
@d cur_repl==cur_state.repl_field {pointer to current replacement text}
@d cur_mod==cur_state.mod_field {current module number being expanded}

@<Globals...@>=
@!cur_state : output_state; {|cur_end|, |cur_byte|, |cur_name|,
  |cur_repl|, |cur_mod|}
@!stack : array [1..stack_size] of output_state; {info for non-current levels}
@!stack_ptr: 0..stack_size; {first unused location in the output state stack}

@ It is convenient to keep a global variable |zo| equal to |cur_repl mod zz|.

@<Glob...@>=
@!zo:0..zz-1; {the segment of |tok_mem| from which output is coming}

@ Parameters must also be stacked. They are placed in
|tok_mem| just above the other replacement texts, and dummy parameter
`names' are placed in |byte_start| just after the other names.
The variables |text_ptr| and |tok_ptr[z]| essentially serve as parameter
stack pointers during the output phase, so there is no need for a separate
data structure to handle this problem.

@ There is an implicit stack corresponding to meta-comments that are output
via \.{@@\{} and \.{@@\}}. But this stack need not be represented in detail,
because we only need to know whether it is empty or not. A global variable
|brace_level| tells how many items would be on this stack if it were present.

@<Globals...@>=
@!brace_level: eight_bits; {current depth of $\.{@@\{}\ldots\.{@@\}}$ nesting}

@ To get the output process started, we will perform the following
initialization steps. We may assume that |text_link[0]| is nonzero, since it
points to the \PASCAL\ text in the first unnamed module that generates
code; if there are no such modules, there is nothing to output, and an
error message will have been generated before we do any of the initialization.

@<Initialize the output stacks@>=
stack_ptr:=1; brace_level:=0; cur_name:=0; cur_repl:=text_link[0];
zo:=cur_repl mod zz; cur_byte:=tok_start[cur_repl];
cur_end:=tok_start[cur_repl+zz]; cur_mod:=0;

@ When the replacement text for name |p| is to be inserted into the output,
the following subroutine is called to save the old level of output and get
the new one going.

@p procedure push_level(@!p:name_pointer); {suspends the current level}
begin if stack_ptr=stack_size then overflow('stack')
else  begin stack[stack_ptr]:=cur_state; {save |cur_end|, |cur_byte|, etc.}
  incr(stack_ptr);
  cur_name:=p; cur_repl:=equiv[p]; zo:=cur_repl mod zz;
  cur_byte:=tok_start[cur_repl]; cur_end:=tok_start[cur_repl+zz];
  cur_mod:=0;
  end;
end;

@ When we come to the end of a replacement text, the |pop_level| subroutine
does the right thing: It either moves to the continuation of this replacement
text or returns the state to the most recently stacked level. Part of this
subroutine, which updates the parameter stack, will be given later when we
study the parameter stack in more detail.

@p procedure pop_level; {do this when |cur_byte| reaches |cur_end|}
label exit;
begin if text_link[cur_repl]=0 then {end of macro expansion}
  begin if ilk[cur_name]=parametric then
    @<Remove a parameter from the parameter stack@>;
  end
else if text_link[cur_repl]<module_flag then {link to a continuation}
  begin cur_repl:=text_link[cur_repl]; {we will stay on the same level}
  zo:=cur_repl mod zz;
  cur_byte:=tok_start[cur_repl]; cur_end:=tok_start[cur_repl+zz];
  return;
  end;
decr(stack_ptr); {we will go down to the previous level}
if stack_ptr>0 then
  begin cur_state:=stack[stack_ptr]; zo:=cur_repl mod zz;
  end;
exit: end;

@ The heart of the output procedure is the |get_output| routine, which produces
the next token of output that is not a reference to a macro. This procedure
handles all the stacking and unstacking that is necessary. It returns the
value |number| if the next output has a numeric value (the value of a
numeric macro or string), in which case |cur_val| has been set to the
number in question. The procedure also returns the value |module_number|
if the next output begins or ends the replacement text of some module,
in which case |cur_val| is that module's number (if beginning) or the
negative of that value (if ending). And it returns the value |identifier|
if the next output is an identifier of length two or more, in which case
|cur_val| points to that identifier name.

@d number=@'200 {code returned by |get_output| when next output is numeric}
@d module_number=@'201 {code returned by |get_output| for module numbers}
@d identifier=@'202 {code returned by |get_output| for identifiers}

@<Globals...@>=
@!cur_val:integer; {additional information corresponding to output token}

@ If |get_output| finds that no more output remains, it returns the value zero.

@p function get_output:sixteen_bits; {returns next token after macro expansion}
label restart, done, found;
var a:sixteen_bits; {value of current byte}
@!b:eight_bits; {byte being copied}
@!bal:sixteen_bits; {excess of \.( versus \.) while copying a parameter}
@!k:0..max_bytes; {index into |byte_mem|}
@!w:0..ww-1; {segment of |byte_mem|}
begin restart: if stack_ptr=0 then
  begin a:=0; goto found;
  end;
if cur_byte=cur_end then
  begin cur_val:=-cur_mod; pop_level;
  if cur_val=0 then goto restart;
  a:=module_number; goto found;
  end;
a:=tok_mem[zo,cur_byte]; incr(cur_byte);
if a<@'200 then {one-byte token}
  if a=param then
      @<Start scanning current macro parameter, |goto restart|@>
  else goto found;
a:=(a-@'200)*@'400+tok_mem[zo,cur_byte]; incr(cur_byte);
if a<@'24000 then {|@'24000=(@'250-@'200)*@'400|}
  @<Expand macro |a| and |goto found|, or |goto restart| if no output found@>;
if a<@'50000 then {|@'50000=(@'320-@'200)*@'400|}
  @<Expand module |a-@'24000|, |goto restart|@>;
cur_val:=a-@'50000; a:=module_number; cur_mod:=cur_val;
found:
@!debug if trouble_shooting then debug_help;@;@+gubed@/
get_output:=a;
end;

@ The user may have forgotten to give any \PASCAL\ text for a module name,
or the \PASCAL\ text may have been associated with a different name by mistake.

@<Expand module |a-...@>=
begin a:=a-@'24000;
if equiv[a]<>0 then push_level(a)
else if a<>0 then
  begin print_nl('! Not present: <'); print_id(a); print('>'); error;
@.Not present: <section name>@>
  end;
goto restart;
end

@ @<Expand macro ...@>=
begin case ilk[a] of
normal: begin cur_val:=a; a:=identifier;
  end;
numeric: begin cur_val:=equiv[a]-@'100000; a:=number;
  end;
simple: begin push_level(a); goto restart;
  end;
parametric: begin @<Put a parameter on the parameter stack,
  or |goto restart| if error occurs@>;
  push_level(a); goto restart;
  end;
othercases confusion('output')
endcases;@/
goto found;
end

@ We come now to the interesting part, the job of putting a parameter on
the parameter stack. First we pop the stack if necessary until getting to
a level that hasn't ended. Then the next character must be a `\.(';
and since parentheses are balanced on each level, the entire parameter must
be present, so we can copy it without difficulty.

@<Put a parameter...@>=
while (cur_byte=cur_end)and(stack_ptr>0) do pop_level;
if (stack_ptr=0)or(tok_mem[zo,cur_byte]<>"(") then
  begin print_nl('! No parameter given for '); print_id(a); error;
@.No parameter given for macro@>
  goto restart;
  end;
@<Copy the parameter into |tok_mem|@>;
equiv[name_ptr]:=text_ptr; ilk[name_ptr]:=simple; w:=name_ptr mod ww;
k:=byte_ptr[w];
@!debug if k=max_bytes then overflow('byte memory');
byte_mem[w,k]:="#"; incr(k); byte_ptr[w]:=k;
gubed {this code has set the parameter identifier for debugging printouts}
if name_ptr>max_names-ww then overflow('name');
byte_start[name_ptr+ww]:=k; incr(name_ptr);
if text_ptr>max_texts-zz then overflow('text');
text_link[text_ptr]:=0; tok_start[text_ptr+zz]:=tok_ptr[z];
incr(text_ptr);
z:=text_ptr mod zz

@ The |pop_level| routine undoes the effect of parameter-pushing when
a parameter macro is finished:

@<Remove a parameter...@>=
begin decr(name_ptr); decr(text_ptr);
z:=text_ptr mod zz;
stat if tok_ptr[z]>max_tok_ptr[z] then max_tok_ptr[z]:=tok_ptr[z];
tats {the maximum value of |tok_ptr| occurs just before parameter popping}
tok_ptr[z]:=tok_start[text_ptr];
@!debug decr(byte_ptr[name_ptr mod ww]);@+gubed
end

@ When a parameter occurs in a replacement text, we treat it as a simple
macro in position (|name_ptr-1|):

@<Start scanning...@>=
begin push_level(name_ptr-1); goto restart;
end

@ Similarly, a |param| token encountered as we copy a parameter is converted
into a simple macro call for |name_ptr-1|.
Some care is needed to handle cases like \\{macro}|(#; print('#)'))|; the
\.{\#} token will have been changed to |param| outside of strings, but we
still must distinguish `real' parentheses from those in strings.

@d app_repl(#)==begin if tok_ptr[z]=max_toks then overflow('token');
  tok_mem[z,tok_ptr[z]]:=#; incr(tok_ptr[z]); end

@<Copy the parameter...@>=
bal:=1; incr(cur_byte); {skip the opening `\.('}
loop@+  begin b:=tok_mem[zo,cur_byte]; incr(cur_byte);
  if b=param then store_two_bytes(name_ptr+@'77777)
  else  begin if b>=@'200 then
      begin app_repl(b);
      b:=tok_mem[zo,cur_byte]; incr(cur_byte);
      end
    else   case b of
      "(": incr(bal);
      ")":  begin decr(bal);
        if bal=0 then goto done;
        end;
      "'": repeat app_repl(b);
        b:=tok_mem[zo,cur_byte]; incr(cur_byte);
        until b="'"; {copy string, don't change |bal|}
      othercases do_nothing
      endcases;
    app_repl(b);
    end;
  end;
done:

@* Producing the output.
The |get_output| routine above handles most of the complexity of output
generation, but there are two further considerations that have a nontrivial
effect on \.{TANGLE}'s algorithms.

First, we want to make sure that the output is broken into lines not
exceeding |line_length| characters per line, where these breaks occur at
valid places (e.g., not in the middle of a string or a constant or an
identifier, not between `\.<' and `\.>', not at a `\.{@@\&}' position
where quantities are being joined together). Therefore we assemble the
output into a buffer before deciding where the line breaks will appear.
However, we make very little attempt to make ``logical'' line breaks that
would enhance the readability of the output; people are supposed to read
the input of \.{TANGLE} or the \TeX ed output of \.{WEAVE}, but not the
tangled-up output. The only concession to readability is that a break after
a semicolon will be made if possible, since commonly used ``pretty
printing'' routines give better results in such cases.

Second, we want to decimalize non-decimal constants, and to combine integer
quantities that are added or subtracted, because \PASCAL\ doesn't allow
constant expressions in subrange types or in case labels. This means we
want to have a procedure that treats a construction like \.{(E-15+17)}
as equivalent to `\.{(E+2)}', while also leaving `\.{(1E-15+17)}' and
`\.{(E-15+17*y)}' untouched. Consider also `\.{-15+17.5}' versus
`\.{-15+17..5}'. We shall not combine integers preceding or following
\.*, \./, \.{div}, \.{mod}, or \.{@@\&}. Note that if |y| has been defined
to equal $-2$, we must expand `\.{x*y}' into `\.{x*(-2)}'; but `\.{x-y}'
can expand into `\.{x+2}' and we can even change `\.{x - y mod z}' to
@^mod@>
`\.{x + 2 mod z}' because \PASCAL\ has a nonstandard \&{mod} operation!

The following solution to these problems has been adopted: An array
|out_buf| contains characters that have been generated but not yet output,
and there are three pointers into this array. One of these, |out_ptr|, is
the number of characters currently in the buffer, and we will have
|1<=out_ptr<=line_length| most of the time. The second is |break_ptr|,
which is the largest value |<=out_ptr| such that we are definitely entitled
to end a line by outputting the characters |out_buf[1..(break_ptr-1)]|;
we will always have |break_ptr<=line_length|. Finally, |semi_ptr| is either
zero or the largest known value of a legal break after a semicolon or comment
on the current line; we will always have |semi_ptr<=break_ptr|.

@<Globals...@>=
@!out_buf: array [0..out_buf_size] of ASCII_code; {assembled characters}
@!out_ptr: 0..out_buf_size; {first available place in |out_buf|}
@!break_ptr: 0..out_buf_size; {last breaking place in |out_buf|}
@!semi_ptr: 0..out_buf_size; {last semicolon breaking place in |out_buf|}

@ Besides having those three pointers,
the output process is in one of several states:

\yskip\hang |num_or_id| means that the last item in the buffer is a number or
identifier, hence a blank space or line break must be inserted if the next
item is also a number or identifier.

\yskip\hang |unbreakable| means that the last item in the buffer was followed
by the \.{@@\&} operation that inhibits spaces between it and the next item.

\yskip\hang |sign| means that the last item in the buffer is to be followed
by \.+ or \.-, depending on whether |out_app| is positive or negative.

\yskip\hang |sign_val| means that the decimal equivalent of
$\vert|out_val|\vert$ should be appended to the buffer. If |out_val<0|,
or if |out_val=0| and |last_sign<0|, the number should be preceded by a minus
sign. Otherwise it should be preceded by the character |out_sign| unless
|out_sign=0|; the |out_sign| variable is either 0 or \.{"\ "} or \.{"+"}.

\yskip\hang |sign_val_sign| is like |sign_val|, but also append \.+ or \.-
afterwards, depending on whether |out_app| is positive or negative.

\yskip\hang |sign_val_val| is like |sign_val|, but also append the decimal
equivalent of |out_app| including its sign, using |last_sign| in case
|out_app=0|.

\yskip\hang |misc| means none of the above.

\yskip\noindent
For example, the output buffer and output state run through the following
sequence as we generate characters from `\.{(x-15+19-2)}':
$$\vbox{\halign{$\hfil#\hfil$\quad&#\hfil&\quad\hfil#\hfil&\quad
\hfil#\hfil&\quad\hfil#\hfil&\quad\hfil#\hfil\quad&\hfil#\hfil\cr
output&|out_buf|&|out_state|&|out_sign|&|out_val|&|out_app|&|last_sign|\cr
\noalign{\vskip 3pt}
(&\.(&|misc|\cr
x&\.{(x}&|num_or_id|\cr
-&\.{(x}&|sign|&&&$-1$&$-1$\cr
15&\.{(x}&|sign_val|&\.{"+"}&$-15$&&$-1$\cr
+&\.{(x}&|sign_val_sign|&\.{"+"}&$-15$&$+1$&$+1$\cr
19&\.{(x}&|sign_val_val|&\.{"+"}&$-15$&$+19$&$+1$\cr
-&\.{(x}&|sign_val_sign|&\.{"+"}&$+4$&$-1$&$-1$\cr
2&\.{(x}&|sign_val_val|&\.{"+"}&$+4$&$-2$&$-1$\cr
)&\.{(x+2)}&|misc|\cr}}$$
At each stage we have put as much into the buffer as possible without
knowing what is coming next. Examples like `\.{x-0.1}' indicate why
|last_sign| is needed to associate the proper sign with an output of zero.

In states |num_or_id|, |unbreakable|, and |misc| the last item in the buffer
lies between |break_ptr| and |out_ptr-1|, inclusive; in the other states we
have |break_ptr=out_ptr|.

The numeric values assigned to |num_or_id|, etc., have been chosen to
shorten some of the program logic; for example, the program makes use of
the fact that |sign+2=sign_val_sign|.

@d misc=0 {state associated with special characters}
@d num_or_id=1 {state associated with numbers and identifiers}
@d sign=2 {state associated with pending \.+ or \.-}
@d sign_val=num_or_id+2 {state associated with pending sign and value}
@d sign_val_sign=sign+2 {|sign_val| followed by another pending sign}
@d sign_val_val=sign_val+2 {|sign_val| followed by another pending value}
@d unbreakable=sign_val_val+1 {state associated with \.{@@\&}}

@<Globals...@>=
@!out_state:eight_bits; {current status of partial output}
@!out_val,@!out_app:integer; {pending values}
@!out_sign:ASCII_code; {sign to use if appending |out_val>=0|}
@!last_sign:-1..+1; {sign to use if appending a zero}

@ During the output process, |line| will equal the number of the next line
to be output.

@<Initialize the output buffer@>=
out_state:=misc; out_ptr:=0; break_ptr:=0; semi_ptr:=0; out_buf[0]:=0; line:=1;

@ Here is a routine that is invoked when |out_ptr>line_length|
or when it is time to flush out the final line. The |flush_buffer| procedure
often writes out the line up to the current |break_ptr| position, then moves the
remaining information to the front of |out_buf|. However, it prefers to
write only up to |semi_ptr|, if the residual line won't be too long.

@d check_break==if out_ptr>line_length then flush_buffer

@p procedure flush_buffer; {writes one line to output file}
var k:0..out_buf_size; {index into |out_buf|}
@!b:0..out_buf_size; {value of |break_ptr| upon entry}
begin b:=break_ptr;
if (semi_ptr<>0)and(out_ptr-semi_ptr<=line_length) then break_ptr:=semi_ptr;
for k:=1 to break_ptr do write(Pascal_file,xchr[out_buf[k-1]]);
write_ln(Pascal_file); incr(line);
if line mod 100 = 0 then
  begin print('.');
  if line mod 500 = 0 then print(line:1);
  update_terminal; {progress report}
  end;
if break_ptr<out_ptr then
  begin if out_buf[break_ptr]=" " then
    begin incr(break_ptr); {drop space at break}
    if break_ptr>b then b:=break_ptr;
    end;
  for k:=break_ptr to out_ptr-1 do out_buf[k-break_ptr]:=out_buf[k];
  end;
out_ptr:=out_ptr-break_ptr; break_ptr:=b-break_ptr; semi_ptr:=0;
if out_ptr>line_length then
  begin err_print('! Long line must be truncated'); out_ptr:=line_length;
@.Long line must be truncated@>
  end;
end;

@ @<Empty the last line from the buffer@>=
break_ptr:=out_ptr; semi_ptr:=0; flush_buffer;
if brace_level<>0 then
  err_print('! Program ended at brace level ',brace_level:1);
@.Program ended at brace level n@>

@ Another simple and useful routine appends the decimal equivalent of
a nonnegative integer to the output buffer.

@d app(#)==begin out_buf[out_ptr]:=#; incr(out_ptr); {append a single character}
  end

@p procedure app_val(@!v:integer); {puts |v| into buffer, assumes |v>=0|}
var k:0..out_buf_size; {index into |out_buf|}
begin k:=out_buf_size; {first we put the digits at the very end of |out_buf|}
repeat out_buf[k]:=v mod 10; v:=v div 10; decr(k);
until v=0;
repeat incr(k); app(out_buf[k]+"0");
until k=out_buf_size; {then we append them, most significant first}
end;

@ The output states are kept up to date by the output routines, which are
called |send_out|, |send_val|, and |send_sign|. The |send_out| procedure
has two parameters: |t| tells the type of information being sent and
|v| contains the information proper. Some information may also be passed
in the array |out_contrib|.

\yskip\hang If |t=misc| then |v| is a character to be output.

\hang If |t=str| then |v| is the length of a string or something like `\.{<>}'
in |out_contrib|.

\hang If |t=ident| then |v| is the length of an identifier in |out_contrib|.

\hang If |t=frac| then |v| is the length of a fraction and/or exponent in
|out_contrib|.

@d str=1 {|send_out| code for a string}
@d ident=2 {|send_out| code for an identifier}
@d frac=3 {|send_out| code for a fraction}

@<Glob...@>=
@!out_contrib:array[1..line_length] of ASCII_code; {a contribution to |out_buf|}

@ A slightly subtle point in the following code is that the user may ask
for a |join| operation (i.e., \.{@@\&}) following whatever is being sent
out.  We will see later that |join| is implemented in part by calling
|send_out(frac,0)|.

@p procedure send_out(@!t:eight_bits; @!v:sixteen_bits);
  {outputs |v| of type |t|}
label restart;
var k: 0..line_length; {index into |out_contrib|}
begin @<Get the buffer ready for appending the new information@>;
if t<>misc then for k:=1 to v do app(out_contrib[k])
else app(v);
check_break;
if (t=misc)and((v=";")or(v="}")) then
  begin semi_ptr:=out_ptr; break_ptr:=out_ptr;
  end;
if t>=ident then out_state:=num_or_id {|t=ident| or |frac|}
else out_state:=misc {|t=str| or |misc|}
end;

@ Here is where the buffer states for signs and values collapse into simpler
states, because we are about to append something that doesn't combine with
the previous integer constants.

We use an ASCII-code trick: Since |","-1="+"| and |","+1="-"|, we have
|","-c=@t sign of $c$@>|, when $\vert c\vert=1$.

@<Get the buffer ready...@>=
restart: case out_state of
num_or_id: if t<>frac then
  begin break_ptr:=out_ptr;
  if t=ident then app(" ");
  end;
sign: begin app(","-out_app); check_break; break_ptr:=out_ptr;
  end;
sign_val,sign_val_sign: begin @<Append \(|out_val| to buffer@>;
  out_state:=out_state-2; goto restart;
  end;
sign_val_val: @<Reduce |sign_val_val| to |sign_val| and |goto restart|@>;
misc: if t<>frac then break_ptr:=out_ptr;@/
othercases do_nothing {this is for |unbreakable| state}
endcases

@ @<Append \(|out_val|...@>=
if (out_val<0)or((out_val=0)and(last_sign<0)) then app("-")
else if out_sign>0 then app(out_sign);
app_val(abs(out_val)); check_break;

@ @<Reduce |sign_val_val|...@>=
begin if (t=frac)or(@<Contribution is \.* or \./ or \.{DIV} or \.{MOD}@>) then
  begin @<Append \(|out_val| to buffer@>;
  out_sign:="+"; out_val:=out_app;
  end
else out_val:=out_val+out_app;
out_state:=sign_val; goto restart;
end

@ @<Contribution is \.*...@>=
((t=ident)and(v=3)and@|
 (((out_contrib[1]="D")and(out_contrib[2]="I")and(out_contrib[3]="V")) or@|
 ((out_contrib[1]="M")and(out_contrib[2]="O")and(out_contrib[3]="D")) ))or@|
@^uppercase@>
 ((t=misc)and((v="*")or(v="/")))

@ The following routine is called with $v=\pm1$ when a plus or minus sign is
appended to the output. It extends \PASCAL\ to allow repeated signs
(e.g., `\.{--}' is equivalent to `\.+'), rather than to give an error message.
The signs following `\.E' in real constants are treated as part of a fraction,
so they are not seen by this routine.

@p procedure send_sign(@!v:integer);
begin case out_state of
sign, sign_val_sign: out_app:=out_app*v;
sign_val:begin out_app:=v; out_state:=sign_val_sign;
  end;
sign_val_val: begin out_val:=out_val+out_app; out_app:=v;
  out_state:=sign_val_sign;
  end;
othercases begin break_ptr:=out_ptr; out_app:=v; out_state:=sign;
  end
endcases;@/
last_sign:=out_app;
end;

@ When a (signed) integer value is to be output, we call |send_val|.

@d bad_case=666 {this is a label used below}

@p procedure send_val(@!v:integer); {output the (signed) value |v|}
label bad_case, {go here if we can't keep |v| in the output state}
  exit;
begin case out_state of
num_or_id: begin @<If previous output was \.{DIV} or \.{MOD}, |goto bad_case|@>;
  out_sign:=" "; out_state:=sign_val; out_val:=v; break_ptr:=out_ptr;
  last_sign:=+1;
  end;
misc: begin @<If previous output was \.* or \./, |goto bad_case|@>;
  out_sign:=0; out_state:=sign_val; out_val:=v; break_ptr:=out_ptr;
  last_sign:=+1;
  end;
@t\4@>@<Handle cases of |send_val| when |out_state| contains a sign@>@;
othercases goto bad_case
endcases;@/
return;
bad_case: @<Append the decimal value of |v|, with parentheses if negative@>;
exit: end;

@ @<Handle cases of |send_val|...@>=
sign: begin out_sign:="+"; out_state:=sign_val; out_val:=out_app*v;
  end;
sign_val: begin out_state:=sign_val_val; out_app:=v;
  err_print('! Two numbers occurred without a sign between them');
  end;
sign_val_sign: begin out_state:=sign_val_val; out_app:=out_app*v;
  end;
sign_val_val: begin out_val:=out_val+out_app; out_app:=v;
  err_print('! Two numbers occurred without a sign between them');
@.Two numbers occurred...@>
  end;

@ @<If previous output was \.*...@>=
if (out_ptr=break_ptr+1)and((out_buf[break_ptr]="*")or(out_buf[break_ptr]="/"))
  then goto bad_case

@ @<If previous output was \.{DIV}...@>=
if (out_ptr=break_ptr+3)or
 ((out_ptr=break_ptr+4)and(out_buf[break_ptr]=" ")) then
@^uppercase@>
  if ((out_buf[out_ptr-3]="D")and(out_buf[out_ptr-2]="I")and
    (out_buf[out_ptr-1]="V"))or @/
     ((out_buf[out_ptr-3]="M")and(out_buf[out_ptr-2]="O")and
    (out_buf[out_ptr-1]="D")) then@/ goto bad_case

@ @<Append the decimal value...@>=
if v>=0 then
  begin if out_state=num_or_id then
    begin break_ptr:=out_ptr; app(" ");
    end;
  app_val(v); check_break; out_state:=num_or_id;
  end
else  begin app("("); app("-"); app_val(-v); app(")"); check_break;
  out_state:=misc;
  end

@* The big output switch.
To complete the output process, we need a routine that takes the results
of |get_output| and feeds them to |send_out|, |send_val|, or |send_sign|.
This procedure `|send_the_output|' will be invoked just once, as follows:

@<Phase II: Output the contents of the compressed tables@>=
if text_link[0]=0 then
  begin print_nl('! No output was specified.'); mark_harmless;
@.No output was specified@>
  end
else  begin print_nl('Writing the output file'); update_terminal;@/
  @<Initialize the output stacks@>;
  @<Initialize the output buffer@>;
  send_the_output;@/
  @<Empty the last line...@>;
  print_nl('Done.');
  end

@ A many-way switch is used to send the output:

@d get_fraction=2 {this label is used below}

@p procedure send_the_output;
label get_fraction, {go here to finish scanning a real constant}
  reswitch, continue;
var cur_char:eight_bits; {the latest character received}
  @!k:0..line_length; {index into |out_contrib|}
  @!j:0..max_bytes; {index into |byte_mem|}
  @!w:0..ww-1; {segment of |byte_mem|}
  @!n:integer; {number being scanned}
begin while stack_ptr>0 do
  begin cur_char:=get_output;
  reswitch: case cur_char of
  0: do_nothing; {this case might arise if output ends unexpectedly}
  @t\4@>@<Cases related to identifiers@>@;
  @t\4@>@<Cases related to constants, possibly leading to
    |get_fraction| or |reswitch|@>@;
  "+","-": send_sign(","-cur_char);
  @t\4@>@<Cases like \.{<>} and \.{:=}@>@;
  "'": @<Send a string, |goto reswitch|@>;
  @<Other printable characters@>: send_out(misc,cur_char);
  @t\4@>@<Cases involving \.{@@\{} and \.{@@\}}@>@;
  join: begin send_out(frac,0); out_state:=unbreakable;
    end;
  verbatim: @<Send verbatim string@>;
  force_line: @<Force a line break@>;
  othercases err_print('! Can''t output ASCII code ',cur_char:1)
@.Can't output ASCII code n@>
  endcases;@/
  goto continue;
  get_fraction: @<Special code to finish real constants@>;
  continue: end;
end;

@ @<Cases like \.{<>}...@>=
and_sign: begin out_contrib[1]:="A"; out_contrib[2]:="N"; out_contrib[3]:="D";
@^uppercase@>
  send_out(ident,3);
  end;
not_sign: begin out_contrib[1]:="N"; out_contrib[2]:="O"; out_contrib[3]:="T";
  send_out(ident,3);
  end;
set_element_sign: begin out_contrib[1]:="I"; out_contrib[2]:="N";
  send_out(ident,2);
  end;
or_sign: begin out_contrib[1]:="O"; out_contrib[2]:="R"; send_out(ident,2);
  end;
left_arrow: begin out_contrib[1]:=":"; out_contrib[2]:="="; send_out(str,2);
  end;
not_equal: begin out_contrib[1]:="<"; out_contrib[2]:=">"; send_out(str,2);
  end;
less_or_equal: begin out_contrib[1]:="<"; out_contrib[2]:="="; send_out(str,2);
  end;
greater_or_equal: begin out_contrib[1]:=">"; out_contrib[2]:="=";
  send_out(str,2);
  end;
equivalence_sign: begin out_contrib[1]:="="; out_contrib[2]:="=";
  send_out(str,2);
  end;
double_dot: begin out_contrib[1]:="."; out_contrib[2]:="."; send_out(str,2);
  end;

@ Please don't ask how all of the following characters can actually get
through \.{TANGLE} outside of strings. It seems that |""""| and |"{"|
cannot actually occur at this point of the program, but they have
been included just in case \.{TANGLE} changes.

If \.{TANGLE} is producing code for a \PASCAL\ compiler that uses `\.{(.}'
and `\.{.)}' instead of square brackets (e.g., on machines with {\mc EBCDIC}
code), one should remove |"["| and |"]"| from this list and put them into
the preceding module in the appropriate way. Similarly, some compilers
want `\.\^' to be converted to `\.{@@}'.
@^system dependencies@>@^EBCDIC@>

@<Other printable characters@>=
"!","""","#","$","%","&","(",")","*",",","/",":",";","<","=",">","?",
"@@","[","\","]","^","_","`","{","|"

@ Single-character identifiers represent themselves, while longer ones
appear in |byte_mem|. All must be converted to uppercase,
with underlines removed. Extremely long identifiers must be chopped.

(Some \PASCAL\ compilers work with lowercase letters instead of
uppercase. If this module of \.{TANGLE} is changed, it's also necessary
to change from uppercase to lowercase in the modules that are
listed in the index under ``uppercase''.)
@^system dependencies@>
@^uppercase@>

@d up_to(#)==#-24,#-23,#-22,#-21,#-20,#-19,#-18,#-17,#-16,#-15,#-14,
  #-13,#-12,#-11,#-10,#-9,#-8,#-7,#-6,#-5,#-4,#-3,#-2,#-1,#

@<Cases related to identifiers@>=
"A",up_to("Z"): begin out_contrib[1]:=cur_char; send_out(ident,1);
  end;
"a",up_to("z"): begin out_contrib[1]:=cur_char-@'40; send_out(ident,1);
  end;
identifier: begin k:=0; j:=byte_start[cur_val]; w:=cur_val mod ww;
  while (k<max_id_length)and(j<byte_start[cur_val+ww]) do
    begin incr(k); out_contrib[k]:=byte_mem[w,j]; incr(j);
    if out_contrib[k]>="a" then out_contrib[k]:=out_contrib[k]-@'40
    else if out_contrib[k]="_" then decr(k);
    end;
  send_out(ident,k);
  end;

@ After sending a string, we need to look ahead at the next character, in order
to see if there were two consecutive single-quote marks. Afterwards we go to
|reswitch| to process the next character.

@<Send a string...@>=
begin k:=1; out_contrib[1]:="'";
repeat if k<line_length then incr(k);
out_contrib[k]:=get_output;
until (out_contrib[k]="'")or(stack_ptr=0);
if k=line_length then err_print('! String too long');
@.String too long@>
send_out(str,k); cur_char:=get_output;
if cur_char="'" then out_state:=unbreakable;
goto reswitch;
end

@ Sending a verbatim string is similar, but we don't have to look ahead.

@<Send verbatim string@>=
begin k:=0;
repeat if k<line_length then incr(k);
out_contrib[k]:=get_output;
until (out_contrib[k]=verbatim)or(stack_ptr=0);
if k=line_length then err_print('! Verbatim string too long');
@.Verbatim string too long@>
send_out(str,k-1);
end

@ In order to encourage portable software, \.{TANGLE} complains
if the constants get dangerously close to the largest value representable
on a 32-bit computer ($2^{31}-1$).

@d digits=="0","1","2","3","4","5","6","7","8","9"

@<Cases related to constants...@>=
digits: begin n:=0;
  repeat cur_char:=cur_char-"0";
  if n>=@'1463146314 then err_print('! Constant too big')
@.Constant too big@>
  else n:=10*n+cur_char;
  cur_char:=get_output;
  until (cur_char>"9")or(cur_char<"0");
  send_val(n); k:=0;
  if cur_char="e" then cur_char:="E";
@^uppercase@>
  if cur_char="E" then goto get_fraction
  else goto reswitch;
  end;
check_sum: send_val(pool_check_sum);
octal: begin n:=0; cur_char:="0";
  repeat cur_char:=cur_char-"0";
  if n>=@'2000000000 then err_print('! Constant too big')
  else n:=8*n+cur_char;
  cur_char:=get_output;
  until (cur_char>"7")or(cur_char<"0");
  send_val(n); goto reswitch;
  end;
hex: begin n:=0; cur_char:="0";
  repeat if cur_char>="A" then cur_char:=cur_char+10-"A"
  else cur_char:=cur_char-"0";
  if n>=@"8000000 then err_print('! Constant too big')
  else n:=16*n+cur_char;
  cur_char:=get_output;
  until (cur_char>"F")or(cur_char<"0")or@|
    ((cur_char>"9")and(cur_char<"A"));
  send_val(n); goto reswitch;
  end;
number: send_val(cur_val);
".":  begin k:=1; out_contrib[1]:="."; cur_char:=get_output;
  if cur_char="." then
    begin out_contrib[2]:="."; send_out(str,2);
    end
  else if (cur_char>="0")and(cur_char<="9") then goto get_fraction
  else  begin send_out(misc,"."); goto reswitch;
    end;
  end;

@ The following code appears at label `|get_fraction|', when we want to
scan to the end of a real constant. The first |k| characters of a fraction
have already been placed in |out_contrib|, and |cur_char| is the next character.

@<Special code...@>=
repeat if k<line_length then incr(k);
out_contrib[k]:=cur_char; cur_char:=get_output;
if (out_contrib[k]="E")and((cur_char="+")or(cur_char="-")) then
@^uppercase@>
  begin if k<line_length then incr(k);
  out_contrib[k]:=cur_char; cur_char:=get_output;
  end
else if cur_char="e" then cur_char:="E";
until (cur_char<>"E")and((cur_char<"0")or(cur_char>"9"));
if k=line_length then err_print('! Fraction too long');
@.Fraction too long@>
send_out(frac,k); goto reswitch

@ Some \PASCAL\ compilers do not recognize comments in braces, so the
comments must be delimited by `\.{(*}' and `\.{*)}'.
@^system dependencies@>
In such cases the statement `|out_contrib[1]:="{"|' that appears here should
be replaced by `\ignorespaces|begin out_contrib[1]:="("; out_contrib[2]:="*";
incr(k); end|', and a similar change should be made to
`|out_contrib[k]:="}"|'.

@<Cases involving \.{@@\{} and \.{@@\}}@>=
begin_comment: begin if brace_level=0 then send_out(misc,"{")
  else send_out(misc,"[");
  incr(brace_level);
  end;
end_comment: if brace_level>0 then
    begin decr(brace_level);
    if brace_level=0 then send_out(misc,"}")
    else send_out(misc,"]");
    end
  else err_print('! Extra @@}');
@.Extra \AT!\}@>
module_number: begin k:=2;
  if brace_level=0 then out_contrib[1]:="{"
  else out_contrib[1]:="[";
  if cur_val<0 then
    begin out_contrib[k]:=":"; cur_val:=-cur_val; incr(k);
    end;
  n:=10;
  while cur_val>=n do n:=10*n;
  repeat n:=n div 10;
    out_contrib[k]:="0"+(cur_val div n); cur_val:=cur_val mod n; incr(k);
  until n=1;
  if out_contrib[2]<>":" then
    begin out_contrib[k]:=":"; incr(k);
    end;
  if brace_level=0 then out_contrib[k]:="}"
  else out_contrib[k]:="]";
  send_out(str,k);
  end;

@ @<Force a line break@>=
begin send_out(str,0); {normalize the buffer}
while out_ptr>0 do
  begin if out_ptr<=line_length then break_ptr:=out_ptr;
  flush_buffer;
  end;
out_state:=misc;
end

@* Introduction to the input phase.
We have now seen that \.{TANGLE} will be able to output the full
\PASCAL\ program, if we can only get that program into the byte memory in
the proper format. The input process is something like the output process
in reverse, since we compress the text as we read it in and we expand it
as we write it out.

There are three main input routines. The most interesting is the one that gets
the next token of a \PASCAL\ text; the other two are used to scan rapidly past
\TeX\ text in the \.{WEB} source code. One of the latter routines will jump to
the next token that starts with `\.{@@}', and the other skips to the end
of a \PASCAL\ comment.

@ But first we need to consider the low-level routine |get_line|
that takes care of merging |change_file| into |web_file|. The |get_line|
procedure also updates the line numbers for error messages.

@<Globals...@>=
@!ii:integer; {general purpose |for| loop variable in the outer block}
@!line:integer; {the number of the current line in the current file}
@!other_line:integer; {the number of the current line in the input file that
  is not currently being read}
@!temp_line:integer; {used when interchanging |line| with |other_line|}
@!limit:0..buf_size; {the last character position occupied in the buffer}
@!loc:0..buf_size; {the next character position to be read from the buffer}
@!input_has_ended: boolean; {if |true|, there is no more input}
@!changing: boolean; {if |true|, the current line is from |change_file|}

@ As we change |changing| from |true| to |false| and back again, we must
remember to swap the values of |line| and |other_line| so that the |err_print|
routine will be sure to report the correct line number.

@d change_changing==
  changing := not changing;
  temp_line:=other_line; other_line:=line; line:=temp_line
    {|line @t$\null\BA\null$@> other_line|}

@ When |changing| is |false|, the next line of |change_file| is kept in
|change_buffer[0..change_limit]|, for purposes of comparison with the next
line of |web_file|. After the change file has been completely input, we
set |change_limit:=0|, so that no further matches will be made.

@<Globals...@>=
@!change_buffer:array[0..buf_size] of ASCII_code;
@!change_limit:0..buf_size; {the last position occupied in |change_buffer|}

@ Here's a simple function that checks if the two buffers are different.

@p function lines_dont_match:boolean;
label exit;
var k:0..buf_size; {index into the buffers}
begin lines_dont_match:=true;
if change_limit<>limit then return;
if limit>0 then
  for k:=0 to limit-1 do if change_buffer[k]<>buffer[k] then return;
lines_dont_match:=false;
exit: end;

@ Procedure |prime_the_change_buffer| sets |change_buffer| in preparation
for the next matching operation. Since blank lines in the change file are
not used for matching, we have |(change_limit=0)and not changing| if and
only if the change file is exhausted. This procedure is called only
when |changing| is true; hence error messages will be reported correctly.

@p procedure prime_the_change_buffer;
label continue, done, exit;
var k:0..buf_size; {index into the buffers}
begin change_limit:=0; {this value will be used if the change file ends}
@<Skip over comment lines in the change file; |return| if end of file@>;
@<Skip to the next nonblank line; |return| if end of file@>;
@<Move |buffer| and |limit| to |change_buffer| and |change_limit|@>;
exit: end;

@ While looking for a line that begins with \.{@@x} in the change file,
we allow lines that begin with \.{@@}, as long as they don't begin with
\.{@@y} or \.{@@z} (which would probably indicate that the change file is
fouled up).

@<Skip over comment lines in the change file...@>=
loop@+  begin incr(line);
  if not input_ln(change_file) then return;
  if limit<2 then goto continue;
  if buffer[0]<>"@@" then goto continue;
  if (buffer[1]>="X")and(buffer[1]<="Z") then
    buffer[1]:=buffer[1]+"z"-"Z"; {lowercasify}
  if buffer[1]="x" then goto done;
  if (buffer[1]="y")or(buffer[1]="z") then
    begin loc:=2; err_print('! Where is the matching @@x?');
@.Where is the match...@>
    end;
continue: end;
done:

@ Here we are looking at lines following the \.{@@x}.

@<Skip to the next nonblank line...@>=
repeat incr(line);
  if not input_ln(change_file) then
    begin err_print('! Change file ended after @@x');
@.Change file ended...@>
    return;
    end;
until limit>0;

@ @<Move |buffer| and |limit| to |change_buffer| and |change_limit|@>=
begin change_limit:=limit;
if limit>0 then for k:=0 to limit-1 do change_buffer[k]:=buffer[k];
end

@ The following procedure is used to see if the next change entry should
go into effect; it is called only when |changing| is false.
The idea is to test whether or not the current
contents of |buffer| matches the current contents of |change_buffer|.
If not, there's nothing more to do; but if so, a change is called for:
All of the text down to the \.{@@y} is supposed to match. An error
message is issued if any discrepancy is found. Then the procedure
prepares to read the next line from |change_file|.

@p procedure check_change; {switches to |change_file| if the buffers match}
label exit;
var n:integer; {the number of discrepancies found}
@!k:0..buf_size; {index into the buffers}
begin if lines_dont_match then return;
n:=0;
loop@+  begin change_changing; {now it's |true|}
  incr(line);
  if not input_ln(change_file) then
    begin err_print('! Change file ended before @@y');
@.Change file ended...@>
    change_limit:=0;  change_changing; {|false| again}
    return;
    end;
  @<If the current line starts with \.{@@y},
    report any discrepancies and |return|@>;
  @<Move |buffer| and |limit|...@>;
  change_changing; {now it's |false|}
  incr(line);
  if not input_ln(web_file) then
    begin err_print('! WEB file ended during a change');
@.WEB file ended...@>
    input_has_ended:=true; return;
    end;
  if lines_dont_match then incr(n);
  end;
exit: end;

@ @<If the current line starts with \.{@@y}...@>=
if limit>1 then if buffer[0]="@@" then
  begin if (buffer[1]>="X")and(buffer[1]<="Z") then
    buffer[1]:=buffer[1]+"z"-"Z"; {lowercasify}
  if (buffer[1]="x")or(buffer[1]="z") then
    begin loc:=2; err_print('! Where is the matching @@y?');
@.Where is the match...@>
    end
  else if buffer[1]="y" then
    begin if n>0 then
      begin loc:=2; err_print('! Hmm... ',n:1,
        ' of the preceding lines failed to match');
@.Hmm... n of the preceding...@>
      end;
    return;
    end;
  end

@ @<Initialize the input system@>=
open_input; line:=0; other_line:=0;@/
changing:=true; prime_the_change_buffer; change_changing;@/
limit:=0; loc:=1; buffer[0]:=" "; input_has_ended:=false;

@ The |get_line| procedure is called when |loc>limit|; it puts the next
line of merged input into the buffer and updates the other variables
appropriately. A space is placed at the right end of the line.

@p procedure get_line; {inputs the next line}
label restart;
begin restart: if changing then
  @<Read from |change_file| and maybe turn off |changing|@>;
if not changing then
  begin @<Read from |web_file| and maybe turn on |changing|@>;
  if changing then goto restart;
  end;
loc:=0; buffer[limit]:=" ";
end;

@ @<Read from |web_file|...@>=
begin incr(line);
if not input_ln(web_file) then input_has_ended:=true
else if change_limit>0 then check_change;
end

@ @<Read from |change_file|...@>=
begin incr(line);
if not input_ln(change_file) then
  begin err_print('! Change file ended without @@z');
@.Change file ended...@>
  buffer[0]:="@@"; buffer[1]:="z"; limit:=2;
  end;
if limit>1 then {check if the change has ended}
  if buffer[0]="@@" then
    begin if (buffer[1]>="X")and(buffer[1]<="Z") then
      buffer[1]:=buffer[1]+"z"-"Z"; {lowercasify}
    if (buffer[1]="x")or(buffer[1]="y") then
      begin loc:=2; err_print('! Where is the matching @@z?');
@.Where is the match...@>
      end
    else if buffer[1]="z" then
      begin prime_the_change_buffer; change_changing;
      end;
    end;
end

@ At the end of the program, we will tell the user if the change file
had a line that didn't match any relevant line in |web_file|.

@<Check that all changes have been read@>=
if change_limit<>0 then {|changing| is false}
  begin for ii:=0 to change_limit-1 do buffer[ii]:=change_buffer[ii];
  limit:=change_limit; changing:=true; line:=other_line; loc:=change_limit;
  err_print('! Change file entry did not match');
@.Change file entry did not match@>
  end

@ Important milestones are reached during the input phase when certain
control codes are sensed.

Control codes in \.{WEB} begin with `\.{@@}', and the next character
identifies the code. Some of these are of interest only to \.{WEAVE},
so \.{TANGLE} ignores them; the others are converted by \.{TANGLE} into
internal code numbers by the |control_code| function below. The ordering
of these internal code numbers has been chosen to simplify the program logic;
larger numbers are given to the control codes that denote more significant
milestones.

@d ignore=0 {control code of no interest to \.{TANGLE}}
@d control_text=@'203 {control code for `\.{@@t}', `\.{@@\^}', etc.}
@d format=@'204 {control code for `\.{@@f}'}
@d definition=@'205 {control code for `\.{@@d}'}
@d begin_Pascal=@'206 {control code for `\.{@@p}'}
@d module_name=@'207 {control code for `\.{@@<}'}
@d new_module=@'210 {control code for `\.{@@\ }' and `\.{@@*}'}

@p function control_code(@!c:ASCII_code):eight_bits; {convert |c| after \.{@@}}
begin case c of
"@@": control_code:="@@"; {`quoted' at sign}
"'": control_code:=octal; {precedes octal constant}
"""": control_code:=hex; {precedes hexadecimal constant}
"$": control_code:=check_sum; {string pool check sum}
" ",tab_mark: control_code:=new_module; {beginning of a new module}
"*": begin print('*',module_count+1:1);
  update_terminal; {print a progress report}
  control_code:=new_module; {beginning of a new module}
  end;
"D","d": control_code:=definition; {macro definition}
"F","f": control_code:=format; {format definition}
"{": control_code:=begin_comment; {begin-comment delimiter}
"}": control_code:=end_comment; {end-comment delimiter}
"P","p": control_code:=begin_Pascal; {\PASCAL\ text in unnamed module}
"T","t","^",".",":": control_code:=control_text; {control text to be ignored}
"&": control_code:=join; {concatenate two tokens}
"<": control_code:=module_name; {beginning of a module name}
"=": control_code:=verbatim; {beginning of \PASCAL\ verbatim mode}
"\": control_code:=force_line; {force a new line in \PASCAL\ output}
othercases control_code:=ignore {ignore all other cases}
endcases;
end;

@ The |skip_ahead| procedure reads through the input at fairly high speed
until finding the next non-ignorable control code, which it returns.

@p function skip_ahead:eight_bits; {skip to next control code}
label done;
var c:eight_bits; {control code found}
begin loop begin if loc>limit then
    begin get_line;
    if input_has_ended then
      begin c:=new_module; goto done;
      end;
    end;
  buffer[limit+1]:="@@";
  while buffer[loc]<>"@@" do incr(loc);
  if loc<=limit then
    begin loc:=loc+2; c:=control_code(buffer[loc-1]);
    if (c<>ignore)or(buffer[loc-1]=">") then goto done;
    end;
  end;
done: skip_ahead:=c;
end;

@ The |skip_comment| procedure reads through the input at somewhat high speed
until finding the first unmatched right brace or until coming to the end
of the file. It ignores characters following `\.\\' characters, since all
braces that aren't nested are supposed to be hidden in that way. For
example, consider the process of skipping the first comment below,
where the string containing the right brace has been typed as \.{\`\\.\\\}\'}
in the \.{WEB} file.

@p procedure skip_comment; {skips to next unmatched `\.\}'}
label exit;
var bal:eight_bits; {excess of left braces}
@!c:ASCII_code; {current character}
begin bal:=0;
loop@+  begin if loc>limit then
    begin get_line;
    if input_has_ended then
      begin err_print('! Input ended in mid-comment');
@.Input ended in mid-comment@>
      return;
      end;
    end;
  c:=buffer[loc]; incr(loc);
  @<Do special things when |c="@@", "\", "{", "}"|; |return| at end@>;
  end;
exit:end;

@ @<Do special things when |c="@@"...@>=
if c="@@" then
  begin c:=buffer[loc];
  if (c<>" ")and(c<>tab_mark)and(c<>"*") then incr(loc)
  else  begin err_print('! Section ended in mid-comment');
@.Section ended in mid-comment@>
    decr(loc); return;
    end
  end
else if (c="\")and(buffer[loc]<>"@@") then incr(loc)
else if c="{" then incr(bal)
else if c="}" then
  begin if bal=0 then return;
  decr(bal);
  end

@* Inputting the next token.
As stated above, \.{TANGLE}'s most interesting input procedure is the
|get_next| routine that inputs the next token. However, the procedure
isn't especially difficult.

In most cases the tokens output by |get_next| have the form used in
replacement texts, except that two-byte tokens are not produced.
An identifier that isn't one letter long is represented by the
output `|identifier|', and in such a case the global variables
|id_first| and |id_loc| will have been set to the appropriate values
needed by the |id_lookup| procedure. A string that begins with a
double-quote is also considered an |identifier|, and in such a case
the global variable |double_chars| will also have been set appropriately.
Control codes produce the corresponding output of the |control_code|
function above; and if that code is |module_name|, the value of |cur_module|
will point to the |byte_start| entry for that module name.

Another global variable, |scanning_hex|, is |true| during the time that
the letters \.A through \.F should be treated as if they were digits.

@<Globals...@>=
@!cur_module: name_pointer; {name of module just scanned}
@!scanning_hex: boolean; {are we scanning a hexadecimal constant?}

@ @<Set init...@>=
scanning_hex:=false;

@ At the top level, |get_next| is a multi-way switch based on the next
character in the input buffer. A |new_module| code is inserted at the
very end of the input file.

@p function get_next:eight_bits; {produces the next input token}
label restart,done,found;
var c:eight_bits; {the current character}
@!d:eight_bits; {the next character}
@!j,@!k:0..longest_name; {indices into |mod_text|}
begin restart: if loc>limit then
  begin get_line;
  if input_has_ended then
    begin c:=new_module; goto found;
    end;
  end;
c:=buffer[loc]; incr(loc);
if scanning_hex then @<Go to |found| if |c| is a hexadecimal digit,
  otherwise set |scanning_hex:=false|@>;
case c of
"A",up_to("Z"),"a",up_to("z"): @<Get an identifier@>;
"""": @<Get a preprocessed string@>;
"@@": @<Get control code and possible module name@>;
@t\4@>@<Compress two-symbol combinations like `\.{:=}'@>@;
" ",tab_mark: goto restart; {ignore spaces and tabs}
"{": begin skip_comment; goto restart;
  end;
"}": begin err_print('! Extra }'); goto restart;
@.Extra \}@>
  end;
othercases if c>=128 then goto restart {ignore nonstandard characters}
  else do_nothing
endcases;
found:@!debug if trouble_shooting then debug_help;@;@+gubed@/
get_next:=c;
end;

@ @<Go to |found| if |c| is a hexadecimal digit...@>=
if ((c>="0")and(c<="9"))or((c>="A")and(c<="F")) then goto found
else scanning_hex:=false

@ Note that the following code substitutes \.{@@\{} and \.{@@\}} for the
respective combinations `\.{(*}' and `\.{*)}'. Explicit braces should be used
for \TeX\ comments in \PASCAL\ text.

@d compress(#)==begin if loc<=limit then begin c:=#; incr(loc); end; end

@<Compress two-symbol...@>=
".": if buffer[loc]="." then compress(double_dot)
  else if buffer[loc]=")" then compress("]");
":": if buffer[loc]="=" then compress(left_arrow);
"=": if buffer[loc]="=" then compress(equivalence_sign);
">": if buffer[loc]="=" then compress(greater_or_equal);
"<": if buffer[loc]="=" then compress(less_or_equal)
  else if buffer[loc]=">" then compress(not_equal);
"(": if buffer[loc]="*" then compress(begin_comment)
  else if buffer[loc]="." then compress("[");
"*": if buffer[loc]=")" then compress(end_comment);

@ We have to look at the preceding character to make sure this isn't part
of a real constant, before trying to find an identifier starting with
`\.e' or `\.E'.

@<Get an identifier@>=
begin if ((c="e")or(c="E"))and(loc>1) then
  if (buffer[loc-2]<="9")and(buffer[loc-2]>="0") then c:=0;
if c<>0 then
  begin decr(loc); id_first:=loc;
  repeat incr(loc); d:=buffer[loc];
  until ((d<"0")or((d>"9")and(d<"A"))or((d>"Z")and(d<"a"))or(d>"z")) and
    (d<>"_");
  if loc>id_first+1 then
    begin c:=identifier; id_loc:=loc;
    end;
  end
else c:="E"; {exponent of a real constant}
end

@ A string that starts and ends with double-quote marks is converted into
an identifier that behaves like a numeric macro by means of the following
piece of the program.
@^preprocessed strings@>

@<Get a preprocessed string@>=
begin double_chars:=0; id_first:=loc-1;
repeat d:=buffer[loc]; incr(loc);
  if (d="""")or(d="@@") then
    if buffer[loc]=d then
      begin incr(loc); d:=0; incr(double_chars);
      end
    else  begin if d="@@" then err_print('! Double @@ sign missing')
@.Double \AT! sign missing@>
      end
  else if loc>limit then
    begin err_print('! String constant didn''t end'); d:="""";
@.String constant didn't end@>
    end;
until d="""";
id_loc:=loc-1; c:=identifier;
end

@ After an \.{@@} sign has been scanned, the next character tells us
whether there is more work to do.

@<Get control code and possible module name@>=
begin c:=control_code(buffer[loc]); incr(loc);
if c=ignore then goto restart
else if c=hex then scanning_hex:=true
else if c=module_name then
  @<Scan the \(module name and make |cur_module| point to it@>
else if c=control_text then
  begin repeat c:=skip_ahead;
  until c<>"@@";
  if buffer[loc-1]<>">" then
    err_print('! Improper @@ within control text');
@.Improper \AT! within control text@>
  goto restart;
  end;
end

@ @<Scan the \(module name...@>=
begin @<Put module name into |mod_text[1..k]|@>;
if k>3 then
  begin if (mod_text[k]=".")and(mod_text[k-1]=".")and(mod_text[k-2]=".") then
    cur_module:=prefix_lookup(k-3)
  else cur_module:=mod_lookup(k);
  end
else cur_module:=mod_lookup(k);
end

@ Module names are placed into the |mod_text| array with consecutive spaces,
tabs, and carriage-returns replaced by single spaces. There will be no
spaces at the beginning or the end. (We set |mod_text[0]:=" "| to facilitate
this, since the |mod_lookup| routine uses |mod_text[1]| as the first
character of the name.)

@<Set init...@>=mod_text[0]:=" ";

@ @<Put module name...@>=
k:=0;
loop@+  begin if loc>limit then
    begin get_line;
    if input_has_ended then
      begin err_print('! Input ended in section name');
@.Input ended in section name@>
      goto done;
      end;
    end;
  d:=buffer[loc];
  @<If end of name, |goto done|@>;
  incr(loc); if k<longest_name-1 then incr(k);
  if (d=" ")or(d=tab_mark) then
    begin d:=" "; if mod_text[k-1]=" " then decr(k);
    end;
  mod_text[k]:=d;
  end;
done: @<Check for overlong name@>;
if (mod_text[k]=" ")and(k>0) then decr(k);

@ @<If end of name,...@>=
if d="@@" then
  begin d:=buffer[loc+1];
  if d=">" then
    begin loc:=loc+2; goto done;
    end;
  if (d=" ")or(d=tab_mark)or(d="*") then
    begin err_print('! Section name didn''t end'); goto done;
@.Section name didn't end@>
    end;
  incr(k); mod_text[k]:="@@"; incr(loc); {now |d=buffer[loc]| again}
  end

@ @<Check for overlong name@>=
if k>=longest_name-2 then
  begin print_nl('! Section name too long: ');
@.Section name too long@>
  for j:=1 to 25 do print(xchr[mod_text[j]]);
  print('...'); mark_harmless;
  end

@* Scanning a numeric definition.
When \.{TANGLE} looks at the \PASCAL\ text following the `\.=' of a numeric
macro definition, it calls on the procedure |scan_numeric(p)|, where |p|
points to the name that is to be defined. This procedure evaluates the
right-hand side, which must consist entirely of integer constants and
defined numeric macros connected with \.+ and \.- signs (no parentheses).
It also sets the global variable |next_control| to the control code that
terminated this definition.

A definition ends with the control codes |definition|, |format|, |module_name|,
|begin_Pascal|, and |new_module|, all of which can be recognized
by the fact that they are the largest values |get_next| can return.

@d end_of_definition(#)==(#>=format)
  {is |#| a control code ending a definition?}

@<Global...@>=
@!next_control:eight_bits; {control code waiting to be acted upon}

@ The evaluation of a numeric expression makes use of two variables called the
|accumulator| and the |next_sign|. At the beginning, |accumulator| is zero and
|next_sign| is $+1$. When a \.+ or \.- is scanned, |next_sign| is multiplied
by the value of that sign. When a numeric value is scanned, it is multiplied by
|next_sign| and added to the |accumulator|, then |next_sign| is reset to $+1$.

@d add_in(#)==begin accumulator:=accumulator+next_sign*(#); next_sign:=+1;
  end

@p procedure scan_numeric(@!p:name_pointer); {defines numeric macros}
label reswitch, done;
var accumulator:integer; {accumulates sums}
@!next_sign:-1..+1; {sign to attach to next value}
@!q:name_pointer; {points to identifiers being evaluated}
@!val:integer; {constants being evaluated}
begin @<Set \(|accumulator| to the value of the right-hand side@>;
if abs(accumulator)>=@'100000 then
  begin err_print('! Value too big: ',accumulator:1); accumulator:=0;
@.Value too big@>
  end;
equiv[p]:=accumulator+@'100000; {name |p| now is defined to equal |accumulator|}
end;

@ @<Set \(|accumulator| to the value of the right-hand side@>=
accumulator:=0; next_sign:=+1;
loop@+  begin next_control:=get_next;
  reswitch: case next_control of
  digits: begin @<Set |val| to value of decimal constant, and
      set |next_control| to the following token@>;
    add_in(val); goto reswitch;
    end;
  octal: begin @<Set |val| to value of octal constant, and
      set |next_control| to the following token@>;
    add_in(val); goto reswitch;
    end;
  hex: begin @<Set |val| to value of hexadecimal constant, and
      set |next_control| to the following token@>;
    add_in(val); goto reswitch;
    end;
  identifier: begin q:=id_lookup(normal);
    if ilk[q]<>numeric then
      begin next_control:="*"; goto reswitch; {leads to error}
      end;
    add_in(equiv[q]-@'100000);
    end;
  "+": do_nothing;
  "-": next_sign:=-next_sign;
  format, definition, module_name, begin_Pascal, new_module: goto done;
  ";": err_print('! Omit semicolon in numeric definition');
@.Omit semicolon in numeric def...@>
  othercases @<Signal error, flush rest of the definition@>
  endcases;
  end;
done:

@ @<Signal error, flush rest...@>=
begin err_print('! Improper numeric definition will be flushed');
@.Improper numeric definition...@>
repeat next_control:=skip_ahead
until end_of_definition(next_control);
if next_control=module_name then
  begin {we want to scan the module name too}
  loc:=loc-2; next_control:=get_next;
  end;
accumulator:=0; goto done;
end

@ @<Set |val| to value of decimal...@>=
val:=0;
repeat val:=10*val+next_control-"0"; next_control:=get_next;
until (next_control>"9")or(next_control<"0")

@ @<Set |val| to value of octal...@>=
val:=0; next_control:="0";
repeat val:=8*val+next_control-"0"; next_control:=get_next;
until (next_control>"7")or(next_control<"0")

@ @<Set |val| to value of hex...@>=
val:=0; next_control:="0";
repeat if next_control>="A" then next_control:=next_control+"0"+10-"A";
val:=16*val+next_control-"0"; next_control:=get_next;
until (next_control>"F")or(next_control<"0")or@|
  ((next_control>"9")and(next_control<"A"))

@* Scanning a macro definition.
The rules for generating the replacement texts corresponding to simple
macros, parametric macros, and \PASCAL\ texts of a module are almost
identical, so a single procedure is used for all three cases. The
differences are that

\yskip\item{a)} The sign |#| denotes a parameter only when it appears
outside of strings in a parametric macro; otherwise it stands for the
ASCII character |#|. (This is not used in standard \PASCAL, but some
\PASCAL s allow, for example, `\.{/\#}' after a certain kind of file name.)

\item{b)}Module names are not allowed in simple macros or parametric macros;
in fact, the appearance of a module name terminates such macros and denotes
the name of the current module.

\item{c)}The symbols \.{@@d} and \.{@@f} and \.{@@p} are not allowed after
module names, while they terminate macro definitions.

@ Therefore there is a procedure |scan_repl| whose parameter |t| specifies
either |simple| or |parametric| or |module_name|. After |scan_repl| has
acted, |cur_repl_text| will point to the replacement text just generated, and
|next_control| will contain the control code that terminated the activity.

@<Globals...@>=
@!cur_repl_text:text_pointer; {replacement text formed by |scan_repl|}

@ @p procedure scan_repl(@!t:eight_bits); {creates a replacement text}
label continue, done, found, reswitch;
var a:sixteen_bits; {the current token}
@!b:ASCII_code; {a character from the buffer}
@!bal:eight_bits; {left parentheses minus right parentheses}
begin bal:=0;
loop@+  begin continue: a:=get_next;
  case a of
  "(": incr(bal);
  ")": if bal=0 then err_print('! Extra )')
@.Extra )@>
    else decr(bal);
  "'": @<Copy a string from the buffer to |tok_mem|@>;
  "#": if t=parametric then a:=param;
  @t\4@>@<In cases that |a| is a non-ASCII token (|identifier|,
  |module_name|, etc.), either process it and change |a| to a byte
  that should be stored, or |goto continue| if |a| should be ignored,
  or |goto done| if |a| signals the end of this replacement text@>@;
  othercases do_nothing
  endcases;@/
  app_repl(a); {store |a| in |tok_mem|}
  end;
done: next_control:=a;
@<Make sure the parentheses balance@>;
if text_ptr>max_texts-zz then overflow('text');
cur_repl_text:=text_ptr; tok_start[text_ptr+zz]:=tok_ptr[z];
incr(text_ptr);
if z=zz-1 then z:=0@+else incr(z);
end;

@ @<Make sure the parentheses balance@>=
if bal>0 then
  begin if bal=1 then err_print('! Missing )')
  else err_print('! Missing ',bal:1,' )''s');
@.Missing n )@>
  while bal>0 do
    begin app_repl(")"); decr(bal);
    end;
  end

@ @<In cases that |a| is...@>=
identifier: begin a:=id_lookup(normal); app_repl((a div @'400)+@'200);
  a:=a mod @'400;
  end;
module_name: if t<>module_name then goto done
  else  begin app_repl((cur_module div @'400)+@'250);
    a:=cur_module mod @'400;
    end;
verbatim: @<Copy verbatim string from the buffer to |tok_mem|@>;
definition, format, begin_Pascal: if t<>module_name then goto done
  else  begin err_print('! @@',xchr[buffer[loc-1]],
@.\AT!p is ignored in Pascal text@>
@.\AT!d is ignored in Pascal text@>
@.\AT!f is ignored in Pascal text@>
      ' is ignored in Pascal text'); goto continue;
    end;
new_module: goto done;

@ @<Copy a string...@>=
begin b:="'";
loop@+  begin app_repl(b);
  if b="@@" then
    if buffer[loc]="@@" then incr(loc) {store only one \.{@@}}
    else err_print('! You should double @@ signs in strings');
@.You should double \AT! signs@>
  if loc=limit then
    begin err_print('! String didn''t end');
@.String didn't end@>
    buffer[loc]:="'"; buffer[loc+1]:=0;
    end;
  b:=buffer[loc]; incr(loc);
  if b="'" then
    begin if buffer[loc]<>"'" then goto found
    else  begin incr(loc); app_repl("'");
      end;
    end;
  end;
found: end {now |a| holds the final |"'"| that will be stored}

@ @<Copy verbatim string...@>=
begin app_repl(verbatim);
buffer[limit+1]:="@@";
reswitch: if buffer[loc]="@@" then
  begin if loc<limit then if buffer[loc+1]="@@" then
    begin app_repl("@@");
    loc:=loc+2;
    goto reswitch;
    end;
  end
else begin app_repl(buffer[loc]);
  incr(loc);
  goto reswitch;
  end;
if loc>=limit then err_print('! Verbatim string didn''t end')
@.Verbatim string didn't end@>
else if buffer[loc+1]<>">" then
  err_print('! You should double @@ signs in verbatim strings');
@.You should double \AT! signs@>
loc:=loc+2;
end {another |verbatim| byte will be stored, since |a=verbatim|}

@ The following procedure is used to define a simple or parametric macro,
just after the `\.{==}' of its definition has been scanned.

@p procedure define_macro(@!t:eight_bits);
var p:name_pointer; {the identifier being defined}
begin p:=id_lookup(t); scan_repl(t);@/
equiv[p]:=cur_repl_text; text_link[cur_repl_text]:=0;
end;

@* Scanning a module.
The |scan_module| procedure starts when `\.{@@\ }' or `\.{@@*}' has been
sensed in the input, and it proceeds until the end of that module.  It
uses |module_count| to keep track of the current module number; with luck,
\.{WEAVE} and \.{TANGLE} will both assign the same numbers to modules.

@<Globals...@>=
@!module_count:0..@'27777; {the current module number}

@ The top level of |scan_module| is trivial.
@p procedure scan_module;
label continue, done, exit;
var p:name_pointer; {module name for the current module}
begin incr(module_count);
@<Scan the \(definition part of the current module@>;
@<Scan the \PASCAL\ part of the current module@>;
exit: end;

@ @<Scan the \(definition part...@>=
next_control:=0;
loop@+  begin continue: while next_control<=format do
    begin next_control:=skip_ahead;
    if next_control=module_name then
      begin {we want to scan the module name too}
      loc:=loc-2; next_control:=get_next;
      end;
    end;
  if next_control<>definition then goto done;
  next_control:=get_next; {get identifier name}
  if next_control<>identifier then
    begin err_print('! Definition flushed, must start with ',
@.Definition flushed...@>
      'identifier of length > 1'); goto continue;
    end;
  next_control:=get_next; {get token after the identifier}
  if next_control="=" then
    begin scan_numeric(id_lookup(numeric)); goto continue;
    end
  else if next_control=equivalence_sign then
    begin define_macro(simple); goto continue;
    end
  else @<If the next text is `\.{(\#)==}', call |define_macro|
    and |goto continue|@>;
  err_print('! Definition flushed since it starts badly');
@.Definition flushed...@>
  end;
done:

@ @<If the next text is `\.{(\#)==}'...@>=
if next_control="(" then
  begin next_control:=get_next;
  if next_control="#" then
    begin next_control:=get_next;
    if next_control=")" then
      begin next_control:=get_next;
      if next_control="=" then
        begin err_print('! Use == for macros');
@.Use == for macros@>
        next_control:=equivalence_sign;
        end;
      if next_control=equivalence_sign then
        begin define_macro(parametric); goto continue;
        end;
      end;
    end;
  end;

@ @<Scan the \PASCAL...@>=
case next_control of
begin_Pascal:p:=0;
module_name: begin p:=cur_module;
  @<Check that |=| or |==| follows this module name, otherwise |return|@>;
  end;
othercases return
endcases;@/
@<Insert the module number into |tok_mem|@>;
scan_repl(module_name); {now |cur_repl_text| points to the replacement text}
@<Update the data structure so that the replacement text is accessible@>;

@ @<Check that |=|...@>=
repeat next_control:=get_next;
until next_control<>"+"; {allow optional `\.{+=}'}
if (next_control<>"=")and(next_control<>equivalence_sign) then
  begin err_print('! Pascal text flushed, = sign is missing');
@.Pascal text flushed...@>
  repeat next_control:=skip_ahead;
  until next_control=new_module;
  return;
  end

@ @<Insert the module number...@>=
store_two_bytes(@'150000+module_count); {|@'150000=@'320*@'400|}

@ @<Update the data...@>=
if p=0 then {unnamed module}
  begin text_link[last_unnamed]:=cur_repl_text; last_unnamed:=cur_repl_text;
  end
else if equiv[p]=0 then equiv[p]:=cur_repl_text {first module of this name}
else  begin p:=equiv[p];
  while text_link[p]<module_flag do p:=text_link[p]; {find end of list}
  text_link[p]:=cur_repl_text;
  end;
text_link[cur_repl_text]:=module_flag;
  {mark this replacement text as a nonmacro}

@* Debugging.
The \PASCAL\ debugger with which \.{TANGLE} was developed allows breakpoints
to be set, and variables can be read and changed, but procedures cannot be
executed. Therefore a `|debug_help|' procedure has been inserted in the main
loops of each phase of the program; when |ddt| and |dd| are set to appropriate
values, symbolic printouts of various tables will appear.

The idea is to set a breakpoint inside the |debug_help| routine, at the
place of `\ignorespaces|breakpoint:|\unskip' below.  Then when
|debug_help| is to be activated, set |trouble_shooting| equal to |true|.
The |debug_help| routine will prompt you for values of |ddt| and |dd|,
discontinuing this when |ddt<=0|; thus you type $2n+1$ integers, ending
with zero or a negative number. Then control either passes to the
breakpoint, allowing you to look at and/or change variables (if you typed
zero), or to exit the routine (if you typed a negative value).

Another global variable, |debug_cycle|, can be used to skip silently
past calls on |debug_help|. If you set |debug_cycle>1|, the program stops
only every |debug_cycle| times |debug_help| is called; however,
any error stop will set |debug_cycle| to zero.

@<Globals...@>=
@!debug@!trouble_shooting:boolean; {is |debug_help| wanted?}
@!ddt:integer; {operation code for the |debug_help| routine}
@!dd:integer; {operand in procedures performed by |debug_help|}
@!debug_cycle:integer; {threshold for |debug_help| stopping}
@!debug_skipped:integer; {we have skipped this many |debug_help| calls}
@!term_in:text_file; {the user's terminal as an input file}
gubed

@ The debugging routine needs to read from the user's terminal.
@^system dependencies@>
@<Set init...@>=
@!debug trouble_shooting:=true; debug_cycle:=1; debug_skipped:=0;@/
trouble_shooting:=false; debug_cycle:=99999; {use these when it almost works}
reset(term_in,'TTY:','/I'); {open |term_in| as the terminal, don't do a |get|}
gubed

@ @d breakpoint=888 {place where a breakpoint is desirable}
@^system dependencies@>

@p @!debug procedure debug_help; {routine to display various things}
label breakpoint,exit;
var k:integer; {index into various arrays}
begin incr(debug_skipped);
if debug_skipped<debug_cycle then return;
debug_skipped:=0;
loop@+  begin print_nl('#'); update_terminal; {prompt}
  read(term_in,ddt); {read a debug-command code}
  if ddt<0 then return
  else if ddt=0 then
    begin goto breakpoint;@\ {go to every label at least once}
    breakpoint: ddt:=0;@\
    end
  else  begin read(term_in,dd);
    case ddt of
    1: print_id(dd);
    2: print_repl(dd);
    3: for k:=1 to dd do print(xchr[buffer[k]]);
    4: for k:=1 to dd do print(xchr[mod_text[k]]);
    5: for k:=1 to out_ptr do print(xchr[out_buf[k]]);
    6: for k:=1 to dd do print(xchr[out_contrib[k]]);
    othercases print('?')
    endcases;
    end;
  end;
exit:end;
gubed

@* The main program.
We have defined plenty of procedures, and it is time to put the last
pieces of the puzzle in place. Here is where \.{TANGLE} starts, and where
it ends.
@^system dependencies@>

@p begin initialize;
@<Initialize the input system@>;
print_ln(banner); {print a ``banner line''}
@<Phase I: Read all the user's text and compress it into |tok_mem|@>;
stat for ii:=0 to zz-1 do max_tok_ptr[ii]:=tok_ptr[ii];@+tats@;@/
@<Phase II:...@>;
end_of_TANGLE:
if string_ptr>256 then @<Finish off the string pool file@>;
stat @<Print statistics about memory usage@>;@+tats@;@/
@t\4\4@>{here files should be closed if the operating system requires it}
@<Print the job |history|@>;
end.

@ @<Phase I:...@>=
phase_one:=true;
module_count:=0;
repeat next_control:=skip_ahead;
until next_control=new_module;
while not input_has_ended do scan_module;
@<Check that all changes have been read@>;
phase_one:=false;

@ @<Finish off the string pool file@>=
begin print_nl(string_ptr-256:1, ' strings written to string pool file.');
write(pool,'*');
for ii:=1 to 9 do
  begin out_buf[ii]:=pool_check_sum mod 10;
  pool_check_sum:=pool_check_sum div 10;
  end;
for ii:=9 downto 1 do write(pool,xchr["0"+out_buf[ii]]);
write_ln(pool);
end

@ @<Glob...@>=
stat @!wo:0..ww-1; {segment of memory for which statistics are being printed}
tats

@ @<Print statistics about memory usage@>=
print_nl('Memory usage statistics:');
print_nl(name_ptr:1, ' names, ', text_ptr:1, ' replacement texts;');
print_nl(byte_ptr[0]:1);
for wo:=1 to ww-1 do print('+',byte_ptr[wo]:1);
if phase_one then
  for ii:=0 to zz-1 do max_tok_ptr[ii]:=tok_ptr[ii];
print(' bytes, ', max_tok_ptr[0]:1);
for ii:=1 to zz-1 do print('+',max_tok_ptr[ii]:1);
print(' tokens.');

@ Some implementations may wish to pass the |history| value to the
operating system so that it can be used to govern whether or not other
programs are started. Here we simply report the history to the user.
@^system dependencies@>

@<Print the job |history|@>=
case history of
spotless: print_nl('(No errors were found.)');
harmless_message: print_nl('(Did you see the warning message above?)');
error_message: print_nl('(Pardon me, but I think I spotted something wrong.)');
fatal_message: print_nl('(That was a fatal error, my friend.)');
end {there are no other cases}

@* System-dependent changes.
This module should be replaced, if necessary, by changes to the program
that are necessary to make \.{TANGLE} work at a particular installation.
It is usually best to design your change file so that all changes to
previous modules preserve the module numbering; then everybody's version
will be consistent with the printed program. More extensive changes,
which introduce new modules, can be inserted here; then only the index
itself will get a new module number.
@^system dependencies@>

@* Index.
Here is a cross-reference table for the \.{TANGLE} processor.
All modules in which an identifier is
used are listed with that identifier, except that reserved words are
indexed only when they appear in format definitions, and the appearances
of identifiers in module names are not indexed. Underlined entries
correspond to where the identifier was declared. Error messages and
a few other things like ``ASCII code'' are indexed here too.