summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/mplibdir/mpmath.w
blob: 92f6f4a75a0082e2a5e58cfca23f6549415f289a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
% $Id $
%
% Copyright 2008-2010 Taco Hoekwater.
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.
%
% TeX is a trademark of the American Mathematical Society.
% METAFONT is a trademark of Addison-Wesley Publishing Company.
% PostScript is a trademark of Adobe Systems Incorporated.

% Here is TeX material that gets inserted after \input webmac

\font\tenlogo=logo10 % font used for the METAFONT logo
\font\logos=logosl10
\def\MF{{\tenlogo META}\-{\tenlogo FONT}}
\def\MP{{\tenlogo META}\-{\tenlogo POST}}

\def\title{Reading TEX metrics files}
\pdfoutput=1

@ Introduction.

@
@d hlp1(A) mp->help_line[0]=A; }
@d hlp2(A,B) mp->help_line[1]=A; hlp1(B)
@d help1  { mp->help_ptr=1; hlp1 /* use this with one help line */
@d help2  { mp->help_ptr=2; hlp2 /* use this with two help lines */

@ @c 
#include <w2c/config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mplib.h"
#include "mpmp.h" /* internal header */
#include "mpmath.h" /* internal header */
@h

@ @c
@<Declarations@>;

@ @(mpmath.h@>=
@<Types@>;
@<Internal library declarations@>;

@ Currently empty
@<Declarations@>=

@* Math initialization.

@<Types@>=
typedef struct math_data {
  scaled max_scaled_;
  scaled one_third_max_scaled_;
  scaled unity_;
  scaled two_;
  scaled three_;
  scaled half_unit_;
  scaled three_quarter_unit_;
  fraction fraction_one_;
  fraction fraction_half_;
  fraction fraction_two_;
  fraction fraction_three_;
  fraction fraction_four_;
  angle ninety_deg_;
  angle one_eighty_deg_;
  angle three_sixty_deg_;
} math_data;

@ @<Internal library declarations@>=
void * mp_initialize_math (MP mp);
void mp_free_math (MP mp);

@ @c
void * mp_initialize_math (MP mp) {
  math_data *math = (math_data *)mp_xmalloc(mp,1,sizeof(math_data));
  /* here are the constants for |scaled| objects */
  math->max_scaled_ = EL_GORDO;
  math->one_third_max_scaled_ = one_third_EL_GORDO;
  math->unity_ = unity;
  math->two_  = two;
  math->three_ = three;
  math->half_unit_ = half_unit;
  math->three_quarter_unit_ = three_quarter_unit;
  /* |fractions| */
  math->fraction_one_   = fraction_one;
  math->fraction_half_  = fraction_half;
  math->fraction_two_   = fraction_two;
  math->fraction_three_ = fraction_three;
  math->fraction_four_  = fraction_four;
  /* |angles| */
  math->ninety_deg_ = ninety_deg;
  math->one_eighty_deg_ = one_eighty_deg;
  math->three_sixty_deg_ = three_sixty_deg;
  return (void *)math;
}

void mp_free_math (MP mp) {
  free(mp->math);
}

@ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
positions from the right end of a binary computer word.

@d unity   0x10000 /* $2^{16}$, represents 1.00000 */
@d two (2*unity) /* $2^{17}$, represents 2.00000 */
@d three (3*unity) /* $2^{17}+2^{16}$, represents 3.00000 */
@d half_unit   (unity/2) /* $2^{15}$, represents 0.50000 */
@d three_quarter_unit (3*(unity/4)) /* $3\cdot2^{14}$, represents 0.75000 */

@d EL_GORDO   0x7fffffff /* $2^{31}-1$, the largest value that \MP\ likes */
@d one_third_EL_GORDO 05252525252

@ One of \MP's most common operations is the calculation of
$\lfloor{a+b\over2}\rfloor$,
the midpoint of two given integers |a| and~|b|. The most decent way to do
this is to write `|(a+b)/2|'; but on many machines it is more efficient 
to calculate `|(a+b)>>1|'.

Therefore the midpoint operation will always be denoted by `|half(a+b)|'
in this program. If \MP\ is being implemented with languages that permit
binary shifting, the |half| macro should be changed to make this operation
as efficient as possible.  Since some systems have shift operators that can
only be trusted to work on positive numbers, there is also a macro |halfp|
that is used only when the quantity being halved is known to be positive
or zero.

@<Internal library declarations@>=
#define half(A) ((A) / 2)
#define halfp(A) (integer)((unsigned)(A) >> 1)

@ Todo: Here are some compilation tricks for problems to be sorted out later

@<Internal library declarations@>=
#define integer_as_fraction(A) (fraction)(A)


@ Here is a procedure analogous to |print_int|. If the output
of this procedure is subsequently read by \MP\ and converted by the
|round_decimals| routine above, it turns out that the original value will
be reproduced exactly. A decimal point is printed only if the value is
not an integer. If there is more than one way to print the result with
the optimum number of digits following the decimal point, the closest
possible value is given.

The invariant relation in the \&{repeat} loop is that a sequence of
decimal digits yet to be printed will yield the original number if and only if
they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
We can stop if and only if $f=0$ satisfies this condition; the loop will
terminate before $s$ can possibly become zero.

@<Internal library declarations@>=
void mp_print_scaled (MP mp, scaled s);

@ @c
void mp_print_scaled (MP mp, scaled s) {                               /* prints scaled real, rounded to five  digits */
  scaled delta; /* amount of allowable inaccuracy */
  if (s < 0) {
    mp_print_char (mp, xord ('-'));
    s = -s;                 /* print the sign, if negative */
  }
  mp_print_int (mp, s / unity); /* print the integer part */
  s = 10 * (s % unity) + 5;
  if (s != 5) {
    delta = 10;
    mp_print_char (mp, xord ('.'));
    do {
      if (delta > unity)
        s = s + 0100000 - (delta / 2);  /* round the final digit */
      mp_print_char (mp, xord ('0' + (s / unity)));
      s = 10 * (s % unity);
      delta = delta * 10;
    } while (s > delta);
  }
}

@ Addition is not always checked to make sure that it doesn't overflow,
but in places where overflow isn't too unlikely the |slow_add| routine
is used.

@<Internal library declarations@>=
integer mp_slow_add (MP mp, integer x, integer y);

@ @c
integer mp_slow_add (MP mp, integer x, integer y) {
  if (x >= 0) {
    if (y <= EL_GORDO - x) {
      return x + y;
    } else {
      mp->arith_error = true;
      return EL_GORDO;
    }
  } else if (-y <= EL_GORDO + x) {
    return x + y;
  } else {
    mp->arith_error = true;
    return -EL_GORDO;
  }
}

@ The |make_fraction| routine produces the |fraction| equivalent of
|p/q|, given integers |p| and~|q|; it computes the integer
$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
positive. If |p| and |q| are both of the same scaled type |t|,
the ``type relation'' |make_fraction(t,t)=fraction| is valid;
and it's also possible to use the subroutine ``backwards,'' using
the relation |make_fraction(t,fraction)=t| between scaled types.

If the result would have magnitude $2^{31}$ or more, |make_fraction|
sets |arith_error:=true|. Most of \MP's internal computations have
been designed to avoid this sort of error.

If this subroutine were programmed in assembly language on a typical
machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
double-precision product can often be input to a fixed-point division
instruction. But when we are restricted to int-eger arithmetic it
is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique
would be about three times faster than the code adopted here, but it
would be comparatively long and tricky, involving about sixteen
additional multiplications and divisions.

This operation is part of \MP's ``inner loop''; indeed, it will
consume nearly 10\pct! of the running time (exclusive of input and output)
if the code below is left unchanged. A machine-dependent recoding
will therefore make \MP\ run faster. The present implementation
is highly portable, but slow; it avoids multiplication and division
except in the initial stage. System wizards should be careful to
replace it with a routine that is guaranteed to produce identical
results in all cases.
@^system dependencies@>

As noted below, a few more routines should also be replaced by machine-dependent
code, for efficiency. But when a procedure is not part of the ``inner loop,''
such changes aren't advisable; simplicity and robustness are
preferable to trickery, unless the cost is too high.
@^inner loop@>

@<Internal library declarations@>=
fraction mp_make_fraction (MP mp, integer p, integer q);

@ We need these preprocessor values

@d TWEXP31  2147483648.0
@d TWEXP28  268435456.0
@d TWEXP16 65536.0
@d TWEXP_16 (1.0/65536.0)
@d TWEXP_28 (1.0/268435456.0)


@c
fraction mp_make_fraction (MP mp, integer p, integer q) {
  fraction i;
  if (q == 0)
    mp_confusion (mp, "/");
@:this can't happen /}{\quad \./@> {
    register double d;
    d = TWEXP28 * (double) p / (double) q;
    if ((p ^ q) >= 0) {
      d += 0.5;
      if (d >= TWEXP31) {
        mp->arith_error = true;
        return EL_GORDO;
      }
      i = (integer) d;
      if (d == (double) i && (((q > 0 ? -q : q) & 077777)
                              * (((i & 037777) << 1) - 1) & 04000) != 0)
        --i;
    } else {
      d -= 0.5;
      if (d <= -TWEXP31) {
        mp->arith_error = true;
        return -EL_GORDO;
      }
      i = (integer) d;
      if (d == (double) i && (((q > 0 ? q : -q) & 077777)
                              * (((i & 037777) << 1) + 1) & 04000) != 0)
        ++i;
    }
  }
  return i;
}


@ The dual of |make_fraction| is |take_fraction|, which multiplies a
given integer~|q| by a fraction~|f|. When the operands are positive, it
computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
of |q| and~|f|.

This routine is even more ``inner loopy'' than |make_fraction|;
the present implementation consumes almost 20\pct! of \MP's computation
time during typical jobs, so a machine-language substitute is advisable.
@^inner loop@> @^system dependencies@>

@<Internal library declarations@>=
integer mp_take_fraction (MP mp, integer q, fraction f);

@ @c
integer mp_take_fraction (MP mp, integer p, fraction q) {
  register double d;
  register integer i;
  d = (double) p *(double) q *TWEXP_28;
  if ((p ^ q) >= 0) {
    d += 0.5;
    if (d >= TWEXP31) {
      if (d != TWEXP31 || (((p & 077777) * (q & 077777)) & 040000) == 0)
        mp->arith_error = true;
      return EL_GORDO;
    }
    i = (integer) d;
    if (d == (double) i && (((p & 077777) * (q & 077777)) & 040000) != 0)
      --i;
  } else {
    d -= 0.5;
    if (d <= -TWEXP31) {
      if (d != -TWEXP31 || ((-(p & 077777) * (q & 077777)) & 040000) == 0)
        mp->arith_error = true;
      return -EL_GORDO;
    }
    i = (integer) d;
    if (d == (double) i && ((-(p & 077777) * (q & 077777)) & 040000) != 0)
      ++i;
  }
  return i;
}


@ When we want to multiply something by a |scaled| quantity, we use a scheme
analogous to |take_fraction| but with a different scaling.
Given positive operands, |take_scaled|
computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.

Once again it is a good idea to use a machine-language replacement if
possible; otherwise |take_scaled| will use more than 2\pct! of the running time
when the Computer Modern fonts are being generated.
@^inner loop@>

@<Internal library declarations@>=
integer mp_take_scaled (MP mp, integer q, scaled f);

@ @c
integer mp_take_scaled (MP mp, integer p, scaled q) {
  register double d;
  register integer i;
  d = (double) p *(double) q *TWEXP_16;
  if ((p ^ q) >= 0) {
    d += 0.5;
    if (d >= TWEXP31) {
      if (d != TWEXP31 || (((p & 077777) * (q & 077777)) & 040000) == 0)
        mp->arith_error = true;
      return EL_GORDO;
    }
    i = (integer) d;
    if (d == (double) i && (((p & 077777) * (q & 077777)) & 040000) != 0)
      --i;
  } else {
    d -= 0.5;
    if (d <= -TWEXP31) {
      if (d != -TWEXP31 || ((-(p & 077777) * (q & 077777)) & 040000) == 0)
        mp->arith_error = true;
      return -EL_GORDO;
    }
    i = (integer) d;
    if (d == (double) i && ((-(p & 077777) * (q & 077777)) & 040000) != 0)
      ++i;
  }
  return i;
}


@ For completeness, there's also |make_scaled|, which computes a
quotient as a |scaled| number instead of as a |fraction|.
In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
operands are positive. \ (This procedure is not used especially often,
so it is not part of \MP's inner loop.)

@<Internal library ...@>=
scaled mp_make_scaled (MP mp, integer p, integer q);

@ @c
scaled mp_make_scaled (MP mp, integer p, integer q) {
  register integer i;
  if (q == 0)
    mp_confusion (mp, "/");
@:this can't happen /}{\quad \./@> {
    register double d;
    d = TWEXP16 * (double) p / (double) q;
    if ((p ^ q) >= 0) {
      d += 0.5;
      if (d >= TWEXP31) {
        mp->arith_error = true;
        return EL_GORDO;
      }
      i = (integer) d;
      if (d == (double) i && (((q > 0 ? -q : q) & 077777)
                              * (((i & 037777) << 1) - 1) & 04000) != 0)
        --i;
    } else {
      d -= 0.5;
      if (d <= -TWEXP31) {
        mp->arith_error = true;
        return -EL_GORDO;
      }
      i = (integer) d;
      if (d == (double) i && (((q > 0 ? q : -q) & 077777)
                              * (((i & 037777) << 1) + 1) & 04000) != 0)
        ++i;
    }
  }
  return i;
}

@ The following function divides |s| by |m|. |dd| is number of decimal digits.

@<Internal library ...@>=
scaled mp_divide_scaled (MP mp, scaled s, scaled m, integer dd);

@ @c
scaled mp_divide_scaled (MP mp, scaled s, scaled m, integer dd) {
  scaled q, r;
  integer sign, i;
  sign = 1;
  if (s < 0) {
    sign = -sign;
    s = -s;
  }
  if (m < 0) {
    sign = -sign;
    m = -m;
  }
  if (m == 0)
    mp_confusion (mp, "arithmetic: divided by zero");
  else if (m >= (EL_GORDO / 10))
    mp_confusion (mp, "arithmetic: number too big");
  q = s / m;
  r = s % m;
  for (i = 1; i <= dd; i++) {
    q = 10 * q + (10 * r) / m;
    r = (10 * r) % m;
  }
  if (2 * r >= m) {
    q++;
    r = r - m;
  }
  mp->scaled_out = sign * (s - (r / mp->ten_pow[dd]));
  return (sign * q);
}


@ The following function is used to create a scaled integer from a given decimal
fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|.

@<Internal library declarations@>=
scaled mp_round_decimals (MP mp, unsigned char *b, quarterword k);

@ @c
scaled mp_round_decimals (MP mp, unsigned char *b, quarterword k) {
  /* converts a decimal fraction */
  unsigned a = 0;       /* the accumulator */
  int l = 0;
  for ( l = k-1; l >= 0; l-- ) {
    if (l<16)    /* digits for |k>=17| cannot affect the result */
      a = (a + (unsigned) (*(b+l) - '0') * two) / 10;
  }
  return (scaled) halfp (a + 1);
}

@ The |scaled| quantities in \MP\ programs are generally supposed to be
less than $2^{12}$ in absolute value, so \MP\ does much of its internal
arithmetic with 28~significant bits of precision. A |fraction| denotes
a scaled integer whose binary point is assumed to be 28 bit positions
from the right.

@d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
@d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
@d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
@d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
@d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */

@ Here is a typical example of how the routines above can be used.
It computes the function
$${1\over3\tau}f(\theta,\phi)=
{\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
fudge factor for placing the first control point of a curve that starts
at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
(Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)

The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
(It's a sum of eight terms whose absolute values can be bounded using
relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
is positive; and since the tension $\tau$ is constrained to be at least
$3\over4$, the numerator is less than $16\over3$. The denominator is
nonnegative and at most~6.  Hence the fixed-point calculations below
are guaranteed to stay within the bounds of a 32-bit computer word.

The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
$\sin\phi$, and $\cos\phi$, respectively.

@<Internal library declarations@>=
fraction mp_velocity (MP mp, fraction st, fraction ct, fraction sf,
	                     fraction cf, scaled t);

@ @c
fraction mp_velocity (MP mp, fraction st, fraction ct, fraction sf,
	                     fraction cf, scaled t) {
  integer acc, num, denom;      /* registers for intermediate calculations */
  acc = mp_take_fraction (mp, st - (sf / 16), sf - (st / 16));
  acc = mp_take_fraction (mp, acc, ct - cf);
  num = fraction_two + mp_take_fraction (mp, acc, 379625062);
  /* $2^{28}\sqrt2\approx379625062.497$ */
  denom =
    fraction_three + mp_take_fraction (mp, ct,
                                       497706707) + mp_take_fraction (mp, cf,
                                                                      307599661);
  /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
     $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
  if (t != unity)
    num = mp_make_scaled (mp, num, t);
  /* |make_scaled(fraction,scaled)=fraction| */
  if (num / 4 >= denom)
    return fraction_four;
  else
    return mp_make_fraction (mp, num, denom);
}


@ The following somewhat different subroutine tests rigorously if $ab$ is
greater than, equal to, or less than~$cd$,
given integers $(a,b,c,d)$. In most cases a quick decision is reached.
The result is $+1$, 0, or~$-1$ in the three respective cases.

@<Internal library declarations@>=
integer mp_ab_vs_cd (MP mp, integer a, integer b, integer c, integer d);

@ @c
integer mp_ab_vs_cd (MP mp, integer a, integer b, integer c, integer d) {
  integer q, r; /* temporary registers */
  (void)mp;
  @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
  while (1) {
    q = a / d;
    r = c / b;
    if (q != r)
      return (q > r ? 1 : -1);
    q = a % d;
    r = c % b;
    if (r == 0)
      return (q ? 1 : 0);
    if (q == 0)
      return -1;
    a = b;
    b = q;
    c = d;
    d = r;
  }                             /* now |a>d>0| and |c>b>0| */
}


@ @<Reduce to the case that |a...@>=
if (a < 0) {
  a = -a;
  b = -b;
};
if (c < 0) {
  c = -c;
  d = -d;
};
if (d <= 0) {
  if (b >= 0) {
    if ((a == 0 || b == 0) && (c == 0 || d == 0))
      return 0;
    else
      return 1;
  }
  if (d == 0)
    return (a == 0 ? 0 : -1);
  q = a;
  a = c;
  c = q;
  q = -b;
  b = -d;
  d = q;
} else if (b <= 0) {
  if (b < 0)
    if (a > 0)
      return -1;
  return (c == 0 ? 0 : -1);
}

@ We conclude this set of elementary routines with some simple rounding
and truncation operations.

@ |floor_scaled| floors a |scaled|
@<Internal library declarations@>=
#define mp_floor_scaled(M,i) ((i)&(-65536))

@ |round_unscaled| rounds a |scaled| and converts it to |int|
@<Internal library declarations@>=
#define mp_round_unscaled(M,x) (x>=0100000 ? 1+((x-0100000) / 0200000) \
  : ( x>=-0100000 ? 0 : -(1+((-(x+1)-0100000) / 0200000))))

@ |round_fraction| rounds a |fraction| and converts it to |scaled|
@<Internal library declarations@>=
#define mp_round_fraction(M,x) (x>=2048 ? 1+((x-2048) / 4096) \
  : ( x>=-2048 ? 0 : -(1+((-(x+1)-2048) / 4096))))



@* Algebraic and transcendental functions.
\MP\ computes all of the necessary special functions from scratch, without
relying on |real| arithmetic or system subroutines for sines, cosines, etc.

@ To get the square root of a |scaled| number |x|, we want to calculate
$s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
determines $s$ by an iterative method that maintains the invariant
relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
-s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
might, however, be zero at the start of the first iteration.

@<Internal library declarations@>=
scaled mp_square_rt (MP mp, scaled x);

@ @c
scaled mp_square_rt (MP mp, scaled x) {
  quarterword k;        /* iteration control counter */
  integer y;    /* register for intermediate calculations */
  integer q;    /* register for intermediate calculations */
  if (x <= 0) {
    @<Handle square root of zero or negative argument@>;
  } else {
    k = 23;
    q = 2;
    while (x < fraction_two) {  /* i.e., |while x<@t$2^{29}$@>|\unskip */
      k--;
      x = x + x + x + x;
    }
    if (x < fraction_four)
      y = 0;
    else {
      x = x - fraction_four;
      y = 1;
    };
    do {
      @<Decrease |k| by 1, maintaining the invariant
      relations between |x|, |y|, and~|q|@>;
    } while (k != 0);
    return (scaled) (halfp (q));
  }
}


@ @<Handle square root of zero...@>=
{
  if (x < 0) {
    mp_print_err (mp, "Square root of ");
@.Square root...replaced by 0@>;
    mp_print_scaled (mp, x);
    mp_print (mp, " has been replaced by 0");
    help2 ("Since I don't take square roots of negative numbers,",
           "I'm zeroing this one. Proceed, with fingers crossed.");
    mp_error (mp);
  };
  return 0;
}


@ @<Decrease |k| by 1, maintaining...@>=
x += x;
y += y;
if (x >= fraction_four) {       /* note that |fraction_four=@t$2^{30}$@>| */
  x = x - fraction_four;
  y++;
};
x += x;
y = y + y - q;
q += q;
if (x >= fraction_four) {
  x = x - fraction_four;
  y++;
};
if (y > (int) q) {
  y -= q;
  q += 2;
} else if (y <= 0) {
  q -= 2;
  y += q;
};
k--

@ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
@^Moler, Cleve Barry@>
@^Morrison, Donald Ross@>
of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
in such a way that their Pythagorean sum remains invariant, while the
smaller argument decreases.

@<Internal library ...@>=
integer mp_pyth_add (MP mp, integer a, integer b);


@ @c
integer mp_pyth_add (MP mp, integer a, integer b) {
  fraction r;   /* register used to transform |a| and |b| */
  boolean big;  /* is the result dangerously near $2^{31}$? */
  a = abs (a);
  b = abs (b);
  if (a < b) {
    r = b;
    b = a;
    a = r;
  };                            /* now |0<=b<=a| */
  if (b > 0) {
    if (a < fraction_two) {
      big = false;
    } else {
      a = a / 4;
      b = b / 4;
      big = true;
    };                          /* we reduced the precision to avoid arithmetic overflow */
    @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
    if (big) {
      if (a < fraction_two) {
        a = a + a + a + a;
      } else {
        mp->arith_error = true;
        a = EL_GORDO;
      };
    }
  }
  return a;
}


@ The key idea here is to reflect the vector $(a,b)$ about the
line through $(a,b/2)$.

@<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
while (1) {
  r = mp_make_fraction (mp, b, a);
  r = mp_take_fraction (mp, r, r);      /* now $r\approx b^2/a^2$ */
  if (r == 0)
    break;
  r = mp_make_fraction (mp, r, fraction_four + r);
  a = a + mp_take_fraction (mp, a + a, r);
  b = mp_take_fraction (mp, b, r);
}


@ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
It converges slowly when $b$ is near $a$, but otherwise it works fine.

@<Internal library declarations@>=
integer mp_pyth_sub (MP mp, integer a, integer b);

@ @c
integer mp_pyth_sub (MP mp, integer a, integer b) {
  fraction r;   /* register used to transform |a| and |b| */
  boolean big;  /* is the input dangerously near $2^{31}$? */
  a = abs (a);
  b = abs (b);
  if (a <= b) {
    @<Handle erroneous |pyth_sub| and set |a:=0|@>;
  } else {
    if (a < fraction_four) {
      big = false;
    } else {
      a = (integer) halfp (a);
      b = (integer) halfp (b);
      big = true;
    }
    @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
    if (big)
      a *= 2;
  }
  return a;
}


@ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
while (1) {
  r = mp_make_fraction (mp, b, a);
  r = mp_take_fraction (mp, r, r);      /* now $r\approx b^2/a^2$ */
  if (r == 0)
    break;
  r = mp_make_fraction (mp, r, fraction_four - r);
  a = a - mp_take_fraction (mp, a + a, r);
  b = mp_take_fraction (mp, b, r);
}


@ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
{
  if (a < b) {
    mp_print_err (mp, "Pythagorean subtraction ");
    mp_print_scaled (mp, a);
    mp_print (mp, "+-+");
    mp_print_scaled (mp, b);
    mp_print (mp, " has been replaced by 0");
@.Pythagorean...@>;
    help2 ("Since I don't take square roots of negative numbers,",
           "I'm zeroing this one. Proceed, with fingers crossed.");
    mp_error (mp);
  }
  a = 0;
}


@ The subroutines for logarithm and exponential involve two tables.
The first is simple: |two_to_the[k]| equals $2^k$. The second involves
a bit more calculation, which the author claims to have done correctly:
|spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
nearest integer.

@d two_to_the(A) (1<<(unsigned)(A))

@<Declarations@>=
static const integer spec_log[29] = { 0,        /* special logarithms */
  93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
  1052693, 525315, 262400, 131136, 65552, 32772, 16385,
  8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1
};


@ Here is the routine that calculates $2^8$ times the natural logarithm
of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
when |x| is a given positive integer.

The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
and the logarithm of $2^{30}x$ remains to be added to an accumulator
register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
during the calculation, and sixteen auxiliary bits to extend |y| are
kept in~|z| during the initial argument reduction. (We add
$100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
not become negative; also, the actual amount subtracted from~|y| is~96,
not~100, because we want to add~4 for rounding before the final division by~8.)

@<Internal library declarations@>=
scaled mp_m_log (MP mp, scaled x);

@ @c
scaled mp_m_log (MP mp, scaled x) {
  integer y, z; /* auxiliary registers */
  integer k;    /* iteration counter */
  if (x <= 0) {
    @<Handle non-positive logarithm@>;
  } else {
    y = 1302456956 + 4 - 100;   /* $14\times2^{27}\ln2\approx1302456956.421063$ */
    z = 27595 + 6553600;        /* and $2^{16}\times .421063\approx 27595$ */
    while (x < fraction_four) {
      x = 2*x;
      y -= 93032639;
      z -= 48782;
    }                           /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
    y = y + (z / unity);
    k = 2;
    while (x > fraction_four + 4) {
      @<Increase |k| until |x| can be multiplied by a
        factor of $2^{-k}$, and adjust $y$ accordingly@>;
    }
    return (y / 8);
  }
}


@ @<Increase |k| until |x| can...@>=
{
  z = ((x - 1) / two_to_the (k)) + 1;   /* $z=\lceil x/2^k\rceil$ */
  while (x < fraction_four + z) {
    z = halfp (z + 1);
    k++;
  };
  y += spec_log[k];
  x -= z;
}


@ @<Handle non-positive logarithm@>=
{
  mp_print_err (mp, "Logarithm of ");
@.Logarithm...replaced by 0@>;
  mp_print_scaled (mp, x);
  mp_print (mp, " has been replaced by 0");
  help2 ("Since I don't take logs of non-positive numbers,",
         "I'm zeroing this one. Proceed, with fingers crossed.");
  mp_error (mp);
  return 0;
}


@ Conversely, the exponential routine calculates $\exp(x/2^8)$,
when |x| is |scaled|. The result is an integer approximation to
$2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.

@<Internal library declarations@>=
scaled mp_m_exp (MP mp, scaled x);

@ @c
scaled mp_m_exp (MP mp, scaled x) {
  quarterword k;        /* loop control index */
  integer y, z; /* auxiliary registers */
  if (x > 174436200) {
    /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
    mp->arith_error = true;
    return EL_GORDO;
  } else if (x < -197694359) {
    /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
    return 0;
  } else {
    if (x <= 0) {
      z = -8 * x;
      y = 04000000;             /* $y=2^{20}$ */
    } else {
      if (x <= 127919879) {
        z = 1023359037 - 8 * x;
        /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
      } else {
        z = 8 * (174436200 - x);        /* |z| is always nonnegative */
      }
      y = EL_GORDO;
    };
    @<Multiply |y| by $\exp(-z/2^{27})$@>;
    if (x <= 127919879)
      return ((y + 8) / 16);
    else
      return y;
  }
}


@ The idea here is that subtracting |spec_log[k]| from |z| corresponds
to multiplying |y| by $1-2^{-k}$.

A subtle point (which had to be checked) was that if $x=127919879$, the
value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
$z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
and by~16 when |k=27|.

@<Multiply |y| by...@>=
k = 1;
while (z > 0) {
  while (z >= spec_log[k]) {
    z -= spec_log[k];
    y = y - 1 - ((y - two_to_the (k - 1)) / two_to_the (k));
  }
  k++;
}

@ The trigonometric subroutines use an auxiliary table such that
|spec_atan[k]| contains an approximation to the |angle| whose tangent
is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$ 

@<Declarations@>=
static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
  1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
  1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1
};


@ Given integers |x| and |y|, not both zero, the |n_arg| function
returns the |angle| whose tangent points in the direction $(x,y)$.
This subroutine first determines the correct octant, then solves the
problem for |0<=y<=x|, then converts the result appropriately to
return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
(The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
|-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)

The octants are represented in a ``Gray code,'' since that turns out
to be computationally simplest.

@d negate_x 1
@d negate_y 2
@d switch_x_and_y 4
@d first_octant 1
@d second_octant (first_octant+switch_x_and_y)
@d third_octant (first_octant+switch_x_and_y+negate_x)
@d fourth_octant (first_octant+negate_x)
@d fifth_octant (first_octant+negate_x+negate_y)
@d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
@d seventh_octant (first_octant+switch_x_and_y+negate_y)
@d eighth_octant (first_octant+negate_y)

@<Internal library declarations@>=
angle mp_n_arg (MP mp, integer x, integer y);

@ @c
angle mp_n_arg (MP mp, integer x, integer y) {
  angle z;      /* auxiliary register */
  integer t;    /* temporary storage */
  quarterword k;        /* loop counter */
  int octant;   /* octant code */
  if (x >= 0) {
    octant = first_octant;
  } else {
    x = -x;
    octant = first_octant + negate_x;
  }
  if (y < 0) {
    y = -y;
    octant = octant + negate_y;
  }
  if (x < y) {
    t = y;
    y = x;
    x = t;
    octant = octant + switch_x_and_y;
  }
  if (x == 0) {
    @<Handle undefined arg@>;
  } else {
    @<Set variable |z| to the arg of $(x,y)$@>;
    @<Return an appropriate answer based on |z| and |octant|@>;
  }
}


@ @<Handle undefined arg@>=
{
  mp_print_err (mp, "angle(0,0) is taken as zero");
@.angle(0,0)...zero@>;
  help2 ("The `angle' between two identical points is undefined.",
         "I'm zeroing this one. Proceed, with fingers crossed.");
  mp_error (mp);
  return 0;
}


@ @<Return an appropriate answer...@>=
switch (octant) {
case first_octant:
  return z;
case second_octant:
  return (ninety_deg - z);
case third_octant:
  return (ninety_deg + z);
case fourth_octant:
  return (one_eighty_deg - z);
case fifth_octant:
  return (z - one_eighty_deg);
case sixth_octant:
  return (-z - ninety_deg);
case seventh_octant:
  return (z - ninety_deg);
case eighth_octant:
  return (-z);
};                              /* there are no other cases */
return 0

@ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
will be made.

@<Set variable |z| to the arg...@>=
while (x >= fraction_two) {
  x = halfp (x);
  y = halfp (y);
}
z = 0;
if (y > 0) {
  while (x < fraction_one) {
    x += x;
    y += y;
  };
  @<Increase |z| to the arg of $(x,y)$@>;
}

@ During the calculations of this section, variables |x| and~|y|
represent actual coordinates $(x,2^{-k}y)$. We will maintain the
condition |x>=y|, so that the tangent will be at most $2^{-k}$.
If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
$(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
coordinates whose angle has decreased by~$\phi$; in the special case
$a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
@^Meggitt, John E.@>
{\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]

The initial value of |x| will be multiplied by at most
$(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
there is no chance of integer overflow.

@<Increase |z|...@>=
k = 0;
do {
  y += y;
  k++;
  if (y > x) {
    z = z + spec_atan[k];
    t = x;
    x = x + (y / two_to_the (k + k));
    y = y - t;
  };
} while (k != 15);
do {
  y += y;
  k++;
  if (y > x) {
    z = z + spec_atan[k];
    y = y - x;
  };
} while (k != 26)

@ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
and cosine of that angle. The results of this routine are
stored in global integer variables |n_sin| and |n_cos|.

@ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
the purpose of |n_sin_cos(z)| is to set
|x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
for some rather large number~|r|. The maximum of |x| and |y|
will be between $2^{28}$ and $2^{30}$, so that there will be hardly
any loss of accuracy. Then |x| and~|y| are divided by~|r|.

@d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
@d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
@d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
@d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */

@d odd(A)   ((A)%2==1)

@<Internal library declarations@>=
void mp_n_sin_cos (MP mp, angle z, fraction *n_cos, fraction *n_sin);

@ Compute a multiple of the sine and cosine

@c
void mp_n_sin_cos (MP mp, angle z, fraction *n_cos, fraction *n_sin) {
  quarterword k;        /* loop control variable */
  int q;        /* specifies the quadrant */
  fraction r;   /* magnitude of |(x,y)| */
  integer x, y, t;      /* temporary registers */
  while (z < 0)
    z = z + three_sixty_deg;
  z = z % three_sixty_deg;      /* now |0<=z<three_sixty_deg| */
  q = z / forty_five_deg;
  z = z % forty_five_deg;
  x = fraction_one;
  y = x;
  if (!odd (q))
    z = forty_five_deg - z;
  @<Subtract angle |z| from |(x,y)|@>;
  @<Convert |(x,y)| to the octant determined by~|q|@>;
  r = mp_pyth_add (mp, x, y);
  *n_cos = mp_make_fraction (mp, x, r);
  *n_sin = mp_make_fraction (mp, y, r);
}


@ In this case the octants are numbered sequentially.

@<Convert |(x,...@>=
switch (q) {
case 0:
  break;
case 1:
  t = x;
  x = y;
  y = t;
  break;
case 2:
  t = x;
  x = -y;
  y = t;
  break;
case 3:
  x = -x;
  break;
case 4:
  x = -x;
  y = -y;
  break;
case 5:
  t = x;
  x = -y;
  y = -t;
  break;
case 6:
  t = x;
  x = y;
  y = -t;
  break;
case 7:
  y = -y;
  break;
}                               /* there are no other cases */


@ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
applied in reverse. The values of |spec_atan[k]| decrease slowly enough
that this loop is guaranteed to terminate before the (nonexistent) value
|spec_atan[27]| would be required.

@<Subtract angle |z|...@>=
k = 1;
while (z > 0) {
  if (z >= spec_atan[k]) {
    z = z - spec_atan[k];
    t = x;
    x = t + y / two_to_the (k);
    y = y - t / two_to_the (k);
  }
  k++;
}
if (y < 0)
  y = 0                         /* this precaution may never be needed */