1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
|
/*
Copyright 2006-2012 Taco Hoekwater <taco@@luatex.org>
This file is part of LuaTeX.
LuaTeX is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
LuaTeX is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU General Public License along
with LuaTeX; if not, see <http://www.gnu.org/licenses/>.
*/
#include "ptexlib.h"
/*tex Here are some macros that help process ligatures and kerns */
#define lig_kern_start(f,c) char_remainder(f,c)
/*tex A value indicating |STOP| in a lig/kern program: */
#define stop_flag 128
/*tex The op code for a kern step: */
#define kern_flag 128
#define skip_byte(z) lig_kerns[z].b0
#define next_char(z) lig_kerns[z].b1
#define op_byte(z) lig_kerns[z].b2
#define rem_byte(z) lig_kerns[z].b3
#define lig_kern_restart(c) (256*op_byte(c)+rem_byte(c))
/*tex
The information in a \TFM\file appears in a sequence of 8-bit bytes. Since
the number of bytes is always a multiple of 4, we could also regard the file
as a sequence of 32-bit words, but \TeX\ uses the byte interpretation. The
format of \TFM\files was designed by Lyle Ramshaw in 1980. The intent is
to convey a lot of different kinds of information in a compact but useful
form.
$\Omega$ is capable of reading not only \TFM\files, but also \.{OFM}
files, which can describe fonts with up to 65536 characters and with huge
lig/kern tables. These fonts will often be virtual fonts built up from real
fonts with 256 characters, but $\Omega$ is not aware of this.
The documentation below describes \TFM\files, with slight additions to
show where \.{OFM} files differ.
The first 24 bytes (6 words) of a \TFM\file contain twelve 16-bit integers
that give the lengths of the various subsequent portions of the file. These
twelve integers are, in order:
\starttabulate
\NC \type {lf| \NC length of the entire file, in words \NC \NR
\NC \type {lh| \NC length of the header data, in words \NC \NR
\NC \type {bc| \NC smallest character code in the font \NC \NR
\NC \type {ec| \NC largest character code in the font \NC \NR
\NC \type {nw| \NC number of words in the width table \NC \NR
\NC \type {nh| \NC number of words in the height table \NC \NR
\NC \type {nd| \NC number of words in the depth table \NC \NR
\NC \type {ni| \NC number of words in the italic correction table \NC \NR
\NC \type {nl| \NC number of words in the lig/kern table \NC \NR
\NC \type {nk| \NC number of words in the kern table \NC \NR
\NC \type {ne| \NC number of words in the extensible character table \NC \NR
\NC \type {np| \NC number of font parameter words \NC \NR
\stoptabulate
They are all nonnegative and less than $2^{15}$. We must have
|bc-1<=ec<=255|, and $|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|$. Note that
a \TFM\font may contain as many as 256 characters (if |bc=0| and
|ec=255|), and as few as 0 characters (if |bc=ec+1|).
Incidentally, when two or more 8-bit bytes are combined to form an integer of
16 or more bits, the most significant bytes appear first in the file. This is
called BigEndian order.
The first 52 bytes (13 words) of an \.{OFM} file contains thirteen 32-bit
integers that give the lengths of the various subsequent portions of the
file. The first word is 0 (future versions of \.{OFM} files could have
different values; what is important is that the first two bytes be 0 to
differentiate \TFM\and \.{OFM} files). The next twelve integers are as
above, all nonegative and less than~$2^{31}$. We must have |bc-1<=ec<=65535|,
and $$\hbox{|lf=13+lh+2*(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$ Note that an
\.{OFM} font may contain as many as 65536 characters (if |bc=0| and
|ec=65535|), and as few as 0 characters (if |bc=ec+1|).
The rest of the \TFM\file may be regarded as a sequence of ten data arrays
having the informal specification
\starttabulate
\NC \type {header} \NC \type {[0..lh-1]} \NC \type {stuff} \NC \NR
\NC \type {char\_info} \NC \type {[bc..ec]} \NC \type {char_info_word} \NC \NR
\NC \type {width} \NC \type {[0..nw-1]} \NC \type {fix_word} \NC \NR
\NC \type {height} \NC \type {[0..nh-1]} \NC \type {fix_word} \NC \NR
\NC \type {depth} \NC \type {[0..nd-1]} \NC \type {fix_word} \NC \NR
\NC \type {italic} \NC \type {[0..ni-1]} \NC \type {fix_word} \NC \NR
\NC \type {lig\_kern} \NC \type {[0..nl-1]} \NC \type {lig_kern_command} \NC \NR
\NC \type {kern} \NC \type {[0..nk-1]} \NC \type {fix_word} \NC \NR
\NC \type {exten} \NC \type {[0..ne-1]} \NC \type {extensible_recipe} \NC \NR
\NC \type {param} \NC \type {[1..np]} \NC \type {fix_word} \NC \NR
\stoptabulate
The most important data type used here is a |@!fix_word|, which is a 32-bit
representation of a binary fraction. A |fix_word| is a signed quantity, with
the two's complement of the entire word used to represent negation. Of the 32
bits in a |fix_word|, exactly 12 are to the left of the binary point; thus,
the largest |fix_word| value is $2048-2^{-20}$, and the smallest is $-2048$.
We will see below, however, that all but two of the |fix_word| values must
lie between $-16$ and $+16$.
The first data array is a block of header information, which contains general
facts about the font. The header must contain at least two words, |header[0]|
and |header[1]|, whose meaning is explained below. Additional header
information of use to other software routines might also be included, but
\TeX82 does not need to know about such details. For example, 16 more words
of header information are in use at the Xerox Palo Alto Research Center; the
first ten specify the character coding scheme used (e.g., `\.{XEROX text}' or
`\.{TeX math symbols}'), the next five give the font identifier (e.g.,
`\.{HELVETICA}' or `\.{CMSY}'), and the last gives the ``face byte.'' The
program that converts \.{DVI} files to Xerox printing format gets this
information by looking at the \TFM\file, which it needs to read anyway
because of other information that is not explicitly repeated in
\.{DVI}~format.
\startitemize
\startitem
|header[0]| is a 32-bit check sum that \TeX\ will copy into the
\.{DVI} output file. Later on when the \.{DVI} file is printed,
possibly on another computer, the actual font that gets used is
supposed to have a check sum that agrees with the one in the \TFM\
file used by \TeX. In this way, users will be warned about potential
incompatibilities. (However, if the check sum is zero in either the
font file or the \TFM\file, no check is made.) The actual relation
between this check sum and the rest of the \TFM\file is not
important; the check sum is simply an identification number with the
property that incompatible fonts almost always have distinct check
sums.
\stopitem
\startitem
|header[1]| is a |fix_word| containing the design size of the font,
in units of \TeX\ points. This number must be at least 1.0; it is
fairly arbitrary, but usually the design size is 10.0 for a ``10
point'' font, i.e., a font that was designed to look best at a
10-point size, whatever that really means. When a \TeX\ user asks for
a font `\.{at} $\delta$ \.{pt}', the effect is to override the design
size and replace it by $\delta$, and to multiply the $x$ and~$y$
coordinates of the points in the font image by a factor of $\delta$
divided by the design size. {\sl All other dimensions in the\/
\TFM\file are |fix_word|\kern-1pt\ numbers in design-size units},
with the exception of |param[1]| (which denotes the slant ratio).
Thus, for example, the value of |param[6]|, which defines the \.{em}
unit, is often the |fix_word| value $2^{20}=1.0$, since many fonts
have a design size equal to one em. The other dimensions must be less
than 16 design-size units in absolute value; thus, |header[1]| and
|param[1]| are the only |fix_word| entries in the whole \TFM\file
whose first byte might be something besides 0 or 255.
\stopitem
\stopitemize
Next comes the |char_info| array, which contains one |@!char_info_word| per
character. Each word in this part of a \TFM\file contains six fields
packed into four bytes as follows.
\startitemize
\startitem
first byte: |width_index| (8 bits)
\stopitem
\startitem
second byte: |height_index| (4 bits) times 16, plus |depth_index|
(4~bits)
\stopitem
\startitem
third byte: |italic_index| (6 bits) times 4, plus |tag| (2~bits)
\stopitem
\startitem
fourth byte: |remainder| (8 bits)
\stopitem
\stopitemize
The actual width of a character is \\{width}|[width_index]|, in design-size
units; this is a device for compressing information, since many characters
have the same width. Since it is quite common for many characters to have the
same height, depth, or italic correction, the \TFM\format imposes a limit
of 16 different heights, 16 different depths, and 64 different italic
corrections.
For \.{OFM} files, two words (eight bytes) are used. The arrangement is as
follows.
\startitemize
\startitem
first and second bytes: |width_index| (16 bits)
\stopitem
\startitem third byte: |height_index| (8 bits)
\stopitem
\startitem
fourth byte: |depth_index| (8~bits)
\stopitem
\startitem
fifth and sixth bytes: |italic_index| (14 bits) times 4, plus |tag|
(2~bits)
\startitem
seventh and eighth bytes: |remainder| (16 bits)
\stopitem
\stopitemize
Therefore the \.{OFM} format imposes a limit of 256 different heights, 256
different depths, and 16384 different italic corrections.
The italic correction of a character has two different uses. (a)~In ordinary
text, the italic correction is added to the width only if the \TeX\ user
specifies `\.{\\/}' after the character. (b)~In math formulas, the italic
correction is always added to the width, except with respect to the
positioning of subscripts.
Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
\\{italic}[0]=0$ should always hold, so that an index of zero implies a value
of zero. The |width_index| should never be zero unless the character does not
exist in the font, since a character is valid if and only if it lies between
|bc| and |ec| and has a nonzero |width_index|.
\TeX\ checks the information of a \TFM\file for validity as the file is
being read in, so that no further checks will be needed when typesetting is
going on. The somewhat tedious subroutine that does this is called
|read_font_info|. It has four parameters: the user font identifier~|u|, the
file name and area strings |nom| and |aire|, and the ``at'' size~|s|. If
|s|~is negative, it's the negative of a scale factor to be applied to the
design size; |s=-1000| is the normal case. Otherwise |s| will be substituted
for the design size; in this case, |s| must be positive and less than
$2048\rm\,pt$ (i.e., it must be less than $2^{27}$ when considered as an
integer).
The subroutine opens and closes a global file variable called |tfm_file|. It
returns the value of the internal font number that was just loaded. If an
error is detected, an error message is issued and no font information is
stored; |null_font| is returned in this case.
The |tag| field in a |char_info_word| has four values that explain how to
interpret the |remainder| field.
\startitemize
\startitem
|tag=0| (|no_tag|) means that |remainder| is unused.
\stopitem
\startitem
|tag=1| (|lig_tag|) means that this character has a ligature/kerning
program starting at position |remainder| in the |lig_kern| array
\stopitem
\startitem
|tag=2| (|list_tag|) means that this character is part of a chain of
characters of ascending sizes, and not the largest in the chain. The
|remainder| field gives the character code of the next larger
character
\stopitem
\startitem
|tag=3| (|ext_tag|) means that this character code represents an
extensible character, i.e., a character that is built up of smaller
pieces so that it can be made arbitrarily large. The pieces are
specified in |exten[remainder]|
\stopitem
\stopitemize
Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
unless they are used in special circumstances in math formulas. For example,
the \.{\\sum} operation looks for a |list_tag|, and the \.{\\left} operation
looks for both |list_tag| and |ext_tag|.
The |lig_kern| array contains instructions in a simple programming language
that explains what to do for special letter pairs. Each word in this array,
in a \TFM\file, is a |@!lig_kern_command| of four bytes.
\startitemize
\startitem
first byte: |skip_byte|, indicates that this is the final program
step if the byte is 128 or more, otherwise the next step is obtained
by skipping this number of intervening steps
\stopitem
\startitem
second byte: |next_char|, if |next_char| follows the current
character, then perform the operation and stop, otherwise
continue
\stopitem
\startitem
third byte: |op_byte|, indicates a ligature step if less than~128, a
kern step otherwise
\stopitem
\startitem
fourth byte: |remainder|
\stopitem
\stopitemize
In an \.{OFM} file, eight bytes are used, two bytes for each field.
In a kern step, an additional space equal to |kern[256 * (op_byte-128) +
remainder]| is inserted between the current character and |next_char|. This
amount is often negative, so that the characters are brought closer together
by kerning; but it might be positive.
There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$
where $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
|remainder| is inserted between the current character and |next_char|; then
the current character is deleted if $b=0$, and |next_char| is deleted if
$c=0$; then we pass over $a$~characters to reach the next current character
(which may have a ligature/kerning program of its own).
If the very first instruction of the |lig_kern| array has |skip_byte=255|,
the |next_char| byte is the so-called right boundary character of this font;
the value of |next_char| need not lie between |bc| and~|ec|. If the very last
instruction of the |lig_kern| array has |skip_byte=255|, there is a special
ligature/kerning program for a left boundary character, beginning at location
|256*op_byte+remainder|. The interpretation is that \TeX\ puts implicit
boundary characters before and after each consecutive string of characters
from the same font. These implicit characters do not appear in the output,
but they can affect ligatures and kerning.
If the very first instruction of a character's |lig_kern| program has
|skip_byte>128|, the program actually begins in location
|256*op_byte+remainder|. This feature allows access to large |lig_kern|
arrays, because the first instruction must otherwise appear in a location
|<=255| in a \TFM\file, |<=65535| in an \.{OFM} file.
Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy the
condition $$\hbox{|256*op_byte+remainder<nl|.}$$ If such an instruction is
encountered during normal program execution, it denotes an unconditional
halt; no ligature or kerning command is performed.
Extensible characters are specified by an |@!extensible_recipe|, which
consists of four bytes in a \TFM\file, called |@!top|, |@!mid|, |@!bot|,
and |@!rep| (in this order). In an \.{OFM} file, each field takes two bytes,
for eight in total. These bytes are the character codes of individual pieces
used to build up a large symbol. If |top|, |mid|, or |bot| are zero, they are
not present in the built-up result. For example, an extensible vertical line
is like an extensible bracket, except that the top and bottom pieces are
missing.
Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box if
the piece isn't present. Then the extensible characters have the form
$TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent; in the
latter case we can have $TR^kB$ for both even and odd values of~|k|. The
width of the extensible character is the width of $R$; and the
height-plus-depth is the sum of the individual height-plus-depths of the
components used, since the pieces are butted together in a vertical list.
The final portion of a \TFM\file is the |param| array, which is another
sequence of |fix_word| values.
\startitemize
\startitem
|param[1]=slant| is the amount of italic slant, which is used to help
position accents. For example, |slant=.25| means that when you go up one
unit, you also go .25 units to the right. The |slant| is a pure number;
it's the only |fix_word| other than the design size itself that is not
scaled by the design size.
\stopitem
\startitem
|param[2]=space| is the normal spacing between words in text. Note that
character |" "| in the font need not have anything to do with blank
spaces.
\stopitem
\startitem
|param[3]=space_stretch| is the amount of glue stretching between words.
\stopitem
\startitem
|param[4]=space_shrink| is the amount of glue shrinking between words.
\stopitem
\startitem
|param[5]=x_height| is the size of one ex in the font; it is also the
height of letters for which accents don't have to be raised or lowered.
\stopitem
\startitem
|param[6]=quad| is the size of one em in the font.
\stopitem
\startitem
|param[7]=extra_space| is the amount added to |param[2]| at the ends of
sentences.
\stopitem
If fewer than seven parameters are present, \TeX\ sets the missing parameters
to zero. Fonts used for math symbols are required to have additional
parameter information, which is explained later.
There are programs called \.{TFtoPL} and \.{PLtoTF} that convert between the
\TFM\format and a symbolic property-list format that can be easily edited.
These programs contain extensive diagnostic information, so \TeX\ does not
have to bother giving precise details about why it rejects a particular
\TFM\file.
*/
#define tfm_abort { \
font_tables[f]->_font_name = NULL; \
font_tables[f]->_font_area = NULL; \
xfree(tfm_buffer); xfree(kerns); \
xfree(widths); \
xfree(heights); \
xfree(depths); \
xfree(italics); \
xfree(extens); \
xfree(lig_kerns); \
xfree(xligs); \
xfree(xkerns); \
return 0; \
}
#define tfm_success { \
xfree(tfm_buffer); \
xfree(kerns); \
xfree(widths); \
xfree(heights); \
xfree(depths); \
xfree(italics); \
xfree(extens); \
xfree(lig_kerns); \
xfree(xligs); \
xfree(xkerns); \
return 1; \
}
static int open_tfm_file(const char *nom, unsigned char **tfm_buf, int *tfm_siz)
{
/*tex Was the callback successful? */
boolean res;
/*tex Was |tfm_file| successfully opened? */
boolean opened;
int callback_id;
FILE *tfm_file;
char *fname = luatex_find_file(nom, find_font_file_callback);
if (!fname)
return -1;
callback_id = callback_defined(read_font_file_callback);
if (callback_id > 0) {
res = run_callback(callback_id, "S->bSd", fname, &opened, tfm_buf, tfm_siz);
if (res && opened && (*tfm_siz > 0)) {
return 1;
}
if (!opened)
return -1;
} else {
if (luatex_open_input(&(tfm_file), fname, kpse_ofm_format, FOPEN_RBIN_MODE, true)) {
res = read_tfm_file(tfm_file, tfm_buf, tfm_siz);
close_file(tfm_file);
if (res) {
return 1;
}
} else {
return -1;
}
}
return 0;
}
/*tex
Note: A malformed \TFM\file might be shorter than it claims to be; thus
|eof(tfm_file)| might be true when |read_font_info| refers to |tfm_file^| or
when it says |get(tfm_file)|. If such circumstances cause system error
messages, you will have to defeat them somehow, for example by defining |fget|
to be `\ignorespaces|begin get(tfm_file);| |if eof(tfm_file) then abort;
end|'.
*/
#define fget tfm_byte++
#define fbyte tfm_buffer[tfm_byte]
#define read_sixteen(a) { \
a=tfm_buffer[tfm_byte++]; \
if (a>127) { tfm_abort; } \
a=(a*256)+tfm_buffer[tfm_byte]; \
}
#define read_sixteen_unsigned(a) { \
a=tfm_buffer[tfm_byte++]; \
a=(a*256)+tfm_buffer[tfm_byte]; \
}
#define read_thirtytwo(a) { \
a=tfm_buffer[++tfm_byte]; \
if (a>127) { tfm_abort; } \
a=(a*256)+tfm_buffer[++tfm_byte]; \
a=(a*256)+tfm_buffer[++tfm_byte]; \
a=(a*256)+tfm_buffer[++tfm_byte]; \
}
#define store_four_bytes(z) { \
a=tfm_buffer[++tfm_byte]; \
a=(a*256)+tfm_buffer[++tfm_byte]; \
a=(a*256)+tfm_buffer[++tfm_byte]; \
a=(a*256)+tfm_buffer[++tfm_byte]; \
z = a; \
}
#define store_char_info(z) { \
if (font_level!=-1) { \
fget; read_sixteen_unsigned(a); \
ci._width_index=a; \
fget; read_sixteen_unsigned(b); \
ci._height_index=b>>8; \
ci._depth_index=b%256; \
fget; read_sixteen_unsigned(c); \
ci._italic_index=c>>8; \
ci._tag=(unsigned char)(c%4); \
fget; read_sixteen_unsigned(d); \
ci._remainder=d; \
} else { \
a=tfm_buffer[++tfm_byte]; \
ci._width_index=a; \
b=tfm_buffer[++tfm_byte]; \
ci._height_index=b>>4; \
ci._depth_index=b%16; \
c=tfm_buffer[++tfm_byte]; \
ci._italic_index=c>>2; \
ci._tag=(unsigned char)(c%4); \
d=tfm_buffer[++tfm_byte]; \
ci._remainder=d; \
} \
}
#define read_four_quarters(q) { \
if (font_level!=-1) { \
fget; read_sixteen_unsigned(a); q.b0=(quarterword)a; \
fget; read_sixteen_unsigned(b); q.b1=(quarterword)b; \
fget; read_sixteen_unsigned(c); q.b2=(quarterword)c; \
fget; read_sixteen_unsigned(d); q.b3=(quarterword)d; \
} else { \
a=tfm_buffer[++tfm_byte]; q.b0=(quarterword)a; \
b=tfm_buffer[++tfm_byte]; q.b1=(quarterword)b; \
c=tfm_buffer[++tfm_byte]; q.b2=(quarterword)c; \
d=tfm_buffer[++tfm_byte]; q.b3=(quarterword)d; \
} \
}
#define check_byte_range(z) { if ((z<bc)||(z>ec)) tfm_abort ; }
/*
A |fix_word| whose four bytes are $(a,b,c,d)$ from left to right represents
the number $$x=\left\{\vcenter{\halign{$#$,\hfil\qquad&if $#$\hfil\cr
b\cdot2^{-4}+c\cdot2^{-12}+d\cdot2^{-20}&a=0;\cr
-16+b\cdot2^{-4}+c\cdot2^{-12}+d\cdot2^{-20}&a=255.\cr}}\right.$$ (No other
choices of |a| are allowed, since the magnitude of a number in design-size
units must be less than 16.) We want to multiply this quantity by the
integer~|z|, which is known to be less than $2^{27}$. If $|z|<2^{23}$, the
individual multiplications $b\cdot z$, $c\cdot z$, $d\cdot z$ cannot
overflow; otherwise we will divide |z| by 2, 4, 8, or 16, to obtain a
multiplier less than $2^{23}$, and we can compensate for this later. If |z|
has thereby been replaced by $|z|^\prime=|z|/2^e$, let $\beta=2^{4-e}$; we
shall compute $$\lfloor (b + c \cdot2^{-8} + d \cdot2^{-16}) \, z^\prime /
\beta \rfloor$$ if $a=0$, or the same quantity minus $\alpha=2^{4+e}z^\prime$
if $a=255$. This calculation must be done exactly, in order to guarantee
portability of \TeX\ between computers.
*/
#define store_scaled(zz) { \
fget; \
a = fbyte; \
fget; \
b = fbyte; \
fget; \
c = fbyte; \
fget; \
d = fbyte; \
sw = (((((d*z)>>8)+(c*z))>>8)+(b*z)) / beta; \
if (a == 0) { \
zz = sw; \
} else if (a == 255) { \
zz = sw-alpha; \
} else { \
tfm_abort; \
} \
}
scaled store_scaled_f(scaled sq, scaled z_in)
{
eight_bits a, b, c, d;
scaled sw;
/*tex Here beta: runs from 1 upto 16 */
static int alpha, beta;
static scaled z, z_prev = 0;
/*tex Replace |z| by $|z|^\prime$ and compute $\alpha,\beta$ */
if (z_in != z_prev || z_prev == 0) {
z = z_prev = z_in;
alpha = 16;
while (z >= 0x800000) {
z /= 2;
alpha += alpha;
}
beta = 256 / alpha;
alpha *= z;
};
if (sq >= 0) {
d = (eight_bits) (sq % 256);
sq = sq / 256;
c = (eight_bits) (sq % 256);
sq = sq / 256;
b = (eight_bits) (sq % 256);
sq = sq / 256;
a = (eight_bits) (sq % 256);
} else {
sq = (sq + 1073741824) + 1073741824;
d = (eight_bits) (sq % 256);
sq = sq / 256;
c = (eight_bits) (sq % 256);
sq = sq / 256;
b = (eight_bits) (sq % 256);
sq = sq / 256;
a = (eight_bits) ((sq + 128) % 256);
}
if (beta==0)
normal_error("vf", "vf scaling");
sw = (((((d * z) >> 8) + (c * z)) >> 8) + (b * z)) / beta;
if (a == 0)
return sw;
else if (a == 255)
return (sw - alpha);
else
normal_error("vf", "vf scaling");
return sw;
}
#define check_existence(z) { \
check_byte_range(z); \
if (!char_exists(f,z)) { \
tfm_abort; \
} \
}
typedef struct tfmcharacterinfo {
int _kern_index;
int _lig_index;
int _width_index;
int _height_index;
int _depth_index;
int _italic_index;
int _remainder;
unsigned char _tag;
} tfmcharacterinfo;
int read_tfm_info(internal_font_number f, const char *cnom, scaled s)
{
/*tex index into |font_info| */
int k;
/*tex sizes of subfiles */
halfword lf, lh, bc, ec, nw, nh, nd, ni, nl, nk, ne, np, slh;
scaled *widths, *heights, *depths, *italics, *kerns;
halfword font_dir;
/*tex byte variables */
int a, b, c=0, d=0;
/*tex counter */
int i;
int font_level, header_length;
int ncw, nlw, neew;
tfmcharacterinfo ci;
charinfo *co;
four_quarters qw;
four_quarters *lig_kerns, *extens;
/*tex accumulators */
scaled sw;
/*tex left boundary start location, or infinity */
int bch_label;
/*tex 0..too_big_char; right boundary character, or |too_big_char| */
int bchar;
int first_two;
/*tex the design size or the ``at'' size */
scaled z;
int alpha;
/*tex 1..16 */
char beta;
/*tex aux. for ligkern processing */
int *xligs, *xkerns;
liginfo *cligs;
kerninfo *ckerns;
int fligs, fkerns;
char *tmpnam;
/*tex index into |tfm_buffer| */
int tfm_byte = 0;
/*tex saved index into |tfm_buffer| */
int saved_tfm_byte = 0;
/*tex byte buffer for tfm files */
unsigned char *tfm_buffer = NULL;
/*tex total size of the tfm file */
int tfm_size = 0;
int tmp;
widths = NULL;
heights = NULL;
depths = NULL;
italics = NULL;
kerns = NULL;
lig_kerns = NULL;
extens = NULL;
xkerns = NULL;
ckerns = NULL;
xligs = NULL;
cligs = NULL;
font_dir = 0;
memset(&ci, 0, sizeof(tfmcharacterinfo));
if (open_tfm_file(cnom, &tfm_buffer, &tfm_size) != 1)
tfm_abort;
/*tex When |cnom| is an absolute filename |xbasename| fixes that. */
tmpnam = strdup(xbasename(cnom));
if (strcmp(tmpnam + strlen(tmpnam) - 4, ".tfm") == 0 || strcmp(tmpnam + strlen(tmpnam) - 4, ".ofm") == 0) {
*(tmpnam + strlen(tmpnam) - 4) = 0;
}
set_font_name(f, tmpnam);
set_font_area(f, NULL);
/*tex Read the \TFM\ size fields. */
ncw = 0;
read_sixteen(first_two);
if (first_two != 0) {
font_level = -1;
lf = first_two;
fget;
read_sixteen(lh);
fget;
read_sixteen(bc);
fget;
read_sixteen(ec);
if ((bc > ec + 1) || (ec > 255))
tfm_abort;
if (bc > 255) {
/*tex |bc=256| and |ec=255| */
bc = 1;
ec = 0;
};
fget;
read_sixteen(nw);
fget;
read_sixteen(nh);
fget;
read_sixteen(nd);
fget;
read_sixteen(ni);
fget;
read_sixteen(nl);
fget;
read_sixteen(nk);
fget;
read_sixteen(ne);
fget;
read_sixteen(np);
header_length = 6;
ncw = (ec - bc + 1);
nlw = nl;
neew = ne;
} else {
fget;
read_sixteen(font_level);
if (font_level != 0)
tfm_abort;
read_thirtytwo(lf);
read_thirtytwo(lh);
read_thirtytwo(bc);
read_thirtytwo(ec);
if ((bc > ec + 1) || (ec > 65535))
tfm_abort;
if (bc > 65535) {
/*tex |bc=65536| and |ec=65535| */
bc = 1;
ec = 0;
};
read_thirtytwo(nw);
read_thirtytwo(nh);
read_thirtytwo(nd);
read_thirtytwo(ni);
read_thirtytwo(nl);
read_thirtytwo(nk);
read_thirtytwo(ne);
read_thirtytwo(np);
/*tex Some junk: */
read_thirtytwo(font_dir);
nlw = 2 * nl;
neew = 2 * ne;
header_length = 14;
ncw = 2 * (ec - bc + 1);
};
if (lf !=
(header_length + lh + ncw + nw + nh + nd + ni + nlw + nk + neew + np))
tfm_abort;
if ((nw == 0) || (nh == 0) || (nd == 0) || (ni == 0))
tfm_abort;
/*tex
We check to see that the \TFM\ file doesn't end prematurely; but no
error message is given for files having more than |lf| words.
*/
if (lf * 4 > tfm_size)
tfm_abort;
/*tex Use size fields to allocate font information. */
set_font_natural_dir(f, font_dir);
set_font_bc(f, bc);
set_font_ec(f, ec);
/*tex Read the arrays first. */
widths = xmalloc((unsigned) ((unsigned) nw * sizeof(scaled)));
heights = xmalloc((unsigned) ((unsigned) nh * sizeof(scaled)));
depths = xmalloc((unsigned) ((unsigned) nd * sizeof(scaled)));
italics = xmalloc((unsigned) ((unsigned) ni * sizeof(scaled)));
extens = xmalloc((unsigned) ((unsigned) ne * sizeof(four_quarters)));
lig_kerns = xmalloc((unsigned) ((unsigned) nl * sizeof(four_quarters)));
kerns = xmalloc((unsigned) ((unsigned) nk * sizeof(scaled)));
/*
Read the \TFM\ header. Only the first two words of the header are needed
by \TeX82.
*/
slh = lh;
if (lh < 2)
tfm_abort;
store_four_bytes(tmp);
font_checksum(f) = (unsigned) tmp;
fget;
/*tex This rejects a negative design size. */
read_sixteen(z);
fget;
z = z * 256 + fbyte;
fget;
z = (z * 16) + (fbyte >> 4);
if (z < unity)
tfm_abort;
while (lh > 2) {
fget;
fget;
fget;
fget;
/*tex Ignore the rest of the header. */
lh--;
};
/*tex Read the arrays before the character info. */
set_font_dsize(f, z);
if (s != -1000) {
z = (s >= 0 ? s : xn_over_d(z, -s, 1000));
}
set_font_size(f, z);
if (np > 7) {
set_font_params(f, np);
}
saved_tfm_byte = tfm_byte;
tfm_byte = (header_length + slh + ncw) * 4 - 1;
/*tex Replace |z| by $|z|^\prime$ and compute $\alpha,\beta$ */
alpha = 16;
while (z >= 040000000) {
z = z >> 1;
alpha = alpha + alpha;
};
beta = (char) (256 / alpha);
/*tex |beta| cannot be zero. */
if (beta==0)
normal_error("vf", "vf reading");
alpha = alpha * z;
/*tex Read box dimensions. */
for (k = 0; k < nw; k++) {
store_scaled(sw);
widths[k] = sw;
}
/*tex |width[0]| must be zero */
if (widths[0] != 0)
tfm_abort;
for (k = 0; k < nh; k++) {
store_scaled(sw);
heights[k] = sw;
}
/*tex |height[0]| must be zero */
if (heights[0] != 0)
tfm_abort;
for (k = 0; k < nd; k++) {
store_scaled(sw);
depths[k] = sw;
}
/*tex |depth[0]| must be zero */
if (depths[0] != 0)
tfm_abort;
for (k = 0; k < ni; k++) {
store_scaled(sw);
italics[k] = sw;
}
/*tex |italic[0]| must be zero */
if (italics[0] != 0)
tfm_abort;
/*tex Read ligature and kern programs */
bch_label = nl;
bchar = 65536;
if (nl > 0) {
for (k = 0; k < nl; k++) {
read_four_quarters(qw);
lig_kerns[k] = qw;
if (a > 128) {
if (256 * c + d >= nl)
tfm_abort;
if (a == 255 && k == 0)
bchar = b;
} else {
if (c < 128) {
/*tex Do nothing. */
} else if (256 * (c - 128) + d >= nk) {
/*tex Check kern. */
tfm_abort;
}
if ((a < 128) && (k - 0 + a + 1 >= nl))
tfm_abort;
};
};
if (a == 255)
bch_label = 256 * c + d;
};
/*tex The actual kerns */
for (k = 0; k < nk; k++) {
store_scaled(sw);
kerns[k] = sw;
}
/*tex Read extensible character recipes */
for (k = 0; k < ne; k++) {
read_four_quarters(qw);
extens[k] = qw;
}
/*tex Read font parameters. */
if (np > 7) {
set_font_params(f, np);
}
for (k = 1; k <= np; k++) {
if (k == 1) {
/*tex The |slant| parameter is a pure number. */
fget;
sw = fbyte;
if (sw > 127)
sw = sw - 256;
fget;
sw = sw * 256 + fbyte;
fget;
sw = sw * 256 + fbyte;
fget;
sw = (sw * 16) + (fbyte >> 4);
set_font_param(f, k, sw);
} else {
store_scaled(font_param(f, k));
}
}
tfm_byte = saved_tfm_byte;
/*tex Fix up the left boundary character. */
fligs = 0;
fkerns = 0;
if (bch_label != nl) {
k = bch_label;
while (1) {
if (skip_byte(k) <= stop_flag) {
if (op_byte(k) >= kern_flag) {
fkerns++;
} else {
fligs++;
}
}
if (skip_byte(k) == 0) {
k++;
} else {
if (skip_byte(k) >= stop_flag)
break;
k += skip_byte(k) + 1;
}
}
}
if (fkerns > 0 || fligs > 0) {
if (fligs > 0)
cligs = xcalloc((unsigned) (fligs + 1), sizeof(liginfo));
if (fkerns > 0)
ckerns = xcalloc((unsigned) (fkerns + 1), sizeof(kerninfo));
fligs = 0;
fkerns = 0;
k = bch_label;
while (1) {
if (skip_byte(k) <= stop_flag) {
if (op_byte(k) >= kern_flag) {
set_kern_item(ckerns[fkerns], next_char(k), kerns[256 * (op_byte(k) - 128) + rem_byte(k)]);
fkerns++;
} else {
set_ligature_item(cligs[fligs], (char) (op_byte(k) * 2 + 1), next_char(k), rem_byte(k));
fligs++;
}
}
if (skip_byte(k) == 0) {
k++;
} else {
if (skip_byte(k) >= stop_flag)
break;
k += skip_byte(k) + 1;
}
}
if (fkerns > 0 || fligs > 0) {
co = get_charinfo(f, left_boundarychar);
if (fkerns > 0) {
set_kern_item(ckerns[fkerns], end_kern, 0);
fkerns++;
set_charinfo_kerns(co, ckerns);
}
if (fligs > 0) {
set_ligature_item(cligs[fligs], 0, end_ligature, 0);
fligs++;
set_charinfo_ligatures(co, cligs);
}
set_charinfo_remainder(co, 0);
}
}
/*tex Read character data. */
for (k = bc; k <= ec; k++) {
store_char_info(k);
if (ci._width_index == 0)
continue;
if (ci._width_index >= nw || ci._height_index >= nh ||
ci._depth_index >= nd || ci._italic_index >= ni)
tfm_abort;
d = ci._remainder;
switch (ci._tag) {
case lig_tag:
if (d >= nl)
tfm_abort;
break;
case ext_tag:
if (d >= ne)
tfm_abort;
break;
case list_tag:
/*tex
We want to make sure that there is no cycle of characters linked
together by |list_tag| entries, since such a cycle would get
\TEX\ into an endless loop. If such a cycle exists, the routine
here detects it when processing the largest character code in the
cycle.
*/
check_byte_range(d);
while (d < k) {
/* |current_character == k| */
if (char_tag(f, d) != list_tag) {
/*tex Not a cycle. */
goto NOT_FOUND;
}
/*tex Goto the next character on the list. */
d = char_remainder(f, d);
};
if (d == k) {
/*tex Yes, there's a cycle! */
tfm_abort;
}
NOT_FOUND:
break;
}
/*tex Put it in the actual font. */
co = get_charinfo(f, k);
set_charinfo_index(co, k);
set_charinfo_tag(co, ci._tag);
if (ci._tag == ext_tag) {
/*tex top, bot, mid, rep */
set_charinfo_extensible(co,
extens[ci._remainder].b0,
extens[ci._remainder].b2,
extens[ci._remainder].b1,
extens[ci._remainder].b3);
set_charinfo_remainder(co, 0);
} else {
set_charinfo_remainder(co, ci._remainder);
}
set_charinfo_width(co, widths[ci._width_index]);
set_charinfo_height(co, heights[ci._height_index]);
set_charinfo_depth(co, depths[ci._depth_index]);
set_charinfo_italic(co, italics[ci._italic_index]);
};
/*tex We now know the number of ligatures and kerns. */
xligs = xcalloc((unsigned) (ec + 1), sizeof(int));
xkerns = xcalloc((unsigned) (ec + 1), sizeof(int));
for (i = bc; i <= ec; i++) {
if (char_tag(f, i) == lig_tag) {
k = lig_kern_start(f, i);
if (skip_byte(k) > stop_flag)
k = lig_kern_restart(k);
/*tex Now k is the start index. */
while (1) {
if (skip_byte(k) <= stop_flag) {
if (op_byte(k) >= kern_flag) {
xkerns[i]++;
if (next_char(k) == bchar)
xkerns[i]++;
} else {
xligs[i]++;
if (next_char(k) == bchar)
xligs[i]++;
}
}
if (skip_byte(k) == 0) {
k++;
} else {
if (skip_byte(k) >= stop_flag)
break;
k += skip_byte(k) + 1;
}
}
}
}
cligs = NULL;
ckerns = NULL;
for (i = bc; i <= ec; i++) {
fligs = 0;
fkerns = 0;
if (char_tag(f, i) == lig_tag) {
k = lig_kern_start(f, i);
if (skip_byte(k) > stop_flag)
k = lig_kern_restart(k);
/*tex Now k is the start index. */
if (xligs[i] > 0)
cligs = xcalloc((unsigned) (xligs[i] + 1), sizeof(liginfo));
if (xkerns[i] > 0)
ckerns = xcalloc((unsigned) (xkerns[i] + 1), sizeof(kerninfo));
while (1) {
if (skip_byte(k) <= stop_flag) {
if (op_byte(k) >= kern_flag) {
if (next_char(k) == bchar) {
set_kern_item(ckerns[fkerns], right_boundarychar, kerns[256 * (op_byte(k) - 128) + rem_byte(k)]);
fkerns++;
}
set_kern_item(ckerns[fkerns], next_char(k), kerns[256 * (op_byte(k) - 128) + rem_byte(k)]);
fkerns++;
} else { /* lig */
if (next_char(k) == bchar) {
set_ligature_item(cligs[fligs], (char) (op_byte(k) * 2 + 1), right_boundarychar, rem_byte(k));
fligs++;
}
set_ligature_item(cligs[fligs], (char) (op_byte(k) * 2 + 1), next_char(k), rem_byte(k));
fligs++;
}
}
if (skip_byte(k) == 0) {
k++;
} else {
if (skip_byte(k) >= stop_flag)
break;
k += skip_byte(k) + 1;
}
}
if (fkerns > 0 || fligs > 0) {
co = get_charinfo(f, i);
if (fkerns > 0) {
set_kern_item(ckerns[fkerns], end_kern, 0);
fkerns++;
set_charinfo_kerns(co, ckerns);
}
if (fligs > 0) {
set_ligature_item(cligs[fligs], 0, end_ligature, 0);
fligs++;
set_charinfo_ligatures(co, cligs);
}
set_charinfo_remainder(co, 0);
}
}
}
/*tex
Now it's time to wrap it up, we have checked all the necessary things
about the \TFM\file, and all we need to do is put the finishing
touches on the data for the new font.
*/
if (bchar != 65536) {
co = copy_charinfo(char_info(f, bchar));
set_right_boundary(f, co);
}
tfm_success;
}
|