summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/hitexdir/hitex.w
blob: cad0605c82fbf24f4e2c7eef271a9757ced1ea18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
% This file is part of HINT
% Copyright 2017-2021 Martin Ruckert, Hochschule Muenchen, Lothstrasse 64, 80336 Muenchen
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
% copies of the Software, and to permit persons to whom the Software is
% furnished to do so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be
% included in all copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
% WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
% OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
% THE SOFTWARE.
%
% Except as contained in this notice, the name of the copyright holders shall
% not be used in advertising or otherwise to promote the sale, use or other
% dealings in this Software without prior written authorization from the
% copyright holders.

% The HINT program is derived from Donald E. Knuth's TeX and the
% subsequent e-TeX extension of TeX.

% Prote is copyright (C) 2021 by Thierry Laronde and put under
% the MIT/X11 license.
%
% As TeX and e-TeX are reserved names for the unchanged (except for the
% necessary implementation of system dependencies) instances of, resp.,
% Donald E. Knuth's program and the NTS team's e-TeX implementation, the
% name Prote is reserved for this kerTeX implementation.
%
% Hence, this is neither TeX (even if it is compatible at start) nor
% e-TeX (even if is compatible when entering the first set of
% extensions).

% Version 0 was released in September 1982 after it passed a variety of tests.
% Version 1 was released in November 1983 after thorough testing.
% Version 1.1 fixed ``disappearing font identifiers'' et alia (July 1984).
% Version 1.2 allowed `0' in response to an error, et alia (October 1984).
% Version 1.3 made memory allocation more flexible and local (November 1984).
% Version 1.4 fixed accents right after line breaks, et alia (April 1985).
% Version 1.5 fixed \the\toks after other expansion in \edefs (August 1985).
% Version 2.0 (almost identical to 1.5) corresponds to "Volume B" (April 1986).
% Version 2.1 corrected anomalies in discretionary breaks (January 1987).
% Version 2.2 corrected "(Please type...)" with null \endlinechar (April 1987).
% Version 2.3 avoided incomplete page in premature termination (August 1987).
% Version 2.4 fixed \noaligned rules in indented displays (August 1987).
% Version 2.5 saved cur_order when expanding tokens (September 1987).
% Version 2.6 added 10sp slop when shipping leaders (November 1987).
% Version 2.7 improved rounding of negative-width characters (November 1987).
% Version 2.8 fixed weird bug if no \patterns are used (December 1987).
% Version 2.9 made \csname\endcsname's "relax" local (December 1987).
% Version 2.91 fixed \outer\def\a0{}\a\a bug (April 1988).
% Version 2.92 fixed \patterns, also file names with complex macros (May 1988).
% Version 2.93 fixed negative halving in allocator when mem_min<0 (June 1988).
% Version 2.94 kept open_log_file from calling fatal_error (November 1988).
% Version 2.95 solved that problem a better way (December 1988).
% Version 2.96 corrected bug in "Infinite shrinkage" recovery (January 1989).
% Version 2.97 corrected blunder in creating 2.95 (February 1989).
% Version 2.98 omitted save_for_after at outer level (March 1989).
% Version 2.99 caught $$\begingroup\halign..$$ (June 1989).
% Version 2.991 caught .5\ifdim.6... (June 1989).
% Version 2.992 introduced major changes for 8-bit extensions (September 1989).
% Version 2.993 fixed a save_stack synchronization bug et alia (December 1989).
% Version 3.0 fixed unusual displays; was more \output robust (March 1990).
% Version 3.1 fixed nullfont, disabled \write{\the\prevgraf} (September 1990).
% Version 3.14 fixed unprintable font names and corrected typos (March 1991).
% Version 3.141 more of same; reconstituted ligatures better (March 1992).
% Version 3.1415 preserved nonexplicit kerns, tidied up (February 1993).
% Version 3.14159 allowed fontmemsize to change; bulletproofing (March 1995).
% Version 3.141592 fixed \xleaders, glueset, weird alignments (December 2002).
% Version 3.1415926 was a general cleanup with minor fixes (February 2008).
% Version 3.14159265 was similar (January 2014).
% Version 3.141592653 was similar but more extensive (January 2021).

% A reward of $327.68 will be paid to the first finder of any remaining bug.

% This is the 1.1 version of Prote, developed during August 2021,
% and corrected during september/october 2021 and amended in august 2023
% for file primitives behavior matching input behavior.
%
% 1.0: adds primitives needed by LaTeX as listed in ltnews31.
%    - 2022-07-21: tiddying formal fix: a spurious line was a left over
%      of a removed paragraph (pointed by Martin Ruckert). Suppressed.
%
% 1.1: 2023-08-01: the new file primitives are used in LaTeX expecting
%    the input behavior that ".tex" be appended if no extension. So
%    modified to provide this.
%
%  History towards 1.0 release:
%    0.99.4:
%      - typos and style corrections provided by Martin Ruckert for
%      clean translation in Pascal (forward declarations and underscores
%      omitted);
%      - adjustements against e-TeX 2.6 instead of 2.1 (T. Laronde).
%    0.99.7:
%      - \expanded was using an e-TeX procedure not doing def handling
%        => using scan_toks() now. Reported by Martin Ruckert and
%        test code narrowed down by Phelype Oleinik.
%    0.99.8:
%      - \expanded again: scan_toks() sets def_ref. But back_list()
%        has to take not the refernce count, but the first token.
%        Passing def_ref, a next invocation of scan_toks() was inserting
%        a missing left brace and then reading pass the end of the token
%        list to find a matching right one. def_ref => link(def_ref).
%        Test code narrowed down by Phelype Oleinik (a great help!).
%      - The API for file related primitives has been changed: no error
%        is reported on failure to find/open and nothing is returned
%        (matches current other implementations).
%    0.99.9:
%      - Fix typos in Pascal replacement text; xchg_buffer_length=0 =>
%        xchg_buffer_length:=0 (caught by Martin Ruckert).
%    0.99.10:
%      - KerTeX Public License -> X11/MIT license.
%    1.0:
%      - Just naming the official release. No change.
%
% This work was done by Thierry Laronde and is under the MIT/X11
% license.
%
%

% Here is TeX material that gets inserted after \input webmac
\def\hang{\hangindent 3em\noindent\ignorespaces}
\def\hangg#1 {\hang\hbox{#1 }}
\def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
\font\ninerm=cmr9
\let\mc=\ninerm % medium caps for names like SAIL
\def\Prote{{\tenrm P\kern-0.1em R\kern-0.15em\raise.11ex\hbox{o}%
  \kern-0.22em T\kern-0.05em E}}
\ifpdftex
\sanitizecommand{\eTeX}{eTeX}
\sanitizecommand{\Prote}{PRoTE}
\fi
\font\tenlogo=logo10
\def\MP{{\tenlogo META}\-{\tenlogo POST}}
\def\eTeX{$\varepsilon$-\TeX}
\font\sf=cmss10 % used for the HINT name
\def\HINT{\leavevmode\hbox{\sf HINT\spacefactor1000}}
\ifpdftex\sanitizecommand{\HINT}{HINT}\fi
\font\revrm=xbmc10 % for right-to-left text
% to generate xbmc10 (i.e., reflected cmbx10) use a file
% xbmc10.mf containing:
%+++++++++++++++++++++++++++++++++++++++++++++++++
%     if unknown cmbase: input cmbase fi
%     extra_endchar := extra_endchar &
%       "currentpicture:=currentpicture " &
%       "reflectedabout((.5[l,r],0),(.5[l,r],1));";
%     input cmbx10
%+++++++++++++++++++++++++++++++++++++++++++++++++
\ifx\beginL\undefined % this is TeX
  \def\XeT{X\kern-.125em\lower.5ex\hbox{E}\kern-.1667emT}
  \def\TeXeT{\TeX-\hbox{\revrm \XeT}}   % for TeX-XeT
  \def\TeXXeT{\TeX-\hbox{\revrm -\XeT}} % for TeX--XeT
\else
  \ifx\eTeXversion\undefined % this is \TeXeT
    \def\TeXeT{\TeX-{\revrm\beginR\TeX\endR}}   % for TeX-XeT
    \def\TeXXeT{\TeX-{\revrm\beginR\TeX-\endR}} % for TeX--XeT
  \else % this is \eTeX
    \def\TeXeT{\TeX-{\TeXXeTstate=1\revrm\beginR\TeX\endR}}   % for TeX-XeT
    \def\TeXXeT{\TeX-{\TeXXeTstate=1\revrm\beginR\TeX-\endR}} % for TeX--XeT
  \fi
\fi
\def\PASCAL{Pascal}
\def\ph{\hbox{Pascal-H}}
\def\pct!{{\char`\%}} % percent sign in ordinary text
\def\grp{\.{\char'173...\char'175}}
\font\logo=logo10 % font used for the METAFONT logo
\def\MF{{\logo META}\-{\logo FONT}}
\def\<#1>{$\langle#1\rangle$}
\def\section{\mathhexbox278}

\def\(#1){} % this is used to make section names sort themselves better
\def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>

\let\@@=\relax % we want to be able to \write a \?

\def\title{Hi\TeX}
\def\LaTeX{L\kern-.36em\raise.3ex\hbox{\sc A}\kern-.15em\TeX}%
% system dependent redefinitions of \title should come later
% and should use:
%    \toks0=\expandafter{\title}
%    \edef\title{...\the\toks0...}
%\let\maybe=\iffalse % print only changed modules
\def\topofcontents{\hsize 5.5in
  \vglue 0pt plus 1fil minus 1.5in
  \def\@@##1]{\hbox to 1in{\hfil##1.\ }}
  }
\def\botofcontents{\vskip 0pt plus 1fil minus 1.5in}
\pageno=3
\def\glob{13} % this should be the section number of "<Global...>"
\def\gglob{20, 26} % this should be the next two sections of "<Global...>"

\def\.#1{\leavevmode\hbox{\tentex % typewriter type for strings
  \let\\=\BS % backslash in a string
  \let\'=\RQ % right quote in a string
  \let\`=\LQ % left quote in a string
  \let\{=\LB % left brace in a string
  \let\}=\RB % right brace in a string
  \let\~=\TL % tilde in a string
  \let\ =\SP % space in a string
  \let\_=\UL % underline in a string
  \let\&=\AM % ampersand in a string
  #1\kern.05em}}
\def\&#1{\leavevmode\hbox{\bf\def\_{\UL}%
  #1\/\kern.05em}} % boldface type for reserved words
\def\\#1{\leavevmode\hbox{\it\def\_{\UL}%
  #1\/\kern.05em}} % italic type for identifiers
\def\vb#1{{\rm #1}}
\def\^{\ifmmode\mathchar"222 \else\char`^ \fi} % pointer or hat
\def\LQ{{\tt\char'22}} % left quote in a string
\def\RQ{{\tt\char'23}} % right quote in a string
\def\UL{{\tt\char`\_}} % underline character in a C identifier
\def\dotdot{\mathrel{.\,.}} % double dot, used only in math mode
\setbox\MGbox=\hbox{\kern1pt$\rightarrow$\kern1pt} % C pointer to field
\def\MG{\copy\MGbox}
@s dotdot TeX
@s alpha_file int
@s byte_file int
@s word_file int
@s uint8_t int
@s int16_t int
@s uint16_t int
@s int32_t int
@s uint32_t int
@s halfword int
@s nonnegative_integer int
@s small_number int
@s glue_ratio double
@s Xdimen int
@s Kern int
@s Font int
@s Glue int
@s Disc int
@s Lig int
@s Rule int
@s List int
@s Kind int
@s Info int
@s kpse_file_format_type int
@s Stretch int
@s in TeX
@s line normal
@s to   do

@* Introduction.
This is Hi\TeX, a program derived from \TeX, extending its capabilities
using \eTeX and \Prote, and adding functions common to other engines from
the \TeX\ Live distribution. Hi\TeX\ writes output files in
the \HINT\ file format. Like \TeX, it is
a document compiler intended to produce typesetting of high
quality.
The \PASCAL\ program that follows is the definition of \TeX82, a standard
@:PASCAL}{\PASCAL@>
@!@:TeX82}{\TeX82@>
version of \TeX\ that is designed to be highly portable so that identical output
will be obtainable on a great variety of computers.

The main purpose of the following program is to explain the algorithms of \TeX\
as clearly as possible. As a result, the program will not necessarily be very
efficient when a particular \PASCAL\ compiler has translated it into a
particular machine language. However, the program has been written so that it
can be tuned to run efficiently in a wide variety of operating environments
by making comparatively few changes. Such flexibility is possible because
the documentation that follows is written in the \.{WEB} language, which is
at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
to \PASCAL\ is able to introduce most of the necessary refinements.
Semi-automatic translation to other languages is also feasible, because the
program below does not make extensive use of features that are peculiar to
\PASCAL.

A large piece of software like \TeX\ has inherent complexity that cannot
be reduced below a certain level of difficulty, although each individual
part is fairly simple by itself. The \.{WEB} language is intended to make
the algorithms as readable as possible, by reflecting the way the
individual program pieces fit together and by providing the
cross-references that connect different parts. Detailed comments about
what is going on, and about why things were done in certain ways, have
been liberally sprinkled throughout the program.  These comments explain
features of the implementation, but they rarely attempt to explain the
\TeX\ language itself, since the reader is supposed to be familiar with
{\sl The \TeX book}.
@.WEB@>
@:TeXbook}{\sl The \TeX book@>

@ The present implementation has a long ancestry, beginning in the summer
of~1977, when Michael~F. Plass and Frank~M. Liang designed and coded
a prototype
@^Plass, Michael Frederick@>
@^Liang, Franklin Mark@>
@^Knuth, Donald Ervin@>
based on some specifications that the author (in the following, unless
specified, ``the author'' refers to D.E.~Knuth) had made in May of that year.
This original proto\TeX\ included macro definitions and elementary
manipulations on boxes and glue, but it did not have line-breaking,
page-breaking, mathematical formulas, alignment routines, error recovery,
or the present semantic nest; furthermore,
it used character lists instead of token lists, so that a control sequence
like \.{\\halign} was represented by a list of seven characters. A
complete version of \TeX\ was designed and coded by the author in late
1977 and early 1978; that program, like its prototype, was written in the
{\mc SAIL} language, for which an excellent debugging system was
available. Preliminary plans to convert the {\mc SAIL} code into a form
somewhat like the present ``web'' were developed by Luis Trabb~Pardo and
@^Trabb Pardo, Luis Isidoro@>
the author at the beginning of 1979, and a complete implementation was
created by Ignacio~A. Zabala in 1979 and 1980. The \TeX82 program, which
@^Zabala Salelles, Ignacio Andr\'es@>
was written by the author during the latter part of 1981 and the early
part of 1982, also incorporates ideas from the 1979 implementation of
@^Guibas, Leonidas Ioannis@>
@^Sedgewick, Robert@>
@^Wyatt, Douglas Kirk@>
\TeX\ in {\mc MESA} that was written by Leonidas Guibas, Robert Sedgewick,
and Douglas Wyatt at the Xerox Palo Alto Research Center.  Several hundred
refinements were introduced into \TeX82 based on the experiences gained with
the original implementations, so that essentially every part of the system
has been substantially improved. After the appearance of ``Version 0'' in
September 1982, this program benefited greatly from the comments of
many other people, notably David~R. Fuchs and Howard~W. Trickey.
A final revision in September 1989 extended the input character set to
eight-bit codes and introduced the ability to hyphenate words from
different languages, based on some ideas of Michael~J. Ferguson.
@^Fuchs, David Raymond@>
@^Trickey, Howard Wellington@>
@^Ferguson, Michael John@>

No doubt there still is plenty of room for improvement, but the author
is firmly committed to keeping \TeX82 ``frozen'' from now on; stability
and reliability are to be its main virtues.

On the other hand, the \.{WEB} description can be extended without changing
the core of \TeX82 itself, and the program has been designed so that such
extensions are not extremely difficult to make.
The |banner| string defined here should be changed whenever \TeX\
undergoes any modifications, so that it will be clear which version of
\TeX\ might be the guilty party when a problem arises.
@^extensions to \TeX@>
@^system dependencies@>

This program contains code for various features extending \TeX,
therefore this program is called `\Prote' and not
`\TeX'; the official name `\TeX' by itself is reserved
for software systems that are fully compatible with each other.
A special test suite called the ``\.{TRIP} test'' is available for
helping to determine whether a particular implementation deserves to be
known as `\TeX' [cf.~Stanford Computer Science report CS1027,
November 1984].

A similar test suite called the ``\.{SELLETTE} test'' is available for
helping to determine whether a particular implementation deserves to be
known as `\Prote'.

@d eTeX_version 2 /* \.{\\eTeXversion} */
@d eTeX_revision ".6" /* \.{\\eTeXrevision} */
@d eTeX_version_string "-2.6" /*current \eTeX\ version*/
@#
@d TeX_banner "This is TeX, Version 3.141592653" /*printed when \TeX\ starts*/
@#
@#
@d TEX ETEX /*change program name into |ETEX|*/
@#
@d eTeX_states 1 /*number of \eTeX\ state variables in |eqtb|*/
@#
@d Prote_version_string "3.141592653-2.6-1.1.0" /*current \Prote\ version*/
@d Prote_version 1 /* \.{\\Proteversion} */
@d Prote_revision ".1.0" /* \.{\\Proterevision} */
@#
@d Prote_banner "This is Prote, Version " Prote_version_string
   /*printed when \Prote\ starts*/
@#
@d banner "This is HiTeX, Version 3.141592653"
          eTeX_version_string"-"HINT_VERSION_STRING" "TL_VERSION
          /*printed when \TeX\ starts*/

@ Different \PASCAL s have slightly different conventions, and the present
@!@:PASCAL H}{\ph@>
program expresses \TeX\ in terms of the \PASCAL\ that was
available to the author in 1982. Constructions that apply to
this particular compiler, which we shall call \ph, should help the
reader see how to make an appropriate interface for other systems
if necessary. (\ph\ is Charles Hedrick's modification of a compiler
@^Hedrick, Charles Locke@>
for the DECsystem-10 that was originally developed at the University of
Hamburg; cf.\ {\sl Software---Practice and Experience \bf6} (1976),
29--42. The \TeX\ program below is intended to be adaptable, without
extensive changes, to most other versions of \PASCAL, so it does not fully
use the admirable features of \ph. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard
\PASCAL\ itself, so that most of the code can be translated mechanically
into other high-level languages. For example, the `\&{with}' and `\\{new}'
features are not used, nor are pointer types, set types, or enumerated
scalar types; there are no `\&{var}' parameters, except in the case of files
--- \eTeX, however, does use `\&{var}' parameters for the |reverse| function;
there are no tag fields on variant records; there are no assignments
|double=int|; no procedures are declared local to other procedures.)

The portions of this program that involve system-dependent code, where
changes might be necessary because of differences between \PASCAL\ compilers
and/or differences between
operating systems, can be identified by looking at the sections whose
numbers are listed under `system dependencies' in the index. Furthermore,
the index entries for `dirty \PASCAL' list all places where the restrictions
of \PASCAL\ have not been followed perfectly, for one reason or another.
@!@^system dependencies@>
@!@^dirty \PASCAL@>

Incidentally, \PASCAL's standard |round| function can be problematical,
because it disagrees with the IEEE floating-point standard.
Many implementors have
therefore chosen to substitute their own home-grown rounding procedure.

@ The following is an outline of the program, whose
components will be filled in later, using the conventions of \.{cweb}.
@.WEB@>
For example, the portion of the program called `\X\glob:Global
variables\X' below will be replaced by a sequence of variable declarations
that starts in $\section\glob$ of this documentation. In this way, we are able
to define each individual global variable when we are prepared to
understand what it means; we do not have to define all of the globals at
once.  Cross references in $\section\glob$, where it says ``See also
sections \gglob, \dots,'' also make it possible to look at the set of
all global variables, if desired.  Similar remarks apply to the other
portions of the program.

The program starts with inserting header files and occassionaly a function
must be placed before declaring \TeX's macros, because the function
uses identifiers that \TeX will declare as macros.

@p @<Header files and function declarations@>@;
@h
enum {@+@<Constants in the outer block@>@+};
@<Types in the outer block@>@;
@<Forward declarations@>@;
@<Global variables@>@;
@#
static void initialize(void) /*this procedure gets things started properly*/
  {@+@<Local variables for initialization@>@;
  @<Initialize whatever \TeX\ might access@>;
  } @#
@<Basic printing procedures@>@;
@<Error handling procedures@>@;

@ The overall \TeX\ program begins with the heading just shown, after which
comes a bunch of procedure declarations and function declarations.
Finally we will get to the main program, which begins with the
comment `|start_here|'. If you want to skip down to the
main program now, you can look up `|start_here|' in the index.
But the author suggests that the best way to understand this program
is to follow pretty much the order of \TeX's components as they appear in the
\.{WEB} description you are now reading, since the present ordering is
intended to combine the advantages of the ``bottom up'' and ``top down''
approaches to the problem of understanding a somewhat complicated system.

@ There is no need to declare labels in \CEE/.

@ Some of the code below is intended to be used only when diagnosing the
strange behavior that sometimes occurs when \TeX\ is being installed or
when system wizards are fooling around with \TeX\ without quite knowing
what they are doing. Such code will not normally be compiled; it is
delimited by the codewords `$|@t\#\&{ifdef} \.{DEBUG}@>|\ldots|@t\#\&{endif}@>|$', with apologies
to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by
`$|@t\#\&{ifdef} \.{STAT}@>|\ldots|@t\#\&{endif}@>|$' that is intended for use when statistics are to be
kept about \TeX's memory usage.  The |@t\#\&{ifdef} \.{STAT}@>| $\ldots$ |@t\#\&{endif}@>| code also
implements diagnostic information for \.{\\tracingparagraphs},
\.{\\tracingpages}, and \.{\\tracingrestores}.
@^debugging@>

@ This program has two important variations: (1) There is a long and slow
version called \.{INITEX}, which does the extra calculations needed to
@.INITEX@>
initialize \TeX's internal tables; and (2)~there is a shorter and faster
production version, which cuts the initialization to a bare minimum.
Parts of the program that are needed in (1) but not in (2) are delimited by
the codewords `$|@t\#\&{ifdef} \.{INIT}@>|\ldots|@t\#\&{endif}@>|$'.

\TeX\ Live has established the common practice
to select the initialization code at runtime
using the |iniversion| variable.

@<Initialize whatever...@>=
@<Set initial values of key variables@>@/
#ifdef @!INIT
if (iniversion)  /* \TeX\ Live*/
  {@+@<Initialize table entries (done by \.{INITEX} only)@>@;@+}
#endif

@ The declaration of all basic type definitions needed by Hi\TeX\ are
contained in a system dependent header file.


@<Header files and function declarations@>=
#include "hibasetypes.h"
#include <string.h>
#include <math.h>

@ Further it is necessary to define some build in primitives of
\PASCAL\ that are otherwise not available in~\CEE/.
@:PASCAL H}{\ph@>

@d odd(X)       ((X)&1)
@d chr(X)       ((unsigned char)(X))
@d ord(X)       ((unsigned int)(X))
@d abs(X)       ((X)>-(X)?(X):-(X))
@d round(X)     ((int)((X)>=0.0?floor((X)+0.5):ceil((X)-0.5)))

@ The following parameters can be changed at compile time to extend or
reduce \TeX's capacity. They may have different values in \.{INITEX} and
in production versions of \TeX.
@.INITEX@>
@^system dependencies@>

@<Constants...@>=
@!mem_max=5000000, /*greatest index in \TeX's internal |mem| array;
  must be strictly less than |max_halfword|;
  must be equal to |mem_top| in \.{INITEX}, otherwise | >= mem_top|*/
@!mem_min=0, /*smallest index in \TeX's internal |mem| array;
  must be |min_halfword| or more;
  must be equal to |mem_bot| in \.{INITEX}, otherwise | <= mem_bot|*/
@!buf_size=2000000, /*maximum number of characters simultaneously present in
  current lines of open files and in control sequences between
  \.{\\csname} and \.{\\endcsname}; must not exceed |max_halfword|*/
@!error_line=79, /*width of context lines on terminal error messages*/
@!half_error_line=50, /*width of first lines of contexts in terminal
  error messages; should be between 30 and |error_line-15|*/
@!max_print_line=79, /*width of longest text lines output; should be at least 60*/
@!stack_size=5000, /*maximum number of simultaneous input sources*/
@!max_in_open=15, /*maximum number of input files and error insertions that
  can be going on simultaneously*/
@!font_max=255, /*maximum internal font number; must not exceed |max_quarterword|
  and must be at most |font_base+256|*/
@!font_mem_size=8000000, /*number of words of |font_info| for all fonts*/
@!param_size=10000, /*maximum number of simultaneous macro parameters*/
@!nest_size=500, /*maximum number of semantic levels simultaneously active*/
@!max_strings=500000, /*maximum number of strings; must not exceed |max_halfword|*/
@!string_vacancies=90000, /*the minimum number of characters that should be
  available for the user's control sequences and font names,
  after \TeX's own error messages are stored*/
@!pool_size=6250000, /*maximum number of characters in strings, including all
  error messages and help texts, and the names of all fonts and
  control sequences; must exceed |string_vacancies| by the total
  length of \TeX's own strings, which is currently about 23000*/
@!save_size=100000, /*space for saving values outside of current group; must be
  at most |max_halfword|*/
@!trie_size=1000000, /*space for hyphenation patterns; should be larger for
  \.{INITEX} than it is in production versions of \TeX*/
@!trie_op_size=35111, /*space for ``opcodes'' in the hyphenation patterns*/
@!dvi_buf_size=16384, /*size of the output buffer; must be a multiple of 8*/
@!file_name_size=1024, /*file names shouldn't be longer than this*/
@!xchg_buffer_size=64, /*must be at least 64*/
   /*size of |eight_bits| buffer for exchange with system routines*/
@!empty_string=256 /*the empty string follows after 256 characters*/

@ Like the preceding parameters, the following quantities can be changed
at compile time to extend or reduce \TeX's capacity. But if they are changed,
it is necessary to rerun the initialization program \.{INITEX}
@.INITEX@>
to generate new tables for the production \TeX\ program.
One can't simply make helter-skelter changes to the following constants,
since certain rather complex initialization
numbers are computed from them. They are defined here using
\.{WEB} macros, instead of being put into \PASCAL's |const| list, in order to
emphasize this distinction.

@d mem_bot 0 /*smallest index in the |mem| array dumped by \.{INITEX};
  must not be less than |mem_min|*/
@d mem_top 5000000 /*largest index in the |mem| array dumped by \.{INITEX};
  must be substantially larger than |mem_bot|
  and not greater than |mem_max|*/
@d font_base 0 /*smallest internal font number; must not be less
  than |min_quarterword|*/
@d hash_size 45000 /*maximum number of control sequences; it should be at most
  about |(mem_max-mem_min)/(double)10|*/
@d hash_prime 35999 /*a prime number equal to about 85\pct! of |hash_size|*/
@d hyph_size 8191 /*another prime; the number of \.{\\hyphenation} exceptions*/
@^system dependencies@>

@ In case somebody has inadvertently made bad settings of the ``constants,''
\TeX\ checks them using a global variable called |bad|.

This is the first of many sections of \TeX\ where global variables are
defined.

@<Glob...@>=
static int @!bad; /*is some ``constant'' wrong?*/

@ Later on we will say `\ignorespaces|if (mem_max >= max_halfword) bad=14|',
or something similar. (We can't do that until |max_halfword| has been defined.)

@<Check the ``constant'' values for consistency@>=
bad=0;
if ((half_error_line < 30)||(half_error_line > error_line-15)) bad=1;
if (max_print_line < 60) bad=2;
if (dvi_buf_size%8!=0) bad=3;
if (mem_bot+1100 > mem_top) bad=4;
if (hash_prime > hash_size) bad=5;
if (max_in_open >= 128) bad=6;
if (mem_top < 256+11) bad=7; /*we will want |null_list > 255|*/

@ Labels are given symbolic names by the following definitions, so that
occasional |goto| statements will be meaningful. We insert the label
`|end|' just before the `\ignorespaces|} |\unskip' of a procedure in
which we have used the `|goto end|' statement defined below; the label
`|restart|' is occasionally used at the very beginning of a procedure; and
the label `|reswitch|' is occasionally used just prior to a |case|
statement in which some cases change the conditions and we wish to branch
to the newly applicable case.  Loops that are set up with the |loop|
construction defined below are commonly exited by going to `|done|' or to
`|found|' or to `|not_found|', and they are sometimes repeated by going to
`|resume|'.  If two or more parts of a subroutine start differently but
end up the same, the shared code may be gathered together at
`|common_ending|'.

Incidentally, this program never declares a label that isn't actually used,
because some fussy \PASCAL\ compilers will complain about redundant labels.

@ Here are some macros for common programming idioms.

@d incr(A) A=A+1 /*increase a variable by unity*/
@d decr(A) A=A-1 /*decrease a variable by unity*/
@d negate(A) A=-A /*change the sign of a variable*/
@d loop @+while (true) @+ /*repeat over and over until a |goto| happens*/
@f loop else
   /*\.{WEB}'s |else| acts like `\ignorespaces|while true do|\unskip'*/
@d do_nothing  /*empty statement*/
@d empty 0 /*symbolic name for a null constant*/

@* The character set.
In order to make \TeX\ readily portable to a wide variety of
computers, all of its input text is converted to an internal eight-bit
code that includes standard ASCII, the ``American Standard Code for
Information Interchange.''  This conversion is done immediately when each
character is read in. Conversely, characters are converted from ASCII to
the user's external representation just before they are output to a
text file.

Such an internal code is relevant to users of \TeX\ primarily because it
governs the positions of characters in the fonts. For example, the
character `\.A' has ASCII code $65=0101$, and when \TeX\ typesets
this letter it specifies character number 65 in the current font.
If that font actually has `\.A' in a different position, \TeX\ doesn't
know what the real position is; the program that does the actual printing from
\TeX's device-independent files is responsible for converting from ASCII to
a particular font encoding.
@^ASCII code@>

\TeX's internal code also defines the value of constants
that begin with a reverse apostrophe; and it provides an index to the
\.{\\catcode}, \.{\\mathcode}, \.{\\uccode}, \.{\\lccode}, and \.{\\delcode}
tables.

@ Characters of text that have been converted to \TeX's internal form
are said to be of type |ASCII_code|, which is a subrange of the integers.

@<Types...@>=
typedef uint8_t ASCII_code; /*eight-bit numbers*/

@ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
character sets were common, so it did not make provision for lowercase
letters. Nowadays, of course, we need to deal with both capital and small
letters in a convenient way, especially in a program for typesetting;
so the present specification of \TeX\ has been written under the assumption
that the \PASCAL\ compiler and run-time system permit the use of text files
with more than 64 distinguishable characters. More precisely, we assume that
the character set contains at least the letters and symbols associated
with ASCII codes 040 through 0176; all of these characters are now
available on most computer terminals.

Since we are dealing with more characters than were present in the first
\PASCAL\ compilers, we have to decide what to call the associated data
type. Some \PASCAL s use the original name |unsigned char| for the
characters in text files, even though there now are more than 64 such
characters, while other \PASCAL s consider |unsigned char| to be a 64-element
subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name |text_char|
to stand for the data type of the characters that are converted to and
from |ASCII_code| when they are input and output. We shall also assume
that |text_char| consists of the elements |chr(first_text_char)| through
|chr(last_text_char)|, inclusive. The following definitions should be
adjusted if necessary.
@^system dependencies@>

@s text_char char
@d text_char unsigned char /*the data type of characters in text files*/
@d first_text_char 0 /*ordinal number of the smallest element of |text_char|*/
@d last_text_char 255 /*ordinal number of the largest element of |text_char|*/

@<Local variables for init...@>=
int @!i;

@ The \TeX\ processor converts between ASCII code and
the user's external character set by means of arrays |xord| and |xchr|
that are analogous to \PASCAL's |ord| and |chr| functions.

@<Glob...@>=
static ASCII_code @!xord[256];
   /*specifies conversion of input characters*/
static text_char @!xchr[256];
   /*specifies conversion of output characters*/

@ Since we are assuming that our \PASCAL\ system is able to read and
write the visible characters of standard ASCII (although not
necessarily using the ASCII codes to represent them), the following
assignment statements initialize the standard part of the |xchr| array
properly, without needing any system-dependent changes. On the other
hand, it is possible to implement \TeX\ with less complete character
sets, and in such cases it will be necessary to change something here.
@^system dependencies@>

@<Set init...@>=
xchr[040]=' ';
xchr[041]='!';
xchr[042]='"';
xchr[043]='#';
xchr[044]='$';
xchr[045]='%';
xchr[046]='&';
xchr[047]='\'';@/
xchr[050]='(';
xchr[051]=')';
xchr[052]='*';
xchr[053]='+';
xchr[054]=',';
xchr[055]='-';
xchr[056]='.';
xchr[057]='/';@/
xchr[060]='0';
xchr[061]='1';
xchr[062]='2';
xchr[063]='3';
xchr[064]='4';
xchr[065]='5';
xchr[066]='6';
xchr[067]='7';@/
xchr[070]='8';
xchr[071]='9';
xchr[072]=':';
xchr[073]=';';
xchr[074]='<';
xchr[075]='=';
xchr[076]='>';
xchr[077]='?';@/
xchr[0100]='@@';
xchr[0101]='A';
xchr[0102]='B';
xchr[0103]='C';
xchr[0104]='D';
xchr[0105]='E';
xchr[0106]='F';
xchr[0107]='G';@/
xchr[0110]='H';
xchr[0111]='I';
xchr[0112]='J';
xchr[0113]='K';
xchr[0114]='L';
xchr[0115]='M';
xchr[0116]='N';
xchr[0117]='O';@/
xchr[0120]='P';
xchr[0121]='Q';
xchr[0122]='R';
xchr[0123]='S';
xchr[0124]='T';
xchr[0125]='U';
xchr[0126]='V';
xchr[0127]='W';@/
xchr[0130]='X';
xchr[0131]='Y';
xchr[0132]='Z';
xchr[0133]='[';
xchr[0134]='\\';
xchr[0135]=']';
xchr[0136]='^';
xchr[0137]='_';@/
xchr[0140]='`';
xchr[0141]='a';
xchr[0142]='b';
xchr[0143]='c';
xchr[0144]='d';
xchr[0145]='e';
xchr[0146]='f';
xchr[0147]='g';@/
xchr[0150]='h';
xchr[0151]='i';
xchr[0152]='j';
xchr[0153]='k';
xchr[0154]='l';
xchr[0155]='m';
xchr[0156]='n';
xchr[0157]='o';@/
xchr[0160]='p';
xchr[0161]='q';
xchr[0162]='r';
xchr[0163]='s';
xchr[0164]='t';
xchr[0165]='u';
xchr[0166]='v';
xchr[0167]='w';@/
xchr[0170]='x';
xchr[0171]='y';
xchr[0172]='z';
xchr[0173]='{';
xchr[0174]='|';
xchr[0175]='}';
xchr[0176]='~';@/

@ Some of the ASCII codes without visible characters have been given symbolic
names in this program because they are used with a special meaning.

@d null_code 00 /*ASCII code that might disappear*/
@d carriage_return 015 /*ASCII code used at end of line*/
@d invalid_code 0177 /*ASCII code that many systems prohibit in text files*/

@ The ASCII code is ``standard'' only to a certain extent, since many
computer installations have found it advantageous to have ready access
to more than 94 printing characters. Appendix~C of {\sl The \TeX book\/}
gives a complete specification of the intended correspondence between
characters and \TeX's internal representation.
@:TeXbook}{\sl The \TeX book@>

If \TeX\ is being used
on a garden-variety \PASCAL\ for which only standard ASCII
codes will appear in the input and output files, it doesn't really matter
what codes are specified in |xchr[0 dotdot 037]|, but the safest policy is to
blank everything out by using the code shown below.

However, other settings of |xchr| will make \TeX\ more friendly on
computers that have an extended character set, so that users can type things
like `\.^^Z' instead of `\.{\\ne}'. People with extended character sets can
assign codes arbitrarily, giving an |xchr| equivalent to whatever
characters the users of \TeX\ are allowed to have in their input files.
It is best to make the codes correspond to the intended interpretations as
shown in Appendix~C whenever possible; but this is not necessary. For
example, in countries with an alphabet of more than 26 letters, it is
usually best to map the additional letters into codes less than~040.
To get the most ``permissive'' character set, change |' '| on the
right of these assignment statements to |chr(i)|.
@^character set dependencies@>
@^system dependencies@>

@<Set init...@>=
for (i=0; i<=037; i++) xchr[i]=chr(i); /* \TeX\ Live*/
for (i=0177; i<=0377; i++) xchr[i]=chr(i); /* \TeX\ Live*/

@ The following system-independent code makes the |xord| array contain a
suitable inverse to the information in |xchr|. Note that if |xchr[i]==xchr[j]|
where |i < j < 0177|, the value of |xord[xchr[i]]| will turn out to be
|j| or more; hence, standard ASCII code numbers will be used instead of
codes below 040 in case there is a coincidence.

@<Set init...@>=
for (i=first_text_char; i<=last_text_char; i++) xord[chr(i)]=invalid_code;
for (i=0200; i<=0377; i++) xord[xchr[i]]=i;
for (i=0; i<=0176; i++) xord[xchr[i]]=i;

@* Input and output.
The bane of portability is the fact that different operating systems treat
input and output quite differently, perhaps because computer scientists
have not given sufficient attention to this problem. People have felt somehow
that input and output are not part of ``real'' programming. Well, it is true
that some kinds of programming are more fun than others. With existing
input/output conventions being so diverse and so messy, the only sources of
joy in such parts of the code are the rare occasions when one can find a
way to make the program a little less bad than it might have been. We have
two choices, either to attack I/O now and get it over with, or to postpone
I/O until near the end. Neither prospect is very attractive, so let's
get it over with.

The basic operations we need to do are (1)~inputting and outputting of
text, to or from a file or the user's terminal; (2)~inputting and
outputting of eight-bit bytes, to or from a file; (3)~instructing the
operating system to initiate (``open'') or to terminate (``close'') input or
output from a specified file; (4)~testing whether the end of an input
file has been reached.

\TeX\ needs to deal with two kinds of files.
We shall use the term |alpha_file| for a file that contains textual data,
and the term |byte_file| for a file that contains eight-bit binary information.
These two types turn out to be the same on many computers, but
sometimes there is a significant distinction, so we shall be careful to
distinguish between them. Standard protocols for transferring
such files from computer to computer, via high-speed networks, are
now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a
|word_file|, when dumping and reloading base information for its own
initialization.  We shall define a word file later; but it will be possible
for us to specify simple operations on word files before they are defined.

@<Types...@>=
typedef uint8_t eight_bits; /*unsigned one-byte quantity*/
typedef struct {@+FILE *f;@+text_char@,d;@+} alpha_file; /*files that contain textual data*/
typedef struct {@+FILE *f;@+eight_bits@,d;@+} byte_file; /*files that contain binary data*/

@ Most of what we need to do with respect to input and output can be handled
by the I/O facilities that are standard in \PASCAL, i.e., the routines
called |get|, |put|, |eof|, and so on. But
standard \PASCAL\ does not allow file variables to be associated with file
names that are determined at run time, so it cannot be used to implement
\TeX; some sort of extension to \PASCAL's ordinary |reset| and |rewrite|
is crucial for our purposes. We shall assume that |name_of_file| is a variable
of an appropriate type such that the \PASCAL\ run-time system being used to
implement \TeX\ can open a file whose external name is specified by
|name_of_file|.
@^system dependencies@>

@<Glob...@>=
static unsigned char @!name_of_file0[file_name_size+1]={0},
  *const @!name_of_file = @!name_of_file0-1;@;@/
   /*on some systems this may be a \&{record} variable*/
static int @!name_length;@/ /*this many characters are actually
  relevant in |name_of_file| (the rest are blank)*/

@ To open files, \TeX\ used \PASCAL's |reset| function.
We use the {\tt kpathsearch} library to implement new functions
in the section on \TeX\ Live Integration.
Here we give only the function prototypes.

\TeX's file-opening functions do not issue their own
error messages if something goes wrong. If a file identified by
|name_of_file| cannot be found,
or if such a file cannot be opened for some other reason
(e.g., someone may already be trying to write the same file)
\TeX's file-opening functions return |false|.
This allows \TeX\ to undertake appropriate corrective action.
@^system dependencies@>

@p
static FILE*open_in(char*filename,kpse_file_format_type t,const char*rwb);  /* \TeX\ Live*/
static bool a_open_in(alpha_file *f); /*open a text file for input*/
static bool b_open_in(byte_file *f);   /*open a binary file for input*/
static bool w_open_in(word_file *f);   /*open a word file for input*/
static FILE *open_out(const char *file_name, const char *file_mode);  /* \TeX\ Live*/
static bool a_open_out(alpha_file *f);  /*open a text file for output*/
static bool b_open_out(byte_file *f);  /*open a binary file for output*/
#ifdef @!INIT
static bool w_open_out(word_file *f);  /*open a word file for output*/
#endif

@ Files can be closed with the \ph\ routine `|pascal_close(f)|', which
@:PASCAL H}{\ph@>
@^system dependencies@>
should be used when all input or output with respect to |f| has been completed.
This makes |f| available to be opened again, if desired; and if |f| was used for
output, the |pascal_close| operation makes the corresponding external file appear
on the user's area, ready to be read.

These procedures should not generate error messages if a file is
being closed before it has been successfully opened.

@p static void a_close(alpha_file *f) /*close a text file*/
{@+pascal_close((*f));
}
@#
static void b_close(byte_file *f) /*close a binary file*/
{@+pascal_close((*f));
}
@#
static void w_close(word_file *f) /*close a word file*/
{@+pascal_close((*f));
}

@ Binary input and output are done with \PASCAL's ordinary |get| and |put|
procedures, so we don't have to make any other special arrangements for
binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
The treatment of text input is more difficult, however, because
of the necessary translation to |ASCII_code| values.
\TeX's conventions should be efficient, and they should
blend nicely with the user's operating environment.

@ Input from text files is read one line at a time, using a routine called
|input_ln|. This function is defined in terms of global variables called
|buffer|, |first|, and |last| that will be described in detail later; for
now, it suffices for us to know that |buffer| is an array of |ASCII_code|
values, and that |first| and |last| are indices into this array
representing the beginning and ending of a line of text.

@<Glob...@>=
static ASCII_code @!buffer[buf_size+1]; /*lines of characters being read*/
static int @!first; /*the first unused position in |buffer|*/
static int @!last; /*end of the line just input to |buffer|*/
static int @!max_buf_stack; /*largest index used in |buffer|*/

@ The |input_ln| function brings the next line of input from the specified
file into available positions of the buffer array and returns the value
|true|, unless the file has already been entirely read, in which case it
returns |false| and sets |last=first|.  In general, the |ASCII_code|
numbers that represent the next line of the file are input into
|buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
global variable |last| is set equal to |first| plus the length of the
line. Trailing blanks are removed from the line; thus, either |last==first|
(in which case the line was entirely blank) or |buffer[last-1]!=' '|.

An overflow error is given, however, if the normal actions of |input_ln|
would make |last >= buf_size|; this is done so that other parts of \TeX\
can safely look at the contents of |buffer[last+1]| without overstepping
the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
|first < buf_size| will always hold, so that there is always room for an
``empty'' line.

The variable |max_buf_stack|, which is used to keep track of how large
the |buf_size| parameter must be to accommodate the present job, is
also kept up to date by |input_ln|.

If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
before looking at the first character of the line; this skips over
an |eoln| that was in |f.d|. The procedure does not do a |get| when it
reaches the end of the line; therefore it can be used to acquire input
from the user's terminal as well as from ordinary text files.

Standard \PASCAL\ says that a file should have |eoln| immediately
before |eof|, but \TeX\ needs only a weaker restriction: If |eof|
occurs in the middle of a line, the system function |eoln| should return
a |true| result (even though |f.d| will be undefined).

Since the inner loop of |input_ln| is part of \TeX's ``inner loop''---each
character of input comes in at this place---it is wise to reduce system
overhead by making use of special routines that read in an entire array
of characters at once, if such routines are available. The following
code uses standard \PASCAL\ to illustrate what needs to be done, but
finer tuning is often possible at well-developed \PASCAL\ sites.
@^inner loop@>

@p static bool input_ln(alpha_file *f, bool @!bypass_eoln)
   /*inputs the next line or returns |false|*/
{@+int last_nonblank; /*|last| with trailing blanks removed*/
if (bypass_eoln) if (!eof((*f))) get((*f));
   /*input the first character of the line into |f.d|*/
last=first; /*cf.\ Matthew 19\thinspace:\thinspace30*/
if (eof((*f))) return false;
else{@+last_nonblank=first;
  while (!eoln((*f)))
    {@+if (last >= max_buf_stack)
      {@+max_buf_stack=last+1;
      if (max_buf_stack==buf_size)
        @<Report overflow of the input buffer, and abort@>;
      }
    buffer[last]=xord[(*f).d];get((*f));incr(last);
    if (buffer[last-1]!=' ') last_nonblank=last;
    }
  last=last_nonblank;return true;
  }
}

@ The user's terminal acts essentially like other files of text, except
that it is used both for input and for output. When the terminal is
considered an input file, the file variable is called |term_in|, and when it
is considered an output file the file variable is |term_out|.
@^system dependencies@>

@<Glob...@>=
static alpha_file @!term_in; /*the terminal as an input file*/
static alpha_file @!term_out; /*the terminal as an output file*/

@ Here is how to open the terminal files
in \ph. The `\.{/I}' switch suppresses the first |get|.
@:PASCAL H}{\ph@>
@^system dependencies@>

@d t_open_in term_in.f=stdin /*open the terminal for text input*/
@d t_open_out   term_out.f=stdout /*open the terminal for text output*/

@ Sometimes it is necessary to synchronize the input/output mixture that
happens on the user's terminal, and three system-dependent
procedures are used for this
purpose. The first of these, |update_terminal|, is called when we want
to make sure that everything we have output to the terminal so far has
actually left the computer's internal buffers and been sent.
The second, |clear_terminal|, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to
issue an unexpected error message). The third, |wake_up_terminal|,
is supposed to revive the terminal if the user has disabled it by
some instruction to the operating system.  The following macros show how
these operations can be specified in \ph:
@:PASCAL H}{\ph@>
@^system dependencies@>

@d update_terminal fflush(term_out.f) /*empty the terminal output buffer*/
@d clear_terminal fflush(term_in.f) /*clear the terminal input buffer*/
@d wake_up_terminal do_nothing /*cancel the user's cancellation of output*/

@ We need a special routine to read the first line of \TeX\ input from
the user's terminal. This line is different because it is read before we
have opened the transcript file; there is sort of a ``chicken and
egg'' problem here. If the user types `\.{\\input paper}' on the first
line, or if some macro invoked by that line does such an \.{\\input},
the transcript file will be named `\.{paper.log}'; but if no \.{\\input}
commands are performed during the first line of terminal input, the transcript
file will acquire its default name `\.{texput.log}'. (The transcript file
will not contain error messages generated by the first line before the
first \.{\\input} command.)
@.texput@>

The first line is even more special if we are lucky enough to have an operating
system that treats \TeX\ differently from a run-of-the-mill \PASCAL\ object
program. It's nice to let the user start running a \TeX\ job by typing
a command line like `\.{tex paper}'; in such a case, \TeX\ will operate
as if the first line of input were `\.{paper}', i.e., the first line will
consist of the remainder of the command line, after the part that invoked
\TeX.

The first line is special also because it may be read before \TeX\ has
input a format file. In such cases, normal error messages cannot yet
be given. The following code uses concepts that will be explained later.
(If the \PASCAL\ compiler does not support non-local |@!goto|\unskip, the
@^system dependencies@>
statement `|goto exit(0)|' should be replaced by something that
quietly terminates the program.)

@<Report overflow of the input buffer, and abort@>=
if (format_ident==0)
  {@+write_ln(term_out,"Buffer size exceeded!");exit(0);
@.Buffer size exceeded@>
  }
else{@+cur_input.loc_field=first;cur_input.limit_field=last-1;
  overflow("buffer size", buf_size);
@:TeX capacity exceeded buffer size}{\quad buffer size@>
  }

@ Different systems have different ways to get started. But regardless of
what conventions are adopted, the routine that initializes the terminal
should satisfy the following specifications:

\yskip\textindent{1)}It should open file |term_in| for input from the
  terminal. (The file |term_out| will already be open for output to the
  terminal.)

\textindent{2)}If the user has given a command line, this line should be
  considered the first line of terminal input. Otherwise the
  user should be prompted with `\.{**}', and the first line of input
  should be whatever is typed in response.

\textindent{3)}The first line of input, which might or might not be a
  command line, should appear in locations |first| to |last-1| of the
  |buffer| array.

\textindent{4)}The global variable |loc| should be set so that the
  character to be read next by \TeX\ is in |buffer[loc]|. This
  character should not be blank, and we should have |loc < last|.

\yskip\noindent(It may be necessary to prompt the user several times
before a non-blank line comes in. The prompt is `\.{**}' instead of the
later `\.*' because the meaning is slightly different: `\.{\\input}' need
not be typed immediately after~`\.{**}'.)

@d loc cur_input.loc_field /*location of first unread character in |buffer|*/

@ The following routine calls |input_command_line|
to retrieve a possible command line.
@^system dependencies@>

@p static bool init_terminal(void) /*gets the terminal input started*/
{@+
t_open_in;
if (input_command_line()) return true; /* \TeX\ Live */
loop@+{@+wake_up_terminal;pascal_write(term_out,"**");update_terminal;
@.**@>
  if (!input_ln(&term_in, true))  /*this shouldn't happen*/
    {@+write_ln(term_out);
    pascal_write(term_out,"! End of file on the terminal... why?");
@.End of file on the terminal@>
    return false;
    }
  loc=first;
  while ((loc < last)&&(buffer[loc]==' ')) incr(loc);
  if (loc < last)
    {@+return true;
     /*return unless the line was all blank*/
    }
  write_ln(term_out,"Please type the name of your input file.");
  }
}

@* String handling.
Control sequence names and diagnostic messages are variable-length strings
of eight-bit characters. Since \PASCAL\ does not have a well-developed string
mechanism, \TeX\ does all of its string processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the
necessary operations can be handled with a simple data structure.
The array |str_pool| contains all of the (eight-bit) ASCII codes in all
of the strings, and the array |str_start| contains indices of the starting
points of each string. Strings are referred to by integer numbers, so that
string number |s| comprises the characters |str_pool[j]| for
|str_start[s] <= j < str_start[s+1]|. Additional integer variables
|pool_ptr| and |str_ptr| indicate the number of entries used so far
in |str_pool| and |str_start|, respectively; locations
|str_pool[pool_ptr]| and |str_start[str_ptr]| are
ready for the next string to be allocated.

String numbers 0 to 255 are reserved for strings that correspond to single
ASCII characters. This is in accordance with the conventions of \.{WEB},
@.WEB@>
which converts single-character strings into the ASCII code number of the
single character involved, while it converts other strings into integers
and builds a string pool file. Thus, when the string constant \.{"."} appears
in the program below, \.{WEB} converts it into the integer 46, which is the
ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
into some integer greater than~255. String number 46 will presumably be the
single character `\..'; but some ASCII codes have no standard visible
representation, and \TeX\ sometimes needs to be able to print an arbitrary
ASCII character, so the first 256 strings are used to specify exactly what
should be printed for each of the 256 possibilities.

Elements of the |str_pool| array must be ASCII codes that can actually
be printed; i.e., they must have an |xchr| equivalent in the local
character set. (This restriction applies only to preloaded strings,
not to those generated dynamically by the user.)

Some \PASCAL\ compilers won't pack integers into a single byte unless the
integers lie in the range |-128 dotdot 127|. To accommodate such systems
we access the string pool only via macros that can easily be redefined.
@^system dependencies@>

@d si(A) A /*convert from |ASCII_code| to |packed_ASCII_code|*/
@d so(A) A /*convert from |packed_ASCII_code| to |ASCII_code|*/

@<Types...@>=
typedef int32_t pool_pointer; /*for variables that point into |str_pool|*/
typedef int32_t str_number; /*for variables that point into |str_start|*/
typedef uint8_t packed_ASCII_code; /*elements of |str_pool| array*/

@ @<Glob...@>=
static packed_ASCII_code @!str_pool[pool_size+1]; /*the characters*/
static pool_pointer @!str_start[max_strings+1]; /*the starting pointers*/
static pool_pointer @!pool_ptr; /*first unused position in |str_pool|*/
static str_number @!str_ptr; /*number of the current string being created*/
static pool_pointer @!init_pool_ptr; /*the starting value of |pool_ptr|*/
static str_number @!init_str_ptr; /*the starting value of |str_ptr|*/

@ Several of the elementary string operations are performed using \.{WEB}
macros instead of \PASCAL\ procedures, because many of the
operations are done quite frequently and we want to avoid the
overhead of procedure calls. For example, here is
a simple macro that computes the length of a string.
@.WEB@>

@d length(A) (str_start[A+1]-str_start[A]) /*the number of characters
  in string number \#*/

@ The length of the current string is called |cur_length|:

@d cur_length (pool_ptr-str_start[str_ptr])

@ Strings are created by appending character codes to |str_pool|.
The |append_char| macro, defined here, does not check to see if the
value of |pool_ptr| has gotten too high; this test is supposed to be
made before |append_char| is used. There is also a |flush_char|
macro, which erases the last character appended.

To test if there is room to append |l| more characters to |str_pool|,
we shall write |str_room(l)|, which aborts \TeX\ and gives an
apologetic error message if there isn't enough room.

@d append_char(A)  /*put |ASCII_code| \# at the end of |str_pool|*/
{@+str_pool[pool_ptr]=si(A);incr(pool_ptr);
}
@d flush_char decr(pool_ptr) /*forget the last character in the pool*/
@d str_room(A)  /*make sure that the pool hasn't overflowed*/
  {@+if (pool_ptr+A > pool_size)
  overflow("pool size", pool_size-init_pool_ptr);
@:TeX capacity exceeded pool size}{\quad pool size@>
  }

@ Once a sequence of characters has been appended to |str_pool|, it
officially becomes a string when the function |make_string| is called.
This function returns the identification number of the new string as its
value.

@p static str_number make_string(void) /*current string enters the pool*/
{@+if (str_ptr==max_strings)
  overflow("number of strings", max_strings-init_str_ptr);
@:TeX capacity exceeded number of strings}{\quad number of strings@>
incr(str_ptr);str_start[str_ptr]=pool_ptr;
return str_ptr-1;
}

@ To destroy the most recently made string, we say |flush_string|.

@d flush_string {@+decr(str_ptr);pool_ptr=str_start[str_ptr];
  }

@ The following subroutine compares string |s| with another string of the
same length that appears in |buffer| starting at position |k|;
the result is |true| if and only if the strings are equal.
Empirical tests indicate that |str_eq_buf| is used in such a way that
it tends to return |true| about 80 percent of the time.

@p static bool str_eq_buf(str_number @!s, int @!k)
   /*test equality of strings*/
{@+ /*loop exit*/
pool_pointer j; /*running index*/
bool @!result; /*result of comparison*/
j=str_start[s];
while (j < str_start[s+1])
  {@+if (so(str_pool[j])!=buffer[k])
    {@+result=false;goto not_found;
    }
  incr(j);incr(k);
  }
result=true;
not_found: return result;
}

@ Here is a similar routine, but it compares two strings in the string pool,
and it does not assume that they have the same length.

@p static bool str_eq_str(str_number @!s, str_number @!t)
   /*test equality of strings*/
{@+ /*loop exit*/
pool_pointer j, @!k; /*running indices*/
bool @!result; /*result of comparison*/
result=false;
if (length(s)!=length(t)) goto not_found;
j=str_start[s];k=str_start[t];
while (j < str_start[s+1])
  {@+if (str_pool[j]!=str_pool[k]) goto not_found;
  incr(j);incr(k);
  }
result=true;
not_found: return result;
}
@t\4@>@<Declare \Prote\ procedures for strings@>@;

@ The initial values of |str_pool|, |str_start|, |pool_ptr|,
and |str_ptr| are computed by the \.{INITEX} program, based in part
on the information that \.{WEB} has output while processing \TeX.
@.INITEX@>
@^string pool@>

@p
static bool get_strings_started(void) /*initializes the string pool*/
{@+
int k, @!l; /*small indices or counters*/
pool_ptr=0;str_ptr=0;str_start[0]=0;
@<Make the first 256 strings@>;
@<Add the empty string to the string pool@>;
return true;
}

@ @d app_lc_hex(A) l=A;
  if (l < 10) append_char(l+'0')@;@+else append_char(l-10+'a')

@<Make the first 256...@>=
for (k=0; k<=255; k++)
  {@+if ((@<Character |k| cannot be printed@>))
    {@+append_char('^');append_char('^');
    if (k < 0100) append_char(k+0100)@;
    else if (k < 0200) append_char(k-0100)@;
    else{@+app_lc_hex(k/16);app_lc_hex(k%16);
      }
    }
  else append_char(k);
  make_string();
  }

@ The first 128 strings will contain 95 standard ASCII characters, and the
other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
unless a system-dependent change is made here. Installations that have
an extended character set, where for example |xchr[032]==@t\.{\'^^Z\'}@>|,
would like string 032 to be the single character 032 instead of the
three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
even people with an extended character set will want to represent string
015 by \.{\^\^M}, since 015 is |carriage_return|; the idea is to
produce visible strings instead of tabs or line-feeds or carriage-returns
or bell-rings or characters that are treated anomalously in text files.

Unprintable characters of codes 128--255 are, similarly, rendered
\.{\^\^80}--\.{\^\^ff}.

The boolean expression defined here should be |true| unless \TeX\
internal code number~|k| corresponds to a non-troublesome visible
symbol in the local character set.  An appropriate formula for the
extended character set recommended in {\sl The \TeX book\/} would, for
example, be `|k in[0, 010 dotdot 012, 014, 015, 033, 0177 dotdot 0377]|'.
If character |k| cannot be printed, and |k < 0200|, then character |k+0100| or
|k-0100| must be printable; moreover, ASCII codes |[041 dotdot 046,
060 dotdot 071, 0136, 0141 dotdot 0146, 0160 dotdot 0171]| must be printable.
Thus, at least 80 printable characters are needed.
@:TeXbook}{\sl The \TeX book@>
@^character set dependencies@>
@^system dependencies@>

@<Character |k| cannot be printed@>=
  (k < ' ')||(k > '~')

@ The |pool_file| variable is no longer needed and has been removed.

Instead of reading the other strings from the \.{TEX.POOL} file,
it is sufficient here to add the empty string.
@<Add the empty string to the string pool@>=
make_string();

@ Without a string pool file there is no need for a pool check sum either.
But this is a convenient place to define the function |s_no| that will
add literal strings to the string pool at runtime, thereby obtaining their
string number.

@p static int s_no(const char *str)
{@+
  if (str[0]==0) return empty_string;
  if (str[1]==0) return str[0];
  str_room(strlen(str));
  while (*str!=0) append_char(*str++);
  return make_string();
}

@ The function |s_no| is used in |initialize| and needs a forward
declaration.

@<Forward declarations@>=
static int s_no(const char *str);

@* On-line and off-line printing.
Messages that are sent to a user's terminal and to the transcript-log file
are produced by several `|print|' procedures. These procedures will
direct their output to a variety of places, based on the setting of
the global variable |selector|, which has the following possible
values:

\yskip
\hang |term_and_log|, the normal setting, prints on the terminal and on the
  transcript file.

\hang |log_only|, prints only on the transcript file.

\hang |term_only|, prints only on the terminal.

\hang |no_print|, doesn't print at all. This is used only in rare cases
  before the transcript file is open.

\hang |pseudo|, puts output into a cyclic buffer that is used
  by the |show_context| routine; when we get to that routine we shall discuss
  the reasoning behind this curious mode.

\hang |new_string|, appends the output to the current string in the
  string pool.

\hang 0 to 15, prints on one of the sixteen files for \.{\\write} output.

\yskip
\noindent The symbolic names `|term_and_log|', etc., have been assigned
numeric codes that satisfy the convenient relations |no_print+1==term_only|,
|no_print+2==log_only|, |term_only+2==log_only+1==term_and_log|.

Three additional global variables, |tally| and |term_offset| and
|file_offset|, record the number of characters that have been printed
since they were most recently cleared to zero. We use |tally| to record
the length of (possibly very long) stretches of printing; |term_offset|
and |file_offset|, on the other hand, keep track of how many characters
have appeared so far on the current line that has been output to the
terminal or to the transcript file, respectively.

@d no_print 16 /*|selector| setting that makes data disappear*/
@d term_only 17 /*printing is destined for the terminal only*/
@d log_only 18 /*printing is destined for the transcript file only*/
@d term_and_log 19 /*normal |selector| setting*/
@d pseudo 20 /*special |selector| setting for |show_context|*/
@d new_string 21 /*printing is deflected to the string pool*/
@d max_selector 21 /*highest selector setting*/

@<Glob...@>=
static alpha_file @!log_file; /*transcript of \TeX\ session*/
static int @!selector; /*where to print a message*/
static int8_t @!dig[23]; /*digits in a number being output*/
static int @!tally; /*the number of characters recently printed*/
static int @!term_offset;
   /*the number of characters on the current terminal line*/
static int @!file_offset;
   /*the number of characters on the current file line*/
static ASCII_code @!trick_buf[error_line+1]; /*circular buffer for
  pseudoprinting*/
static int @!trick_count; /*threshold for pseudoprinting, explained later*/
static int @!first_count; /*another variable for pseudoprinting*/

@ @<Initialize the output routines@>=
selector=term_only;tally=0;term_offset=0;file_offset=0;

@ Macro abbreviations for output to the terminal and to the log file are
defined here for convenience. Some systems need special conventions
for terminal output, and it is possible to adhere to those conventions
by changing |wterm|, |wterm_ln|, and |wterm_cr| in this section.
@^system dependencies@>

@<Basic printing procedures@>=
#define @[put(F)@]    @[fwrite(&((F).d)@],@[sizeof((F).d),1,(F).f)@]@;
#define @[get(F)@]    @[fread(&((F).d),sizeof((F).d),1,(F).f)@]

#define @[pascal_close(F)@]    @[fclose((F).f)@]
#define @[eof(F)@]    @[feof((F).f)@]
#define @[eoln(F)@]    @[((F).d=='\n'||eof(F))@]
#define @[erstat(F)@]   @[((F).f==NULL?-1:ferror((F).f))@]

#define @[pascal_read(F,X)@] @[((X)=(F).d,get(F))@]
#define @[read_ln(F)@]  do get(F); while (!eoln(F))

#define @[pascal_write(F, FMT,...)@]    @[fprintf(F.f,FMT,## __VA_ARGS__)@]
#define @[write_ln(F,...)@]    @[pascal_write(F,__VA_ARGS__"\n")@]

#define @[wterm(FMT,...)@] @[pascal_write(term_out,FMT, ## __VA_ARGS__)@]
#define @[wterm_ln(FMT,...)@] @[wterm(FMT "\n", ## __VA_ARGS__)@]
#define wterm_cr         @[pascal_write(term_out,"\n")@]
#define @[wlog(FMT, ...)@] @[pascal_write(log_file,FMT, ## __VA_ARGS__)@]
#define @[wlog_ln(FMT, ...)@]   @[wlog(FMT "\n", ## __VA_ARGS__)@]
#define wlog_cr         @[pascal_write(log_file,"\n")@]

@ To end a line of text output, we call |print_ln|.

@<Basic print...@>=
static void print_ln(void) /*prints an end-of-line*/
{@+switch (selector) {
case term_and_log: {@+wterm_cr;wlog_cr;
  term_offset=0;file_offset=0;
  } @+break;
case log_only: {@+wlog_cr;file_offset=0;
  } @+break;
case term_only: {@+wterm_cr;term_offset=0;
  } @+break;
case no_print: case pseudo: case new_string: do_nothing;@+break;
default:write_ln(write_file[selector]);
} @/
}  /*|tally| is not affected*/

@ The |print_char| procedure sends one character to the desired destination,
using the |xchr| array to map it into an external character compatible with
|input_ln|. All printing comes through |print_ln| or |print_char|.

@<Basic printing...@>=
static void print_char(ASCII_code @!s) /*prints a single character*/
{@+
if (@<Character |s| is the current new-line character@>)
 if (selector < pseudo)
  {@+print_ln();return;
  }
switch (selector) {
case term_and_log: {@+wterm("%c",xchr[s]);wlog("%c",xchr[s]);
  incr(term_offset);incr(file_offset);
  if (term_offset==max_print_line)
    {@+wterm_cr;term_offset=0;
    }
  if (file_offset==max_print_line)
    {@+wlog_cr;file_offset=0;
    }
  } @+break;
case log_only: {@+wlog("%c",xchr[s]);incr(file_offset);
  if (file_offset==max_print_line) print_ln();
  } @+break;
case term_only: {@+wterm("%c",xchr[s]);incr(term_offset);
  if (term_offset==max_print_line) print_ln();
  } @+break;
case no_print: do_nothing;@+break;
case pseudo: if (tally < trick_count) trick_buf[tally%error_line]=s;@+break;
case new_string: {@+if (pool_ptr < pool_size) append_char(s);
  } @+break; /*we drop characters if the string space is full*/
default:pascal_write(write_file[selector],"%c", xchr[s]);
} @/
incr(tally);
}

@ An entire string is output by calling |print|. Note that if we are outputting
the single standard ASCII character \.c, we could call |print('c')|, since
|'c'==99| is the number of a single-character string, as explained above. But
|print_char('c')| is quicker, so \TeX\ goes directly to the |print_char|
routine when it knows that this is safe. (The present implementation
assumes that it is always safe to print a visible ASCII character.)
@^system dependencies@>

@<Basic print...@>=
static void print(char *s) /* the simple version */
{ @+if (s == NULL) s="???"; /*this can't happen*/
  while (*s!=0) print_char(*s++);@+
}

static void printn(int @!s) /*prints string |s|*/
{@+
pool_pointer j; /*current character code position*/
int @!nl; /*new-line character to restore*/
if (s >= str_ptr) {print("???"); return;}/*this can't happen*/
@.???@>
else if (s < 256)
  if (s < 0) { print("???");return; } /*can't happen*/
  else{@+if (selector > pseudo)
      {@+print_char(s);return; /*internal strings are not expanded*/
      }
    if ((@<Character |s| is the current new-line character@>))
      if (selector < pseudo)
        {@+print_ln();return;
        }
    nl=new_line_char;new_line_char=-1;
       /*temporarily disable new-line character*/
    j=str_start[s];
    while (j < str_start[s+1])
      {@+print_char(so(str_pool[j]));incr(j);
      }
    new_line_char=nl;return;
    }
j=str_start[s];
while (j < str_start[s+1])
  {@+print_char(so(str_pool[j]));incr(j);
  }
}

@ Control sequence names, file names, and strings constructed with
\.{\\string} might contain |ASCII_code| values that can't
be printed using |print_char|. Therefore we use |slow_print| for them:

@<Basic print...@>=
static void slow_print(int @!s) /*prints string |s|*/
{@+pool_pointer j; /*current character code position*/
if ((s >= str_ptr)||(s < 256)) printn(s);
else{@+j=str_start[s];
  while (j < str_start[s+1])
    {@+printn(so(str_pool[j]));incr(j);
    }
  }
}

@ Here is the very first thing that \TeX\ prints: a headline that identifies
the version number and format package. The |term_offset| variable is temporarily
incorrect, but the discrepancy is not serious since we assume that this
part of the program is system dependent.
@^system dependencies@>

According to the conventions of \TeX\ Live,
 we print the |dump_name| if no format identifier is known.
@<Initialize the output...@>=
wterm("%s",banner);
if (format_ident==0) wterm_ln(" (preloaded format=%s)", dump_name);
else{@+slow_print(format_ident);print_ln();
  }
update_terminal;

@ The procedure |print_nl| is like |print|, but it makes sure that the
string appears at the beginning of a new line.

@<Basic print...@>=
static void print_nl(char *@!s) /*prints string |s| at beginning of line*/
{@+if (((term_offset > 0)&&(odd(selector)))||@|
  ((file_offset > 0)&&(selector >= log_only))) print_ln();
print(s);
}

@ The procedure |print_esc| prints a string that is preceded by
the user's escape character (which is usually a backslash).

@<Basic print...@>=
static void printn_esc(str_number @!s) /*prints escape character, then |s|*/
{@+int c; /*the escape character code*/
@<Set variable |c| to the current escape character@>;
if (c >= 0) if (c < 256) printn(c);
slow_print(s);
}

static void print_esc(char *@!s) /*the fast way*/
{@+int c; /*the escape character code*/
@<Set variable |c| to the current escape character@>;
if (c >= 0) if (c < 256) printn(c);
print(s);
}

@ An array of digits in the range |0 dotdot 15| is printed by |print_the_digs|.

@<Basic print...@>=
static void print_the_digs(eight_bits @!k)
   /*prints |dig[k-1]|$\,\ldots\,$|dig[0]|*/
{@+while (k > 0)
  {@+decr(k);
  if (dig[k] < 10) print_char('0'+dig[k]);
  else print_char('A'-10+dig[k]);
  }
}

@ The following procedure, which prints out the decimal representation of a
given integer |n|, has been written carefully so that it works properly
if |n==0| or if |(-n)| would cause overflow. It does not apply |%| or |/|
to negative arguments, since such operations are not implemented consistently
by all \PASCAL\ compilers.

@<Basic print...@>=
static void print_int(int @!n) /*prints an integer in decimal form*/
{@+int k; /*index to current digit; we assume that $\vert n\vert<10^{23}$*/
int @!m; /*used to negate |n| in possibly dangerous cases*/
k=0;
if (n < 0)
  {@+print_char('-');
  if (n > -100000000) negate(n);
  else{@+m=-1-n;n=m/10;m=(m%10)+1;k=1;
    if (m < 10) dig[0]=m;
    else{@+dig[0]=0;incr(n);
      }
    }
  }
@/do@+{dig[k]=n%10;n=n/10;incr(k);
}@+ while (!(n==0));
print_the_digs(k);
}

@ Here is a trivial procedure to print two digits; it is usually called with
a parameter in the range |0 <= n <= 99|.

@p static void print_two(int @!n) /*prints two least significant digits*/
{@+n=abs(n)%100;print_char('0'+(n/10));
print_char('0'+(n%10));
}

@ Hexadecimal printing of nonnegative integers is accomplished by |print_hex|.

@p static void print_hex(int @!n)
   /*prints a positive integer in hexadecimal form*/
{@+int k; /*index to current digit; we assume that $0\le n<16^{22}$*/
k=0;print_char('"');
@/do@+{dig[k]=n%16;n=n/16;incr(k);
}@+ while (!(n==0));
print_the_digs(k);
}

@ Old versions of \TeX\ needed a procedure called |print_ASCII| whose function
is now subsumed by |print|. We retain the old name here as a possible aid to
future software arch\ae ologists.

@d print_ASCII printn

@ Roman numerals are produced by the |print_roman_int| routine.  Readers
who like puzzles might enjoy trying to figure out how this tricky code
works; therefore no explanation will be given. Notice that 1990 yields
\.{mcmxc}, not \.{mxm}.

@p static void print_roman_int(int @!n)
{@+
pool_pointer j, @!k; /*mysterious indices into |mystery|*/
nonnegative_integer @!u, @!v; /*mysterious numbers*/
const char mystery[] ="m2d5c2l5x2v5i";
j=0;v=1000;
loop@+{@+while (n >= v)
    {@+print_char(so(mystery[j]));n=n-v;
    }
  if (n <= 0) return; /*nonpositive input produces no output*/
  k=j+2;u=v/(so(mystery[k-1])-'0');
  if (mystery[k-1]==si('2'))
    {@+k=k+2;u=u/(so(mystery[k-1])-'0');
    }
  if (n+u >= v)
    {@+print_char(so(mystery[k]));n=n+u;
    }
  else{@+j=j+2;v=v/(so(mystery[j-1])-'0');
    }
  }
}

@ The |print| subroutine will not print a string that is still being
created. The following procedure will.

@p static void print_current_string(void) /*prints a yet-unmade string*/
{@+pool_pointer j; /*points to current character code*/
j=str_start[str_ptr];
while (j < pool_ptr)
  {@+print_char(so(str_pool[j]));incr(j);
  }
}

@ Here is a procedure that asks the user to type a line of input,
assuming that the |selector| setting is either |term_only| or |term_and_log|.
The input is placed into locations |first| through |last-1| of the
|buffer| array, and echoed on the transcript file if appropriate.

This procedure is never called when |interaction < scroll_mode|.

@d prompt_input(A) {@+wake_up_terminal;print(A);term_input();
    }  /*prints a string and gets a line of input*/

@p static void term_input(void) /*gets a line from the terminal*/
{@+int k; /*index into |buffer|*/
update_terminal; /*now the user sees the prompt for sure*/
if (!input_ln(&term_in, true)) fatal_error("End of file on the terminal!");
@.End of file on the terminal@>
term_offset=0; /*the user's line ended with \<\rm return>*/
decr(selector); /*prepare to echo the input*/
if (last!=first) for (k=first; k<=last-1; k++) printn(buffer[k]);
print_ln();incr(selector); /*restore previous status*/
}

@* Reporting errors.
When something anomalous is detected, \TeX\ typically does something like this:
$$\vbox{\halign{#\hfil\cr
|print_err("Something anomalous has been detected");|\cr
|help3("This is the first line of my offer to help.")|\cr
|("This is the second line. I'm trying to")|\cr
|("explain the best way for you to proceed.");|\cr
|error;|\cr}}$$
A two-line help message would be given using |help2|, etc.; these informal
helps should use simple vocabulary that complements the words used in the
official error message that was printed. (Outside the U.S.A., the help
messages should preferably be translated into the local vernacular. Each
line of help is at most 60 characters long, in the present implementation,
so that |max_print_line| will not be exceeded.)

The |print_err| procedure supplies a `\.!' before the official message,
and makes sure that the terminal is awake if a stop is going to occur.
The |error| procedure supplies a `\..' after the official message, then it
shows the location of the error; and if |interaction==error_stop_mode|,
it also enters into a dialog with the user, during which time the help
message may be printed.
@^system dependencies@>

@<Error handling...@>=
static void print_err(char *s)
{@+if (interaction==error_stop_mode) wake_up_terminal;
  if (filelineerrorstylep) print_file_line(); /* \TeX\ Live */
  else print_nl("! ");
  print(s);
}

@ The global variable |interaction| has four settings, representing increasing
amounts of user interaction:

@d batch_mode 0 /*omits all stops and omits terminal output*/
@d nonstop_mode 1 /*omits all stops*/
@d scroll_mode 2 /*omits error stops*/
@d error_stop_mode 3 /*stops at every opportunity to interact*/

@<Glob...@>=
static int @!interaction; /*current level of interaction*/

@ @<Set init...@>=
if (interaction_option<0) interaction=error_stop_mode;
else interaction=interaction_option;  /* \TeX\ Live */

@ \TeX\ is careful not to call |error| when the print |selector| setting
might be unusual. The only possible values of |selector| at the time of
error messages are

\yskip\hang|no_print| (when |interaction==batch_mode|
  and |log_file| not yet open);

\hang|term_only| (when |interaction > batch_mode| and |log_file| not yet open);

\hang|log_only| (when |interaction==batch_mode| and |log_file| is open);

\hang|term_and_log| (when |interaction > batch_mode| and |log_file| is open).

@<Initialize the print |selector| based on |interaction|@>=
if (interaction==batch_mode) selector=no_print;@+else selector=term_only

@ A global variable |deletions_allowed| is set |false| if the |get_next|
routine is active when |error| is called; this ensures that |get_next|
and related routines like |get_token| will never be called recursively.
A similar interlock is provided by |set_box_allowed|.
@^recursion@>

The global variable |history| records the worst level of error that
has been detected. It has four possible values: |spotless|, |warning_issued|,
|error_message_issued|, and |fatal_error_stop|.

Another global variable, |error_count|, is increased by one when an
|error| occurs without an interactive dialog, and it is reset to zero at
the end of every paragraph.  If |error_count| reaches 100, \TeX\ decides
that there is no point in continuing further.

@d spotless 0 /*|history| value when nothing has been amiss yet*/
@d warning_issued 1 /*|history| value when |begin_diagnostic| has been called*/
@d error_message_issued 2 /*|history| value when |error| has been called*/
@d fatal_error_stop 3 /*|history| value when termination was premature*/

@<Glob...@>=
static bool @!deletions_allowed; /*is it safe for |error| to call |get_token|?*/
static bool @!set_box_allowed; /*is it safe to do a \.{\\setbox} assignment?*/
static int @!history; /*has the source input been clean so far?*/
static int @!error_count; /*the number of scrolled errors since the
  last paragraph ended*/

@ The value of |history| is initially |fatal_error_stop|, but it will
be changed to |spotless| if \TeX\ survives the initialization process.

@<Set init...@>=
deletions_allowed=true;set_box_allowed=true;
error_count=0; /*|history| is initialized elsewhere*/

@ Since errors can be detected almost anywhere in \TeX, we want to declare the
error procedures near the beginning of the program. But the error procedures
in turn use some other procedures, which need to be declared |forward|
before we get to |error| itself.

It is possible for |error| to be called recursively if some error arises
when |get_token| is being used to delete a token, and/or if some fatal error
occurs while \TeX\ is trying to fix a non-fatal one. But such recursion
@^recursion@>
is never more than two levels deep.

@<Error handling...@>=
static void normalize_selector(void);@/
static void get_token(void);@/
static void term_input(void);@/
static void show_context(void);@/
static void begin_file_reading(void);@/
static void open_log_file(void);@/
static void close_files_and_terminate(void);@/
static void clear_for_error_prompt(void);@/
static void give_err_help(void);@/
#ifdef @!DEBUG
static void debug_help(void);
#else
#define debug_help() do_nothing
#endif

@ Individual lines of help are recorded in the array |help_line|, which
contains entries in positions |0 dotdot(help_ptr-1)|. They should be printed
in reverse order, i.e., with |help_line[0]| appearing last.

@d hlp1(A) help_line[0]=A;@+}
@d hlp2(A, B) help_line[1]=A;help_line[0]=B;@+}
@d hlp3(A, B, C) help_line[2]=A;help_line[1]=B;help_line[0]=C;@+}
@d hlp4(A, B, C, D) help_line[3]=A;help_line[2]=B;help_line[1]=C;help_line[0]=D;@+}
@d hlp5(A, B, C, D, E) help_line[4]=A;help_line[3]=B;help_line[2]=C;help_line[1]=D;help_line[0]=E;@+}
@d hlp6(A, B, C, D, E, F) help_line[5]=A;help_line[4]=B;help_line[3]=C;help_line[2]=D;help_line[1]=E;help_line[0]=F;@+}
@d help0 help_ptr=0 /*sometimes there might be no help*/
@d help1(A) @+{@+help_ptr=1;hlp1(A) /*use this with one help line*/
@d help2(A, B) @+{@+help_ptr=2;hlp2(A, B) /*use this with two help lines*/
@d help3(A, B, C) @+{@+help_ptr=3;hlp3(A, B, C) /*use this with three help lines*/
@d help4(A, B, C, D) @+{@+help_ptr=4;hlp4(A, B, C, D) /*use this with four help lines*/
@d help5(A, B, C, D, E) @+{@+help_ptr=5;hlp5(A, B, C, D, E) /*use this with five help lines*/
@d help6(A, B, C, D, E, F) @+{@+help_ptr=6;hlp6(A, B, C, D, E, F) /*use this with six help lines*/

@<Glob...@>=
static char *@!help_line[6]; /*helps for the next |error|*/
static int @!help_ptr; /*the number of help lines present*/
static bool @!use_err_help; /*should the |err_help| list be shown?*/

@ @<Set init...@>=
help_ptr=0;use_err_help=false;

@ The |jump_out| procedure just cuts across all active procedure levels and
goes to |end_of_TEX|. This is the only nontrivial |@!goto| statement in the
whole program. It is used when there is no recovery from a particular error.

Some \PASCAL\ compilers do not implement non-local |goto| statements.
@^system dependencies@>
In such cases the body of |jump_out| should simply be
`|close_files_and_terminate|;\thinspace' followed by a call on some system
procedure that quietly terminates the program.

@<Error hand...@>=
static void jump_out(void)
{@+ close_files_and_terminate(); exit(0);
}

@ Here now is the general |error| routine.

@<Error hand...@>=
static void error(void) /*completes the job of error reporting*/
{@+
ASCII_code c; /*what the user types*/
int @!s1, @!s2, @!s3, @!s4;
   /*used to save global variables when deleting tokens*/
if (history < error_message_issued) history=error_message_issued;
print_char('.');show_context();
if (interaction==error_stop_mode)
  @<Get user's advice and |return|@>;
incr(error_count);
if (error_count==100)
  {@+print_nl("(That makes 100 errors; please try again.)");
@.That makes 100 errors...@>
  history=fatal_error_stop;jump_out();
  }
@<Put help message on the transcript file@>;
}

@ @<Get user's advice...@>=
loop@+{@+resume: if (interaction!=error_stop_mode) return;
  clear_for_error_prompt();prompt_input("? ");
@.?\relax@>
  if (last==first) return;
  c=buffer[first];
  if (c >= 'a') c=c+'A'-'a'; /*convert to uppercase*/
  @<Interpret code |c| and |return| if done@>;
  }

@ It is desirable to provide an `\.E' option here that gives the user
an easy way to return from \TeX\ to the system editor, with the offending
line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the
file that should be
edited and the relevant line number.
@^system dependencies@>

There is a secret `\.D' option available when the debugging routines haven't
been commented~out.
@^debugging@>

@<Interpret code |c| and |return| if done@>=
switch (c) {
case '0': case '1': case '2': case '3':
  case '4': case '5': case '6': case '7':
  case '8': case '9': if (deletions_allowed)
  @<Delete \(c)|c-"0"| tokens and |goto resume|@>@;@+break;
@t\4\4@>@;
#ifdef @!DEBUG
case 'D': {@+debug_help();goto resume;@+}
#endif
case 'E': if (base_ptr > 0) if (input_stack[base_ptr].name_field >= 256)
  {@+print_nl("You want to edit file ");
@.You want to edit file x@>
  slow_print(input_stack[base_ptr].name_field);
  print(" at line ");print_int(line);
  interaction=scroll_mode;jump_out();
  } @+break;
case 'H': @<Print the help information and |goto resume|@>@;
case 'I': @<Introduce new material from the terminal and |return|@>@;
case 'Q': case 'R': case 'S': @<Change the interaction level and |return|@>@;
case 'X': {@+interaction=scroll_mode;jump_out();
  } @+break;
default:do_nothing;
} @/
@<Print the menu of available options@>@;

@ @<Print the menu...@>=
{@+print("Type <return> to proceed, S to scroll future error messages,");@/
@.Type <return> to proceed...@>
print_nl("R to run without stopping, Q to run quietly,");@/
print_nl("I to insert something, ");
if (base_ptr > 0) if (input_stack[base_ptr].name_field >= 256)
  print("E to edit your file,");
if (deletions_allowed)
  print_nl("1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
print_nl("H for help, X to quit.");
}

@ Here the author of \TeX\ apologizes for making use of the numerical
relation between |'Q'|, |'R'|, |'S'|, and the desired interaction settings
|batch_mode|, |nonstop_mode|, |scroll_mode|.
@^Knuth, Donald Ervin@>

@<Change the interaction...@>=
{@+error_count=0;interaction=batch_mode+c-'Q';
print("OK, entering ");
switch (c) {
case 'Q': {@+print_esc("batchmode");decr(selector);
  } @+break;
case 'R': print_esc("nonstopmode");@+break;
case 'S': print_esc("scrollmode");
}  /*there are no other cases*/
print("...");print_ln();update_terminal;return;
}

@ When the following code is executed, |buffer[(first+1)dotdot(last-1)]| may
contain the material inserted by the user; otherwise another prompt will
be given. In order to understand this part of the program fully, you need
to be familiar with \TeX's input stacks.

@<Introduce new material...@>=
{@+begin_file_reading(); /*enter a new syntactic level for terminal input*/
 /*now |state==mid_line|, so an initial blank space will count as a blank*/
if (last > first+1)
  {@+loc=first+1;buffer[first]=' ';
  }
else{@+prompt_input("insert>");loc=first;
@.insert>@>
  }
first=last;
cur_input.limit_field=last-1; /*no |end_line_char| ends this line*/
return;
}

@ We allow deletion of up to 99 tokens at a time.

@<Delete \(c)|c-"0"| tokens...@>=
{@+s1=cur_tok;s2=cur_cmd;s3=cur_chr;s4=align_state;
align_state=1000000;OK_to_interrupt=false;
if ((last > first+1)&&(buffer[first+1] >= '0')&&(buffer[first+1] <= '9'))
  c=c*10+buffer[first+1]-'0'*11;
else c=c-'0';
while (c > 0)
  {@+get_token(); /*one-level recursive call of |error| is possible*/
  decr(c);
  }
cur_tok=s1;cur_cmd=s2;cur_chr=s3;align_state=s4;OK_to_interrupt=true;
help2("I have just deleted some text, as you asked.",@/
"You can now delete more, or insert, or whatever.");
show_context();goto resume;
}

@ @<Print the help info...@>=
{@+if (use_err_help)
  {@+give_err_help();use_err_help=false;
  }
else{@+if (help_ptr==0)
    help2("Sorry, I don't know how to help in this situation.",@/
    @t\kern1em@>"Maybe you should try asking a human?");
  @/do@+{decr(help_ptr);print(help_line[help_ptr]);print_ln();
  }@+ while (!(help_ptr==0));
  }
help4("Sorry, I already gave what help I could...",@/
  "Maybe you should try asking a human?",@/
  "An error might have occurred before I noticed any problems.",@/
  "``If all else fails, read the instructions.'");@/
goto resume;
}

@ @<Put help message on the transcript file@>=
if (interaction > batch_mode) decr(selector); /*avoid terminal output*/
if (use_err_help)
  {@+print_ln();give_err_help();
  }
else while (help_ptr > 0)
  {@+decr(help_ptr);print_nl(help_line[help_ptr]);
  }
print_ln();
if (interaction > batch_mode) incr(selector); /*re-enable terminal output*/
print_ln()

@ A dozen or so error messages end with a parenthesized integer, so we
save a teeny bit of program space by declaring the following procedure:

@p static void int_error(int @!n)
{@+print(" (");print_int(n);print_char(')');error();
}

@ In anomalous cases, the print selector might be in an unknown state;
the following subroutine is called to fix things just enough to keep
running a bit longer.

@p static void normalize_selector(void)
{@+if (log_opened) selector=term_and_log;
else selector=term_only;
if (job_name==0) open_log_file();
if (interaction==batch_mode) decr(selector);
}

@ The following procedure prints \TeX's last words before dying.

@d succumb {@+if (interaction==error_stop_mode)
    interaction=scroll_mode; /*no more interaction*/
  if (log_opened) error();
  if (interaction > batch_mode) debug_help();
  history=fatal_error_stop;jump_out(); /*irrecoverable error*/
  }

@<Error hand...@>=
static void fatal_error(char *@!s) /*prints |s|, and that's it*/
{@+normalize_selector();@/
print_err("Emergency stop");help1(s);succumb;
@.Emergency stop@>
}

@ Here is the most dreaded error message.

@<Error hand...@>=
static void overflow(char *@!s, int @!n) /*stop due to finiteness*/
{@+normalize_selector();
print_err("TeX capacity exceeded, sorry [");
@.TeX capacity exceeded ...@>
print(s);print_char('=');print_int(n);print_char(']');
help2("If you really absolutely need more capacity,",@/
  "you can ask a wizard to enlarge me.");
succumb;
}

@ The program might sometime run completely amok, at which point there is
no choice but to stop. If no previous error has been detected, that's bad
news; a message is printed that is really intended for the \TeX\
maintenance person instead of the user (unless the user has been
particularly diabolical).  The index entries for `this can't happen' may
help to pinpoint the problem.
@^dry rot@>

@<Error hand...@>=
static void confusion(char *@!s)
   /*consistency check violated; |s| tells where*/
{@+normalize_selector();
if (history < error_message_issued)
  {@+print_err("This can't happen (");print(s);print_char(')');
@.This can't happen@>
  help1("I'm broken. Please show this to someone who can fix can fix");
  }
else{@+print_err("I can't go on meeting you like this");
@.I can't go on...@>
  help2("One of your faux pas seems to have wounded me deeply...",@/
    "in fact, I'm barely conscious. Please fix it and try again.");
  }
succumb;
}

@ Users occasionally want to interrupt \TeX\ while it's running.
If the \PASCAL\ runtime system allows this, one can implement
a routine that sets the global variable |interrupt| to some nonzero value
when such an interrupt is signalled. Otherwise there is probably at least
a way to make |interrupt| nonzero using the \PASCAL\ debugger.
@^system dependencies@>
@^debugging@>

@d check_interrupt {@+if (interrupt!=0) pause_for_instructions();
  }

@<Global...@>=
static int @!interrupt; /*should \TeX\ pause for instructions?*/
static bool @!OK_to_interrupt; /*should interrupts be observed?*/

@ @<Set init...@>=
interrupt=0;OK_to_interrupt=true;

@ When an interrupt has been detected, the program goes into its
highest interaction level and lets the user have nearly the full flexibility of
the |error| routine.  \TeX\ checks for interrupts only at times when it is
safe to do this.

@p static void pause_for_instructions(void)
{@+if (OK_to_interrupt)
  {@+interaction=error_stop_mode;
  if ((selector==log_only)||(selector==no_print))
    incr(selector);
  print_err("Interruption");
@.Interruption@>
  help3("You rang?",@/
  "Try to insert an instruction for me (e.g., `I\\showlists'),",@/
  "unless you just want to quit by typing `X'.");
  deletions_allowed=false;error();deletions_allowed=true;
  interrupt=0;
  }
}

@* Arithmetic with scaled dimensions.
The principal computations performed by \TeX\ are done entirely in terms of
integers less than $2^{31}$ in magnitude; and divisions are done only when both
dividend and divisor are nonnegative. Thus, the arithmetic specified in this
program can be carried out in exactly the same way on a wide variety of
computers, including some small ones. Why? Because the arithmetic
calculations need to be spelled out precisely in order to guarantee that
\TeX\ will produce identical output on different machines. If some
quantities were rounded differently in different implementations, we would
find that line breaks and even page breaks might occur in different places.
Hence the arithmetic of \TeX\ has been designed with care, and systems that
claim to be implementations of \TeX82 should follow precisely the
@:TeX82}{\TeX82@>
calculations as they appear in the present program.

(Actually there are three places where \TeX\ uses |/| with a possibly negative
numerator. These are harmless; see |/| in the index. Also if the user
sets the \.{\\time} or the \.{\\year} to a negative value, some diagnostic
information will involve negative-numerator division. The same remarks
apply for |%| as well as for |/|.)

@ Here is a routine that calculates half of an integer, using an
unambiguous convention with respect to signed odd numbers.

@p static int half(int @!x)
{@+if (odd(x)) return(x+1)/2;
else return x/2;
}

@ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
positions from the right end of a binary computer word.

@d unity 0200000 /*$2^{16}$, represents 1.00000*/
@d two 0400000 /*$2^{17}$, represents 2.00000*/

@<Types...@>=
typedef int scaled; /*this type is used for scaled integers*/
typedef int32_t nonnegative_integer; /*$0\le x<2^{31}$*/
typedef int8_t small_number; /*this type is self-explanatory*/

@ The following function is used to create a scaled integer from a given decimal
fraction $(.d_0d_1\ldots d_{k-1})$, where |0 <= k <= 17|. The digit $d_i$ is
given in |dig[i]|, and the calculation produces a correctly rounded result.

@p static scaled round_decimals(small_number @!k)
   /*converts a decimal fraction*/
{@+int a; /*the accumulator*/
a=0;
while (k > 0)
  {@+decr(k);a=(a+dig[k]*two)/10;
  }
return(a+1)/2;
}

@ Conversely, here is a procedure analogous to |print_int|. If the output
of this procedure is subsequently read by \TeX\ and converted by the
|round_decimals| routine above, it turns out that the original value will
be reproduced exactly; the ``simplest'' such decimal number is output,
but there is always at least one digit following the decimal point.

The invariant relation in the \&{repeat} loop is that a sequence of
decimal digits yet to be printed will yield the original number if and only if
they form a fraction~$f$ in the range $s-\delta\le 10\cdot2^{16}f<s$.
We can stop if and only if $f=0$ satisfies this condition; the loop will
terminate before $s$ can possibly become zero.

@p static void print_scaled(scaled @!s) /*prints scaled real, rounded to five
  digits*/
{@+scaled delta; /*amount of allowable inaccuracy*/
if (s < 0)
  {@+print_char('-');negate(s); /*print the sign, if negative*/
  }
print_int(s/unity); /*print the integer part*/
print_char('.');
s=10*(s%unity)+5;delta=10;
@/do@+{if (delta > unity) s=s+0100000-50000; /*round the last digit*/
print_char('0'+(s/unity));s=10*(s%unity);delta=delta*10;
}@+ while (!(s <= delta));
}

@ Physical sizes that a \TeX\ user specifies for portions of documents are
represented internally as scaled points. Thus, if we define an `sp' (scaled
@^sp@>
point) as a unit equal to $2^{-16}$ printer's points, every dimension
inside of \TeX\ is an integer number of sp. There are exactly
4,736,286.72 sp per inch.  Users are not allowed to specify dimensions
larger than $2^{30}-1$ sp, which is a distance of about 18.892 feet (5.7583
meters); two such quantities can be added without overflow on a 32-bit
computer.

The present implementation of \TeX\ does not check for overflow when
@^overflow in arithmetic@>
dimensions are added or subtracted. This could be done by inserting a
few dozen tests of the form `\ignorespaces|if (x >= 010000000000)|
\\{report\_overflow}', but the chance of overflow is so remote that
such tests do not seem worthwhile.

\TeX\ needs to do only a few arithmetic operations on scaled quantities,
other than addition and subtraction, and the following subroutines do most of
the work. A single computation might use several subroutine calls, and it is
desirable to avoid producing multiple error messages in case of arithmetic
overflow; so the routines set the global variable |arith_error| to |true|
instead of reporting errors directly to the user. Another global variable,
|rem|, holds the remainder after a division.

@<Glob...@>=
static bool @!arith_error; /*has arithmetic overflow occurred recently?*/
static scaled @!rem; /*amount subtracted to get an exact division*/

@ The first arithmetical subroutine we need computes $nx+y$, where |x|
and~|y| are |scaled| and |n| is an integer. We will also use it to
multiply integers.

@d nx_plus_y(A, B, C) mult_and_add(A, B, C, 07777777777)
@d mult_integers(A, B) mult_and_add(A, B, 0, 017777777777)

@p static scaled mult_and_add(int @!n, scaled @!x, scaled @!y, scaled @!max_answer)
{@+if (n < 0)
  {@+negate(x);negate(n);
  }
if (n==0) return y;
else if (((x <= (max_answer-y)/n)&&(-x <= (max_answer+y)/n)))
  return n*x+y;
else{@+arith_error=true;return 0;
  }
}

@ We also need to divide scaled dimensions by integers.

@p static scaled x_over_n(scaled @!x, int @!n)
{@+bool negative; /*should |rem| be negated?*/
scaled x_over_n;
negative=false;
if (n==0)
  {@+arith_error=true;x_over_n=0;rem=x;
  }
else{@+if (n < 0)
    {@+negate(x);negate(n);negative=true;
    }
  if (x >= 0)
    {@+x_over_n=x/n;rem=x%n;
    }
  else{@+x_over_n=-((-x)/n);rem=-((-x)%n);
    }
  }
if (negative) negate(rem);
return x_over_n;}

@ Then comes the multiplication of a scaled number by a fraction |n/(double)d|,
where |n| and |d| are nonnegative integers | <= @t$2^{16}$@>| and |d| is
positive. It would be too dangerous to multiply by~|n| and then divide
by~|d|, in separate operations, since overflow might well occur; and it
would be too inaccurate to divide by |d| and then multiply by |n|. Hence
this subroutine simulates 1.5-precision arithmetic.

@p static scaled xn_over_d(scaled @!x, int @!n, int @!d)
{@+bool positive; /*was |x >= 0|?*/
nonnegative_integer @!t, @!u, @!v; /*intermediate quantities*/
scaled xn_over_d;
if (x >= 0) positive=true;
else{@+negate(x);positive=false;
  }
t=(x%0100000)*n;
u=(x/0100000)*n+(t/0100000);
v=(u%d)*0100000+(t%0100000);
if (u/d >= 0100000) arith_error=true;
else u=0100000*(u/d)+(v/d);
if (positive)
  {@+xn_over_d=u;rem=v%d;
  }
else{@+xn_over_d=-u;rem=-(v%d);
  }
return xn_over_d;}

@ The next subroutine is used to compute the ``badness'' of glue, when a
total~|t| is supposed to be made from amounts that sum to~|s|.  According
to {\sl The \TeX book}, the badness of this situation is $100(t/s)^3$;
however, badness is simply a heuristic, so we need not squeeze out the
last drop of accuracy when computing it. All we really want is an
approximation that has similar properties.
@:TeXbook}{\sl The \TeX book@>

The actual method used to compute the badness is easier to read from the
program than to describe in words. It produces an integer value that is a
reasonably close approximation to $100(t/s)^3$, and all implementations
of \TeX\ should use precisely this method. Any badness of $2^{13}$ or more is
treated as infinitely bad, and represented by 10000.

It is not difficult to prove that $$\hbox{|badness(t+1, s) >= badness(t, s)
 >= badness(t, s+1)|}.$$ The badness function defined here is capable of
computing at most 1095 distinct values, but that is plenty.

@d inf_bad 10000 /*infinitely bad value*/

@p @<Declare \Prote\ arithmetic routines@>@/
static halfword badness(scaled @!t, scaled @!s) /*compute badness, given |t >= 0|*/
{@+int r; /*approximation to $\alpha t/s$, where $\alpha^3\approx
  100\cdot2^{18}$*/
if (t==0) return 0;
else if (s <= 0) return inf_bad;
else{@+if (t <= 7230584) r=(t*297)/s; /*$297^3=99.94\times2^{18}$*/
  else if (s >= 1663497) r=t/(s/297);
  else r=t;
  if (r > 1290) return inf_bad; /*$1290^3<2^{31}<1291^3$*/
  else return(r*r*r+0400000)/01000000;
  }  /*that was $r^3/2^{18}$, rounded to the nearest integer*/
}

@ When \TeX\ ``packages'' a list into a box, it needs to calculate the
proportionality ratio by which the glue inside the box should stretch
or shrink. This calculation does not affect \TeX's decision making,
so the precise details of rounding, etc., in the glue calculation are not
of critical importance for the consistency of results on different computers.

We shall use the type |glue_ratio| for such proportionality ratios.
A glue ratio should take the same amount of memory as an
|int| (usually 32 bits) if it is to blend smoothly with \TeX's
other data structures. Thus |glue_ratio| should be equivalent to
|short_real| in some implementations of \PASCAL. Alternatively,
it is possible to deal with glue ratios using nothing but fixed-point
arithmetic; see {\sl TUGboat \bf3},1 (March 1982), 10--27. (But the
routines cited there must be modified to allow negative glue ratios.)
@^system dependencies@>

@d set_glue_ratio_zero(A) A=0.0 /*store the representation of zero ratio*/
@d set_glue_ratio_one(A) A=1.0 /*store the representation of unit ratio*/
@d unfix(A) ((double)(A)) /*convert from |glue_ratio| to type |double|*/
@d fix(A) ((glue_ratio)(A)) /*convert from |double| to type |glue_ratio|*/
@d float_constant(A) ((double)(A)) /*convert |int| constant to |double|*/

@<Types...@>=
#if __SIZEOF_FLOAT__==4
typedef float float32_t;
#else
#error  @=float type must have size 4@>
#endif
typedef float @!glue_ratio; /*one-word representation of a glue expansion factor*/

@* Packed data.
In order to make efficient use of storage space, \TeX\ bases its major data
structures on a |memory_word|, which contains either a (signed) integer,
possibly scaled, or a (signed) |glue_ratio|, or a small number of
fields that are one half or one quarter of the size used for storing
integers.

If |x| is a variable of type |memory_word|, it contains up to four
fields that can be referred to as follows:
$$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
|x|&.|i|&(an |int|)\cr
|x|&.|sc|\qquad&(a |scaled| integer)\cr
|x|&.|gr|&(a |glue_ratio|)\cr
|x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
|x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
  field)\cr
|x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
  &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
This is somewhat cumbersome to write, and not very readable either, but
macros will be used to make the notation shorter and more transparent.
The \PASCAL\ code below gives a formal definition of |memory_word| and
its subsidiary types, using packed variant records. \TeX\ makes no
assumptions about the relative positions of the fields within a word.

Since we are assuming 32-bit integers, a halfword must contain at least
16 bits, and a quarterword must contain at least 8 bits.
@^system dependencies@>
But it doesn't hurt to have more bits; for example, with enough 36-bit
words you might be able to have |mem_max| as large as 262142, which is
eight times as much memory as anybody had during the first four years of
\TeX's existence.

N.B.: Valuable memory space will be dreadfully wasted unless \TeX\ is compiled
by a \PASCAL\ that packs all of the |memory_word| variants into
the space of a single integer. This means, for example, that |glue_ratio|
words should be |short_real| instead of |double| on some computers. Some
\PASCAL\ compilers will pack an integer whose subrange is `|0 dotdot 255|' into
an eight-bit field, but others insist on allocating space for an additional
sign bit; on such systems you can get 256 values into a quarterword only
if the subrange is `|-128 dotdot 127|'.

The present implementation tries to accommodate as many variations as possible,
so it makes few assumptions. If integers having the subrange
`|min_quarterword dotdot max_quarterword|' can be packed into a quarterword,
and if integers having the subrange `|min_halfword dotdot max_halfword|'
can be packed into a halfword, everything should work satisfactorily.

It is usually most efficient to have |min_quarterword==min_halfword==0|,
so one should try to achieve this unless it causes a severe problem.
The values defined here are recommended for most 32-bit computers.

@d min_quarterword 0 /*smallest allowable value in a |quarterword|*/
@d max_quarterword 65535 /*largest allowable value in a |quarterword|*/
@d min_halfword 0 /*smallest allowable value in a |halfword|*/
@d max_halfword 0x3FFFFFFF /*largest allowable value in a |halfword|*/

@ Here are the inequalities that the quarterword and halfword values
must satisfy (or rather, the inequalities that they mustn't satisfy):

@<Check the ``constant''...@>=
#ifdef @!INIT
if ((mem_min!=mem_bot)||(mem_max!=mem_top)) bad=10;
#endif
@;@/
if ((mem_min > mem_bot)||(mem_max < mem_top)) bad=10;
if ((min_quarterword > 0)||(max_quarterword < 127)) bad=11;
if ((min_halfword > 0)||(max_halfword < 32767)) bad=12;
if ((min_quarterword < min_halfword)||@|
  (max_quarterword > max_halfword)) bad=13;
if ((mem_min < min_halfword)||(mem_max >= max_halfword)||@|
  (mem_bot-mem_min > max_halfword+1)) bad=14;
if ((font_base < min_quarterword)||(font_max > max_quarterword)) bad=15;
if (font_max > font_base+256) bad=16;
if ((save_size > max_halfword)||(max_strings > max_halfword)) bad=17;
if (buf_size > max_halfword) bad=18;
if (max_quarterword-min_quarterword < 255) bad=19;

@ The operation of adding or subtracting |min_quarterword| occurs quite
frequently in \TeX, so it is convenient to abbreviate this operation
by using the macros |qi| and |qo| for input and output to and from
quarterword format.

The inner loop of \TeX\ will run faster with respect to compilers
that don't optimize expressions like `|x+0|' and `|x-0|', if these
macros are simplified in the obvious way when |min_quarterword==0|.
@^inner loop@>@^system dependencies@>

@d qi(A) A+min_quarterword
   /*to put an |eight_bits| item into a quarterword*/
@d qo(A) A-min_quarterword
   /*to take an |eight_bits| item out of a quarterword*/
@d hi(A) A+min_halfword
   /*to put a sixteen-bit item into a halfword*/
@d ho(A) A-min_halfword
   /*to take a sixteen-bit item from a halfword*/

@ The reader should study the following definitions closely:
@^system dependencies@>

@d sc i /*|scaled| data is equivalent to |int|*/

@<Types...@>=
typedef uint16_t quarterword; /*1/4 of a word*/
typedef int32_t halfword; /*1/2 of a word*/
typedef int8_t two_choices; /*used when there are two variants in a record*/
typedef int8_t four_choices; /*used when there are four variants in a record*/
typedef struct { @;@/
  halfword @!rh;
  union {
  halfword @!lh;
  struct { quarterword @!b0;quarterword @!b1;} ;
  };} two_halves;
typedef struct { @;@/
  quarterword @!b0;
  quarterword @!b1;
  quarterword @!b2;
  quarterword @!b3;
  } four_quarters;
typedef struct { @;@/
  union {
  int @!i;
  glue_ratio @!gr;
  two_halves @!hh;
  four_quarters @!qqqq;
  };} memory_word;
typedef struct {@+FILE *f;@+memory_word@,d;@+} word_file;

@ When debugging, we may want to print a |memory_word| without knowing
what type it is; so we print it in all modes.
@^dirty \PASCAL@>@^debugging@>

@p
#ifdef @!DEBUG
static void print_word(memory_word @!w)
   /*prints |w| in all ways*/
{@+print_int(w.i);print_char(' ');@/
print_scaled(w.sc);print_char(' ');@/
print_scaled(round(unity*unfix(w.gr)));print_ln();@/
@^real multiplication@>
print_int(w.hh.lh);print_char('=');print_int(w.hh.b0);print_char(':');
print_int(w.hh.b1);print_char(';');print_int(w.hh.rh);print_char(' ');@/
print_int(w.qqqq.b0);print_char(':');print_int(w.qqqq.b1);print_char(':');
print_int(w.qqqq.b2);print_char(':');print_int(w.qqqq.b3);
}
#endif

@* Dynamic memory allocation.
The \TeX\ system does nearly all of its own memory allocation, so that it
can readily be transported into environments that do not have automatic
facilities for strings, garbage collection, etc., and so that it can be in
control of what error messages the user receives. The dynamic storage
requirements of \TeX\ are handled by providing a large array |mem| in
which consecutive blocks of words are used as nodes by the \TeX\ routines.

Pointer variables are indices into this array, or into another array
called |eqtb| that will be explained later. A pointer variable might
also be a special flag that lies outside the bounds of |mem|, so we
allow pointers to assume any |halfword| value. The minimum halfword
value represents a null pointer. \TeX\ does not assume that |mem[null]| exists.

@s pointer int
@d pointer halfword /*a flag or a location in |mem| or |eqtb|*/
@d null min_halfword /*the null pointer*/

@<Glob...@>=
static pointer @!temp_ptr; /*a pointer variable for occasional emergency use*/

@ The |mem| array is divided into two regions that are allocated separately,
but the dividing line between these two regions is not fixed; they grow
together until finding their ``natural'' size in a particular job.
Locations less than or equal to |lo_mem_max| are used for storing
variable-length records consisting of two or more words each. This region
is maintained using an algorithm similar to the one described in exercise
2.5--19 of {\sl The Art of Computer Programming}. However, no size field
appears in the allocated nodes; the program is responsible for knowing the
relevant size when a node is freed. Locations greater than or equal to
|hi_mem_min| are used for storing one-word records; a conventional
\.{AVAIL} stack is used for allocation in this region.

Locations of |mem| between |mem_bot| and |mem_top| may be dumped as part
of preloaded format files, by the \.{INITEX} preprocessor.
@.INITEX@>
Production versions of \TeX\ may extend the memory at both ends in order to
provide more space; locations between |mem_min| and |mem_bot| are always
used for variable-size nodes, and locations between |mem_top| and |mem_max|
are always used for single-word nodes.

The key pointers that govern |mem| allocation have a prescribed order:
$$\advance\thickmuskip-2mu
\hbox{|null <= mem_min <= mem_bot < lo_mem_max <
  hi_mem_min < mem_top <= mem_end <= mem_max|.}$$

Empirical tests show that the present implementation of \TeX\ tends to
spend about 9\pct! of its running time allocating nodes, and about 6\pct!
deallocating them after their use.

@<Glob...@>=
static memory_word @!mem0[mem_max-mem_min+1],
  *const @!mem = @!mem0-mem_min; /*the big dynamic storage area*/
static pointer @!lo_mem_max; /*the largest location of variable-size memory in use*/
static pointer @!hi_mem_min; /*the smallest location of one-word memory in use*/

@ In order to study the memory requirements of particular applications, it
is possible to prepare a version of \TeX\ that keeps track of current and
maximum memory usage. When code between the delimiters |
#ifdef @!STAT
| $\ldots$
|@t\#\&{endif}@>| is not ``commented out,'' \TeX\ will run a bit slower but it will
report these statistics when |tracing_stats| is sufficiently large.

@<Glob...@>=
static int @!var_used, @!dyn_used; /*how much memory is in use*/
#ifdef @!STAT
#define incr_dyn_used @[incr(dyn_used)@]
#define decr_dyn_used @[decr(dyn_used)@]
#else
#define incr_dyn_used
#define decr_dyn_used
#endif

@ Let's consider the one-word memory region first, since it's the
simplest. The pointer variable |mem_end| holds the highest-numbered location
of |mem| that has ever been used. The free locations of |mem| that
occur between |hi_mem_min| and |mem_end|, inclusive, are of type
|two_halves|, and we write |info(p)| and |link(p)| for the |lh|
and |rh| fields of |mem[p]| when it is of this type. The single-word
free locations form a linked list
$$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
terminated by |null|.

@d link(A) mem[A].hh.rh /*the |link| field of a memory word*/
@d info(A) mem[A].hh.lh /*the |info| field of a memory word*/

@<Glob...@>=
static pointer @!avail; /*head of the list of available one-word nodes*/
static pointer @!mem_end; /*the last one-word node used in |mem|*/

@ If memory is exhausted, it might mean that the user has forgotten
a right brace. We will define some procedures later that try to help
pinpoint the trouble.

@p @<Declare the procedure called |show_token_list|@>@/
@<Declare the procedure called |runaway|@>@;

@ The function |get_avail| returns a pointer to a new one-word node whose
|link| field is null. However, \TeX\ will halt if there is no more room left.
@^inner loop@>

If the available-space list is empty, i.e., if |avail==null|,
we try first to increase |mem_end|. If that cannot be done, i.e., if
|mem_end==mem_max|, we try to decrease |hi_mem_min|. If that cannot be
done, i.e., if |hi_mem_min==lo_mem_max+1|, we have to quit.

@p static pointer get_avail(void) /*single-word node allocation*/
{@+pointer p; /*the new node being got*/
p=avail; /*get top location in the |avail| stack*/
if (p!=null) avail=link(avail); /*and pop it off*/
else if (mem_end < mem_max)  /*or go into virgin territory*/
  {@+incr(mem_end);p=mem_end;
  }
else{@+decr(hi_mem_min);p=hi_mem_min;
  if (hi_mem_min <= lo_mem_max)
    {@+runaway(); /*if memory is exhausted, display possible runaway text*/
    overflow("main memory size", mem_max+1-mem_min);
       /*quit; all one-word nodes are busy*/
@:TeX capacity exceeded main memory size}{\quad main memory size@>
    }
  }
link(p)=null; /*provide an oft-desired initialization of the new node*/
#ifdef @!STAT
incr(dyn_used);
#endif
@; /*maintain statistics*/
return p;
}

@ Conversely, a one-word node is recycled by calling |free_avail|.
This routine is part of \TeX's ``inner loop,'' so we want it to be fast.
@^inner loop@>

@d free_avail(A)  /*single-word node liberation*/
  {@+link(A)=avail;avail=A;
  decr_dyn_used;
  }

@ There's also a |fast_get_avail| routine, which saves the procedure-call
overhead at the expense of extra programming. This routine is used in
the places that would otherwise account for the most calls of |get_avail|.
@^inner loop@>

@d fast_get_avail(A) @t@>@;@/
  {@+A=avail; /*avoid |get_avail| if possible, to save time*/
  if (A==null) A=get_avail();
  else{@+avail=link(A);link(A)=null;
        incr_dyn_used;
    }
  }

@ The procedure |flush_list(p)| frees an entire linked list of
one-word nodes that starts at position |p|.
@^inner loop@>

@p static void flush_list(pointer @!p) /*makes list of single-word nodes
  available*/
{@+pointer @!q, @!r; /*list traversers*/
if (p!=null)
  {@+r=p;
  @/do@+{q=r;r=link(r);
#ifdef @!STAT
decr(dyn_used);
#endif
  }@+ while (!(r==null)); /*now |q| is the last node on the list*/
  link(q)=avail;avail=p;
  }
}

@ The available-space list that keeps track of the variable-size portion
of |mem| is a nonempty, doubly-linked circular list of empty nodes,
pointed to by the roving pointer |rover|.

Each empty node has size 2 or more; the first word contains the special
value |max_halfword| in its |link| field and the size in its |info| field;
the second word contains the two pointers for double linking.

Each nonempty node also has size 2 or more. Its first word is of type
|two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
Otherwise there is complete flexibility with respect to the contents
of its other fields and its other words.

(We require |mem_max < max_halfword| because terrible things can happen
when |max_halfword| appears in the |link| field of a nonempty node.)

@d empty_flag max_halfword /*the |link| of an empty variable-size node*/
@d is_empty(A) (link(A)==empty_flag) /*tests for empty node*/
@d node_size(A) info(A) /*the size field in empty variable-size nodes*/
@d llink(A) info(A+1) /*left link in doubly-linked list of empty nodes*/
@d rlink(A) link(A+1) /*right link in doubly-linked list of empty nodes*/

@<Glob...@>=
static pointer @!rover; /*points to some node in the list of empties*/

@ A call to |get_node| with argument |s| returns a pointer to a new node
of size~|s|, which must be 2~or more. The |link| field of the first word
of this new node is set to null. An overflow stop occurs if no suitable
space exists.

If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
areas and returns the value |max_halfword|.

@p static pointer get_node(int @!s) /*variable-size node allocation*/
{@+
pointer p; /*the node currently under inspection*/
pointer @!q; /*the node physically after node |p|*/
int @!r; /*the newly allocated node, or a candidate for this honor*/
int @!t; /*temporary register*/
restart: p=rover; /*start at some free node in the ring*/
@/do@+{@<Try to allocate within node |p| and its physical successors, and
|goto found| if allocation was possible@>;
@^inner loop@>
p=rlink(p); /*move to the next node in the ring*/
}@+ while (!(p==rover)); /*repeat until the whole list has been traversed*/
if (s==010000000000)
  {@+return max_halfword;
  }
if (lo_mem_max+2 < hi_mem_min) if (lo_mem_max+2 <= mem_bot+max_halfword)
  @<Grow more variable-size memory and |goto restart|@>;
overflow("main memory size", mem_max+1-mem_min);
   /*sorry, nothing satisfactory is left*/
@:TeX capacity exceeded main memory size}{\quad main memory size@>
found: link(r)=null; /*this node is now nonempty*/
#ifdef @!STAT
var_used=var_used+s; /*maintain usage statistics*/
#endif
@;@/
return r;
}

@ The lower part of |mem| grows by 1000 words at a time, unless
we are very close to going under. When it grows, we simply link
a new node into the available-space list. This method of controlled
growth helps to keep the |mem| usage consecutive when \TeX\ is
implemented on ``virtual memory'' systems.
@^virtual memory@>

@<Grow more variable-size memory and |goto restart|@>=
{@+if (hi_mem_min-lo_mem_max >= 1998) t=lo_mem_max+1000;
else t=lo_mem_max+1+(hi_mem_min-lo_mem_max)/2;
   /*|lo_mem_max+2 <= t < hi_mem_min|*/
p=llink(rover);q=lo_mem_max;rlink(p)=q;llink(rover)=q;@/
if (t > mem_bot+max_halfword) t=mem_bot+max_halfword;
rlink(q)=rover;llink(q)=p;link(q)=empty_flag;node_size(q)=t-lo_mem_max;@/
lo_mem_max=t;link(lo_mem_max)=null;info(lo_mem_max)=null;
rover=q;goto restart;
}

@ Empirical tests show that the routine in this section performs a
node-merging operation about 0.75 times per allocation, on the average,
after which it finds that |r > p+1| about 95\pct! of the time.

@<Try to allocate...@>=
q=p+node_size(p); /*find the physical successor*/
@^inner loop@>
while (is_empty(q))  /*merge node |p| with node |q|*/
  {@+t=rlink(q);
  if (q==rover) rover=t;
  llink(t)=llink(q);rlink(llink(q))=t;@/
  q=q+node_size(q);
  }
r=q-s;
if (r > p+1) @<Allocate from the top of node |p| and |goto found|@>;
if (r==p) if (rlink(p)!=p)
  @<Allocate entire node |p| and |goto found|@>;
node_size(p)=q-p /*reset the size in case it grew*/

@ @<Allocate from the top...@>=
{@+node_size(p)=r-p; /*store the remaining size*/
@^inner loop@>
rover=p; /*start searching here next time*/
goto found;
}

@ Here we delete node |p| from the ring, and let |rover| rove around.

@<Allocate entire...@>=
{@+rover=rlink(p);t=llink(p);
llink(rover)=t;rlink(t)=rover;
goto found;
}

@ Conversely, when some variable-size node |p| of size |s| is no longer needed,
the operation |free_node(p, s)| will make its words available, by inserting
|p| as a new empty node just before where |rover| now points.
@^inner loop@>

@p static void free_node(pointer @!p, halfword @!s) /*variable-size node
  liberation*/
{@+pointer q; /*|llink(rover)|*/
node_size(p)=s;link(p)=empty_flag;
q=llink(rover);llink(p)=q;rlink(p)=rover; /*set both links*/
llink(rover)=p;rlink(q)=p; /*insert |p| into the ring*/
#ifdef @!STAT
var_used=var_used-s;
#endif
@; /*maintain statistics*/
}

@ Just before \.{INITEX} writes out the memory, it sorts the doubly linked
available space list. The list is probably very short at such times, so a
simple insertion sort is used. The smallest available location will be
pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.

@p
#ifdef @!INIT
static void sort_avail(void) /*sorts the available variable-size nodes
  by location*/
{@+pointer p, @!q, @!r; /*indices into |mem|*/
pointer @!old_rover; /*initial |rover| setting*/
p=get_node(010000000000); /*merge adjacent free areas*/
p=rlink(rover);rlink(rover)=max_halfword;old_rover=rover;
while (p!=old_rover) @<Sort \(p)|p| into the list starting at |rover| and
advance |p| to |rlink(p)|@>;
p=rover;
while (rlink(p)!=max_halfword)
  {@+llink(rlink(p))=p;p=rlink(p);
  }
rlink(p)=rover;llink(rover)=p;
}
#endif

@ The following |while | loop is guaranteed to
terminate, since the list that starts at
|rover| ends with |max_halfword| during the sorting procedure.

@<Sort \(p)|p|...@>=
if (p < rover)
  {@+q=p;p=rlink(q);rlink(q)=rover;rover=q;
  }
else{@+q=rover;
  while (rlink(q) < p) q=rlink(q);
  r=rlink(p);rlink(p)=rlink(q);rlink(q)=p;p=r;
  }

@* Data structures for boxes and their friends.
From the computer's standpoint, \TeX's chief mission is to create
horizontal and vertical lists. We shall now investigate how the elements
of these lists are represented internally as nodes in the dynamic memory.

A horizontal or vertical list is linked together by |link| fields in
the first word of each node. Individual nodes represent boxes, glue,
penalties, or special things like discretionary hyphens; because of this
variety, some nodes are longer than others, and we must distinguish different
kinds of nodes. We do this by putting a `|type|' field in the first word,
together with the link and an optional `|subtype|'.

@d type(A) mem[A].hh.b0 /*identifies what kind of node this is*/
@d subtype(A) mem[A].hh.b1 /*secondary identification in some cases*/

@ A |@!char_node|, which represents a single character, is the most important
kind of node because it accounts for the vast majority of all boxes.
Special precautions are therefore taken to ensure that a |char_node| does
not take up much memory space. Every such node is one word long, and in fact
it is identifiable by this property, since other kinds of nodes have at least
two words, and they appear in |mem| locations less than |hi_mem_min|.
This makes it possible to omit the |type| field in a |char_node|, leaving
us room for two bytes that identify a |font| and a |character| within
that font.

Note that the format of a |char_node| allows for up to 256 different
fonts and up to 256 characters per font; but most implementations will
probably limit the total number of fonts to fewer than 75 per job,
and most fonts will stick to characters whose codes are
less than 128 (since higher codes
are more difficult to access on most keyboards).

Extensions of \TeX\ intended for oriental languages will need even more
than $256\times256$ possible characters, when we consider different sizes
@^oriental characters@>@^Chinese characters@>@^Japanese characters@>
and styles of type.  It is suggested that Chinese and Japanese fonts be
handled by representing such characters in two consecutive |char_node|
entries: The first of these has |font==font_base|, and its |link| points
to the second;
the second identifies the font and the character dimensions.
The saving feature about oriental characters is that most of them have
the same box dimensions. The |character| field of the first |char_node|
is a ``\\{charext}'' that distinguishes between graphic symbols whose
dimensions are identical for typesetting purposes. (See the \MF\ manual.)
Such an extension of \TeX\ would not be difficult; further details are
left to the reader.

In order to make sure that the |character| code fits in a quarterword,
\TeX\ adds the quantity |min_quarterword| to the actual code.

Character nodes appear only in horizontal lists, never in vertical lists.

@d is_char_node(A) (A >= hi_mem_min)
   /*does the argument point to a |char_node|?*/
@d font(A) type(A) /*the font code in a |char_node|*/
@d character(A) subtype(A) /*the character code in a |char_node|*/

@ An |hlist_node| stands for a box that was made from a horizontal list.
Each |hlist_node| is seven words long, and contains the following fields
(in addition to the mandatory |type| and |link|, which we shall not
mention explicitly when discussing the other node types): The |height| and
|width| and |depth| are scaled integers denoting the dimensions of the
box.  There is also a |shift_amount| field, a scaled integer indicating
how much this box should be lowered (if it appears in a horizontal list),
or how much it should be moved to the right (if it appears in a vertical
list). There is a |list_ptr| field, which points to the beginning of the
list from which this box was fabricated; if |list_ptr| is |null|, the box
is empty. Finally, there are three fields that represent the setting of
the glue:  |glue_set(p)| is a word of type |glue_ratio| that represents
the proportionality constant for glue setting; |glue_sign(p)| is
|stretching| or |shrinking| or |normal| depending on whether or not the
glue should stretch or shrink or remain rigid; and |glue_order(p)|
specifies the order of infinity to which glue setting applies (|normal|,
|fil|, |fill|, or |filll|). The |subtype| field is not used.

@d hlist_node 0 /*|type| of hlist nodes*/
@d box_node_size 9 /*number of words to allocate for a box, set, or pack node*/
@d width_offset 1 /*position of |width| field in a box node*/
@d depth_offset 2 /*position of |depth| field in a box node*/
@d height_offset 3 /*position of |height| field in a box node*/
@d width(A) mem[A+width_offset].sc /*width of the box, in sp*/
@d depth(A) mem[A+depth_offset].sc /*depth of the box, in sp*/
@d height(A) mem[A+height_offset].sc /*height of the box, in sp*/
@d shift_amount(A) mem[A+4].sc /*repositioning distance, in sp*/
@d list_offset 5 /*position of |list_ptr| field in a box node*/
@d list_ptr(A) link(A+list_offset) /*beginning of the list inside the box*/
@d glue_order(A) subtype(A+list_offset) /*applicable order of infinity*/
@d glue_sign(A) type(A+list_offset) /*stretching or shrinking*/
@d normal 0 /*the most common case when several cases are named*/
@d stretching 1 /*glue setting applies to the stretch components*/
@d shrinking 2 /*glue setting applies to the shrink components*/
@d glue_offset 6 /*position of |glue_set| in a box node*/
@d glue_set(A) mem[A+glue_offset].gr
   /*a word of type |glue_ratio| for glue setting*/

@ The |new_null_box| function returns a pointer to an |hlist_node| in
which all subfields have the values corresponding to `\.{\\hbox\{\}}'.
(The |subtype| field is set to |min_quarterword|, for historic reasons
that are no longer relevant.)

@p static pointer new_null_box(void) /*creates a new box node*/
{@+pointer p; /*the new node*/
p=get_node(box_node_size);type(p)=hlist_node;
subtype(p)=min_quarterword;
width(p)=0;depth(p)=0;height(p)=0;shift_amount(p)=0;list_ptr(p)=null;
glue_sign(p)=normal;glue_order(p)=normal;set_glue_ratio_zero(glue_set(p));
return p;
}

@ A |vlist_node| is like an |hlist_node| in all respects except that it
contains a vertical list.

@d vlist_node 1 /*|type| of vlist nodes*/

@ A |rule_node| stands for a solid black rectangle; it has |width|,
|depth|, and |height| fields just as in an |hlist_node|. However, if
any of these dimensions is $-2^{30}$, the actual value will be determined
by running the rule up to the boundary of the innermost enclosing box.
This is called a ``running dimension.'' The |width| is never running in
an hlist; the |height| and |depth| are never running in a~vlist.

@d rule_node 2 /*|type| of rule nodes*/
@d rule_node_size 4 /*number of words to allocate for a rule node*/
@d null_flag -010000000000 /*$-2^{30}$, signifies a missing item*/
@d is_running(A) (A==null_flag) /*tests for a running dimension*/

@ A new rule node is delivered by the |new_rule| function. It
makes all the dimensions ``running,'' so you have to change the
ones that are not allowed to run.

@p static pointer new_rule(void)
{@+pointer p; /*the new node*/
p=get_node(rule_node_size);type(p)=rule_node;
subtype(p)=0; /*the |subtype| is not used*/
width(p)=null_flag;depth(p)=null_flag;height(p)=null_flag;
return p;
}

@ Insertions are represented by |ins_node| records, where the |subtype|
indicates the corresponding box number. For example, `\.{\\insert 250}'
leads to an |ins_node| whose |subtype| is |250+min_quarterword|.
The |height| field of an |ins_node| is slightly misnamed; it actually holds
the natural height plus depth of the vertical list being inserted.
The |depth| field holds the |split_max_depth| to be used in case this
insertion is split, and the |split_top_ptr| points to the corresponding
|split_top_skip|. The |float_cost| field holds the |floating_penalty| that
will be used if this insertion floats to a subsequent page after a
split insertion of the same class.  There is one more field, the
|ins_ptr|, which points to the beginning of the vlist for the insertion.

@d ins_node 3 /*|type| of insertion nodes*/
@d ins_node_size 5 /*number of words to allocate for an insertion*/
@d float_cost(A) mem[A+1].i /*the |floating_penalty| to be used*/
@d ins_ptr(A) info(A+4) /*the vertical list to be inserted*/
@d split_top_ptr(A) link(A+4) /*the |split_top_skip| to be used*/

@ A |mark_node| has a |mark_ptr| field that points to the reference count
of a token list that contains the user's \.{\\mark} text.
In addition there is a |mark_class| field that contains the mark class.

@d mark_node 4 /*|type| of a mark node*/
@d small_node_size 2 /*number of words to allocate for most node types*/
@d mark_ptr(A) link(A+1) /*head of the token list for a mark*/
@d mark_class(A) info(A+1) /*the mark class*/

@ An |adjust_node|, which occurs only in horizontal lists,
specifies material that will be moved out into the surrounding
vertical list; i.e., it is used to implement \TeX's `\.{\\vadjust}'
operation.  The |adjust_ptr| field points to the vlist containing this
material.

@d adjust_node 5 /*|type| of an adjust node*/
@d adjust_ptr(A) mem[A+1].i
   /*vertical list to be moved out of horizontal list*/

@ A |ligature_node|, which occurs only in horizontal lists, specifies
a character that was fabricated from the interaction of two or more
actual characters.  The second word of the node, which is called the
|lig_char| word, contains |font| and |character| fields just as in a
|char_node|. The characters that generated the ligature have not been
forgotten, since they are needed for diagnostic messages and for
hyphenation; the |lig_ptr| field points to a linked list of character
nodes for all original characters that have been deleted. (This list
might be empty if the characters that generated the ligature were
retained in other nodes.)

The |subtype| field is 0, plus 2 and/or 1 if the original source of the
ligature included implicit left and/or right boundaries.

@d ligature_node 6 /*|type| of a ligature node*/
@d lig_char(A) A+1 /*the word where the ligature is to be found*/
@d lig_ptr(A) link(lig_char(A)) /*the list of characters*/

@ The |new_ligature| function creates a ligature node having given
contents of the |font|, |character|, and |lig_ptr| fields. We also have
a |new_lig_item| function, which returns a two-word node having a given
|character| field. Such nodes are used for temporary processing as ligatures
are being created.

@p static pointer new_ligature(quarterword @!f, quarterword @!c, pointer @!q)
{@+pointer p; /*the new node*/
p=get_node(small_node_size);type(p)=ligature_node;
font(lig_char(p))=f;character(lig_char(p))=c;lig_ptr(p)=q;
subtype(p)=0;return p;
}
@#
static pointer new_lig_item(quarterword @!c)
{@+pointer p; /*the new node*/
p=get_node(small_node_size);character(p)=c;lig_ptr(p)=null;
return p;
}

@ A |disc_node|, which occurs only in horizontal lists, specifies a
``dis\-cretion\-ary'' line break. If such a break occurs at node |p|, the text
that starts at |pre_break(p)| will precede the break, the text that starts at
|post_break(p)| will follow the break, and text that appears in the next
|replace_count(p)| nodes will be ignored. For example, an ordinary
discretionary hyphen, indicated by `\.{\\-}', yields a |disc_node| with
|pre_break| pointing to a |char_node| containing a hyphen, |post_break==null|,
and |replace_count==0|. All three of the discretionary texts must be
lists that consist entirely of character, kern, box, rule, and ligature nodes.

If |pre_break(p)==null|, the |ex_hyphen_penalty| will be charged for this
break.  Otherwise the |hyphen_penalty| will be charged.  The texts will
actually be substituted into the list by the line-breaking algorithm if it
decides to make the break, and the discretionary node will disappear at
that time; thus, the output routine sees only discretionaries that were
not chosen.

@d disc_node 7 /*|type| of a discretionary node*/
@d replace_count(A) (subtype(A)&0x7F) /*how many subsequent nodes to replace*/
@d set_replace_count(A,B) (subtype(A)=(B)&0x7F)
@d set_auto_disc(A) (subtype(A)|=0x80)
@d is_auto_disc(A) (subtype(A)&0x80)
@d pre_break(A) llink(A) /*text that precedes a discretionary break*/
@d post_break(A) rlink(A) /*text that follows a discretionary break*/

@p static pointer new_disc(void) /*creates an empty |disc_node|*/
{@+pointer p; /*the new node*/
p=get_node(small_node_size);type(p)=disc_node;
set_replace_count(p,0);pre_break(p)=null;post_break(p)=null;
return p;
}

@ A |whatsit_node| is a wild card reserved for extensions to \TeX. The
|subtype| field in its first word says what `\\{whatsit}' it is, and
implicitly determines the node size (which must be 2 or more) and the
format of the remaining words. When a |whatsit_node| is encountered
in a list, special actions are invoked; knowledgeable people who are
careful not to mess up the rest of \TeX\ are able to make \TeX\ do new
things by adding code at the end of the program. For example, there
might be a `\TeX nicolor' extension to specify different colors of ink,
@^extensions to \TeX@>
and the whatsit node might contain the desired parameters.

The present implementation of \TeX\ treats the features associated with
`\.{\\write}' and `\.{\\special}' as if they were extensions, in order to
illustrate how such routines might be coded. We shall defer further
discussion of extensions until the end of this program.

@d whatsit_node 8 /*|type| of special extension nodes*/

@ A |math_node|, which occurs only in horizontal lists, appears before and
after mathematical formulas. The |subtype| field is |before| before the
formula and |after| after it. There is a |width| field, which represents
the amount of surrounding space inserted by \.{\\mathsurround}.

@d math_node 9 /*|type| of a math node*/
@d before 0 /*|subtype| for math node that introduces a formula*/
@d after 1 /*|subtype| for math node that winds up a formula*/

@p static pointer new_math(scaled @!w, small_number @!s)
{@+pointer p; /*the new node*/
p=get_node(small_node_size);type(p)=math_node;
subtype(p)=s;width(p)=w;return p;
}

@ \TeX\ makes use of the fact that |hlist_node|, |vlist_node|,
|rule_node|, |ins_node|, |mark_node|, |adjust_node|, |ligature_node|,
|disc_node|, |whatsit_node|, and |math_node| are at the low end of the
type codes, by permitting a break at glue in a list if and only if the
|type| of the previous node is less than |math_node|. Furthermore, a
node is discarded after a break if its type is |math_node| or~more.

@d precedes_break(A) (type(A) < math_node)
@d non_discardable(A) (type(A) < math_node)

@ A |glue_node| represents glue in a list. However, it is really only
a pointer to a separate glue specification, since \TeX\ makes use of the
fact that many essentially identical nodes of glue are usually present.
If |p| points to a |glue_node|, |glue_ptr(p)| points to
another packet of words that specify the stretch and shrink components, etc.

Glue nodes also serve to represent leaders; the |subtype| is used to
distinguish between ordinary glue (which is called |normal|) and the three
kinds of leaders (which are called |a_leaders|, |c_leaders|, and |x_leaders|).
The |leader_ptr| field points to a rule node or to a box node containing the
leaders; it is set to |null| in ordinary glue nodes.

Many kinds of glue are computed from \TeX's ``skip'' parameters, and
it is helpful to know which parameter has led to a particular glue node.
Therefore the |subtype| is set to indicate the source of glue, whenever
it originated as a parameter. We will be defining symbolic names for the
parameter numbers later (e.g., |line_skip_code==0|, |baseline_skip_code==1|,
etc.); it suffices for now to say that the |subtype| of parametric glue
will be the same as the parameter number, plus~one.

In math formulas there are two more possibilities for the |subtype| in a
glue node: |mu_glue| denotes an \.{\\mskip} (where the units are scaled \.{mu}
instead of scaled \.{pt}); and |cond_math_glue| denotes the `\.{\\nonscript}'
feature that cancels the glue node immediately following if it appears
in a subscript.

@d glue_node 10 /*|type| of node that points to a glue specification*/
@d cond_math_glue 98 /*special |subtype| to suppress glue in the next node*/
@d mu_glue 99 /*|subtype| for math glue*/
@d a_leaders 100 /*|subtype| for aligned leaders*/
@d c_leaders 101 /*|subtype| for centered leaders*/
@d x_leaders 102 /*|subtype| for expanded leaders*/
@d glue_ptr(A) llink(A) /*pointer to a glue specification*/
@d leader_ptr(A) rlink(A) /*pointer to box or rule node for leaders*/

@ A glue specification has a halfword reference count in its first word,
@^reference counts@>
representing |null| plus the number of glue nodes that point to it (less one).
Note that the reference count appears in the same position as
the |link| field in list nodes; this is the field that is initialized
to |null| when a node is allocated, and it is also the field that is flagged
by |empty_flag| in empty nodes.

Glue specifications also contain three |scaled| fields, for the |width|,
|stretch|, and |shrink| dimensions. Finally, there are two one-byte
fields called |stretch_order| and |shrink_order|; these contain the
orders of infinity (|normal|, |fil|, |fill|, or |filll|)
corresponding to the stretch and shrink values.

@d glue_spec_size 4 /*number of words to allocate for a glue specification*/
@d glue_ref_count(A) link(A) /*reference count of a glue specification*/
@d stretch(A) mem[A+2].sc /*the stretchability of this glob of glue*/
@d shrink(A) mem[A+3].sc /*the shrinkability of this glob of glue*/
@d stretch_order(A) type(A) /*order of infinity for stretching*/
@d shrink_order(A) subtype(A) /*order of infinity for shrinking*/
@d fil 1 /*first-order infinity*/
@d fill 2 /*second-order infinity*/
@d filll 3 /*third-order infinity*/

@<Types...@>=
typedef int8_t glue_ord; /*infinity to the 0, 1, 2, or 3 power*/

@ Here is a function that returns a pointer to a copy of a glue spec.
The reference count in the copy is |null|, because there is assumed
to be exactly one reference to the new specification.

@p static pointer new_spec(pointer @!p) /*duplicates a glue specification*/
{@+pointer q; /*the new spec*/
q=get_node(glue_spec_size);@/
mem[q]=mem[p];glue_ref_count(q)=null;@/
width(q)=width(p);stretch(q)=stretch(p);shrink(q)=shrink(p);
return q;
}

@ And here's a function that creates a glue node for a given parameter
identified by its code number; for example,
|new_param_glue(line_skip_code)| returns a pointer to a glue node for the
current \.{\\lineskip}.

@p static pointer new_param_glue(small_number @!n)
{@+pointer p; /*the new node*/
pointer @!q; /*the glue specification*/
p=get_node(small_node_size);type(p)=glue_node;subtype(p)=n+1;
leader_ptr(p)=null;@/
q=@<Current |mem| equivalent of glue parameter number |n|@>@t@>;
glue_ptr(p)=q;incr(glue_ref_count(q));
return p;
}

@ Glue nodes that are more or less anonymous are created by |new_glue|,
whose argument points to a glue specification.

@p static pointer new_glue(pointer @!q)
{@+pointer p; /*the new node*/
p=get_node(small_node_size);type(p)=glue_node;subtype(p)=normal;
leader_ptr(p)=null;glue_ptr(p)=q;incr(glue_ref_count(q));
return p;
}

@ Still another subroutine is needed: This one is sort of a combination
of |new_param_glue| and |new_glue|. It creates a glue node for one of
the current glue parameters, but it makes a fresh copy of the glue
specification, since that specification will probably be subject to change,
while the parameter will stay put. The global variable |temp_ptr| is
set to the address of the new spec.

@p static pointer new_skip_param(small_number @!n)
{@+pointer p; /*the new node*/
temp_ptr=new_spec(@<Current |mem| equivalent of glue parameter...@>);
p=new_glue(temp_ptr);glue_ref_count(temp_ptr)=null;subtype(p)=n+1;
return p;
}

@ A |kern_node| has a |width| field to specify a (normally negative)
amount of spacing. This spacing correction appears in horizontal lists
between letters like A and V when the font designer said that it looks
better to move them closer together or further apart. A kern node can
also appear in a vertical list, when its `|width|' denotes additional
spacing in the vertical direction. The |subtype| is either |normal| (for
kerns inserted from font information or math mode calculations) or |explicit|
(for kerns inserted from \.{\\kern} and \.{\\/} commands) or |acc_kern|
(for kerns inserted from non-math accents) or |mu_glue| (for kerns
inserted from \.{\\mkern} specifications in math formulas).

@d kern_node 11 /*|type| of a kern node*/
@d explicit 1 /*|subtype| of kern nodes from \.{\\kern} and \.{\\/}*/
@d acc_kern 2 /*|subtype| of kern nodes from accents*/

@ The |new_kern| function creates a kern node having a given width.

@p static pointer new_kern(scaled @!w)
{@+pointer p; /*the new node*/
p=get_node(small_node_size);type(p)=kern_node;
subtype(p)=normal;
width(p)=w;
return p;
}

@ A |penalty_node| specifies the penalty associated with line or page
breaking, in its |penalty| field. This field is a fullword integer, but
the full range of integer values is not used: Any penalty | >= 10000| is
treated as infinity, and no break will be allowed for such high values.
Similarly, any penalty | <= -10000| is treated as negative infinity, and a
break will be forced.

@d penalty_node 12 /*|type| of a penalty node*/
@d inf_penalty inf_bad /*``infinite'' penalty value*/
@d eject_penalty (-inf_penalty) /*``negatively infinite'' penalty value*/
@d penalty(A) mem[A+1].i /*the added cost of breaking a list here*/

@ Anyone who has been reading the last few sections of the program will
be able to guess what comes next.

@p static pointer new_penalty(int @!m)
{@+pointer p; /*the new node*/
p=get_node(small_node_size);type(p)=penalty_node;
subtype(p)=0; /*the |subtype| is not used*/
penalty(p)=m;return p;
}

@ You might think that we have introduced enough node types by now. Well,
almost, but there is one more: An |unset_node| has nearly the same format
as an |hlist_node| or |vlist_node|; it is used for entries in \.{\\halign}
or \.{\\valign} that are not yet in their final form, since the box
dimensions are their ``natural'' sizes before any glue adjustment has been
made. The |glue_set| word is not present; instead, we have a |glue_stretch|
field, which contains the total stretch of order |glue_order| that is
present in the hlist or vlist being boxed.
Similarly, the |shift_amount| field is replaced by a |glue_shrink| field,
containing the total shrink of order |glue_sign| that is present.
The |subtype| field is called |span_count|; an unset box typically
contains the data for |qo(span_count)+1| columns.
Unset nodes will be changed to box nodes when alignment is completed.

@d unset_node 13 /*|type| for an unset node*/
@d unset_set_node 32 /*|type| for an unset |set_node|*/
@d unset_pack_node 33 /*|type| for an unset |pack_node|*/
@d glue_stretch(A) mem[A+glue_offset].sc /*total stretch in an unset node*/
@d glue_shrink(A) shift_amount(A) /*total shrink in an unset node*/
@d span_count(A) subtype(A) /*indicates the number of spanned columns*/

@ In fact, there are still more types coming. When we get to math formula
processing we will see that a |style_node| has |type==14|; and a number
of larger type codes will also be defined, for use in math mode only.

@ Warning: If any changes are made to these data structure layouts, such as
changing any of the node sizes or even reordering the words of nodes,
the |copy_node_list| procedure and the memory initialization code
below may have to be changed. Such potentially dangerous parts of the
program are listed in the index under `data structure assumptions'.
@!@^data structure assumptions@>
However, other references to the nodes are made symbolically in terms of
the \.{WEB} macro definitions above, so that format changes will leave
\TeX's other algorithms intact.
@^system dependencies@>

@* Memory layout.
Some areas of |mem| are dedicated to fixed usage, since static allocation is
more efficient than dynamic allocation when we can get away with it. For
example, locations |mem_bot| to |mem_bot+3| are always used to store the
specification for glue that is `\.{0pt plus 0pt minus 0pt}'. The
following macro definitions accomplish the static allocation by giving
symbolic names to the fixed positions. Static variable-size nodes appear
in locations |mem_bot| through |lo_mem_stat_max|, and static single-word nodes
appear in locations |hi_mem_stat_min| through |mem_top|, inclusive. It is
harmless to let |lig_trick| and |garbage| share the same location of |mem|.

@d zero_glue mem_bot /*specification for \.{0pt plus 0pt minus 0pt}*/
@d fil_glue zero_glue+glue_spec_size /*\.{0pt plus 1fil minus 0pt}*/
@d fill_glue fil_glue+glue_spec_size /*\.{0pt plus 1fill minus 0pt}*/
@d ss_glue fill_glue+glue_spec_size /*\.{0pt plus 1fil minus 1fil}*/
@d fil_neg_glue ss_glue+glue_spec_size /*\.{0pt plus -1fil minus 0pt}*/
@d lo_mem_stat_max fil_neg_glue+glue_spec_size-1 /*largest statically
  allocated word in the variable-size |mem|*/
@#
@d page_ins_head mem_top /*list of insertion data for current page*/
@d contrib_head mem_top-1 /*vlist of items not yet on current page*/
@d page_head mem_top-2 /*vlist for current page*/
@d temp_head mem_top-3 /*head of a temporary list of some kind*/
@d hold_head mem_top-4 /*head of a temporary list of another kind*/
@d adjust_head mem_top-5 /*head of adjustment list returned by |hpack|*/
@d active mem_top-7 /*head of active list in |line_break|, needs two words*/
@d align_head mem_top-8 /*head of preamble list for alignments*/
@d end_span mem_top-9 /*tail of spanned-width lists*/
@d omit_template mem_top-10 /*a constant token list*/
@d null_list mem_top-11 /*permanently empty list*/
@d lig_trick mem_top-12 /*a ligature masquerading as a |char_node|*/
@d garbage mem_top-12 /*used for scrap information*/
@d backup_head mem_top-13 /*head of token list built by |scan_keyword|*/
@d setpage_head mem_top-14 /*head of page template list build by |new_setpage_node|*/
@d max_page type(setpage_head) /* maximum page template number */
@d max_stream subtype(setpage_head) /* maximum stream number */
@d hi_mem_stat_min mem_top-14 /*smallest statically allocated word in
  the one-word |mem|*/
@d hi_mem_stat_usage 15 /*the number of one-word nodes always present*/

@ The following code gets |mem| off to a good start, when \TeX\ is
initializing itself the slow~way.

@<Local variables for init...@>=
int @!k; /*index into |mem|, |eqtb|, etc.*/

@ @<Initialize table entries...@>=
for (k=mem_bot+1; k<=lo_mem_stat_max; k++) mem[k].sc=0;
   /*all glue dimensions are zeroed*/
@^data structure assumptions@>
k=mem_bot;@+while (k <= lo_mem_stat_max)
     /*set first words of glue specifications*/
  {@+glue_ref_count(k)=null+1;
  stretch_order(k)=normal;shrink_order(k)=normal;
  k=k+glue_spec_size;
  }
stretch(fil_glue)=unity;stretch_order(fil_glue)=fil;@/
stretch(fill_glue)=unity;stretch_order(fill_glue)=fill;@/
stretch(ss_glue)=unity;stretch_order(ss_glue)=fil;@/
shrink(ss_glue)=unity;shrink_order(ss_glue)=fil;@/
stretch(fil_neg_glue)=-unity;stretch_order(fil_neg_glue)=fil;@/
rover=lo_mem_stat_max+1;
link(rover)=empty_flag; /*now initialize the dynamic memory*/
node_size(rover)=1000; /*which is a 1000-word available node*/
llink(rover)=rover;rlink(rover)=rover;@/
lo_mem_max=rover+1000;link(lo_mem_max)=null;info(lo_mem_max)=null;@/
for (k=hi_mem_stat_min; k<=mem_top; k++)
  mem[k]=mem[lo_mem_max]; /*clear list heads*/
@<Initialize the special list heads and constant nodes@>;
avail=null;mem_end=mem_top;
hi_mem_min=hi_mem_stat_min; /*initialize the one-word memory*/
var_used=lo_mem_stat_max+1-mem_bot;dyn_used=hi_mem_stat_usage;
   /*initialize statistics*/

@ If \TeX\ is extended improperly, the |mem| array might get screwed up.
For example, some pointers might be wrong, or some ``dead'' nodes might not
have been freed when the last reference to them disappeared. Procedures
|check_mem| and |search_mem| are available to help diagnose such
problems. These procedures make use of two arrays called |is_free| and
|was_free| that are present only if \TeX's debugging routines have
been included. (You may want to decrease the size of |mem| while you
@^debugging@>
are debugging.)

@<Glob...@>=
#ifdef @!DEBUG
static bool @!is_free0[mem_max-mem_min+1],
  *const @!is_free = @!is_free0-mem_min; /*free cells*/
@t\hskip10pt@>static bool @!was_free0[mem_max-mem_min+1],
  *const @!was_free = @!was_free0-mem_min;
   /*previously free cells*/
@t\hskip10pt@>static pointer @!was_mem_end, @!was_lo_max, @!was_hi_min;
   /*previous |mem_end|, |lo_mem_max|, and |hi_mem_min|*/
@t\hskip10pt@>static bool @!panicking; /*do we want to check memory constantly?*/
#endif

@ @<Set initial...@>=
#ifdef @!DEBUG
was_mem_end=mem_min; /*indicate that everything was previously free*/
was_lo_max=mem_min;was_hi_min=mem_max;
panicking=false;
#endif

@ Procedure |check_mem| makes sure that the available space lists of
|mem| are well formed, and it optionally prints out all locations
that are reserved now but were free the last time this procedure was called.

@p
#ifdef @!DEBUG
static void check_mem(bool @!print_locs)
{@+ /*loop exits*/
int p, @!q; /*current locations of interest in |mem|*/
bool @!clobbered; /*is something amiss?*/
for (p=mem_min; p<=lo_mem_max; p++) is_free[p]=false; /*you can probably
  do this faster*/
for (p=hi_mem_min; p<=mem_end; p++) is_free[p]=false; /*ditto*/
@<Check single-word |avail| list@>;
@<Check variable-size |avail| list@>;
@<Check flags of unavailable nodes@>;
if (print_locs) @<Print newly busy locations@>;
for (p=mem_min; p<=lo_mem_max; p++) was_free[p]=is_free[p];
for (p=hi_mem_min; p<=mem_end; p++) was_free[p]=is_free[p];
   /*|was_free=is_free| might be faster*/
was_mem_end=mem_end;was_lo_max=lo_mem_max;was_hi_min=hi_mem_min;
}
#endif

@ @<Check single-word...@>=
p=avail;q=null;clobbered=false;
while (p!=null)
  {@+if ((p > mem_end)||(p < hi_mem_min)) clobbered=true;
  else if (is_free[p]) clobbered=true;
  if (clobbered)
    {@+print_nl("AVAIL list clobbered at ");
@.AVAIL list clobbered...@>
    print_int(q);goto done1;
    }
  is_free[p]=true;q=p;p=link(q);
  }
done1:

@ @<Check variable-size...@>=
p=rover;q=null;clobbered=false;
@/do@+{if ((p >= lo_mem_max)||(p < mem_min)) clobbered=true;
  else if ((rlink(p) >= lo_mem_max)||(rlink(p) < mem_min)) clobbered=true;
  else if (!(is_empty(p))||(node_size(p) < 2)||@|
   (p+node_size(p) > lo_mem_max)||@|(llink(rlink(p))!=p)) clobbered=true;
  if (clobbered)
  {@+print_nl("Double-AVAIL list clobbered at ");
  print_int(q);goto done2;
  }
for (q=p; q<=p+node_size(p)-1; q++)  /*mark all locations free*/
  {@+if (is_free[q])
    {@+print_nl("Doubly free location at ");
@.Doubly free location...@>
    print_int(q);goto done2;
    }
  is_free[q]=true;
  }
q=p;p=rlink(p);
}@+ while (!(p==rover));
done2:

@ @<Check flags...@>=
p=mem_min;
while (p <= lo_mem_max)  /*node |p| should not be empty*/
  {@+if (is_empty(p))
    {@+print_nl("Bad flag at ");print_int(p);
@.Bad flag...@>
    }
  while ((p <= lo_mem_max)&&!is_free[p]) incr(p);
  while ((p <= lo_mem_max)&&is_free[p]) incr(p);
  }

@ @<Print newly busy...@>=
{@+print_nl("New busy locs:");
for (p=mem_min; p<=lo_mem_max; p++)
  if (!is_free[p]&&((p > was_lo_max)||was_free[p]))
    {@+print_char(' ');print_int(p);
    }
for (p=hi_mem_min; p<=mem_end; p++)
  if (!is_free[p]&&
   ((p < was_hi_min)||(p > was_mem_end)||was_free[p]))
    {@+print_char(' ');print_int(p);
    }
}

@ The |search_mem| procedure attempts to answer the question ``Who points
to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
that might not be of type |two_halves|. Strictly speaking, this is
@^dirty \PASCAL@>
undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
point to |p| purely by coincidence). But for debugging purposes, we want
to rule out the places that do {\sl not\/} point to |p|, so a few false
drops are tolerable.

@p
#ifdef @!DEBUG
static void search_mem(pointer @!p) /*look for pointers to |p|*/
{@+int q; /*current position being searched*/
for (q=mem_min; q<=lo_mem_max; q++)
  {@+if (link(q)==p)
    {@+print_nl("LINK(");print_int(q);print_char(')');
    }
  if (info(q)==p)
    {@+print_nl("INFO(");print_int(q);print_char(')');
    }
  }
for (q=hi_mem_min; q<=mem_end; q++)
  {@+if (link(q)==p)
    {@+print_nl("LINK(");print_int(q);print_char(')');
    }
  if (info(q)==p)
    {@+print_nl("INFO(");print_int(q);print_char(')');
    }
  }
@<Search |eqtb| for equivalents equal to |p|@>;
@<Search |save_stack| for equivalents that point to |p|@>;
@<Search |hyph_list| for pointers to |p|@>;
}
#endif

@* Displaying boxes.
We can reinforce our knowledge of the data structures just introduced
by considering two procedures that display a list in symbolic form.
The first of these, called |short_display|, is used in ``overfull box''
messages to give the top-level description of a list. The other one,
called |show_node_list|, prints a detailed description of exactly what
is in the data structure.

The philosophy of |short_display| is to ignore the fine points about exactly
what is inside boxes, except that ligatures and discretionary breaks are
expanded. As a result, |short_display| is a recursive procedure, but the
recursion is never more than one level deep.
@^recursion@>

A global variable |font_in_short_display| keeps track of the font code that
is assumed to be present when |short_display| begins; deviations from this
font will be printed.

@<Glob...@>=
static int @!font_in_short_display; /*an internal font number*/

@ Boxes, rules, inserts, whatsits, marks, and things in general that are
sort of ``complicated'' are indicated only by printing `\.{[]}'.

@p static void short_display(int @!p) /*prints highlights of list |p|*/
{@+int n; /*for replacement counts*/
while (p > mem_min)
  {@+if (is_char_node(p))
    {@+if (p <= mem_end)
      {@+if (font(p)!=font_in_short_display)
        {@+if ((font(p) < font_base)||(font(p) > font_max))
          print_char('*');
@.*\relax@>
        else@<Print the font identifier for |font(p)|@>;
        print_char(' ');font_in_short_display=font(p);
        }
      print_ASCII(qo(character(p)));
      }
    }
  else@<Print a short indication of the contents of node |p|@>;
  p=link(p);
  }
}

@ @<Print a short indication of the contents of node |p|@>=
switch (type(p)) {
case hlist_node: case vlist_node: case ins_node:
  case whatsit_node: case mark_node: case adjust_node:
  case unset_node: case unset_set_node: case unset_pack_node: print("[]");@+break;
case rule_node: print_char('|');@+break;
case glue_node: if (glue_ptr(p)!=zero_glue) print_char(' ');@+break;
case math_node: print_char('$');@+break;
case ligature_node: short_display(lig_ptr(p));@+break;
case disc_node: {@+short_display(pre_break(p));
  short_display(post_break(p));@/
  n=replace_count(p);
  while (n > 0)
    {@+if (link(p)!=null) p=link(p);
    decr(n);
    }
  } @+break;
default:do_nothing;
}

@ The |show_node_list| routine requires some auxiliary subroutines: one to
print a font-and-character combination, one to print a token list without
its reference count, and one to print a rule dimension.

@p static void print_font_and_char(int @!p) /*prints |char_node| data*/
{@+if (p > mem_end) print_esc("CLOBBERED.");
else{@+if ((font(p) < font_base)||(font(p) > font_max)) print_char('*');
@.*\relax@>
  else@<Print the font identifier for |font(p)|@>;
  print_char(' ');print_ASCII(qo(character(p)));
  }
}
@#
static void print_mark(int @!p) /*prints token list data in braces*/
{@+print_char('{');
if ((p < hi_mem_min)||(p > mem_end)) print_esc("CLOBBERED.");
else show_token_list(link(p), null, max_print_line-10);
print_char('}');
}
@#
static void print_rule_dimen(scaled @!d) /*prints dimension in rule node*/
{@+if (is_running(d)) print_char('*');else print_scaled(d);
@.*\relax@>
}

@ Then there is a subroutine that prints glue stretch and shrink, possibly
followed by the name of finite units:

@p static void print_glue(scaled @!d, int @!order, char *@!s)
   /*prints a glue component*/
{@+print_scaled(d);
if ((order < normal)||(order > filll)) print("foul");
else if (order > normal)
  {@+print("fil");
  while (order > fil)
    {@+print_char('l');decr(order);
    }
  }
else if (s!=0) print(s);
}

@ The next subroutine prints a whole glue specification.

@p static void print_spec(int @!p, char *@!s)
   /*prints a glue specification*/
{@+if ((p < mem_min)||(p >= lo_mem_max)) print_char('*');
@.*\relax@>
else{@+print_scaled(width(p));
  if (s!=0) print(s);
  if (stretch(p)!=0)
    {@+print(" plus ");print_glue(stretch(p), stretch_order(p), s);
    }
  if (shrink(p)!=0)
    {@+print(" minus ");print_glue(shrink(p), shrink_order(p), s);
    }
  }
}

@ We also need to declare some procedures that appear later in this
documentation.

@p @<Declare procedures needed for displaying the elements of mlists@>@;
@<Declare the procedure called |print_skip_param|@>@;
static void print_xdimen(pointer p)
{ if (p==null) { print_scaled(0); return; }
  print_scaled(xdimen_width(p));
  if (xdimen_hfactor(p)!=0)
  { print_char('+');print_scaled(xdimen_hfactor(p));print("*hsize");}
  if (xdimen_vfactor(p)!=0)
  { print_char('+');print_scaled(xdimen_vfactor(p));print("*vsize");}
}

@ Since boxes can be inside of boxes, |show_node_list| is inherently recursive,
@^recursion@>
up to a given maximum number of levels.  The history of nesting is indicated
by the current string, which will be printed at the beginning of each line;
the length of this string, namely |cur_length|, is the depth of nesting.

Recursive calls on |show_node_list| therefore use the following pattern:

@d node_list_display(A)
  {@+append_char('.');show_node_list(A);flush_char;
  }  /*|str_room| need not be checked; see |show_box| below*/

@ A global variable called |depth_threshold| is used to record the maximum
depth of nesting for which |show_node_list| will show information.  If we
have |depth_threshold==0|, for example, only the top level information will
be given and no sublists will be traversed. Another global variable, called
|breadth_max|, tells the maximum number of items to show at each level;
|breadth_max| had better be positive, or you won't see anything.

@<Glob...@>=
static int @!depth_threshold; /*maximum nesting depth in box displays*/
static int @!breadth_max; /*maximum number of items shown at the same list level*/

@ Now we are ready for |show_node_list| itself. This procedure has been
written to be ``extra robust'' in the sense that it should not crash or get
into a loop even if the data structures have been messed up by bugs in
the rest of the program. You can safely call its parent routine
|show_box(p)| for arbitrary values of |p| when you are debugging \TeX.
However, in the presence of bad data, the procedure may
@^dirty \PASCAL@>@^debugging@>
fetch a |memory_word| whose variant is different from the way it was stored;
for example, it might try to read |mem[p].hh| when |mem[p]|
contains a scaled integer, if |p| is a pointer that has been
clobbered or chosen at random.

@p static void show_node_list(int @!p) /*prints a node list symbolically*/
{@+
int n; /*the number of items already printed at this level*/
double @!g; /*a glue ratio, as a floating point number*/
if (cur_length > depth_threshold)
  {@+if (p > null) print(" []");
     /*indicate that there's been some truncation*/
  return;
  }
n=0;
while (p > mem_min)
  {@+print_ln();print_current_string(); /*display the nesting history*/
  if (p > mem_end)  /*pointer out of range*/
    {@+print("Bad link, display aborted.");return;
@.Bad link...@>
    }
  incr(n);if (n > breadth_max)  /*time to stop*/
    {@+print("etc.");return;
@.etc@>
    }
  @<Display node |p|@>;
  p=link(p);
  }

}

@ @<Display node |p|@>=
if (is_char_node(p)) print_font_and_char(p);
else switch (type(p)) {
  case hlist_node: case vlist_node: case unset_node: case unset_set_node: case unset_pack_node: @<Display box |p|@>@;@+break;
  case rule_node: @<Display rule |p|@>@;@+break;
  case ins_node: @<Display insertion |p|@>@;@+break;
  case whatsit_node: @<Display the whatsit node |p|@>@;@+break;
  case glue_node: @<Display glue |p|@>@;@+break;
  case kern_node: @<Display kern |p|@>@;@+break;
  case math_node: @<Display math node |p|@>@;@+break;
  case ligature_node: @<Display ligature |p|@>@;@+break;
  case penalty_node: @<Display penalty |p|@>@;@+break;
  case disc_node: @<Display discretionary |p|@>@;@+break;
  case mark_node: @<Display mark |p|@>@;@+break;
  case adjust_node: @<Display adjustment |p|@>@;@+break;
  @t\4@>@<Cases of |show_node_list| that arise in mlists only@>@;
  default:print("Unknown node type!");
  }

@ @<Display box |p|@>=
{@+if (type(p)==hlist_node) print_esc("h");
else if (type(p)==vlist_node) print_esc("v");
else print_esc("unset");
print("box(");print_scaled(height(p));print_char('+');
print_scaled(depth(p));print(")x");print_scaled(width(p));
if (type(p)==unset_set_node)  print(" set");
else if (type(p)==unset_pack_node) print(" pack");
else if (type(p)==unset_node)
  @<Display special fields of the unset node |p|@>@;
else{@+@<Display the value of |glue_set(p)|@>;
  if (shift_amount(p)!=0)
    {@+print(", shifted ");print_scaled(shift_amount(p));
    }
  }
node_list_display(list_ptr(p)); /*recursive call*/
}

@ @<Display special fields of the unset node |p|@>=
{@+if (span_count(p)!=min_quarterword)
  {@+print(" (");print_int(qo(span_count(p))+1);
  print(" columns)");
  }
if (glue_stretch(p)!=0)
  {@+print(", stretch ");print_glue(glue_stretch(p), glue_order(p), 0);
  }
if (glue_shrink(p)!=0)
  {@+print(", shrink ");print_glue(glue_shrink(p), glue_sign(p), 0);
  }
}

@ The code will have to change in this place if |glue_ratio| is
a structured type instead of an ordinary |double|. Note that this routine
should avoid arithmetic errors even if the |glue_set| field holds an
arbitrary random value. The following code assumes that a properly
formed nonzero |double| number has absolute value $2^{20}$ or more when
it is regarded as an integer; this precaution was adequate to prevent
floating point underflow on the author's computer.
@^system dependencies@>
@^dirty \PASCAL@>

@<Display the value of |glue_set(p)|@>=
g=unfix(glue_set(p));
if ((g!=float_constant(0))&&(glue_sign(p)!=normal))
  {@+print(", glue set ");
  if (glue_sign(p)==shrinking) print("- ");
  if (abs(mem[p+glue_offset].i) < 04000000) print("?.?");
  else if (abs(g) > float_constant(20000))
    {@+if (g > float_constant(0)) print_char('>');
    else print("< -");
    print_glue(20000*unity, glue_order(p), 0);
    }
  else print_glue(round(unity*g), glue_order(p), 0);
@^real multiplication@>
  }

@ @<Display rule |p|@>=
{@+print_esc("rule(");print_rule_dimen(height(p));print_char('+');
print_rule_dimen(depth(p));print(")x");print_rule_dimen(width(p));
}

@ @<Display insertion |p|@>=
{@+print_esc("insert");print_int(qo(subtype(p)));
print("; split(");print_spec(split_top_ptr(p), 0);
print_char(',');print_scaled(depth(p));
print("); float cost ");print_int(float_cost(p));
node_list_display(ins_ptr(p)); /*recursive call*/
}

@ @<Display glue |p|@>=
if (subtype(p) >= a_leaders) @<Display leaders |p|@>@;
else{@+print_esc("glue");
  if (subtype(p)!=normal)
    {@+print_char('(');
    if (subtype(p) < cond_math_glue)
      print_skip_param(subtype(p)-1);
    else if (subtype(p)==cond_math_glue) print_esc("nonscript");
    else print_esc("mskip");
    print_char(')');
    }
  if (subtype(p)!=cond_math_glue)
    {@+print_char(' ');
    if (subtype(p) < cond_math_glue) print_spec(glue_ptr(p), 0);
    else print_spec(glue_ptr(p),"mu");
    }
  }

@ @<Display leaders |p|@>=
{@+print_esc("");
if (subtype(p)==c_leaders) print_char('c');
else if (subtype(p)==x_leaders) print_char('x');
print("leaders ");print_spec(glue_ptr(p), 0);
node_list_display(leader_ptr(p)); /*recursive call*/
}

@ An ``explicit'' kern value is indicated implicitly by an explicit space.

@<Display kern |p|@>=
if (subtype(p)!=mu_glue)
  {@+print_esc("kern");
  if (subtype(p)!=normal) print_char(' ');
  print_scaled(width(p));
  if (subtype(p)==acc_kern) print(" (for accent)");
@.for accent@>
  }
else{@+print_esc("mkern");print_scaled(width(p));print("mu");
  }

@ @<Display math node |p|@>=
{@+print_esc("math");
if (subtype(p)==before) print("on");
else print("off");
if (width(p)!=0)
  {@+print(", surrounded ");print_scaled(width(p));
  }
}

@ @<Display ligature |p|@>=
{@+print_font_and_char(lig_char(p));print(" (ligature ");
if (subtype(p) > 1) print_char('|');
font_in_short_display=font(lig_char(p));short_display(lig_ptr(p));
if (odd(subtype(p))) print_char('|');
print_char(')');
}

@ @<Display penalty |p|@>=
{@+print_esc("penalty ");print_int(penalty(p));
}

@ The |post_break| list of a discretionary node is indicated by a prefixed
`\.{\char'174}' instead of the `\..' before the |pre_break| list.

@<Display discretionary |p|@>=
{@+print_esc("discretionary");
if (replace_count(p) > 0)
  {@+print(" replacing ");print_int(replace_count(p));
  }
node_list_display(pre_break(p)); /*recursive call*/
append_char('|');show_node_list(post_break(p));flush_char; /*recursive call*/
}

@ @<Display mark |p|@>=
{@+print_esc("mark");
if (mark_class(p)!=0)
  {@+print_char('s');print_int(mark_class(p));
  }
print_mark(mark_ptr(p));
}

@ @<Display adjustment |p|@>=
{@+print_esc("vadjust");node_list_display(adjust_ptr(p)); /*recursive call*/
}

@ The recursive machinery is started by calling |show_box|.
@^recursion@>

@p static void show_box(pointer @!p)
{@+@<Assign the values |depth_threshold:=show_box_depth| and |breadth_max:=show_box_breadth|@>;
if (breadth_max <= 0) breadth_max=5;
if (pool_ptr+depth_threshold >= pool_size)
  depth_threshold=pool_size-pool_ptr-1;
   /*now there's enough room for prefix string*/
show_node_list(p); /*the show starts at |p|*/
print_ln();
}

@* Destroying boxes.
When we are done with a node list, we are obliged to return it to free
storage, including all of its sublists. The recursive procedure
|flush_node_list| does this for us.

@ First, however, we shall consider two non-recursive procedures that do
simpler tasks. The first of these, |delete_token_ref|, is called when
a pointer to a token list's reference count is being removed. This means
that the token list should disappear if the reference count was |null|,
otherwise the count should be decreased by one.
@^reference counts@>

@d token_ref_count(A) info(A) /*reference count preceding a token list*/

@p static void delete_token_ref(pointer @!p) /*|p| points to the reference count
  of a token list that is losing one reference*/
{@+if (token_ref_count(p)==null) flush_list(p);
else decr(token_ref_count(p));
}

@ Similarly, |delete_glue_ref| is called when a pointer to a glue
specification is being withdrawn.
@^reference counts@>
@d fast_delete_glue_ref(A) @t@>@;@/
  {@+if (glue_ref_count(A)==null) free_node(A, glue_spec_size);
  else decr(glue_ref_count(A));
  }

@p static void delete_glue_ref(pointer @!p) /*|p| points to a glue specification*/
fast_delete_glue_ref(p)
static void delete_xdimen_ref(pointer @!p) /*|p| points to a xdimen specification*/
{@+if (p==null) return;
  if (xdimen_ref_count(p)==null) free_node(p, xdimen_node_size);
  else decr(xdimen_ref_count(p));
}

@ Now we are ready to delete any node list, recursively.
In practice, the nodes deleted are usually charnodes (about 2/3 of the time),
and they are glue nodes in about half of the remaining cases.
@^recursion@>

@p static void flush_node_list(pointer @!p) /*erase list of nodes starting at |p|*/
{@+ /*go here when node |p| has been freed*/
pointer q; /*successor to node |p|*/
while (p!=null)
@^inner loop@>
  {@+q=link(p);
  if (is_char_node(p)) free_avail(p)@;
  else{@+switch (type(p)) {
    case hlist_node: case vlist_node: case unset_node:
  case unset_set_node: case unset_pack_node: {@+flush_node_list(list_ptr(p));
      free_node(p, box_node_size);goto done;
      }
    case rule_node: {@+free_node(p, rule_node_size);goto done;
      }
    case ins_node: {@+flush_node_list(ins_ptr(p));
      delete_glue_ref(split_top_ptr(p));
      free_node(p, ins_node_size);goto done;
      }
    case whatsit_node: @<Wipe out the whatsit node |p| and |goto done|@>@;
    case glue_node: {@+fast_delete_glue_ref(glue_ptr(p));
      if (leader_ptr(p)!=null) flush_node_list(leader_ptr(p));
      } @+break;
    case kern_node: case math_node: case penalty_node: do_nothing;@+break;
    case ligature_node: flush_node_list(lig_ptr(p));@+break;
    case mark_node: delete_token_ref(mark_ptr(p));@+break;
    case disc_node: {@+flush_node_list(pre_break(p));
      flush_node_list(post_break(p));
      } @+break;
    case adjust_node: flush_node_list(adjust_ptr(p));@+break;
    @t\4@>@<Cases of |flush_node_list| that arise in mlists only@>@;
    default:confusion("flushing");
@:this can't happen flushing}{\quad flushing@>
    } @/
    free_node(p, small_node_size);
    done: ;}
  p=q;
  }
}

@* Copying boxes.
Another recursive operation that acts on boxes is sometimes needed: The
procedure |copy_node_list| returns a pointer to another node list that has
the same structure and meaning as the original. Note that since glue
specifications and token lists have reference counts, we need not make
copies of them. Reference counts can never get too large to fit in a
halfword, since each pointer to a node is in a different memory address,
and the total number of memory addresses fits in a halfword.
@^recursion@>
@^reference counts@>

(Well, there actually are also references from outside |mem|; if the
|save_stack| is made arbitrarily large, it would theoretically be possible
to break \TeX\ by overflowing a reference count. But who would want to do that?)

@d add_token_ref(A) incr(token_ref_count(A)) /*new reference to a token list*/
@d add_glue_ref(A) incr(glue_ref_count(A)) /*new reference to a glue spec*/
@d add_xdimen_ref(A) if (A!=null) incr(xdimen_ref_count(A)) /*new reference to an xdimen*/

@ The copying procedure copies words en masse without bothering
to look at their individual fields. If the node format changes---for
example, if the size is altered, or if some link field is moved to another
relative position---then this code may need to be changed too.
@^data structure assumptions@>

@p static pointer copy_node_list(pointer @!p) /*makes a duplicate of the
  node list that starts at |p| and returns a pointer to the new list*/
{@+pointer h; /*temporary head of copied list*/
pointer @!q; /*previous position in new list*/
pointer @!r; /*current node being fabricated for new list*/
int @!words; /*number of words remaining to be copied*/
h=get_avail();q=h;
while (p!=null)
  {@+@<Make a copy of node |p| in node |r|@>;
  link(q)=r;q=r;p=link(p);
  }
link(q)=null;q=link(h);free_avail(h);
return q;
}

@ @<Make a copy of node |p|...@>=
words=1; /*this setting occurs in more branches than any other*/
if (is_char_node(p)) r=get_avail();
else@<Case statement to copy different types and set |words| to the number
of initial words not yet copied@>;
while (words > 0)
  {@+decr(words);mem[r+words]=mem[p+words];
  }

@ @<Case statement to copy...@>=
switch (type(p)) {
case hlist_node: case vlist_node: case unset_node:
case unset_set_node: case unset_pack_node: {@+r=get_node(box_node_size);
  mem[r+6]=mem[p+6];mem[r+5]=mem[p+5]; /*copy the last two words*/
  list_ptr(r)=copy_node_list(list_ptr(p)); /*this affects |mem[r+5]|*/
  words=5;
  } @+break;
case rule_node: {@+r=get_node(rule_node_size);words=rule_node_size;
  } @+break;
case ins_node: {@+r=get_node(ins_node_size);mem[r+4]=mem[p+4];
  add_glue_ref(split_top_ptr(p));
  ins_ptr(r)=copy_node_list(ins_ptr(p)); /*this affects |mem[r+4]|*/
  words=ins_node_size-1;
  } @+break;
case whatsit_node: @<Make a partial copy of the whatsit node |p| and make
|r| point to it; set |words| to the number of initial words not yet copied@>@;@+break;
case glue_node: {@+r=get_node(small_node_size);add_glue_ref(glue_ptr(p));
  glue_ptr(r)=glue_ptr(p);leader_ptr(r)=copy_node_list(leader_ptr(p));
  } @+break;
case kern_node: case math_node: case penalty_node: {@+r=get_node(small_node_size);
  words=small_node_size;
  } @+break;
case ligature_node: {@+r=get_node(small_node_size);
  mem[lig_char(r)]=mem[lig_char(p)]; /*copy |font| and |character|*/
  lig_ptr(r)=copy_node_list(lig_ptr(p));
  } @+break;
case disc_node: {@+r=get_node(small_node_size);
  pre_break(r)=copy_node_list(pre_break(p));
  post_break(r)=copy_node_list(post_break(p));
  } @+break;
case mark_node: {@+r=get_node(small_node_size);add_token_ref(mark_ptr(p));
  words=small_node_size;
  } @+break;
case adjust_node: {@+r=get_node(small_node_size);
  adjust_ptr(r)=copy_node_list(adjust_ptr(p));
  } @+break; /*|words==1==small_node_size-1|*/
default:confusion("copying");
@:this can't happen copying}{\quad copying@>
}

@* The command codes.
Before we can go any further, we need to define symbolic names for the internal
code numbers that represent the various commands obeyed by \TeX. These codes
are somewhat arbitrary, but not completely so. For example, the command
codes for character types are fixed by the language, since a user says,
e.g., `\.{\\catcode \`\\\${} = 3}' to make \.{\char'44} a math delimiter,
and the command code |math_shift| is equal to~3. Some other codes have
been made adjacent so that |case| statements in the program need not consider
cases that are widely spaced, or so that |case| statements can be replaced
by |if| statements.

At any rate, here is the list, for future reference. First come the
``catcode'' commands, several of which share their numeric codes with
ordinary commands when the catcode cannot emerge from \TeX's scanning routine.

@d escape 0 /*escape delimiter (called \.\\ in {\sl The \TeX book\/})*/
@:TeXbook}{\sl The \TeX book@>
@d relax 0 /*do nothing ( \.{\\relax} )*/
@d left_brace 1 /*beginning of a group ( \.\{ )*/
@d right_brace 2 /*ending of a group ( \.\} )*/
@d math_shift 3 /*mathematics shift character ( \.\$ )*/
@d tab_mark 4 /*alignment delimiter ( \.\&, \.{\\span} )*/
@d car_ret 5 /*end of line ( |carriage_return|, \.{\\cr}, \.{\\crcr} )*/
@d out_param 5 /*output a macro parameter*/
@d mac_param 6 /*macro parameter symbol ( \.\# )*/
@d sup_mark 7 /*superscript ( \.{\char'136} )*/
@d sub_mark 8 /*subscript ( \.{\char'137} )*/
@d ignore 9 /*characters to ignore ( \.{\^\^@@} )*/
@d endv 9 /*end of \<v_j> list in alignment template*/
@d spacer 10 /*characters equivalent to blank space ( \.{\ } )*/
@d letter 11 /*characters regarded as letters ( \.{A..Z}, \.{a..z} )*/
@d other_char 12 /*none of the special character types*/
@d active_char 13 /*characters that invoke macros ( \.{\char`\~} )*/
@d par_end 13 /*end of paragraph ( \.{\\par} )*/
@d match 13 /*match a macro parameter*/
@d comment 14 /*characters that introduce comments ( \.\% )*/
@d end_match 14 /*end of parameters to macro*/
@d stop 14 /*end of job ( \.{\\end}, \.{\\dump} )*/
@d invalid_char 15 /*characters that shouldn't appear ( \.{\^\^?} )*/
@d delim_num 15 /*specify delimiter numerically ( \.{\\delimiter} )*/
@d max_char_code 15 /*largest catcode for individual characters*/

@ Next are the ordinary run-of-the-mill command codes.  Codes that are
|min_internal| or more represent internal quantities that might be
expanded by `\.{\\the}'.

@d char_num 16 /*character specified numerically ( \.{\\char} )*/
@d math_char_num 17 /*explicit math code ( \.{\\mathchar} )*/
@d mark 18 /*mark definition ( \.{\\mark} )*/
@d xray 19 /*peek inside of \TeX\ ( \.{\\show}, \.{\\showbox}, etc.~)*/
@d make_box 20 /*make a box ( \.{\\box}, \.{\\copy}, \.{\\hbox}, etc.~)*/
@d hmove 21 /*horizontal motion ( \.{\\moveleft}, \.{\\moveright} )*/
@d vmove 22 /*vertical motion ( \.{\\raise}, \.{\\lower} )*/
@d un_hbox 23 /*unglue a box ( \.{\\unhbox}, \.{\\unhcopy} )*/
@d un_vbox 24 /*unglue a box ( \.{\\unvbox}, \.{\\unvcopy} )*/
   /*( or \.{\\pagediscards}, \.{\\splitdiscards} )*/
@d remove_item 25 /*nullify last item ( \.{\\unpenalty},
  \.{\\unkern}, \.{\\unskip} )*/
@d hskip 26 /*horizontal glue ( \.{\\hskip}, \.{\\hfil}, etc.~)*/
@d vskip 27 /*vertical glue ( \.{\\vskip}, \.{\\vfil}, etc.~)*/
@d mskip 28 /*math glue ( \.{\\mskip} )*/
@d kern 29 /*fixed space ( \.{\\kern} )*/
@d mkern 30 /*math kern ( \.{\\mkern} )*/
@d leader_ship 31 /*use a box ( \.{\\shipout}, \.{\\leaders}, etc.~)*/
@d halign 32 /*horizontal table alignment ( \.{\\halign} )*/
@d valign 33 /*vertical table alignment ( \.{\\valign} )*/
@d no_align 34 /*temporary escape from alignment ( \.{\\noalign} )*/
@d vrule 35 /*vertical rule ( \.{\\vrule} )*/
@d hrule 36 /*horizontal rule ( \.{\\hrule} )*/
@d insert 37 /*vlist inserted in box ( \.{\\insert} )*/
@d vadjust 38 /*vlist inserted in enclosing paragraph ( \.{\\vadjust} )*/
@d ignore_spaces 39 /*gobble |spacer| tokens ( \.{\\ignorespaces} )*/
@d after_assignment 40 /*save till assignment is done ( \.{\\afterassignment} )*/
@d after_group 41 /*save till group is done ( \.{\\aftergroup} )*/
@d break_penalty 42 /*additional badness ( \.{\\penalty} )*/
@d start_par 43 /*begin paragraph ( \.{\\indent}, \.{\\noindent} )*/
@d ital_corr 44 /*italic correction ( \.{\\/} )*/
@d accent 45 /*attach accent in text ( \.{\\accent} )*/
@d math_accent 46 /*attach accent in math ( \.{\\mathaccent} )*/
@d discretionary 47 /*discretionary texts ( \.{\\-}, \.{\\discretionary} )*/
@d eq_no 48 /*equation number ( \.{\\eqno}, \.{\\leqno} )*/
@d left_right 49 /*variable delimiter ( \.{\\left}, \.{\\right} )*/
   /*( or \.{\\middle} )*/
@d math_comp 50 /*component of formula ( \.{\\mathbin}, etc.~)*/
@d limit_switch 51 /*diddle limit conventions ( \.{\\displaylimits}, etc.~)*/
@d above 52 /*generalized fraction ( \.{\\above}, \.{\\atop}, etc.~)*/
@d math_style 53 /*style specification ( \.{\\displaystyle}, etc.~)*/
@d math_choice 54 /*choice specification ( \.{\\mathchoice} )*/
@d non_script 55 /*conditional math glue ( \.{\\nonscript} )*/
@d vcenter 56 /*vertically center a vbox ( \.{\\vcenter} )*/
@d case_shift 57 /*force specific case ( \.{\\lowercase}, \.{\\uppercase}~)*/
@d message 58 /*send to user ( \.{\\message}, \.{\\errmessage} )*/
@d extension 59 /*extensions to \TeX\ ( \.{\\write}, \.{\\special}, etc.~)*/
@d in_stream 60 /*files for reading ( \.{\\openin}, \.{\\closein} )*/
@d begin_group 61 /*begin local grouping ( \.{\\begingroup} )*/
@d end_group 62 /*end local grouping ( \.{\\endgroup} )*/
@d omit 63 /*omit alignment template ( \.{\\omit} )*/
@d ex_space 64 /*explicit space ( \.{\\\ } )*/
@d no_boundary 65 /*suppress boundary ligatures ( \.{\\noboundary} )*/
@d radical 66 /*square root and similar signs ( \.{\\radical} )*/
@d end_cs_name 67 /*end control sequence ( \.{\\endcsname} )*/
@d min_internal 68 /*the smallest code that can follow \.{\\the}*/
@d char_given 68 /*character code defined by \.{\\chardef}*/
@d math_given 69 /*math code defined by \.{\\mathchardef}*/
@d last_item 70 /*most recent item ( \.{\\lastpenalty},
  \.{\\lastkern}, \.{\\lastskip} )*/
@d max_non_prefixed_command 70 /*largest command code that can't be \.{\\global}*/

@ The next codes are special; they all relate to mode-independent
assignment of values to \TeX's internal registers or tables.
Codes that are |max_internal| or less represent internal quantities
that might be expanded by `\.{\\the}'.

@d toks_register 71 /*token list register ( \.{\\toks} )*/
@d assign_toks 72 /*special token list ( \.{\\output}, \.{\\everypar}, etc.~)*/
@d assign_int 73 /*user-defined integer ( \.{\\tolerance}, \.{\\day}, etc.~)*/
@d assign_dimen 74 /*user-defined length ( \.{\\hsize}, etc.~)*/
@d assign_glue 75 /*user-defined glue ( \.{\\baselineskip}, etc.~)*/
@d assign_mu_glue 76 /*user-defined muglue ( \.{\\thinmuskip}, etc.~)*/
@d assign_font_dimen 77 /*user-defined font dimension ( \.{\\fontdimen} )*/
@d assign_font_int 78 /*user-defined font integer ( \.{\\hyphenchar},
  \.{\\skewchar} )*/
@d set_aux 79 /*specify state info ( \.{\\spacefactor}, \.{\\prevdepth} )*/
@d set_prev_graf 80 /*specify state info ( \.{\\prevgraf} )*/
@d set_page_dimen 81 /*specify state info ( \.{\\pagegoal}, etc.~)*/
@d set_page_int 82 /*specify state info ( \.{\\deadcycles},
  \.{\\insertpenalties} )*/
   /*( or \.{\\interactionmode} )*/
@d set_box_dimen 83 /*change dimension of box ( \.{\\wd}, \.{\\ht}, \.{\\dp} )*/
@d set_shape 84 /*specify fancy paragraph shape ( \.{\\parshape} )*/
   /*(or \.{\\interlinepenalties}, etc.~)*/
@d def_code 85 /*define a character code ( \.{\\catcode}, etc.~)*/
@d def_family 86 /*declare math fonts ( \.{\\textfont}, etc.~)*/
@d set_font 87 /*set current font ( font identifiers )*/
@d def_font 88 /*define a font file ( \.{\\font} )*/
@d internal_register 89 /*internal register ( \.{\\count}, \.{\\dimen}, etc.~)*/
@d max_internal 89 /*the largest code that can follow \.{\\the}*/
@d advance 90 /*advance a register or parameter ( \.{\\advance} )*/
@d multiply 91 /*multiply a register or parameter ( \.{\\multiply} )*/
@d divide 92 /*divide a register or parameter ( \.{\\divide} )*/
@d prefix 93 /*qualify a definition ( \.{\\global}, \.{\\long}, \.{\\outer} )*/
   /*( or \.{\\protected} )*/
@d let 94 /*assign a command code ( \.{\\let}, \.{\\futurelet} )*/
@d shorthand_def 95 /*code definition ( \.{\\chardef}, \.{\\countdef}, etc.~)*/
@d read_to_cs 96 /*read into a control sequence ( \.{\\read} )*/
   /*( or \.{\\readline} )*/
@d def 97 /*macro definition ( \.{\\def}, \.{\\gdef}, \.{\\xdef}, \.{\\edef} )*/
@d set_box 98 /*set a box ( \.{\\setbox} )*/
@d hyph_data 99 /*hyphenation data ( \.{\\hyphenation}, \.{\\patterns} )*/
@d set_interaction 100 /*define level of interaction ( \.{\\batchmode}, etc.~)*/
@d max_command 100 /*the largest command code seen at |big_switch|*/

@ The remaining command codes are extra special, since they cannot get through
\TeX's scanner to the main control routine. They have been given values higher
than |max_command| so that their special nature is easily discernible.
The ``expandable'' commands come first.

@d undefined_cs (max_command+1) /*initial state of most |eq_type| fields*/
@d expand_after (max_command+2) /*special expansion ( \.{\\expandafter} )*/
@d no_expand (max_command+3) /*special nonexpansion ( \.{\\noexpand} )*/
@d input (max_command+4) /*input a source file ( \.{\\input}, \.{\\endinput} )*/
   /*( or \.{\\scantokens} )*/
@d if_test (max_command+5) /*conditional text ( \.{\\if}, \.{\\ifcase}, etc.~)*/
@d fi_or_else (max_command+6) /*delimiters for conditionals ( \.{\\else}, etc.~)*/
@d cs_name (max_command+7) /*make a control sequence from tokens ( \.{\\csname} )*/
@d convert (max_command+8) /*convert to text ( \.{\\number}, \.{\\string}, etc.~)*/
@d the (max_command+9) /*expand an internal quantity ( \.{\\the} )*/
   /*( or \.{\\unexpanded}, \.{\\detokenize} )*/
@d top_bot_mark (max_command+10) /*inserted mark ( \.{\\topmark}, etc.~)*/
@d call (max_command+11) /*non-long, non-outer control sequence*/
@d long_call (max_command+12) /*long, non-outer control sequence*/
@d outer_call (max_command+13) /*non-long, outer control sequence*/
@d long_outer_call (max_command+14) /*long, outer control sequence*/
@d end_template (max_command+15) /*end of an alignment template*/
@d dont_expand (max_command+16) /*the following token was marked by \.{\\noexpand}*/
@d glue_ref (max_command+17) /*the equivalent points to a glue specification*/
@d shape_ref (max_command+18) /*the equivalent points to a parshape specification*/
@d box_ref (max_command+19) /*the equivalent points to a box node, or is |null|*/
@d data (max_command+20) /*the equivalent is simply a halfword number*/

@* The semantic nest.
\TeX\ is typically in the midst of building many lists at once. For example,
when a math formula is being processed, \TeX\ is in math mode and
working on an mlist; this formula has temporarily interrupted \TeX\ from
being in horizontal mode and building the hlist of a paragraph; and this
paragraph has temporarily interrupted \TeX\ from being in vertical mode
and building the vlist for the next page of a document. Similarly, when a
\.{\\vbox} occurs inside of an \.{\\hbox}, \TeX\ is temporarily
interrupted from working in restricted horizontal mode, and it enters
internal vertical mode.  The ``semantic nest'' is a stack that
keeps track of what lists and modes are currently suspended.

At each level of processing we are in one of six modes:

\yskip\hang|vmode| stands for vertical mode (the page builder);

\hang|hmode| stands for horizontal mode (the paragraph builder);

\hang|mmode| stands for displayed formula mode;

\hang|-vmode| stands for internal vertical mode (e.g., in a \.{\\vbox});

\hang|-hmode| stands for restricted horizontal mode (e.g., in an \.{\\hbox});

\hang|-mmode| stands for math formula mode (not displayed).

\yskip\noindent The mode is temporarily set to zero while processing \.{\\write}
texts.

Numeric values are assigned to |vmode|, |hmode|, and |mmode| so that
\TeX's ``big semantic switch'' can select the appropriate thing to
do by computing the value |abs(mode)+cur_cmd|, where |mode| is the current
mode and |cur_cmd| is the current command code.

@d vmode 1 /*vertical mode*/
@d hmode (vmode+max_command+1) /*horizontal mode*/
@d mmode (hmode+max_command+1) /*math mode*/

@p static void print_mode(int @!m) /*prints the mode represented by |m|*/
{@+if (m > 0)
  switch (m/(max_command+1)) {
  case 0: print("vertical");@+break;
  case 1: print("horizontal");@+break;
  case 2: print("display math");
  }
else if (m==0) print("no");
else switch ((-m)/(max_command+1)) {
  case 0: print("internal vertical");@+break;
  case 1: print("restricted horizontal");@+break;
  case 2: print("math");
  }
print(" mode");
}

@ The state of affairs at any semantic level can be represented by
five values:

\yskip\hang|mode| is the number representing the semantic mode, as
just explained.

\yskip\hang|head| is a |pointer| to a list head for the list being built;
|link(head)| therefore points to the first element of the list, or
to |null| if the list is empty.

\yskip\hang|tail| is a |pointer| to the final node of the list being
built; thus, |tail==head| if and only if the list is empty.

\yskip\hang|prev_graf| is the number of lines of the current paragraph that
have already been put into the present vertical list.

\yskip\hang|aux| is an auxiliary |memory_word| that gives further information
that is needed to characterize the situation.

\yskip\noindent
In vertical mode, |aux| is also known as |prev_depth|; it is the scaled
value representing the depth of the previous box, for use in baseline
calculations, or it is | <= -1000|pt if the next box on the vertical list is to
be exempt from baseline calculations.  In horizontal mode, |aux| is also
known as |space_factor| and |clang|; it holds the current space factor used in
spacing calculations, and the current language used for hyphenation.
(The value of |clang| is undefined in restricted horizontal mode.)
In math mode, |aux| is also known as |incompleat_noad|; if
not |null|, it points to a record that represents the numerator of a
generalized fraction for which the denominator is currently being formed
in the current list.

There is also a sixth quantity, |mode_line|, which correlates
the semantic nest with the user's input; |mode_line| contains the source
line number at which the current level of nesting was entered. The negative
of this line number is the |mode_line| at the level of the
user's output routine.

A seventh quantity, |eTeX_aux|, is used by the extended features \eTeX.
In vertical modes it is known as |LR_save| and holds the LR stack when a
paragraph is interrupted by a displayed formula.  In display math mode
it is known as |LR_box| and holds a pointer to a prototype box for the
display.  In math mode it is known as |delim_ptr| and points to the most
recent |left_noad| or |middle_noad| of a |math_left_group|.

In horizontal mode, the |prev_graf| field is used for initial language data.

The semantic nest is an array called |nest| that holds the |mode|, |head|,
|tail|, |prev_graf|, |aux|, and |mode_line| values for all semantic levels
below the currently active one. Information about the currently active
level is kept in the global quantities |mode|, |head|, |tail|, |prev_graf|,
|aux|, and |mode_line|, which live in a \PASCAL\ record that is ready to
be pushed onto |nest| if necessary.

@d ignore_depth (-1000*unity) /*|prev_depth| value that is ignored*/
@d unknown_depth (-2000*unity) /*|prev_depth| value that is unknown*/

@<Types...@>=
typedef struct { int16_t @!mode_field;@+
  pointer @!head_field, @!tail_field;
  pointer @!eTeX_aux_field;
  int @!pg_field, @!ml_field;@+
  memory_word @!aux_field;
  } list_state_record;

@ @d mode cur_list.mode_field /*current mode*/
@d head cur_list.head_field /*header node of current list*/
@d tail cur_list.tail_field /*final node on current list*/
@d eTeX_aux cur_list.eTeX_aux_field /*auxiliary data for \eTeX*/
@d LR_save eTeX_aux /*LR stack when a paragraph is interrupted*/
@d LR_box eTeX_aux /*prototype box for display*/
@d delim_ptr eTeX_aux /*most recent left or right noad of a math left group*/
@d prev_graf cur_list.pg_field /*number of paragraph lines accumulated*/
@d aux cur_list.aux_field /*auxiliary data about the current list*/
@d prev_depth aux.sc /*the name of |aux| in vertical mode*/
@d space_factor aux.hh.lh /*part of |aux| in horizontal mode*/
@d clang aux.hh.rh /*the other part of |aux| in horizontal mode*/
@d incompleat_noad aux.i /*the name of |aux| in math mode*/
@d mode_line cur_list.ml_field /*source file line number at beginning of list*/

@<Glob...@>=
static list_state_record @!nest[nest_size+1];
static int @!nest_ptr; /*first unused location of |nest|*/
static int @!max_nest_stack; /*maximum of |nest_ptr| when pushing*/
static list_state_record @!cur_list; /*the ``top'' semantic state*/
static int @!shown_mode; /*most recent mode shown by \.{\\tracingcommands}*/

@ Here is a common way to make the current list grow:

@d tail_append(A) {@+link(tail)=A;tail=link(tail);
  }

@ We will see later that the vertical list at the bottom semantic level is split
into two parts; the ``current page'' runs from |page_head| to |page_tail|,
and the ``contribution list'' runs from |contrib_head| to |tail| of
semantic level zero. The idea is that contributions are first formed in
vertical mode, then ``contributed'' to the current page (during which time
the page-breaking decisions are made). For now, we don't need to know
any more details about the page-building process.

@<Set init...@>=
nest_ptr=0;max_nest_stack=0;
mode=vmode;head=contrib_head;tail=contrib_head;
eTeX_aux=null;
prev_depth=ignore_depth;mode_line=0;
prev_graf=0;shown_mode=0;
@<Start a new current page@>;

@ When \TeX's work on one level is interrupted, the state is saved by
calling |push_nest|. This routine changes |head| and |tail| so that
a new (empty) list is begun; it does not change |mode| or |aux|.

@p static void push_nest(void) /*enter a new semantic level, save the old*/
{@+if (nest_ptr > max_nest_stack)
  {@+max_nest_stack=nest_ptr;
  if (nest_ptr==nest_size) overflow("semantic nest size", nest_size);
@:TeX capacity exceeded semantic nest size}{\quad semantic nest size@>
  }
nest[nest_ptr]=cur_list; /*stack the record*/
incr(nest_ptr);head=get_avail();tail=head;prev_graf=0;mode_line=line;
eTeX_aux=null;
}

@ Conversely, when \TeX\ is finished on the current level, the former
state is restored by calling |pop_nest|. This routine will never be
called at the lowest semantic level, nor will it be called unless |head|
is a node that should be returned to free memory.

@p static void pop_nest(void) /*leave a semantic level, re-enter the old*/
{@+free_avail(head);decr(nest_ptr);cur_list=nest[nest_ptr];
}

@ Here is a procedure that displays what \TeX\ is working on, at all levels.

@p static void print_totals(void);
static void show_activities(void)
{@+int p; /*index into |nest|*/
int @!m; /*mode*/
memory_word @!a; /*auxiliary*/
pointer @!q, @!r; /*for showing the current page*/
int @!t; /*ditto*/
nest[nest_ptr]=cur_list; /*put the top level into the array*/
print_nl("");print_ln();
for (p=nest_ptr; p>=0; p--)
  {@+m=nest[p].mode_field;a=nest[p].aux_field;
  print_nl("### ");print_mode(m);
  print(" entered at line ");print_int(abs(nest[p].ml_field));
  if (m==hmode) if (nest[p].pg_field!=040600000)
    {@+print(" (language");print_int(nest[p].pg_field%0200000);
    print(":hyphenmin");print_int(nest[p].pg_field/020000000);
    print_char(',');print_int((nest[p].pg_field/0200000)%0100);
    print_char(')');
    }
  if (nest[p].ml_field < 0) print(" (\\output routine)");
  if (p==0)
    {@+@<Show the status of the current page@>;
    if (link(contrib_head)!=null)
      print_nl("### recent contributions:");
    }
  show_box(link(nest[p].head_field));
  @<Show the auxiliary field, |a|@>;
  }
}

@ @<Show the auxiliary...@>=
switch (abs(m)/(max_command+1)) {
case 0: {@+print_nl("prevdepth ");
  if (a.sc <= ignore_depth)
  { if (a.sc <= unknown_depth) print("unknown"); else print("ignored"); }
  else print_scaled(a.sc);
  if (nest[p].pg_field!=0)
    {@+print(", prevgraf ");
    print_int(nest[p].pg_field);print(" line");
    if (nest[p].pg_field!=1) print_char('s');
    }
  } @+break;
case 1: {@+print_nl("spacefactor ");print_int(a.hh.lh);
  if (m > 0) @+if (a.hh.rh > 0)
    {@+print(", current language ");print_int(a.hh.rh);@+
    }
  } @+break;
case 2: if (a.i!=null)
  {@+print("this will begin denominator of:");show_box(a.i);@+
  }
}  /*there are no other cases*/

@* The table of equivalents.
Now that we have studied the data structures for \TeX's semantic routines,
we ought to consider the data structures used by its syntactic routines. In
other words, our next concern will be
the tables that \TeX\ looks at when it is scanning
what the user has written.

The biggest and most important such table is called |eqtb|. It holds the
current ``equivalents'' of things; i.e., it explains what things mean
or what their current values are, for all quantities that are subject to
the nesting structure provided by \TeX's grouping mechanism. There are six
parts to |eqtb|:

\yskip\hangg 1) |eqtb[active_base dotdot(hash_base-1)]| holds the current
equivalents of single-character control sequences.

\yskip\hangg 2) |eqtb[hash_base dotdot(glue_base-1)]| holds the current
equivalents of multiletter control sequences.

\yskip\hangg 3) |eqtb[glue_base dotdot(local_base-1)]| holds the current
equivalents of glue parameters like the current baselineskip.

\yskip\hangg 4) |eqtb[local_base dotdot(int_base-1)]| holds the current
equivalents of local halfword quantities like the current box registers,
the current ``catcodes,'' the current font, and a pointer to the current
paragraph shape.

\yskip\hangg 5) |eqtb[int_base dotdot(dimen_base-1)]| holds the current
equivalents of fullword integer parameters like the current hyphenation
penalty.

\yskip\hangg 6) |eqtb[dimen_base dotdot eqtb_size]| holds the current equivalents
of fullword dimension parameters like the current hsize or amount of
hanging indentation.

\yskip\noindent Note that, for example, the current amount of
baselineskip glue is determined by the setting of a particular location
in region~3 of |eqtb|, while the current meaning of the control sequence
`\.{\\baselineskip}' (which might have been changed by \.{\\def} or
\.{\\let}) appears in region~2.

@ Each entry in |eqtb| is a |memory_word|. Most of these words are of type
|two_halves|, and subdivided into three fields:

\yskip\hangg 1) The |eq_level| (a quarterword) is the level of grouping at
which this equivalent was defined. If the level is |level_zero|, the
equivalent has never been defined; |level_one| refers to the outer level
(outside of all groups), and this level is also used for global
definitions that never go away. Higher levels are for equivalents that
will disappear at the end of their group.  @^global definitions@>

\yskip\hangg 2) The |eq_type| (another quarterword) specifies what kind of
entry this is. There are many types, since each \TeX\ primitive like
\.{\\hbox}, \.{\\def}, etc., has its own special code. The list of
command codes above includes all possible settings of the |eq_type| field.

\yskip\hangg 3) The |equiv| (a halfword) is the current equivalent value.
This may be a font number, a pointer into |mem|, or a variety of other
things.

@d eq_level_field(A) A.hh.b1
@d eq_type_field(A) A.hh.b0
@d equiv_field(A) A.hh.rh
@d eq_level(A) eq_level_field(eqtb[A]) /*level of definition*/
@d eq_type(A) eq_type_field(eqtb[A]) /*command code for equivalent*/
@d equiv(A) equiv_field(eqtb[A]) /*equivalent value*/
@d level_zero min_quarterword /*level for undefined quantities*/
@d level_one (level_zero+1) /*outermost level for defined quantities*/

@ Many locations in |eqtb| have symbolic names. The purpose of the next
paragraphs is to define these names, and to set up the initial values of the
equivalents.

In the first region we have 256 equivalents for ``active characters'' that
act as control sequences, followed by 256 equivalents for single-character
control sequences.

Then comes region~2, which corresponds to the hash table that we will
define later.  The maximum address in this region is used for a dummy
control sequence that is perpetually undefined. There also are several
locations for control sequences that are perpetually defined
(since they are used in error recovery).

@d active_base 1 /*beginning of region 1, for active character equivalents*/
@d single_base (active_base+256) /*equivalents of one-character control sequences*/
@d null_cs (single_base+256) /*equivalent of \.{\\csname\\endcsname}*/
@d hash_base (null_cs+1) /*beginning of region 2, for the hash table*/
@d frozen_control_sequence (hash_base+hash_size) /*for error recovery*/
@d frozen_protection frozen_control_sequence /*inaccessible but definable*/
@d frozen_cr (frozen_control_sequence+1) /*permanent `\.{\\cr}'*/
@d frozen_end_group (frozen_control_sequence+2) /*permanent `\.{\\endgroup}'*/
@d frozen_right (frozen_control_sequence+3) /*permanent `\.{\\right}'*/
@d frozen_fi (frozen_control_sequence+4) /*permanent `\.{\\fi}'*/
@d frozen_end_template (frozen_control_sequence+5) /*permanent `\.{\\endtemplate}'*/
@d frozen_endv (frozen_control_sequence+6) /*second permanent `\.{\\endtemplate}'*/
@d frozen_relax (frozen_control_sequence+7) /*permanent `\.{\\relax}'*/
@d end_write (frozen_control_sequence+8) /*permanent `\.{\\endwrite}'*/
@d frozen_dont_expand (frozen_control_sequence+9)
   /*permanent `\.{\\notexpanded:}'*/
@d frozen_primitive (frozen_control_sequence+10)
   /*permanent `\.{\\primitive:}'*/
@d frozen_null_font (frozen_control_sequence+11)
   /*permanent `\.{\\nullfont}'*/
@d font_id_base (frozen_null_font-font_base)
   /*begins table of 257 permanent font identifiers*/
@d undefined_control_sequence (frozen_null_font+257) /*dummy location*/
@d glue_base (undefined_control_sequence+1) /*beginning of region 3*/

@<Initialize table entries...@>=
eq_type(undefined_control_sequence)=undefined_cs;
equiv(undefined_control_sequence)=null;
eq_level(undefined_control_sequence)=level_zero;
for (k=active_base; k<=undefined_control_sequence-1; k++)
  eqtb[k]=eqtb[undefined_control_sequence];

@ Here is a routine that displays the current meaning of an |eqtb| entry
in region 1 or~2. (Similar routines for the other regions will appear
below.)

@<Show equivalent |n|, in region 1 or 2@>=
{@+sprint_cs(n);print_char('=');print_cmd_chr(eq_type(n), equiv(n));
if (eq_type(n) >= call)
  {@+print_char(':');show_token_list(link(equiv(n)), null, 32);
  }
}

@ Region 3 of |eqtb| contains the 256 \.{\\skip} registers, as well as the
glue parameters defined here. It is important that the ``muskip''
parameters have larger numbers than the others.

@d line_skip_code 0 /*interline glue if |baseline_skip| is infeasible*/
@d baseline_skip_code 1 /*desired glue between baselines*/
@d par_skip_code 2 /*extra glue just above a paragraph*/
@d above_display_skip_code 3 /*extra glue just above displayed math*/
@d below_display_skip_code 4 /*extra glue just below displayed math*/
@d above_display_short_skip_code 5
   /*glue above displayed math following short lines*/
@d below_display_short_skip_code 6
   /*glue below displayed math following short lines*/
@d left_skip_code 7 /*glue at left of justified lines*/
@d right_skip_code 8 /*glue at right of justified lines*/
@d top_skip_code 9 /*glue at top of main pages*/
@d split_top_skip_code 10 /*glue at top of split pages*/
@d tab_skip_code 11 /*glue between aligned entries*/
@d space_skip_code 12 /*glue between words (if not |zero_glue|)*/
@d xspace_skip_code 13 /*glue after sentences (if not |zero_glue|)*/
@d par_fill_skip_code 14 /*glue on last line of paragraph*/
@d thin_mu_skip_code 15 /*thin space in math formula*/
@d med_mu_skip_code 16 /*medium space in math formula*/
@d thick_mu_skip_code 17 /*thick space in math formula*/
@d glue_pars 18 /*total number of glue parameters*/
@d skip_base (glue_base+glue_pars) /*table of 256 ``skip'' registers*/
@d mu_skip_base (skip_base+256) /*table of 256 ``muskip'' registers*/
@d local_base (mu_skip_base+256) /*beginning of region 4*/
@#
@d skip(A) equiv(skip_base+A) /*|mem| location of glue specification*/
@d mu_skip(A) equiv(mu_skip_base+A) /*|mem| location of math glue spec*/
@d glue_par(A) equiv(glue_base+A) /*|mem| location of glue specification*/
@d line_skip glue_par(line_skip_code)
@d baseline_skip glue_par(baseline_skip_code)
@d par_skip glue_par(par_skip_code)
@d above_display_skip glue_par(above_display_skip_code)
@d below_display_skip glue_par(below_display_skip_code)
@d above_display_short_skip glue_par(above_display_short_skip_code)
@d below_display_short_skip glue_par(below_display_short_skip_code)
@d left_skip glue_par(left_skip_code)
@d right_skip glue_par(right_skip_code)
@d top_skip glue_par(top_skip_code)
@d split_top_skip glue_par(split_top_skip_code)
@d tab_skip glue_par(tab_skip_code)
@d space_skip glue_par(space_skip_code)
@d xspace_skip glue_par(xspace_skip_code)
@d par_fill_skip glue_par(par_fill_skip_code)
@d thin_mu_skip glue_par(thin_mu_skip_code)
@d med_mu_skip glue_par(med_mu_skip_code)
@d thick_mu_skip glue_par(thick_mu_skip_code)

@<Current |mem| equivalent of glue parameter number |n|@>=glue_par(n)

@ Sometimes we need to convert \TeX's internal code numbers into symbolic
form. The |print_skip_param| routine gives the symbolic name of a glue
parameter.

@<Declare the procedure called |print_skip_param|@>=
static void print_skip_param(int @!n)
{@+switch (n) {
case line_skip_code: print_esc("lineskip");@+break;
case baseline_skip_code: print_esc("baselineskip");@+break;
case par_skip_code: print_esc("parskip");@+break;
case above_display_skip_code: print_esc("abovedisplayskip");@+break;
case below_display_skip_code: print_esc("belowdisplayskip");@+break;
case above_display_short_skip_code: print_esc("abovedisplayshortskip");@+break;
case below_display_short_skip_code: print_esc("belowdisplayshortskip");@+break;
case left_skip_code: print_esc("leftskip");@+break;
case right_skip_code: print_esc("rightskip");@+break;
case top_skip_code: print_esc("topskip");@+break;
case split_top_skip_code: print_esc("splittopskip");@+break;
case tab_skip_code: print_esc("tabskip");@+break;
case space_skip_code: print_esc("spaceskip");@+break;
case xspace_skip_code: print_esc("xspaceskip");@+break;
case par_fill_skip_code: print_esc("parfillskip");@+break;
case thin_mu_skip_code: print_esc("thinmuskip");@+break;
case med_mu_skip_code: print_esc("medmuskip");@+break;
case thick_mu_skip_code: print_esc("thickmuskip");@+break;
default:print("[unknown glue parameter!]");
}
}

@ The symbolic names for glue parameters are put into \TeX's hash table
by using the routine called |primitive|, defined below. Let us enter them
now, so that we don't have to list all those parameter names anywhere else.

@<Put each of \TeX's primitives into the hash table@>=
primitive("lineskip", assign_glue, glue_base+line_skip_code);@/
@!@:line\_skip\_}{\.{\\lineskip} primitive@>
primitive("baselineskip", assign_glue, glue_base+baseline_skip_code);@/
@!@:baseline\_skip\_}{\.{\\baselineskip} primitive@>
primitive("parskip", assign_glue, glue_base+par_skip_code);@/
@!@:par\_skip\_}{\.{\\parskip} primitive@>
primitive("abovedisplayskip", assign_glue, glue_base+above_display_skip_code);@/
@!@:above\_display\_skip\_}{\.{\\abovedisplayskip} primitive@>
primitive("belowdisplayskip", assign_glue, glue_base+below_display_skip_code);@/
@!@:below\_display\_skip\_}{\.{\\belowdisplayskip} primitive@>
primitive("abovedisplayshortskip",
  assign_glue, glue_base+above_display_short_skip_code);@/
@!@:above\_display\_short\_skip\_}{\.{\\abovedisplayshortskip} primitive@>
primitive("belowdisplayshortskip",
  assign_glue, glue_base+below_display_short_skip_code);@/
@!@:below\_display\_short\_skip\_}{\.{\\belowdisplayshortskip} primitive@>
primitive("leftskip", assign_glue, glue_base+left_skip_code);@/
@!@:left\_skip\_}{\.{\\leftskip} primitive@>
primitive("rightskip", assign_glue, glue_base+right_skip_code);@/
@!@:right\_skip\_}{\.{\\rightskip} primitive@>
primitive("topskip", assign_glue, glue_base+top_skip_code);@/
@!@:top\_skip\_}{\.{\\topskip} primitive@>
primitive("splittopskip", assign_glue, glue_base+split_top_skip_code);@/
@!@:split\_top\_skip\_}{\.{\\splittopskip} primitive@>
primitive("tabskip", assign_glue, glue_base+tab_skip_code);@/
@!@:tab\_skip\_}{\.{\\tabskip} primitive@>
primitive("spaceskip", assign_glue, glue_base+space_skip_code);@/
@!@:space\_skip\_}{\.{\\spaceskip} primitive@>
primitive("xspaceskip", assign_glue, glue_base+xspace_skip_code);@/
@!@:xspace\_skip\_}{\.{\\xspaceskip} primitive@>
primitive("parfillskip", assign_glue, glue_base+par_fill_skip_code);@/
@!@:par\_fill\_skip\_}{\.{\\parfillskip} primitive@>
primitive("thinmuskip", assign_mu_glue, glue_base+thin_mu_skip_code);@/
@!@:thin\_mu\_skip\_}{\.{\\thinmuskip} primitive@>
primitive("medmuskip", assign_mu_glue, glue_base+med_mu_skip_code);@/
@!@:med\_mu\_skip\_}{\.{\\medmuskip} primitive@>
primitive("thickmuskip", assign_mu_glue, glue_base+thick_mu_skip_code);@/
@!@:thick\_mu\_skip\_}{\.{\\thickmuskip} primitive@>

@ @<Cases of |print_cmd_chr| for symbolic printing of primitives@>=
case assign_glue: case assign_mu_glue: if (chr_code < skip_base)
    print_skip_param(chr_code-glue_base);
  else if (chr_code < mu_skip_base)
    {@+print_esc("skip");print_int(chr_code-skip_base);
    }
  else{@+print_esc("muskip");print_int(chr_code-mu_skip_base);
    } @+break;

@ All glue parameters and registers are initially `\.{0pt plus0pt minus0pt}'.

@<Initialize table entries...@>=
equiv(glue_base)=zero_glue;eq_level(glue_base)=level_one;
eq_type(glue_base)=glue_ref;
for (k=glue_base+1; k<=local_base-1; k++) eqtb[k]=eqtb[glue_base];
glue_ref_count(zero_glue)=glue_ref_count(zero_glue)+local_base-glue_base;

@ @<Show equivalent |n|, in region 3@>=
if (n < skip_base)
  {@+print_skip_param(n-glue_base);print_char('=');
  if (n < glue_base+thin_mu_skip_code) print_spec(equiv(n),"pt");
  else print_spec(equiv(n),"mu");
  }
else if (n < mu_skip_base)
  {@+print_esc("skip");print_int(n-skip_base);print_char('=');
  print_spec(equiv(n),"pt");
  }
else{@+print_esc("muskip");print_int(n-mu_skip_base);print_char('=');
  print_spec(equiv(n),"mu");
  }

@ Region 4 of |eqtb| contains the local quantities defined here. The
bulk of this region is taken up by five tables that are indexed by eight-bit
characters; these tables are important to both the syntactic and semantic
portions of \TeX. There are also a bunch of special things like font and
token parameters, as well as the tables of \.{\\toks} and \.{\\box}
registers.

@d par_shape_loc local_base /*specifies paragraph shape*/
@d output_routine_loc (local_base+1) /*points to token list for \.{\\output}*/
@d every_par_loc (local_base+2) /*points to token list for \.{\\everypar}*/
@d every_math_loc (local_base+3) /*points to token list for \.{\\everymath}*/
@d every_display_loc (local_base+4) /*points to token list for \.{\\everydisplay}*/
@d every_hbox_loc (local_base+5) /*points to token list for \.{\\everyhbox}*/
@d every_vbox_loc (local_base+6) /*points to token list for \.{\\everyvbox}*/
@d every_job_loc (local_base+7) /*points to token list for \.{\\everyjob}*/
@d every_cr_loc (local_base+8) /*points to token list for \.{\\everycr}*/
@d err_help_loc (local_base+9) /*points to token list for \.{\\errhelp}*/
@d tex_toks (local_base+10) /*end of \TeX's token list parameters*/
@#
@d etex_toks_base tex_toks /*base for \eTeX's token list parameters*/
@d every_eof_loc etex_toks_base /*points to token list for \.{\\everyeof}*/
@d etex_toks (etex_toks_base+1) /*end of \eTeX's token list parameters*/
@#
@d toks_base etex_toks /*table of 256 token list registers*/
@#
@d etex_pen_base (toks_base+256) /*start of table of \eTeX's penalties*/
@d inter_line_penalties_loc etex_pen_base /*additional penalties between lines*/
@d club_penalties_loc (etex_pen_base+1) /*penalties for creating club lines*/
@d widow_penalties_loc (etex_pen_base+2) /*penalties for creating widow lines*/
@d display_widow_penalties_loc (etex_pen_base+3) /*ditto, just before a display*/
@d etex_pens (etex_pen_base+4) /*end of table of \eTeX's penalties*/
@#
@d box_base etex_pens /*table of 256 box registers*/
@d cur_font_loc (box_base+256) /*internal font number outside math mode*/
@d math_font_base (cur_font_loc+1) /*table of 48 math font numbers*/
@d cat_code_base (math_font_base+48)
   /*table of 256 command codes (the ``catcodes'')*/
@d lc_code_base (cat_code_base+256) /*table of 256 lowercase mappings*/
@d uc_code_base (lc_code_base+256) /*table of 256 uppercase mappings*/
@d sf_code_base (uc_code_base+256) /*table of 256 spacefactor mappings*/
@d math_code_base (sf_code_base+256) /*table of 256 math mode mappings*/
@d int_base (math_code_base+256) /*beginning of region 5*/
@#
@d par_shape_ptr equiv(par_shape_loc)
@d output_routine equiv(output_routine_loc)
@d every_par equiv(every_par_loc)
@d every_math equiv(every_math_loc)
@d every_display equiv(every_display_loc)
@d every_hbox equiv(every_hbox_loc)
@d every_vbox equiv(every_vbox_loc)
@d every_job equiv(every_job_loc)
@d every_cr equiv(every_cr_loc)
@d err_help equiv(err_help_loc)
@d toks(X) equiv(toks_base+X)
@d box(A) equiv(box_base+A)
@d cur_font equiv(cur_font_loc)
@d fam_fnt(A) equiv(math_font_base+A)
@d cat_code(A) equiv(cat_code_base+A)
@d lc_code(A) equiv(lc_code_base+A)
@d uc_code(A) equiv(uc_code_base+A)
@d sf_code(A) equiv(sf_code_base+A)
@d math_code(A) equiv(math_code_base+A)
   /*Note: |math_code(c)| is the true math code plus |min_halfword|*/

@<Put each...@>=
primitive("output", assign_toks, output_routine_loc);
@!@:output\_}{\.{\\output} primitive@>
primitive("everypar", assign_toks, every_par_loc);
@!@:every\_par\_}{\.{\\everypar} primitive@>
primitive("everymath", assign_toks, every_math_loc);
@!@:every\_math\_}{\.{\\everymath} primitive@>
primitive("everydisplay", assign_toks, every_display_loc);
@!@:every\_display\_}{\.{\\everydisplay} primitive@>
primitive("everyhbox", assign_toks, every_hbox_loc);
@!@:every\_hbox\_}{\.{\\everyhbox} primitive@>
primitive("everyvbox", assign_toks, every_vbox_loc);
@!@:every\_vbox\_}{\.{\\everyvbox} primitive@>
primitive("everyjob", assign_toks, every_job_loc);
@!@:every\_job\_}{\.{\\everyjob} primitive@>
primitive("everycr", assign_toks, every_cr_loc);
@!@:every\_cr\_}{\.{\\everycr} primitive@>
primitive("errhelp", assign_toks, err_help_loc);
@!@:err\_help\_}{\.{\\errhelp} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case assign_toks: if (chr_code >= toks_base)
  {@+print_esc("toks");print_int(chr_code-toks_base);
  }
else switch (chr_code) {
  case output_routine_loc: print_esc("output");@+break;
  case every_par_loc: print_esc("everypar");@+break;
  case every_math_loc: print_esc("everymath");@+break;
  case every_display_loc: print_esc("everydisplay");@+break;
  case every_hbox_loc: print_esc("everyhbox");@+break;
  case every_vbox_loc: print_esc("everyvbox");@+break;
  case every_job_loc: print_esc("everyjob");@+break;
  case every_cr_loc: print_esc("everycr");@+break;
  @/@<Cases of |assign_toks| for |print_cmd_chr|@>@/
  default:print_esc("errhelp");
  } @+break;

@ We initialize most things to null or undefined values. An undefined font
is represented by the internal code |font_base|.

However, the character code tables are given initial values based on the
conventional interpretation of ASCII code. These initial values should
not be changed when \TeX\ is adapted for use with non-English languages;
all changes to the initialization conventions should be made in format
packages, not in \TeX\ itself, so that global interchange of formats is
possible.

@d null_font font_base
@d var_code 070000 /*math code meaning ``use the current family''*/

@<Initialize table entries...@>=
par_shape_ptr=null;eq_type(par_shape_loc)=shape_ref;
eq_level(par_shape_loc)=level_one;@/
for (k=etex_pen_base; k<=etex_pens-1; k++)
  eqtb[k]=eqtb[par_shape_loc];
for (k=output_routine_loc; k<=toks_base+255; k++)
  eqtb[k]=eqtb[undefined_control_sequence];
box(0)=null;eq_type(box_base)=box_ref;eq_level(box_base)=level_one;
for (k=box_base+1; k<=box_base+255; k++) eqtb[k]=eqtb[box_base];
cur_font=null_font;eq_type(cur_font_loc)=data;
eq_level(cur_font_loc)=level_one;@/
for (k=math_font_base; k<=math_font_base+47; k++) eqtb[k]=eqtb[cur_font_loc];
equiv(cat_code_base)=0;eq_type(cat_code_base)=data;
eq_level(cat_code_base)=level_one;@/
for (k=cat_code_base+1; k<=int_base-1; k++) eqtb[k]=eqtb[cat_code_base];
for (k=0; k<=255; k++)
  {@+cat_code(k)=other_char;math_code(k)=hi(k);sf_code(k)=1000;
  }
cat_code(carriage_return)=car_ret;cat_code(' ')=spacer;
cat_code('\\')=escape;cat_code('%')=comment;
cat_code(invalid_code)=invalid_char;cat_code(null_code)=ignore;
for (k='0'; k<='9'; k++) math_code(k)=hi(k+var_code);
for (k='A'; k<='Z'; k++)
  {@+cat_code(k)=letter;cat_code(k+'a'-'A')=letter;@/
  math_code(k)=hi(k+var_code+0x100);
  math_code(k+'a'-'A')=hi(k+'a'-'A'+var_code+0x100);@/
  lc_code(k)=k+'a'-'A';lc_code(k+'a'-'A')=k+'a'-'A';@/
  uc_code(k)=k;uc_code(k+'a'-'A')=k;@/
  sf_code(k)=999;
  }

@ @<Show equivalent |n|, in region 4@>=
if ((n==par_shape_loc)||((n >= etex_pen_base)&&(n < etex_pens)))
  {@+print_cmd_chr(set_shape, n);print_char('=');
  if (equiv(n)==null) print_char('0');
  else if (n > par_shape_loc)
    {@+print_int(penalty(equiv(n)));print_char(' ');
    print_int(penalty(equiv(n)+1));
    if (penalty(equiv(n)) > 1) print_esc("ETC.");
    }
  else print_int(info(par_shape_ptr));
  }
else if (n < toks_base)
  {@+print_cmd_chr(assign_toks, n);print_char('=');
  if (equiv(n)!=null) show_token_list(link(equiv(n)), null, 32);
  }
else if (n < box_base)
  {@+print_esc("toks");print_int(n-toks_base);print_char('=');
  if (equiv(n)!=null) show_token_list(link(equiv(n)), null, 32);
  }
else if (n < cur_font_loc)
  {@+print_esc("box");print_int(n-box_base);print_char('=');
  if (equiv(n)==null) print("void");
  else{@+depth_threshold=0;breadth_max=1;show_node_list(equiv(n));
    }
  }
else if (n < cat_code_base) @<Show the font identifier in |eqtb[n]|@>@;
else@<Show the halfword code in |eqtb[n]|@>@;

@ @<Show the font identifier in |eqtb[n]|@>=
{@+if (n==cur_font_loc) print("current font");
else if (n < math_font_base+16)
  {@+print_esc("textfont");print_int(n-math_font_base);
  }
else if (n < math_font_base+32)
  {@+print_esc("scriptfont");print_int(n-math_font_base-16);
  }
else{@+print_esc("scriptscriptfont");print_int(n-math_font_base-32);
  }
print_char('=');@/
printn_esc(hash[font_id_base+equiv(n)].rh);
   /*that's |font_id_text(equiv(n))|*/
}

@ @<Show the halfword code in |eqtb[n]|@>=
if (n < math_code_base)
  {@+if (n < lc_code_base)
    {@+print_esc("catcode");print_int(n-cat_code_base);
    }
  else if (n < uc_code_base)
    {@+print_esc("lccode");print_int(n-lc_code_base);
    }
  else if (n < sf_code_base)
    {@+print_esc("uccode");print_int(n-uc_code_base);
    }
  else{@+print_esc("sfcode");print_int(n-sf_code_base);
    }
  print_char('=');print_int(equiv(n));
  }
else{@+print_esc("mathcode");print_int(n-math_code_base);
  print_char('=');print_int(ho(equiv(n)));
  }

@ Region 5 of |eqtb| contains the integer parameters and registers defined
here, as well as the |del_code| table. The latter table differs from the
|cat_code dotdot math_code| tables that precede it, since delimiter codes are
fullword integers while the other kinds of codes occupy at most a
halfword. This is what makes region~5 different from region~4. We will
store the |eq_level| information in an auxiliary array of quarterwords
that will be defined later.

@d pretolerance_code 0 /*badness tolerance before hyphenation*/
@d tolerance_code 1 /*badness tolerance after hyphenation*/
@d line_penalty_code 2 /*added to the badness of every line*/
@d hyphen_penalty_code 3 /*penalty for break after discretionary hyphen*/
@d ex_hyphen_penalty_code 4 /*penalty for break after explicit hyphen*/
@d club_penalty_code 5 /*penalty for creating a club line*/
@d widow_penalty_code 6 /*penalty for creating a widow line*/
@d display_widow_penalty_code 7 /*ditto, just before a display*/
@d broken_penalty_code 8 /*penalty for breaking a page at a broken line*/
@d bin_op_penalty_code 9 /*penalty for breaking after a binary operation*/
@d rel_penalty_code 10 /*penalty for breaking after a relation*/
@d pre_display_penalty_code 11
   /*penalty for breaking just before a displayed formula*/
@d post_display_penalty_code 12
   /*penalty for breaking just after a displayed formula*/
@d inter_line_penalty_code 13 /*additional penalty between lines*/
@d double_hyphen_demerits_code 14 /*demerits for double hyphen break*/
@d final_hyphen_demerits_code 15 /*demerits for final hyphen break*/
@d adj_demerits_code 16 /*demerits for adjacent incompatible lines*/
@d mag_code 17 /*magnification ratio*/
@d delimiter_factor_code 18 /*ratio for variable-size delimiters*/
@d looseness_code 19 /*change in number of lines for a paragraph*/
@d time_code 20 /*current time of day*/
@d day_code 21 /*current day of the month*/
@d month_code 22 /*current month of the year*/
@d year_code 23 /*current year of our Lord*/
@d show_box_breadth_code 24 /*nodes per level in |show_box|*/
@d show_box_depth_code 25 /*maximum level in |show_box|*/
@d hbadness_code 26 /*hboxes exceeding this badness will be shown by |hpack|*/
@d vbadness_code 27 /*vboxes exceeding this badness will be shown by |vpack|*/
@d pausing_code 28 /*pause after each line is read from a file*/
@d tracing_online_code 29 /*show diagnostic output on terminal*/
@d tracing_macros_code 30 /*show macros as they are being expanded*/
@d tracing_stats_code 31 /*show memory usage if \TeX\ knows it*/
@d tracing_paragraphs_code 32 /*show line-break calculations*/
@d tracing_pages_code 33 /*show page-break calculations*/
@d tracing_output_code 34 /*show boxes when they are shipped out*/
@d tracing_lost_chars_code 35 /*show characters that aren't in the font*/
@d tracing_commands_code 36 /*show command codes at |big_switch|*/
@d tracing_restores_code 37 /*show equivalents when they are restored*/
@d uc_hyph_code 38 /*hyphenate words beginning with a capital letter*/
@d output_penalty_code 39 /*penalty found at current page break*/
@d max_dead_cycles_code 40 /*bound on consecutive dead cycles of output*/
@d hang_after_code 41 /*hanging indentation changes after this many lines*/
@d floating_penalty_code 42 /*penalty for insertions held over after a split*/
@d global_defs_code 43 /*override \.{\\global} specifications*/
@d cur_fam_code 44 /*current family*/
@d escape_char_code 45 /*escape character for token output*/
@d default_hyphen_char_code 46 /*value of \.{\\hyphenchar} when a font is loaded*/
@d default_skew_char_code 47 /*value of \.{\\skewchar} when a font is loaded*/
@d end_line_char_code 48 /*character placed at the right end of the buffer*/
@d new_line_char_code 49 /*character that prints as |print_ln|*/
@d language_code 50 /*current hyphenation table*/
@d left_hyphen_min_code 51 /*minimum left hyphenation fragment size*/
@d right_hyphen_min_code 52 /*minimum right hyphenation fragment size*/
@d holding_inserts_code 53 /*do not remove insertion nodes from \.{\\box255}*/
@d error_context_lines_code 54 /*maximum intermediate line pairs shown*/
@d tracing_stack_levels_code 55 /*tracing |input_stack| level if |tracingmacros| positive*/
@d tex_int_pars 56 /*total number of \TeX's integer parameters*/
@#
@d etex_int_base tex_int_pars /*base for \eTeX's integer parameters*/
@d tracing_assigns_code etex_int_base /*show assignments*/
@d tracing_groups_code (etex_int_base+1) /*show save/restore groups*/
@d tracing_ifs_code (etex_int_base+2) /*show conditionals*/
@d tracing_scan_tokens_code (etex_int_base+3) /*show pseudo file open and close*/
@d tracing_nesting_code (etex_int_base+4) /*show incomplete groups and ifs within files*/
@d saving_vdiscards_code (etex_int_base+5) /*save items discarded from vlists*/
@d saving_hyph_codes_code (etex_int_base+6) /*save hyphenation codes for languages*/
@d expand_depth_code (etex_int_base+7) /*maximum depth for expansion---\eTeX*/
@d eTeX_state_code (etex_int_base+8) /*\eTeX\ state variables*/
@d etex_int_pars (eTeX_state_code+eTeX_states) /*total number of \eTeX's integer parameters*/
@#
@d int_pars etex_int_pars /*total number of integer parameters*/
@d count_base (int_base+int_pars) /*256 user \.{\\count} registers*/
@d del_code_base (count_base+256) /*256 delimiter code mappings*/
@d dimen_base (del_code_base+256) /*beginning of region 6*/
@#
@d del_code(A) eqtb[del_code_base+A].i
@d count(A) eqtb[count_base+A].i
@d int_par(A) eqtb[int_base+A].i /*an integer parameter*/
@d pretolerance int_par(pretolerance_code)
@d tolerance int_par(tolerance_code)
@d line_penalty int_par(line_penalty_code)
@d hyphen_penalty int_par(hyphen_penalty_code)
@d ex_hyphen_penalty int_par(ex_hyphen_penalty_code)
@d club_penalty int_par(club_penalty_code)
@d widow_penalty int_par(widow_penalty_code)
@d display_widow_penalty int_par(display_widow_penalty_code)
@d broken_penalty int_par(broken_penalty_code)
@d bin_op_penalty int_par(bin_op_penalty_code)
@d rel_penalty int_par(rel_penalty_code)
@d pre_display_penalty int_par(pre_display_penalty_code)
@d post_display_penalty int_par(post_display_penalty_code)
@d inter_line_penalty int_par(inter_line_penalty_code)
@d double_hyphen_demerits int_par(double_hyphen_demerits_code)
@d final_hyphen_demerits int_par(final_hyphen_demerits_code)
@d adj_demerits int_par(adj_demerits_code)
@d mag int_par(mag_code)
@d delimiter_factor int_par(delimiter_factor_code)
@d looseness int_par(looseness_code)
@d time int_par(time_code)
@d day int_par(day_code)
@d month int_par(month_code)
@d year int_par(year_code)
@d show_box_breadth int_par(show_box_breadth_code)
@d show_box_depth int_par(show_box_depth_code)
@d hbadness int_par(hbadness_code)
@d vbadness int_par(vbadness_code)
@d pausing int_par(pausing_code)
@d tracing_online int_par(tracing_online_code)
@d tracing_macros int_par(tracing_macros_code)
@d tracing_stats int_par(tracing_stats_code)
@d tracing_paragraphs int_par(tracing_paragraphs_code)
@d tracing_pages int_par(tracing_pages_code)
@d tracing_output int_par(tracing_output_code)
@d tracing_lost_chars int_par(tracing_lost_chars_code)
@d tracing_commands int_par(tracing_commands_code)
@d tracing_restores int_par(tracing_restores_code)
@d uc_hyph int_par(uc_hyph_code)
@d output_penalty int_par(output_penalty_code)
@d max_dead_cycles int_par(max_dead_cycles_code)
@d hang_after int_par(hang_after_code)
@d floating_penalty int_par(floating_penalty_code)
@d global_defs int_par(global_defs_code)
@d cur_fam int_par(cur_fam_code)
@d escape_char int_par(escape_char_code)
@d default_hyphen_char int_par(default_hyphen_char_code)
@d default_skew_char int_par(default_skew_char_code)
@d end_line_char int_par(end_line_char_code)
@d new_line_char int_par(new_line_char_code)
@d language int_par(language_code)
@d left_hyphen_min int_par(left_hyphen_min_code)
@d right_hyphen_min int_par(right_hyphen_min_code)
@d holding_inserts int_par(holding_inserts_code)
@d error_context_lines int_par(error_context_lines_code)
@d tracing_stack_levels int_par(tracing_stack_levels_code)
@#
@d tracing_assigns int_par(tracing_assigns_code)
@d tracing_groups int_par(tracing_groups_code)
@d tracing_ifs int_par(tracing_ifs_code)
@d tracing_scan_tokens int_par(tracing_scan_tokens_code)
@d tracing_nesting int_par(tracing_nesting_code)
@d saving_vdiscards int_par(saving_vdiscards_code)
@d saving_hyph_codes int_par(saving_hyph_codes_code)
@d expand_depth int_par(expand_depth_code)

@<Assign the values |depth_threshold:=show_box_depth|...@>=
depth_threshold=show_box_depth;
breadth_max=show_box_breadth

@ We can print the symbolic name of an integer parameter as follows.

@p static void print_param(int @!n)
{@+switch (n) {
case pretolerance_code: print_esc("pretolerance");@+break;
case tolerance_code: print_esc("tolerance");@+break;
case line_penalty_code: print_esc("linepenalty");@+break;
case hyphen_penalty_code: print_esc("hyphenpenalty");@+break;
case ex_hyphen_penalty_code: print_esc("exhyphenpenalty");@+break;
case club_penalty_code: print_esc("clubpenalty");@+break;
case widow_penalty_code: print_esc("widowpenalty");@+break;
case display_widow_penalty_code: print_esc("displaywidowpenalty");@+break;
case broken_penalty_code: print_esc("brokenpenalty");@+break;
case bin_op_penalty_code: print_esc("binoppenalty");@+break;
case rel_penalty_code: print_esc("relpenalty");@+break;
case pre_display_penalty_code: print_esc("predisplaypenalty");@+break;
case post_display_penalty_code: print_esc("postdisplaypenalty");@+break;
case inter_line_penalty_code: print_esc("interlinepenalty");@+break;
case double_hyphen_demerits_code: print_esc("doublehyphendemerits");@+break;
case final_hyphen_demerits_code: print_esc("finalhyphendemerits");@+break;
case adj_demerits_code: print_esc("adjdemerits");@+break;
case mag_code: print_esc("mag");@+break;
case delimiter_factor_code: print_esc("delimiterfactor");@+break;
case looseness_code: print_esc("looseness");@+break;
case time_code: print_esc("time");@+break;
case day_code: print_esc("day");@+break;
case month_code: print_esc("month");@+break;
case year_code: print_esc("year");@+break;
case show_box_breadth_code: print_esc("showboxbreadth");@+break;
case show_box_depth_code: print_esc("showboxdepth");@+break;
case hbadness_code: print_esc("hbadness");@+break;
case vbadness_code: print_esc("vbadness");@+break;
case pausing_code: print_esc("pausing");@+break;
case tracing_online_code: print_esc("tracingonline");@+break;
case tracing_macros_code: print_esc("tracingmacros");@+break;
case tracing_stats_code: print_esc("tracingstats");@+break;
case tracing_paragraphs_code: print_esc("tracingparagraphs");@+break;
case tracing_pages_code: print_esc("tracingpages");@+break;
case tracing_output_code: print_esc("tracingoutput");@+break;
case tracing_lost_chars_code: print_esc("tracinglostchars");@+break;
case tracing_commands_code: print_esc("tracingcommands");@+break;
case tracing_restores_code: print_esc("tracingrestores");@+break;
case uc_hyph_code: print_esc("uchyph");@+break;
case output_penalty_code: print_esc("outputpenalty");@+break;
case max_dead_cycles_code: print_esc("maxdeadcycles");@+break;
case hang_after_code: print_esc("hangafter");@+break;
case floating_penalty_code: print_esc("floatingpenalty");@+break;
case global_defs_code: print_esc("globaldefs");@+break;
case cur_fam_code: print_esc("fam");@+break;
case escape_char_code: print_esc("escapechar");@+break;
case default_hyphen_char_code: print_esc("defaulthyphenchar");@+break;
case default_skew_char_code: print_esc("defaultskewchar");@+break;
case end_line_char_code: print_esc("endlinechar");@+break;
case new_line_char_code: print_esc("newlinechar");@+break;
case language_code: print_esc("language");@+break;
case left_hyphen_min_code: print_esc("lefthyphenmin");@+break;
case right_hyphen_min_code: print_esc("righthyphenmin");@+break;
case holding_inserts_code: print_esc("holdinginserts");@+break;
case error_context_lines_code: print_esc("errorcontextlines");@+break;
case tracing_stack_levels_code: print_esc("tracingstacklevels");@+break;
@/@<Cases for |print_param|@>@/
default:print("[unknown integer parameter!]");
}
}

@ The integer parameter names must be entered into the hash table.

@<Put each...@>=
primitive("pretolerance", assign_int, int_base+pretolerance_code);@/
@!@:pretolerance\_}{\.{\\pretolerance} primitive@>
primitive("tolerance", assign_int, int_base+tolerance_code);@/
@!@:tolerance\_}{\.{\\tolerance} primitive@>
primitive("linepenalty", assign_int, int_base+line_penalty_code);@/
@!@:line\_penalty\_}{\.{\\linepenalty} primitive@>
primitive("hyphenpenalty", assign_int, int_base+hyphen_penalty_code);@/
@!@:hyphen\_penalty\_}{\.{\\hyphenpenalty} primitive@>
primitive("exhyphenpenalty", assign_int, int_base+ex_hyphen_penalty_code);@/
@!@:ex\_hyphen\_penalty\_}{\.{\\exhyphenpenalty} primitive@>
primitive("clubpenalty", assign_int, int_base+club_penalty_code);@/
@!@:club\_penalty\_}{\.{\\clubpenalty} primitive@>
primitive("widowpenalty", assign_int, int_base+widow_penalty_code);@/
@!@:widow\_penalty\_}{\.{\\widowpenalty} primitive@>
primitive("displaywidowpenalty",
  assign_int, int_base+display_widow_penalty_code);@/
@!@:display\_widow\_penalty\_}{\.{\\displaywidowpenalty} primitive@>
primitive("brokenpenalty", assign_int, int_base+broken_penalty_code);@/
@!@:broken\_penalty\_}{\.{\\brokenpenalty} primitive@>
primitive("binoppenalty", assign_int, int_base+bin_op_penalty_code);@/
@!@:bin\_op\_penalty\_}{\.{\\binoppenalty} primitive@>
primitive("relpenalty", assign_int, int_base+rel_penalty_code);@/
@!@:rel\_penalty\_}{\.{\\relpenalty} primitive@>
primitive("predisplaypenalty", assign_int, int_base+pre_display_penalty_code);@/
@!@:pre\_display\_penalty\_}{\.{\\predisplaypenalty} primitive@>
primitive("postdisplaypenalty", assign_int, int_base+post_display_penalty_code);@/
@!@:post\_display\_penalty\_}{\.{\\postdisplaypenalty} primitive@>
primitive("interlinepenalty", assign_int, int_base+inter_line_penalty_code);@/
@!@:inter\_line\_penalty\_}{\.{\\interlinepenalty} primitive@>
primitive("doublehyphendemerits",
  assign_int, int_base+double_hyphen_demerits_code);@/
@!@:double\_hyphen\_demerits\_}{\.{\\doublehyphendemerits} primitive@>
primitive("finalhyphendemerits",
  assign_int, int_base+final_hyphen_demerits_code);@/
@!@:final\_hyphen\_demerits\_}{\.{\\finalhyphendemerits} primitive@>
primitive("adjdemerits", assign_int, int_base+adj_demerits_code);@/
@!@:adj\_demerits\_}{\.{\\adjdemerits} primitive@>
primitive("mag", assign_int, int_base+mag_code);@/
@!@:mag\_}{\.{\\mag} primitive@>
primitive("delimiterfactor", assign_int, int_base+delimiter_factor_code);@/
@!@:delimiter\_factor\_}{\.{\\delimiterfactor} primitive@>
primitive("looseness", assign_int, int_base+looseness_code);@/
@!@:looseness\_}{\.{\\looseness} primitive@>
primitive("time", assign_int, int_base+time_code);@/
@!@:time\_}{\.{\\time} primitive@>
primitive("day", assign_int, int_base+day_code);@/
@!@:day\_}{\.{\\day} primitive@>
primitive("month", assign_int, int_base+month_code);@/
@!@:month\_}{\.{\\month} primitive@>
primitive("year", assign_int, int_base+year_code);@/
@!@:year\_}{\.{\\year} primitive@>
primitive("showboxbreadth", assign_int, int_base+show_box_breadth_code);@/
@!@:show\_box\_breadth\_}{\.{\\showboxbreadth} primitive@>
primitive("showboxdepth", assign_int, int_base+show_box_depth_code);@/
@!@:show\_box\_depth\_}{\.{\\showboxdepth} primitive@>
primitive("hbadness", assign_int, int_base+hbadness_code);@/
@!@:hbadness\_}{\.{\\hbadness} primitive@>
primitive("vbadness", assign_int, int_base+vbadness_code);@/
@!@:vbadness\_}{\.{\\vbadness} primitive@>
primitive("pausing", assign_int, int_base+pausing_code);@/
@!@:pausing\_}{\.{\\pausing} primitive@>
primitive("tracingonline", assign_int, int_base+tracing_online_code);@/
@!@:tracing\_online\_}{\.{\\tracingonline} primitive@>
primitive("tracingmacros", assign_int, int_base+tracing_macros_code);@/
@!@:tracing\_macros\_}{\.{\\tracingmacros} primitive@>
primitive("tracingstats", assign_int, int_base+tracing_stats_code);@/
@!@:tracing\_stats\_}{\.{\\tracingstats} primitive@>
primitive("tracingparagraphs", assign_int, int_base+tracing_paragraphs_code);@/
@!@:tracing\_paragraphs\_}{\.{\\tracingparagraphs} primitive@>
primitive("tracingpages", assign_int, int_base+tracing_pages_code);@/
@!@:tracing\_pages\_}{\.{\\tracingpages} primitive@>
primitive("tracingoutput", assign_int, int_base+tracing_output_code);@/
@!@:tracing\_output\_}{\.{\\tracingoutput} primitive@>
primitive("tracinglostchars", assign_int, int_base+tracing_lost_chars_code);@/
@!@:tracing\_lost\_chars\_}{\.{\\tracinglostchars} primitive@>
primitive("tracingcommands", assign_int, int_base+tracing_commands_code);@/
@!@:tracing\_commands\_}{\.{\\tracingcommands} primitive@>
primitive("tracingrestores", assign_int, int_base+tracing_restores_code);@/
@!@:tracing\_restores\_}{\.{\\tracingrestores} primitive@>
primitive("uchyph", assign_int, int_base+uc_hyph_code);@/
@!@:uc\_hyph\_}{\.{\\uchyph} primitive@>
primitive("outputpenalty", assign_int, int_base+output_penalty_code);@/
@!@:output\_penalty\_}{\.{\\outputpenalty} primitive@>
primitive("maxdeadcycles", assign_int, int_base+max_dead_cycles_code);@/
@!@:max\_dead\_cycles\_}{\.{\\maxdeadcycles} primitive@>
primitive("hangafter", assign_int, int_base+hang_after_code);@/
@!@:hang\_after\_}{\.{\\hangafter} primitive@>
primitive("floatingpenalty", assign_int, int_base+floating_penalty_code);@/
@!@:floating\_penalty\_}{\.{\\floatingpenalty} primitive@>
primitive("globaldefs", assign_int, int_base+global_defs_code);@/
@!@:global\_defs\_}{\.{\\globaldefs} primitive@>
primitive("fam", assign_int, int_base+cur_fam_code);@/
@!@:fam\_}{\.{\\fam} primitive@>
primitive("escapechar", assign_int, int_base+escape_char_code);@/
@!@:escape\_char\_}{\.{\\escapechar} primitive@>
primitive("defaulthyphenchar", assign_int, int_base+default_hyphen_char_code);@/
@!@:default\_hyphen\_char\_}{\.{\\defaulthyphenchar} primitive@>
primitive("defaultskewchar", assign_int, int_base+default_skew_char_code);@/
@!@:default\_skew\_char\_}{\.{\\defaultskewchar} primitive@>
primitive("endlinechar", assign_int, int_base+end_line_char_code);@/
@!@:end\_line\_char\_}{\.{\\endlinechar} primitive@>
primitive("newlinechar", assign_int, int_base+new_line_char_code);@/
@!@:new\_line\_char\_}{\.{\\newlinechar} primitive@>
primitive("language", assign_int, int_base+language_code);@/
@!@:language\_}{\.{\\language} primitive@>
primitive("lefthyphenmin", assign_int, int_base+left_hyphen_min_code);@/
@!@:left\_hyphen\_min\_}{\.{\\lefthyphenmin} primitive@>
primitive("righthyphenmin", assign_int, int_base+right_hyphen_min_code);@/
@!@:right\_hyphen\_min\_}{\.{\\righthyphenmin} primitive@>
primitive("holdinginserts", assign_int, int_base+holding_inserts_code);@/
@!@:holding\_inserts\_}{\.{\\holdinginserts} primitive@>
primitive("errorcontextlines", assign_int, int_base+error_context_lines_code);@/
@!@:error\_context\_lines\_}{\.{\\errorcontextlines} primitive@>
primitive("tracingstacklevels", assign_int, int_base+tracing_stack_levels_code);@/
@!@:tracing\_stack\_levels_}{\.{\\tracingstacklevels} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case assign_int: if (chr_code < count_base) print_param(chr_code-int_base);
  else{@+print_esc("count");print_int(chr_code-count_base);
    } @+break;

@ The integer parameters should really be initialized by a macro package;
the following initialization does the minimum to keep \TeX\ from
complete failure.
@^null delimiter@>

@<Initialize table entries...@>=
for (k=int_base; k<=del_code_base-1; k++) eqtb[k].i=0;
mag=1000;tolerance=10000;hang_after=1;max_dead_cycles=25;
escape_char='\\';end_line_char=carriage_return;
for (k=0; k<=255; k++) del_code(k)=-1;
del_code('.')=0; /*this null delimiter is used in error recovery*/

@ The following procedure, which is called just before \TeX\ initializes its
input and output, establishes the initial values of the date and time.
This does include too, for system integrators, the creation date and
the reference moment for the timer---\Prote\ extensions. If the system
supports environment variables, if |FORCE_SOURCE_DATE| is set to $1$ and
|SOURCE_DATE_EPOCH| is set, the date related values: year, month, day
and time, including creation date, will be taken relative from the value
defined by |SOURCE_DATE_EPOCH|.
@^creation date@>
@^reference time@>
@^system dependencies@>
\TeX\ Live calls |tl_now| to obtain the current time as a |tm| structure.
@p static void fix_date_and_time(void)
{@+ struct tm *t=tl_now();
  time=sys_time= t->tm_hour*60+t->tm_min;/*minutes since midnight*/
  day=sys_day= t->tm_mday;/*day of the month*/
  month=sys_month=t->tm_mon+1;/*month of the year*/
  year=sys_year=t->tm_year+1900;/*Anno Domini*/
}

@ @<Show equivalent |n|, in region 5@>=
{@+if (n < count_base) print_param(n-int_base);
else if (n < del_code_base)
  {@+print_esc("count");print_int(n-count_base);
  }
else{@+print_esc("delcode");print_int(n-del_code_base);
  }
print_char('=');print_int(eqtb[n].i);
}

@ @<Set variable |c| to the current escape character@>=c=escape_char

@ @<Character |s| is the current new-line character@>=s==new_line_char

@ \TeX\ is occasionally supposed to print diagnostic information that
goes only into the transcript file, unless |tracing_online| is positive.
Here are two routines that adjust the destination of print commands:

@p static void begin_diagnostic(void) /*prepare to do some tracing*/
{@+old_setting=selector;
if ((tracing_online <= 0)&&(selector==term_and_log))
  {@+decr(selector);
  if (history==spotless) history=warning_issued;
  }
}
@#
static void end_diagnostic(bool @!blank_line)
   /*restore proper conditions after tracing*/
{@+print_nl("");
if (blank_line) print_ln();
selector=old_setting;
}

@ Of course we had better declare a few more global variables, if the previous
routines are going to work.

@<Glob...@>=
static int @!old_setting;
static int @!sys_time, @!sys_day, @!sys_month, @!sys_year;
     /*date and time supplied by external system*/

@ The final region of |eqtb| contains the dimension parameters defined
here, and the 256 \.{\\dimen} registers.

@d par_indent_code 0 /*indentation of paragraphs*/
@d math_surround_code 1 /*space around math in text*/
@d line_skip_limit_code 2 /*threshold for |line_skip| instead of |baseline_skip|*/
@d hsize_code 3 /*line width in horizontal mode*/
@d vsize_code 4 /*page height in vertical mode*/
@d max_depth_code 5 /*maximum depth of boxes on main pages*/
@d split_max_depth_code 6 /*maximum depth of boxes on split pages*/
@d box_max_depth_code 7 /*maximum depth of explicit vboxes*/
@d hfuzz_code 8 /*tolerance for overfull hbox messages*/
@d vfuzz_code 9 /*tolerance for overfull vbox messages*/
@d delimiter_shortfall_code 10 /*maximum amount uncovered by variable delimiters*/
@d null_delimiter_space_code 11 /*blank space in null delimiters*/
@d script_space_code 12 /*extra space after subscript or superscript*/
@d pre_display_size_code 13 /*length of text preceding a display*/
@d display_width_code 14 /*length of line for displayed equation*/
@d display_indent_code 15 /*indentation of line for displayed equation*/
@d overfull_rule_code 16 /*width of rule that identifies overfull hboxes*/
@d hang_indent_code 17 /*amount of hanging indentation*/
@d h_offset_code 18 /*amount of horizontal offset when shipping pages out*/
@d v_offset_code 19 /*amount of vertical offset when shipping pages out*/
@d emergency_stretch_code 20 /*reduces badnesses on final pass of line-breaking*/
@d page_width_code 21 /*current paper page width*/
@d page_height_code 22 /*current paper page height*/
@d dimen_pars 23 /*total number of dimension parameters*/
@d scaled_base (dimen_base+dimen_pars)
   /*table of 256 user-defined \.{\\dimen} registers*/
@d eqtb_size (scaled_base+255) /*largest subscript of |eqtb|*/
@#
@d dimen(A) eqtb[scaled_base+A].sc
@d dimen_par(A) eqtb[dimen_base+A].sc /*a scaled quantity*/
@d dimen_hfactor(A) hfactor_eqtb[scaled_base+A].sc
@d dimen_vfactor(A) vfactor_eqtb[scaled_base+A].sc
@d dimen_par_hfactor(A) hfactor_eqtb[dimen_base+A].sc
@d dimen_par_vfactor(A) vfactor_eqtb[dimen_base+A].sc
@d par_indent dimen_par(par_indent_code)
@d math_surround dimen_par(math_surround_code)
@d line_skip_limit dimen_par(line_skip_limit_code)
@d hsize dimen_par(hsize_code)
@d vsize dimen_par(vsize_code)
@d max_depth dimen_par(max_depth_code)
@d split_max_depth dimen_par(split_max_depth_code)
@d box_max_depth dimen_par(box_max_depth_code)
@d hfuzz dimen_par(hfuzz_code)
@d vfuzz dimen_par(vfuzz_code)
@d delimiter_shortfall dimen_par(delimiter_shortfall_code)
@d null_delimiter_space dimen_par(null_delimiter_space_code)
@d script_space dimen_par(script_space_code)
@d pre_display_size dimen_par(pre_display_size_code)
@d display_width dimen_par(display_width_code)
@d display_indent dimen_par(display_indent_code)
@d overfull_rule dimen_par(overfull_rule_code)
@d hang_indent dimen_par(hang_indent_code)
@d h_offset dimen_par(h_offset_code)
@d v_offset dimen_par(v_offset_code)
@d emergency_stretch dimen_par(emergency_stretch_code)
@d page_height dimen_par(page_height_code)

@p static void print_length_param(int @!n)
{@+switch (n) {
case par_indent_code: print_esc("parindent");@+break;
case math_surround_code: print_esc("mathsurround");@+break;
case line_skip_limit_code: print_esc("lineskiplimit");@+break;
case hsize_code: print_esc("hsize");@+break;
case vsize_code: print_esc("vsize");@+break;
case max_depth_code: print_esc("maxdepth");@+break;
case split_max_depth_code: print_esc("splitmaxdepth");@+break;
case box_max_depth_code: print_esc("boxmaxdepth");@+break;
case hfuzz_code: print_esc("hfuzz");@+break;
case vfuzz_code: print_esc("vfuzz");@+break;
case delimiter_shortfall_code: print_esc("delimitershortfall");@+break;
case null_delimiter_space_code: print_esc("nulldelimiterspace");@+break;
case script_space_code: print_esc("scriptspace");@+break;
case pre_display_size_code: print_esc("predisplaysize");@+break;
case display_width_code: print_esc("displaywidth");@+break;
case display_indent_code: print_esc("displayindent");@+break;
case overfull_rule_code: print_esc("overfullrule");@+break;
case hang_indent_code: print_esc("hangindent");@+break;
case h_offset_code: print_esc("hoffset");@+break;
case v_offset_code: print_esc("voffset");@+break;
case emergency_stretch_code: print_esc("emergencystretch");@+break;
case page_width_code: print_esc("pagewidth");@+break;
case page_height_code: print_esc("pageheight");@+break;
default:print("[unknown dimen parameter!]");
}
}

@ @<Put each...@>=
primitive("parindent", assign_dimen, dimen_base+par_indent_code);@/
@!@:par\_indent\_}{\.{\\parindent} primitive@>
primitive("mathsurround", assign_dimen, dimen_base+math_surround_code);@/
@!@:math\_surround\_}{\.{\\mathsurround} primitive@>
primitive("lineskiplimit", assign_dimen, dimen_base+line_skip_limit_code);@/
@!@:line\_skip\_limit\_}{\.{\\lineskiplimit} primitive@>
primitive("hsize", assign_dimen, dimen_base+hsize_code);@/
@!@:hsize\_}{\.{\\hsize} primitive@>
primitive("vsize", assign_dimen, dimen_base+vsize_code);@/
@!@:vsize\_}{\.{\\vsize} primitive@>
primitive("maxdepth", assign_dimen, dimen_base+max_depth_code);@/
@!@:max\_depth\_}{\.{\\maxdepth} primitive@>
primitive("splitmaxdepth", assign_dimen, dimen_base+split_max_depth_code);@/
@!@:split\_max\_depth\_}{\.{\\splitmaxdepth} primitive@>
primitive("boxmaxdepth", assign_dimen, dimen_base+box_max_depth_code);@/
@!@:box\_max\_depth\_}{\.{\\boxmaxdepth} primitive@>
primitive("hfuzz", assign_dimen, dimen_base+hfuzz_code);@/
@!@:hfuzz\_}{\.{\\hfuzz} primitive@>
primitive("vfuzz", assign_dimen, dimen_base+vfuzz_code);@/
@!@:vfuzz\_}{\.{\\vfuzz} primitive@>
primitive("delimitershortfall",
  assign_dimen, dimen_base+delimiter_shortfall_code);@/
@!@:delimiter\_shortfall\_}{\.{\\delimitershortfall} primitive@>
primitive("nulldelimiterspace",
  assign_dimen, dimen_base+null_delimiter_space_code);@/
@!@:null\_delimiter\_space\_}{\.{\\nulldelimiterspace} primitive@>
primitive("scriptspace", assign_dimen, dimen_base+script_space_code);@/
@!@:script\_space\_}{\.{\\scriptspace} primitive@>
primitive("predisplaysize", assign_dimen, dimen_base+pre_display_size_code);@/
@!@:pre\_display\_size\_}{\.{\\predisplaysize} primitive@>
primitive("displaywidth", assign_dimen, dimen_base+display_width_code);@/
@!@:display\_width\_}{\.{\\displaywidth} primitive@>
primitive("displayindent", assign_dimen, dimen_base+display_indent_code);@/
@!@:display\_indent\_}{\.{\\displayindent} primitive@>
primitive("overfullrule", assign_dimen, dimen_base+overfull_rule_code);@/
@!@:overfull\_rule\_}{\.{\\overfullrule} primitive@>
primitive("hangindent", assign_dimen, dimen_base+hang_indent_code);@/
@!@:hang\_indent\_}{\.{\\hangindent} primitive@>
primitive("hoffset", assign_dimen, dimen_base+h_offset_code);@/
@!@:h\_offset\_}{\.{\\hoffset} primitive@>
primitive("voffset", assign_dimen, dimen_base+v_offset_code);@/
@!@:v\_offset\_}{\.{\\voffset} primitive@>
primitive("emergencystretch", assign_dimen, dimen_base+emergency_stretch_code);@/
@!@:emergency\_stretch\_}{\.{\\emergencystretch} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case assign_dimen: if (chr_code < scaled_base)
    print_length_param(chr_code-dimen_base);
  else{@+print_esc("dimen");print_int(chr_code-scaled_base);
    } @+break;

@ @<Initialize table entries...@>=
for (k=dimen_base; k<=eqtb_size; k++) hfactor_eqtb[k].sc=vfactor_eqtb[k].sc=eqtb[k].sc=0;

@ @<Show equivalent |n|, in region 6@>=
{@+if (n < scaled_base) print_length_param(n-dimen_base);
else{@+print_esc("dimen");print_int(n-scaled_base);
  }
print_char('=');print_scaled(eqtb[n].sc);print("pt");
}

@ Here is a procedure that displays the contents of |eqtb[n]|
symbolically.

@p @t\4@>@<Declare the procedure called |print_cmd_chr|@>@;@/
#ifdef @!STAT
static void show_eqtb(pointer @!n)
{@+if (n < active_base) print_char('?'); /*this can't happen*/
else if (n < glue_base) @<Show equivalent |n|, in region 1 or 2@>@;
else if (n < local_base) @<Show equivalent |n|, in region 3@>@;
else if (n < int_base) @<Show equivalent |n|, in region 4@>@;
else if (n < dimen_base) @<Show equivalent |n|, in region 5@>@;
else if (n <= eqtb_size) @<Show equivalent |n|, in region 6@>@;
else print_char('?'); /*this can't happen either*/
}
#endif

@ The last two regions of |eqtb| have fullword values instead of the
three fields |eq_level|, |eq_type|, and |equiv|. An |eq_type| is unnecessary,
but \TeX\ needs to store the |eq_level| information in another array
called |xeq_level|.

@<Glob...@>=
static memory_word @!eqtb0[eqtb_size-active_base+1],
  *const @!eqtb = @!eqtb0-active_base;
static memory_word hfactor_eqtb0[dimen_pars+256]={{{0}}},
  *const @!hfactor_eqtb = @!hfactor_eqtb0-dimen_base;
static memory_word vfactor_eqtb0[dimen_pars+256]={{{0}}},
  *const @!vfactor_eqtb = @!vfactor_eqtb0-dimen_base;
static scaled par_shape_hfactor=0, par_shape_vfactor=0;
static scaled hhsize=0,hvsize=0;
static quarterword @!xeq_level0[eqtb_size-int_base+1],
  *const @!xeq_level = @!xeq_level0-int_base;

@ @<Set init...@>=
for (k=int_base; k<=eqtb_size; k++) xeq_level[k]=level_one;

@ When the debugging routine |search_mem| is looking for pointers having a
given value, it is interested only in regions 1 to~3 of~|eqtb|, and in the
first part of region~4.

@<Search |eqtb| for equivalents equal to |p|@>=
for (q=active_base; q<=box_base+255; q++)
  {@+if (equiv(q)==p)
    {@+print_nl("EQUIV(");print_int(q);print_char(')');
    }
  }

@* The hash table.
Control sequences are stored and retrieved by means of a fairly standard hash
table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
in {\sl The Art of Computer Programming\/}). Once a control sequence enters the
table, it is never removed, because there are complicated situations
involving \.{\\gdef} where the removal of a control sequence at the end of
a group would be a mistake preventable only by the introduction of a
complicated reference-count mechanism.

The actual sequence of letters forming a control sequence identifier is
stored in the |str_pool| array together with all the other strings. An
auxiliary array |hash| consists of items with two halfword fields per
word. The first of these, called |next(p)|, points to the next identifier
belonging to the same coalesced list as the identifier corresponding to~|p|;
and the other, called |text(p)|, points to the |str_start| entry for
|p|'s identifier. If position~|p| of the hash table is empty, we have
|text(p)==0|; if position |p| is either empty or the end of a coalesced
hash list, we have |next(p)==0|. An auxiliary pointer variable called
|hash_used| is maintained in such a way that all locations |p >= hash_used|
are nonempty. The global variable |cs_count| tells how many multiletter
control sequences have been defined, if statistics are being kept.

A global boolean variable called |no_new_control_sequence| is set to
|true| during the time that new hash table entries are forbidden.

@d next(A) hash[A].lh /*link for coalesced lists*/
@d text(A) hash[A].rh /*string number for control sequence name*/
@d hash_is_full (hash_used==hash_base) /*test if all positions are occupied*/
@d font_id_text(A) text(font_id_base+A) /*a frozen font identifier's name*/

@<Glob...@>=
static two_halves @!hash0[undefined_control_sequence-hash_base],
  *const @!hash = @!hash0-hash_base;
   /*the hash table*/
static pointer @!hash_used; /*allocation pointer for |hash|*/
static bool @!no_new_control_sequence; /*are new identifiers legal?*/
static int @!cs_count; /*total number of known identifiers*/

@ @<Set init...@>=
no_new_control_sequence=true; /*new identifiers are usually forbidden*/
next(hash_base)=0;text(hash_base)=0;
for (k=hash_base+1; k<=undefined_control_sequence-1; k++) hash[k]=hash[hash_base];

@ @<Initialize table entries...@>=
hash_used=frozen_control_sequence; /*nothing is used*/
cs_count=0;
eq_type(frozen_dont_expand)=dont_expand;
text(frozen_dont_expand)=s_no("notexpanded:");
@.notexpanded:@>

@ Here is the subroutine that searches the hash table for an identifier
that matches a given string of length |l > 1| appearing in |buffer[j dotdot
(j+l-1)]|. If the identifier is found, the corresponding hash table address
is returned. Otherwise, if the global variable |no_new_control_sequence|
is |true|, the dummy address |undefined_control_sequence| is returned.
Otherwise the identifier is inserted into the hash table and its location
is returned.

@p static pointer id_lookup(int @!j, int @!l) /*search the hash table*/
{@+ /*go here if you found it*/
int h; /*hash code*/
int @!d; /*number of characters in incomplete current string*/
pointer @!p; /*index in |hash| array*/
int @!k; /*index in |buffer| array*/
@<Compute the hash code |h|@>;
p=h+hash_base; /*we start searching here; note that |0 <= h < hash_prime|*/
loop@+{@+if (text(p) > 0) if (length(text(p))==l)
    if (str_eq_buf(text(p), j)) goto found;
  if (next(p)==0)
    {@+if (no_new_control_sequence)
      p=undefined_control_sequence;
    else@<Insert a new control sequence after |p|, then make |p| point to
it@>;
    goto found;
    }
  p=next(p);
  }
found: return p;
}

@ @<Insert a new control...@>=
{@+if (text(p) > 0)
  {@+@/do@+{if (hash_is_full) overflow("hash size", hash_size);
@:TeX capacity exceeded hash size}{\quad hash size@>
  decr(hash_used);
  }@+ while (!(text(hash_used)==0)); /*search for an empty location in |hash|*/
  next(p)=hash_used;p=hash_used;
  }
str_room(l);d=cur_length;
while (pool_ptr > str_start[str_ptr])
  {@+decr(pool_ptr);str_pool[pool_ptr+l]=str_pool[pool_ptr];
  }  /*move current string up to make room for another*/
for (k=j; k<=j+l-1; k++) append_char(buffer[k]);
text(p)=make_string();pool_ptr=pool_ptr+d;
#ifdef @!STAT
incr(cs_count);
#endif
@;@/
}

@ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
should be a prime number.  The theory of hashing tells us to expect fewer
than two table probes, on the average, when the search is successful.
[See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
@^Vitter, Jeffrey Scott@>

@<Compute the hash code |h|@>=
h=buffer[j];
for (k=j+1; k<=j+l-1; k++)
  {@+h=h+h+buffer[k];
  while (h >= hash_prime) h=h-hash_prime;
  }

@ Single-character control sequences do not need to be looked up in a hash
table, since we can use the character code itself as a direct address.
The procedure |print_cs| prints the name of a control sequence, given
a pointer to its address in |eqtb|. A space is printed after the name
unless it is a single nonletter or an active character. This procedure
might be invoked with invalid data, so it is ``extra robust.'' The
individual characters must be printed one at a time using |print|, since
they may be unprintable.

@<Basic printing...@>=
static void print_cs(int @!p) /*prints a purported control sequence*/
{@+if (p < hash_base)  /*single character*/
  if (p >= single_base)
    if (p==null_cs)
      {@+print_esc("csname");print_esc("endcsname");print_char(' ');
      }
    else{@+printn_esc(p-single_base);
      if (cat_code(p-single_base)==letter) print_char(' ');
      }
  else if (p < active_base) print_esc("IMPOSSIBLE.");
@.IMPOSSIBLE@>
  else printn(p-active_base);
else if (p >= undefined_control_sequence) print_esc("IMPOSSIBLE.");
else if ((text(p) < 0)||(text(p) >= str_ptr)) print_esc("NONEXISTENT.");
@.NONEXISTENT@>
else{@+if (p==frozen_primitive) print_esc("primitive");
  printn_esc(text(p));print_char(' ');
  }
}

@ Here is a similar procedure; it avoids the error checks, and it never
prints a space after the control sequence.

@<Basic printing procedures@>=
static void sprint_cs(pointer @!p) /*prints a control sequence*/
{@+if (p < hash_base)
  if (p < single_base) printn(p-active_base);
  else if (p < null_cs) printn_esc(p-single_base);
    else{@+print_esc("csname");print_esc("endcsname");
      }
else printn_esc(text(p));
}

@ We need to put \TeX's ``primitive'' control sequences into the hash
table, together with their command code (which will be the |eq_type|)
and an operand (which will be the |equiv|). The |primitive| procedure
does this, in a way that no \TeX\ user can. The global value |cur_val|
contains the new |eqtb| pointer after |primitive| has acted.

@p
#ifdef @!INIT
static void primitive(char *@!str, quarterword @!c, halfword @!o)
{@+str_number s=s_no(str);
int k; /*index into |str_pool|*/
int @!j; /*index into |buffer|*/
small_number @!l; /*length of the string*/
pointer @!p; /*pointer in |ROM|*/
if (s < 256) cur_val=s+single_base;
else{@+k=str_start[s];l=str_start[s+1]-k;
     /*we will move |s| into the (possibly non-empty) |buffer|*/
  if (first+l > buf_size+1)
      overflow("buffer size", buf_size);
@:TeX capacity exceeded buffer size}{\quad buffer size@>
  for (j=0; j<=l-1; j++) buffer[first+j]=so(str_pool[k+j]);
  cur_val=id_lookup(first, l); /*|no_new_control_sequence| is |false|*/
  flush_string;text(cur_val)=s; /*we don't want to have the string twice*/
  }
eq_level(cur_val)=level_one;eq_type(cur_val)=c;equiv(cur_val)=o;
@<Add primitive definition to the |ROM| array@>;
}
#endif

@ Many of \TeX's primitives need no |equiv|, since they are identifiable
by their |eq_type| alone. These primitives are loaded into the hash table
as follows:

@<Put each of \TeX's primitives into the hash table@>=
primitive(" ", ex_space, 0);@/
@!@:Single-character primitives /}{\quad\.{\\\ }@>
primitive("/", ital_corr, 0);@/
@!@:Single-character primitives /}{\quad\.{\\/}@>
primitive("accent", accent, 0);@/
@!@:accent\_}{\.{\\accent} primitive@>
primitive("advance", advance, 0);@/
@!@:advance\_}{\.{\\advance} primitive@>
primitive("afterassignment", after_assignment, 0);@/
@!@:after\_assignment\_}{\.{\\afterassignment} primitive@>
primitive("aftergroup", after_group, 0);@/
@!@:after\_group\_}{\.{\\aftergroup} primitive@>
primitive("begingroup", begin_group, 0);@/
@!@:begin\_group\_}{\.{\\begingroup} primitive@>
primitive("char", char_num, 0);@/
@!@:char\_}{\.{\\char} primitive@>
primitive("csname", cs_name, 0);@/
@!@:cs\_name\_}{\.{\\csname} primitive@>
primitive("delimiter", delim_num, 0);@/
@!@:delimiter\_}{\.{\\delimiter} primitive@>
primitive("divide", divide, 0);@/
@!@:divide\_}{\.{\\divide} primitive@>
primitive("endcsname", end_cs_name, 0);@/
@!@:end\_cs\_name\_}{\.{\\endcsname} primitive@>
primitive("endgroup", end_group, 0);
@!@:end\_group\_}{\.{\\endgroup} primitive@>
text(frozen_end_group)=text(cur_val);eqtb[frozen_end_group]=eqtb[cur_val];@/
primitive("expandafter", expand_after, 0);@/
@!@:expand\_after\_}{\.{\\expandafter} primitive@>
primitive("font", def_font, 0);@/
@!@:font\_}{\.{\\font} primitive@>
primitive("fontdimen", assign_font_dimen, 0);@/
@!@:font\_dimen\_}{\.{\\fontdimen} primitive@>
primitive("halign", halign, 0);@/
@!@:halign\_}{\.{\\halign} primitive@>
primitive("hrule", hrule, 0);@/
@!@:hrule\_}{\.{\\hrule} primitive@>
primitive("ignorespaces", ignore_spaces, 0);@/
@!@:ignore\_spaces\_}{\.{\\ignorespaces} primitive@>
primitive("insert", insert, 0);@/
@!@:insert\_}{\.{\\insert} primitive@>
primitive("mark", mark, 0);@/
@!@:mark\_}{\.{\\mark} primitive@>
primitive("mathaccent", math_accent, 0);@/
@!@:math\_accent\_}{\.{\\mathaccent} primitive@>
primitive("mathchar", math_char_num, 0);@/
@!@:math\_char\_}{\.{\\mathchar} primitive@>
primitive("mathchoice", math_choice, 0);@/
@!@:math\_choice\_}{\.{\\mathchoice} primitive@>
primitive("multiply", multiply, 0);@/
@!@:multiply\_}{\.{\\multiply} primitive@>
primitive("noalign", no_align, 0);@/
@!@:no\_align\_}{\.{\\noalign} primitive@>
primitive("noboundary", no_boundary, 0);@/
@!@:no\_boundary\_}{\.{\\noboundary} primitive@>
primitive("noexpand", no_expand, 0);@/
@!@:no\_expand\_}{\.{\\noexpand} primitive@>
primitive("nonscript", non_script, 0);@/
@!@:non\_script\_}{\.{\\nonscript} primitive@>
primitive("omit", omit, 0);@/
@!@:omit\_}{\.{\\omit} primitive@>
primitive("parshape", set_shape, par_shape_loc);@/
@!@:par\_shape\_}{\.{\\parshape} primitive@>
primitive("penalty", break_penalty, 0);@/
@!@:penalty\_}{\.{\\penalty} primitive@>
primitive("prevgraf", set_prev_graf, 0);@/
@!@:prev\_graf\_}{\.{\\prevgraf} primitive@>
primitive("radical", radical, 0);@/
@!@:radical\_}{\.{\\radical} primitive@>
primitive("read", read_to_cs, 0);@/
@!@:read\_}{\.{\\read} primitive@>
primitive("relax", relax, 256); /*cf.\ |scan_file_name|*/
@!@:relax\_}{\.{\\relax} primitive@>
text(frozen_relax)=text(cur_val);eqtb[frozen_relax]=eqtb[cur_val];@/
primitive("setbox", set_box, 0);@/
@!@:set\_box\_}{\.{\\setbox} primitive@>
primitive("the", the, 0);@/
@!@:the\_}{\.{\\the} primitive@>
primitive("toks", toks_register, mem_bot);@/
@!@:toks\_}{\.{\\toks} primitive@>
primitive("vadjust", vadjust, 0);@/
@!@:vadjust\_}{\.{\\vadjust} primitive@>
primitive("valign", valign, 0);@/
@!@:valign\_}{\.{\\valign} primitive@>
primitive("vcenter", vcenter, 0);@/
@!@:vcenter\_}{\.{\\vcenter} primitive@>
primitive("vrule", vrule, 0);@/
@!@:vrule\_}{\.{\\vrule} primitive@>

@ Each primitive has a corresponding inverse, so that it is possible to
display the cryptic numeric contents of |eqtb| in symbolic form.
Every call of |primitive| in this program is therefore accompanied by some
straightforward code that forms part of the |print_cmd_chr| routine
below.

@<Cases of |print_cmd_chr|...@>=
case accent: print_esc("accent");@+break;
case advance: print_esc("advance");@+break;
case after_assignment: print_esc("afterassignment");@+break;
case after_group: print_esc("aftergroup");@+break;
case assign_font_dimen: print_esc("fontdimen");@+break;
case begin_group: print_esc("begingroup");@+break;
case break_penalty: print_esc("penalty");@+break;
case char_num: print_esc("char");@+break;
case cs_name: print_esc("csname");@+break;
case def_font: print_esc("font");@+break;
case delim_num: print_esc("delimiter");@+break;
case divide: print_esc("divide");@+break;
case end_cs_name: print_esc("endcsname");@+break;
case end_group: print_esc("endgroup");@+break;
case ex_space: print_esc(" ");@+break;
case expand_after: switch (chr_code) {
case 0: print_esc("expandafter");@+break;
@/@<Cases of |expandafter| for |print_cmd_chr|@>@/
} @+break; /*there are no other cases*/
case halign: print_esc("halign");@+break;
case hrule: print_esc("hrule");@+break;
case ignore_spaces: print_esc("ignorespaces");@+break;
case insert: print_esc("insert");@+break;
case ital_corr: print_esc("/");@+break;
case mark: {@+print_esc("mark");
  if (chr_code > 0) print_char('s');
  } @+break;
case math_accent: print_esc("mathaccent");@+break;
case math_char_num: print_esc("mathchar");@+break;
case math_choice: print_esc("mathchoice");@+break;
case multiply: print_esc("multiply");@+break;
case no_align: print_esc("noalign");@+break;
case no_boundary: print_esc("noboundary");@+break;
case no_expand: print_esc("noexpand");@+break;
case non_script: print_esc("nonscript");@+break;
case omit: print_esc("omit");@+break;
case radical: print_esc("radical");@+break;
case read_to_cs: if (chr_code==0) print_esc("read")
  @<Cases of |read| for |print_cmd_chr|@>;@+break;
case relax: print_esc("relax");@+break;
case set_box: print_esc("setbox");@+break;
case set_prev_graf: print_esc("prevgraf");@+break;
case set_shape: switch (chr_code) {
  case par_shape_loc: print_esc("parshape");@+break;
  @<Cases of |set_shape| for |print_cmd_chr|@>@;@/
  } @+break; /*there are no other cases*/
case the: if (chr_code==0) print_esc("the")
  @<Cases of |the| for |print_cmd_chr|@>;@+break;
case toks_register: @<Cases of |toks_register| for |print_cmd_chr|@>@;@+break;
case vadjust: print_esc("vadjust");@+break;
case valign: print_esc("valign");@+break;
case vcenter: print_esc("vcenter");@+break;
case vrule: print_esc("vrule");@+break;

@ We will deal with the other primitives later, at some point in the program
where their |eq_type| and |equiv| values are more meaningful.  For example,
the primitives for math mode will be loaded when we consider the routines
that deal with formulas. It is easy to find where each particular
primitive was treated by looking in the index at the end; for example, the
section where |"radical"| entered |eqtb| is listed under `\.{\\radical}
primitive'. (Primitives consisting of a single nonalphabetic character,
@!like `\.{\\/}', are listed under `Single-character primitives'.)
@!@^Single-character primitives@>

Meanwhile, this is a convenient place to catch up on something we were unable
to do before the hash table was defined:

@<Print the font identifier for |font(p)|@>=
printn_esc(font_id_text(font(p)))

@* Saving and restoring equivalents.
The nested structure provided by `$\.{\char'173}\ldots\.{\char'175}$' groups
in \TeX\ means that |eqtb| entries valid in outer groups should be saved
and restored later if they are overridden inside the braces. When a new |eqtb|
value is being assigned, the program therefore checks to see if the previous
entry belongs to an outer level. In such a case, the old value is placed
on the |save_stack| just before the new value enters |eqtb|. At the
end of a grouping level, i.e., when the right brace is sensed, the
|save_stack| is used to restore the outer values, and the inner ones are
destroyed.

Entries on the |save_stack| are of type |memory_word|. The top item on
this stack is |save_stack[p]|, where |p==save_ptr-1|; it contains three
fields called |save_type|, |save_level|, and |save_index|, and it is
interpreted in one of five ways:

\yskip\hangg 1) If |save_type(p)==restore_old_value|, then
|save_index(p)| is a location in |eqtb| whose current value should
be destroyed at the end of the current group and replaced by |save_stack[p-1]|.
Furthermore if |save_index(p) >= int_base|, then |save_level(p)|
should replace the corresponding entry in |xeq_level|.

\yskip\hangg 2) If |save_type(p)==restore_zero|, then |save_index(p)|
is a location in |eqtb| whose current value should be destroyed at the end
of the current group, when it should be
replaced by the value of |eqtb[undefined_control_sequence]|.

\yskip\hangg 3) If |save_type(p)==insert_token|, then |save_index(p)|
is a token that should be inserted into \TeX's input when the current
group ends.

\yskip\hangg 4) If |save_type(p)==level_boundary|, then |save_level(p)|
is a code explaining what kind of group we were previously in, and
|save_index(p)| points to the level boundary word at the bottom of
the entries for that group.
Furthermore, in extended \eTeX\ mode, |save_stack[p-1]| contains the
source line number at which the current level of grouping was entered.

\yskip\hang 5) If |save_type(p)==restore_sa|, then |sa_chain| points to a
chain of sparse array entries to be restored at the end of the current
group. Furthermore |save_index(p)| and |save_level(p)| should replace
the values of |sa_chain| and |sa_level| respectively.

@d save_type(A) save_stack[A].hh.b0 /*classifies a |save_stack| entry*/
@d save_level(A) save_stack[A].hh.b1
   /*saved level for regions 5 and 6, or group code*/
@d save_index(A) save_stack[A].hh.rh
   /*|eqtb| location or token or |save_stack| location*/
@d restore_old_value 0 /*|save_type| when a value should be restored later*/
@d restore_zero 1 /*|save_type| when an undefined entry should be restored*/
@d insert_token 2 /*|save_type| when a token is being saved for later use*/
@d level_boundary 3 /*|save_type| corresponding to beginning of group*/
@d restore_sa 4 /*|save_type| when sparse array entries should be restored*/

@p @t\4@>@<Declare \eTeX\ procedures for tracing and input@>@;

@ Here are the group codes that are used to discriminate between different
kinds of groups. They allow \TeX\ to decide what special actions, if any,
should be performed when a group ends.
\def\grp{\.{\char'173...\char'175}}

Some groups are not supposed to be ended by right braces. For example,
the `\.\$' that begins a math formula causes a |math_shift_group| to
be started, and this should be terminated by a matching `\.\$'. Similarly,
a group that starts with \.{\\left} should end with \.{\\right}, and
one that starts with \.{\\begingroup} should end with \.{\\endgroup}.

@d bottom_level 0 /*group code for the outside world*/
@d simple_group 1 /*group code for local structure only*/
@d hbox_group 2 /*code for `\.{\\hbox}\grp'*/
@d adjusted_hbox_group 3 /*code for `\.{\\hbox}\grp' in vertical mode*/
@d vbox_group 4 /*code for `\.{\\vbox}\grp'*/
@d vtop_group 5 /*code for `\.{\\vtop}\grp'*/
@d align_group 6 /*code for `\.{\\halign}\grp', `\.{\\valign}\grp'*/
@d no_align_group 7 /*code for `\.{\\noalign}\grp'*/
@d output_group 8 /*code for output routine*/
@d math_group 9 /*code for, e.g., `\.{\char'136}\grp'*/
@d disc_group 10 /*code for `\.{\\discretionary}\grp\grp\grp'*/
@d insert_group 11 /*code for `\.{\\insert}\grp', `\.{\\vadjust}\grp'*/
@d vcenter_group 12 /*code for `\.{\\vcenter}\grp'*/
@d math_choice_group 13 /*code for `\.{\\mathchoice}\grp\grp\grp\grp'*/
@d semi_simple_group 14 /*code for `\.{\\begingroup...\\endgroup}'*/
@d math_shift_group 15 /*code for `\.{\$...\$}'*/
@d math_left_group 16 /*code for `\.{\\left...\\right}'*/
@d page_group           17
@d stream_group  18
@d stream_before_group  19
@d stream_after_group   20
@d outline_group        21
@d max_group_code 21

@<Types...@>=
typedef int8_t group_code; /*|save_level| for a level boundary*/

@ The global variable |cur_group| keeps track of what sort of group we are
currently in. Another global variable, |cur_boundary|, points to the
topmost |level_boundary| word.  And |cur_level| is the current depth of
nesting. The routines are designed to preserve the condition that no entry
in the |save_stack| or in |eqtb| ever has a level greater than |cur_level|.

@ @<Glob...@>=
static memory_word @!save_stack[save_size+1];
static memory_word @!save_hfactor[save_size+1];
static memory_word @!save_vfactor[save_size+1];
static int @!save_ptr; /*first unused entry on |save_stack|*/
static int @!max_save_stack; /*maximum usage of save stack*/
static quarterword @!cur_level; /*current nesting level for groups*/
static group_code @!cur_group; /*current group type*/
static int @!cur_boundary; /*where the current level begins*/

@ At this time it might be a good idea for the reader to review the introduction
to |eqtb| that was given above just before the long lists of parameter names.
Recall that the ``outer level'' of the program is |level_one|, since
undefined control sequences are assumed to be ``defined'' at |level_zero|.

@<Set init...@>=
save_ptr=0;cur_level=level_one;cur_group=bottom_level;cur_boundary=0;
max_save_stack=0;

@ The following macro is used to test if there is room for up to seven more
entries on |save_stack|. By making a conservative test like this, we can
get by with testing for overflow in only a few places.

@d check_full_save_stack if (save_ptr > max_save_stack)
  {@+max_save_stack=save_ptr;
  if (max_save_stack > save_size-7) overflow("save size", save_size);
@:TeX capacity exceeded save size}{\quad save size@>
  }

@ Procedure |new_save_level| is called when a group begins. The
argument is a group identification code like `|hbox_group|'. After
calling this routine, it is safe to put five more entries on |save_stack|.

In some cases integer-valued items are placed onto the
|save_stack| just below a |level_boundary| word, because this is a
convenient place to keep information that is supposed to ``pop up'' just
when the group has finished.
For example, when `\.{\\hbox to 100pt}\grp' is being treated, the 100pt
dimension is stored on |save_stack| just before |new_save_level| is
called.

We use the notation |saved(k)| to stand for an integer item that
appears in location |save_ptr+k| of the save stack.

@d saved(A) save_stack[save_ptr+A].i
@d saved_hfactor(A) save_hfactor[save_ptr+A].i
@d saved_vfactor(A) save_vfactor[save_ptr+A].i

@p static void new_save_level(group_code @!c) /*begin a new level of grouping*/
{@+check_full_save_stack;
if (eTeX_ex)
  {@+saved(0)=line;incr(save_ptr);
  }
save_type(save_ptr)=level_boundary;save_level(save_ptr)=cur_group;
save_index(save_ptr)=cur_boundary;
if (cur_level==max_quarterword) overflow("grouping levels",
@:TeX capacity exceeded grouping levels}{\quad grouping levels@>
  max_quarterword-min_quarterword);
   /*quit if |(cur_level+1)| is too big to be stored in |eqtb|*/
cur_boundary=save_ptr;cur_group=c;
#ifdef @!STAT
if (tracing_groups > 0) group_trace(false);
#endif
@;@/
incr(cur_level);incr(save_ptr);
}

@ Just before an entry of |eqtb| is changed, the following procedure should
be called to update the other data structures properly. It is important
to keep in mind that reference counts in |mem| include references from
within |save_stack|, so these counts must be handled carefully.
@^reference counts@>

@p static void eq_destroy(memory_word @!w) /*gets ready to forget |w|*/
{@+pointer q; /*|equiv| field of |w|*/
switch (eq_type_field(w)) {
case call: case long_call: case outer_call:
  case long_outer_call: delete_token_ref(equiv_field(w));@+break;
case glue_ref: delete_glue_ref(equiv_field(w));@+break;
case shape_ref: {@+q=equiv_field(w); /*we need to free a \.{\\parshape} block*/
  if (q!=null) free_node(q, info(q)+info(q)+1);
  } @+break; /*such a block is |2 n+1| words long, where |n==info(q)|*/
case box_ref: flush_node_list(equiv_field(w));@+break;
@/@<Cases for |eq_destroy|@>@/
default:do_nothing;
}
}

@ To save a value of |eqtb[p]| that was established at level |l|, we
can use the following subroutine.

@p static void eq_save(pointer @!p, quarterword @!l) /*saves |eqtb[p]|*/
{@+check_full_save_stack;
if (l==level_zero) save_type(save_ptr)=restore_zero;
else{@+save_stack[save_ptr]=eqtb[p];
  if (p>=dimen_base)
  { save_hfactor[save_ptr]=hfactor_eqtb[p];
    save_vfactor[save_ptr]=vfactor_eqtb[p];
  }
  else if (p==par_shape_loc)
  { save_hfactor[save_ptr].i=par_shape_hfactor;
    save_vfactor[save_ptr].i=par_shape_vfactor;
  }
  incr(save_ptr);
  save_type(save_ptr)=restore_old_value;
  }
save_level(save_ptr)=l;save_index(save_ptr)=p;incr(save_ptr);
}

@ The procedure |eq_define| defines an |eqtb| entry having specified
|eq_type| and |equiv| fields, and saves the former value if appropriate.
This procedure is used only for entries in the first four regions of |eqtb|,
i.e., only for entries that have |eq_type| and |equiv| fields.
After calling this routine, it is safe to put four more entries on
|save_stack|, provided that there was room for four more entries before
the call, since |eq_save| makes the necessary test.

@p
#ifdef @!STAT
#define  assign_trace(A, B) if (tracing_assigns > 0) restore_trace(A, B);
#else
#define  assign_trace(A, B)
#endif

static void eq_define(pointer @!p, quarterword @!t, halfword @!e)
   /*new data for |eqtb|*/
{@+
if (eTeX_ex&&(eq_type(p)==t)&&(equiv(p)==e))
  {@+assign_trace(p,"reassigning")@;@/
  eq_destroy(eqtb[p]);return;
  }
assign_trace(p,"changing")@;@/
if (eq_level(p)==cur_level) eq_destroy(eqtb[p]);
else if (cur_level > level_one) eq_save(p, eq_level(p));
eq_level(p)=cur_level;eq_type(p)=t;equiv(p)=e;
if (p==par_shape_loc)
{ par_shape_hfactor=cur_hfactor;
  par_shape_vfactor=cur_vfactor;
}
assign_trace(p,"into")@;@/
}

@ The counterpart of |eq_define| for the remaining (fullword) positions in
|eqtb| is called |eq_word_define|. Since |xeq_level[p] >= level_one| for all
|p|, a `|restore_zero|' will never be used in this case.

@p static void eq_word_define(pointer @!p, int @!w)
{@+
assign_trace(p,"changing")@;@/
if (cur_level==level_one)@t\1@>
   { if (p==dimen_base+hsize_code)
     { hhsize=w+round(((double)cur_hfactor*hhsize +(double)cur_vfactor*hvsize)/unity); return; @+}
     if (p==dimen_base+vsize_code)
     { hvsize=w+round(((double)cur_hfactor*hhsize +(double)cur_vfactor*hvsize)/unity); return; @+}
   }
if (xeq_level[p]!=cur_level)
  {@+eq_save(p, xeq_level[p]);xeq_level[p]=cur_level;
  }
eqtb[p].i=w;
if (p>=dimen_base)
{ hfactor_eqtb[p].i=cur_hfactor;
  vfactor_eqtb[p].i=cur_vfactor;
}
assign_trace(p,"into")@;@/
}

@ The |eq_define| and |eq_word_define| routines take care of local definitions.
@^global definitions@>
Global definitions are done in almost the same way, but there is no need
to save old values, and the new value is associated with |level_one|.

@p static void geq_define(pointer @!p, quarterword @!t, halfword @!e)
   /*global |eq_define|*/
{@+assign_trace(p,"globally changing")@;@/
{@+eq_destroy(eqtb[p]);
eq_level(p)=level_one;eq_type(p)=t;equiv(p)=e;
}
assign_trace(p,"into");@/
}
@#
static void geq_word_define(pointer @!p, int @!w) /*global |eq_word_define|*/
{@+assign_trace(p,"globally changing")@;@/
{@t\1@>xeq_level[p]=level_one;
  if (p==dimen_base+hsize_code)
    hhsize=w+round(((double)cur_hfactor*hhsize +(double)cur_vfactor*hvsize)/unity);
  else if (p==dimen_base+vsize_code)
    hvsize=w+round(((double)cur_hfactor*hhsize +(double)cur_vfactor*hvsize)/unity);
  else
 { eqtb[p].i=w;
  if (p>=dimen_base)
  { hfactor_eqtb[p].i=cur_hfactor;
    vfactor_eqtb[p].i=cur_vfactor;
  }
}
}
assign_trace(p,"into");@/
}

@ Subroutine |save_for_after| puts a token on the stack for save-keeping.

@p static void save_for_after(halfword @!t)
{@+if (cur_level > level_one)
  {@+check_full_save_stack;
  save_type(save_ptr)=insert_token;save_level(save_ptr)=level_zero;
  save_index(save_ptr)=t;incr(save_ptr);
  }
}

@ The |unsave| routine goes the other way, taking items off of |save_stack|.
This routine takes care of restoration when a level ends; everything
belonging to the topmost group is cleared off of the save stack.

@p
static void back_input(void);
static void unsave(void) /*pops the top level off the save stack*/
{@+
pointer p; /*position to be restored*/
quarterword @!l; /*saved level, if in fullword regions of |eqtb|*/
halfword @!t; /*saved value of |cur_tok|*/
bool @!a; /*have we already processed an \.{\\aftergroup} ?*/
a=false;
if (cur_level > level_one)
  {@+decr(cur_level);
  @<Clear off top level from |save_stack|@>;
  }
else confusion("curlevel"); /*|unsave| is not used when |cur_group==bottom_level|*/
@:this can't happen curlevel}{\quad curlevel@>
}

@ @<Clear off...@>=
loop@+{@+decr(save_ptr);
  if (save_type(save_ptr)==level_boundary) goto done;
  p=save_index(save_ptr);
  if (save_type(save_ptr)==insert_token)
    @<Insert token |p| into \TeX's input@>@;
  else if (save_type(save_ptr)==restore_sa)
    {@+sa_restore();sa_chain=p;sa_level=save_level(save_ptr);
    }
  else{@+if (save_type(save_ptr)==restore_old_value)
      {@+l=save_level(save_ptr);decr(save_ptr);
      }
    else save_stack[save_ptr]=eqtb[undefined_control_sequence];
    @<Store \(s)|save_stack[save_ptr]| in |eqtb[p]|, unless |eqtb[p]| holds
a global value@>;
    }
  }
done:
#ifdef @!STAT
if (tracing_groups > 0) group_trace(true);
#endif
@;@/
if (grp_stack[in_open]==cur_boundary) group_warning();
   /*groups possibly not properly nested with files*/
cur_group=save_level(save_ptr);cur_boundary=save_index(save_ptr);
if (eTeX_ex) decr(save_ptr)

@ A global definition, which sets the level to |level_one|,
@^global definitions@>
will not be undone by |unsave|. If at least one global definition of
|eqtb[p]| has been carried out within the group that just ended, the
last such definition will therefore survive.

@<Store \(s)|save...@>=
if (p < int_base)
  if (eq_level(p)==level_one)
    {@+eq_destroy(save_stack[save_ptr]); /*destroy the saved value*/
#ifdef @!STAT
    if (tracing_restores > 0) restore_trace(p,"retaining");
#endif
@;@/
    }
  else{@+eq_destroy(eqtb[p]); /*destroy the current value*/
    eqtb[p]=save_stack[save_ptr]; /*restore the saved value*/
    if (p==par_shape_loc)
    { par_shape_hfactor=save_hfactor[save_ptr].i;
      par_shape_vfactor=save_vfactor[save_ptr].i;
    }
#ifdef @!STAT
    if (tracing_restores > 0) restore_trace(p,"restoring");
#endif
@;@/
    }
else if (xeq_level[p]!=level_one)
  {@t\1@>@+eqtb[p]=save_stack[save_ptr];
    if (p>=dimen_base)
    { hfactor_eqtb[p]=save_hfactor[save_ptr];
      vfactor_eqtb[p]=save_vfactor[save_ptr];
    }
    xeq_level[p]=l;
#ifdef @!STAT
  if (tracing_restores > 0) restore_trace(p,"restoring");
#endif
@;@/
  }
else{
#ifdef @!STAT
  if (tracing_restores > 0) restore_trace(p,"retaining");
#endif
@;@/
  }

@ @<Declare \eTeX\ procedures for tr...@>=
#ifdef @!STAT
static void restore_trace(pointer @!p, char *@!s)
   /*|eqtb[p]| has just been restored or retained*/
{@+begin_diagnostic();print_char('{');print(s);print_char(' ');
show_eqtb(p);print_char('}');
end_diagnostic(false);
}
#endif

@ When looking for possible pointers to a memory location, it is helpful
to look for references from |eqtb| that might be waiting on the
save stack. Of course, we might find spurious pointers too; but this
routine is merely an aid when debugging, and at such times we are
grateful for any scraps of information, even if they prove to be irrelevant.
@^dirty \PASCAL@>

@<Search |save_stack| for equivalents that point to |p|@>=
if (save_ptr > 0) for (q=0; q<=save_ptr-1; q++)
  {@+if (equiv_field(save_stack[q])==p)
    {@+print_nl("SAVE(");print_int(q);print_char(')');
    }
  }

@ Most of the parameters kept in |eqtb| can be changed freely, but there's
an exception:  The magnification should not be used with two different
values during any \TeX\ job, since a single magnification is applied to an
entire run. The global variable |mag_set| is set to the current magnification
whenever it becomes necessary to ``freeze'' it at a particular value.

@<Glob...@>=
static int @!mag_set; /*if nonzero, this magnification should be used henceforth*/

@ @<Set init...@>=
mag_set=0;

@ The |prepare_mag| subroutine is called whenever \TeX\ wants to use |mag|
for magnification.

@p static void prepare_mag(void)
{@+if ((mag_set > 0)&&(mag!=mag_set))
  {@+print_err("Incompatible magnification (");print_int(mag);
@.Incompatible magnification@>
  print(");");print_nl(" the previous value will be retained");
  help2("I can handle only one magnification ratio per job. So I've",@/
  "reverted to the magnification you used earlier on this run.");@/
  int_error(mag_set);
  geq_word_define(int_base+mag_code, mag_set); /*|mag=mag_set|*/
  }
if ((mag <= 0)||(mag > 32768))
  {@+print_err("Illegal magnification has been changed to 1000");@/
@.Illegal magnification...@>
  help1("The magnification ratio must be between 1 and 32768.");
  int_error(mag);geq_word_define(int_base+mag_code, 1000);
  }
mag_set=mag;
}

@* Token lists.
A \TeX\ token is either a character or a control sequence, and it is
@^token@>
represented internally in one of two ways: (1)~A character whose ASCII
code number is |c| and whose command code is |m| is represented as the
number $2^8m+c$; the command code is in the range |1 <= m <= 14|. (2)~A control
sequence whose |eqtb| address is |p| is represented as the number
|cs_token_flag+p|. Here |cs_token_flag==@t$2^{12}-1$@>| is larger than
$2^8m+c$, yet it is small enough that |cs_token_flag+p < max_halfword|;
thus, a token fits comfortably in a halfword.

A token |t| represents a |left_brace| command if and only if
|t < left_brace_limit|; it represents a |right_brace| command if and only if
we have |left_brace_limit <= t < right_brace_limit|; and it represents a |match| or
|end_match| command if and only if |match_token <= t <= end_match_token|.
The following definitions take care of these token-oriented constants
and a few others.

@d cs_token_flag 07777 /*amount added to the |eqtb| location in a
  token that stands for a control sequence; is a multiple of~256, less~1*/
@d left_brace_token 00400 /*$2^8\cdot|left_brace|$*/
@d left_brace_limit 01000 /*$2^8\cdot(|left_brace|+1)$*/
@d right_brace_token 01000 /*$2^8\cdot|right_brace|$*/
@d right_brace_limit 01400 /*$2^8\cdot(|right_brace|+1)$*/
@d math_shift_token 01400 /*$2^8\cdot|math_shift|$*/
@d tab_token 02000 /*$2^8\cdot|tab_mark|$*/
@d out_param_token 02400 /*$2^8\cdot|out_param|$*/
@d space_token 05040 /*$2^8\cdot|spacer|+|' '|$*/
@d letter_token 05400 /*$2^8\cdot|letter|$*/
@d other_token 06000 /*$2^8\cdot|other_char|$*/
@d match_token 06400 /*$2^8\cdot|match|$*/
@d end_match_token 07000 /*$2^8\cdot|end_match|$*/
@d protected_token 07001 /*$2^8\cdot|end_match|+1$*/

@ @<Check the ``constant''...@>=
if (cs_token_flag+undefined_control_sequence > max_halfword) bad=21;

@ A token list is a singly linked list of one-word nodes in |mem|, where
each word contains a token and a link. Macro definitions, output-routine
definitions, marks, \.{\\write} texts, and a few other things
are remembered by \TeX\ in the form
of token lists, usually preceded by a node with a reference count in its
|token_ref_count| field. The token stored in location |p| is called
|info(p)|.

Three special commands appear in the token lists of macro definitions.
When |m==match|, it means that \TeX\ should scan a parameter
for the current macro; when |m==end_match|, it means that parameter
matching should end and \TeX\ should start reading the macro text; and
when |m==out_param|, it means that \TeX\ should insert parameter
number |c| into the text at this point.

The enclosing \.{\char'173} and \.{\char'175} characters of a macro
definition are omitted, but an output routine
will be enclosed in braces.

Here is an example macro definition that illustrates these conventions.
After \TeX\ processes the text
$$\.{\\def\\mac a\#1\#2 \\b \{\#1\\-a \#\#1\#2 \#2\}}$$
the definition of \.{\\mac} is represented as a token list containing
$$\def\,{\hskip2pt}
\vbox{\halign{\hfil#\hfil\cr
(reference count), |letter|\,\.a, |match|\,\#, |match|\,\#, |spacer|\,\.\ ,
\.{\\b}, |end_match|,\cr
|out_param|\,1, \.{\\-}, |letter|\,\.a, |spacer|\,\.\ , |mac_param|\,\#,
|other_char|\,\.1,\cr
|out_param|\,2, |spacer|\,\.\ , |out_param|\,2.\cr}}$$
The procedure |scan_toks| builds such token lists, and |macro_call|
does the parameter matching.
@^reference counts@>

Examples such as
$$\.{\\def\\m\{\\def\\m\{a\}\ b\}}$$
explain why reference counts would be needed even if \TeX\ had no \.{\\let}
operation: When the token list for \.{\\m} is being read, the redefinition of
\.{\\m} changes the |eqtb| entry before the token list has been fully
consumed, so we dare not simply destroy a token list when its
control sequence is being redefined.

If the parameter-matching part of a definition ends with `\.{\#\{}',
the corresponding token list will have `\.\{' just before the `|end_match|'
and also at the very end. The first `\.\{' is used to delimit the parameter; the
second one keeps the first from disappearing.

@ The procedure |show_token_list|, which prints a symbolic form of
the token list that starts at a given node |p|, illustrates these
conventions. The token list being displayed should not begin with a reference
count. However, the procedure is intended to be robust, so that if the
memory links are awry or if |p| is not really a pointer to a token list,
nothing catastrophic will happen.

An additional parameter |q| is also given; this parameter is either null
or it points to a node in the token list where a certain magic computation
takes place that will be explained later. (Basically, |q| is non-null when
we are printing the two-line context information at the time of an error
message; |q| marks the place corresponding to where the second line
should begin.)

For example, if |p| points to the node containing the first \.a in the
token list above, then |show_token_list| will print the string
$$\hbox{`\.{a\#1\#2\ \\b\ ->\#1\\-a\ \#\#1\#2\ \#2}';}$$
and if |q| points to the node containing the second \.a,
the magic computation will be performed just before the second \.a is printed.

The generation will stop, and `\.{\\ETC.}' will be printed, if the length
of printing exceeds a given limit~|l|. Anomalous entries are printed in the
form of control sequences that are not followed by a blank space, e.g.,
`\.{\\BAD.}'; this cannot be confused with actual control sequences because
a real control sequence named \.{BAD} would come out `\.{\\BAD\ }'.

@<Declare the procedure called |show_token_list|@>=
static void show_token_list(int @!p, int @!q, int @!l)
{@+
int m, @!c; /*pieces of a token*/
ASCII_code @!match_chr; /*character used in a `|match|'*/
ASCII_code @!n; /*the highest parameter number, as an ASCII digit*/
match_chr='#';n='0';tally=0;
while ((p!=null)&&(tally < l))
  {@+if (p==q) @<Do magic computation@>;
  @<Display token |p|, and |return| if there are problems@>;
  p=link(p);
  }
if (p!=null) print_esc("ETC.");
@.ETC@>

}

@ @<Display token |p|...@>=
if ((p < hi_mem_min)||(p > mem_end))
  {@+print_esc("CLOBBERED.");return;
@.CLOBBERED@>
  }
if (info(p) >= cs_token_flag) print_cs(info(p)-cs_token_flag);
else{@+m=info(p)/0400;c=info(p)%0400;
  if (info(p) < 0) print_esc("BAD.");
@.BAD@>
  else@<Display the token $(|m|,|c|)$@>;
  }

@ The procedure usually ``learns'' the character code used for macro
parameters by seeing one in a |match| command before it runs into any
|out_param| commands.

@<Display the token...@>=
switch (m) {
case left_brace: case right_brace: case math_shift:
  case tab_mark: case sup_mark: case sub_mark:
  case spacer:
  case letter: case other_char: printn(c);@+break;
case mac_param: {@+printn(c);printn(c);
  } @+break;
case out_param: {@+printn(match_chr);
  if (c <= 9) print_char(c+'0');
  else{@+print_char('!');return;
    }
  } @+break;
case match: {@+match_chr=c;printn(c);incr(n);print_char(n);
  if (n > '9') return;
  } @+break;
case end_match: if (c==0) print("->");@+break;
@.->@>
default:print_esc("BAD.");
@.BAD@>
}

@ Here's the way we sometimes want to display a token list, given a pointer
to its reference count; the pointer may be null.

@p static void token_show(pointer @!p)
{@+if (p!=null) show_token_list(link(p), null, 10000000);
}

@ The |print_meaning| subroutine displays |cur_cmd| and |cur_chr| in
symbolic form, including the expansion of a macro or mark.

@p static void print_meaning(void)
{@+print_cmd_chr(cur_cmd, cur_chr);
if (cur_cmd >= call)
  {@+print_char(':');print_ln();token_show(cur_chr);
  }
else if ((cur_cmd==top_bot_mark)&&(cur_chr < marks_code))
  {@+print_char(':');print_ln();
  token_show(cur_mark[cur_chr]);
  }
}

@* Introduction to the syntactic routines.
Let's pause a moment now and try to look at the Big Picture.
The \TeX\ program consists of three main parts: syntactic routines,
semantic routines, and output routines. The chief purpose of the
syntactic routines is to deliver the user's input to the semantic routines,
one token at a time. The semantic routines act as an interpreter
responding to these tokens, which may be regarded as commands. And the
output routines are periodically called on to convert box-and-glue
lists into a compact set of instructions that will be sent
to a typesetter. We have discussed the basic data structures and utility
routines of \TeX, so we are good and ready to plunge into the real activity by
considering the syntactic routines.

Our current goal is to come to grips with the |get_next| procedure,
which is the keystone of \TeX's input mechanism. Each call of |get_next|
sets the value of three variables |cur_cmd|, |cur_chr|, and |cur_cs|,
representing the next input token.
$$\vbox{\halign{#\hfil\cr
  \hbox{|cur_cmd| denotes a command code from the long list of codes
   given above;}\cr
  \hbox{|cur_chr| denotes a character code or other modifier of the command
   code;}\cr
  \hbox{|cur_cs| is the |eqtb| location of the current control sequence,}\cr
  \hbox{\qquad if the current token was a control sequence,
   otherwise it's zero.}\cr}}$$
Underlying this external behavior of |get_next| is all the machinery
necessary to convert from character files to tokens. At a given time we
may be only partially finished with the reading of several files (for
which \.{\\input} was specified), and partially finished with the expansion
of some user-defined macros and/or some macro parameters, and partially
finished with the generation of some text in a template for \.{\\halign},
and so on. When reading a character file, special characters must be
classified as math delimiters, etc.; comments and extra blank spaces must
be removed, paragraphs must be recognized, and control sequences must be
found in the hash table. Furthermore there are occasions in which the
scanning routines have looked ahead for a word like `\.{plus}' but only
part of that word was found, hence a few characters must be put back
into the input and scanned again.

To handle these situations, which might all be present simultaneously,
\TeX\ uses various stacks that hold information about the incomplete
activities, and there is a finite state control for each level of the
input mechanism. These stacks record the current state of an implicitly
recursive process, but the |get_next| procedure is not recursive.
Therefore it will not be difficult to translate these algorithms into
low-level languages that do not support recursion.

@<Glob...@>=
static eight_bits @!cur_cmd; /*current command set by |get_next|*/
static halfword @!cur_chr; /*operand of current command*/
static pointer @!cur_cs; /*control sequence found here, zero if none found*/
static halfword @!cur_tok; /*packed representative of |cur_cmd| and |cur_chr|*/

@ The |print_cmd_chr| routine prints a symbolic interpretation of a
command code and its modifier. This is used in certain `\.{You can\'t}'
error messages, and in the implementation of diagnostic routines like
\.{\\show}.

The body of |print_cmd_chr| is a rather tedious listing of print
commands, and most of it is essentially an inverse to the |primitive|
routine that enters a \TeX\ primitive into |eqtb|. Therefore much of
this procedure appears elsewhere in the program,
together with the corresponding |primitive| calls.

@d chr_cmd(A) {@+print(A);print_ASCII(chr_code);
  }

@<Declare the procedure called |print_cmd_chr|@>=
static void print_cmd_chr(quarterword @!cmd, halfword @!chr_code)
{@+int n; /*temp variable*/
switch (cmd) {
case left_brace: chr_cmd("begin-group character ")@;@+break;
case right_brace: chr_cmd("end-group character ")@;@+break;
case math_shift: chr_cmd("math shift character ")@;@+break;
case mac_param: chr_cmd("macro parameter character ")@;@+break;
case sup_mark: chr_cmd("superscript character ")@;@+break;
case sub_mark: chr_cmd("subscript character ")@;@+break;
case endv: print("end of alignment template");@+break;
case spacer: chr_cmd("blank space ")@;@+break;
case letter: chr_cmd("the letter ")@;@+break;
case other_char: chr_cmd("the character ")@;@+break;
@t\4@>@<Cases of |print_cmd_chr| for symbolic printing of primitives@>@/
default:print("[unknown command code!]");
}
}

@ Here is a procedure that displays the current command.

@p static void show_cur_cmd_chr(void)
{@+int n; /*level of \.{\\if...\\fi} nesting*/
int @!l; /*line where \.{\\if} started*/
pointer @!p;
begin_diagnostic();print_nl("{");
if (mode!=shown_mode)
  {@+print_mode(mode);print(": ");shown_mode=mode;
  }
print_cmd_chr(cur_cmd, cur_chr);
if (tracing_ifs > 0)
  if (cur_cmd >= if_test) if (cur_cmd <= fi_or_else)
    {@+print(": ");
    if (cur_cmd==fi_or_else)
      {@+print_cmd_chr(if_test, cur_if);print_char(' ');
      n=0;l=if_line;
      }
    else{@+n=1;l=line;
      }
    p=cond_ptr;
    while (p!=null)
      {@+incr(n);p=link(p);
      }
    print("(level ");print_int(n);print_char(')');print_if_line(l);
    }
print_char('}');
end_diagnostic(false);
}

@* Input stacks and states.
This implementation of
\TeX\ uses two different conventions for representing sequential stacks.
@^stack conventions@>@^conventions for representing stacks@>

\yskip\hangg 1) If there is frequent access to the top entry, and if the
stack is essentially never empty, then the top entry is kept in a global
variable (even better would be a machine register), and the other entries
appear in the array $\\{stack}[0\to(\\{ptr}-1)]$. For example, the
semantic stack described above is handled this way, and so is the input
stack that we are about to study.

\yskip\hangg 2) If there is infrequent top access, the entire stack contents
are in the array $\\{stack}[0\to(\\{ptr}-1)]$. For example, the |save_stack|
is treated this way, as we have seen.

\yskip\noindent
The state of \TeX's input mechanism appears in the input stack, whose
entries are records with six fields, called |state|, |index|, |start|, |loc|,
|limit|, and |name|. This stack is maintained with
convention~(1), so it is declared in the following way:

@<Types...@>=
typedef struct {
  quarterword @!state_field, @!index_field;
  halfword @!start_field, @!loc_field, @!limit_field, @!name_field;
  } in_state_record;

@ @<Glob...@>=
static in_state_record @!input_stack[stack_size+1];
static int @!input_ptr; /*first unused location of |input_stack|*/
static int @!max_in_stack; /*largest value of |input_ptr| when pushing*/
static in_state_record @!cur_input;
   /*the ``top'' input state, according to convention (1)*/

@ We've already defined the special variable |loc====cur_input.loc_field|
in our discussion of basic input-output routines. The other components of
|cur_input| are defined in the same way:

@d state cur_input.state_field /*current scanner state*/
@d index cur_input.index_field /*reference for buffer information*/
@d start cur_input.start_field /*starting position in |buffer|*/
@d limit cur_input.limit_field /*end of current line in |buffer|*/
@d name cur_input.name_field /*name of the current file*/

@ Let's look more closely now at the control variables
(|state|,~|index|,~|start|,~|loc|,~|limit|,~|name|),
assuming that \TeX\ is reading a line of characters that have been input
from some file or from the user's terminal. There is an array called
|buffer| that acts as a stack of all lines of characters that are
currently being read from files, including all lines on subsidiary
levels of the input stack that are not yet completed. \TeX\ will return to
the other lines when it is finished with the present input file.

(Incidentally, on a machine with byte-oriented addressing, it might be
appropriate to combine |buffer| with the |str_pool| array,
letting the buffer entries grow downward from the top of the string pool
and checking that these two tables don't bump into each other.)

The line we are currently working on begins in position |start| of the
buffer; the next character we are about to read is |buffer[loc]|; and
|limit| is the location of the last character present.  If |loc > limit|,
the line has been completely read. Usually |buffer[limit]| is the
|end_line_char|, denoting the end of a line, but this is not
true if the current line is an insertion that was entered on the user's
terminal in response to an error message.

The |name| variable is a string number that designates the name of
the current file, if we are reading a text file. It is zero if we
are reading from the terminal; it is |n+1| if we are reading from
input stream |n|, where |0 <= n <= 16|. (Input stream 16 stands for
an invalid stream number; in such cases the input is actually from
the terminal, under control of the procedure |read_toks|.)
Finally |18 <= name <= 19| indicates that we are reading a pseudo file
created by the \.{\\scantokens} command.

The |state| variable has one of three values, when we are scanning such
files:
$$\baselineskip 15pt\vbox{\halign{#\hfil\cr
1) |state==mid_line| is the normal state.\cr
2) |state==skip_blanks| is like |mid_line|, but blanks are ignored.\cr
3) |state==new_line| is the state at the beginning of a line.\cr}}$$
These state values are assigned numeric codes so that if we add the state
code to the next character's command code, we get distinct values. For
example, `|mid_line+spacer|' stands for the case that a blank
space character occurs in the middle of a line when it is not being
ignored; after this case is processed, the next value of |state| will
be |skip_blanks|.

@d mid_line 1 /*|state| code when scanning a line of characters*/
@d skip_blanks (2+max_char_code) /*|state| code when ignoring blanks*/
@d new_line (3+max_char_code+max_char_code) /*|state| code at start of line*/

@ Additional information about the current line is available via the
|index| variable, which counts how many lines of characters are present
in the buffer below the current level. We have |index==0| when reading
from the terminal and prompting the user for each line; then if the user types,
e.g., `\.{\\input paper}', we will have |index==1| while reading
the file \.{paper.tex}. However, it does not follow that |index| is the
same as the input stack pointer, since many of the levels on the input
stack may come from token lists. For example, the instruction `\.{\\input
paper}' might occur in a token list.

The global variable |in_open| is equal to the |index|
value of the highest non-token-list level. Thus, the number of partially read
lines in the buffer is |in_open+1|, and we have |in_open==index|
when we are not reading a token list.

If we are not currently reading from the terminal, or from an input
stream, we are reading from the file variable |input_file[index]|. We use
the notation |terminal_input| as a convenient abbreviation for |name==0|,
and |cur_file| as an abbreviation for |input_file[index]|.

The global variable |line| contains the line number in the topmost
open file, for use in error messages. If we are not reading from
the terminal, |line_stack[index]| holds the line number for the
enclosing level, so that |line| can be restored when the current
file has been read. Line numbers should never be negative, since the
negative of the current line number is used to identify the user's output
routine in the |mode_line| field of the semantic nest entries.

If more information about the input state is needed, it can be
included in small arrays like those shown here. For example,
the current page or segment number in the input file might be
put into a variable |@!page|, maintained for enclosing levels in
`\ignorespaces|@!page_stack: array[1 dotdot max_in_open]int|\unskip'
by analogy with |line_stack|.
@^system dependencies@>

@d terminal_input (name==0) /*are we reading from the terminal?*/
@d cur_file input_file[index] /*the current |alpha_file| variable*/

@<Glob...@>=
static int @!in_open; /*the number of lines in the buffer, less one*/
static int @!open_parens; /*the number of open text files*/
static alpha_file @!input_file0[max_in_open],
  *const @!input_file = @!input_file0-1;
static int @!line; /*current line number in the current source file*/
static int @!line_stack0[max_in_open],
  *const @!line_stack = @!line_stack0-1;

@ Users of \TeX\ sometimes forget to balance left and right braces properly,
and one of the ways \TeX\ tries to spot such errors is by considering an
input file as broken into subfiles by control sequences that
are declared to be \.{\\outer}.

A variable called |scanner_status| tells \TeX\ whether or not to complain
when a subfile ends. This variable has six possible values:

\yskip\hang|normal|, means that a subfile can safely end here without incident.

\yskip\hang|skipping|, means that a subfile can safely end here, but not a file,
because we're reading past some conditional text that was not selected.

\yskip\hang|defining|, means that a subfile shouldn't end now because a
macro is being defined.

\yskip\hang|matching|, means that a subfile shouldn't end now because a
macro is being used and we are searching for the end of its arguments.

\yskip\hang|aligning|, means that a subfile shouldn't end now because we are
not finished with the preamble of an \.{\\halign} or \.{\\valign}.

\yskip\hang|absorbing|, means that a subfile shouldn't end now because we are
reading a balanced token list for \.{\\message}, \.{\\write}, etc.

\yskip\noindent
If the |scanner_status| is not |normal|, the variable |warning_index| points
to the |eqtb| location for the relevant control sequence name to print
in an error message.

@d skipping 1 /*|scanner_status| when passing conditional text*/
@d defining 2 /*|scanner_status| when reading a macro definition*/
@d matching 3 /*|scanner_status| when reading macro arguments*/
@d aligning 4 /*|scanner_status| when reading an alignment preamble*/
@d absorbing 5 /*|scanner_status| when reading a balanced text*/

@<Glob...@>=
static int @!scanner_status; /*can a subfile end now?*/
static pointer @!warning_index; /*identifier relevant to non-|normal| scanner status*/
static pointer @!def_ref; /*reference count of token list being defined*/

@ Here is a procedure that uses |scanner_status| to print a warning message
when a subfile has ended, and at certain other crucial times:

@<Declare the procedure called |runaway|@>=
static void runaway(void)
{@+pointer p; /*head of runaway list*/
if (scanner_status > skipping)
  {@+print_nl("Runaway ");
@.Runaway...@>
  switch (scanner_status) {
  case defining: {@+print("definition");p=def_ref;
    } @+break;
  case matching: {@+print("argument");p=temp_head;
    } @+break;
  case aligning: {@+print("preamble");p=hold_head;
    } @+break;
  case absorbing: {@+print("text");p=def_ref;
    }
  }  /*there are no other cases*/
  print_char('?');print_ln();show_token_list(link(p), null, error_line-10);
  }
}

@ However, all this discussion about input state really applies only to the
case that we are inputting from a file. There is another important case,
namely when we are currently getting input from a token list. In this case
|state==token_list|, and the conventions about the other state variables
are different:

\yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
the node that will be read next. If |loc==null|, the token list has been
fully read.

\yskip\hang|start| points to the first node of the token list; this node
may or may not contain a reference count, depending on the type of token
list involved.

\yskip\hang|token_type|, which takes the place of |index| in the
discussion above, is a code number that explains what kind of token list
is being scanned.

\yskip\hang|name| points to the |eqtb| address of the control sequence
being expanded, if the current token list is a macro.

\yskip\hang|param_start|, which takes the place of |limit|, tells where
the parameters of the current macro begin in the |param_stack|, if the
current token list is a macro.

\yskip\noindent The |token_type| can take several values, depending on
where the current token list came from:

\yskip\hang|parameter|, if a parameter is being scanned;

\hang|u_template|, if the \<u_j> part of an alignment
template is being scanned;

\hang|v_template|, if the \<v_j> part of an alignment
template is being scanned;

\hang|backed_up|, if the token list being scanned has been inserted as
`to be read again';

\hang|inserted|, if the token list being scanned has been inserted as
the text expansion of a \.{\\count} or similar variable;

\hang|macro|, if a user-defined control sequence is being scanned;

\hang|output_text|, if an \.{\\output} routine is being scanned;

\hang|every_par_text|, if the text of \.{\\everypar} is being scanned;

\hang|every_math_text|, if the text of \.{\\everymath} is being scanned;

\hang|every_display_text|, if the text of \.{\\everydisplay} is being scanned;

\hang|every_hbox_text|, if the text of \.{\\everyhbox} is being scanned;

\hang|every_vbox_text|, if the text of \.{\\everyvbox} is being scanned;

\hang|every_job_text|, if the text of \.{\\everyjob} is being scanned;

\hang|every_cr_text|, if the text of \.{\\everycr} is being scanned;

\hang|mark_text|, if the text of a \.{\\mark} is being scanned;

\hang|write_text|, if the text of a \.{\\write} is being scanned.

\yskip\noindent
The codes for |output_text|, |every_par_text|, etc., are equal to a constant
plus the corresponding codes for token list parameters |output_routine_loc|,
|every_par_loc|, etc.  The token list begins with a reference count if and
only if |token_type >= macro|.
@^reference counts@>

Since \eTeX's additional token list parameters precede |toks_base|, the
corresponding token types must precede |write_text|.

@d token_list 0 /*|state| code when scanning a token list*/
@d token_type index /*type of current token list*/
@d param_start limit /*base of macro parameters in |param_stack|*/
@d parameter 0 /*|token_type| code for parameter*/
@d u_template 1 /*|token_type| code for \<u_j> template*/
@d v_template 2 /*|token_type| code for \<v_j> template*/
@d backed_up 3 /*|token_type| code for text to be reread*/
@d inserted 4 /*|token_type| code for inserted texts*/
@d macro 5 /*|token_type| code for defined control sequences*/
@d output_text 6 /*|token_type| code for output routines*/
@d every_par_text 7 /*|token_type| code for \.{\\everypar}*/
@d every_math_text 8 /*|token_type| code for \.{\\everymath}*/
@d every_display_text 9 /*|token_type| code for \.{\\everydisplay}*/
@d every_hbox_text 10 /*|token_type| code for \.{\\everyhbox}*/
@d every_vbox_text 11 /*|token_type| code for \.{\\everyvbox}*/
@d every_job_text 12 /*|token_type| code for \.{\\everyjob}*/
@d every_cr_text 13 /*|token_type| code for \.{\\everycr}*/
@d mark_text 14 /*|token_type| code for \.{\\topmark}, etc.*/
@#
@d eTeX_text_offset (output_routine_loc-output_text)
@d every_eof_text (every_eof_loc-eTeX_text_offset)
   /*|token_type| code for \.{\\everyeof}*/
@#
@d write_text (toks_base-eTeX_text_offset) /*|token_type| code for \.{\\write}*/

@ The |param_stack| is an auxiliary array used to hold pointers to the token
lists for parameters at the current level and subsidiary levels of input.
This stack is maintained with convention (2), and it grows at a different
rate from the others.

@<Glob...@>=
static pointer @!param_stack[param_size+1];
   /*token list pointers for parameters*/
static int @!param_ptr; /*first unused entry in |param_stack|*/
static int @!max_param_stack;
   /*largest value of |param_ptr|, will be | <= param_size+9|*/

@ The input routines must also interact with the processing of
\.{\\halign} and \.{\\valign}, since the appearance of tab marks and
\.{\\cr} in certain places is supposed to trigger the beginning of special
\<v_j> template text in the scanner. This magic is accomplished by an
|align_state| variable that is increased by~1 when a `\.{\char'173}' is
scanned and decreased by~1 when a `\.{\char'175}' is scanned. The |align_state|
is nonzero during the \<u_j> template, after which it is set to zero; the
\<v_j> template begins when a tab mark or \.{\\cr} occurs at a time that
|align_state==0|.

The same principle applies when entering the definition of a
control sequence between \.{\\csname} and \.{\\endcsname}.

@<Glob...@>=
static int @!align_state; /*group level with respect to current alignment*/
static int @!incsname_state; /*group level with respect to in csname state*/

@ Thus, the ``current input state'' can be very complicated indeed; there
can be many levels and each level can arise in a variety of ways. The
|show_context| procedure, which is used by \TeX's error-reporting routine to
print out the current input state on all levels down to the most recent
line of characters from an input file, illustrates most of these conventions.
The global variable |base_ptr| contains the lowest level that was
displayed by this procedure.

@<Glob...@>=
static int @!base_ptr; /*shallowest level shown by |show_context|*/

@ The status at each level is indicated by printing two lines, where the first
line indicates what was read so far and the second line shows what remains
to be read. The context is cropped, if necessary, so that the first line
contains at most |half_error_line| characters, and the second contains
at most |error_line|. Non-current input levels whose |token_type| is
`|backed_up|' are shown only if they have not been fully read.

@p static void show_context(void) /*prints where the scanner is*/
{@+
int old_setting; /*saved |selector| setting*/
int @!nn; /*number of contexts shown so far, less one*/
bool @!bottom_line; /*have we reached the final context to be shown?*/
@<Local variables for formatting calculations@>@/
base_ptr=input_ptr;input_stack[base_ptr]=cur_input;
   /*store current state*/
nn=-1;bottom_line=false;
loop@+{@+cur_input=input_stack[base_ptr]; /*enter into the context*/
  if ((state!=token_list))
    if ((name > 19)||(base_ptr==0)) bottom_line=true;
  if ((base_ptr==input_ptr)||bottom_line||(nn < error_context_lines))
    @<Display the current context@>@;
  else if (nn==error_context_lines)
    {@+print_nl("...");incr(nn); /*omitted if |error_context_lines < 0|*/
    }
  if (bottom_line) goto done;
  decr(base_ptr);
  }
done: cur_input=input_stack[input_ptr]; /*restore original state*/
}

@ @<Display the current context@>=
{@+if ((base_ptr==input_ptr)||(state!=token_list)||
   (token_type!=backed_up)||(loc!=null))
     /*we omit backed-up token lists that have already been read*/
  {@+tally=0; /*get ready to count characters*/
  old_setting=selector;
  if (state!=token_list)
    {@+@<Print location of current line@>;
    @<Pseudoprint the line@>;
    }
  else{@+@<Print type of token list@>;
    @<Pseudoprint the token list@>;
    }
  selector=old_setting; /*stop pseudoprinting*/
  @<Print two lines using the tricky pseudoprinted information@>;
  incr(nn);
  }
}

@ This routine should be changed, if necessary, to give the best possible
indication of where the current line resides in the input file.
For example, on some systems it is best to print both a page and line number.
@^system dependencies@>

@<Print location of current line@>=
if (name <= 17)
  if (terminal_input)
    if (base_ptr==0) print_nl("<*>");else print_nl("<insert> ");
  else{@+print_nl("<read ");
    if (name==17) print_char('*');@+else print_int(name-1);
@.*\relax@>
    print_char('>');
    }
else{@+print_nl("l.");
  if (index==in_open) print_int(line);
  else print_int(line_stack[index+1]); /*input from a pseudo file*/
  }
print_char(' ')

@ @<Print type of token list@>=
switch (token_type) {
case parameter: print_nl("<argument> ");@+break;
case u_template: case v_template: print_nl("<template> ");@+break;
case backed_up: if (loc==null) print_nl("<recently read> ");
  else print_nl("<to be read again> ");@+break;
case inserted: print_nl("<inserted text> ");@+break;
case macro: {@+print_ln();print_cs(name);
  } @+break;
case output_text: print_nl("<output> ");@+break;
case every_par_text: print_nl("<everypar> ");@+break;
case every_math_text: print_nl("<everymath> ");@+break;
case every_display_text: print_nl("<everydisplay> ");@+break;
case every_hbox_text: print_nl("<everyhbox> ");@+break;
case every_vbox_text: print_nl("<everyvbox> ");@+break;
case every_job_text: print_nl("<everyjob> ");@+break;
case every_cr_text: print_nl("<everycr> ");@+break;
case mark_text: print_nl("<mark> ");@+break;
case every_eof_text: print_nl("<everyeof> ");@+break;
case write_text: print_nl("<write> ");@+break;
default:print_nl("?"); /*this should never happen*/
}

@ Here it is necessary to explain a little trick. We don't want to store a long
string that corresponds to a token list, because that string might take up
lots of memory; and we are printing during a time when an error message is
being given, so we dare not do anything that might overflow one of \TeX's
tables. So `pseudoprinting' is the answer: We enter a mode of printing
that stores characters into a buffer of length |error_line|, where character
$k+1$ is placed into \hbox{|trick_buf[k%error_line]|} if
|k < trick_count|, otherwise character |k| is dropped. Initially we set
|tally=0| and |trick_count=1000000|; then when we reach the
point where transition from line 1 to line 2 should occur, we
set |first_count=tally| and |trick_count=@tmax@>(error_line,
tally+1+error_line-half_error_line)|. At the end of the
pseudoprinting, the values of |first_count|, |tally|, and
|trick_count| give us all the information we need to print the two lines,
and all of the necessary text is in |trick_buf|.

Namely, let |l| be the length of the descriptive information that appears
on the first line. The length of the context information gathered for that
line is |k==first_count|, and the length of the context information
gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k <= h|,
where |h==half_error_line|, we print |trick_buf[0 dotdot k-1]| after the
descriptive information on line~1, and set |n=l+k|; here |n| is the
length of line~1. If $l+k>h$, some cropping is necessary, so we set |n=h|
and print `\.{...}' followed by
$$\hbox{|trick_buf[(l+k-h+3)dotdot k-1]|,}$$
where subscripts of |trick_buf| are circular modulo |error_line|. The
second line consists of |n|~spaces followed by |trick_buf[k dotdot(k+m-1)]|,
unless |n+m > error_line|; in the latter case, further cropping is done.
This is easier to program than to explain.

@<Local variables for formatting...@>=
int @!i; /*index into |buffer|*/
int @!j; /*end of current line in |buffer|*/
int @!l; /*length of descriptive information on line 1*/
int @!m; /*context information gathered for line 2*/
int @!n; /*length of line 1*/
int @!p; /*starting or ending place in |trick_buf|*/
int @!q; /*temporary index*/

@ The following code sets up the print routines so that they will gather
the desired information.

@d begin_pseudoprint
  {@+l=tally;tally=0;selector=pseudo;
  trick_count=1000000;
  }
@d set_trick_count
  {@+first_count=tally;
  trick_count=tally+1+error_line-half_error_line;
  if (trick_count < error_line) trick_count=error_line;
  }

@ And the following code uses the information after it has been gathered.

@<Print two lines using the tricky pseudoprinted information@>=
if (trick_count==1000000) set_trick_count;
   /*|set_trick_count| must be performed*/
if (tally < trick_count) m=tally-first_count;
else m=trick_count-first_count; /*context on line 2*/
if (l+first_count <= half_error_line)
  {@+p=0;n=l+first_count;
  }
else{@+print("...");p=l+first_count-half_error_line+3;
  n=half_error_line;
  }
for (q=p; q<=first_count-1; q++) print_char(trick_buf[q%error_line]);
print_ln();
for (q=1; q<=n; q++) print_char(' '); /*print |n| spaces to begin line~2*/
if (m+n <= error_line) p=first_count+m;else p=first_count+(error_line-n-3);
for (q=first_count; q<=p-1; q++) print_char(trick_buf[q%error_line]);
if (m+n > error_line) print("...")

@ But the trick is distracting us from our current goal, which is to
understand the input state. So let's concentrate on the data structures that
are being pseudoprinted as we finish up the |show_context| procedure.

@<Pseudoprint the line@>=
begin_pseudoprint;
if (buffer[limit]==end_line_char) j=limit;
else j=limit+1; /*determine the effective end of the line*/
if (j > 0) for (i=start; i<=j-1; i++)
  {@+if (i==loc) set_trick_count;
  printn(buffer[i]);
  }

@ @<Pseudoprint the token list@>=
begin_pseudoprint;
if (token_type < macro) show_token_list(start, loc, 100000);
else show_token_list(link(start), loc, 100000) /*avoid reference count*/

@ Here is the missing piece of |show_token_list| that is activated when the
token beginning line~2 is about to be shown:

@<Do magic computation@>=set_trick_count

@* Maintaining the input stacks.
The following subroutines change the input status in commonly needed ways.

First comes |push_input|, which stores the current state and creates a
new level (having, initially, the same properties as the old).

@d push_input @t@> /*enter a new input level, save the old*/
  {@+if (input_ptr > max_in_stack)
    {@+max_in_stack=input_ptr;
    if (input_ptr==stack_size) overflow("input stack size", stack_size);
@:TeX capacity exceeded input stack size}{\quad input stack size@>
    }
  input_stack[input_ptr]=cur_input; /*stack the record*/
  incr(input_ptr);
  }

@ And of course what goes up must come down.

@d pop_input @t@> /*leave an input level, re-enter the old*/
  {@+decr(input_ptr);cur_input=input_stack[input_ptr];
  }

@ Here is a procedure that starts a new level of token-list input, given
a token list |p| and its type |t|. If |t==macro|, the calling routine should
set |name| and |loc|.

@d back_list(A) begin_token_list(A, backed_up) /*backs up a simple token list*/
@d ins_list(A) begin_token_list(A, inserted) /*inserts a simple token list*/

@p static void begin_token_list(pointer @!p, quarterword @!t)
{@+push_input;state=token_list;start=p;token_type=t;
if (t >= macro)  /*the token list starts with a reference count*/
  {@+add_token_ref(p);
  if (t==macro) param_start=param_ptr;
  else{@+loc=link(p);
    if (tracing_macros > 1)
      {@+begin_diagnostic();print_nl("");
      switch (t) {
      case mark_text: print_esc("mark");@+break;
      case write_text: print_esc("write");@+break;
      default:print_cmd_chr(assign_toks, t-output_text+output_routine_loc);
      } @/
      print("->");token_show(p);end_diagnostic(false);
      }
    }
  }
else loc=p;
}

@ When a token list has been fully scanned, the following computations
should be done as we leave that level of input. The |token_type| tends
to be equal to either |backed_up| or |inserted| about 2/3 of the time.
@^inner loop@>

@p static void end_token_list(void) /*leave a token-list input level*/
{@+if (token_type >= backed_up)  /*token list to be deleted*/
  {@+if (token_type <= inserted) flush_list(start);
  else{@+delete_token_ref(start); /*update reference count*/
    if (token_type==macro)  /*parameters must be flushed*/
      while (param_ptr > param_start)
        {@+decr(param_ptr);
        flush_list(param_stack[param_ptr]);
        }
    }
  }
else if (token_type==u_template)
  if (align_state > 500000) align_state=0;
  else fatal_error("(interwoven alignment preambles are not allowed)");
@.interwoven alignment preambles...@>
pop_input;
check_interrupt;
}

@ Sometimes \TeX\ has read too far and wants to ``unscan'' what it has
seen. The |back_input| procedure takes care of this by putting the token
just scanned back into the input stream, ready to be read again. This
procedure can be used only if |cur_tok| represents the token to be
replaced. Some applications of \TeX\ use this procedure a lot,
so it has been slightly optimized for speed.
@^inner loop@>

@p static void back_input(void) /*undoes one token of input*/
{@+pointer p; /*a token list of length one*/
while ((state==token_list)&&(loc==null)&&(token_type!=v_template))
  end_token_list(); /*conserve stack space*/
p=get_avail();info(p)=cur_tok;
if (cur_tok < right_brace_limit)
  if (cur_tok < left_brace_limit) decr(align_state);
  else incr(align_state);
push_input;state=token_list;start=p;token_type=backed_up;
loc=p; /*that was |back_list(p)|, without procedure overhead*/
}

@ @<Insert token |p| into \TeX's input@>=
{@+t=cur_tok;cur_tok=p;
if (a)
  {@+p=get_avail();info(p)=cur_tok;link(p)=loc;loc=p;start=p;
  if (cur_tok < right_brace_limit)
    if (cur_tok < left_brace_limit) decr(align_state);
    else incr(align_state);
  }
else{@+back_input();a=eTeX_ex;
  }
cur_tok=t;
}

@ The |back_error| routine is used when we want to replace an offending token
just before issuing an error message. This routine, like |back_input|,
requires that |cur_tok| has been set. We disable interrupts during the
call of |back_input| so that the help message won't be lost.

@p static void back_error(void) /*back up one token and call |error|*/
{@+OK_to_interrupt=false;back_input();OK_to_interrupt=true;error();
}
@#
static void ins_error(void) /*back up one inserted token and call |error|*/
{@+OK_to_interrupt=false;back_input();token_type=inserted;
OK_to_interrupt=true;error();
}

@ The |begin_file_reading| procedure starts a new level of input for lines
of characters to be read from a file, or as an insertion from the
terminal. It does not take care of opening the file, nor does it set |loc|
or |limit| or |line|.
@^system dependencies@>

@p static void begin_file_reading(void)
{@+if (in_open==max_in_open) overflow("text input levels", max_in_open);
@:TeX capacity exceeded text input levels}{\quad text input levels@>
if (first==buf_size) overflow("buffer size", buf_size);
@:TeX capacity exceeded buffer size}{\quad buffer size@>
incr(in_open);push_input;index=in_open;@/
source_filename_stack[index]=NULL; /* \TeX\ Live */
full_source_filename_stack[index]=NULL; /* \TeX\ Live */
eof_seen[index]=false;
grp_stack[index]=cur_boundary;if_stack[index]=cond_ptr;
line_stack[index]=line;start=first;state=mid_line;
name=0; /*|terminal_input| is now |true|*/
}

@ Conversely, the variables must be downdated when such a level of input
is finished:

@p static void end_file_reading(void)
{@+first=start;line=line_stack[index];
if ((name==18)||(name==19)) pseudo_close();else
if (name > 17) a_close(&cur_file); /*forget it*/
if (full_source_filename_stack[in_open]!=NULL)
{ free(full_source_filename_stack[in_open]);
  full_source_filename_stack[in_open]=NULL;
}
pop_input;decr(in_open);
}

@ In order to keep the stack from overflowing during a long sequence of
inserted `\.{\\show}' commands, the following routine removes completed
error-inserted lines from memory.

@p static void clear_for_error_prompt(void)
{@+while ((state!=token_list)&&terminal_input&&@|
  (input_ptr > 0)&&(loc > limit)) end_file_reading();
print_ln();clear_terminal;
}

@ To get \TeX's whole input mechanism going, we perform the following
actions.

@<Initialize the input routines@>=
{@+input_ptr=0;max_in_stack=0;
in_open=0;open_parens=0;max_buf_stack=0;
grp_stack[0]=0;if_stack[0]=null;
param_ptr=0;max_param_stack=0;
first=buf_size;@/do@+{buffer[first]=0;decr(first);}@+ while (!(first==0));
scanner_status=normal;warning_index=null;first=1;
state=new_line;start=1;index=0;line=0;name=0;
force_eof=false;
align_state=1000000;@/
if (!init_terminal()) exit(0);
limit=last;first=last+1; /*|init_terminal| has set |loc| and |last|*/
}

@* Getting the next token.
The heart of \TeX's input mechanism is the |get_next| procedure, which
we shall develop in the next few sections of the program. Perhaps we
shouldn't actually call it the ``heart,'' however, because it really acts
as \TeX's eyes and mouth, reading the source files and gobbling them up.
And it also helps \TeX\ to regurgitate stored token lists that are to be
processed again.
@^eyes and mouth@>

The main duty of |get_next| is to input one token and to set |cur_cmd|
and |cur_chr| to that token's command code and modifier. Furthermore, if
the input token is a control sequence, the |eqtb| location of that control
sequence is stored in |cur_cs|; otherwise |cur_cs| is set to zero.

Underlying this simple description is a certain amount of complexity
because of all the cases that need to be handled.
However, the inner loop of |get_next| is reasonably short and fast.

When |get_next| is asked to get the next token of a \.{\\read} line,
it sets |cur_cmd==cur_chr==cur_cs==0| in the case that no more tokens
appear on that line. (There might not be any tokens at all, if the
|end_line_char| has |ignore| as its catcode.)

@ The value of |par_loc| is the |eqtb| address of `\.{\\par}'. This quantity
is needed because a blank line of input is supposed to be exactly equivalent
to the appearance of \.{\\par}; we must set |cur_cs:=par_loc|
when detecting a blank line.

The same is true for the input, for the warning message, since input
is expected by default before every scanning and hence setting of
|cur_cs|.

@<Glob...@>=
static pointer @!par_loc; /*location of `\.{\\par}' in |eqtb|*/
static halfword @!par_token; /*token representing `\.{\\par}'*/
static pointer @!input_loc; /*location of `\.{\\input}' in |eqtb|*/
static halfword @!input_token; /*token representing `\.{\\input}'*/

@ @<Put each...@>=
primitive("par", par_end, 256); /*cf.\ |scan_file_name|*/
@!@:par\_}{\.{\\par} primitive@>
par_loc=cur_val;par_token=cs_token_flag+par_loc;

@ @<Cases of |print_cmd_chr|...@>=
case par_end: print_esc("par");@+break;

@ Before getting into |get_next|, let's consider the subroutine that
is called when an `\.{\\outer}' control sequence has been scanned or
when the end of a file has been reached. These two cases are distinguished
by |cur_cs|, which is zero at the end of a file.

@p static void check_outer_validity(void)
{@+pointer p; /*points to inserted token list*/
pointer @!q; /*auxiliary pointer*/
if (scanner_status!=normal)
  {@+deletions_allowed=false;
  @<Back up an outer control sequence so that it can be reread@>;
  if (scanner_status > skipping)
    @<Tell the user what has run away and try to recover@>@;
  else{@+print_err("Incomplete ");print_cmd_chr(if_test, cur_if);
@.Incomplete \\if...@>
    print("; all text was ignored after line ");print_int(skip_line);
    help3("A forbidden control sequence occurred in skipped text.",@/
    "This kind of error happens when you say `\\if...' and forget",@/
    "the matching `\\fi'. I've inserted a `\\fi'; this might work.");
    if (cur_cs!=0) cur_cs=0;
    else help_line[2]=@|
      "The file ended while I was skipping conditional text.";
    cur_tok=cs_token_flag+frozen_fi;ins_error();
    }
  deletions_allowed=true;
  }
}

@ An outer control sequence that occurs in a \.{\\read} will not be reread,
since the error recovery for \.{\\read} is not very powerful.

@<Back up an outer control sequence so that it can be reread@>=
if (cur_cs!=0)
  {@+if ((state==token_list)||(name < 1)||(name > 17))
    {@+p=get_avail();info(p)=cs_token_flag+cur_cs;
    back_list(p); /*prepare to read the control sequence again*/
    }
  cur_cmd=spacer;cur_chr=' '; /*replace it by a space*/
  }

@ @<Tell the user what has run away...@>=
{@+runaway(); /*print a definition, argument, or preamble*/
if (cur_cs==0) print_err("File ended");
@.File ended while scanning...@>
else{@+cur_cs=0;print_err("Forbidden control sequence found");
@.Forbidden control sequence...@>
  }
print(" while scanning ");
@<Print either `\.{definition}' or `\.{use}' or `\.{preamble}' or `\.{text}',
and insert tokens that should lead to recovery@>;
print(" of ");sprint_cs(warning_index);
help4("I suspect you have forgotten a `}', causing me",@/
"to read past where you wanted me to stop.",@/
"I'll try to recover; but if the error is serious,",@/
"you'd better type `E' or `X' now and fix your file.");@/
error();
}

@ The recovery procedure can't be fully understood without knowing more
about the \TeX\ routines that should be aborted, but we can sketch the
ideas here:  For a runaway definition or a runaway balanced text
we will insert a right brace; for a
runaway preamble, we will insert a special \.{\\cr} token and a right
brace; and for a runaway argument, we will set |long_state| to
|outer_call| and insert \.{\\par}.

@<Print either `\.{definition}' or...@>=
p=get_avail();
switch (scanner_status) {
case defining: {@+print("definition");info(p)=right_brace_token+'}';
  } @+break;
case matching: {@+print("use");info(p)=par_token;long_state=outer_call;
  } @+break;
case aligning: {@+print("preamble");info(p)=right_brace_token+'}';q=p;
  p=get_avail();link(p)=q;info(p)=cs_token_flag+frozen_cr;
  align_state=-1000000;
  } @+break;
case absorbing: {@+print("text");info(p)=right_brace_token+'}';
  }
}  /*there are no other cases*/
ins_list(p)

@ We need to mention a procedure here that may be called by |get_next|.

@p static void firm_up_the_line(void);

@ Now we're ready to take the plunge into |get_next| itself. Parts of
this routine are executed more often than any other instructions of \TeX.
@^mastication@>@^inner loop@>

@p static void get_next(void) /*sets |cur_cmd|, |cur_chr|, |cur_cs| to next token*/
{@+ /*go here to get the next input token*/
   /*go here to eat the next character from a file*/
   /*go here to digest it again*/
   /*go here to start looking for a control sequence*/
   /*go here when a control sequence has been found*/
   /*go here when the next input token has been got*/
int k; /*an index into |buffer|*/
halfword @!t; /*a token*/
int @!cat; /*|cat_code(cur_chr)|, usually*/
ASCII_code @!c, @!cc; /*constituents of a possible expanded code*/
int @!d; /*number of excess characters in an expanded code*/
restart: cur_cs=0;
if (state!=token_list)
@<Input from external file, |goto restart| if no input found@>@;
else@<Input from token list, |goto restart| if end of list or if a parameter
needs to be expanded@>;
@<If an alignment entry has just ended, take appropriate action@>;
}

@ An alignment entry ends when a tab or \.{\\cr} occurs, provided that the
current level of braces is the same as the level that was present at the
beginning of that alignment entry; i.e., provided that |align_state| has
returned to the value it had after the \<u_j> template for that entry.
@^inner loop@>

@<If an alignment entry has just ended, take appropriate action@>=
if (cur_cmd <= car_ret) if (cur_cmd >= tab_mark) if (align_state==0)
  @<Insert the \(v)\<v_j> template and |goto restart|@>@;

@ @<Input from external file, |goto restart| if no input found@>=
@^inner loop@>
{@+get_cur_chr: if (loc <= limit)  /*current line not yet finished*/
  {@+cur_chr=buffer[loc];incr(loc);
  reswitch: cur_cmd=cat_code(cur_chr);
  @<Change state if necessary, and |goto switch| if the current character
should be ignored, or |goto reswitch| if the current character changes to
another@>;
  }
else{@+state=new_line;@/
  @<Move to next line of file, or |goto restart| if there is no next line,
or |return| if a \.{\\read} line has finished@>;
  check_interrupt;
  goto get_cur_chr;
  }
}

@ The following 48-way switch accomplishes the scanning quickly, assuming
that a decent \PASCAL\ compiler has translated the code. Note that the numeric
values for |mid_line|, |skip_blanks|, and |new_line| are spaced
apart from each other by |max_char_code+1|, so we can add a character's
command code to the state to get a single number that characterizes both.

@d any_state_plus(A) case mid_line+A:
  case skip_blanks+A: case new_line+A

@<Change state if necessary...@>=
switch (state+cur_cmd) {
@<Cases where character is ignored@>: goto get_cur_chr;
any_state_plus(escape): @<Scan a control sequence and set |state:=skip_blanks|
or |mid_line|@>@;@+break;
any_state_plus(active_char): @<Process an active-character control sequence
and set |state:=mid_line|@>@;@+break;
any_state_plus(sup_mark): @<If this |sup_mark| starts an expanded character
like~\.{\^\^A} or~\.{\^\^df}, then |goto reswitch|, otherwise set |state:=mid_line|@>@;@+break;
any_state_plus(invalid_char): @<Decry the invalid character and |goto restart|@>@;
@t\4@>@<Handle situations involving spaces, braces, changes of state@>@;
default:do_nothing;
}

@ @<Cases where character is ignored@>=
any_state_plus(ignore): case skip_blanks+spacer:
  case new_line+spacer

@ We go to |restart| instead of to |get_cur_chr|, because |state| might equal
|token_list| after the error has been dealt with
(cf.\ |clear_for_error_prompt|).

@<Decry the invalid...@>=
{@+print_err("Text line contains an invalid character");
@.Text line contains...@>
help2("A funny symbol that I can't read has just been input.",@/
"Continue, and I'll forget that it ever happened.");@/
deletions_allowed=false;error();deletions_allowed=true;
goto restart;
}

@ @d add_delims_to(A) A+math_shift: A+tab_mark: A+mac_param:
  A+sub_mark: A+letter: A+other_char

@<Handle situations involving spaces, braces, changes of state@>=
case mid_line+spacer: @<Enter |skip_blanks| state, emit a space@>@;@+break;
case mid_line+car_ret: @<Finish line, emit a space@>@;@+break;
case skip_blanks+car_ret: any_state_plus(comment):
  @<Finish line, |goto switch|@>@;
case new_line+car_ret: @<Finish line, emit a \.{\\par}@>@;@+break;
case mid_line+left_brace: incr(align_state);@+break;
case skip_blanks+left_brace: case new_line+left_brace: {@+
  state=mid_line;incr(align_state);
  } @+break;
case mid_line+right_brace: decr(align_state);@+break;
case skip_blanks+right_brace: case new_line+right_brace: {@+
  state=mid_line;decr(align_state);
  } @+break;
add_delims_to(case skip_blanks): add_delims_to(
  case new_line): state=mid_line;@+break;

@ When a character of type |spacer| gets through, its character code is
changed to $\.{"\ "}=040$. This means that the ASCII codes for tab and space,
and for the space inserted at the end of a line, will
be treated alike when macro parameters are being matched. We do this
since such characters are indistinguishable on most computer terminal displays.

@<Finish line, emit a space@>=
{@+loc=limit+1;cur_cmd=spacer;cur_chr=' ';
}

@ The following code is performed only when |cur_cmd==spacer|.

@<Enter |skip_blanks| state, emit a space@>=
{@+state=skip_blanks;cur_chr=' ';
}

@ @<Finish line, |goto switch|@>=
{@+loc=limit+1;goto get_cur_chr;
}

@ @<Finish line, emit a \.{\\par}@>=
{@+loc=limit+1;cur_cs=par_loc;cur_cmd=eq_type(cur_cs);
cur_chr=equiv(cur_cs);
if (cur_cmd >= outer_call) check_outer_validity();
}

@ Notice that a code like \.{\^\^8} becomes \.x if not followed by a hex digit.

@d is_hex(A) (((A >= '0')&&(A <= '9'))||((A >= 'a')&&(A <= 'f')))
@d hex_to_cur_chr
  if (c <= '9') cur_chr=c-'0';@+else cur_chr=c-'a'+10;
  if (cc <= '9') cur_chr=16*cur_chr+cc-'0';
  else cur_chr=16*cur_chr+cc-'a'+10

@<If this |sup_mark| starts an expanded character...@>=
{@+if (cur_chr==buffer[loc]) if (loc < limit)
  {@+c=buffer[loc+1];@+if (c < 0200)  /*yes we have an expanded char*/
    {@+loc=loc+2;
    if (is_hex(c)) if (loc <= limit)
      {@+cc=buffer[loc];@+if (is_hex(cc))
        {@+incr(loc);hex_to_cur_chr;goto reswitch;
        }
      }
    if (c < 0100) cur_chr=c+0100;@+else cur_chr=c-0100;
    goto reswitch;
    }
  }
state=mid_line;
}

@ @<Process an active-character...@>=
{@+cur_cs=cur_chr+active_base;
cur_cmd=eq_type(cur_cs);cur_chr=equiv(cur_cs);state=mid_line;
if (cur_cmd >= outer_call) check_outer_validity();
}

@ Control sequence names are scanned only when they appear in some line of
a file; once they have been scanned the first time, their |eqtb| location
serves as a unique identification, so \TeX\ doesn't need to refer to the
original name any more except when it prints the equivalent in symbolic form.

The program that scans a control sequence has been written carefully
in order to avoid the blowups that might otherwise occur if a malicious
user tried something like `\.{\\catcode\'15=0}'. The algorithm might
look at |buffer[limit+1]|, but it never looks at |buffer[limit+2]|.

If expanded characters like `\.{\^\^A}' or `\.{\^\^df}'
appear in or just following
a control sequence name, they are converted to single characters in the
buffer and the process is repeated, slowly but surely.

@<Scan a control...@>=
{@+if (loc > limit) cur_cs=null_cs; /*|state| is irrelevant in this case*/
else{@+start_cs: k=loc;cur_chr=buffer[k];cat=cat_code(cur_chr);
  incr(k);
  if (cat==letter) state=skip_blanks;
  else if (cat==spacer) state=skip_blanks;
  else state=mid_line;
  if ((cat==letter)&&(k <= limit))
    @<Scan ahead in the buffer until finding a nonletter; if an expanded code
is encountered, reduce it and |goto start_cs|; otherwise if a multiletter
control sequence is found, adjust |cur_cs| and |loc|, and |goto found|@>@;
  else@<If an expanded code is present, reduce it and |goto start_cs|@>;
  cur_cs=single_base+buffer[loc];incr(loc);
  }
found: cur_cmd=eq_type(cur_cs);cur_chr=equiv(cur_cs);
if (cur_cmd >= outer_call) check_outer_validity();
}

@ Whenever we reach the following piece of code, we will have
|cur_chr==buffer[k-1]| and |k <= limit+1| and |cat==cat_code(cur_chr)|. If an
expanded code like \.{\^\^A} or \.{\^\^df} appears in |buffer[(k-1)dotdot(k+1)]|
or |buffer[(k-1)dotdot(k+2)]|, we
will store the corresponding code in |buffer[k-1]| and shift the rest of
the buffer left two or three places.

@<If an expanded...@>=
{@+if (buffer[k]==cur_chr) @+if (cat==sup_mark) @+if (k < limit)
  {@+c=buffer[k+1];@+if (c < 0200)  /*yes, one is indeed present*/
    {@+d=2;
    if (is_hex(c)) @+if (k+2 <= limit)
      {@+cc=buffer[k+2];@+if (is_hex(cc)) incr(d);
      }
    if (d > 2)
      {@+hex_to_cur_chr;buffer[k-1]=cur_chr;
      }
    else if (c < 0100) buffer[k-1]=c+0100;
    else buffer[k-1]=c-0100;
    limit=limit-d;first=first-d;
    while (k <= limit)
      {@+buffer[k]=buffer[k+d];incr(k);
      }
    goto start_cs;
    }
  }
}

@ @<Scan ahead in the buffer...@>=
{@+@/do@+{cur_chr=buffer[k];cat=cat_code(cur_chr);incr(k);
}@+ while (!((cat!=letter)||(k > limit)));
@<If an expanded...@>;
if (cat!=letter) decr(k);
   /*now |k| points to first nonletter*/
if (k > loc+1)  /*multiletter control sequence has been scanned*/
  {@+cur_cs=id_lookup(loc, k-loc);loc=k;goto found;
  }
}

@ Let's consider now what happens when |get_next| is looking at a token list.

@<Input from token list, |goto restart| if end of list or if a parameter needs
to be expanded@>=
if (loc!=null)  /*list not exhausted*/
@^inner loop@>
  {@+t=info(loc);loc=link(loc); /*move to next*/
  if (t >= cs_token_flag)  /*a control sequence token*/
    {@+cur_cs=t-cs_token_flag;
    cur_cmd=eq_type(cur_cs);cur_chr=equiv(cur_cs);
    if (cur_cmd >= outer_call)
      if (cur_cmd==dont_expand)
        @<Get the next token, suppressing expansion@>@;
      else check_outer_validity();
    }
  else{@+cur_cmd=t/0400;cur_chr=t%0400;
    switch (cur_cmd) {
    case left_brace: incr(align_state);@+break;
    case right_brace: decr(align_state);@+break;
    case out_param: @<Insert macro parameter and |goto restart|@>@;
    default:do_nothing;
    }
    }
  }
else{@+ /*we are done with this token list*/
  end_token_list();goto restart; /*resume previous level*/
  }

@ The present point in the program is reached only when the |expand|
routine has inserted a special marker into the input. In this special
case, |info(loc)| is known to be a control sequence token, and |link(loc)==null|.

@d no_expand_flag 257 /*this characterizes a special variant of |relax|*/

@<Get the next token, suppressing expansion@>=
{@+cur_cs=info(loc)-cs_token_flag;loc=null;@/
cur_cmd=eq_type(cur_cs);cur_chr=equiv(cur_cs);
if (cur_cmd > max_command)
  {@+cur_cmd=relax;cur_chr=no_expand_flag;
  }
}

@ @<Insert macro parameter...@>=
{@+begin_token_list(param_stack[param_start+cur_chr-1], parameter);
goto restart;
}

@ All of the easy branches of |get_next| have now been taken care of.
There is one more branch.

@d end_line_char_inactive (end_line_char < 0)||(end_line_char > 255)

@<Move to next line of file, or |goto restart|...@>=
if (name > 17) @<Read next line of file into |buffer|, or |goto restart| if
the file has ended@>@;
else{@+if (!terminal_input)  /*\.{\\read} line has ended*/
    {@+cur_cmd=0;cur_chr=0;return;
    }
  if (input_ptr > 0)  /*text was inserted during error recovery*/
    {@+end_file_reading();goto restart; /*resume previous level*/
    }
  if (selector < log_only) open_log_file();
  if (interaction > nonstop_mode)
    {@+if (end_line_char_inactive) incr(limit);
    if (limit==start)  /*previous line was empty*/
      print_nl("(Please type a command or say `\\end')");
@.Please type...@>
    print_ln();first=start;
    prompt_input("*"); /*input on-line into |buffer|*/
@.*\relax@>
    limit=last;
    if (end_line_char_inactive) decr(limit);
    else buffer[limit]=end_line_char;
    first=limit+1;
    loc=start;
    }
  else fatal_error("*** (job aborted, no legal \\end found)");
@.job aborted@>
     /*nonstop mode, which is intended for overnight batch processing,
    never waits for on-line input*/
  }

@ The global variable |force_eof| is normally |false|; it is set |true|
by an \.{\\endinput} command.

@<Glob...@>=
static bool @!force_eof; /*should the next \.{\\input} be aborted early?*/

@ @<Read next line of file into |buffer|, or |goto restart| if the file has
ended@>=
{@+incr(line);first=start;
if (!force_eof)
  if (name <= 19)
    {@+if (pseudo_input())  /*not end of file*/
      firm_up_the_line(); /*this sets |limit|*/
    else if ((every_eof!=null)&&!eof_seen[index])
      {@+limit=first-1;eof_seen[index]=true; /*fake one empty line*/
      begin_token_list(every_eof, every_eof_text);goto restart;
      }
    else force_eof=true;
    }
  else
  {@+if (input_ln(&cur_file, true))  /*not end of file*/
    firm_up_the_line(); /*this sets |limit|*/
  else if ((every_eof!=null)&&!eof_seen[index])
    {@+limit=first-1;eof_seen[index]=true; /*fake one empty line*/
    begin_token_list(every_eof, every_eof_text);goto restart;
    }
  else force_eof=true;
  }
if (force_eof)
  {@+if (tracing_nesting > 0)
    if ((grp_stack[in_open]!=cur_boundary)||@|
        (if_stack[in_open]!=cond_ptr)) file_warning();
     /*give warning for some unfinished groups and/or conditionals*/
  if (name >= 19)
  {@+print_char(')');decr(open_parens);
  update_terminal; /*show user that file has been read*/
  }
  force_eof=false;
  end_file_reading(); /*resume previous level*/
  check_outer_validity();goto restart;
  }
if (end_line_char_inactive) decr(limit);
else buffer[limit]=end_line_char;
first=limit+1;loc=start; /*ready to read*/
}

@ If the user has set the |pausing| parameter to some positive value,
and if nonstop mode has not been selected, each line of input is displayed
on the terminal and the transcript file, followed by `\.{=>}'.
\TeX\ waits for a response. If the response is simply |carriage_return|, the
line is accepted as it stands, otherwise the line typed is
used instead of the line in the file.

@p static void firm_up_the_line(void)
{@+int k; /*an index into |buffer|*/
limit=last;
if (pausing > 0) if (interaction > nonstop_mode)
  {@+wake_up_terminal;print_ln();
  if (start < limit) for (k=start; k<=limit-1; k++) printn(buffer[k]);
  first=limit;prompt_input("=>"); /*wait for user response*/
@.=>@>
  if (last > first)
    {@+for (k=first; k<=last-1; k++)  /*move line down in buffer*/
      buffer[k+start-first]=buffer[k];
    limit=start+last-first;
    }
  }
}

@ Since |get_next| is used so frequently in \TeX, it is convenient
to define three related procedures that do a little more:

\yskip\hang|get_token| not only sets |cur_cmd| and |cur_chr|, it
also sets |cur_tok|, a packed halfword version of the current token.

\yskip\hang|get_x_token|, meaning ``get an expanded token,'' is like
|get_token|, but if the current token turns out to be a user-defined
control sequence (i.e., a macro call), or a conditional,
or something like \.{\\topmark} or \.{\\expandafter} or \.{\\csname},
it is eliminated from the input by beginning the expansion of the macro
or the evaluation of the conditional.

\yskip\hang|x_token| is like |get_x_token| except that it assumes that
|get_next| has already been called.

\yskip\noindent
In fact, these three procedures account for almost every use of |get_next|.

@ No new control sequences will be defined except during a call of
|get_token|, or when \.{\\csname} compresses a token list, because
|no_new_control_sequence| is always |true| at other times.

@p static void get_token(void) /*sets |cur_cmd|, |cur_chr|, |cur_tok|*/
{@+no_new_control_sequence=false;get_next();no_new_control_sequence=true;
@^inner loop@>
if (cur_cs==0) cur_tok=(cur_cmd*0400)+cur_chr;
else cur_tok=cs_token_flag+cur_cs;
}

@* Expanding the next token.
Only a dozen or so command codes | > max_command| can possibly be returned by
|get_next|; in increasing order, they are |undefined_cs|, |expand_after|,
|no_expand|, |input|, |if_test|, |fi_or_else|, |cs_name|, |convert|, |the|,
|top_bot_mark|, |call|, |long_call|, |outer_call|, |long_outer_call|, and
|end_template|.{\emergencystretch=40pt\par}

The |expand| subroutine is used when |cur_cmd > max_command|. It removes a
``call'' or a conditional or one of the other special operations just
listed.  It follows that |expand| might invoke itself recursively. In all
cases, |expand| destroys the current token, but it sets things up so that
the next |get_next| will deliver the appropriate next token. The value of
|cur_tok| need not be known when |expand| is called.

Since several of the basic scanning routines communicate via global variables,
their values are saved as local variables of |expand| so that
recursive calls don't invalidate them.
@^recursion@>

@p @t\4@>@<Declare the procedure called |macro_call|@>@;@/
@t\4@>@<Declare the procedure called |insert_relax|@>@;@/
@t\4@>@<Declare \eTeX\ procedures for expanding@>@;@/
static void pass_text(void);
static void start_input(void);
static void conditional(void);
static void get_x_token(void);
static void conv_toks(void);
static void ins_the_toks(void);
static void expand(void)
{@+
halfword t; /*token that is being ``expanded after''*/
pointer @!p, @!q, @!r; /*for list manipulation*/
int @!j; /*index into |buffer|*/
int @!cv_backup; /*to save the global quantity |cur_val|*/
small_number @!cvl_backup, @!radix_backup, @!co_backup;
   /*to save |cur_val_level|, etc.*/
pointer @!backup_backup; /*to save |link(backup_head)|*/
small_number @!save_scanner_status; /*temporary storage of |scanner_status|*/
cv_backup=cur_val;cvl_backup=cur_val_level;radix_backup=radix;
co_backup=cur_order;backup_backup=link(backup_head);
reswitch:
if (cur_cmd < call) @<Expand a nonmacro@>@;
else if (cur_cmd < end_template) macro_call();
else@<Insert a token containing |frozen_endv|@>;
cur_val=cv_backup;cur_val_level=cvl_backup;radix=radix_backup;
cur_order=co_backup;link(backup_head)=backup_backup;
}

@ @<Expand a nonmacro@>=
{@+if (tracing_commands > 1) show_cur_cmd_chr();
switch (cur_cmd) {
case top_bot_mark: @<Insert the \(a)appropriate mark text into the scanner@>@;@+break;
case expand_after: switch (cur_chr) {
case 0: @<Expand the token after the next token@>@;@+break;
case 1: @<Negate a boolean conditional and |goto reswitch|@>@;@+break;
@/@<Cases for |expandafter|@>@/
} @+break; /*there are no other cases*/
case no_expand: @<Suppress expansion of the next token@>@;@+break;
case cs_name: @<Manufacture a control sequence name@>@;@+break;
case convert: conv_toks();@+break; /*this procedure is discussed in Part 27 below*/
case the: ins_the_toks();@+break; /*this procedure is discussed in Part 27 below*/
case if_test: conditional();@+break; /*this procedure is discussed in Part 28 below*/
case fi_or_else: @<Terminate the current conditional and skip to \.{\\fi}@>@;@+break;
case input: @<Initiate or terminate input from a file@>;@+break;
default:@<Complain about an undefined macro@>@;
}
}

@ It takes only a little shuffling to do what \TeX\ calls \.{\\expandafter}.

@<Expand the token after...@>=
{@+get_token();t=cur_tok;get_token();
if (cur_cmd > max_command) expand();@+else back_input();
cur_tok=t;back_input();
}

@ The implementation of \.{\\noexpand} is a bit trickier, because it is
necessary to insert a special `|dont_expand|' marker into \TeX's reading
mechanism.  This special marker is processed by |get_next|, but it does
not slow down the inner loop.

Since \.{\\outer} macros might arise here, we must also
clear the |scanner_status| temporarily.

@<Suppress expansion...@>=
{@+save_scanner_status=scanner_status;scanner_status=normal;
get_token();scanner_status=save_scanner_status;t=cur_tok;
back_input(); /*now |start| and |loc| point to the backed-up token |t|*/
if (t >= cs_token_flag)
  {@+p=get_avail();info(p)=cs_token_flag+frozen_dont_expand;
  link(p)=loc;start=p;loc=p;
  }
}

@ @<Complain about an undefined macro@>=
{@+print_err("Undefined control sequence");
@.Undefined control sequence@>
help5("The control sequence at the end of the top line",@/
"of your error message was never \\def'ed. If you have",@/
"misspelled it (e.g., `\\hobx'), type `I' and the correct",@/
"spelling (e.g., `I\\hbox'). Otherwise just continue,",@/
"and I'll forget about whatever was undefined.");
error();
}

@ The |expand| procedure and some other routines that construct token
lists find it convenient to use the following macros, which are valid only if
the variables |p| and |q| are reserved for token-list building.

@d store_new_token(A) {@+q=get_avail();link(p)=q;info(q)=A;
  p=q; /*|link(p)| is |null|*/
  }
@d fast_store_new_token(A) {@+fast_get_avail(q);link(p)=q;info(q)=A;
  p=q; /*|link(p)| is |null|*/
  }

@ @<Manufacture a control...@>=
{@+r=get_avail();p=r; /*head of the list of characters*/
incr(incsname_state);
@/do@+{get_x_token();
if (cur_cs==0) store_new_token(cur_tok);
}@+ while (!(cur_cs!=0));
if (cur_cmd!=end_cs_name) @<Complain about missing \.{\\endcsname}@>;
decr(incsname_state);
@<Look up the characters of list |r| in the hash table, and set |cur_cs|@>;
flush_list(r);
if (eq_type(cur_cs)==undefined_cs)
  {@+eq_define(cur_cs, relax, 256); /*N.B.: The |save_stack| might change*/
  }  /*the control sequence will now match `\.{\\relax}'*/
cur_tok=cur_cs+cs_token_flag;back_input();
}

@ @<Complain about missing \.{\\endcsname}@>=
{@+print_err("Missing ");print_esc("endcsname");print(" inserted");
@.Missing \\endcsname...@>
help2("The control sequence marked <to be read again> should",@/
  "not appear between \\csname and \\endcsname.");
back_error();
}

@ @<Look up the characters of list |r| in the hash table...@>=
j=first;p=link(r);
while (p!=null)
  {@+if (j >= max_buf_stack)
    {@+max_buf_stack=j+1;
    if (max_buf_stack==buf_size)
      overflow("buffer size", buf_size);
@:TeX capacity exceeded buffer size}{\quad buffer size@>
    }
  buffer[j]=info(p)%0400;incr(j);p=link(p);
  }
if (j==first) cur_cs=null_cs; /*the list is empty*/
else if (j > first+1)
  {@+no_new_control_sequence=false;cur_cs=id_lookup(first, j-first);
  no_new_control_sequence=true;
  }
else cur_cs=single_base+buffer[first] /*the list has length one*/

@ An |end_template| command is effectively changed to an |endv| command
by the following code. (The reason for this is discussed below; the
|frozen_end_template| at the end of the template has passed the
|check_outer_validity| test, so its mission of error detection has been
accomplished.)

@<Insert a token containing |frozen_endv|@>=
{@+cur_tok=cs_token_flag+frozen_endv;back_input();
}

@ The processing of \.{\\input} involves the |start_input| subroutine,
which will be declared later; the processing of \.{\\endinput} is trivial.

@<Put each...@>=
primitive("input", input, 0);@/
@!@:input\_}{\.{\\input} primitive@>
input_loc=cur_val;input_token=cs_token_flag+input_loc;
primitive("endinput", input, 1);@/
@!@:end\_input\_}{\.{\\endinput} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case input: if (chr_code==0) print_esc("input")
  @/@<Cases of |input| for |print_cmd_chr|@>;@/
  else print_esc("endinput");@+break;

@ @<Initiate or terminate input...@>=
if (cur_chr==1) force_eof=true
@/@<Cases for |input|@>;@/
else if (name_in_progress) insert_relax();
else start_input()

@ Sometimes the expansion looks too far ahead, so we want to insert
a harmless \.{\\relax} into the user's input.

@<Declare the procedure called |insert_relax|@>=
static void insert_relax(void)
{@+cur_tok=cs_token_flag+cur_cs;back_input();
cur_tok=cs_token_flag+frozen_relax;back_input();token_type=inserted;
}

@ Here is a recursive procedure that is \TeX's usual way to get the
next token of input. It has been slightly optimized to take account of
common cases.

@p static void get_x_token(void) /*sets |cur_cmd|, |cur_chr|, |cur_tok|,
  and expands macros*/
{@+
restart: get_next();
@^inner loop@>
if (cur_cmd <= max_command) goto done;
if (cur_cmd >= call)
  if (cur_cmd < end_template) macro_call();
  else{@+cur_cs=frozen_endv;cur_cmd=endv;
    goto done; /*|cur_chr==null_list|*/
    }
else expand();
goto restart;
done: if (cur_cs==0) cur_tok=(cur_cmd*0400)+cur_chr;
else cur_tok=cs_token_flag+cur_cs;
}

@ The |get_x_token| procedure is essentially equivalent to two consecutive
procedure calls: |get_next;x_token|.

@p static void x_token(void) /*|get_x_token| without the initial |get_next|*/
{@+while (cur_cmd > max_command)
  {@+expand();
  get_next();
  }
if (cur_cs==0) cur_tok=(cur_cmd*0400)+cur_chr;
else cur_tok=cs_token_flag+cur_cs;
}

@ A control sequence that has been \.{\\def}'ed by the user is expanded by
\TeX's |macro_call| procedure.

Before we get into the details of |macro_call|, however, let's consider the
treatment of primitives like \.{\\topmark}, since they are essentially
macros without parameters. The token lists for such marks are kept in a
global array of five pointers; we refer to the individual entries of this
array by symbolic names |top_mark|, etc. The value of |top_mark| is either
|null| or a pointer to the reference count of a token list.

@d marks_code 5 /*add this for \.{\\topmarks} etc.*/
@#
@d top_mark_code 0 /*the mark in effect at the previous page break*/
@d first_mark_code 1 /*the first mark between |top_mark| and |bot_mark|*/
@d bot_mark_code 2 /*the mark in effect at the current page break*/
@d split_first_mark_code 3 /*the first mark found by \.{\\vsplit}*/
@d split_bot_mark_code 4 /*the last mark found by \.{\\vsplit}*/
@d top_mark cur_mark[top_mark_code]
@d first_mark cur_mark[first_mark_code]
@d bot_mark cur_mark[bot_mark_code]
@d split_first_mark cur_mark[split_first_mark_code]
@d split_bot_mark cur_mark[split_bot_mark_code]

@<Glob...@>=
static pointer @!cur_mark0[split_bot_mark_code-top_mark_code+1],
  *const @!cur_mark = @!cur_mark0-top_mark_code;
   /*token lists for marks*/

@ @<Set init...@>=
top_mark=null;first_mark=null;bot_mark=null;
split_first_mark=null;split_bot_mark=null;

@ @<Put each...@>=
primitive("topmark", top_bot_mark, top_mark_code);
@!@:top\_mark\_}{\.{\\topmark} primitive@>
primitive("firstmark", top_bot_mark, first_mark_code);
@!@:first\_mark\_}{\.{\\firstmark} primitive@>
primitive("botmark", top_bot_mark, bot_mark_code);
@!@:bot\_mark\_}{\.{\\botmark} primitive@>
primitive("splitfirstmark", top_bot_mark, split_first_mark_code);
@!@:split\_first\_mark\_}{\.{\\splitfirstmark} primitive@>
primitive("splitbotmark", top_bot_mark, split_bot_mark_code);
@!@:split\_bot\_mark\_}{\.{\\splitbotmark} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case top_bot_mark: {@+switch ((chr_code%marks_code)) {
  case first_mark_code: print_esc("firstmark");@+break;
  case bot_mark_code: print_esc("botmark");@+break;
  case split_first_mark_code: print_esc("splitfirstmark");@+break;
  case split_bot_mark_code: print_esc("splitbotmark");@+break;
  default:print_esc("topmark");
  }
  if (chr_code >= marks_code) print_char('s');
  } @+break;

@ The following code is activated when |cur_cmd==top_bot_mark| and
when |cur_chr| is a code like |top_mark_code|.

@<Insert the \(a)appropriate mark text into the scanner@>=
{@+t=cur_chr%marks_code;
if (cur_chr >= marks_code) scan_register_num();@+else cur_val=0;
if (cur_val==0) cur_ptr=cur_mark[t];
else@<Compute the mark pointer for mark type |t| and class |cur_val|@>;
if (cur_ptr!=null) begin_token_list(cur_ptr, mark_text);
}

@ Now let's consider |macro_call| itself, which is invoked when \TeX\ is
scanning a control sequence whose |cur_cmd| is either |call|, |long_call|,
|outer_call|, or |long_outer_call|.  The control sequence definition
appears in the token list whose reference count is in location |cur_chr|
of |mem|.

The global variable |long_state| will be set to |call| or to |long_call|,
depending on whether or not the control sequence disallows \.{\\par}
in its parameters. The |get_next| routine will set |long_state| to
|outer_call| and emit \.{\\par}, if a file ends or if an \.{\\outer}
control sequence occurs in the midst of an argument.

@<Glob...@>=
static int @!long_state; /*governs the acceptance of \.{\\par}*/

@ The parameters, if any, must be scanned before the macro is expanded.
Parameters are token lists without reference counts. They are placed on
an auxiliary stack called |pstack| while they are being scanned, since
the |param_stack| may be losing entries during the matching process.
(Note that |param_stack| can't be gaining entries, since |macro_call| is
the only routine that puts anything onto |param_stack|, and it
is not recursive.)

@<Glob...@>=
static pointer @!pstack[9]; /*arguments supplied to a macro*/

@ After parameter scanning is complete, the parameters are moved to the
|param_stack|. Then the macro body is fed to the scanner; in other words,
|macro_call| places the defined text of the control sequence at the
top of\/ \TeX's input stack, so that |get_next| will proceed to read it
next.

The global variable |cur_cs| contains the |eqtb| address of the control sequence
being expanded, when |macro_call| begins. If this control sequence has not been
declared \.{\\long}, i.e., if its command code in the |eq_type| field is
not |long_call| or |long_outer_call|, its parameters are not allowed to contain
the control sequence \.{\\par}. If an illegal \.{\\par} appears, the macro
call is aborted, and the \.{\\par} will be rescanned.

@<Declare the procedure called |macro_call|@>=
static void macro_call(void) /*invokes a user-defined control sequence*/
{@+
pointer r; /*current node in the macro's token list*/
pointer @!p; /*current node in parameter token list being built*/
pointer @!q; /*new node being put into the token list*/
pointer @!s; /*backup pointer for parameter matching*/
pointer @!t; /*cycle pointer for backup recovery*/
pointer @!u, @!v; /*auxiliary pointers for backup recovery*/
pointer @!rbrace_ptr; /*one step before the last |right_brace| token*/
small_number @!n; /*the number of parameters scanned*/
halfword @!unbalance; /*unmatched left braces in current parameter*/
int @!m; /*the number of tokens or groups (usually)*/
pointer @!ref_count; /*start of the token list*/
small_number @!save_scanner_status; /*|scanner_status| upon entry*/
pointer @!save_warning_index; /*|warning_index| upon entry*/
ASCII_code @!match_chr; /*character used in parameter*/
save_scanner_status=scanner_status;save_warning_index=warning_index;
warning_index=cur_cs;ref_count=cur_chr;r=link(ref_count);n=0;
if (tracing_macros > 0) @<Show the text of the macro being expanded@>;
if (info(r)==protected_token) r=link(r);
if (info(r)!=end_match_token)
  @<Scan the parameters and make |link(r)| point to the macro body; but |return|
if an illegal \.{\\par} is detected@>;
@<Feed the macro body and its parameters to the scanner@>;
end: scanner_status=save_scanner_status;warning_index=save_warning_index;
}

@ Before we put a new token list on the input stack, it is wise to clean off
all token lists that have recently been depleted. Then a user macro that ends
with a call to itself will not require unbounded stack space.

@<Feed the macro body and its parameters to the scanner@>=
while ((state==token_list)&&(loc==null)&&(token_type!=v_template))
  end_token_list(); /*conserve stack space*/
begin_token_list(ref_count, macro);name=warning_index;loc=link(r);
if (n > 0)
  {@+if (param_ptr+n > max_param_stack)
    {@+max_param_stack=param_ptr+n;
    if (max_param_stack > param_size)
      overflow("parameter stack size", param_size);
@:TeX capacity exceeded parameter stack size}{\quad parameter stack size@>
    }
  for (m=0; m<=n-1; m++) param_stack[param_ptr+m]=pstack[m];
  param_ptr=param_ptr+n;
  }

@ At this point, the reader will find it advisable to review the explanation
of token list format that was presented earlier, since many aspects of that
format are of importance chiefly in the |macro_call| routine.

The token list might begin with a string of compulsory tokens before the
first |match| or |end_match|. In that case the macro name is supposed to be
followed by those tokens; the following program will set |s==null| to
represent this restriction. Otherwise |s| will be set to the first token of
a string that will delimit the next parameter.

@<Scan the parameters and make |link(r)| point to the macro body...@>=
{@+scanner_status=matching;unbalance=0;
long_state=eq_type(cur_cs);
if (long_state >= outer_call) long_state=long_state-2;
@/do@+{link(temp_head)=null;
if ((info(r) > match_token+255)||(info(r) < match_token)) s=null;
else{@+match_chr=info(r)-match_token;s=link(r);r=s;
  p=temp_head;m=0;
  }
@<Scan a parameter until its delimiter string has been found; or, if |s=null|,
simply scan the delimiter string@>;@/
 /*now |info(r)| is a token whose command code is either |match| or |end_match|*/
}@+ while (!(info(r)==end_match_token));
}

@ If |info(r)| is a |match| or |end_match| command, it cannot be equal to
any token found by |get_token|. Therefore an undelimited parameter---i.e.,
a |match| that is immediately followed by |match| or |end_match|---will
always fail the test `|cur_tok==info(r)|' in the following algorithm.

@<Scan a parameter until its delimiter string has been found; or,...@>=
resume: get_token(); /*set |cur_tok| to the next token of input*/
if (cur_tok==info(r))
  @<Advance \(r)|r|; |goto found| if the parameter delimiter has been fully
matched, otherwise |goto resume|@>;
@<Contribute the recently matched tokens to the current parameter, and |goto
resume| if a partial match is still in effect; but abort if |s=null|@>;
if (cur_tok==par_token) if (long_state!=long_call)
  @<Report a runaway argument and abort@>;
if (cur_tok < right_brace_limit)
  if (cur_tok < left_brace_limit)
    @<Contribute an entire group to the current parameter@>@;
  else@<Report an extra right brace and |goto resume|@>@;
else@<Store the current token, but |goto resume| if it is a blank space
that would become an undelimited parameter@>;
incr(m);
if (info(r) > end_match_token) goto resume;
if (info(r) < match_token) goto resume;
found: if (s!=null) @<Tidy up the parameter just scanned, and tuck it away@>@;

@ @<Store the current token, but |goto resume| if it is...@>=
{@+if (cur_tok==space_token)
  if (info(r) <= end_match_token)
    if (info(r) >= match_token) goto resume;
store_new_token(cur_tok);
}

@ A slightly subtle point arises here: When the parameter delimiter ends
with `\.{\#\{}', the token list will have a left brace both before and
after the |end_match|\kern-.4pt. Only one of these should affect the
|align_state|, but both will be scanned, so we must make a correction.

@<Advance \(r)|r|; |goto found| if the parameter delimiter has been fully...@>=
{@+r=link(r);
if ((info(r) >= match_token)&&(info(r) <= end_match_token))
  {@+if (cur_tok < left_brace_limit) decr(align_state);
  goto found;
  }
else goto resume;
}

@ @<Report an extra right brace and |goto resume|@>=
{@+back_input();print_err("Argument of ");sprint_cs(warning_index);
@.Argument of \\x has...@>
print(" has an extra }");
help6("I've run across a `}' that doesn't seem to match anything.",@/
  "For example, `\\def\\a#1{...}' and `\\a}' would produce",@/
  "this error. If you simply proceed now, the `\\par' that",@/
  "I've just inserted will cause me to report a runaway",@/
  "argument that might be the root of the problem. But if",@/
  "your `}' was spurious, just type `2' and it will go away.");
incr(align_state);long_state=call;cur_tok=par_token;ins_error();
goto resume;
}  /*a white lie; the \.{\\par} won't always trigger a runaway*/

@ If |long_state==outer_call|, a runaway argument has already been reported.

@<Report a runaway argument and abort@>=
{@+if (long_state==call)
  {@+runaway();print_err("Paragraph ended before ");
@.Paragraph ended before...@>
  sprint_cs(warning_index);print(" was complete");
  help3("I suspect you've forgotten a `}', causing me to apply this",@/
    "control sequence to too much text. How can we recover?",@/
    "My plan is to forget the whole thing and hope for the best.");
  back_error();
  }
pstack[n]=link(temp_head);align_state=align_state-unbalance;
for (m=0; m<=n; m++) flush_list(pstack[m]);
goto end;
}

@ When the following code becomes active, we have matched tokens from |s| to
the predecessor of |r|, and we have found that |cur_tok!=info(r)|. An
interesting situation now presents itself: If the parameter is to be
delimited by a string such as `\.{ab}', and if we have scanned `\.{aa}',
we want to contribute one `\.a' to the current parameter and resume
looking for a `\.b'. The program must account for such partial matches and
for others that can be quite complex.  But most of the time we have |s==r|
and nothing needs to be done.

Incidentally, it is possible for \.{\\par} tokens to sneak in to certain
parameters of non-\.{\\long} macros. For example, consider a case like
`\.{\\def\\a\#1\\par!\{...\}}' where the first \.{\\par} is not followed
by an exclamation point. In such situations it does not seem appropriate
to prohibit the \.{\\par}, so \TeX\ keeps quiet about this bending of
the rules.

@<Contribute the recently matched tokens to the current parameter...@>=
if (s!=r)
  if (s==null) @<Report an improper use of the macro and abort@>@;
  else{@+t=s;
    @/do@+{store_new_token(info(t));incr(m);u=link(t);v=s;
    loop@+{@+if (u==r)
        if (cur_tok!=info(v)) goto done;
        else{@+r=link(v);goto resume;
          }
      if (info(u)!=info(v)) goto done;
      u=link(u);v=link(v);
      }
    done: t=link(t);
    }@+ while (!(t==r));
    r=s; /*at this point, no tokens are recently matched*/
    }

@ @<Report an improper use...@>=
{@+print_err("Use of ");sprint_cs(warning_index);
@.Use of x doesn't match...@>
print(" doesn't match its definition");
help4("If you say, e.g., `\\def\\a1{...}', then you must always",@/
  "put `1' after `\\a', since control sequence names are",@/
  "made up of letters only. The macro here has not been",@/
  "followed by the required stuff, so I'm ignoring it.");
error();goto end;
}

@ @<Contribute an entire group to the current parameter@>=
{@+unbalance=1;
@^inner loop@>
loop@+{@+fast_store_new_token(cur_tok);get_token();
  if (cur_tok==par_token) if (long_state!=long_call)
    @<Report a runaway argument and abort@>;
  if (cur_tok < right_brace_limit)
    if (cur_tok < left_brace_limit) incr(unbalance);
    else{@+decr(unbalance);
      if (unbalance==0) goto done1;
      }
  }
done1: rbrace_ptr=p;store_new_token(cur_tok);
}

@ If the parameter consists of a single group enclosed in braces, we must
strip off the enclosing braces. That's why |rbrace_ptr| was introduced.

@<Tidy up the parameter just scanned, and tuck it away@>=
{@+if ((m==1)&&(info(p) < right_brace_limit))
  {@+link(rbrace_ptr)=null;free_avail(p);
  p=link(temp_head);pstack[n]=link(p);free_avail(p);
  }
else pstack[n]=link(temp_head);
incr(n);
if (tracing_macros > 0)
  if ((tracing_stack_levels==0)||(input_ptr < tracing_stack_levels))
  {@+begin_diagnostic();print_nl("");printn(match_chr);print_int(n);
  print("<-");show_token_list(pstack[n-1], null, 1000);
  end_diagnostic(false);
  }
}

@ @<Show the text of the macro being expanded@>=
{@+begin_diagnostic();
  if (tracing_stack_levels > 0)
  { if (input_ptr < tracing_stack_levels)
      {@+
        int v=input_ptr;
        print_ln();print_char('~');
        while (v-- > 0) print_char('.');
        print_cs(warning_index);token_show(ref_count);
      }
    else{@+print_char('~');print_char('~');print_cs(warning_index);}
  }
  else{@+print_ln();print_cs(warning_index);token_show(ref_count);}
  end_diagnostic(false);
}

@* Basic scanning subroutines.
Let's turn now to some procedures that \TeX\ calls upon frequently to digest
certain kinds of patterns in the input. Most of these are quite simple;
some are quite elaborate. Almost all of the routines call |get_x_token|,
which can cause them to be invoked recursively.
@^stomach@>
@^recursion@>

@ The |scan_left_brace| routine is called when a left brace is supposed to be
the next non-blank token. (The term ``left brace'' means, more precisely,
a character whose catcode is |left_brace|.) \TeX\ allows \.{\\relax} to
appear before the |left_brace|.

@p static void scan_left_brace(void) /*reads a mandatory |left_brace|*/
{@+@<Get the next non-blank non-relax non-call token@>;
if (cur_cmd!=left_brace)
  {@+print_err("Missing { inserted");
@.Missing \{ inserted@>
  help4("A left brace was mandatory here, so I've put one in.",@/
    "You might want to delete and/or insert some corrections",@/
    "so that I will find a matching right brace soon.",@/
    "(If you're confused by all this, try typing `I}' now.)");
  back_error();cur_tok=left_brace_token+'{';cur_cmd=left_brace;
  cur_chr='{';incr(align_state);
  }
}

@ @<Get the next non-blank non-relax non-call token@>=
@/do@+{get_x_token();
}@+ while (!((cur_cmd!=spacer)&&(cur_cmd!=relax)))

@ The |scan_optional_equals| routine looks for an optional `\.=' sign preceded
by optional spaces; `\.{\\relax}' is not ignored here.

@p static void scan_optional_equals(void)
{@+@<Get the next non-blank non-call token@>;
if (cur_tok!=other_token+'=') back_input();
}

@ @<Get the next non-blank non-call token@>=
@/do@+{get_x_token();
}@+ while (!(cur_cmd!=spacer))

@ In case you are getting bored, here is a slightly less trivial routine:
Given a string of lowercase letters, like `\.{pt}' or `\.{plus}' or
`\.{width}', the |scan_keyword| routine checks to see whether the next
tokens of input match this string. The match must be exact, except that
uppercase letters will match their lowercase counterparts; uppercase
equivalents are determined by subtracting |'a'-'A'|, rather than using the
|uc_code| table, since \TeX\ uses this routine only for its own limited
set of keywords.

If a match is found, the characters are effectively removed from the input
and |true| is returned. Otherwise |false| is returned, and the input
is left essentially unchanged (except for the fact that some macros
may have been expanded, etc.).
@^inner loop@>

@p static bool scan_keyword(char *@!s) /*look for a given string*/
{@+
pointer p; /*tail of the backup list*/
pointer @!q; /*new node being added to the token list via |store_new_token|*/
p=backup_head;link(p)=null;
while (*s!=0)
  {@+get_x_token(); /*recursion is possible here*/
@^recursion@>
  if ((cur_cs==0)&&@|
   ((cur_chr==so(*s))||(cur_chr==so(*s)-'a'+'A')))
    {@+store_new_token(cur_tok);incr(s);
    }
  else if ((cur_cmd!=spacer)||(p!=backup_head))
    {@+back_input();
    if (p!=backup_head) back_list(link(backup_head));
    return false;
    }
  }
flush_list(link(backup_head));return true;
}

@ Here is a procedure that sounds an alarm when mu and non-mu units
are being switched.

@p static void mu_error(void)
{@+print_err("Incompatible glue units");
@.Incompatible glue units@>
help1("I'm going to assume that 1mu=1pt when they're mixed.");
error();
}

@ The next routine `|scan_something_internal|' is used to fetch internal
numeric quantities like `\.{\\hsize}', and also to handle the `\.{\\the}'
when expanding constructions like `\.{\\the\\toks0}' and
`\.{\\the\\baselineskip}'. Soon we will be considering the |scan_int|
procedure, which calls |scan_something_internal|; on the other hand,
|scan_something_internal| also calls |scan_int|, for constructions like
`\.{\\catcode\`\\\$}' or `\.{\\fontdimen} \.3 \.{\\ff}'. So we
have to declare |scan_int| as a |forward| procedure. A few other
procedures are also declared at this point.

@p static void scan_int(void); /*scans an integer value*/
@t\4\4@>@<Declare procedures that scan restricted classes of integers@>@;
@t\4\4@>@<Declare \eTeX\ procedures for scanning@>@;
@t\4\4@>@<Declare procedures that scan font-related stuff@>@;

@ \TeX\ doesn't know exactly what to expect when |scan_something_internal|
begins.  For example, an integer or dimension or glue value could occur
immediately after `\.{\\hskip}'; and one can even say \.{\\the} with
respect to token lists in constructions like
`\.{\\xdef\\o\{\\the\\output\}}'.  On the other hand, only integers are
allowed after a construction like `\.{\\count}'. To handle the various
possibilities, |scan_something_internal| has a |level| parameter, which
tells the ``highest'' kind of quantity that |scan_something_internal| is
allowed to produce. Six levels are distinguished, namely |int_val|,
|dimen_val|, |glue_val|, |mu_val|, |ident_val|, and |tok_val|.

The output of |scan_something_internal| (and of the other routines
|scan_int|, |scan_dimen|, and |scan_glue| below) is put into the global
variable |cur_val|, and its level is put into |cur_val_level|. The highest
values of |cur_val_level| are special: |mu_val| is used only when
|cur_val| points to something in a ``muskip'' register, or to one of the
three parameters \.{\\thinmuskip}, \.{\\medmuskip}, \.{\\thickmuskip};
|ident_val| is used only when |cur_val| points to a font identifier;
|tok_val| is used only when |cur_val| points to |null| or to the reference
count of a token list. The last two cases are allowed only when
|scan_something_internal| is called with |level==tok_val|.

If the output is glue, |cur_val| will point to a glue specification, and
the reference count of that glue will have been updated to reflect this
reference; if the output is a nonempty token list, |cur_val| will point to
its reference count, but in this case the count will not have been updated.
Otherwise |cur_val| will contain the integer or scaled value in question.

@d int_val 0 /*integer values*/
@d dimen_val 1 /*dimension values*/
@d glue_val 2 /*glue specifications*/
@d mu_val 3 /*math glue specifications*/
@d ident_val 4 /*font identifier*/
@d tok_val 5 /*token lists*/
@d has_factor (cur_hfactor!=0 || cur_vfactor!=0)

@<Glob...@>=
static int @!cur_val, @!cur_hfactor, @!cur_vfactor; /*value returned by numeric scanners*/
static int @!cur_val_level; /*the ``level'' of this value*/

@ The hash table is initialized with `\.{\\count}', `\.{\\dimen}', `\.{\\skip}',
and `\.{\\muskip}' all having |internal_register| as their command code; they are
distinguished by the |chr_code|, which is either |int_val|, |dimen_val|,
|glue_val|, or |mu_val| more than |mem_bot| (dynamic variable-size nodes
cannot have these values)

@<Put each...@>=
primitive("count", internal_register, mem_bot+int_val);
@!@:count\_}{\.{\\count} primitive@>
primitive("dimen", internal_register, mem_bot+dimen_val);
@!@:dimen\_}{\.{\\dimen} primitive@>
primitive("skip", internal_register, mem_bot+glue_val);
@!@:skip\_}{\.{\\skip} primitive@>
primitive("muskip", internal_register, mem_bot+mu_val);
@!@:mu\_skip\_}{\.{\\muskip} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case internal_register: @<Cases of |register| for |print_cmd_chr|@>@;@+break;

@ OK, we're ready for |scan_something_internal| itself. A second parameter,
|negative|, is set |true| if the value that is found should be negated.
It is assumed that |cur_cmd| and |cur_chr| represent the first token of
the internal quantity to be scanned; an error will be signalled if
|cur_cmd < min_internal| or |cur_cmd > max_internal|.

@d scanned_result(A, B) @+{@+cur_val=A;cur_val_level=B;@+}

@p static void scan_something_internal(small_number @!level, bool @!negative)
   /*fetch an internal parameter*/
{@+
halfword m; /*|chr_code| part of the operand token*/
pointer @!q, @!r; /*general purpose indices*/
pointer @!tx; /*effective tail node*/
four_quarters @!i; /*character info*/
int @!p; /*index into |nest|*/
m=cur_chr;
switch (cur_cmd) {
case def_code: @<Fetch a character code from some table@>@;@+break;
case toks_register: case assign_toks:
  case def_family: case set_font: case def_font: @<Fetch a token list or font
identifier, provided that |level=tok_val|@>@;@+break;
case assign_int: scanned_result(eqtb[m].i, int_val)@;@+break;
case assign_dimen:
  scanned_result(eqtb[m].sc, dimen_val);
  if (m>=dimen_base)@/
  { cur_hfactor=hfactor_eqtb[m].sc;@+
    cur_vfactor=vfactor_eqtb[m].sc;@+
  }
  else
    cur_hfactor=cur_vfactor=0;@/
  @+break;
case assign_glue: scanned_result(equiv(m), glue_val)@;@+break;
case assign_mu_glue: scanned_result(equiv(m), mu_val)@;@+break;
case set_aux: @<Fetch the |space_factor| or the |prev_depth|@>@;@+break;
case set_prev_graf: @<Fetch the |prev_graf|@>@;@+break;
case set_page_int: @<Fetch the |dead_cycles| or the |insert_penalties|@>@;@+break;
case set_page_dimen: @<Fetch something on the |page_so_far|@>@;@+break;
case set_shape: @<Fetch the |par_shape| size@>@;@+break;
case set_box_dimen: @<Fetch a box dimension@>@;@+break;
case char_given: case math_given: scanned_result(cur_chr, int_val)@;@+break;
case assign_font_dimen: @<Fetch a font dimension@>@;@+break;
case assign_font_int: @<Fetch a font integer@>@;@+break;
case internal_register: @<Fetch a register@>@;@+break;
case last_item: @<Fetch an item in the current node, if appropriate@>@;@+break;
default:@<Complain that \.{\\the} can't do this; give zero result@>@;
} @/
while (cur_val_level > level) @<Convert \(c)|cur_val| to a lower level@>;
@<Fix the reference count, if any, and negate |cur_val| if |negative|@>;
}

@ @<Fetch a character code from some table@>=
{@+scan_char_num();
if (m==math_code_base) scanned_result(ho(math_code(cur_val)), int_val)@;
else if (m < math_code_base) scanned_result(equiv(m+cur_val), int_val)@;
else scanned_result(eqtb[m+cur_val].i, int_val);
}

@ @<Fetch a token list...@>=
if (level!=tok_val)
  {@+print_err("Missing number, treated as zero");
@.Missing number...@>
  help3("A number should have been here; I inserted `0'.",@/
    "(If you can't figure out why I needed to see a number,",@/
    "look up `weird error' in the index to The TeXbook.)");
@:TeXbook}{\sl The \TeX book@>
  back_error();scanned_result(0, dimen_val);
  }
else if (cur_cmd <= assign_toks)
  {@+if (cur_cmd < assign_toks)  /*|cur_cmd==toks_register|*/
    if (m==mem_bot)
      {@+scan_register_num();
      if (cur_val < 256) cur_val=equiv(toks_base+cur_val);
      else{@+find_sa_element(tok_val, cur_val, false);
        if (cur_ptr==null) cur_val=null;
        else cur_val=sa_ptr(cur_ptr);
        }
      }
    else cur_val=sa_ptr(m);
  else cur_val=equiv(m);
  cur_val_level=tok_val;
  }
else{@+back_input();scan_font_ident();
  scanned_result(font_id_base+cur_val, ident_val);
  }

@ Users refer to `\.{\\the\\spacefactor}' only in horizontal
mode, and to `\.{\\the\\prevdepth}' only in vertical mode; so we put the
associated mode in the modifier part of the |set_aux| command.
The |set_page_int| command has modifier 0 or 1, for `\.{\\deadcycles}' and
`\.{\\insertpenalties}', respectively. The |set_box_dimen| command is
modified by either |width_offset|, |height_offset|, or |depth_offset|.
And the |last_item| command is modified by either |int_val|, |dimen_val|,
|glue_val|, |input_line_no_code|, or |badness_code|.
\eTeX\ inserts |last_node_type_code| after |glue_val| and adds
the codes for its extensions: |eTeX_version_code|, \dots\ .

@d last_node_type_code (glue_val+1) /*code for \.{\\lastnodetype}*/
@d input_line_no_code (glue_val+2) /*code for \.{\\inputlineno}*/
@d badness_code (input_line_no_code+1) /*code for \.{\\badness}*/
@#
@d eTeX_int (badness_code+1) /*first of \eTeX\ codes for integers*/
@d eTeX_dim (eTeX_int+8) /*first of \eTeX\ codes for dimensions*/
@d eTeX_glue (eTeX_dim+9) /*first of \eTeX\ codes for glue*/
@d eTeX_mu (eTeX_glue+1) /*first of \eTeX\ codes for muglue*/
@d eTeX_expr (eTeX_mu+1) /*first of \eTeX\ codes for expressions*/
@d eTeX_last_last_item_cmd_mod (eTeX_expr-int_val+mu_val) /*\.{\\muexpr}*/

@<Put each...@>=
primitive("spacefactor", set_aux, hmode);
@!@:space\_factor\_}{\.{\\spacefactor} primitive@>
primitive("prevdepth", set_aux, vmode);@/
@!@:prev\_depth\_}{\.{\\prevdepth} primitive@>
primitive("deadcycles", set_page_int, 0);
@!@:dead\_cycles\_}{\.{\\deadcycles} primitive@>
primitive("insertpenalties", set_page_int, 1);
@!@:insert\_penalties\_}{\.{\\insertpenalties} primitive@>
primitive("wd", set_box_dimen, width_offset);
@!@:wd\_}{\.{\\wd} primitive@>
primitive("ht", set_box_dimen, height_offset);
@!@:ht\_}{\.{\\ht} primitive@>
primitive("dp", set_box_dimen, depth_offset);
@!@:dp\_}{\.{\\dp} primitive@>
primitive("lastpenalty", last_item, int_val);
@!@:last\_penalty\_}{\.{\\lastpenalty} primitive@>
primitive("lastkern", last_item, dimen_val);
@!@:last\_kern\_}{\.{\\lastkern} primitive@>
primitive("lastskip", last_item, glue_val);
@!@:last\_skip\_}{\.{\\lastskip} primitive@>
primitive("inputlineno", last_item, input_line_no_code);
@!@:input\_line\_no\_}{\.{\\inputlineno} primitive@>
primitive("badness", last_item, badness_code);
@!@:badness\_}{\.{\\badness} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case set_aux: if (chr_code==vmode) print_esc("prevdepth");
@+else print_esc("spacefactor");@+break;
case set_page_int: if (chr_code==0) print_esc("deadcycles")
@/@<Cases of |set_page_int| for |print_cmd_chr|@>;@/
@+else print_esc("insertpenalties");@+break;
case set_box_dimen: if (chr_code==width_offset) print_esc("wd");
else if (chr_code==height_offset) print_esc("ht");
else print_esc("dp");@+break;
case last_item: switch (chr_code) {
  case int_val: print_esc("lastpenalty");@+break;
  case dimen_val: print_esc("lastkern");@+break;
  case glue_val: print_esc("lastskip");@+break;
  case input_line_no_code: print_esc("inputlineno");@+break;
  @/@<Cases of |last_item| for |print_cmd_chr|@>@/
  default:print_esc("badness");
  } @+break;

@ @<Fetch the |space_factor| or the |prev_depth|@>=
if (abs(mode)!=m)
  {@+print_err("Improper ");print_cmd_chr(set_aux, m);
@.Improper \\spacefactor@>
@.Improper \\prevdepth@>
  help4("You can refer to \\spacefactor only in horizontal mode;",@/
    "you can refer to \\prevdepth only in vertical mode; and",@/
    "neither of these is meaningful inside \\write. So",@/
    "I'm forgetting what you said and using zero instead.");
  error();
  if (level!=tok_val) scanned_result(0, dimen_val)@;
  else scanned_result(0, int_val);
  }
else if (m==vmode)
  scanned_result(prev_depth==unknown_depth?0:prev_depth, dimen_val)@;
else scanned_result(space_factor, int_val)

@ @<Fetch the |dead_cycles| or the |insert_penalties|@>=
{@+if (m==0) cur_val=dead_cycles
@/@<Cases for `Fetch the |dead_cycles| or the |insert_penalties|'@>;@/
else cur_val=insert_penalties;
cur_val_level=int_val;
}

@ @<Fetch a box dimension@>=
{@+scan_register_num();fetch_box(q);
if (q==null) cur_val=0;@+else cur_val=mem[q+m].sc;
cur_val_level=dimen_val;
}

@ Inside an \.{\\output} routine, a user may wish to look at the page totals
that were present at the moment when output was triggered.

@d max_dimen 07777777777 /*$2^{30}-1$*/

@<Fetch something on the |page_so_far|@>=
{@+if ((page_contents==empty)&&(!output_active))
  if (m==0) cur_val=max_dimen;@+else cur_val=0;
else cur_val=page_so_far[m];
cur_val_level=dimen_val;
}

@ @<Fetch the |prev_graf|@>=
if (mode==0) scanned_result(0, int_val)@; /*|prev_graf==0| within \.{\\write}*/
else{@+nest[nest_ptr]=cur_list;p=nest_ptr;
  while (abs(nest[p].mode_field)!=vmode) decr(p);
  scanned_result(nest[p].pg_field, int_val);
  }

@ @<Fetch the |par_shape| size@>=
{@+if (m > par_shape_loc) @<Fetch a penalties array element@>@;
else if (par_shape_ptr==null) cur_val=0;
else cur_val=info(par_shape_ptr);
cur_val_level=int_val;
}

@ Here is where \.{\\lastpenalty}, \.{\\lastkern}, \.{\\lastskip}, and
\.{\\lastnodetype} are
implemented. The reference count for \.{\\lastskip} will be updated later.

We also handle \.{\\inputlineno} and \.{\\badness} here, because they are
legal in similar contexts.

@<Fetch an item in the current node...@>=
if (m > eTeX_last_last_item_cmd_mod)
  @/@<Fetch a \Prote\ item@>@;@/
else if (m >= input_line_no_code)
 if (m >= eTeX_glue) @<Process an expression and |return|@>@;
 else if (m >= eTeX_dim)
  {@+switch (m) {
  @/@<Cases for fetching a dimension value@>@/
  }  /*there are no other cases*/
  cur_val_level=dimen_val;
  }
 else{@+switch (m) {
  case input_line_no_code: cur_val=line;@+break;
  case badness_code: cur_val=last_badness;@+break;
  @/@<Cases for fetching an integer value@>@/
  }  /*there are no other cases*/
  cur_val_level=int_val;
  }
else{@+if (cur_chr==glue_val) cur_val=zero_glue;@+else cur_val=0;
  tx=tail;
  if (cur_chr==last_node_type_code)
    {@+cur_val_level=int_val;
    if ((tx==head)||(mode==0)) cur_val=-1;
    }
  else cur_val_level=cur_chr;
  if (!is_char_node(tx)&&(mode!=0))
    switch (cur_chr) {
    case int_val: if (type(tx)==penalty_node) cur_val=penalty(tx);@+break;
    case dimen_val: if (type(tx)==kern_node) cur_val=width(tx);@+break;
    case glue_val: if (type(tx)==glue_node)
      {@+cur_val=glue_ptr(tx);
      if (subtype(tx)==mu_glue) cur_val_level=mu_val;
      } @+break;
    case last_node_type_code: if (type(tx) <= unset_node) cur_val=type(tx)+1;
      else cur_val=unset_node+2;
    }  /*there are no other cases*/
  else if ((mode==vmode)&&(tx==head))
    switch (cur_chr) {
    case int_val: cur_val=last_penalty;@+break;
    case dimen_val: cur_val=last_kern;@+break;
    case glue_val: if (last_glue!=max_halfword) cur_val=last_glue;@+break;
    case last_node_type_code: cur_val=last_node_type;
    }  /*there are no other cases*/
  }

@ @<Fetch a font dimension@>=
{@+find_font_dimen(false);font_info[fmem_ptr].sc=0;
scanned_result(font_info[cur_val].sc, dimen_val);
}

@ @<Fetch a font integer@>=
{@+scan_font_ident();
if (m==0) scanned_result(hyphen_char[cur_val], int_val)@;
else scanned_result(skew_char[cur_val], int_val);
}

@ @<Fetch a register@>=
{@+if ((m < mem_bot)||(m > lo_mem_stat_max))
  {@+cur_val_level=sa_type(m);
  if (cur_val_level < glue_val) cur_val=sa_int(m);
  else cur_val=sa_ptr(m);
  }
else{@+scan_register_num();cur_val_level=m-mem_bot;
  if (cur_val > 255)
    {@+find_sa_element(cur_val_level, cur_val, false);
    if (cur_ptr==null)
      if (cur_val_level < glue_val) cur_val=0;
      else cur_val=zero_glue;
    else if (cur_val_level < glue_val) cur_val=sa_int(cur_ptr);
    else cur_val=sa_ptr(cur_ptr);
    }
  else
  switch (cur_val_level) {
case int_val: cur_val=count(cur_val);@+break;
case dimen_val:
  cur_hfactor=dimen_hfactor(cur_val);
  cur_vfactor=dimen_vfactor(cur_val);
  cur_val=dimen(cur_val);@+break;
case glue_val: cur_val=skip(cur_val);@+break;
case mu_val: cur_val=mu_skip(cur_val);
}  /*there are no other cases*/
  }
}

@ @<Complain that \.{\\the} can't do this; give zero result@>=
{@+print_err("You can't use `");print_cmd_chr(cur_cmd, cur_chr);
@.You can't use x after ...@>
print("' after ");print_esc("the");
help1("I'm forgetting what you said and using zero instead.");
error();
if (level!=tok_val) scanned_result(0, dimen_val)@;
else scanned_result(0, int_val);
}

@ When a |glue_val| changes to a |dimen_val|, we use the width component
of the glue; there is no need to decrease the reference count, since it
has not yet been increased.  When a |dimen_val| changes to an |int_val|,
we use scaled points so that the value doesn't actually change. And when a
|mu_val| changes to a |glue_val|, the value doesn't change either.

@<Convert \(c)|cur_val| to a lower level@>=
{@+if (cur_val_level==glue_val) cur_val=width(cur_val);
else if (cur_val_level==mu_val) mu_error();
decr(cur_val_level);
}

@ If |cur_val| points to a glue specification at this point, the reference
count for the glue does not yet include the reference by |cur_val|.
If |negative| is |true|, |cur_val_level| is known to be | <= mu_val|.

@<Fix the reference count, if any,...@>=
if (negative)
  if (cur_val_level >= glue_val)
    {@+cur_val=new_spec(cur_val);
    @<Negate all three glue components of |cur_val|@>;
    }
  else {@+ negate(cur_val);@+ negate(cur_hfactor); @+negate(cur_vfactor); @+}
else if ((cur_val_level >= glue_val)&&(cur_val_level <= mu_val))
  add_glue_ref(cur_val)

@ @<Negate all three...@>=
{@+negate(width(cur_val));
negate(stretch(cur_val));
negate(shrink(cur_val));
}

@ Our next goal is to write the |scan_int| procedure, which scans anything that
\TeX\ treats as an integer. But first we might as well look at some simple
applications of |scan_int| that have already been made inside of
|scan_something_internal|.

@ @<Declare procedures that scan restricted classes of integers@>=
static void scan_eight_bit_int(void)
{@+scan_int();
if ((cur_val < 0)||(cur_val > 255))
  {@+print_err("Bad register code");
@.Bad register code@>
  help2("A register number must be between 0 and 255.",@/
    "I changed this one to zero.");int_error(cur_val);cur_val=0;
  }
}

@ @<Declare procedures that scan restricted classes of integers@>=
static void scan_char_num(void)
{@+scan_int();
if ((cur_val < 0)||(cur_val > 255))
  {@+print_err("Bad character code");
@.Bad character code@>
  help2("A character number must be between 0 and 255.",@/
    "I changed this one to zero.");int_error(cur_val);cur_val=0;
  }
}

@ While we're at it, we might as well deal with similar routines that
will be needed later.

@<Declare procedures that scan restricted classes of integers@>=
static void scan_four_bit_int(void)
{@+scan_int();
if ((cur_val < 0)||(cur_val > 15))
  {@+print_err("Bad number");
@.Bad number@>
  help2("Since I expected to read a number between 0 and 15,",@/
    "I changed this one to zero.");int_error(cur_val);cur_val=0;
  }
}

@ @<Declare procedures that scan restricted classes of integers@>=
static void scan_fifteen_bit_int(void)
{@+scan_int();
if ((cur_val < 0)||(cur_val > 077777))
  {@+print_err("Bad mathchar");
@.Bad mathchar@>
  help2("A mathchar number must be between 0 and 32767.",@/
    "I changed this one to zero.");int_error(cur_val);cur_val=0;
  }
}

@ @<Declare procedures that scan restricted classes of integers@>=
static void scan_twenty_seven_bit_int(void)
{@+scan_int();
if ((cur_val < 0)||(cur_val > 0777777777))
  {@+print_err("Bad delimiter code");
@.Bad delimiter code@>
  help2("A numeric delimiter code must be between 0 and 2^{27}-1.",@/
    "I changed this one to zero.");int_error(cur_val);cur_val=0;
  }
}

@ An integer number can be preceded by any number of spaces and `\.+' or
`\.-' signs. Then comes either a decimal constant (i.e., radix 10), an
octal constant (i.e., radix 8, preceded by~\.\'), a hexadecimal constant
(radix 16, preceded by~\."), an alphabetic constant (preceded by~\.\`), or
an internal variable. After scanning is complete,
|cur_val| will contain the answer, which must be at most
$2^{31}-1=2147483647$ in absolute value. The value of |radix| is set to
10, 8, or 16 in the cases of decimal, octal, or hexadecimal constants,
otherwise |radix| is set to zero. An optional space follows a constant.

@d octal_token (other_token+'\'') /*apostrophe, indicates an octal constant*/
@d hex_token (other_token+'"') /*double quote, indicates a hex constant*/
@d alpha_token (other_token+'`') /*reverse apostrophe, precedes alpha constants*/
@d point_token (other_token+'.') /*decimal point*/
@d continental_point_token (other_token+',') /*decimal point, Eurostyle*/

@<Glob...@>=
static small_number @!radix; /*|scan_int| sets this to 8, 10, 16, or zero*/

@ We initialize the following global variables just in case |expand|
comes into action before any of the basic scanning routines has assigned
them a value.

@<Set init...@>=
cur_val=0;cur_val_level=int_val;radix=0;cur_order=normal;

@ The |scan_int| routine is used also to scan the integer part of a
fraction; for example, the `\.3' in `\.{3.14159}' will be found by
|scan_int|. The |scan_dimen| routine assumes that |cur_tok==point_token|
after the integer part of such a fraction has been scanned by |scan_int|,
and that the decimal point has been backed up to be scanned again.

@p static void scan_int(void) /*sets |cur_val| to an integer*/
{@+
bool negative; /*should the answer be negated?*/
int @!m; /*|@t$2^{31}$@>/radix|, the threshold of danger*/
small_number @!d; /*the digit just scanned*/
bool @!vacuous; /*have no digits appeared?*/
bool @!OK_so_far; /*has an error message been issued?*/
radix=0;OK_so_far=true;@/
@<Get the next non-blank non-sign token; set |negative| appropriately@>;
if (cur_tok==alpha_token) @<Scan an alphabetic character code into |cur_val|@>@;
else if ((cur_cmd >= min_internal)&&(cur_cmd <= max_internal))
  scan_something_internal(int_val, false);
else@<Scan a numeric constant@>;
if (negative) negate(cur_val);
}

@ @<Get the next non-blank non-sign token...@>=
negative=false;
@/do@+{@<Get the next non-blank non-call token@>;
if (cur_tok==other_token+'-')
  {@+negative=!negative;cur_tok=other_token+'+';
  }
}@+ while (!(cur_tok!=other_token+'+'))

@ A space is ignored after an alphabetic character constant, so that
such constants behave like numeric ones.

@<Scan an alphabetic character code into |cur_val|@>=
{@+get_token(); /*suppress macro expansion*/
if (cur_tok < cs_token_flag)
  {@+cur_val=cur_chr;
  if (cur_cmd <= right_brace)
    if (cur_cmd==right_brace) incr(align_state);
    else decr(align_state);
  }
else if (cur_tok < cs_token_flag+single_base)
  cur_val=cur_tok-cs_token_flag-active_base;
else cur_val=cur_tok-cs_token_flag-single_base;
if (cur_val > 255)
  {@+print_err("Improper alphabetic constant");
@.Improper alphabetic constant@>
  help2("A one-character control sequence belongs after a ` mark.",@/
    "So I'm essentially inserting \\0 here.");
  cur_val='0';back_error();
  }
else@<Scan an optional space@>;
}

@ @<Scan an optional space@>=
{@+get_x_token();if (cur_cmd!=spacer) back_input();
}

@ @<Scan a numeric constant@>=
{@+radix=10;m=214748364;
if (cur_tok==octal_token)
  {@+radix=8;m=02000000000;get_x_token();
  }
else if (cur_tok==hex_token)
  {@+radix=16;m=01000000000;get_x_token();
  }
vacuous=true;cur_val=0;@/
@<Accumulate the constant until |cur_tok| is not a suitable digit@>;
if (vacuous) @<Express astonishment that no number was here@>@;
else if (cur_cmd!=spacer) back_input();
}

@ @d infinity 017777777777 /*the largest positive value that \TeX\ knows*/
@d zero_token (other_token+'0') /*zero, the smallest digit*/
@d A_token (letter_token+'A') /*the smallest special hex digit*/
@d other_A_token (other_token+'A') /*special hex digit of type |other_char|*/

@<Accumulate the constant...@>=
loop@+{@+if ((cur_tok < zero_token+radix)&&(cur_tok >= zero_token)&&
    (cur_tok <= zero_token+9)) d=cur_tok-zero_token;
  else if (radix==16)
    if ((cur_tok <= A_token+5)&&(cur_tok >= A_token)) d=cur_tok-A_token+10;
    else if ((cur_tok <= other_A_token+5)&&(cur_tok >= other_A_token))
      d=cur_tok-other_A_token+10;
    else goto done;
  else goto done;
  vacuous=false;
  if ((cur_val >= m)&&((cur_val > m)||(d > 7)||(radix!=10)))
    {@+if (OK_so_far)
      {@+print_err("Number too big");
@.Number too big@>
      help2("I can only go up to 2147483647='17777777777=\"7FFFFFFF,",@/
        "so I'm using that number instead of yours.");
      error();cur_val=infinity;OK_so_far=false;
      }
    }
  else cur_val=cur_val*radix+d;
  get_x_token();
  }
done:

@ @<Express astonishment...@>=
{@+print_err("Missing number, treated as zero");
@.Missing number...@>
help3("A number should have been here; I inserted `0'.",@/
  "(If you can't figure out why I needed to see a number,",@/
  "look up `weird error' in the index to The TeXbook.)");
@:TeXbook}{\sl The \TeX book@>
back_error();
}

@ The |scan_dimen| routine is similar to |scan_int|, but it sets |cur_val| to
a |scaled| value, i.e., an integral number of sp. One of its main tasks
is therefore to interpret the abbreviations for various kinds of units and
to convert measurements to scaled points.

There are three parameters: |mu| is |true| if the finite units must be
`\.{mu}', while |mu| is |false| if `\.{mu}' units are disallowed;
|inf| is |true| if the infinite units `\.{fil}', `\.{fill}', `\.{filll}'
are permitted; and |shortcut| is |true| if |cur_val| already contains
an integer and only the units need to be considered.

The order of infinity that was found in the case of infinite glue is returned
in the global variable |cur_order|.

@<Glob...@>=
static glue_ord @!cur_order; /*order of infinity found by |scan_dimen|*/

@ Constructions like `\.{-\'77 pt}' are legal dimensions, so |scan_dimen|
may begin with |scan_int|. This explains why it is convenient to use
|scan_int| also for the integer part of a decimal fraction.

Several branches of |scan_dimen| work with |cur_val| as an integer and
with an auxiliary fraction |f|, so that the actual quantity of interest is
$|cur_val|+|f|/2^{16}$. At the end of the routine, this ``unpacked''
representation is put into the single word |cur_val|, which suddenly
switches significance from |int| to |scaled|.

@d scan_normal_dimen scan_dimen(false, false, false)

@p static void scan_dimen(bool @!mu, bool @!inf, bool @!shortcut)
   /*sets |cur_val| to a dimension*/
{@+
bool negative; /*should the answer be negated?*/
int @!f; /*numerator of a fraction whose denominator is $2^{16}$*/
@<Local variables for dimension calculations@>@;
f=0;arith_error=false;cur_order=normal;negative=false;
cur_hfactor=cur_vfactor=0;
if (!shortcut)
  {@+@<Get the next non-blank non-sign...@>;
  if ((cur_cmd >= min_internal)&&(cur_cmd <= max_internal))
    @<Fetch an internal dimension and |goto attach_sign|, or fetch an internal
integer@>@;
  else{@+back_input();
    if (cur_tok==continental_point_token) cur_tok=point_token;
    if (cur_tok!=point_token) scan_int();
    else{@+radix=10;cur_val=0;
      }
    if (cur_tok==continental_point_token) cur_tok=point_token;
    if ((radix==10)&&(cur_tok==point_token)) @<Scan decimal fraction@>;
    }
  }
if (cur_val < 0)  /*in this case |f==0|*/
  {@+negative=!negative;negate(cur_val);
  }
@<Scan units and set |cur_val| to $x\cdot(|cur_val|+f/2^{16})$, where there
are |x| sp per unit; |goto attach_sign| if the units are internal@>;
@<Scan an optional space@>;
attach_sign:
if (arith_error||(abs(cur_val) >= 010000000000)||
(abs(cur_hfactor) >= 010000000000) || (abs(cur_vfactor) >= 010000000000))
  @<Report that this dimension is out of range@>;
if (negative) @/{@+ negate(cur_val);@+ negate(cur_hfactor); @+negate(cur_vfactor);@+ }
}

@ @<Fetch an internal dimension and |goto attach_sign|...@>=
if (mu)
  {@+scan_something_internal(mu_val, false);
  @<Coerce glue to a dimension@>;
  if (cur_val_level==mu_val) goto attach_sign;
  if (cur_val_level!=int_val) mu_error();
  }
else{@+scan_something_internal(dimen_val, false);
  if (cur_val_level==dimen_val) goto attach_sign;
  }

@ @<Local variables for dimension calculations@>=
int @!num, @!denom; /*conversion ratio for the scanned units*/
int @!k, @!kk; /*number of digits in a decimal fraction*/
pointer @!p, @!q; /*top of decimal digit stack*/
scaled @!v; /*an internal dimension*/
int @!save_cur_val; /*temporary storage of |cur_val|*/

@ The following code is executed when |scan_something_internal| was
called asking for |mu_val|, when we really wanted a ``mudimen'' instead
of ``muglue.''

@<Coerce glue to a dimension@>=
if (cur_val_level >= glue_val)
  {@+v=width(cur_val);delete_glue_ref(cur_val);cur_val=v;
  }

@ When the following code is executed, we have |cur_tok==point_token|, but this
token has been backed up using |back_input|; we must first discard it.

It turns out that a decimal point all by itself is equivalent to `\.{0.0}'.
Let's hope people don't use that fact.

@<Scan decimal fraction@>=
{@+k=0;p=null;get_token(); /*|point_token| is being re-scanned*/
loop@+{@+get_x_token();
  if ((cur_tok > zero_token+9)||(cur_tok < zero_token)) goto done1;
  if (k < 17)  /*digits for |k >= 17| cannot affect the result*/
    {@+q=get_avail();link(q)=p;info(q)=cur_tok-zero_token;
    p=q;incr(k);
    }
  }
done1: for (kk=k; kk>=1; kk--)
  {@+dig[kk-1]=info(p);q=p;p=link(p);free_avail(q);
  }
f=round_decimals(k);
if (cur_cmd!=spacer) back_input();
}

@ Now comes the harder part: At this point in the program, |cur_val| is a
nonnegative integer and $f/2^{16}$ is a nonnegative fraction less than 1;
we want to multiply the sum of these two quantities by the appropriate
factor, based on the specified units, in order to produce a |scaled|
result, and we want to do the calculation with fixed point arithmetic that
does not overflow.

@<Scan units and set |cur_val| to $x\cdot(|cur_val|+f/2^{16})$...@>=
if (inf) @<Scan for \(f)\.{fil} units; |goto attach_fraction| if found@>;
@<Scan for \(u)units that are internal dimensions; |goto attach_sign| with
|cur_val| set if found@>;
if (mu) @<Scan for \(m)\.{mu} units and |goto attach_fraction|@>;
if (scan_keyword("true")) @<Adjust \(f)for the magnification ratio@>;
@.true@>
if (scan_keyword("pt")) goto attach_fraction; /*the easy case*/
@.pt@>
@<Scan for \(a)all other units and adjust |cur_val| and |f| accordingly; |goto
done| in the case of scaled points@>;
attach_fraction: if (cur_val >= 040000) arith_error=true;
else cur_val=cur_val*unity+f;
done:

@ A specification like `\.{filllll}' or `\.{fill L L L}' will lead to two
error messages (one for each additional keyword \.{"l"}).

@<Scan for \(f)\.{fil} units...@>=
if (scan_keyword("fil"))
@.fil@>
  {@+cur_order=fil;
  while (scan_keyword("l"))
    {@+if (cur_order==filll)
      {@+print_err("Illegal unit of measure (");
@.Illegal unit of measure@>
      print("replaced by filll)");
      help1("I dddon't go any higher than filll.");error();
      }
    else incr(cur_order);
    }
  goto attach_fraction;
  }

@ @<Scan for \(u)units that are internal dimensions...@>=
save_cur_val=cur_val;
if (has_factor)
{ print_err("Factor is not constant. Linear component ignored");
  cur_hfactor=cur_vfactor=0;
}
@<Get the next non-blank non-call...@>;
if ((cur_cmd < min_internal)||(cur_cmd > max_internal)) back_input();
else{@+if (mu)
    {@+scan_something_internal(mu_val, false);@<Coerce glue...@>;
    if (cur_val_level!=mu_val) mu_error();
    }
  else scan_something_internal(dimen_val, false);
  v=cur_val;goto found;
  }
if (mu) goto not_found;
if (scan_keyword("em")) v=(@<The em width for |cur_font|@>);
@.em@>
else if (scan_keyword("ex")) v=(@<The x-height for |cur_font|@>);
@.ex@>
else goto not_found;
@<Scan an optional space@>;
found:
if (has_factor)
{ cur_hfactor=nx_plus_y(save_cur_val, cur_hfactor, xn_over_d(cur_hfactor, f, unity));
  cur_vfactor=nx_plus_y(save_cur_val, cur_vfactor, xn_over_d(cur_vfactor, f, unity));
}
  cur_val=nx_plus_y(save_cur_val, v, xn_over_d(v, f, unity));
goto attach_sign;
not_found:

@ @<Scan for \(m)\.{mu} units and |goto attach_fraction|@>=
if (scan_keyword("mu")) goto attach_fraction;
@.mu@>
else{@+print_err("Illegal unit of measure (");print("mu inserted)");
@.Illegal unit of measure@>
  help4("The unit of measurement in math glue must be mu.",@/
    "To recover gracefully from this error, it's best to",@/
    "delete the erroneous units; e.g., type `2' to delete",@/
    "two letters. (See Chapter 27 of The TeXbook.)");
@:TeXbook}{\sl The \TeX book@>
  error();goto attach_fraction;
  }

@ @<Adjust \(f)for the magnification ratio@>=
{@+prepare_mag();
if (mag!=1000)
  {@+cur_val=xn_over_d(cur_val, 1000, mag);
  f=(1000*f+0200000*rem)/mag;
  cur_val=cur_val+(f/0200000);f=f%0200000;
  }
}

@ The necessary conversion factors can all be specified exactly as
fractions whose numerator and denominator sum to 32768 or less.
According to the definitions here, $\rm2660\,dd\approx1000.33297\,mm$;
this agrees well with the value $\rm1000.333\,mm$ cited by Bosshard
@^Bosshard, Hans Rudolf@>
in {\sl Technische Grundlagen zur Satzherstellung\/} (Bern, 1980).

@d set_conversion(A, B) @+{@+num=A;denom=B;}

@<Scan for \(a)all other units and adjust |cur_val| and |f|...@>=
if (scan_keyword("in")) set_conversion(7227, 100)@;
@.in@>
else if (scan_keyword("pc")) set_conversion(12, 1)@;
@.pc@>
else if (scan_keyword("cm")) set_conversion(7227, 254)@;
@.cm@>
else if (scan_keyword("mm")) set_conversion(7227, 2540)@;
@.mm@>
else if (scan_keyword("bp")) set_conversion(7227, 7200)@;
@.bp@>
else if (scan_keyword("dd")) set_conversion(1238, 1157)@;
@.dd@>
else if (scan_keyword("cc")) set_conversion(14856, 1157)@;
@.cc@>
else if (scan_keyword("sp")) goto done;
@.sp@>
else@<Complain about unknown unit and |goto done2|@>;
cur_val=xn_over_d(cur_val, num, denom);
f=(num*f+0200000*rem)/denom;@/
cur_val=cur_val+(f/0200000);f=f%0200000;
done2:

@ @<Complain about unknown unit...@>=
{@+print_err("Illegal unit of measure (");print("pt inserted)");
@.Illegal unit of measure@>
help6("Dimensions can be in units of em, ex, in, pt, pc,",@/
  "cm, mm, dd, cc, bp, or sp; but yours is a new one!",@/
  "I'll assume that you meant to say pt, for printer's points.",@/
  "To recover gracefully from this error, it's best to",@/
  "delete the erroneous units; e.g., type `2' to delete",@/
  "two letters. (See Chapter 27 of The TeXbook.)");
@:TeXbook}{\sl The \TeX book@>
error();goto done2;
}


@ @<Report that this dimension is out of range@>=
{@+print_err("Dimension too large");
@.Dimension too large@>
help2("I can't work with sizes bigger than about 19 feet.",@/
  "Continue and I'll use the largest value I can.");@/
error();cur_val=max_dimen;arith_error=false;
}

@ The final member of \TeX's value-scanning trio is |scan_glue|, which
makes |cur_val| point to a glue specification. The reference count of that
glue spec will take account of the fact that |cur_val| is pointing to~it.

The |level| parameter should be either |glue_val| or |mu_val|.

Since |scan_dimen| was so much more complex than |scan_int|, we might expect
|scan_glue| to be even worse. But fortunately, it is very simple, since
most of the work has already been done.

@p static void scan_glue(small_number @!level)
   /*sets |cur_val| to a glue spec pointer*/
{@+
bool negative; /*should the answer be negated?*/
pointer @!q; /*new glue specification*/
bool @!mu; /*does |level==mu_val|?*/
mu=(level==mu_val);@<Get the next non-blank non-sign...@>;
if ((cur_cmd >= min_internal)&&(cur_cmd <= max_internal))
  {@+scan_something_internal(level, negative);
  if (cur_val_level >= glue_val)
    {@+if (cur_val_level!=level) mu_error();
    return;
    }
  if (cur_val_level==int_val) scan_dimen(mu, false, true);
  else if (level==mu_val) mu_error();
  }
else{@+back_input();scan_dimen(mu, false, false);
  if (negative) { negate(cur_val); negate(cur_hfactor); negate(cur_vfactor);}
  }
@<Create a new glue specification whose width is |cur_val|; scan for its stretch
and shrink components@>;
}
@#
@<Declare procedures needed for expressions@>@;

@ @<Create a new glue specification whose width is |cur_val|...@>=
q=new_spec(zero_glue);width(q)=cur_val;
if (scan_keyword("plus"))
@.plus@>
  {@+scan_dimen(mu, true, false);
  stretch(q)=cur_val;stretch_order(q)=cur_order;
  }
if (scan_keyword("minus"))
@.minus@>
  {@+scan_dimen(mu, true, false);
  shrink(q)=cur_val;shrink_order(q)=cur_order;
  }
cur_val=q

@ Here's a similar procedure that returns a pointer to a rule node. This
routine is called just after \TeX\ has seen \.{\\hrule} or \.{\\vrule};
therefore |cur_cmd| will be either |hrule| or |vrule|. The idea is to store
the default rule dimensions in the node, then to override them if
`\.{height}' or `\.{width}' or `\.{depth}' specifications are
found (in any order).

@d default_rule 26214 /*0.4\thinspace pt*/

@p static pointer scan_rule_spec(void)
{@+
pointer q; /*the rule node being created*/
q=new_rule(); /*|width|, |depth|, and |height| all equal |null_flag| now*/
if (cur_cmd==vrule) width(q)=default_rule;
else{@+height(q)=default_rule;depth(q)=0;
  }
reswitch: if (scan_keyword("width"))
@.width@>
  {@+scan_normal_dimen;width(q)=cur_val;goto reswitch;
  }
if (scan_keyword("height"))
@.height@>
  {@+scan_normal_dimen;height(q)=cur_val;goto reswitch;
  }
if (scan_keyword("depth"))
@.depth@>
  {@+scan_normal_dimen;depth(q)=cur_val;goto reswitch;
  }
return q;
}

@* Building token lists.
The token lists for macros and for other things like \.{\\mark} and \.{\\output}
and \.{\\write} are produced by a procedure called |scan_toks|.

Before we get into the details of |scan_toks|, let's consider a much
simpler task, that of converting the current string into a token list.
The |str_toks| function does this; it classifies spaces as type |spacer|
and everything else as type |other_char|.

The token list created by |str_toks| begins at |link(temp_head)| and ends
at the value |p| that is returned. (If |p==temp_head|, the list is empty.)

@p @t\4@>@<Declare \eTeX\ procedures for token lists@>@;@/
static pointer str_toks(pool_pointer @!b)
   /*converts |str_pool[b dotdot pool_ptr-1]| to a token list*/
{@+pointer p; /*tail of the token list*/
pointer @!q; /*new node being added to the token list via |store_new_token|*/
halfword @!t; /*token being appended*/
pool_pointer @!k; /*index into |str_pool|*/
str_room(1);
p=temp_head;link(p)=null;k=b;
while (k < pool_ptr)
  {@+t=so(str_pool[k]);
  if (t==' ') t=space_token;
  else t=other_token+t;
  fast_store_new_token(t);
  incr(k);
  }
pool_ptr=b;return p;
}

@ The main reason for wanting |str_toks| is the next function,
|the_toks|, which has similar input/output characteristics.

This procedure is supposed to scan something like `\.{\\skip\\count12}',
i.e., whatever can follow `\.{\\the}', and it constructs a token list
containing something like `\.{-3.0pt minus 0.5fill}'.

@p static pointer the_toks(void)
{@+
int old_setting; /*holds |selector| setting*/
pointer @!p, @!q, @!r; /*used for copying a token list*/
pool_pointer @!b; /*base of temporary string*/
small_number @!c; /*value of |cur_chr|*/
@<Handle \.{\\unexpanded} or \.{\\detokenize} and |return|@>;@/
get_x_token();scan_something_internal(tok_val, false);
if (cur_val_level >= ident_val) @<Copy the token list@>@;
else{@+old_setting=selector;selector=new_string;b=pool_ptr;
  switch (cur_val_level) {
  case int_val: print_int(cur_val);@+break;
  case dimen_val: {@+print_scaled(cur_val);print("pt");
    } @+break;
  case glue_val: {@+print_spec(cur_val,"pt");delete_glue_ref(cur_val);
    } @+break;
  case mu_val: {@+print_spec(cur_val,"mu");delete_glue_ref(cur_val);
    }
  }  /*there are no other cases*/
  selector=old_setting;return str_toks(b);
  }
}

@ @<Copy the token list@>=
{@+p=temp_head;link(p)=null;
if (cur_val_level==ident_val) store_new_token(cs_token_flag+cur_val)@;
else if (cur_val!=null)
  {@+r=link(cur_val); /*do not copy the reference count*/
  while (r!=null)
    {@+fast_store_new_token(info(r));r=link(r);
    }
  }
return p;
}

@ Here's part of the |expand| subroutine that we are now ready to complete:

@p static void ins_the_toks(void)
{@+link(garbage)=the_toks();ins_list(link(temp_head));
}

@ The primitives \.{\\number}, \.{\\romannumeral}, \.{\\string}, \.{\\meaning},
\.{\\fontname}, and \.{\\jobname} are defined as follows.

@d number_code 0 /*command code for \.{\\number}*/
@d roman_numeral_code 1 /*command code for \.{\\romannumeral}*/
@d string_code 2 /*command code for \.{\\string}*/
@d meaning_code 3 /*command code for \.{\\meaning}*/
@d font_name_code 4 /*command code for \.{\\fontname}*/
@d job_name_code 5 /*command code for \.{\\jobname}*/
@d etex_convert_base (job_name_code+1) /*base for \eTeX's command codes*/
@d eTeX_revision_code etex_convert_base /*command code for \.{\\eTeXrevision}*/
@d etex_convert_codes (etex_convert_base+1) /*end of \eTeX's command codes*/
@d eTeX_last_convert_cmd_mod etex_convert_codes

@<Put each...@>=
primitive("number", convert, number_code);@/
@!@:number\_}{\.{\\number} primitive@>
primitive("romannumeral", convert, roman_numeral_code);@/
@!@:roman\_numeral\_}{\.{\\romannumeral} primitive@>
primitive("string", convert, string_code);@/
@!@:string\_}{\.{\\string} primitive@>
primitive("meaning", convert, meaning_code);@/
@!@:meaning\_}{\.{\\meaning} primitive@>
primitive("fontname", convert, font_name_code);@/
@!@:font\_name\_}{\.{\\fontname} primitive@>
primitive("jobname", convert, job_name_code);@/
@!@:job\_name\_}{\.{\\jobname} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case convert: switch (chr_code) {
  case number_code: print_esc("number");@+break;
  case roman_numeral_code: print_esc("romannumeral");@+break;
  case string_code: print_esc("string");@+break;
  case meaning_code: print_esc("meaning");@+break;
  case font_name_code: print_esc("fontname");@+break;
  case job_name_code: print_esc("jobname");@+break;
  case eTeX_revision_code: print_esc("eTeXrevision");@+break;
  @/@<Cases of |convert| for |print_cmd_chr|@>@/
  } @+break;

@ The procedure |conv_toks| uses |str_toks| to insert the token list
for |convert| functions into the scanner; `\.{\\outer}' control sequences
are allowed to follow `\.{\\string}' and `\.{\\meaning}'.

@p static void conv_toks(void)
{@+int old_setting; /*holds |selector| setting*/
int @!c; /*desired type of conversion*/
small_number @!save_scanner_status; /*|scanner_status| upon entry*/
pool_pointer @!b; /*base of temporary string*/
int @!i, @!k, @!l; /*general purpose index*/
pool_pointer @!m, @!n; /*general purpose pool pointer*/
bool @!r; /*general purpose refraction i.e. changing the way*/
str_number @!s, @!t; /*general purpose; de dicto*/
c=cur_chr;@<Scan the argument for command |c|@>;
old_setting=selector;selector=new_string;b=pool_ptr;
@<Print the result of command |c|@>;
selector=old_setting;link(garbage)=str_toks(b);ins_list(link(temp_head));
}

@ @<Scan the argument for command |c|@>=
switch (c) {
case number_code: case roman_numeral_code: scan_int();@+break;
case string_code: case meaning_code: {@+save_scanner_status=scanner_status;
  scanner_status=normal;get_token();scanner_status=save_scanner_status;
  } @+break;
case font_name_code: scan_font_ident();@+break;
case job_name_code: if (job_name==0) open_log_file();@+break;
case eTeX_revision_code: do_nothing;@+break;
@/@<Cases of `Scan the argument for command |c|'@>@/
}  /*there are no other cases*/

@ @<Print the result of command |c|@>=
switch (c) {
case number_code: print_int(cur_val);@+break;
case roman_numeral_code: print_roman_int(cur_val);@+break;
case string_code: if (cur_cs!=0) sprint_cs(cur_cs);
  else print_char(cur_chr);@+break;
case meaning_code: print_meaning();@+break;
case font_name_code: {@+printn(font_name[cur_val]);
  if (font_size[cur_val]!=font_dsize[cur_val])
    {@+print(" at ");print_scaled(font_size[cur_val]);
    print("pt");
    }
  } @+break;
case eTeX_revision_code: print(eTeX_revision);@+break;
case job_name_code: printn(job_name);@+break;
@/@<Cases of `Print the result of command |c|'@>@/
}  /*there are no other cases*/

@ Now we can't postpone the difficulties any longer; we must bravely tackle
|scan_toks|. This function returns a pointer to the tail of a new token
list, and it also makes |def_ref| point to the reference count at the
head of that list.

There are two boolean parameters, |macro_def| and |xpand|. If |macro_def|
is true, the goal is to create the token list for a macro definition;
otherwise the goal is to create the token list for some other \TeX\
primitive: \.{\\mark}, \.{\\output}, \.{\\everypar}, \.{\\lowercase},
\.{\\uppercase}, \.{\\message}, \.{\\errmessage}, \.{\\write}, or
\.{\\special}. In the latter cases a left brace must be scanned next; this
left brace will not be part of the token list, nor will the matching right
brace that comes at the end. If |xpand| is false, the token list will
simply be copied from the input using |get_token|. Otherwise all expandable
tokens will be expanded until unexpandable tokens are left, except that
the results of expanding `\.{\\the}' are not expanded further.
If both |macro_def| and |xpand| are true, the expansion applies
only to the macro body (i.e., to the material following the first
|left_brace| character).

The value of |cur_cs| when |scan_toks| begins should be the |eqtb|
address of the control sequence to display in ``runaway'' error
messages.

@p static pointer scan_toks(bool @!macro_def, bool @!xpand)
{@+
halfword t; /*token representing the highest parameter number*/
halfword @!s; /*saved token*/
pointer @!p; /*tail of the token list being built*/
pointer @!q; /*new node being added to the token list via |store_new_token|*/
halfword @!unbalance; /*number of unmatched left braces*/
halfword @!hash_brace; /*possible `\.{\#\{}' token*/
if (macro_def) scanner_status=defining;
@+else scanner_status=absorbing;
warning_index=cur_cs;def_ref=get_avail();token_ref_count(def_ref)=null;
p=def_ref;hash_brace=0;t=zero_token;
if (macro_def) @<Scan and build the parameter part of the macro definition@>@;
else scan_left_brace(); /*remove the compulsory left brace*/
@<Scan and build the body of the token list; |goto found| when finished@>;
found: scanner_status=normal;
if (hash_brace!=0) store_new_token(hash_brace);
return p;
}
@t\4@>@<Declare \Prote\ procedures for token lists@>@;@/

@ @<Scan and build the parameter part...@>=
{@+loop{@+resume: get_token(); /*set |cur_cmd|, |cur_chr|, |cur_tok|*/
  if (cur_tok < right_brace_limit) goto done1;
  if (cur_cmd==mac_param)
    @<If the next character is a parameter number, make |cur_tok| a |match|
token; but if it is a left brace, store `|left_brace|, |end_match|', set |hash_brace|,
and |goto done|@>;
  store_new_token(cur_tok);
  }
done1: store_new_token(end_match_token);
if (cur_cmd==right_brace)
  @<Express shock at the missing left brace; |goto found|@>;
done: ;}

@ @<Express shock...@>=
{@+print_err("Missing { inserted");incr(align_state);
@.Missing \{ inserted@>
help2("Where was the left brace? You said something like `\\def\\a}',",@/
  "which I'm going to interpret as `\\def\\a{}'.");error();goto found;
}

@ @<If the next character is a parameter number...@>=
{@+s=match_token+cur_chr;get_token();
if (cur_tok < left_brace_limit)
  {@+hash_brace=cur_tok;
  store_new_token(cur_tok);store_new_token(end_match_token);
  goto done;
  }
if (t==zero_token+9)
  {@+print_err("You already have nine parameters");
@.You already have nine...@>
  help2("I'm going to ignore the # sign you just used,",@/
    "as well as the token that followed it.");error();goto resume;
  }
else{@+incr(t);
  if (cur_tok!=t)
    {@+print_err("Parameters must be numbered consecutively");
@.Parameters...consecutively@>
    help2("I've inserted the digit you should have used after the #.",@/
      "Type `1' to delete what you did use.");back_error();
    }
  cur_tok=s;
  }
}

@ @<Scan and build the body of the token list; |goto found| when finished@>=
unbalance=1;
loop@+{@+if (xpand) @<Expand the next part of the input@>@;
  else get_token();
  if (cur_tok < right_brace_limit)
    if (cur_cmd < right_brace) incr(unbalance);
    else{@+decr(unbalance);
      if (unbalance==0) goto found;
      }
  else if (cur_cmd==mac_param)
    if (macro_def) @<Look for parameter number or \.{\#\#}@>;
  store_new_token(cur_tok);
  }

@ Here we insert an entire token list created by |the_toks| without
expanding it further.

@<Expand the next part of the input@>=
{@+loop{@+get_next();
  if (cur_cmd >= call)
    if (info(link(cur_chr))==protected_token)
      {@+cur_cmd=relax;cur_chr=no_expand_flag;
      }
  if (cur_cmd <= max_command) goto done2;
  if (cur_cmd!=the) expand();
  else{@+q=the_toks();
    if (link(temp_head)!=null)
      {@+link(p)=link(temp_head);p=q;
      }
    }
  }
done2: x_token();
}

@ @<Look for parameter number...@>=
{@+s=cur_tok;
if (xpand) get_x_token();else get_token();
if (cur_cmd!=mac_param)
  if ((cur_tok <= zero_token)||(cur_tok > t))
    {@+print_err("Illegal parameter number in definition of ");
@.Illegal parameter number...@>
    sprint_cs(warning_index);
    help3("You meant to type ## instead of #, right?",@/
    "Or maybe a } was forgotten somewhere earlier, and things",@/
    "are all screwed up? I'm going to assume that you meant ##.");
    back_error();cur_tok=s;
    }
  else cur_tok=out_param_token-'0'+cur_chr;
}

@ Another way to create a token list is via the \.{\\read} command. The
sixteen files potentially usable for reading appear in the following
global variables. The value of |read_open[n]| will be |closed| if
stream number |n| has not been opened or if it has been fully read;
|just_open| if an \.{\\openin} but not a \.{\\read} has been done;
and |normal| if it is open and ready to read the next line.

@d closed 2 /*not open, or at end of file*/
@d just_open 1 /*newly opened, first line not yet read*/

@<Glob...@>=
static alpha_file @!read_file[16]; /*used for \.{\\read}*/
static int8_t @!read_open[17]; /*state of |read_file[n]|*/

@ @<Set init...@>=
for (k=0; k<=16; k++) read_open[k]=closed;

@ The |read_toks| procedure constructs a token list like that for any
macro definition, and makes |cur_val| point to it. Parameter |r| points
to the control sequence that will receive this token list.

@p static void read_toks(int @!n, pointer @!r, halfword @!j)
{@+
pointer p; /*tail of the token list*/
pointer @!q; /*new node being added to the token list via |store_new_token|*/
int @!s; /*saved value of |align_state|*/
small_number @!m; /*stream number*/
scanner_status=defining;warning_index=r;
def_ref=get_avail();token_ref_count(def_ref)=null;
p=def_ref; /*the reference count*/
store_new_token(end_match_token);
if ((n < 0)||(n > 15)) m=16;@+else m=n;
s=align_state;align_state=1000000; /*disable tab marks, etc.*/
@/do@+{@<Input and store tokens from the next line of the file@>;
}@+ while (!(align_state==1000000));
cur_val=def_ref;scanner_status=normal;align_state=s;
}

@ @<Input and store tokens from the next line of the file@>=
begin_file_reading();name=m+1;
if (read_open[m]==closed) @<Input for \.{\\read} from the terminal@>;
else if (read_open[m]==just_open) @<Input the first line of |read_file[m]|@>@;
else@<Input the next line of |read_file[m]|@>;
limit=last;
if (end_line_char_inactive) decr(limit);
else buffer[limit]=end_line_char;
first=limit+1;loc=start;state=new_line;@/
@<Handle \.{\\readline} and |goto done|@>;@/
loop@+{@+get_token();
  if (cur_tok==0) goto done;
     /*|cur_cmd==cur_chr==0| will occur at the end of the line*/
  if (align_state < 1000000)  /*unmatched `\.\}' aborts the line*/
    {@+@/do@+{get_token();}@+ while (!(cur_tok==0));
    align_state=1000000;goto done;
    }
  store_new_token(cur_tok);
  }
done: end_file_reading()

@ Here we input on-line into the |buffer| array, prompting the user explicitly
if |n >= 0|.  The value of |n| is set negative so that additional prompts
will not be given in the case of multi-line input.

@<Input for \.{\\read} from the terminal@>=
if (interaction > nonstop_mode)
  if (n < 0) prompt_input("")@;
  else{@+wake_up_terminal;
    print_ln();sprint_cs(r);prompt_input("=");n=-1;
    }
else fatal_error("*** (cannot \\read from terminal in nonstop modes)")
@.cannot \\read@>

@ The first line of a file must be treated specially, since |input_ln|
must be told not to start with |get|.
@^system dependencies@>

@<Input the first line of |read_file[m]|@>=
if (input_ln(&read_file[m], false)) read_open[m]=normal;
else{@+a_close(&read_file[m]);read_open[m]=closed;
  }

@ An empty line is appended at the end of a |read_file|.
@^empty line at end of file@>

@<Input the next line of |read_file[m]|@>=
{@+if (!input_ln(&read_file[m], true))
  {@+a_close(&read_file[m]);read_open[m]=closed;
  if (align_state!=1000000)
    {@+runaway();
    print_err("File ended within ");print_esc("read");
@.File ended within \\read@>
    help1("This \\read has unbalanced braces.");
    align_state=1000000;limit=0;error();
    }
  }
}

@* Conditional processing.
We consider now the way \TeX\ handles various kinds of \.{\\if} commands.

@d unless_code 32 /*amount added for `\.{\\unless}' prefix*/
@#
@d if_char_code 0 /* `\.{\\if}' */
@d if_cat_code 1 /* `\.{\\ifcat}' */
@d if_int_code 2 /* `\.{\\ifnum}' */
@d if_dim_code 3 /* `\.{\\ifdim}' */
@d if_odd_code 4 /* `\.{\\ifodd}' */
@d if_vmode_code 5 /* `\.{\\ifvmode}' */
@d if_hmode_code 6 /* `\.{\\ifhmode}' */
@d if_mmode_code 7 /* `\.{\\ifmmode}' */
@d if_inner_code 8 /* `\.{\\ifinner}' */
@d if_void_code 9 /* `\.{\\ifvoid}' */
@d if_hbox_code 10 /* `\.{\\ifhbox}' */
@d if_vbox_code 11 /* `\.{\\ifvbox}' */
@d ifx_code 12 /* `\.{\\ifx}' */
@d if_eof_code 13 /* `\.{\\ifeof}' */
@d if_true_code 14 /* `\.{\\iftrue}' */
@d if_false_code 15 /* `\.{\\iffalse}' */
@d if_case_code 16 /* `\.{\\ifcase}' */

@<Put each...@>=
primitive("if", if_test, if_char_code);
@!@:if\_char\_}{\.{\\if} primitive@>
primitive("ifcat", if_test, if_cat_code);
@!@:if\_cat\_code\_}{\.{\\ifcat} primitive@>
primitive("ifnum", if_test, if_int_code);
@!@:if\_int\_}{\.{\\ifnum} primitive@>
primitive("ifdim", if_test, if_dim_code);
@!@:if\_dim\_}{\.{\\ifdim} primitive@>
primitive("ifodd", if_test, if_odd_code);
@!@:if\_odd\_}{\.{\\ifodd} primitive@>
primitive("ifvmode", if_test, if_vmode_code);
@!@:if\_vmode\_}{\.{\\ifvmode} primitive@>
primitive("ifhmode", if_test, if_hmode_code);
@!@:if\_hmode\_}{\.{\\ifhmode} primitive@>
primitive("ifmmode", if_test, if_mmode_code);
@!@:if\_mmode\_}{\.{\\ifmmode} primitive@>
primitive("ifinner", if_test, if_inner_code);
@!@:if\_inner\_}{\.{\\ifinner} primitive@>
primitive("ifvoid", if_test, if_void_code);
@!@:if\_void\_}{\.{\\ifvoid} primitive@>
primitive("ifhbox", if_test, if_hbox_code);
@!@:if\_hbox\_}{\.{\\ifhbox} primitive@>
primitive("ifvbox", if_test, if_vbox_code);
@!@:if\_vbox\_}{\.{\\ifvbox} primitive@>
primitive("ifx", if_test, ifx_code);
@!@:ifx\_}{\.{\\ifx} primitive@>
primitive("ifeof", if_test, if_eof_code);
@!@:if\_eof\_}{\.{\\ifeof} primitive@>
primitive("iftrue", if_test, if_true_code);
@!@:if\_true\_}{\.{\\iftrue} primitive@>
primitive("iffalse", if_test, if_false_code);
@!@:if\_false\_}{\.{\\iffalse} primitive@>
primitive("ifcase", if_test, if_case_code);
@!@:if\_case\_}{\.{\\ifcase} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case if_test: {@+if (chr_code >= unless_code) print_esc("unless");
switch (chr_code%unless_code) {
  case if_cat_code: print_esc("ifcat");@+break;
  case if_int_code: print_esc("ifnum");@+break;
  case if_dim_code: print_esc("ifdim");@+break;
  case if_odd_code: print_esc("ifodd");@+break;
  case if_vmode_code: print_esc("ifvmode");@+break;
  case if_hmode_code: print_esc("ifhmode");@+break;
  case if_mmode_code: print_esc("ifmmode");@+break;
  case if_inner_code: print_esc("ifinner");@+break;
  case if_void_code: print_esc("ifvoid");@+break;
  case if_hbox_code: print_esc("ifhbox");@+break;
  case if_vbox_code: print_esc("ifvbox");@+break;
  case ifx_code: print_esc("ifx");@+break;
  case if_eof_code: print_esc("ifeof");@+break;
  case if_true_code: print_esc("iftrue");@+break;
  case if_false_code: print_esc("iffalse");@+break;
  case if_case_code: print_esc("ifcase");@+break;
  @/@<Cases of |if_test| for |print_cmd_chr|@>@/
  default:print_esc("if");
  }
} @+break;

@ Conditions can be inside conditions, and this nesting has a stack
that is independent of the |save_stack|.

Four global variables represent the top of the condition stack:
|cond_ptr| points to pushed-down entries, if any; |if_limit| specifies
the largest code of a |fi_or_else| command that is syntactically legal;
|cur_if| is the name of the current type of conditional; and |if_line|
is the line number at which it began.

If no conditions are currently in progress, the condition stack has the
special state |cond_ptr==null|, |if_limit==normal|, |cur_if==0|, |if_line==0|.
Otherwise |cond_ptr| points to a two-word node; the |type|, |subtype|, and
|link| fields of the first word contain |if_limit|, |cur_if|, and
|cond_ptr| at the next level, and the second word contains the
corresponding |if_line|.

@d if_node_size 2 /*number of words in stack entry for conditionals*/
@d if_line_field(A) mem[A+1].i
@d if_code 1 /*code for \.{\\if...} being evaluated*/
@d fi_code 2 /*code for \.{\\fi}*/
@d else_code 3 /*code for \.{\\else}*/
@d or_code 4 /*code for \.{\\or}*/

@<Glob...@>=
static pointer @!cond_ptr; /*top of the condition stack*/
static int @!if_limit; /*upper bound on |fi_or_else| codes*/
static small_number @!cur_if; /*type of conditional being worked on*/
static int @!if_line; /*line where that conditional began*/

@ @<Set init...@>=
cond_ptr=null;if_limit=normal;cur_if=0;if_line=0;

@ @<Put each...@>=
primitive("fi", fi_or_else, fi_code);
@!@:fi\_}{\.{\\fi} primitive@>
text(frozen_fi)=text(cur_val);eqtb[frozen_fi]=eqtb[cur_val];
primitive("or", fi_or_else, or_code);
@!@:or\_}{\.{\\or} primitive@>
primitive("else", fi_or_else, else_code);
@!@:else\_}{\.{\\else} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case fi_or_else: if (chr_code==fi_code) print_esc("fi");
  else if (chr_code==or_code) print_esc("or");
  else print_esc("else");@+break;

@ When we skip conditional text, we keep track of the line number
where skipping began, for use in error messages.

@<Glob...@>=
static int @!skip_line; /*skipping began here*/

@ Here is a procedure that ignores text until coming to an \.{\\or},
\.{\\else}, or \.{\\fi} at the current level of $\.{\\if}\ldots\.{\\fi}$
nesting. After it has acted, |cur_chr| will indicate the token that
was found, but |cur_tok| will not be set (because this makes the
procedure run faster).

@p static void pass_text(void)
{@+
int l; /*level of $\.{\\if}\ldots\.{\\fi}$ nesting*/
small_number @!save_scanner_status; /*|scanner_status| upon entry*/
save_scanner_status=scanner_status;scanner_status=skipping;l=0;
skip_line=line;
loop@+{@+get_next();
  if (cur_cmd==fi_or_else)
    {@+if (l==0) goto done;
    if (cur_chr==fi_code) decr(l);
    }
  else if (cur_cmd==if_test) incr(l);
  }
done: scanner_status=save_scanner_status;
if (tracing_ifs > 0) show_cur_cmd_chr();
}

@ When we begin to process a new \.{\\if}, we set |if_limit=if_code|; then
if\/ \.{\\or} or \.{\\else} or \.{\\fi} occurs before the current \.{\\if}
condition has been evaluated, \.{\\relax} will be inserted.
For example, a sequence of commands like `\.{\\ifvoid1\\else...\\fi}'
would otherwise require something after the `\.1'.

@<Push the condition stack@>=
{@+p=get_node(if_node_size);link(p)=cond_ptr;type(p)=if_limit;
subtype(p)=cur_if;if_line_field(p)=if_line;
cond_ptr=p;cur_if=cur_chr;if_limit=if_code;if_line=line;
}

@ @<Pop the condition stack@>=
{@+if (if_stack[in_open]==cond_ptr) if_warning();
   /*conditionals possibly not properly nested with files*/
p=cond_ptr;if_line=if_line_field(p);
cur_if=subtype(p);if_limit=type(p);cond_ptr=link(p);
free_node(p, if_node_size);
}

@ Here's a procedure that changes the |if_limit| code corresponding to
a given value of |cond_ptr|.

@p static void change_if_limit(small_number @!l, pointer @!p)
{@+
pointer q;
if (p==cond_ptr) if_limit=l; /*that's the easy case*/
else{@+q=cond_ptr;
  loop@+{@+if (q==null) confusion("if");
@:this can't happen if}{\quad if@>
    if (link(q)==p)
      {@+type(q)=l;return;
      }
    q=link(q);
    }
  }
}

@ A condition is started when the |expand| procedure encounters
an |if_test| command; in that case |expand| reduces to |conditional|,
which is a recursive procedure.
@^recursion@>

@p static void conditional(void)
{@+
bool b; /*is the condition true?*/
int @!r; /*relation to be evaluated*/
int @!m, @!n; /*to be tested against the second operand*/
pointer @!p, @!q; /*for traversing token lists in \.{\\ifx} tests*/
small_number @!save_scanner_status; /*|scanner_status| upon entry*/
pointer @!save_cond_ptr; /*|cond_ptr| corresponding to this conditional*/
small_number @!this_if; /*type of this conditional*/
bool @!is_unless; /*was this if preceded by `\.{\\unless}' ?*/
if (tracing_ifs > 0) if (tracing_commands <= 1) show_cur_cmd_chr();
@<Push the condition stack@>;@+save_cond_ptr=cond_ptr;
is_unless=(cur_chr >= unless_code);this_if=cur_chr%unless_code;@/
@<Either process \.{\\ifcase} or set |b| to the value of a boolean condition@>;
if (is_unless) b=!b;
if (tracing_commands > 1) @<Display the value of |b|@>;
if (b)
  {@+change_if_limit(else_code, save_cond_ptr);
  return; /*wait for \.{\\else} or \.{\\fi}*/
  }
@<Skip to \.{\\else} or \.{\\fi}, then |goto common_ending|@>;
common_ending: if (cur_chr==fi_code) @<Pop the condition stack@>@;
else if_limit=fi_code; /*wait for \.{\\fi}*/
}

@ In a construction like `\.{\\if\\iftrue abc\\else d\\fi}', the first
\.{\\else} that we come to after learning that the \.{\\if} is false is
not the \.{\\else} we're looking for. Hence the following curious
logic is needed.

@ @<Skip to \.{\\else} or \.{\\fi}...@>=
loop@+{@+pass_text();
  if (cond_ptr==save_cond_ptr)
    {@+if (cur_chr!=or_code) goto common_ending;
    print_err("Extra ");print_esc("or");
@.Extra \\or@>
    help1("I'm ignoring this; it doesn't match any \\if.");
    error();
    }
  else if (cur_chr==fi_code) @<Pop the condition stack@>;
  }

@ @<Either process \.{\\ifcase} or set |b|...@>=
switch (this_if) {
case if_char_code: case if_cat_code: @<Test if two characters match@>@;@+break;
case if_int_code: case if_dim_code: @<Test relation between integers or dimensions@>@;@+break;
case if_odd_code: @<Test if an integer is odd@>@;@+break;
case if_vmode_code: b=(abs(mode)==vmode);@+break;
case if_hmode_code: b=(abs(mode)==hmode);@+break;
case if_mmode_code: b=(abs(mode)==mmode);@+break;
case if_inner_code: b=(mode < 0);@+break;
case if_void_code: case if_hbox_code:
  case if_vbox_code: @<Test box register status@>@;@+break;
case ifx_code: @<Test if two tokens match@>@;@+break;
case if_eof_code: {@+scan_four_bit_int();b=(read_open[cur_val]==closed);
  } @+break;
case if_true_code: b=true;@+break;
case if_false_code: b=false;@+break;
@/@<Cases for |conditional|@>@/
case if_case_code: @<Select the appropriate case and |return| or |goto common_ending|@>;
}  /*there are no other cases*/

@ @<Display the value of |b|@>=
{@+begin_diagnostic();
if (b) print("{true}");@+else print("{false}");
end_diagnostic(false);
}

@ Here we use the fact that |'<'|, |'='|, and |'>'| are consecutive ASCII
codes.
@^ASCII code@>

@<Test relation between integers or dimensions@>=
{@+if (this_if==if_int_code) scan_int();@+else scan_normal_dimen;
n=cur_val;@<Get the next non-blank non-call...@>;
if ((cur_tok >= other_token+'<')&&(cur_tok <= other_token+'>'))
  r=cur_tok-other_token;
else{@+print_err("Missing = inserted for ");
@.Missing = inserted@>
  print_cmd_chr(if_test, this_if);
  help1("I was expecting to see `<', `=', or `>'. Didn't.");
  back_error();r='=';
  }
if (this_if==if_int_code) scan_int();@+else scan_normal_dimen;
switch (r) {
case '<': b=(n < cur_val);@+break;
case '=': b=(n==cur_val);@+break;
case '>': b=(n > cur_val);
}
}

@ @<Test if an integer is odd@>=
{@+scan_int();b=odd(cur_val);
}

@ @<Test box register status@>=
{@+scan_register_num();fetch_box(p);
if (this_if==if_void_code) b=(p==null);
else if (p==null) b=false;
else if (this_if==if_hbox_code) b=(type(p)==hlist_node);
else b=(type(p)==vlist_node);
}

@ An active character will be treated as category 13 following
\.{\\if\\noexpand} or following \.{\\ifcat\\noexpand}. We use the fact that
active characters have the smallest tokens, among all control sequences.

@d get_x_token_or_active_char @t@>@;
  {@+get_x_token();
  if (cur_cmd==relax) if (cur_chr==no_expand_flag)
    {@+cur_cmd=active_char;
    cur_chr=cur_tok-cs_token_flag-active_base;
    }
  }

@<Test if two characters match@>=
{@+get_x_token_or_active_char;
if ((cur_cmd > active_char)||(cur_chr > 255))  /*not a character*/
  {@+m=relax;n=256;
  }
else{@+m=cur_cmd;n=cur_chr;
  }
get_x_token_or_active_char;
if ((cur_cmd > active_char)||(cur_chr > 255))
  {@+cur_cmd=relax;cur_chr=256;
  }
if (this_if==if_char_code) b=(n==cur_chr);@+else b=(m==cur_cmd);
}

@ Note that `\.{\\ifx}' will declare two macros different if one is \\{long}
or \\{outer} and the other isn't, even though the texts of the macros are
the same.

We need to reset |scanner_status|, since \.{\\outer} control sequences
are allowed, but we might be scanning a macro definition or preamble.

@<Test if two tokens match@>=
{@+save_scanner_status=scanner_status;scanner_status=normal;
get_next();n=cur_cs;p=cur_cmd;q=cur_chr;
get_next();if (cur_cmd!=p) b=false;
else if (cur_cmd < call) b=(cur_chr==q);
else@<Test if two macro texts match@>;
scanner_status=save_scanner_status;
}

@ Note also that `\.{\\ifx}' decides that macros \.{\\a} and \.{\\b} are
different in examples like this:
$$\vbox{\halign{\.{#}\hfil&\qquad\.{#}\hfil\cr
  {}\\def\\a\{\\c\}&
  {}\\def\\c\{\}\cr
  {}\\def\\b\{\\d\}&
  {}\\def\\d\{\}\cr}}$$

@<Test if two macro texts match@>=
{@+p=link(cur_chr);q=link(equiv(n)); /*omit reference counts*/
if (p==q) b=true;
else{@+while ((p!=null)&&(q!=null))
    if (info(p)!=info(q)) p=null;
    else{@+p=link(p);q=link(q);
      }
  b=((p==null)&&(q==null));
  }
}

@ @<Select the appropriate case and |return| or |goto common_ending|@>=
{@+scan_int();n=cur_val; /*|n| is the number of cases to pass*/
if (tracing_commands > 1)
  {@+begin_diagnostic();print("{case ");print_int(n);print_char('}');
  end_diagnostic(false);
  }
while (n!=0)
  {@+pass_text();
  if (cond_ptr==save_cond_ptr)
    if (cur_chr==or_code) decr(n);
    else goto common_ending;
  else if (cur_chr==fi_code) @<Pop the condition stack@>;
  }
change_if_limit(or_code, save_cond_ptr);
return; /*wait for \.{\\or}, \.{\\else}, or \.{\\fi}*/
}

@ The processing of conditionals is complete except for the following
code, which is actually part of |expand|. It comes into play when
\.{\\or}, \.{\\else}, or \.{\\fi} is scanned.

@<Terminate the current conditional and skip to \.{\\fi}@>=
{@+if (tracing_ifs > 0) if (tracing_commands <= 1) show_cur_cmd_chr();
if (cur_chr > if_limit)
  if (if_limit==if_code) insert_relax(); /*condition not yet evaluated*/
  else{@+print_err("Extra ");print_cmd_chr(fi_or_else, cur_chr);
@.Extra \\or@>
@.Extra \\else@>
@.Extra \\fi@>
    help1("I'm ignoring this; it doesn't match any \\if.");
    error();
    }
else{@+while (cur_chr!=fi_code) pass_text(); /*skip to \.{\\fi}*/
  @<Pop the condition stack@>;
  }
}

@* File names.
It's time now to fret about file names.  Besides the fact that different
operating systems treat files in different ways, we must cope with the
fact that completely different naming conventions are used by different
groups of people. The following programs show what is required for one
particular operating system; similar routines for other systems are not
difficult to devise.
@^fingers@>
@^system dependencies@>

\TeX\ assumes that a file name has three parts: the name proper; its
``extension''; and a ``file area'' where it is found in an external file
system.  The extension of an input file or a write file is assumed to be
`\.{.tex}' unless otherwise specified; it is `\.{.log}' on the
transcript file that records each run of \TeX; it is `\.{.tfm}' on the font
metric files that describe characters in the fonts \TeX\ uses; it is
`\.{.dvi}' on the output files that specify typesetting information; and it
is `\.{.fmt}' on the format files written by \.{INITEX} to initialize \TeX.
The file area can be arbitrary on input files, but files are usually
output to the user's current area.  If an input file cannot be
found on the specified area, \TeX\ will look for it on a special system
area; this special area is intended for commonly used input files like
\.{webmac.tex}.

Simple uses of \TeX\ refer only to file names that have no explicit
extension or area. For example, a person usually says `\.{\\input} \.{paper}'
or `\.{\\font\\tenrm} \.= \.{helvetica}' instead of `\.{\\input}
\.{paper.new}' or `\.{\\font\\tenrm} \.= \.{<csd.knuth>test}'. Simple file
names are best, because they make the \TeX\ source files portable;
whenever a file name consists entirely of letters and digits, it should be
treated in the same way by all implementations of \TeX. However, users
need the ability to refer to other files in their environment, especially
when responding to error messages concerning unopenable files; therefore
we want to let them use the syntax that appears in their favorite
operating system.

The following procedures don't allow spaces to be part of
file names; but some users seem to like names that are spaced-out.
System-dependent changes to allow such things should probably
be made with reluctance, and only when an entire file name that
includes spaces is ``quoted'' somehow.

@ In order to isolate the system-dependent aspects of file names, the
@^system dependencies@>
system-independent parts of \TeX\ are expressed in terms
of three system-dependent
procedures called |begin_name|, |more_name|, and |end_name|. In
essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
the system-independent driver program does the operations
$$|begin_name|;\,|more_name|(c_1);\,\ldots\,;\,|more_name|(c_n);
\,|end_name|.$$
These three procedures communicate with each other via global variables.
Afterwards the file name will appear in the string pool as three strings
called |cur_name|\penalty10000\hskip-.05em,
|cur_area|, and |cur_ext|; the latter two are null (i.e.,
|""|), unless they were explicitly specified by the user.

Actually the situation is slightly more complicated, because \TeX\ needs
to know when the file name ends. The |more_name| routine is a function
(with side effects) that returns |true| on the calls |more_name|$(c_1)$,
\dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
returns |false|; or, it returns |true| and the token following $c_n$ is
something like `\.{\\hbox}' (i.e., not a character). In other words,
|more_name| is supposed to return |true| unless it is sure that the
file name has been completely scanned; and |end_name| is supposed to be able
to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
whether $|more_name|(c_n)$ returned |true| or |false|.

@<Glob...@>=
static str_number @!cur_name; /*name of file just scanned*/
static str_number @!cur_area; /*file area just scanned, or \.{""}*/
static str_number @!cur_ext; /*file extension just scanned, or \.{""}*/

@ The file names we shall deal with for illustrative purposes have the
following structure:  If the name contains `\.>' or `\.:', the file area
consists of all characters up to and including the final such character;
otherwise the file area is null.  If the remaining file name contains
`\..', the file extension consists of all such characters from the first
remaining `\..' to the end, otherwise the file extension is null.
@^system dependencies@>

We can scan such file names easily by using two global variables that keep track
of the occurrences of area and extension delimiters:

@<Glob...@>=
static pool_pointer @!area_delimiter; /*the most recent `\.>' or `\.:', if any*/
static pool_pointer @!ext_delimiter; /*the relevant `\..', if any*/

@ Input files that can't be found in the user's area may appear in a standard
system area called |TEX_area|. Font metric files whose areas are not given
explicitly are assumed to appear in a standard system area called
|TEX_font_area|.  These system area names will, of course, vary from place
to place.
@^system dependencies@>

@d TEX_area "TeXinputs/"
@.TeXinputs@>
@d TEX_font_area "TeXfonts/"
@.TeXfonts@>

@ Here now is the first of the system-dependent routines for file name scanning.
@^system dependencies@>

@p static bool quoted_filename;
static void begin_name(void)
{@+area_delimiter=0;ext_delimiter=0; quoted_filename=false;
}

@ And here's the second. The string pool might change as the file name is
being scanned, since a new \.{\\csname} might be entered; therefore we keep
|area_delimiter| and |ext_delimiter| relative to the beginning of the current
string, instead of assigning an absolute address like |pool_ptr| to them.
@^system dependencies@>

@p static bool more_name(ASCII_code @!c)
{@+if (c==' ' && !quoted_filename) return false;
else if (c=='"') {@+quoted_filename=!quoted_filename; return true; }
else {@+str_room(1);append_char(c); /*contribute |c| to the current string*/
  if (IS_DIR_SEP(c)) {@+area_delimiter=cur_length;ext_delimiter=0; }
  else if (c=='.') ext_delimiter=cur_length;
  return true;
  }
}

@ The third.
@^system dependencies@>

@p static void end_name(void)
{@+if (str_ptr+3 > max_strings)
  overflow("number of strings", max_strings-init_str_ptr);
@:TeX capacity exceeded number of strings}{\quad number of strings@>
if (area_delimiter==0) cur_area=empty_string;
else{@+cur_area=str_ptr;
  str_start[str_ptr+1]=str_start[str_ptr]+area_delimiter;incr(str_ptr);
  }
if (ext_delimiter==0)
  {@+cur_ext=empty_string;cur_name=make_string();
  }
else{@+cur_name=str_ptr;
  str_start[str_ptr+1]=str_start[str_ptr]+ext_delimiter-area_delimiter-1;
  incr(str_ptr);cur_ext=make_string();
  }
}

@ Conversely, here is a routine that takes three strings and prints a file
name that might have produced them. (The routine is system dependent, because
some operating systems put the file area last instead of first.)
@^system dependencies@>

@<Basic printing...@>=
static void print_file_name(int @!n, int @!a, int @!e)
{@+slow_print(a);slow_print(n);slow_print(e);
}

@ Another system-dependent routine is needed to convert three internal
\TeX\ strings
into the |name_of_file| value that is used to open files. The present code
allows both lowercase and uppercase letters in the file name.
@^system dependencies@>

@d append_to_name(A) {@+c=A;incr(k);
  if (k <= file_name_size) name_of_file[k]=xchr[c];
  }

@p static void pack_file_name(str_number @!n, str_number @!a, str_number @!e,  char *@!f)
{@+int k; /*number of positions filled in |name_of_file|*/
ASCII_code @!c; /*character being packed*/
int @!j; /*index into |str_pool|*/
k=0;
for (j=str_start[a]; j<=str_start[a+1]-1; j++) append_to_name(so(str_pool[j]))@;
for (j=str_start[n]; j<=str_start[n+1]-1; j++) append_to_name(so(str_pool[j]))@;
if (f==NULL)
  for (j=str_start[e]; j<=str_start[e+1]-1; j++) append_to_name(so(str_pool[j]))@;
else
  while(*f!=0) append_to_name(so(*f++))@;
if (k <= file_name_size) name_length=k;@+else name_length=file_name_size;
name_of_file[name_length+1]=0;
}



@  \TeX\ Live does not use the global variable |TEX_format_default|. It is no longer needed
to supply the text for default system areas
and extensions related to format files.

@ Consequently \TeX\ Live does not need the initialization of |TEX_format_default| either.

@ And \TeX\ Live does not check the length of |TEX_format_default|.

@ The |format_extension|, however, is needed by \TeX\ Live
to create the format name from the job name.

@d format_extension ".fmt"

@ This part of the program
becomes active when a ``virgin'' \TeX\ is trying to get going, just after
the preliminary initialization, or when the user is substituting another
format file by typing `\.\&' after the initial `\.{**}' prompt.  The buffer
contains the first line of input in |buffer[loc dotdot(last-1)]|, where
|loc < last| and |buffer[loc]!=' '|.

\TeX\ Live uses the {\tt kpathsearch} library to implement access to files.
|open_fmt_file| is declared here and the
actual implementation is in the section on \TeX\ Live Integration.

@<Declare the function called |open_fmt_file|@>=
static bool open_fmt_file(void);

@ Operating systems often make it possible to determine the exact name (and
possible version number) of a file that has been opened. The following routine,
which simply makes a \TeX\ string from the value of |name_of_file|, should
ideally be changed to deduce the full name of file~|f|, which is the file
most recently opened, if it is possible to do this in a \PASCAL\ program.
@^system dependencies@>

This routine might be called after string memory has overflowed, hence
we dare not use `|str_room|'.

@p static str_number make_name_string(void)
{@+int k; /*index into |name_of_file|*/
if ((pool_ptr+name_length > pool_size)||(str_ptr==max_strings)||
 (cur_length > 0))
  return'?';
else{@+for (k=1; k<=name_length; k++) append_char(xord[name_of_file[k]]);
  return make_string();
  }
}
static str_number a_make_name_string(alpha_file *f)
{@+return make_name_string();
}
static str_number b_make_name_string(byte_file *f)
{@+return make_name_string();
}
#ifdef @!INIT
static str_number w_make_name_string(word_file *f)
{@+return make_name_string();
}
#endif

@ Now let's consider the ``driver''
routines by which \TeX\ deals with file names
in a system-independent manner.  First comes a procedure that looks for a
file name.
There are two ways to specify the file name: as a general text argument
or as a token (after expansion).
The traditional token delimiter is the space. For a file name, however,
a double quote is used as the token delimiter if the token starts
with a double quote.

Once the |area_delimiter| and the |ext_delimiter| are defined,
the final processing is shared for all variants.

When starting, \.{\\relax} is skipped as well as blanks and non-calls.
Then a test for the |left_brace| will branch to the code for scanning
a general text.
% consider the case where a double quote is made an active character
% equivalent to a left brace!

@p static void scan_file_name(void)
{@+
pool_pointer @!j, k; /*index into |str_pool|*/
int @!old_setting; /*holds |selector| setting*/
name_in_progress=true;begin_name();
@<Get the next non-blank non-relax...@>;
if (cur_cmd==left_brace)
  @<Define a general text file name and |goto done|@>@;
loop@+{@+if ((cur_cmd > other_char)||(cur_chr > 255))  /*not a character*/
    {@+back_input();goto done;
    }
#if 0
    /* This is from pdftex-final.ch. I don't know these `some cases',
       and I am not sure whether the name should end even if quoting is on.*/
    /*If |cur_chr| is a space and we're not scanning a token list, check
      whether we're at the end of the buffer. Otherwise we end up adding
      spurious spaces to file names in some cases.*/
    if (cur_chr==' ' && state!=token_list && loc>limit) goto done;
#endif
  if (!more_name(cur_chr)) goto done;
  get_x_token();
  }
done: end_name();name_in_progress=false;
}

@ The global variable |name_in_progress| is used to prevent recursive
use of |scan_file_name|, since the |begin_name| and other procedures
communicate via global variables. Recursion would arise only by
devious tricks like `\.{\\input\\input f}'; such attempts at sabotage
must be thwarted. Furthermore, |name_in_progress| prevents \.{\\input}
@^recursion@>
from being initiated when a font size specification is being scanned.

Another global variable, |job_name|, contains the file name that was first
\.{\\input} by the user. This name is extended by `\.{.log}' and `\.{.dvi}'
and `\.{.fmt}' in the names of \TeX's output files.

@<Glob...@>=
static bool @!name_in_progress; /*is a file name being scanned?*/
static str_number @!job_name; /*principal file name*/
static bool @!log_opened; /*has the transcript file been opened?*/

@ Initially |job_name==0|; it becomes nonzero as soon as the true name is known.
We have |job_name==0| if and only if the `\.{log}' file has not been opened,
except of course for a short time just after |job_name| has become nonzero.

@<Initialize the output...@>=
job_name=0;name_in_progress=false;log_opened=false;

@ Here is a routine that manufactures the output file names, assuming that
|job_name!=0|. It ignores and changes the current settings of |cur_area|
and |cur_ext|.

@d pack_cur_name(A) if (cur_ext==empty_string) pack_file_name(cur_name, cur_area, cur_ext,A);
                    else pack_file_name(cur_name, cur_area, cur_ext,NULL)

@p static void pack_job_name(char *@!s) /*|s==".log"|, |".dvi"|, or
  |format_extension|*/
{@+cur_area=empty_string;cur_ext=empty_string;
cur_name=job_name;pack_cur_name(s);
}

@ If some trouble arises when \TeX\ tries to open a file, the following
routine calls upon the user to supply another file name. Parameter~|s|
is used in the error message to identify the type of file; parameter~|e|
is the default extension if none is given.
We handle the specification of a file name with possibly spaces in
double quotes (the last one is optional if this is the end of line
i.e. the end of the buffer).
Upon exit from the routine,
variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
ready for another attempt at file opening.

@p static void prompt_file_name(char *@!s, char *@!e)
{@+
int k; /*index into |buffer|*/
if (interaction==scroll_mode) wake_up_terminal;
if (strcmp(s,"input file name")==0) print_err("I can't find file `");
@.I can't find file x@>
else print_err("I can't write on file `");
@.I can't write on file x@>
print_file_name(cur_name, cur_area, cur_ext);print("'.");
if (strcmp(e,".tex")==0) show_context();
print_nl("Please type another ");print(s);
@.Please type...@>
if (interaction < scroll_mode)
  fatal_error("*** (job aborted, file error in nonstop mode)");
@.job aborted, file error...@>
clear_terminal;prompt_input(": ");@<Scan file name in the buffer@>;
pack_cur_name(e);
}

@ @<Scan file name in the buffer@>=
{@+
begin_name();k=first;
while ((buffer[k]==' ')&&(k < last)) incr(k);
loop@+{@+if (k==last) goto done;
  if (!more_name(buffer[k])) goto done;
  incr(k);
  }
done: end_name();
}

@ Here's an example of how these conventions are used. Whenever it is time to
ship out a box of stuff, we shall use the macro |ensure_dvi_open|.

@d ensure_dvi_open if (output_file_name==0)
  {@+if (job_name==0) open_log_file();
  pack_job_name(".dvi");
  while (!b_open_out(&dvi_file))
    prompt_file_name("file name for output",".dvi");
  output_file_name=b_make_name_string(&dvi_file);
  }

@<Glob...@>=
static byte_file @!dvi_file; /*the device-independent output goes here*/
static str_number @!output_file_name; /*full name of the output file*/
static str_number @!log_name; /*full name of the log file*/

@ @<Initialize the output...@>=output_file_name=0;

@ The |open_log_file| routine is used to open the transcript file and to help
it catch up to what has previously been printed on the terminal.

@p static void open_log_file(void)
{@+int old_setting; /*previous |selector| setting*/
int @!k; /*index into |months| and |buffer|*/
int @!l; /*end of first input line*/
char @!months[]=" JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"; /*abbreviations of month names*/
old_setting=selector;
if (job_name==0) job_name=s_no(c_job_name?c_job_name:"texput"); /* \TeX\ Live */
pack_job_name(".fls");
recorder_change_filename((char *)name_of_file+1);
@.texput@>
pack_job_name(".log");
while (!a_open_out(&log_file)) @<Try to get a different log file name@>;
log_name=a_make_name_string(&log_file);
selector=log_only;log_opened=true;
@<Print the banner line, including the date and time@>;
input_stack[input_ptr]=cur_input; /*make sure bottom level is in memory*/
print_nl("**");
@.**@>
l=input_stack[0].limit_field; /*last position of first line*/
if (buffer[l]==end_line_char) decr(l);
for (k=1; k<=l; k++) printn(buffer[k]);
print_ln(); /*now the transcript file contains the first line of input*/
selector=old_setting+2; /*|log_only| or |term_and_log|*/
}

@ Sometimes |open_log_file| is called at awkward moments when \TeX\ is
unable to print error messages or even to |show_context|.
The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
routine will not be invoked because |log_opened| will be false.

The normal idea of |batch_mode| is that nothing at all should be written
on the terminal. However, in the unusual case that
no log file could be opened, we make an exception and allow
an explanatory message to be seen.

Incidentally, the program always refers to the log file as a `\.{transcript
file}', because some systems cannot use the extension `\.{.log}' for
this file.

@<Try to get a different log file name@>=
{@+selector=term_only;
prompt_file_name("transcript file name",".log");
}

@ @<Print the banner...@>=
{@+wlog("%s",banner);
slow_print(format_ident);print("  ");
print_int(sys_day);print_char(' ');
for (k=3*sys_month-2; k<=3*sys_month; k++) wlog("%c",months[k]);
print_char(' ');print_int(sys_year);print_char(' ');
print_two(sys_time/60);print_char(':');print_two(sys_time%60);
if (eTeX_ex)
  {@+;wlog_cr;wlog("entering extended mode");
  }
if (Prote_ex)
  {@+;wlog_cr;wlog("entering Prote mode");
  }
}

@ Let's turn now to the procedure that is used to initiate file reading
when an `\.{\\input}' command is being processed.
Beware: For historic reasons, this code foolishly conserves a tiny bit
of string pool space; but that can confuse the interactive `\.E' option.
@^system dependencies@>

@p static void start_input(void) /*\TeX\ will \.{\\input} something*/
{@+
scan_file_name(); /*set |cur_name| to desired file name*/
pack_cur_name("");
loop@+{@+begin_file_reading(); /*set up |cur_file| and new level of input*/
  if (kpse_in_name_ok((char*)name_of_file+1) && a_open_in(&cur_file)) goto done;
  end_file_reading(); /*remove the level that didn't work*/
  prompt_file_name("input file name",".tex");
  }
done: name=a_make_name_string(&cur_file);@/
if (source_filename_stack[in_open]!=NULL)
  free(source_filename_stack[in_open]);
source_filename_stack[in_open]=strdup((char *)name_of_file+1); /*\TeX\ Live*/
if (full_source_filename_stack[in_open]!=NULL)
  free(full_source_filename_stack[in_open]);
full_source_filename_stack[in_open]=strdup(full_name_of_file);
if (job_name==0)
  {@+if (c_job_name==NULL) job_name=cur_name;
     else job_name=s_no(c_job_name); open_log_file(); /* \TeX\ Live*/
  }  /*|open_log_file| doesn't |show_context|, so |limit|
    and |loc| needn't be set to meaningful values yet*/
if (term_offset+strlen(full_source_filename_stack[in_open]) > max_print_line-2)
  print_ln();
else if ((term_offset > 0)||(file_offset > 0)) print_char(' ');
print_char('(');incr(open_parens);
print(full_source_filename_stack[in_open]);update_terminal;
if (tracing_stack_levels > 0)
{@+int v;
  begin_diagnostic();print_ln();
  print_char('~');
  v=input_ptr-1;
  if (v < tracing_stack_levels)
    while (v-- > 0) print_char('.');
  else print_char('~');
  print("INPUT ");slow_print(cur_name);slow_print(cur_ext);print_ln();
  end_diagnostic(false);
}
state=new_line;
if (name==str_ptr-1)  /*conserve string pool space (but see note above)*/
  {@+flush_string;name=cur_name;
  }
@<Read the first line of the new file@>;
}

@ Here we have to remember to tell the |input_ln| routine not to
start with a |get|. If the file is empty, it is considered to
contain a single blank line.
@^system dependencies@>
@^empty line at end of file@>

@<Read the first line...@>=
{@+line=1;
if (input_ln(&cur_file, false)) do_nothing;
firm_up_the_line();
if (end_line_char_inactive) decr(limit);
else buffer[limit]=end_line_char;
first=limit+1;loc=start;
}

@* Font metric data.
\TeX\ gets its knowledge about fonts from font metric files, also called
\.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
but other programs know about them too.
@:TFM files}{\.{TFM} files@>
@^font metric files@>

The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
Since the number of bytes is always a multiple of 4, we could
also regard the file as a sequence of 32-bit words, but \TeX\ uses the
byte interpretation. The format of \.{TFM} files was designed by
Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
@^Ramshaw, Lyle Harold@>
of information in a compact but useful form.

@<Glob...@>=
static byte_file @!tfm_file;

@ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
integers that give the lengths of the various subsequent portions
of the file. These twelve integers are, in order:
$$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
|lf|&length of the entire file, in words;\cr
|lh|&length of the header data, in words;\cr
|bc|&smallest character code in the font;\cr
|ec|&largest character code in the font;\cr
|nw|&number of words in the width table;\cr
|nh|&number of words in the height table;\cr
|nd|&number of words in the depth table;\cr
|ni|&number of words in the italic correction table;\cr
|nl|&number of words in the lig/kern table;\cr
|nk|&number of words in the kern table;\cr
|ne|&number of words in the extensible character table;\cr
|np|&number of font parameter words.\cr}}$$
They are all nonnegative and less than $2^{15}$. We must have |bc-1 <= ec <= 255|,
and
$$\hbox{|lf==6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
Note that a font may contain as many as 256 characters (if |bc==0| and |ec==255|),
and as few as 0 characters (if |bc==ec+1|).

Incidentally, when two or more 8-bit bytes are combined to form an integer of
16 or more bits, the most significant bytes appear first in the file.
This is called BigEndian order.
@!@^BigEndian order@>

@ The rest of the \.{TFM} file may be regarded as a sequence of ten data
arrays having the informal specification
$$\def\arr$[#1]#2${\&{array} $[#1]$ \&{of} #2}
\def\PB#1{\arr#1}
\vbox{\halign{\hfil\\{#}&$\,:\,$#\hfil\cr
header&|[0 dotdot lh-1]@t\\{stuff}@>|\cr
char\_info&|[bc dotdot ec]char_info_word|\cr
width&|[0 dotdot nw-1]fix_word|\cr
height&|[0 dotdot nh-1]fix_word|\cr
depth&|[0 dotdot nd-1]fix_word|\cr
italic&|[0 dotdot ni-1]fix_word|\cr
lig\_kern&|[0 dotdot nl-1]lig_kern_command|\cr
kern&|[0 dotdot nk-1]fix_word|\cr
exten&|[0 dotdot ne-1]extensible_recipe|\cr
param&|[1 dotdot np]fix_word|\cr}}$$
The most important data type used here is a |@!fix_word|, which is
a 32-bit representation of a binary fraction. A |fix_word| is a signed
quantity, with the two's complement of the entire word used to represent
negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
the smallest is $-2048$. We will see below, however, that all but two of
the |fix_word| values must lie between $-16$ and $+16$.

@ The first data array is a block of header information, which contains
general facts about the font. The header must contain at least two words,
|header[0]| and |header[1]|, whose meaning is explained below.
Additional header information of use to other software routines might
also be included, but \TeX82 does not need to know about such details.
For example, 16 more words of header information are in use at the Xerox
Palo Alto Research Center; the first ten specify the character coding
scheme used (e.g., `\.{XEROX text}' or `\.{TeX math symbols}'), the next five
give the font identifier (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
last gives the ``face byte.'' The program that converts \.{DVI} files
to Xerox printing format gets this information by looking at the \.{TFM}
file, which it needs to read anyway because of other information that
is not explicitly repeated in \.{DVI}~format.

\yskip\hang|header[0]| is a 32-bit check sum that \TeX\ will copy into
the \.{DVI} output file. Later on when the \.{DVI} file is printed,
possibly on another computer, the actual font that gets used is supposed
to have a check sum that agrees with the one in the \.{TFM} file used by
\TeX. In this way, users will be warned about potential incompatibilities.
(However, if the check sum is zero in either the font file or the \.{TFM}
file, no check is made.)  The actual relation between this check sum and
the rest of the \.{TFM} file is not important; the check sum is simply an
identification number with the property that incompatible fonts almost
always have distinct check sums.
@^check sum@>

\yskip\hang|header[1]| is a |fix_word| containing the design size of
the font, in units of \TeX\ points. This number must be at least 1.0; it is
fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
font, i.e., a font that was designed to look best at a 10-point size,
whatever that really means. When a \TeX\ user asks for a font
`\.{at} $\delta$ \.{pt}', the effect is to override the design size
and replace it by $\delta$, and to multiply the $x$ and~$y$ coordinates
of the points in the font image by a factor of $\delta$ divided by the
design size.  {\sl All other dimensions in the\/ \.{TFM} file are
|fix_word|\kern-1pt\ numbers in design-size units}, with the exception of
|param[1]| (which denotes the slant ratio). Thus, for example, the value
of |param[6]|, which defines the \.{em} unit, is often the |fix_word| value
$2^{20}=1.0$, since many fonts have a design size equal to one em.
The other dimensions must be less than 16 design-size units in absolute
value; thus, |header[1]| and |param[1]| are the only |fix_word|
entries in the whole \.{TFM} file whose first byte might be something
besides 0 or 255.

@ Next comes the |char_info| array, which contains one |@!char_info_word|
per character. Each word in this part of the file contains six fields
packed into four bytes as follows.

\yskip\hang first byte: |@!width_index| (8 bits)\par
\hang second byte: |@!height_index| (4 bits) times 16, plus |@!depth_index|
  (4~bits)\par
\hang third byte: |@!italic_index| (6 bits) times 4, plus |@!tag|
  (2~bits)\par
\hang fourth byte: |@!rem| (8 bits)\par
\yskip\noindent
The actual width of a character is \\{width}|[width_index]|, in design-size
units; this is a device for compressing information, since many characters
have the same width. Since it is quite common for many characters
to have the same height, depth, or italic correction, the \.{TFM} format
imposes a limit of 16 different heights, 16 different depths, and
64 different italic corrections.

@!@^italic correction@>
The italic correction of a character has two different uses.
(a)~In ordinary text, the italic correction is added to the width only if
the \TeX\ user specifies `\.{\\/}' after the character.
(b)~In math formulas, the italic correction is always added to the width,
except with respect to the positioning of subscripts.

Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
\\{italic}[0]=0$ should always hold, so that an index of zero implies a
value of zero.  The |width_index| should never be zero unless the
character does not exist in the font, since a character is valid if and
only if it lies between |bc| and |ec| and has a nonzero |width_index|.

@ The |tag| field in a |char_info_word| has four values that explain how to
interpret the |rem| field.

\yskip\hangg|tag==0| (|no_tag|) means that |rem| is unused.\par
\hangg|tag==1| (|lig_tag|) means that this character has a ligature/kerning
program starting at position |rem| in the |lig_kern| array.\par
\hangg|tag==2| (|list_tag|) means that this character is part of a chain of
characters of ascending sizes, and not the largest in the chain.  The
|rem| field gives the character code of the next larger character.\par
\hangg|tag==3| (|ext_tag|) means that this character code represents an
extensible character, i.e., a character that is built up of smaller pieces
so that it can be made arbitrarily large. The pieces are specified in
|@!exten[rem]|.\par
\yskip\noindent
Characters with |tag==2| and |tag==3| are treated as characters with |tag==0|
unless they are used in special circumstances in math formulas. For example,
the \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
operation looks for both |list_tag| and |ext_tag|.

@d no_tag 0 /*vanilla character*/
@d lig_tag 1 /*character has a ligature/kerning program*/
@d list_tag 2 /*character has a successor in a charlist*/
@d ext_tag 3 /*character is extensible*/

@ The |lig_kern| array contains instructions in a simple programming language
that explains what to do for special letter pairs. Each word in this array is a
|@!lig_kern_command| of four bytes.

\yskip\hang first byte: |skip_byte|, indicates that this is the final program
  step if the byte is 128 or more, otherwise the next step is obtained by
  skipping this number of intervening steps.\par
\hang second byte: |next_char|, ``if |next_char| follows the current character,
  then perform the operation and stop, otherwise continue.''\par
\hang third byte: |op_byte|, indicates a ligature step if less than~128,
  a kern step otherwise.\par
\hang fourth byte: |rem|.\par
\yskip\noindent
In a kern step, an
additional space equal to |kern[256*(op_byte-128)+rem]| is inserted
between the current character and |next_char|. This amount is
often negative, so that the characters are brought closer together
by kerning; but it might be positive.

There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
$0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
|rem| is inserted between the current character and |next_char|;
then the current character is deleted if $b=0$, and |next_char| is
deleted if $c=0$; then we pass over $a$~characters to reach the next
current character (which may have a ligature/kerning program of its own).

If the very first instruction of the |lig_kern| array has |skip_byte==255|,
the |next_char| byte is the so-called boundary character of this font;
the value of |next_char| need not lie between |bc| and~|ec|.
If the very last instruction of the |lig_kern| array has |skip_byte==255|,
there is a special ligature/kerning program for a boundary character at the
left, beginning at location |256*op_byte+rem|.
The interpretation is that \TeX\ puts implicit boundary characters
before and after each consecutive string of characters from the same font.
These implicit characters do not appear in the output, but they can affect
ligatures and kerning.

If the very first instruction of a character's |lig_kern| program has
|skip_byte > 128|, the program actually begins in location
|256*op_byte+rem|. This feature allows access to large |lig_kern|
arrays, because the first instruction must otherwise
appear in a location | <= 255|.

Any instruction with |skip_byte > 128| in the |lig_kern| array must satisfy
the condition
$$\hbox{|256*op_byte+rem < nl|.}$$
If such an instruction is encountered during
normal program execution, it denotes an unconditional halt; no ligature
or kerning command is performed.

@d stop_flag qi(128) /*value indicating `\.{STOP}' in a lig/kern program*/
@d kern_flag qi(128) /*op code for a kern step*/
@d skip_byte(A) A.b0
@d next_char(A) A.b1
@d op_byte(A) A.b2
@d rem_byte(A) A.b3

@ Extensible characters are specified by an |@!extensible_recipe|, which
consists of four bytes called |@!top|, |@!mid|, |@!bot|, and |@!rep| (in this
order). These bytes are the character codes of individual pieces used to
build up a large symbol.  If |top|, |mid|, or |bot| are zero, they are not
present in the built-up result. For example, an extensible vertical line is
like an extensible bracket, except that the top and bottom pieces are missing.

Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
if the piece isn't present. Then the extensible characters have the form
$TR^kMR^kB$ from top to bottom, for some |k >= 0|, unless $M$ is absent;
in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
The width of the extensible character is the width of $R$; and the
height-plus-depth is the sum of the individual height-plus-depths of the
components used, since the pieces are butted together in a vertical list.

@d ext_top(A) A.b0 /*|top| piece in a recipe*/
@d ext_mid(A) A.b1 /*|mid| piece in a recipe*/
@d ext_bot(A) A.b2 /*|bot| piece in a recipe*/
@d ext_rep(A) A.b3 /*|rep| piece in a recipe*/

@ The final portion of a \.{TFM} file is the |param| array, which is another
sequence of |fix_word| values.

\yskip\hang|param[1]==slant| is the amount of italic slant, which is used
to help position accents. For example, |slant==.25| means that when you go
up one unit, you also go .25 units to the right. The |slant| is a pure
number; it's the only |fix_word| other than the design size itself that is
not scaled by the design size.

\hang|param[2]==space| is the normal spacing between words in text.
Note that character |' '| in the font need not have anything to do with
blank spaces.

\hang|param[3]==space_stretch| is the amount of glue stretching between words.

\hang|param[4]==space_shrink| is the amount of glue shrinking between words.

\hang|param[5]==x_height| is the size of one ex in the font; it is also
the height of letters for which accents don't have to be raised or lowered.

\hang|param[6]==quad| is the size of one em in the font.

\hang|param[7]==extra_space| is the amount added to |param[2]| at the
ends of sentences.

\yskip\noindent
If fewer than seven parameters are present, \TeX\ sets the missing parameters
to zero. Fonts used for math symbols are required to have
additional parameter information, which is explained later.

@d slant_code 1
@d space_code 2
@d space_stretch_code 3
@d space_shrink_code 4
@d x_height_code 5
@d quad_code 6
@d extra_space_code 7

@ So that is what \.{TFM} files hold. Since \TeX\ has to absorb such information
about lots of fonts, it stores most of the data in a large array called
|font_info|. Each item of |font_info| is a |memory_word|; the |fix_word|
data gets converted into |scaled| entries, while everything else goes into
words of type |four_quarters|.

When the user defines \.{\\font\\f}, say, \TeX\ assigns an internal number
to the user's font~\.{\\f}. Adding this number to |font_id_base| gives the
|eqtb| location of a ``frozen'' control sequence that will always select
the font.

@<Types...@>=
typedef uint8_t internal_font_number; /*|font| in a |char_node|*/
typedef int32_t font_index; /*index into |font_info|*/

@ Here now is the (rather formidable) array of font arrays.

@d non_char qi(256) /*a |halfword| code that can't match a real character*/
@d non_address 0 /*a spurious |bchar_label|*/

@<Glob...@>=
static memory_word @!font_info[font_mem_size+1];
   /*the big collection of font data*/
static font_index @!fmem_ptr; /*first unused word of |font_info|*/
static internal_font_number @!font_ptr; /*largest internal font number in use*/
static four_quarters @!font_check0[font_max-font_base+1],
  *const @!font_check = @!font_check0-font_base; /*check sum*/
static scaled @!font_size0[font_max-font_base+1],
  *const @!font_size = @!font_size0-font_base; /*``at'' size*/
static scaled @!font_dsize0[font_max-font_base+1],
  *const @!font_dsize = @!font_dsize0-font_base; /*``design'' size*/
static font_index @!font_params0[font_max-font_base+1],
  *const @!font_params = @!font_params0-font_base; /*how many font
  parameters are present*/
static str_number @!font_name0[font_max-font_base+1],
  *const @!font_name = @!font_name0-font_base; /*name of the font*/
static str_number @!font_area0[font_max-font_base+1],
  *const @!font_area = @!font_area0-font_base; /*area of the font*/
static eight_bits @!font_bc0[font_max-font_base+1],
  *const @!font_bc = @!font_bc0-font_base;
   /*beginning (smallest) character code*/
static eight_bits @!font_ec0[font_max-font_base+1],
  *const @!font_ec = @!font_ec0-font_base;
   /*ending (largest) character code*/
static pointer @!font_glue0[font_max-font_base+1],
  *const @!font_glue = @!font_glue0-font_base;
   /*glue specification for interword space, |null| if not allocated*/
static bool @!font_used0[font_max-font_base+1],
  *const @!font_used = @!font_used0-font_base;
   /*has a character from this font actually appeared in the output?*/
static int @!hyphen_char0[font_max-font_base+1],
  *const @!hyphen_char = @!hyphen_char0-font_base;
   /*current \.{\\hyphenchar} values*/
static int @!skew_char0[font_max-font_base+1],
  *const @!skew_char = @!skew_char0-font_base;
   /*current \.{\\skewchar} values*/
static font_index @!bchar_label0[font_max-font_base+1],
  *const @!bchar_label = @!bchar_label0-font_base;
   /*start of |lig_kern| program for left boundary character,
  |non_address| if there is none*/
static int16_t @!font_bchar0[font_max-font_base+1],
  *const @!font_bchar = @!font_bchar0-font_base;
   /*boundary character, |non_char| if there is none*/
static int16_t @!font_false_bchar0[font_max-font_base+1],
  *const @!font_false_bchar = @!font_false_bchar0-font_base;
   /*|font_bchar| if it doesn't exist in the font, otherwise |non_char|*/

@ Besides the arrays just enumerated, we have directory arrays that make it
easy to get at the individual entries in |font_info|. For example, the
|char_info| data for character |c| in font |f| will be in
|font_info[char_base[f]+c].qqqq|; and if |w| is the |width_index|
part of this word (the |b0| field), the width of the character is
|font_info[width_base[f]+w].sc|. (These formulas assume that
|min_quarterword| has already been added to |c| and to |w|, since \TeX\
stores its quarterwords that way.)

@<Glob...@>=
static int @!char_base0[font_max-font_base+1],
  *const @!char_base = @!char_base0-font_base;
   /*base addresses for |char_info|*/
static int @!width_base0[font_max-font_base+1],
  *const @!width_base = @!width_base0-font_base;
   /*base addresses for widths*/
static int @!height_base0[font_max-font_base+1],
  *const @!height_base = @!height_base0-font_base;
   /*base addresses for heights*/
static int @!depth_base0[font_max-font_base+1],
  *const @!depth_base = @!depth_base0-font_base;
   /*base addresses for depths*/
static int @!italic_base0[font_max-font_base+1],
  *const @!italic_base = @!italic_base0-font_base;
   /*base addresses for italic corrections*/
static int @!lig_kern_base0[font_max-font_base+1],
  *const @!lig_kern_base = @!lig_kern_base0-font_base;
   /*base addresses for ligature/kerning programs*/
static int @!kern_base0[font_max-font_base+1],
  *const @!kern_base = @!kern_base0-font_base;
   /*base addresses for kerns*/
static int @!exten_base0[font_max-font_base+1],
  *const @!exten_base = @!exten_base0-font_base;
   /*base addresses for extensible recipes*/
static int @!param_base0[font_max-font_base+1],
  *const @!param_base = @!param_base0-font_base;
   /*base addresses for font parameters*/

@ @<Set init...@>=
for (k=font_base; k<=font_max; k++) font_used[k]=false;

@ \TeX\ always knows at least one font, namely the null font. It has no
characters, and its seven parameters are all equal to zero.

@<Initialize table...@>=
font_ptr=null_font;fmem_ptr=7;
font_name[null_font]=s_no("nullfont");font_area[null_font]=empty_string;
hyphen_char[null_font]='-';skew_char[null_font]=-1;
bchar_label[null_font]=non_address;
font_bchar[null_font]=non_char;font_false_bchar[null_font]=non_char;
font_bc[null_font]=1;font_ec[null_font]=0;
font_size[null_font]=0;font_dsize[null_font]=0;
char_base[null_font]=0;width_base[null_font]=0;
height_base[null_font]=0;depth_base[null_font]=0;
italic_base[null_font]=0;lig_kern_base[null_font]=0;
kern_base[null_font]=0;exten_base[null_font]=0;
font_glue[null_font]=null;font_params[null_font]=7;
param_base[null_font]=-1;
for (k=0; k<=6; k++) font_info[k].sc=0;

@ @<Put each...@>=
primitive("nullfont", set_font, null_font);
@!@:null\_font\_}{\.{\\nullfont} primitive@>
text(frozen_null_font)=text(cur_val);eqtb[frozen_null_font]=eqtb[cur_val];

@ Of course we want to define macros that suppress the detail of how font
information is actually packed, so that we don't have to write things like
$$\hbox{|font_info[width_base[f]+font_info[char_base[f]+c].qqqq.b0].sc|}$$
too often. The \.{WEB} definitions here make |char_info(f)(c)| the
|four_quarters| word of font information corresponding to character
|c| of font |f|. If |q| is such a word, |char_width(f)(q)| will be
the character's width; hence the long formula above is at least
abbreviated to
$$\hbox{|char_width(f)(char_info(f)(c))|.}$$
Usually, of course, we will fetch |q| first and look at several of its
fields at the same time.

The italic correction of a character will be denoted by
|char_italic(f)(q)|, so it is analogous to |char_width|.  But we will get
at the height and depth in a slightly different way, since we usually want
to compute both height and depth if we want either one.  The value of
|height_depth(q)| will be the 8-bit quantity
$$b=|height_index|\times16+|depth_index|,$$ and if |b| is such a byte we
will write |char_height(f)(b)| and |char_depth(f)(b)| for the height and
depth of the character |c| for which |q==char_info(f)(c)|. Got that?

The tag field will be called |char_tag(q)|; the remainder byte will be
called |rem_byte(q)|, using a macro that we have already defined above.

Access to a character's |width|, |height|, |depth|, and |tag| fields is
part of \TeX's inner loop, so we want these macros to produce code that is
as fast as possible under the circumstances.
@^inner loop@>

@d char_info(A, B) font_info[char_base[A]+B].qqqq
@d char_width(A, B) font_info[width_base[A]+B.b0].sc
@d char_exists(A) (A.b0 > min_quarterword)
@d char_italic(A, B) font_info[italic_base[A]+(qo(B.b2))/4].sc
@d height_depth(A) qo(A.b1)
@d char_height(A, B) font_info[height_base[A]+(B)/16].sc
@d char_depth(A, B) font_info[depth_base[A]+(B)%16].sc
@d char_tag(A) ((qo(A.b2))%4)

@ The global variable |null_character| is set up to be a word of
|char_info| for a character that doesn't exist. Such a word provides a
convenient way to deal with erroneous situations.

@<Glob...@>=
static four_quarters @!null_character; /*nonexistent character information*/

@ @<Set init...@>=
null_character.b0=min_quarterword;null_character.b1=min_quarterword;
null_character.b2=min_quarterword;null_character.b3=min_quarterword;

@ Here are some macros that help process ligatures and kerns.
We write |char_kern(f)(j)| to find the amount of kerning specified by
kerning command~|j| in font~|f|. If |j| is the |char_info| for a character
with a ligature/kern program, the first instruction of that program is either
|i==font_info[lig_kern_start(f)(j)]| or |font_info[lig_kern_restart(f)(i)]|,
depending on whether or not |skip_byte(i) <= stop_flag|.

The constant |kern_base_offset| should be simplified, for \PASCAL\ compilers
that do not do local optimization.
@^system dependencies@>

@d char_kern(A, B) font_info[kern_base[A]+256*op_byte(B)+rem_byte(B)].sc
@d kern_base_offset 256*(128+min_quarterword)
@d lig_kern_start(A, B) lig_kern_base[A]+B.b3 /*beginning of lig/kern program*/
@d lig_kern_restart(A, B) lig_kern_base[A]+256*op_byte(B)+rem_byte(B)+32768-kern_base_offset

@ Font parameters are referred to as |slant(f)|, |space(f)|, etc.

@d param_end(A) param_base[A]].sc
@d param(A) font_info[A+param_end
@d slant param(slant_code) /*slant to the right, per unit distance upward*/
@d space param(space_code) /*normal space between words*/
@d space_stretch param(space_stretch_code) /*stretch between words*/
@d space_shrink param(space_shrink_code) /*shrink between words*/
@d x_height param(x_height_code) /*one ex*/
@d quad param(quad_code) /*one em*/
@d extra_space param(extra_space_code) /*additional space at end of sentence*/

@<The em width for |cur_font|@>=quad(cur_font)

@ @<The x-height for |cur_font|@>=x_height(cur_font)

@ \TeX\ checks the information of a \.{TFM} file for validity as the
file is being read in, so that no further checks will be needed when
typesetting is going on. The somewhat tedious subroutine that does this
is called |read_font_info|. It has four parameters: the user font
identifier~|u|, the file name and area strings |nom| and |aire|, and the
``at'' size~|s|. If |s|~is negative, it's the negative of a scale factor
to be applied to the design size; |s==-1000| is the normal case.
Otherwise |s| will be substituted for the design size; in this
case, |s| must be positive and less than $2048\rm\,pt$
(i.e., it must be less than $2^{27}$ when considered as an integer).

The subroutine opens and closes a global file variable called |tfm_file|.
It returns the value of the internal font number that was just loaded.
If an error is detected, an error message is issued and no font
information is stored; |null_font| is returned in this case.

@d abort goto bad_tfm /*do this when the \.{TFM} data is wrong*/

@p static internal_font_number read_font_info(pointer @!u, str_number @!nom, str_number @!aire,
  scaled @!s) /*input a \.{TFM} file*/
{@+
int k; /*index into |font_info|*/
bool @!file_opened; /*was |tfm_file| successfully opened?*/
halfword @!lf, @!lh, @!bc, @!ec, @!nw, @!nh, @!nd, @!ni, @!nl, @!nk, @!ne, @!np;
   /*sizes of subfiles*/
internal_font_number @!f; /*the new font's number*/
internal_font_number @!g; /*the number to return*/
eight_bits @!a, @!b, @!c, @!d; /*byte variables*/
four_quarters @!qw;scaled @!sw; /*accumulators*/
int @!bch_label; /*left boundary start location, or infinity*/
int @!bchar; /*boundary character, or 256*/
scaled @!z; /*the design size or the ``at'' size*/
int @!alpha;int @!beta;
   /*auxiliary quantities used in fixed-point multiplication*/
g=null_font;@/
@<Read and check the font data; |abort| if the \.{TFM} file is malformed;
if there's no room for this font, say so and |goto done|; otherwise |incr(font_ptr)|
and |goto done|@>;
bad_tfm: @<Report that the font won't be loaded@>;
done: if (file_opened) b_close(&tfm_file);
return g;
}

@ There are programs called \.{TFtoPL} and \.{PLtoTF} that convert
between the \.{TFM} format and a symbolic property-list format
that can be easily edited. These programs contain extensive
diagnostic information, so \TeX\ does not have to bother giving
precise details about why it rejects a particular \.{TFM} file.
@.TFtoPL@> @.PLtoTF@>

@d start_font_error_message print_err("Font ");sprint_cs(u);
  print_char('=');print_file_name(nom, aire, empty_string);
  if (s >= 0)
    {@+print(" at ");print_scaled(s);print("pt");
    }
  else if (s!=-1000)
    {@+print(" scaled ");print_int(-s);
    }

@<Report that the font won't be loaded@>=
start_font_error_message;
@.Font x=xx not loadable...@>
if (file_opened) print(" not loadable: Bad metric (TFM) file");
else print(" not loadable: Metric (TFM) file not found");
help5("I wasn't able to read the size data for this font,",@/
"so I will ignore the font specification.",@/
"[Wizards can fix TFM files using TFtoPL/PLtoTF.]",@/
"You might try inserting a different font spec;",@/
"e.g., type `I\\font<same font id>=<substitute font name>'.");
error()

@ @<Read and check...@>=
@<Open |tfm_file| for input@>;
@<Read the {\.{TFM}} size fields@>;
@<Use size fields to allocate font information@>;
@<Read the {\.{TFM}} header@>;
@<Read character data@>;
@<Read box dimensions@>;
@<Read ligature/kern program@>;
@<Read extensible character recipes@>;
@<Read font parameters@>;
@<Make final adjustments and |goto done|@>@;

@ @<Open |tfm_file| for input@>=
file_opened=false;
pack_file_name(nom, empty_string,empty_string,".tfm"); /* \TeX\ Live */
if (!b_open_in(&tfm_file)) abort;
file_opened=true

@ Note: A malformed \.{TFM} file might be shorter than it claims to be;
thus |eof(tfm_file)| might be true when |read_font_info| refers to
|tfm_file.d| or when it says |get(tfm_file)|. If such circumstances
cause system error messages, you will have to defeat them somehow,
for example by defining |fget| to be `\ignorespaces|{@+get(tfm_file);|
|if (eof(tfm_file)) abort;} |\unskip'.
@^system dependencies@>

@d fget get(tfm_file)
@d fbyte tfm_file.d
@d read_sixteen(A) {@+A=fbyte;
  if (A > 127) abort;
  fget;A=A*0400+fbyte;
  }
@d store_four_quarters(A) {@+fget;a=fbyte;qw.b0=qi(a);
  fget;b=fbyte;qw.b1=qi(b);
  fget;c=fbyte;qw.b2=qi(c);
  fget;d=fbyte;qw.b3=qi(d);
  A=qw;
  }

@ @<Read the {\.{TFM}} size fields@>=
{@+read_sixteen(lf);
fget;read_sixteen(lh);
fget;read_sixteen(bc);
fget;read_sixteen(ec);
if ((bc > ec+1)||(ec > 255)) abort;
if (bc > 255)  /*|bc==256| and |ec==255|*/
  {@+bc=1;ec=0;
  }
fget;read_sixteen(nw);
fget;read_sixteen(nh);
fget;read_sixteen(nd);
fget;read_sixteen(ni);
fget;read_sixteen(nl);
fget;read_sixteen(nk);
fget;read_sixteen(ne);
fget;read_sixteen(np);
if (lf!=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np) abort;
if ((nw==0)||(nh==0)||(nd==0)||(ni==0)) abort;
}

@ The preliminary settings of the index-offset variables |char_base|,
|width_base|, |lig_kern_base|, |kern_base|, and |exten_base| will be
corrected later by subtracting |min_quarterword| from them; and we will
subtract 1 from |param_base| too. It's best to forget about such anomalies
until later.

@<Use size fields to allocate font information@>=
lf=lf-6-lh; /*|lf| words should be loaded into |font_info|*/
if (np < 7) lf=lf+7-np; /*at least seven parameters will appear*/
if ((font_ptr==font_max)||(fmem_ptr+lf > font_mem_size))
  @<Apologize for not loading the font, |goto done|@>;
f=font_ptr+1;
char_base[f]=fmem_ptr-bc;
width_base[f]=char_base[f]+ec+1;
height_base[f]=width_base[f]+nw;
depth_base[f]=height_base[f]+nh;
italic_base[f]=depth_base[f]+nd;
lig_kern_base[f]=italic_base[f]+ni;
kern_base[f]=lig_kern_base[f]+nl-kern_base_offset;
exten_base[f]=kern_base[f]+kern_base_offset+nk;
param_base[f]=exten_base[f]+ne

@ @<Apologize for not loading...@>=
{@+start_font_error_message;
print(" not loaded: Not enough room left");
@.Font x=xx not loaded...@>
help4("I'm afraid I won't be able to make use of this font,",@/
"because my memory for character-size data is too small.",@/
"If you're really stuck, ask a wizard to enlarge me.",@/
"Or maybe try `I\\font<same font id>=<name of loaded font>'.");
error();goto done;
}

@ Only the first two words of the header are needed by \TeX82.

@<Read the {\.{TFM}} header@>=
{@+if (lh < 2) abort;
store_four_quarters(font_check[f]);
fget;read_sixteen(z); /*this rejects a negative design size*/
fget;z=z*0400+fbyte;fget;z=(z*020)+(fbyte/020);
if (z < unity) abort;
while (lh > 2)
  {@+fget;fget;fget;fget;decr(lh); /*ignore the rest of the header*/
  }
font_dsize[f]=z;
if (s!=-1000)
  if (s >= 0) z=s;
  else z=xn_over_d(z,-s, 1000);
font_size[f]=z;
}

@ @<Read character data@>=
for (k=fmem_ptr; k<=width_base[f]-1; k++)
  {@+store_four_quarters(font_info[k].qqqq);
  if ((a >= nw)||(b/020 >= nh)||(b%020 >= nd)||
    (c/4 >= ni)) abort;
  switch (c%4) {
  case lig_tag: if (d >= nl) abort;@+break;
  case ext_tag: if (d >= ne) abort;@+break;
  case list_tag: @<Check for charlist cycle@>@;@+break;
  default:do_nothing; /*|no_tag|*/
  }
  }

@ We want to make sure that there is no cycle of characters linked together
by |list_tag| entries, since such a cycle would get \TeX\ into an endless
loop. If such a cycle exists, the routine here detects it when processing
the largest character code in the cycle.

@d check_byte_range(A) {@+if ((A < bc)||(A > ec)) abort;@+}
@d current_character_being_worked_on k+bc-fmem_ptr

@<Check for charlist cycle@>=
{@+check_byte_range(d);
while (d < current_character_being_worked_on)
  {@+qw=char_info(f, d);
   /*N.B.: not |qi(d)|, since |char_base[f]| hasn't been adjusted yet*/
  if (char_tag(qw)!=list_tag) goto not_found;
  d=qo(rem_byte(qw)); /*next character on the list*/
  }
if (d==current_character_being_worked_on) abort; /*yes, there's a cycle*/
not_found: ;}

@ A |fix_word| whose four bytes are $(a,b,c,d)$ from left to right represents
the number
$$x=\left\{\vcenter{\halign{$#$,\hfil\qquad&if $#$\hfil\cr
b\cdot2^{-4}+c\cdot2^{-12}+d\cdot2^{-20}&a=0;\cr
-16+b\cdot2^{-4}+c\cdot2^{-12}+d\cdot2^{-20}&a=255.\cr}}\right.$$
(No other choices of |a| are allowed, since the magnitude of a number in
design-size units must be less than 16.)  We want to multiply this
quantity by the integer~|z|, which is known to be less than $2^{27}$.
If $|z|<2^{23}$, the individual multiplications $b\cdot z$,
$c\cdot z$, $d\cdot z$ cannot overflow; otherwise we will divide |z| by 2,
4, 8, or 16, to obtain a multiplier less than $2^{23}$, and we can
compensate for this later. If |z| has thereby been replaced by
$|z|^\prime=|z|/2^e$, let $\beta=2^{4-e}$; we shall compute
$$\lfloor(b+c\cdot2^{-8}+d\cdot2^{-16})\,z^\prime/\beta\rfloor$$
if $a=0$, or the same quantity minus $\alpha=2^{4+e}z^\prime$ if $a=255$.
This calculation must be done exactly, in order to guarantee portability
of \TeX\ between computers.

@d store_scaled(A) {@+fget;a=fbyte;fget;b=fbyte;
  fget;c=fbyte;fget;d=fbyte;@/
  sw=(((((d*z)/0400)+(c*z))/0400)+(b*z))/beta;
  if (a==0) A=sw;@+else if (a==255) A=sw-alpha;@+else abort;
  }

@<Read box dimensions@>=
{@+@<Replace |z| by $|z|^\prime$ and compute $\alpha,\beta$@>;
for (k=width_base[f]; k<=lig_kern_base[f]-1; k++)
  store_scaled(font_info[k].sc);
if (font_info[width_base[f]].sc!=0) abort; /*\\{width}[0] must be zero*/
if (font_info[height_base[f]].sc!=0) abort; /*\\{height}[0] must be zero*/
if (font_info[depth_base[f]].sc!=0) abort; /*\\{depth}[0] must be zero*/
if (font_info[italic_base[f]].sc!=0) abort; /*\\{italic}[0] must be zero*/
}

@ @<Replace |z|...@>=
{@+alpha=16;
while (z >= 040000000)
  {@+z=z/2;alpha=alpha+alpha;
  }
beta=256/alpha;alpha=alpha*z;
}

@ @d check_existence(A) @t@>@;@/
  {@+check_byte_range(A);
  qw=char_info(f, A); /*N.B.: not |qi(A)|*/
  if (!char_exists(qw)) abort;
  }

@<Read ligature/kern program@>=
bch_label=077777;bchar=256;
if (nl > 0)
  {@+for (k=lig_kern_base[f]; k<=kern_base[f]+kern_base_offset-1; k++)
    {@+store_four_quarters(font_info[k].qqqq);
    if (a > 128)
      {@+if (256*c+d >= nl) abort;
      if (a==255) if (k==lig_kern_base[f]) bchar=b;
      }
    else{@+if (b!=bchar) check_existence(b);
      if (c < 128) check_existence(d)@; /*check ligature*/
      else if (256*(c-128)+d >= nk) abort; /*check kern*/
      if (a < 128) if (k-lig_kern_base[f]+a+1 >= nl) abort;
      }
    }
  if (a==255) bch_label=256*c+d;
  }
for (k=kern_base[f]+kern_base_offset; k<=exten_base[f]-1; k++)
  store_scaled(font_info[k].sc);

@ @<Read extensible character recipes@>=
for (k=exten_base[f]; k<=param_base[f]-1; k++)
  {@+store_four_quarters(font_info[k].qqqq);
  if (a!=0) check_existence(a);
  if (b!=0) check_existence(b);
  if (c!=0) check_existence(c);
  check_existence(d);
  }

@ We check to see that the \.{TFM} file doesn't end prematurely; but
no error message is given for files having more than |lf| words.

@<Read font parameters@>=
{@+for (k=1; k<=np; k++)
  if (k==1)  /*the |slant| parameter is a pure number*/
    {@+fget;sw=fbyte;if (sw > 127) sw=sw-256;
    fget;sw=sw*0400+fbyte;fget;sw=sw*0400+fbyte;
    fget;font_info[param_base[f]].sc=
      (sw*020)+(fbyte/020);
    }
  else store_scaled(font_info[param_base[f]+k-1].sc);
if (eof(tfm_file)) abort;
for (k=np+1; k<=7; k++) font_info[param_base[f]+k-1].sc=0;
}

@ Now to wrap it up, we have checked all the necessary things about the \.{TFM}
file, and all we need to do is put the finishing touches on the data for
the new font.

@d adjust(A) A[f]=qo(A[f])
   /*correct for the excess |min_quarterword| that was added*/

@<Make final adjustments...@>=
if (np >= 7) font_params[f]=np;@+else font_params[f]=7;
hyphen_char[f]=default_hyphen_char;skew_char[f]=default_skew_char;
if (bch_label < nl) bchar_label[f]=bch_label+lig_kern_base[f];
else bchar_label[f]=non_address;
font_bchar[f]=qi(bchar);
font_false_bchar[f]=qi(bchar);
if (bchar <= ec) if (bchar >= bc)
  {@+qw=char_info(f, bchar); /*N.B.: not |qi(bchar)|*/
  if (char_exists(qw)) font_false_bchar[f]=non_char;
  }
font_name[f]=nom;
font_area[f]=aire;
font_bc[f]=bc;font_ec[f]=ec;font_glue[f]=null;
adjust(char_base);adjust(width_base);adjust(lig_kern_base);
adjust(kern_base);adjust(exten_base);
decr(param_base[f]);
fmem_ptr=fmem_ptr+lf;font_ptr=f;g=f;goto done

@ Before we forget about the format of these tables, let's deal with two
of \TeX's basic scanning routines related to font information.

@<Declare procedures that scan font-related stuff@>=
static void scan_font_ident(void)
{@+internal_font_number f;
halfword @!m;
@<Get the next non-blank non-call...@>;
if (cur_cmd==def_font) f=cur_font;
else if (cur_cmd==set_font) f=cur_chr;
else if (cur_cmd==def_family)
  {@+m=cur_chr;scan_four_bit_int();f=equiv(m+cur_val);
  }
else{@+print_err("Missing font identifier");
@.Missing font identifier@>
  help2("I was looking for a control sequence whose",@/
  "current meaning has been defined by \\font.");
  back_error();f=null_font;
  }
cur_val=f;
}

@ The following routine is used to implement `\.{\\fontdimen} |n| |f|'.
The boolean parameter |writing| is set |true| if the calling program
intends to change the parameter value.

@<Declare procedures that scan font-related stuff@>=
static void find_font_dimen(bool @!writing)
   /*sets |cur_val| to |font_info| location*/
{@+internal_font_number f;
int @!n; /*the parameter number*/
scan_int();n=cur_val;scan_font_ident();f=cur_val;
if (n <= 0) cur_val=fmem_ptr;
else{@+if (writing&&(n <= space_shrink_code)&&@|
    (n >= space_code)&&(font_glue[f]!=null))
    {@+delete_glue_ref(font_glue[f]);
    font_glue[f]=null;
    }
  if (n > font_params[f])
    if (f < font_ptr) cur_val=fmem_ptr;
    else@<Increase the number of parameters in the last font@>@;
  else cur_val=n+param_base[f];
  }
@<Issue an error message if |cur_val=fmem_ptr|@>;
}

@ @<Issue an error message if |cur_val=fmem_ptr|@>=
if (cur_val==fmem_ptr)
  {@+print_err("Font ");printn_esc(font_id_text(f));
  print(" has only ");print_int(font_params[f]);
  print(" fontdimen parameters");
@.Font x has only...@>
  help2("To increase the number of font parameters, you must",@/
    "use \\fontdimen immediately after the \\font is loaded.");
  error();
  }

@ @<Increase the number of parameters...@>=
{@+@/do@+{if (fmem_ptr==font_mem_size)
  overflow("font memory", font_mem_size);
@:TeX capacity exceeded font memory}{\quad font memory@>
font_info[fmem_ptr].sc=0;incr(fmem_ptr);incr(font_params[f]);
}@+ while (!(n==font_params[f]));
cur_val=fmem_ptr-1; /*this equals |param_base[f]+font_params[f]|*/
}

@ When \TeX\ wants to typeset a character that doesn't exist, the
character node is not created; thus the output routine can assume
that characters exist when it sees them. The following procedure
prints a warning message unless the user has suppressed it.

@p static void char_warning(internal_font_number @!f, eight_bits @!c)
{@+int old_setting; /*saved value of |tracing_online|*/
if (tracing_lost_chars > 0)
 {@+old_setting=tracing_online;
 if (eTeX_ex&&(tracing_lost_chars > 1)) tracing_online=1;
  {@+begin_diagnostic();
  print_nl("Missing character: There is no ");
@.Missing character@>
  print_ASCII(c);print(" in font ");
  slow_print(font_name[f]);print_char('!');end_diagnostic(false);
  }
 tracing_online=old_setting;
 }
}

@ Here is a function that returns a pointer to a character node for a
given character in a given font. If that character doesn't exist,
|null| is returned instead.

@p static pointer new_character(internal_font_number @!f, eight_bits @!c)
{@+
pointer p; /*newly allocated node*/
if (font_bc[f] <= c) if (font_ec[f] >= c)
  if (char_exists(char_info(f, qi(c))))
    {@+p=get_avail();font(p)=f;character(p)=qi(c);
    return p;
    }
char_warning(f, c);
return null;
}

@* Device-independent file format.
The most important output produced by a run of \TeX\ is the ``device
independent'' (\.{DVI}) file that specifies where characters and rules
are to appear on printed pages. The form of these files was designed by
David R. Fuchs in 1979. Almost any reasonable typesetting device can be
@^Fuchs, David Raymond@>
@:DVI\_files}{\.{DVI} files@>
driven by a program that takes \.{DVI} files as input, and dozens of such
\.{DVI}-to-whatever programs have been written. Thus, it is possible to
print the output of \TeX\ on many different kinds of equipment, using \TeX\
as a device-independent ``front end.''

A \.{DVI} file is a stream of 8-bit bytes, which may be regarded as a
series of commands in a machine-like language. The first byte of each command
is the operation code, and this code is followed by zero or more bytes
that provide parameters to the command. The parameters themselves may consist
of several consecutive bytes; for example, the `|set_rule|' command has two
parameters, each of which is four bytes long. Parameters are usually
regarded as nonnegative integers; but four-byte-long parameters,
and shorter parameters that denote distances, can be
either positive or negative. Such parameters are given in two's complement
notation. For example, a two-byte-long distance parameter has a value between
$-2^{15}$ and $2^{15}-1$. As in \.{TFM} files, numbers that occupy
more than one byte position appear in BigEndian order.

A \.{DVI} file consists of a ``preamble,'' followed by a sequence of one
or more ``pages,'' followed by a ``postamble.'' The preamble is simply a
|pre| command, with its parameters that define the dimensions used in the
file; this must come first.  Each ``page'' consists of a |bop| command,
followed by any number of other commands that tell where characters are to
be placed on a physical page, followed by an |eop| command. The pages
appear in the order that \TeX\ generated them. If we ignore |nop| commands
and \\{fnt\_def} commands (which are allowed between any two commands in
the file), each |eop| command is immediately followed by a |bop| command,
or by a |post| command; in the latter case, there are no more pages in the
file, and the remaining bytes form the postamble.  Further details about
the postamble will be explained later.

Some parameters in \.{DVI} commands are ``pointers.'' These are four-byte
quantities that give the location number of some other byte in the file;
the first byte is number~0, then comes number~1, and so on. For example,
one of the parameters of a |bop| command points to the previous |bop|;
this makes it feasible to read the pages in backwards order, in case the
results are being directed to a device that stacks its output face up.
Suppose the preamble of a \.{DVI} file occupies bytes 0 to 99. Now if the
first page occupies bytes 100 to 999, say, and if the second
page occupies bytes 1000 to 1999, then the |bop| that starts in byte 1000
points to 100 and the |bop| that starts in byte 2000 points to 1000. (The
very first |bop|, i.e., the one starting in byte 100, has a pointer of~$-1$.)

@ The \.{DVI} format is intended to be both compact and easily interpreted
by a machine. Compactness is achieved by making most of the information
implicit instead of explicit. When a \.{DVI}-reading program reads the
commands for a page, it keeps track of several quantities: (a)~The current
font |f| is an integer; this value is changed only
by \\{fnt} and \\{fnt\_num} commands. (b)~The current position on the page
is given by two numbers called the horizontal and vertical coordinates,
|h| and |v|. Both coordinates are zero at the upper left corner of the page;
moving to the right corresponds to increasing the horizontal coordinate, and
moving down corresponds to increasing the vertical coordinate. Thus, the
coordinates are essentially Cartesian, except that vertical directions are
flipped; the Cartesian version of |(h, v)| would be |(h,-v)|.  (c)~The
current spacing amounts are given by four numbers |w|, |x|, |y|, and |z|,
where |w| and~|x| are used for horizontal spacing and where |y| and~|z|
are used for vertical spacing. (d)~There is a stack containing
|(h, v, w, x, y, z)| values; the \.{DVI} commands |push| and |pop| are used to
change the current level of operation. Note that the current font~|f| is
not pushed and popped; the stack contains only information about
positioning.

The values of |h|, |v|, |w|, |x|, |y|, and |z| are signed integers having up
to 32 bits, including the sign. Since they represent physical distances,
there is a small unit of measurement such that increasing |h| by~1 means
moving a certain tiny distance to the right. The actual unit of
measurement is variable, as explained below; \TeX\ sets things up so that
its \.{DVI} output is in sp units, i.e., scaled points, in agreement with
all the |scaled| dimensions in \TeX's data structures.

@ Here is a list of all the commands that may appear in a \.{DVI} file. Each
command is specified by its symbolic name (e.g., |bop|), its opcode byte
(e.g., 139), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example,
`|p[4]|' means that parameter |p| is four bytes long.

\yskip\hang|set_char_0| 0. Typeset character number~0 from font~|f|
such that the reference point of the character is at |(h, v)|. Then
increase |h| by the width of that character. Note that a character may
have zero or negative width, so one cannot be sure that |h| will advance
after this command; but |h| usually does increase.

\yskip\hang\\{set\_char\_1} through \\{set\_char\_127} (opcodes 1 to 127).
Do the operations of |set_char_0|; but use the character whose number
matches the opcode, instead of character~0.

\yskip\hang|set1| 128 |c[1]|. Same as |set_char_0|, except that character
number~|c| is typeset. \TeX82 uses this command for characters in the
range |128 <= c < 256|.

\yskip\hang|@!set2| 129 |c[2]|. Same as |set1|, except that |c|~is two
bytes long, so it is in the range |0 <= c < 65536|. \TeX82 never uses this
command, but it should come in handy for extensions of \TeX\ that deal
with oriental languages.
@^oriental characters@>@^Chinese characters@>@^Japanese characters@>

\yskip\hang|@!set3| 130 |c[3]|. Same as |set1|, except that |c|~is three
bytes long, so it can be as large as $2^{24}-1$. Not even the Chinese
language has this many characters, but this command might prove useful
in some yet unforeseen extension.

\yskip\hang|@!set4| 131 |c[4]|. Same as |set1|, except that |c|~is four
bytes long. Imagine that.

\yskip\hang|set_rule| 132 |a[4]| |b[4]|. Typeset a solid black rectangle
of height~|a| and width~|b|, with its bottom left corner at |(h, v)|. Then
set |h=h+b|. If either |a <= 0| or |b <= 0|, nothing should be typeset. Note
that if |b < 0|, the value of |h| will decrease even though nothing else happens.
See below for details about how to typeset rules so that consistency with
\MF\ is guaranteed.

\yskip\hang|@!put1| 133 |c[1]|. Typeset character number~|c| from font~|f|
such that the reference point of the character is at |(h, v)|. (The `put'
commands are exactly like the `set' commands, except that they simply put out a
character or a rule without moving the reference point afterwards.)

\yskip\hang|@!put2| 134 |c[2]|. Same as |set2|, except that |h| is not changed.

\yskip\hang|@!put3| 135 |c[3]|. Same as |set3|, except that |h| is not changed.

\yskip\hang|@!put4| 136 |c[4]|. Same as |set4|, except that |h| is not changed.

\yskip\hang|put_rule| 137 |a[4]| |b[4]|. Same as |set_rule|, except that
|h| is not changed.

\yskip\hang|nop| 138. No operation, do nothing. Any number of |nop|'s
may occur between \.{DVI} commands, but a |nop| cannot be inserted between
a command and its parameters or between two parameters.

\yskip\hang|bop| 139 $c_0[4]$ $c_1[4]$ $\ldots$ $c_9[4]$ $p[4]$. Beginning
of a page: Set |(h, v, w, x, y, z)=(0, 0, 0, 0, 0, 0)| and set the stack empty. Set
the current font |f| to an undefined value.  The ten $c_i$ parameters hold
the values of \.{\\count0} $\ldots$ \.{\\count9} in \TeX\ at the time
\.{\\shipout} was invoked for this page; they can be used to identify
pages, if a user wants to print only part of a \.{DVI} file. The parameter
|p| points to the previous |bop| in the file; the first
|bop| has $p=-1$.

\yskip\hang|eop| 140.  End of page: Print what you have read since the
previous |bop|. At this point the stack should be empty. (The \.{DVI}-reading
programs that drive most output devices will have kept a buffer of the
material that appears on the page that has just ended. This material is
largely, but not entirely, in order by |v| coordinate and (for fixed |v|) by
|h|~coordinate; so it usually needs to be sorted into some order that is
appropriate for the device in question.)

\yskip\hang|push| 141. Push the current values of |(h, v, w, x, y, z)| onto the
top of the stack; do not change any of these values. Note that |f| is
not pushed.

\yskip\hang|pop| 142. Pop the top six values off of the stack and assign
them respectively to |(h, v, w, x, y, z)|. The number of pops should never
exceed the number of pushes, since it would be highly embarrassing if the
stack were empty at the time of a |pop| command.

\yskip\hang|right1| 143 |b[1]|. Set |h=h+b|, i.e., move right |b| units.
The parameter is a signed number in two's complement notation, |-128 <= b < 128|;
if |b < 0|, the reference point moves left.

\yskip\hang|@!right2| 144 |b[2]|. Same as |right1|, except that |b| is a
two-byte quantity in the range |-32768 <= b < 32768|.

\yskip\hang|@!right3| 145 |b[3]|. Same as |right1|, except that |b| is a
three-byte quantity in the range |@t$-2^{23}$@> <= b < @t$2^{23}$@>|.

\yskip\hang|@!right4| 146 |b[4]|. Same as |right1|, except that |b| is a
four-byte quantity in the range |@t$-2^{31}$@> <= b < @t$2^{31}$@>|.

\yskip\hang|w0| 147. Set |h=h+w|; i.e., move right |w| units. With luck,
this parameterless command will usually suffice, because the same kind of motion
will occur several times in succession; the following commands explain how
|w| gets particular values.

\yskip\hang|w1| 148 |b[1]|. Set |w=b| and |h=h+b|. The value of |b| is a
signed quantity in two's complement notation, |-128 <= b < 128|. This command
changes the current |w|~spacing and moves right by |b|.

\yskip\hang|@!w2| 149 |b[2]|. Same as |w1|, but |b| is two bytes long,
|-32768 <= b < 32768|.

\yskip\hang|@!w3| 150 |b[3]|. Same as |w1|, but |b| is three bytes long,
|@t$-2^{23}$@> <= b < @t$2^{23}$@>|.

\yskip\hang|@!w4| 151 |b[4]|. Same as |w1|, but |b| is four bytes long,
|@t$-2^{31}$@> <= b < @t$2^{31}$@>|.

\yskip\hang|x0| 152. Set |h=h+x|; i.e., move right |x| units. The `|x|'
commands are like the `|w|' commands except that they involve |x| instead
of |w|.

\yskip\hang|x1| 153 |b[1]|. Set |x=b| and |h=h+b|. The value of |b| is a
signed quantity in two's complement notation, |-128 <= b < 128|. This command
changes the current |x|~spacing and moves right by |b|.

\yskip\hang|@!x2| 154 |b[2]|. Same as |x1|, but |b| is two bytes long,
|-32768 <= b < 32768|.

\yskip\hang|@!x3| 155 |b[3]|. Same as |x1|, but |b| is three bytes long,
|@t$-2^{23}$@> <= b < @t$2^{23}$@>|.

\yskip\hang|@!x4| 156 |b[4]|. Same as |x1|, but |b| is four bytes long,
|@t$-2^{31}$@> <= b < @t$2^{31}$@>|.

\yskip\hang|down1| 157 |a[1]|. Set |v=v+a|, i.e., move down |a| units.
The parameter is a signed number in two's complement notation, |-128 <= a < 128|;
if |a < 0|, the reference point moves up.

\yskip\hang|@!down2| 158 |a[2]|. Same as |down1|, except that |a| is a
two-byte quantity in the range |-32768 <= a < 32768|.

\yskip\hang|@!down3| 159 |a[3]|. Same as |down1|, except that |a| is a
three-byte quantity in the range |@t$-2^{23}$@> <= a < @t$2^{23}$@>|.

\yskip\hang|@!down4| 160 |a[4]|. Same as |down1|, except that |a| is a
four-byte quantity in the range |@t$-2^{31}$@> <= a < @t$2^{31}$@>|.

\yskip\hang|y0| 161. Set |v=v+y|; i.e., move down |y| units. With luck,
this parameterless command will usually suffice, because the same kind of motion
will occur several times in succession; the following commands explain how
|y| gets particular values.

\yskip\hang|y1| 162 |a[1]|. Set |y=a| and |v=v+a|. The value of |a| is a
signed quantity in two's complement notation, |-128 <= a < 128|. This command
changes the current |y|~spacing and moves down by |a|.

\yskip\hang|@!y2| 163 |a[2]|. Same as |y1|, but |a| is two bytes long,
|-32768 <= a < 32768|.

\yskip\hang|@!y3| 164 |a[3]|. Same as |y1|, but |a| is three bytes long,
|@t$-2^{23}$@> <= a < @t$2^{23}$@>|.

\yskip\hang|@!y4| 165 |a[4]|. Same as |y1|, but |a| is four bytes long,
|@t$-2^{31}$@> <= a < @t$2^{31}$@>|.

\yskip\hang|z0| 166. Set |v=v+z|; i.e., move down |z| units. The `|z|' commands
are like the `|y|' commands except that they involve |z| instead of |y|.

\yskip\hang|z1| 167 |a[1]|. Set |z=a| and |v=v+a|. The value of |a| is a
signed quantity in two's complement notation, |-128 <= a < 128|. This command
changes the current |z|~spacing and moves down by |a|.

\yskip\hang|@!z2| 168 |a[2]|. Same as |z1|, but |a| is two bytes long,
|-32768 <= a < 32768|.

\yskip\hang|@!z3| 169 |a[3]|. Same as |z1|, but |a| is three bytes long,
|@t$-2^{23}$@> <= a < @t$2^{23}$@>|.

\yskip\hang|@!z4| 170 |a[4]|. Same as |z1|, but |a| is four bytes long,
|@t$-2^{31}$@> <= a < @t$2^{31}$@>|.

\yskip\hang|fnt_num_0| 171. Set |f=0|. Font 0 must previously have been
defined by a \\{fnt\_def} instruction, as explained below.

\yskip\hang\\{fnt\_num\_1} through \\{fnt\_num\_63} (opcodes 172 to 234). Set
|f=1|, \dots, \hbox{|f=63|}, respectively.

\yskip\hang|fnt1| 235 |k[1]|. Set |f=k|. \TeX82 uses this command for font
numbers in the range |64 <= k < 256|.

\yskip\hang|@!fnt2| 236 |k[2]|. Same as |fnt1|, except that |k|~is two
bytes long, so it is in the range |0 <= k < 65536|. \TeX82 never generates this
command, but large font numbers may prove useful for specifications of
color or texture, or they may be used for special fonts that have fixed
numbers in some external coding scheme.

\yskip\hang|@!fnt3| 237 |k[3]|. Same as |fnt1|, except that |k|~is three
bytes long, so it can be as large as $2^{24}-1$.

\yskip\hang|@!fnt4| 238 |k[4]|. Same as |fnt1|, except that |k|~is four
bytes long; this is for the really big font numbers (and for the negative ones).

\yskip\hang|xxx1| 239 |k[1]| |x[k]|. This command is undefined in
general; it functions as a $(k+2)$-byte |nop| unless special \.{DVI}-reading
programs are being used. \TeX82 generates |xxx1| when a short enough
\.{\\special} appears, setting |k| to the number of bytes being sent. It
is recommended that |x| be a string having the form of a keyword followed
by possible parameters relevant to that keyword.

\yskip\hang|@!xxx2| 240 |k[2]| |x[k]|. Like |xxx1|, but |0 <= k < 65536|.

\yskip\hang|@!xxx3| 241 |k[3]| |x[k]|. Like |xxx1|, but |0 <= k < @t$2^{24}$@>|.

\yskip\hang|xxx4| 242 |k[4]| |x[k]|. Like |xxx1|, but |k| can be ridiculously
large. \TeX82 uses |xxx4| when sending a string of length 256 or more.

\yskip\hang|fnt_def1| 243 |k[1]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |0 <= k < 256|; font definitions will be explained shortly.

\yskip\hang|@!fnt_def2| 244 |k[2]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |0 <= k < 65536|.

\yskip\hang|@!fnt_def3| 245 |k[3]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |0 <= k < @t$2^{24}$@>|.

\yskip\hang|@!fnt_def4| 246 |k[4]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |@t$-2^{31}$@> <= k < @t$2^{31}$@>|.

\yskip\hang|pre| 247 |i[1]| |num[4]| |den[4]| |mag[4]| |k[1]| |x[k]|.
Beginning of the preamble; this must come at the very beginning of the
file. Parameters |i|, |num|, |den|, |mag|, |k|, and |x| are explained below.

\yskip\hang|post| 248. Beginning of the postamble, see below.

\yskip\hang|post_post| 249. Ending of the postamble, see below.

\yskip\noindent Commands 250--255 are undefined at the present time.

@ @d set_char_0 0 /*typeset character 0 and move right*/
@d set1 128 /*typeset a character and move right*/
@d set_rule 132 /*typeset a rule and move right*/
@d put_rule 137 /*typeset a rule*/
@d nop 138 /*no operation*/
@d bop 139 /*beginning of page*/
@d eop 140 /*ending of page*/
@d push 141 /*save the current positions*/
@d pop 142 /*restore previous positions*/
@d right1 143 /*move right*/
@d w0 147 /*move right by |w|*/
@d w1 148 /*move right and set |w|*/
@d x0 152 /*move right by |x|*/
@d x1 153 /*move right and set |x|*/
@d down1 157 /*move down*/
@d y0 161 /*move down by |y|*/
@d y1 162 /*move down and set |y|*/
@d z0 166 /*move down by |z|*/
@d z1 167 /*move down and set |z|*/
@d fnt_num_0 171 /*set current font to 0*/
@d fnt1 235 /*set current font*/
@d xxx1 239 /*extension to \.{DVI} primitives*/
@d xxx4 242 /*potentially long extension to \.{DVI} primitives*/
@d fnt_def1 243 /*define the meaning of a font number*/
@d pre 247 /*preamble*/
@d post 248 /*postamble beginning*/
@d post_post 249 /*postamble ending*/

@ The preamble contains basic information about the file as a whole. As
stated above, there are six parameters:
$$\hbox{|@!i[1]| |@!num[4]| |@!den[4]| |@!mag[4]| |@!k[1]| |@!x[k]|.}$$
The |i| byte identifies \.{DVI} format; currently this byte is always set
to~2. (The value |i==3| is currently used for an extended format that
allows a mixture of right-to-left and left-to-right typesetting.
Some day we will set |i==4|, when \.{DVI} format makes another
incompatible change---perhaps in the year 2048.)

The next two parameters, |num| and |den|, are positive integers that define
the units of measurement; they are the numerator and denominator of a
fraction by which all dimensions in the \.{DVI} file could be multiplied
in order to get lengths in units of $10^{-7}$ meters. Since $\rm 7227{pt} =
254{cm}$, and since \TeX\ works with scaled points where there are $2^{16}$
sp in a point, \TeX\ sets
$|num|/|den|=(254\cdot10^5)/(7227\cdot2^{16})=25400000/473628672$.
@^sp@>

The |mag| parameter is what \TeX\ calls \.{\\mag}, i.e., 1000 times the
desired magnification. The actual fraction by which dimensions are
multiplied is therefore $|mag|\cdot|num|/1000|den|$. Note that if a \TeX\
source document does not call for any `\.{true}' dimensions, and if you
change it only by specifying a different \.{\\mag} setting, the \.{DVI}
file that \TeX\ creates will be completely unchanged except for the value
of |mag| in the preamble and postamble. (Fancy \.{DVI}-reading programs allow
users to override the |mag|~setting when a \.{DVI} file is being printed.)

Finally, |k| and |x| allow the \.{DVI} writer to include a comment, which is not
interpreted further. The length of comment |x| is |k|, where |0 <= k < 256|.

@d id_byte 2 /*identifies the kind of \.{DVI} files described here*/

@ Font definitions for a given font number |k| contain further parameters
$$\hbox{|c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.}$$
The four-byte value |c| is the check sum that \TeX\ found in the \.{TFM}
file for this font; |c| should match the check sum of the font found by
programs that read this \.{DVI} file.
@^check sum@>

Parameter |s| contains a fixed-point scale factor that is applied to
the character widths in font |k|; font dimensions in \.{TFM} files and
other font files are relative to this quantity, which is called the
``at size'' elsewhere in this documentation. The value of |s| is
always positive and less than $2^{27}$. It is given in the same units
as the other \.{DVI} dimensions, i.e., in sp when \TeX82 has made the
file.  Parameter |d| is similar to |s|; it is the ``design size,'' and
(like~|s|) it is given in \.{DVI} units. Thus, font |k| is to be used
at $|mag|\cdot s/1000d$ times its normal size.

The remaining part of a font definition gives the external name of the font,
which is an ASCII string of length |a+l|. The number |a| is the length
of the ``area'' or directory, and |l| is the length of the font name itself;
the standard local system font area is supposed to be used when |a==0|.
The |n| field contains the area in its first |a| bytes.

Font definitions must appear before the first use of a particular font number.
Once font |k| is defined, it must not be defined again; however, we
shall see below that font definitions appear in the postamble as well as
in the pages, so in this sense each font number is defined exactly twice,
if at all. Like |nop| commands, font definitions can
appear before the first |bop|, or between an |eop| and a |bop|.

@ Sometimes it is desirable to make horizontal or vertical rules line up
precisely with certain features in characters of a font. It is possible to
guarantee the correct matching between \.{DVI} output and the characters
generated by \MF\ by adhering to the following principles: (1)~The \MF\
characters should be positioned so that a bottom edge or left edge that is
supposed to line up with the bottom or left edge of a rule appears at the
reference point, i.e., in row~0 and column~0 of the \MF\ raster. This
ensures that the position of the rule will not be rounded differently when
the pixel size is not a perfect multiple of the units of measurement in
the \.{DVI} file. (2)~A typeset rule of height $a>0$ and width $b>0$
should be equivalent to a \MF-generated character having black pixels in
precisely those raster positions whose \MF\ coordinates satisfy
|0 <= x < @t$\alpha$@>b| and |0 <= y < @t$\alpha$@>a|, where $\alpha$ is the number
of pixels per \.{DVI} unit.
@:METAFONT}{\MF@>
@^alignment of rules with characters@>
@^rules aligning with characters@>

@ The last page in a \.{DVI} file is followed by `|post|'; this command
introduces the postamble, which summarizes important facts that \TeX\ has
accumulated about the file, making it possible to print subsets of the data
with reasonable efficiency. The postamble has the form
$$\vbox{\halign{\hbox{#\hfil}\cr
  |post| |p[4]| |num[4]| |den[4]| |mag[4]| |l[4]| |u[4]| |s[2]| |t[2]|\cr
  $\langle\,$font definitions$\,\rangle$\cr
  |post_post| |q[4]| |i[1]| 223's$[{\G}4]$\cr}}$$
Here |p| is a pointer to the final |bop| in the file. The next three
parameters, |num|, |den|, and |mag|, are duplicates of the quantities that
appeared in the preamble.

Parameters |l| and |u| give respectively the height-plus-depth of the tallest
page and the width of the widest page, in the same units as other dimensions
of the file. These numbers might be used by a \.{DVI}-reading program to
position individual ``pages'' on large sheets of film or paper; however,
the standard convention for output on normal size paper is to position each
page so that the upper left-hand corner is exactly one inch from the left
and the top. Experience has shown that it is unwise to design \.{DVI}-to-printer
software that attempts cleverly to center the output; a fixed position of
the upper left corner is easiest for users to understand and to work with.
Therefore |l| and~|u| are often ignored.

Parameter |s| is the maximum stack depth (i.e., the largest excess of
|push| commands over |pop| commands) needed to process this file. Then
comes |t|, the total number of pages (|bop| commands) present.

The postamble continues with font definitions, which are any number of
\\{fnt\_def} commands as described above, possibly interspersed with |nop|
commands. Each font number that is used in the \.{DVI} file must be defined
exactly twice: Once before it is first selected by a \\{fnt} command, and once
in the postamble.

@ The last part of the postamble, following the |post_post| byte that
signifies the end of the font definitions, contains |q|, a pointer to the
|post| command that started the postamble.  An identification byte, |i|,
comes next; this currently equals~2, as in the preamble.

The |i| byte is followed by four or more bytes that are all equal to
the decimal number 223 (i.e., 0337 in octal). \TeX\ puts out four to seven of
these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per
word; but any number of 223's is allowed, as long as there are at least four
of them. In effect, 223 is a sort of signature that is added at the very end.
@^Fuchs, David Raymond@>

This curious way to finish off a \.{DVI} file makes it feasible for
\.{DVI}-reading programs to find the postamble first, on most computers,
even though \TeX\ wants to write the postamble last. Most operating
systems permit random access to individual words or bytes of a file, so
the \.{DVI} reader can start at the end and skip backwards over the 223's
until finding the identification byte. Then it can back up four bytes, read
|q|, and move to byte |q| of the file. This byte should, of course,
contain the value 248 (|post|); now the postamble can be read, so the
\.{DVI} reader can discover all the information needed for typesetting the
pages. Note that it is also possible to skip through the \.{DVI} file at
reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since \.{DVI} files used in production
jobs tend to be large.

Unfortunately, however, standard \PASCAL\ does not include the ability to
@^system dependencies@>
access a random position in a file, or even to determine the length of a file.
Almost all systems nowadays provide the necessary capabilities, so \.{DVI}
format has been designed to work most efficiently with modern operating systems.
But if \.{DVI} files have to be processed under the restrictions of standard
\PASCAL, one can simply read them from front to back, since the necessary
header information is present in the preamble and in the font definitions.
(The |l| and |u| and |s| and |t| parameters, which appear only in the
postamble, are ``frills'' that are handy but not absolutely necessary.)

@* Shipping pages out.
After considering \TeX's eyes and stomach, we come now to the bowels.
@^bowels@>

The |ship_out| procedure is given a pointer to a box; its mission is
to describe that box in \.{DVI} form, outputting a ``page'' to |dvi_file|.
The \.{DVI} coordinates $(h,v)=(0,0)$ should correspond to the upper left
corner of the box being shipped.

Since boxes can be inside of boxes inside of boxes, the main work of
|ship_out| is done by two mutually recursive routines, |hlist_out|
and |vlist_out|, which traverse the hlists and vlists inside of horizontal
and vertical boxes.

As individual pages are being processed, we need to accumulate
information about the entire set of pages, since such statistics must be
reported in the postamble. The global variables |total_pages|, |max_v|,
|max_h|, |max_push|, and |last_bop| are used to record this information.

The variable |doing_leaders| is |true| while leaders are being output.
The variable |dead_cycles| contains the number of times an output routine
has been initiated since the last |ship_out|.

A few additional global variables are also defined here for use in
|vlist_out| and |hlist_out|. They could have been local variables, but
that would waste stack space when boxes are deeply nested, since the
values of these variables are not needed during recursive calls.
@^recursion@>

@<Glob...@>=
static int @!total_pages; /*the number of pages that have been shipped out*/
static scaled @!max_v; /*maximum height-plus-depth of pages shipped so far*/
static scaled @!max_h; /*maximum width of pages shipped so far*/
static int @!max_push; /*deepest nesting of |push| commands encountered so far*/
static int @!last_bop; /*location of previous |bop| in the \.{DVI} output*/
static int @!dead_cycles; /*recent outputs that didn't ship anything out*/
static bool @!doing_leaders; /*are we inside a leader box?*/
@#
static quarterword @!c, @!f; /*character and font in current |char_node|*/
static scaled @!rule_ht, @!rule_dp, @!rule_wd; /*size of current rule being output*/
static pointer @!g; /*current glue specification*/
static int @!lq, @!lr; /*quantities used in calculations for leaders*/

@ @<Set init...@>=
total_pages=0;max_v=0;max_h=0;max_push=0;last_bop=-1;
doing_leaders=false;dead_cycles=0;cur_s=-1;

@ The \.{DVI} bytes are output to a buffer instead of being written directly
to the output file. This makes it possible to reduce the overhead of
subroutine calls, thereby measurably speeding up the computation, since
output of \.{DVI} bytes is part of \TeX's inner loop. And it has another
advantage as well, since we can change instructions in the buffer in order to
make the output more compact. For example, a `|down2|' command can be
changed to a `|y2|', thereby making a subsequent `|y0|' command possible,
saving two bytes.

The output buffer is divided into two parts of equal size; the bytes found
in |dvi_buf[0 dotdot half_buf-1]| constitute the first half, and those in
|dvi_buf[half_buf dotdot dvi_buf_size-1]| constitute the second. The global
variable |dvi_ptr| points to the position that will receive the next
output byte. When |dvi_ptr| reaches |dvi_limit|, which is always equal
to one of the two values |half_buf| or |dvi_buf_size|, the half buffer that
is about to be invaded next is sent to the output and |dvi_limit| is
changed to its other value. Thus, there is always at least a half buffer's
worth of information present, except at the very beginning of the job.

Bytes of the \.{DVI} file are numbered sequentially starting with 0;
the next byte to be generated will be number |dvi_offset+dvi_ptr|.
A byte is present in the buffer only if its number is | >= dvi_gone|.

@<Types...@>=
typedef int16_t dvi_index; /*an index into the output buffer*/

@ Some systems may find it more efficient to make |dvi_buf| a ||
array, since output of four bytes at once may be facilitated.
@^system dependencies@>

@<Glob...@>=
static eight_bits @!dvi_buf[dvi_buf_size+1]; /*buffer for \.{DVI} output*/
static dvi_index @!half_buf; /*half of |dvi_buf_size|*/
static dvi_index @!dvi_limit; /*end of the current half buffer*/
static dvi_index @!dvi_ptr; /*the next available buffer address*/
static int @!dvi_offset; /*|dvi_buf_size| times the number of times the
  output buffer has been fully emptied*/
static int @!dvi_gone; /*the number of bytes already output to |dvi_file|*/

@ Initially the buffer is all in one piece; we will output half of it only
after it first fills up.

@<Set init...@>=
half_buf=dvi_buf_size/2;dvi_limit=dvi_buf_size;dvi_ptr=0;
dvi_offset=0;dvi_gone=0;

@ The actual output of |dvi_buf[a dotdot b]| to |dvi_file| is performed by calling
|write_dvi(a, b)|. For best results, this procedure should be optimized to
run as fast as possible on each particular system, since it is part of
\TeX's inner loop. It is safe to assume that |a| and |b+1| will both be
multiples of 4 when |write_dvi(a, b)| is called; therefore it is possible on
many machines to use efficient methods to pack four bytes per word and to
output an array of words with one system call.
@^system dependencies@>
@^inner loop@>
@^defecation@>

@p static void write_dvi(dvi_index @!a, dvi_index @!b)
{@+int k;
for (k=a; k<=b; k++) pascal_write(dvi_file, "%c", dvi_buf[k]);
}

@ To put a byte in the buffer without paying the cost of invoking a procedure
each time, we use the macro |dvi_out|.

@d dvi_out(A) @+{@+dvi_buf[dvi_ptr]=A;incr(dvi_ptr);
  if (dvi_ptr==dvi_limit) dvi_swap();
  }

@p static void dvi_swap(void) /*outputs half of the buffer*/
{@+if (dvi_limit==dvi_buf_size)
  {@+write_dvi(0, half_buf-1);dvi_limit=half_buf;
  dvi_offset=dvi_offset+dvi_buf_size;dvi_ptr=0;
  }
else{@+write_dvi(half_buf, dvi_buf_size-1);dvi_limit=dvi_buf_size;
  }
dvi_gone=dvi_gone+half_buf;
}

@ Here is how we clean out the buffer when \TeX\ is all through; |dvi_ptr|
will be a multiple of~4.

@<Empty the last bytes out of |dvi_buf|@>=
if (dvi_limit==half_buf) write_dvi(half_buf, dvi_buf_size-1);
if (dvi_ptr > 0) write_dvi(0, dvi_ptr-1)

@ The |dvi_four| procedure outputs four bytes in two's complement notation,
without risking arithmetic overflow.

@p static void dvi_four(int @!x)
{@+if (x >= 0) dvi_out(x/0100000000)@;
else{@+x=x+010000000000;
  x=x+010000000000;
  dvi_out((x/0100000000)+128);
  }
x=x%0100000000;dvi_out(x/0200000);
x=x%0200000;dvi_out(x/0400);
dvi_out(x%0400);
}

@ A mild optimization of the output is performed by the |dvi_pop|
routine, which issues a |pop| unless it is possible to cancel a
`|push| |pop|' pair. The parameter to |dvi_pop| is the byte address
following the old |push| that matches the new |pop|.

@p static void dvi_pop(int @!l)
{@+if ((l==dvi_offset+dvi_ptr)&&(dvi_ptr > 0)) decr(dvi_ptr);
else dvi_out(pop);
}

@ Here's a procedure that outputs a font definition. Since \TeX82 uses at
most 256 different fonts per job, |fnt_def1| is always used as the command code.

@p static void dvi_font_def(internal_font_number @!f)
{@+int k; /*index into |str_pool|*/
dvi_out(fnt_def1);
dvi_out(f-font_base-1);@/
dvi_out(qo(font_check[f].b0));
dvi_out(qo(font_check[f].b1));
dvi_out(qo(font_check[f].b2));
dvi_out(qo(font_check[f].b3));@/
dvi_four(font_size[f]);
dvi_four(font_dsize[f]);@/
dvi_out(length(font_area[f]));
dvi_out(length(font_name[f]));
@<Output the font name whose internal number is |f|@>;
}

@ @<Output the font name whose internal number is |f|@>=
for (k=str_start[font_area[f]]; k<=str_start[font_area[f]+1]-1; k++)
  dvi_out(so(str_pool[k]));
for (k=str_start[font_name[f]]; k<=str_start[font_name[f]+1]-1; k++)
  dvi_out(so(str_pool[k]))

@ Versions of \TeX\ intended for small computers might well choose to omit
the ideas in the next few parts of this program, since it is not really
necessary to optimize the \.{DVI} code by making use of the |w0|, |x0|,
|y0|, and |z0| commands. Furthermore, the algorithm that we are about to
describe does not pretend to give an optimum reduction in the length
of the \.{DVI} code; after all, speed is more important than compactness.
But the method is surprisingly effective, and it takes comparatively little
time.

We can best understand the basic idea by first considering a simpler problem
that has the same essential characteristics. Given a sequence of digits,
say $3\,1\,4\,1\,5\,9\,2\,6\,5\,3\,5\,8\,9$, we want to assign subscripts
$d$, $y$, or $z$ to each digit so as to maximize the number of ``$y$-hits''
and ``$z$-hits''; a $y$-hit is an instance of two appearances of the same
digit with the subscript $y$, where no $y$'s intervene between the two
appearances, and a $z$-hit is defined similarly. For example, the sequence
above could be decorated with subscripts as follows:
$$3_z\,1_y\,4_d\,1_y\,5_y\,9_d\,2_d\,6_d\,5_y\,3_z\,5_y\,8_d\,9_d.$$
There are three $y$-hits ($1_y\ldots1_y$ and $5_y\ldots5_y\ldots5_y$) and
one $z$-hit ($3_z\ldots3_z$); there are no $d$-hits, since the two appearances
of $9_d$ have $d$'s between them, but we don't count $d$-hits so it doesn't
matter how many there are. These subscripts are analogous to the \.{DVI}
commands called \\{down}, $y$, and $z$, and the digits are analogous to
different amounts of vertical motion; a $y$-hit or $z$-hit corresponds to
the opportunity to use the one-byte commands |y0| or |z0| in a \.{DVI} file.

\TeX's method of assigning subscripts works like this: Append a new digit,
say $\delta$, to the right of the sequence. Now look back through the
sequence until one of the following things happens: (a)~You see
$\delta_y$ or $\delta_z$, and this was the first time you encountered a
$y$ or $z$ subscript, respectively.  Then assign $y$ or $z$ to the new
$\delta$; you have scored a hit. (b)~You see $\delta_d$, and no $y$
subscripts have been encountered so far during this search.  Then change
the previous $\delta_d$ to $\delta_y$ (this corresponds to changing a
command in the output buffer), and assign $y$ to the new $\delta$; it's
another hit.  (c)~You see $\delta_d$, and a $y$ subscript has been seen
but not a $z$.  Change the previous $\delta_d$ to $\delta_z$ and assign
$z$ to the new $\delta$. (d)~You encounter both $y$ and $z$ subscripts
before encountering a suitable $\delta$, or you scan all the way to the
front of the sequence. Assign $d$ to the new $\delta$; this assignment may
be changed later.

The subscripts $3_z\,1_y\,4_d\ldots\,$ in the example above were, in fact,
produced by this procedure, as the reader can verify. (Go ahead and try it.)

@ In order to implement such an idea, \TeX\ maintains a stack of pointers
to the \\{down}, $y$, and $z$ commands that have been generated for the
current page. And there is a similar stack for \\{right}, |w|, and |x|
commands. These stacks are called the down stack and right stack, and their
top elements are maintained in the variables |down_ptr| and |right_ptr|.

Each entry in these stacks contains four fields: The |width| field is
the amount of motion down or to the right; the |location| field is the
byte number of the \.{DVI} command in question (including the appropriate
|dvi_offset|); the |link| field points to the next item below this one
on the stack; and the |info| field encodes the options for possible change
in the \.{DVI} command.

@d movement_node_size 3 /*number of words per entry in the down and right stacks*/
@d location(A) mem[A+2].i /*\.{DVI} byte number for a movement command*/

@<Glob...@>=
static pointer @!down_ptr, @!right_ptr; /*heads of the down and right stacks*/

@ @<Set init...@>=
down_ptr=null;right_ptr=null;

@ Here is a subroutine that produces a \.{DVI} command for some specified
downward or rightward motion. It has two parameters: |w| is the amount
of motion, and |o| is either |down1| or |right1|. We use the fact that
the command codes have convenient arithmetic properties: |y1-down1==w1-right1|
and |z1-down1==x1-right1|.

@p static void movement(scaled @!w, eight_bits @!o)
{@+
small_number mstate; /*have we seen a |y| or |z|?*/
pointer @!p, @!q; /*current and top nodes on the stack*/
int @!k; /*index into |dvi_buf|, modulo |dvi_buf_size|*/
q=get_node(movement_node_size); /*new node for the top of the stack*/
width(q)=w;location(q)=dvi_offset+dvi_ptr;
if (o==down1)
  {@+link(q)=down_ptr;down_ptr=q;
  }
else{@+link(q)=right_ptr;right_ptr=q;
  }
@<Look at the other stack entries until deciding what sort of \.{DVI} command
to generate; |goto found| if node |p| is a ``hit''@>;
@<Generate a |down| or |right| command for |w| and |return|@>;
found: @<Generate a |y0| or |z0| command in order to reuse a previous appearance
of~|w|@>;
}

@ The |info| fields in the entries of the down stack or the right stack
have six possible settings: |y_here| or |z_here| mean that the \.{DVI}
command refers to |y| or |z|, respectively (or to |w| or |x|, in the
case of horizontal motion); |yz_OK| means that the \.{DVI} command is
\\{down} (or \\{right}) but can be changed to either |y| or |z| (or
to either |w| or |x|); |y_OK| means that it is \\{down} and can be changed
to |y| but not |z|; |z_OK| is similar; and |d_fixed| means it must stay
\\{down}.

The four settings |yz_OK|, |y_OK|, |z_OK|, |d_fixed| would not need to
be distinguished from each other if we were simply solving the
digit-subscripting problem mentioned above. But in \TeX's case there is
a complication because of the nested structure of |push| and |pop|
commands. Suppose we add parentheses to the digit-subscripting problem,
redefining hits so that $\delta_y\ldots \delta_y$ is a hit if all $y$'s between
the $\delta$'s are enclosed in properly nested parentheses, and if the
parenthesis level of the right-hand $\delta_y$ is deeper than or equal to
that of the left-hand one. Thus, `(' and `)' correspond to `|push|'
and `|pop|'. Now if we want to assign a subscript to the final 1 in the
sequence
$$2_y\,7_d\,1_d\,(\,8_z\,2_y\,8_z\,)\,1$$
we cannot change the previous $1_d$ to $1_y$, since that would invalidate
the $2_y\ldots2_y$ hit. But we can change it to $1_z$, scoring a hit
since the intervening $8_z$'s are enclosed in parentheses.

The program below removes movement nodes that are introduced after a |push|,
before it outputs the corresponding |pop|.

@d y_here 1 /*|info| when the movement entry points to a |y| command*/
@d z_here 2 /*|info| when the movement entry points to a |z| command*/
@d yz_OK 3 /*|info| corresponding to an unconstrained \\{down} command*/
@d y_OK 4 /*|info| corresponding to a \\{down} that can't become a |z|*/
@d z_OK 5 /*|info| corresponding to a \\{down} that can't become a |y|*/
@d d_fixed 6 /*|info| corresponding to a \\{down} that can't change*/

@ When the |movement| procedure gets to the label |found|, the value of
|info(p)| will be either |y_here| or |z_here|. If it is, say, |y_here|,
the procedure generates a |y0| command (or a |w0| command), and marks
all |info| fields between |q| and |p| so that |y| is not OK in that range.

@<Generate a |y0| or |z0| command...@>=
info(q)=info(p);
if (info(q)==y_here)
  {@+dvi_out(o+y0-down1); /*|y0| or |w0|*/
  while (link(q)!=p)
    {@+q=link(q);
    switch (info(q)) {
    case yz_OK: info(q)=z_OK;@+break;
    case y_OK: info(q)=d_fixed;@+break;
    default:do_nothing;
    }
    }
  }
else{@+dvi_out(o+z0-down1); /*|z0| or |x0|*/
  while (link(q)!=p)
    {@+q=link(q);
    switch (info(q)) {
    case yz_OK: info(q)=y_OK;@+break;
    case z_OK: info(q)=d_fixed;@+break;
    default:do_nothing;
    }
    }
  }

@ @<Generate a |down| or |right|...@>=
info(q)=yz_OK;
if (abs(w) >= 040000000)
  {@+dvi_out(o+3); /*|down4| or |right4|*/
  dvi_four(w);return;
  }
if (abs(w) >= 0100000)
  {@+dvi_out(o+2); /*|down3| or |right3|*/
  if (w < 0) w=w+0100000000;
  dvi_out(w/0200000);w=w%0200000;goto label2;
  }
if (abs(w) >= 0200)
  {@+dvi_out(o+1); /*|down2| or |right2|*/
  if (w < 0) w=w+0200000;
  goto label2;
  }
dvi_out(o); /*|down1| or |right1|*/
if (w < 0) w=w+0400;
goto label1;
label2: dvi_out(w/0400);
label1: dvi_out(w%0400);return

@ As we search through the stack, we are in one of three states,
|y_seen|, |z_seen|, or |none_seen|, depending on whether we have
encountered |y_here| or |z_here| nodes. These states are encoded as
multiples of 6, so that they can be added to the |info| fields for quick
decision-making.
@^inner loop@>

@d none_seen 0 /*no |y_here| or |z_here| nodes have been encountered yet*/
@d y_seen 6 /*we have seen |y_here| but not |z_here|*/
@d z_seen 12 /*we have seen |z_here| but not |y_here|*/

@<Look at the other stack entries until deciding...@>=
p=link(q);mstate=none_seen;
while (p!=null)
  {@+if (width(p)==w) @<Consider a node with matching width; |goto found|
if it's a hit@>@;
  else switch (mstate+info(p)) {
    case none_seen+y_here: mstate=y_seen;@+break;
    case none_seen+z_here: mstate=z_seen;@+break;
    case y_seen+z_here: case z_seen+y_here: goto not_found;
    default:do_nothing;
    }
  p=link(p);
  }
not_found:

@ We might find a valid hit in a |y| or |z| byte that is already gone
from the buffer. But we can't change bytes that are gone forever; ``the
moving finger writes, $\ldots\,\,$.''

@<Consider a node with matching width...@>=
switch (mstate+info(p)) {
case none_seen+yz_OK: case none_seen+y_OK:
  case z_seen+yz_OK: case z_seen+y_OK: @t@>@;@/
  if (location(p) < dvi_gone) goto not_found;
  else@<Change buffered instruction to |y| or |w| and |goto found|@>@;@+break;
case none_seen+z_OK: case y_seen+yz_OK:
  case y_seen+z_OK: @t@>@;@/
  if (location(p) < dvi_gone) goto not_found;
  else@<Change buffered instruction to |z| or |x| and |goto found|@>@;@+break;
case none_seen+y_here: case none_seen+z_here:
  case y_seen+z_here: case z_seen+y_here: goto found;
default:do_nothing;
}

@ @<Change buffered instruction to |y| or |w| and |goto found|@>=
{@+k=location(p)-dvi_offset;
if (k < 0) k=k+dvi_buf_size;
dvi_buf[k]=dvi_buf[k]+y1-down1;
info(p)=y_here;goto found;
}

@ @<Change buffered instruction to |z| or |x| and |goto found|@>=
{@+k=location(p)-dvi_offset;
if (k < 0) k=k+dvi_buf_size;
dvi_buf[k]=dvi_buf[k]+z1-down1;
info(p)=z_here;goto found;
}

@ In case you are wondering when all the movement nodes are removed from
\TeX's memory, the answer is that they are recycled just before
|hlist_out| and |vlist_out| finish outputting a box. This restores the
down and right stacks to the state they were in before the box was output,
except that some |info|'s may have become more restrictive.

@p static void prune_movements(int @!l)
   /*delete movement nodes with |location >= l|*/
{@+
pointer p; /*node being deleted*/
while (down_ptr!=null)
  {@+if (location(down_ptr) < l) goto done;
  p=down_ptr;down_ptr=link(p);free_node(p, movement_node_size);
  }
done: while (right_ptr!=null)
  {@+if (location(right_ptr) < l) return;
  p=right_ptr;right_ptr=link(p);free_node(p, movement_node_size);
  }
}

@ The actual distances by which we want to move might be computed as the
sum of several separate movements. For example, there might be several
glue nodes in succession, or we might want to move right by the width of
some box plus some amount of glue. More importantly, the baselineskip
distances are computed in terms of glue together with the depth and
height of adjacent boxes, and we want the \.{DVI} file to lump these
three quantities together into a single motion.

Therefore, \TeX\ maintains two pairs of global variables: |dvi_h| and |dvi_v|
are the |h| and |v| coordinates corresponding to the commands actually
output to the \.{DVI} file, while |cur_h| and |cur_v| are the coordinates
corresponding to the current state of the output routines. Coordinate
changes will accumulate in |cur_h| and |cur_v| without being reflected
in the output, until such a change becomes necessary or desirable; we
can call the |movement| procedure whenever we want to make |dvi_h==cur_h|
or |dvi_v==cur_v|.

The current font reflected in the \.{DVI} output is called |dvi_f|;
there is no need for a `\\{cur\_f}' variable.

The depth of nesting of |hlist_out| and |vlist_out| is called |cur_s|;
this is essentially the depth of |push| commands in the \.{DVI} output.

@d synch_h if (cur_h!=dvi_h)
    {@+movement(cur_h-dvi_h, right1);dvi_h=cur_h;
    }
@d synch_v if (cur_v!=dvi_v)
    {@+movement(cur_v-dvi_v, down1);dvi_v=cur_v;
    }

@<Glob...@>=
static scaled @!dvi_h, @!dvi_v; /*a \.{DVI} reader program thinks we are here*/
static scaled @!cur_h, @!cur_v; /*\TeX\ thinks we are here*/
static internal_font_number @!dvi_f; /*the current font*/
static int @!cur_s; /*current depth of output box nesting, initially $-1$*/

@ @<Initialize variables as |ship_out| begins@>=
dvi_h=0;dvi_v=0;cur_h=h_offset;dvi_f=null_font;
ensure_dvi_open;
if (total_pages==0)
  {@+dvi_out(pre);dvi_out(id_byte); /*output the preamble*/
@^preamble of \.{DVI} file@>
  dvi_four(25400000);dvi_four(473628672); /*conversion ratio for sp*/
  prepare_mag();dvi_four(mag); /*magnification factor is frozen*/
  old_setting=selector;selector=new_string;
  print(" TeX output ");print_int(year);print_char('.');
  print_two(month);print_char('.');print_two(day);
  print_char(':');print_two(time/60);
  print_two(time%60);
  selector=old_setting;dvi_out(cur_length);
  for (s=str_start[str_ptr]; s<=pool_ptr-1; s++) dvi_out(so(str_pool[s]));
  pool_ptr=str_start[str_ptr]; /*flush the current string*/
  }

@ When |hlist_out| is called, its duty is to output the box represented
by the |hlist_node| pointed to by |temp_ptr|. The reference point of that
box has coordinates |(cur_h, cur_v)|.

Similarly, when |vlist_out| is called, its duty is to output the box represented
by the |vlist_node| pointed to by |temp_ptr|. The reference point of that
box has coordinates |(cur_h, cur_v)|.
@^recursion@>

@p static void vlist_out(void); /*|hlist_out| and |vlist_out| are mutually
  recursive*/

@ The recursive procedures |hlist_out| and |vlist_out| each have local variables
|save_h| and |save_v| to hold the values of |dvi_h| and |dvi_v| just before
entering a new level of recursion.  In effect, the values of |save_h| and
|save_v| on \TeX's run-time stack correspond to the values of |h| and |v|
that a \.{DVI}-reading program will push onto its coordinate stack.

@p @t\4@>@<Declare procedures needed in |hlist_out|, |vlist_out|@>@t@>@/
static void hlist_out(void) /*output an |hlist_node| box*/
{@+
scaled base_line; /*the baseline coordinate for this box*/
scaled @!left_edge; /*the left coordinate for this box*/
scaled @!save_h, @!save_v; /*what |dvi_h| and |dvi_v| should pop to*/
pointer @!this_box; /*pointer to containing box*/
glue_ord @!g_order; /*applicable order of infinity for glue*/
int @!g_sign; /*selects type of glue*/
pointer @!p; /*current position in the hlist*/
int @!save_loc; /*\.{DVI} byte location upon entry*/
pointer @!leader_box; /*the leader box being replicated*/
scaled @!leader_wd; /*width of leader box being replicated*/
scaled @!lx; /*extra space between leader boxes*/
bool @!outer_doing_leaders; /*were we doing leaders?*/
scaled @!edge; /*left edge of sub-box, or right edge of leader space*/
double @!glue_temp; /*glue value before rounding*/
double @!cur_glue; /*glue seen so far*/
scaled @!cur_g; /*rounded equivalent of |cur_glue| times the glue ratio*/
cur_g=0;cur_glue=float_constant(0);
this_box=temp_ptr;g_order=glue_order(this_box);
g_sign=glue_sign(this_box);p=list_ptr(this_box);
incr(cur_s);
if (cur_s > 0) dvi_out(push);
if (cur_s > max_push) max_push=cur_s;
save_loc=dvi_offset+dvi_ptr;base_line=cur_v;left_edge=cur_h;
while (p!=null) @<Output node |p| for |hlist_out| and move to the next node,
maintaining the condition |cur_v=base_line|@>;
prune_movements(save_loc);
if (cur_s > 0) dvi_pop(save_loc);
decr(cur_s);
}

@ We ought to give special care to the efficiency of one part of |hlist_out|,
since it belongs to \TeX's inner loop. When a |char_node| is encountered,
we save a little time by processing several nodes in succession until
reaching a non-|char_node|. The program uses the fact that |set_char_0==0|.
@^inner loop@>

@<Output node |p| for |hlist_out|...@>=
reswitch: if (is_char_node(p))
  {@+synch_h;synch_v;
  @/do@+{f=font(p);c=character(p);
  if (f!=dvi_f) @<Change font |dvi_f| to |f|@>;
  if (c >= qi(128)) dvi_out(set1);
  dvi_out(qo(c));@/
  cur_h=cur_h+char_width(f, char_info(f, c));
  p=link(p);
  }@+ while (!(!is_char_node(p)));
  dvi_h=cur_h;
  }
else@<Output the non-|char_node| |p| for |hlist_out| and move to the next
node@>@;

@ @<Change font |dvi_f| to |f|@>=
{@+if (!font_used[f])
  {@+dvi_font_def(f);font_used[f]=true;
  }
if (f <= 64+font_base) dvi_out(f-font_base-1+fnt_num_0)@;
else{@+dvi_out(fnt1);dvi_out(f-font_base-1);
  }
dvi_f=f;
}

@ @<Output the non-|char_node| |p| for |hlist_out|...@>=
{@+switch (type(p)) {
case hlist_node: case vlist_node: @<Output a box in an hlist@>@;@+break;
case rule_node: {@+rule_ht=height(p);rule_dp=depth(p);rule_wd=width(p);
  goto fin_rule;
  }
case whatsit_node: @<Output the whatsit node |p| in an hlist@>;@+break;
case glue_node: @<Move right or output leaders@>@;
case kern_node: case math_node: cur_h=cur_h+width(p);@+break;
case ligature_node: @<Make node |p| look like a |char_node| and |goto reswitch|@>@;
default:do_nothing;
} @/
goto next_p;
fin_rule: @<Output a rule in an hlist@>;
move_past: cur_h=cur_h+rule_wd;
next_p: p=link(p);
}

@ @<Output a box in an hlist@>=
if (list_ptr(p)==null) cur_h=cur_h+width(p);
else{@+save_h=dvi_h;save_v=dvi_v;
  cur_v=base_line+shift_amount(p); /*shift the box down*/
  temp_ptr=p;edge=cur_h;
  if (type(p)==vlist_node) vlist_out();@+else hlist_out();
  dvi_h=save_h;dvi_v=save_v;
  cur_h=edge+width(p);cur_v=base_line;
  }

@ @<Output a rule in an hlist@>=
if (is_running(rule_ht)) rule_ht=height(this_box);
if (is_running(rule_dp)) rule_dp=depth(this_box);
rule_ht=rule_ht+rule_dp; /*this is the rule thickness*/
if ((rule_ht > 0)&&(rule_wd > 0))  /*we don't output empty rules*/
  {@+synch_h;cur_v=base_line+rule_dp;synch_v;
  dvi_out(set_rule);dvi_four(rule_ht);dvi_four(rule_wd);
  cur_v=base_line;dvi_h=dvi_h+rule_wd;
  }

@ @d billion float_constant(1000000000)
@d vet_glue(A) glue_temp=A;
  if (glue_temp > billion)
           glue_temp=billion;
  else if (glue_temp < -billion)
           glue_temp=-billion

@<Move right or output leaders@>=
{@+g=glue_ptr(p);rule_wd=width(g)-cur_g;
if (g_sign!=normal)
  {@+if (g_sign==stretching)
    {@+if (stretch_order(g)==g_order)
      {@+cur_glue=cur_glue+stretch(g);
      vet_glue(unfix(glue_set(this_box))*cur_glue);
@^real multiplication@>
      cur_g=round(glue_temp);
      }
    }
  else if (shrink_order(g)==g_order)
      {@+cur_glue=cur_glue-shrink(g);
      vet_glue(unfix(glue_set(this_box))*cur_glue);
      cur_g=round(glue_temp);
      }
  }
rule_wd=rule_wd+cur_g;
if (subtype(p) >= a_leaders)
  @<Output leaders in an hlist, |goto fin_rule| if a rule or to |next_p| if
done@>;
goto move_past;
}

@ @<Output leaders in an hlist...@>=
{@+leader_box=leader_ptr(p);
if (type(leader_box)==rule_node)
  {@+rule_ht=height(leader_box);rule_dp=depth(leader_box);
  goto fin_rule;
  }
leader_wd=width(leader_box);
if ((leader_wd > 0)&&(rule_wd > 0))
  {@+rule_wd=rule_wd+10; /*compensate for floating-point rounding*/
  edge=cur_h+rule_wd;lx=0;
  @<Let |cur_h| be the position of the first box, and set |leader_wd+lx| to
the spacing between corresponding parts of boxes@>;
  while (cur_h+leader_wd <= edge)
    @<Output a leader box at |cur_h|, then advance |cur_h| by |leader_wd+lx|@>;
  cur_h=edge-10;goto next_p;
  }
}

@ The calculations related to leaders require a bit of care. First, in the
case of |a_leaders| (aligned leaders), we want to move |cur_h| to
|left_edge| plus the smallest multiple of |leader_wd| for which the result
is not less than the current value of |cur_h|; i.e., |cur_h| should become
$|left_edge|+|leader_wd|\times\lceil
(|cur_h|-|left_edge|)/|leader_wd|\rceil$.  The program here should work in
all cases even though some implementations of \PASCAL\ give nonstandard
results for the |/| operation when |cur_h| is less than |left_edge|.

In the case of |c_leaders| (centered leaders), we want to increase |cur_h|
by half of the excess space not occupied by the leaders; and in the
case of |x_leaders| (expanded leaders) we increase |cur_h|
by $1/(q+1)$ of this excess space, where $q$ is the number of times the
leader box will be replicated. Slight inaccuracies in the division might
accumulate; half of this rounding error is placed at each end of the leaders.

@<Let |cur_h| be the position of the first box,...@>=
if (subtype(p)==a_leaders)
  {@+save_h=cur_h;
  cur_h=left_edge+leader_wd*((cur_h-left_edge)/leader_wd);
  if (cur_h < save_h) cur_h=cur_h+leader_wd;
  }
else{@+lq=rule_wd/leader_wd; /*the number of box copies*/
  lr=rule_wd%leader_wd; /*the remaining space*/
  if (subtype(p)==c_leaders) cur_h=cur_h+(lr/2);
  else{@+lx=lr/(lq+1);
    cur_h=cur_h+((lr-(lq-1)*lx)/2);
    }
  }

@ The `\\{synch}' operations here are intended to decrease the number of
bytes needed to specify horizontal and vertical motion in the \.{DVI} output.

@<Output a leader box at |cur_h|,...@>=
{@+cur_v=base_line+shift_amount(leader_box);synch_v;save_v=dvi_v;@/
synch_h;save_h=dvi_h;temp_ptr=leader_box;
outer_doing_leaders=doing_leaders;doing_leaders=true;
if (type(leader_box)==vlist_node) vlist_out();@+else hlist_out();
doing_leaders=outer_doing_leaders;
dvi_v=save_v;dvi_h=save_h;cur_v=base_line;
cur_h=save_h+leader_wd+lx;
}

@ The |vlist_out| routine is similar to |hlist_out|, but a bit simpler.

@p static void vlist_out(void) /*output a |vlist_node| box*/
{@+
scaled left_edge; /*the left coordinate for this box*/
scaled @!top_edge; /*the top coordinate for this box*/
scaled @!save_h, @!save_v; /*what |dvi_h| and |dvi_v| should pop to*/
pointer @!this_box; /*pointer to containing box*/
glue_ord @!g_order; /*applicable order of infinity for glue*/
int @!g_sign; /*selects type of glue*/
pointer @!p; /*current position in the vlist*/
int @!save_loc; /*\.{DVI} byte location upon entry*/
pointer @!leader_box; /*the leader box being replicated*/
scaled @!leader_ht; /*height of leader box being replicated*/
scaled @!lx; /*extra space between leader boxes*/
bool @!outer_doing_leaders; /*were we doing leaders?*/
scaled @!edge; /*bottom boundary of leader space*/
double @!glue_temp; /*glue value before rounding*/
double @!cur_glue; /*glue seen so far*/
scaled @!cur_g; /*rounded equivalent of |cur_glue| times the glue ratio*/
cur_g=0;cur_glue=float_constant(0);
this_box=temp_ptr;g_order=glue_order(this_box);
g_sign=glue_sign(this_box);p=list_ptr(this_box);
incr(cur_s);
if (cur_s > 0) dvi_out(push);
if (cur_s > max_push) max_push=cur_s;
save_loc=dvi_offset+dvi_ptr;left_edge=cur_h;cur_v=cur_v-height(this_box);
top_edge=cur_v;
while (p!=null) @<Output node |p| for |vlist_out| and move to the next node,
maintaining the condition |cur_h=left_edge|@>;
prune_movements(save_loc);
if (cur_s > 0) dvi_pop(save_loc);
decr(cur_s);
}

@ @<Output node |p| for |vlist_out|...@>=
{@+if (is_char_node(p)) confusion("vlistout");
@:this can't happen vlistout}{\quad vlistout@>
else@<Output the non-|char_node| |p| for |vlist_out|@>;
next_p: p=link(p);
}

@ @<Output the non-|char_node| |p| for |vlist_out|@>=
{@+switch (type(p)) {
case hlist_node: case vlist_node: @<Output a box in a vlist@>@;@+break;
case rule_node: {@+rule_ht=height(p);rule_dp=depth(p);rule_wd=width(p);
  goto fin_rule;
  }
case whatsit_node: @<Output the whatsit node |p| in a vlist@>;@+break;
case glue_node: @<Move down or output leaders@>@;
case kern_node: cur_v=cur_v+width(p);@+break;
default:do_nothing;
} @/
goto next_p;
fin_rule: @<Output a rule in a vlist, |goto next_p|@>;
move_past: cur_v=cur_v+rule_ht;
}

@ The |synch_v| here allows the \.{DVI} output to use one-byte commands
for adjusting |v| in most cases, since the baselineskip distance will
usually be constant.

@<Output a box in a vlist@>=
if (list_ptr(p)==null) cur_v=cur_v+height(p)+depth(p);
else{@+cur_v=cur_v+height(p);synch_v;
  save_h=dvi_h;save_v=dvi_v;
  cur_h=left_edge+shift_amount(p); /*shift the box right*/
  temp_ptr=p;
  if (type(p)==vlist_node) vlist_out();@+else hlist_out();
  dvi_h=save_h;dvi_v=save_v;
  cur_v=save_v+depth(p);cur_h=left_edge;
  }

@ @<Output a rule in a vlist...@>=
if (is_running(rule_wd)) rule_wd=width(this_box);
rule_ht=rule_ht+rule_dp; /*this is the rule thickness*/
cur_v=cur_v+rule_ht;
if ((rule_ht > 0)&&(rule_wd > 0))  /*we don't output empty rules*/
  {@+synch_h;synch_v;
  dvi_out(put_rule);dvi_four(rule_ht);dvi_four(rule_wd);
  }
goto next_p

@ @<Move down or output leaders@>=
{@+g=glue_ptr(p);rule_ht=width(g)-cur_g;
if (g_sign!=normal)
  {@+if (g_sign==stretching)
    {@+if (stretch_order(g)==g_order)
      {@+cur_glue=cur_glue+stretch(g);
      vet_glue(unfix(glue_set(this_box))*cur_glue);
@^real multiplication@>
      cur_g=round(glue_temp);
      }
    }
  else if (shrink_order(g)==g_order)
      {@+cur_glue=cur_glue-shrink(g);
      vet_glue(unfix(glue_set(this_box))*cur_glue);
      cur_g=round(glue_temp);
      }
  }
rule_ht=rule_ht+cur_g;
if (subtype(p) >= a_leaders)
  @<Output leaders in a vlist, |goto fin_rule| if a rule or to |next_p| if
done@>;
goto move_past;
}

@ @<Output leaders in a vlist...@>=
{@+leader_box=leader_ptr(p);
if (type(leader_box)==rule_node)
  {@+rule_wd=width(leader_box);rule_dp=0;
  goto fin_rule;
  }
leader_ht=height(leader_box)+depth(leader_box);
if ((leader_ht > 0)&&(rule_ht > 0))
  {@+rule_ht=rule_ht+10; /*compensate for floating-point rounding*/
  edge=cur_v+rule_ht;lx=0;
  @<Let |cur_v| be the position of the first box, and set |leader_ht+lx| to
the spacing between corresponding parts of boxes@>;
  while (cur_v+leader_ht <= edge)
    @<Output a leader box at |cur_v|, then advance |cur_v| by |leader_ht+lx|@>;
  cur_v=edge-10;goto next_p;
  }
}

@ @<Let |cur_v| be the position of the first box,...@>=
if (subtype(p)==a_leaders)
  {@+save_v=cur_v;
  cur_v=top_edge+leader_ht*((cur_v-top_edge)/leader_ht);
  if (cur_v < save_v) cur_v=cur_v+leader_ht;
  }
else{@+lq=rule_ht/leader_ht; /*the number of box copies*/
  lr=rule_ht%leader_ht; /*the remaining space*/
  if (subtype(p)==c_leaders) cur_v=cur_v+(lr/2);
  else{@+lx=lr/(lq+1);
    cur_v=cur_v+((lr-(lq-1)*lx)/2);
    }
  }

@ When we reach this part of the program, |cur_v| indicates the top of a
leader box, not its baseline.

@<Output a leader box at |cur_v|,...@>=
{@+cur_h=left_edge+shift_amount(leader_box);synch_h;save_h=dvi_h;@/
cur_v=cur_v+height(leader_box);synch_v;save_v=dvi_v;
temp_ptr=leader_box;
outer_doing_leaders=doing_leaders;doing_leaders=true;
if (type(leader_box)==vlist_node) vlist_out();@+else hlist_out();
doing_leaders=outer_doing_leaders;
dvi_v=save_v;dvi_h=save_h;cur_h=left_edge;
cur_v=save_v-height(leader_box)+leader_ht+lx;
}

@ The |hlist_out| and |vlist_out| procedures are now complete, so we are
ready for the |ship_out| routine that gets them started in the first place.

@p static void ship_out(pointer @!p) /*output the box |p|*/
{@+
execute_output(p);
flush_node_list(p);
}

@ @<Flush the box from memory, showing statistics if requested@>=
#ifdef @!STAT
if (tracing_stats > 1)
  {@+print_nl("Memory usage before: ");
@.Memory usage...@>
  print_int(var_used);print_char('&');
  print_int(dyn_used);print_char(';');
  }
#endif
flush_node_list(p);
#ifdef @!STAT
if (tracing_stats > 1)
  {@+print(" after: ");
  print_int(var_used);print_char('&');
  print_int(dyn_used);print("; still untouched: ");
  print_int(hi_mem_min-lo_mem_max-1);print_ln();
  }
#endif

@ @<Ship box |p| out@>=
@<Update the values of |max_h| and |max_v|; but if the page is too large,
|goto done|@>;
@<Initialize variables as |ship_out| begins@>;
page_loc=dvi_offset+dvi_ptr;
dvi_out(bop);
for (k=0; k<=9; k++) dvi_four(count(k));
dvi_four(last_bop);last_bop=page_loc;
cur_v=height(p)+v_offset;temp_ptr=p;
if (type(p)==vlist_node) vlist_out();@+else hlist_out();
dvi_out(eop);incr(total_pages);cur_s=-1;
done:

@ Sometimes the user will generate a huge page because other error messages
are being ignored. Such pages are not output to the \.{dvi} file, since they
may confuse the printing software.

@<Update the values of |max_h| and |max_v|; but if the page is too large...@>=
if ((height(p) > max_dimen)||@|(depth(p) > max_dimen)||@|
   (height(p)+depth(p)+v_offset > max_dimen)||@|
   (width(p)+h_offset > max_dimen))
  {@+print_err("Huge page cannot be shipped out");
@.Huge page...@>
  help2("The page just created is more than 18 feet tall or",@/
   "more than 18 feet wide, so I suspect something went wrong.");
  error();
  if (tracing_output <= 0)
    {@+begin_diagnostic();
    print_nl("The following box has been deleted:");
@.The following...deleted@>
    show_box(p);
    end_diagnostic(true);
    }
  goto done;
  }
if (height(p)+depth(p)+v_offset > max_v) max_v=height(p)+depth(p)+v_offset;
if (width(p)+h_offset > max_h) max_h=width(p)+h_offset

@ At the end of the program, we must finish things off by writing the
post\-amble. If |total_pages==0|, the \.{DVI} file was never opened.
If |total_pages >= 65536|, the \.{DVI} file will lie. And if
|max_push >= 65536|, the user deserves whatever chaos might ensue.

An integer variable |k| will be declared for use by this routine.

@<Finish the \.{DVI} file@>=
while (cur_s > -1)
  {@+if (cur_s > 0) dvi_out(pop)@;
  else{@+dvi_out(eop);incr(total_pages);
    }
  decr(cur_s);
  }
if (total_pages==0) print_nl("No pages of output.");
@.No pages of output@>
else{@+dvi_out(post); /*beginning of the postamble*/
  dvi_four(last_bop);last_bop=dvi_offset+dvi_ptr-5; /*|post| location*/
  dvi_four(25400000);dvi_four(473628672); /*conversion ratio for sp*/
  prepare_mag();dvi_four(mag); /*magnification factor*/
  dvi_four(max_v);dvi_four(max_h);@/
  dvi_out(max_push/256);dvi_out(max_push%256);@/
  dvi_out((total_pages/256)%256);dvi_out(total_pages%256);@/
  @<Output the font definitions for all fonts that were used@>;
  dvi_out(post_post);dvi_four(last_bop);dvi_out(id_byte);@/
  k=4+((dvi_buf_size-dvi_ptr)%4); /*the number of 223's*/
  while (k > 0)
    {@+dvi_out(223);decr(k);
    }
  @<Empty the last bytes out of |dvi_buf|@>;
  print_nl("Output written on ");slow_print(output_file_name);
@.Output written on x@>
  print(" (");print_int(total_pages);print(" page");
  if (total_pages!=1) print_char('s');
  print(", ");print_int(dvi_offset+dvi_ptr);print(" bytes).");
  b_close(&dvi_file);
  }

@ @<Output the font definitions...@>=
while (font_ptr > font_base)
  {@+if (font_used[font_ptr]) dvi_font_def(font_ptr);
  decr(font_ptr);
  }

@* Packaging.
We're essentially done with the parts of \TeX\ that are concerned with
the input (|get_next|) and the output (|ship_out|). So it's time to
get heavily into the remaining part, which does the real work of typesetting.

After lists are constructed, \TeX\ wraps them up and puts them into boxes.
Two major subroutines are given the responsibility for this task: |hpack|
applies to horizontal lists (hlists) and |vpack| applies to vertical lists
(vlists). The main duty of |hpack| and |vpack| is to compute the dimensions
of the resulting boxes, and to adjust the glue if one of those dimensions
is pre-specified. The computed sizes normally enclose all of the material
inside the new box; but some items may stick out if negative glue is used,
if the box is overfull, or if a \.{\\vbox} includes other boxes that have
been shifted left.

The subroutine call |hpack(p, w, m)| returns a pointer to an |hlist_node|
for a box containing the hlist that starts at |p|. Parameter |w| specifies
a width; and parameter |m| is either `|exactly|' or `|additional|'.  Thus,
|hpack(p, w, exactly)| produces a box whose width is exactly |w|, while
|hpack(p, w, additional)| yields a box whose width is the natural width plus
|w|.  It is convenient to define a macro called `|natural|' to cover the
most common case, so that we can say |hpack(p, natural)| to get a box that
has the natural width of list |p|.

Similarly, |vpack(p, w, m)| returns a pointer to a |vlist_node| for a
box containing the vlist that starts at |p|. In this case |w| represents
a height instead of a width; the parameter |m| is interpreted as in |hpack|.

@d exactly 0 /*a box dimension is pre-specified*/
@d additional 1 /*a box dimension is increased from the natural one*/
@d natural 0, 0, 0, additional /*shorthand for parameters to |hpack| and |vpack|*/

@ The parameters to |hpack| and |vpack| correspond to \TeX's primitives
like `\.{\\hbox} \.{to} \.{300pt}', `\.{\\hbox} \.{spread} \.{10pt}'; note
that `\.{\\hbox}' with no dimension following it is equivalent to
`\.{\\hbox} \.{spread} \.{0pt}'.  The |scan_spec| subroutine scans such
constructions in the user's input, including the mandatory left brace that
follows them, and it puts the specification onto |save_stack| so that the
desired box can later be obtained by executing the following code:
$$\vbox{\halign{#\hfil\cr
|save_ptr=save_ptr-2;|\cr
|hpack(p, saved(1), saved(0)).|\cr}}$$
Special care is necessary to ensure that the special |save_stack| codes
are placed just below the new group code, because scanning can change
|save_stack| when \.{\\csname} appears.

@p static void scan_spec(group_code @!c, bool @!three_codes)
   /*scans a box specification and left brace*/
{@+
int @!s; /*temporarily saved value*/
int @!spec_code;
if (three_codes) s=saved(0);
if (scan_keyword("to")) spec_code=exactly;
@.to@>
else if (scan_keyword("spread")) spec_code=additional;
@.spread@>
else{@+spec_code=additional;cur_val=cur_hfactor=cur_vfactor=0;
  goto found;
  }
scan_normal_dimen;
found: if (three_codes)
  {@+saved(0)=s;incr(save_ptr);
  }
saved(0)=spec_code;saved(1)=cur_val;
saved_hfactor(1)=cur_hfactor;
saved_vfactor(1)=cur_vfactor;
save_ptr=save_ptr+2;
new_save_level(c);scan_left_brace();
}

@ To figure out the glue setting, |hpack| and |vpack| determine how much
stretchability and shrinkability are present, considering all four orders
of infinity. The highest order of infinity that has a nonzero coefficient
is then used as if no other orders were present.

For example, suppose that the given list contains six glue nodes with
the respective stretchabilities 3pt, 8fill, 5fil, 6pt, $-3$fil, $-8$fill.
Then the total is essentially 2fil; and if a total additional space of 6pt
is to be achieved by stretching, the actual amounts of stretch will be
0pt, 0pt, 15pt, 0pt, $-9$pt, and 0pt, since only `fil' glue will be
considered. (The `fill' glue is therefore not really stretching infinitely
with respect to `fil'; nobody would actually want that to happen.)

The arrays |total_stretch| and |total_shrink| are used to determine how much
glue of each kind is present. A global variable |last_badness| is used
to implement \.{\\badness}.

@<Glob...@>=
static scaled @!total_stretch0[filll-normal+1],
  *const @!total_stretch = @!total_stretch0-normal,
  @!total_shrink0[filll-normal+1], *const @!total_shrink = @!total_shrink0-normal;
   /*glue found by |hpack| or |vpack|*/
static int @!last_badness; /*badness of the most recently packaged box*/

@ If the global variable |adjust_tail| is non-null, the |hpack| routine
also removes all occurrences of |ins_node|, |mark_node|, and |adjust_node|
items and appends the resulting material onto the list that ends at
location |adjust_tail|.

@<Glob...@>=
static pointer @!adjust_tail; /*tail of adjustment list*/

@ @<Set init...@>=adjust_tail=null;last_badness=0;

@ Here now is |hpack|, which contains few if any surprises.

@p static pointer hpack(pointer p, scaled w, scaled hf, scaled vf, small_number m);

@ @<Clear dimensions to zero@>=
d=0;x=0;
total_stretch[normal]=0;total_shrink[normal]=0;
total_stretch[fil]=0;total_shrink[fil]=0;
total_stretch[fill]=0;total_shrink[fill]=0;
total_stretch[filll]=0;total_shrink[filll]=0

@ @<Examine node |p| in the hlist, taking account of its effect...@>=
@^inner loop@>
{@+reswitch: while (is_char_node(p))
  @<Incorporate character dimensions into the dimensions of the hbox that
will contain~it, then move to the next node@>;
if (p!=null)
  {@+switch (type(p)) {
  case hlist_node: case vlist_node: case rule_node:
  case unset_node: case unset_set_node: case unset_pack_node:
    @<Incorporate box dimensions into the dimensions of the hbox that will
contain~it@>@;@+break;
  case ins_node: case mark_node: case adjust_node: if (adjust_tail!=null)
    @<Transfer node |p| to the adjustment list@>@;@+break;
  case whatsit_node: @<Incorporate a whatsit node into an hbox@>;@+break;
  case glue_node: @<Incorporate glue into the horizontal totals@>@;@+break;
  case kern_node: case math_node: x=x+width(p);@+break;
  case ligature_node: @<Make node |p| look like a |char_node| and |goto reswitch|@>@;
  default:do_nothing;
  } @/
  p=link(p);
  }
}


@ @<Make node |p| look like a |char_node| and |goto reswitch|@>=
{@+mem[lig_trick]=mem[lig_char(p)];link(lig_trick)=link(p);
p=lig_trick;goto reswitch;
}

@ The code here implicitly uses the fact that running dimensions are
indicated by |null_flag|, which will be ignored in the calculations
because it is a highly negative number.

@<Incorporate box dimensions into the dimensions of the hbox...@>=
{@+x=x+width(p);
if (type(p) >= rule_node) s=0;@+else s=shift_amount(p);
if (height(p)-s > h) h=height(p)-s;
if (depth(p)+s > d) d=depth(p)+s;
}

@ The following code is part of \TeX's inner loop; i.e., adding another
character of text to the user's input will cause each of these instructions
to be exercised one more time.
@^inner loop@>

@<Incorporate character dimensions into the dimensions of the hbox...@>=
{@+f=font(p);i=char_info(f, character(p));hd=height_depth(i);
x=x+char_width(f, i);@/
s=char_height(f, hd);@+if (s > h) h=s;
s=char_depth(f, hd);@+if (s > d) d=s;
p=link(p);
}

@ Although node |q| is not necessarily the immediate predecessor of node |p|,
it always points to some node in the list preceding |p|. Thus, we can delete
nodes by moving |q| when necessary. The algorithm takes linear time, and the
extra computation does not intrude on the inner loop unless it is necessary
to make a deletion.
@^inner loop@>

@<Transfer node |p| to the adjustment list@>=
{@+while (link(q)!=p) q=link(q);
if (type(p)==adjust_node)
  {@+link(adjust_tail)=adjust_ptr(p);
  while (link(adjust_tail)!=null) adjust_tail=link(adjust_tail);
  p=link(p);free_node(link(q), small_node_size);
  }
else{@+link(adjust_tail)=p;adjust_tail=p;p=link(p);
  }
link(q)=p;p=q;
}

@ @<Incorporate glue into the horizontal totals@>=
{@+g=glue_ptr(p);x=x+width(g);@/
o=stretch_order(g);total_stretch[o]=total_stretch[o]+stretch(g);
o=shrink_order(g);total_shrink[o]=total_shrink[o]+shrink(g);
if (subtype(p) >= a_leaders)
  {@+g=leader_ptr(p);
  if (height(g) > h) h=height(g);
  if (depth(g) > d) d=depth(g);
  }
}

@ When we get to the present part of the program, |x| is the natural width
of the box being packaged.

@<Determine the value of |width(r)| and the appropriate glue setting...@>=
if (m==additional) w=x+w;
width(r)=w;x=w-x; /*now |x| is the excess to be made up*/
if (x==0)
  {@+glue_sign(r)=normal;glue_order(r)=normal;
  set_glue_ratio_zero(glue_set(r));
  goto end;
  }
else if (x > 0) @<Determine horizontal glue stretch setting, then |return|
or \hbox{|goto common_ending|}@>@;
else@<Determine horizontal glue shrink setting, then |return| or \hbox{|goto
common_ending|}@>@;

@ @<Determine horizontal glue stretch setting...@>=
{@+@<Determine the stretch order@>;
glue_order(r)=o;glue_sign(r)=stretching;
if (total_stretch[o]!=0) glue_set(r)=fix(x/(double)total_stretch[o]);
@^real division@>
else{@+glue_sign(r)=normal;
  set_glue_ratio_zero(glue_set(r)); /*there's nothing to stretch*/
  }
if (o==normal) if (list_ptr(r)!=null)
  @<Report an underfull hbox and |goto common_ending|, if this box is sufficiently
bad@>;
goto end;
}

@ @<Determine the stretch order@>=
if (total_stretch[filll]!=0) o=filll;
else if (total_stretch[fill]!=0) o=fill;
else if (total_stretch[fil]!=0) o=fil;
else o=normal

@ @<Report an underfull hbox and |goto common_ending|, if...@>=
{@+last_badness=badness(x, total_stretch[normal]);
if (last_badness > hbadness)
  {@+print_ln();
  if (last_badness > 100) print_nl("Underfull");@+else print_nl("Loose");
  print(" \\hbox (badness ");print_int(last_badness);
@.Underfull \\hbox...@>
@.Loose \\hbox...@>
  goto common_ending;
  }
}

@ In order to provide a decent indication of where an overfull or underfull
box originated, we use a global variable |pack_begin_line| that is
set nonzero only when |hpack| is being called by the paragraph builder
or the alignment finishing routine.

@<Glob...@>=
static int @!pack_begin_line; /*source file line where the current paragraph
  or alignment began; a negative value denotes alignment*/

@ @<Set init...@>=
pack_begin_line=0;

@ @<Finish issuing a diagnostic message for an overfull or underfull hbox@>=
if (output_active) print(") has occurred while \\output is active");
else{@+if (pack_begin_line!=0)
    {@+if (pack_begin_line > 0) print(") in paragraph at lines ");
    else print(") in alignment at lines ");
    print_int(abs(pack_begin_line));
    print("--");
    }
  else print(") detected at line ");
  print_int(line);
  }
print_ln();@/
font_in_short_display=null_font;short_display(list_ptr(r));print_ln();@/
begin_diagnostic();show_box(r);end_diagnostic(true)

@ @<Determine horizontal glue shrink setting...@>=
{@+@<Determine the shrink order@>;
glue_order(r)=o;glue_sign(r)=shrinking;
if (total_shrink[o]!=0) glue_set(r)=fix((-x)/(double)total_shrink[o]);
@^real division@>
else{@+glue_sign(r)=normal;
  set_glue_ratio_zero(glue_set(r)); /*there's nothing to shrink*/
  }
if ((total_shrink[o] < -x)&&(o==normal)&&(list_ptr(r)!=null))
  {@+last_badness=1000000;
  set_glue_ratio_one(glue_set(r)); /*use the maximum shrinkage*/
  @<Report an overfull hbox and |goto common_ending|, if this box is sufficiently
bad@>;
  }
else if (o==normal) if (list_ptr(r)!=null)
  @<Report a tight hbox and |goto common_ending|, if this box is sufficiently
bad@>;
goto end;
}

@ @<Determine the shrink order@>=
if (total_shrink[filll]!=0) o=filll;
else if (total_shrink[fill]!=0) o=fill;
else if (total_shrink[fil]!=0) o=fil;
else o=normal

@ @<Report an overfull hbox and |goto common_ending|, if...@>=
if ((-x-total_shrink[normal] > hfuzz)||(hbadness < 100))
  {@+if ((overfull_rule > 0)&&(-x-total_shrink[normal] > hfuzz))
    {@+while (link(q)!=null) q=link(q);
    link(q)=new_rule();
    width(link(q))=overfull_rule;
    }
  print_ln();print_nl("Overfull \\hbox (");
@.Overfull \\hbox...@>
  print_scaled(-x-total_shrink[normal]);print("pt too wide");
  goto common_ending;
  }

@ @<Report a tight hbox and |goto common_ending|, if...@>=
{@+last_badness=badness(-x, total_shrink[normal]);
if (last_badness > hbadness)
  {@+print_ln();print_nl("Tight \\hbox (badness ");print_int(last_badness);
@.Tight \\hbox...@>
  goto common_ending;
  }
}

@ The |vpack| subroutine is actually a special case of a slightly more
general routine called |vpackage|, which has four parameters. The fourth
parameter, which is |max_dimen| in the case of |vpack|, specifies the
maximum depth of the page box that is constructed. The depth is first
computed by the normal rules; if it exceeds this limit, the reference
point is simply moved down until the limiting depth is attained.


@p
#define vpack(...) @[vpackage(__VA_ARGS__, max_dimen)@] /*special case of unconstrained depth*/
static pointer vpackage(pointer p, scaled h, scaled hf, scaled vf, small_number m, scaled l);

@ @<Examine node |p| in the vlist, taking account of its effect...@>=
{@+if (is_char_node(p)) confusion("vpack");
@:this can't happen vpack}{\quad vpack@>
else switch (type(p)) {
  case hlist_node: case vlist_node: case rule_node:
  case unset_node: case unset_set_node: case unset_pack_node:
    @<Incorporate box dimensions into the dimensions of the vbox that will
contain~it@>@;@+break;
  case whatsit_node: @<Incorporate a whatsit node into a vbox@>;@+break;
  case glue_node: @<Incorporate glue into the vertical totals@>@;@+break;
  case kern_node: {@+x=x+d+width(p);d=0;
    } @+break;
  default:do_nothing;
  }
p=link(p);
}

@ @<Incorporate box dimensions into the dimensions of the vbox...@>=
{@+x=x+d+height(p);d=depth(p);
if (type(p) >= rule_node) s=0;@+else s=shift_amount(p);
if (width(p)+s > w) w=width(p)+s;
}

@ @<Incorporate glue into the vertical totals@>=
{@+x=x+d;d=0;@/
g=glue_ptr(p);x=x+width(g);@/
o=stretch_order(g);total_stretch[o]=total_stretch[o]+stretch(g);
o=shrink_order(g);total_shrink[o]=total_shrink[o]+shrink(g);
if (subtype(p) >= a_leaders)
  {@+g=leader_ptr(p);
  if (width(g) > w) w=width(g);
  }
}

@ When we get to the present part of the program, |x| is the natural height
of the box being packaged.

@<Determine the value of |height(r)| and the appropriate glue setting...@>=
if (m==additional) h=x+h;
height(r)=h;x=h-x; /*now |x| is the excess to be made up*/
if (x==0)
  {@+glue_sign(r)=normal;glue_order(r)=normal;
  set_glue_ratio_zero(glue_set(r));
  goto end;
  }
else if (x > 0) @<Determine vertical glue stretch setting, then |return| or
\hbox{|goto common_ending|}@>@;
else@<Determine vertical glue shrink setting, then |return| or \hbox{|goto
common_ending|}@>@;

@ @<Determine vertical glue stretch setting...@>=
{@+@<Determine the stretch order@>;
glue_order(r)=o;glue_sign(r)=stretching;
if (total_stretch[o]!=0) glue_set(r)=fix(x/(double)total_stretch[o]);
@^real division@>
else{@+glue_sign(r)=normal;
  set_glue_ratio_zero(glue_set(r)); /*there's nothing to stretch*/
  }
if (o==normal) if (list_ptr(r)!=null)
  @<Report an underfull vbox and |goto common_ending|, if this box is sufficiently
bad@>;
goto end;
}

@ @<Report an underfull vbox and |goto common_ending|, if...@>=
{@+last_badness=badness(x, total_stretch[normal]);
if (last_badness > vbadness)
  {@+print_ln();
  if (last_badness > 100) print_nl("Underfull");@+else print_nl("Loose");
  print(" \\vbox (badness ");print_int(last_badness);
@.Underfull \\vbox...@>
@.Loose \\vbox...@>
  goto common_ending;
  }
}

@ @<Finish issuing a diagnostic message for an overfull or underfull vbox@>=
if (output_active) print(") has occurred while \\output is active");
else{@+if (pack_begin_line!=0)  /*it's actually negative*/
    {@+print(") in alignment at lines ");
    print_int(abs(pack_begin_line));
    print("--");
    }
  else print(") detected at line ");
  print_int(line);
  print_ln();@/
  }
begin_diagnostic();show_box(r);end_diagnostic(true)

@ @<Determine vertical glue shrink setting...@>=
{@+@<Determine the shrink order@>;
glue_order(r)=o;glue_sign(r)=shrinking;
if (total_shrink[o]!=0) glue_set(r)=fix((-x)/(double)total_shrink[o]);
@^real division@>
else{@+glue_sign(r)=normal;
  set_glue_ratio_zero(glue_set(r)); /*there's nothing to shrink*/
  }
if ((total_shrink[o] < -x)&&(o==normal)&&(list_ptr(r)!=null))
  {@+last_badness=1000000;
  set_glue_ratio_one(glue_set(r)); /*use the maximum shrinkage*/
  @<Report an overfull vbox and |goto common_ending|, if this box is sufficiently
bad@>;
  }
else if (o==normal) if (list_ptr(r)!=null)
  @<Report a tight vbox and |goto common_ending|, if this box is sufficiently
bad@>;
goto end;
}

@ @<Report an overfull vbox and |goto common_ending|, if...@>=
if ((-x-total_shrink[normal] > vfuzz)||(vbadness < 100))
  {@+print_ln();print_nl("Overfull \\vbox (");
@.Overfull \\vbox...@>
  print_scaled(-x-total_shrink[normal]);print("pt too high");
  goto common_ending;
  }

@ @<Report a tight vbox and |goto common_ending|, if...@>=
{@+last_badness=badness(-x, total_shrink[normal]);
if (last_badness > vbadness)
  {@+print_ln();print_nl("Tight \\vbox (badness ");print_int(last_badness);
@.Tight \\vbox...@>
  goto common_ending;
  }
}

@ When a box is being appended to the current vertical list, the
baselineskip calculation is handled by the |append_to_vlist| routine.

@p static void append_to_vlist(pointer @!b)@t\2\2@>@/
{ bool height_known;@t\1@>@/
  height_known=(type(b)==hlist_node || type(b)==vlist_node ||@|
	   (type(b)==whatsit_node && subtype(b)==hset_node));@/
  if (prev_depth > ignore_depth && height_known)@/
  {@+scaled d;@t\1@> /*deficiency of space between baselines*/
    pointer @!p; /*a new glue node*/
  {@+d=width(baseline_skip)-prev_depth-height(b);
  if (d < line_skip_limit) p=new_param_glue(line_skip_code);
  else{@+p=new_skip_param(baseline_skip_code);
    width(temp_ptr)=d; /*|temp_ptr==glue_ptr(p)|*/
    }
  link(tail)=p;tail=p;
  }@+
} @+  else @+if (prev_depth<=unknown_depth || prev_depth>ignore_depth )@t\2@>@/
  {@+pointer p;
	p=new_baseline_node(baseline_skip, line_skip, line_skip_limit);
    link(tail)= p;tail= p;
  }
  link(tail)=b;tail=b;
  if (height_known)
    prev_depth=depth(b);
  else if (type(b)==whatsit_node &&
          (subtype(b)==hpack_node || subtype(b)==vpack_node))
    prev_depth=depth(b);	  /* then also depth is (probably) known */
  else if (type(b)==whatsit_node && subtype(b)==image_node)
    prev_depth=0;
  else
    prev_depth=unknown_depth;
}

@* Data structures for math mode.
When \TeX\ reads a formula that is enclosed between \.\$'s, it constructs an
{\sl mlist}, which is essentially a tree structure representing that
formula.  An mlist is a linear sequence of items, but we can regard it as
a tree structure because mlists can appear within mlists. For example, many
of the entries can be subscripted or superscripted, and such ``scripts''
are mlists in their own right.

An entire formula is parsed into such a tree before any of the actual
typesetting is done, because the current style of type is usually not
known until the formula has been fully scanned. For example, when the
formula `\.{\$a+b \\over c+d\$}' is being read, there is no way to tell
that `\.{a+b}' will be in script size until `\.{\\over}' has appeared.

During the scanning process, each element of the mlist being built is
classified as a relation, a binary operator, an open parenthesis, etc.,
or as a construct like `\.{\\sqrt}' that must be built up. This classification
appears in the mlist data structure.

After a formula has been fully scanned, the mlist is converted to an hlist
so that it can be incorporated into the surrounding text. This conversion is
controlled by a recursive procedure that decides all of the appropriate
styles by a ``top-down'' process starting at the outermost level and working
in towards the subformulas. The formula is ultimately pasted together using
combinations of horizontal and vertical boxes, with glue and penalty nodes
inserted as necessary.

An mlist is represented internally as a linked list consisting chiefly
of ``noads'' (pronounced ``no-adds''), to distinguish them from the somewhat
similar ``nodes'' in hlists and vlists. Certain kinds of ordinary nodes are
allowed to appear in mlists together with the noads; \TeX\ tells the difference
by means of the |type| field, since a noad's |type| is always greater than
that of a node. An mlist does not contain character nodes, hlist nodes, vlist
nodes, math nodes, ligature nodes,
or unset nodes; in particular, each mlist item appears in the
variable-size part of |mem|, so the |type| field is always present.

@ Each noad is four or more words long. The first word contains the |type|
and |subtype| and |link| fields that are already so familiar to us; the
second, third, and fourth words are called the noad's |nucleus|, |subscr|,
and |supscr| fields.

Consider, for example, the simple formula `\.{\$x\^2\$}', which would be
parsed into an mlist containing a single element called an |ord_noad|.
The |nucleus| of this noad is a representation of `\.x', the |subscr| is
empty, and the |supscr| is a representation of `\.2'.

The |nucleus|, |subscr|, and |supscr| fields are further broken into
subfields. If |p| points to a noad, and if |q| is one of its principal
fields (e.g., |q==subscr(p)|), there are several possibilities for the
subfields, depending on the |math_type| of |q|.

\yskip\hang|math_type(q)==math_char| means that |fam(q)| refers to one of
the sixteen font families, and |character(q)| is the number of a character
within a font of that family, as in a character node.

\yskip\hang|math_type(q)==math_text_char| is similar, but the character is
unsubscripted and unsuperscripted and it is followed immediately by another
character from the same font. (This |math_type| setting appears only
briefly during the processing; it is used to suppress unwanted italic
corrections.)

\yskip\hang|math_type(q)==empty| indicates a field with no value (the
corresponding attribute of noad |p| is not present).

\yskip\hang|math_type(q)==sub_box| means that |info(q)| points to a box
node (either an |hlist_node| or a |vlist_node|) that should be used as the
value of the field.  The |shift_amount| in the subsidiary box node is the
amount by which that box will be shifted downward.

\yskip\hang|math_type(q)==sub_mlist| means that |info(q)| points to
an mlist; the mlist must be converted to an hlist in order to obtain
the value of this field.

\yskip\noindent In the latter case, we might have |info(q)==null|. This
is not the same as |math_type(q)==empty|; for example, `\.{\$P\_\{\}\$}'
and `\.{\$P\$}' produce different results (the former will not have the
``italic correction'' added to the width of |P|, but the ``script skip''
will be added).

The definitions of subfields given here are evidently wasteful of space,
since a halfword is being used for the |math_type| although only three
bits would be needed. However, there are hardly ever many noads present at
once, since they are soon converted to nodes that take up even more space,
so we can afford to represent them in whatever way simplifies the
programming.

@d noad_size 4 /*number of words in a normal noad*/
@d nucleus(A) A+1 /*the |nucleus| field of a noad*/
@d supscr(A) A+2 /*the |supscr| field of a noad*/
@d subscr(A) A+3 /*the |subscr| field of a noad*/
@d math_type(A) link(A) /*a |halfword| in |mem|*/
@d fam font /*a |quarterword| in |mem|*/
@d math_char 1 /*|math_type| when the attribute is simple*/
@d sub_box 2 /*|math_type| when the attribute is a box*/
@d sub_mlist 3 /*|math_type| when the attribute is a formula*/
@d math_text_char 4 /*|math_type| when italic correction is dubious*/

@ Each portion of a formula is classified as Ord, Op, Bin, Rel, Open,
Close, Punct, or Inner, for purposes of spacing and line breaking. An
|ord_noad|, |op_noad|, |bin_noad|, |rel_noad|, |open_noad|, |close_noad|,
|punct_noad|, or |inner_noad| is used to represent portions of the various
types. For example, an `\.=' sign in a formula leads to the creation of a
|rel_noad| whose |nucleus| field is a representation of an equals sign
(usually |fam==0|, |character==075|).  A formula preceded by \.{\\mathrel}
also results in a |rel_noad|.  When a |rel_noad| is followed by an
|op_noad|, say, and possibly separated by one or more ordinary nodes (not
noads), \TeX\ will insert a penalty node (with the current |rel_penalty|)
just after the formula that corresponds to the |rel_noad|, unless there
already was a penalty immediately following; and a ``thick space'' will be
inserted just before the formula that corresponds to the |op_noad|.

A noad of type |ord_noad|, |op_noad|, \dots, |inner_noad| usually
has a |subtype==normal|. The only exception is that an |op_noad| might
have |subtype==limits| or |no_limits|, if the normal positioning of
limits has been overridden for this operator.

@d ord_noad (unset_node+3) /*|type| of a noad classified Ord*/
@d op_noad (ord_noad+1) /*|type| of a noad classified Op*/
@d bin_noad (ord_noad+2) /*|type| of a noad classified Bin*/
@d rel_noad (ord_noad+3) /*|type| of a noad classified Rel*/
@d open_noad (ord_noad+4) /*|type| of a noad classified Open*/
@d close_noad (ord_noad+5) /*|type| of a noad classified Close*/
@d punct_noad (ord_noad+6) /*|type| of a noad classified Punct*/
@d inner_noad (ord_noad+7) /*|type| of a noad classified Inner*/
@d limits 1 /*|subtype| of |op_noad| whose scripts are to be above, below*/
@d no_limits 2 /*|subtype| of |op_noad| whose scripts are to be normal*/

@ A |radical_noad| is five words long; the fifth word is the |left_delimiter|
field, which usually represents a square root sign.

A |fraction_noad| is six words long; it has a |right_delimiter| field
as well as a |left_delimiter|.

Delimiter fields are of type |four_quarters|, and they have four subfields
called |small_fam|, |small_char|, |large_fam|, |large_char|. These subfields
represent variable-size delimiters by giving the ``small'' and ``large''
starting characters, as explained in Chapter~17 of {\sl The \TeX book}.
@:TeXbook}{\sl The \TeX book@>

A |fraction_noad| is actually quite different from all other noads. Not
only does it have six words, it has |thickness|, |denominator|, and
|numerator| fields instead of |nucleus|, |subscr|, and |supscr|. The
|thickness| is a scaled value that tells how thick to make a fraction
rule; however, the special value |default_code| is used to stand for the
|default_rule_thickness| of the current size. The |numerator| and
|denominator| point to mlists that define a fraction; we always have
$$\hbox{|math_type(numerator)==math_type(denominator)==sub_mlist|}.$$ The
|left_delimiter| and |right_delimiter| fields specify delimiters that will
be placed at the left and right of the fraction. In this way, a
|fraction_noad| is able to represent all of \TeX's operators \.{\\over},
\.{\\atop}, \.{\\above}, \.{\\overwithdelims}, \.{\\atopwithdelims}, and
 \.{\\abovewithdelims}.

@d left_delimiter(A) A+4 /*first delimiter field of a noad*/
@d right_delimiter(A) A+5 /*second delimiter field of a fraction noad*/
@d radical_noad (inner_noad+1) /*|type| of a noad for square roots*/
@d radical_noad_size 5 /*number of |mem| words in a radical noad*/
@d fraction_noad (radical_noad+1) /*|type| of a noad for generalized fractions*/
@d fraction_noad_size 6 /*number of |mem| words in a fraction noad*/
@d small_fam(A) mem[A].qqqq.b0 /*|fam| for ``small'' delimiter*/
@d small_char(A) mem[A].qqqq.b1 /*|character| for ``small'' delimiter*/
@d large_fam(A) mem[A].qqqq.b2 /*|fam| for ``large'' delimiter*/
@d large_char(A) mem[A].qqqq.b3 /*|character| for ``large'' delimiter*/
@d thickness(A) width(A) /*|thickness| field in a fraction noad*/
@d default_code 010000000000 /*denotes |default_rule_thickness|*/
@d numerator(A) supscr(A) /*|numerator| field in a fraction noad*/
@d denominator(A) subscr(A) /*|denominator| field in a fraction noad*/

@ The global variable |empty_field| is set up for initialization of empty
fields in new noads. Similarly, |null_delimiter| is for the initialization
of delimiter fields.

@<Glob...@>=
static two_halves @!empty_field;
static four_quarters @!null_delimiter;

@ @<Set init...@>=
empty_field.rh=empty;empty_field.lh=null;@/
null_delimiter.b0=0;null_delimiter.b1=min_quarterword;@/
null_delimiter.b2=0;null_delimiter.b3=min_quarterword;

@ The |new_noad| function creates an |ord_noad| that is completely null.

@p static pointer new_noad(void)
{@+pointer p;
p=get_node(noad_size);
type(p)=ord_noad;subtype(p)=normal;
mem[nucleus(p)].hh=empty_field;
mem[subscr(p)].hh=empty_field;
mem[supscr(p)].hh=empty_field;
return p;
}

@ A few more kinds of noads will complete the set: An |under_noad| has its
nucleus underlined; an |over_noad| has it overlined. An |accent_noad| places
an accent over its nucleus; the accent character appears as
|fam(accent_chr(p))| and |character(accent_chr(p))|. A |vcenter_noad|
centers its nucleus vertically with respect to the axis of the formula;
in such noads we always have |math_type(nucleus(p))==sub_box|.

And finally, we have |left_noad| and |right_noad| types, to implement
\TeX's \.{\\left} and \.{\\right} as well as \eTeX's \.{\\middle}.
The |nucleus| of such noads is
replaced by a |delimiter| field; thus, for example, `\.{\\left(}' produces
a |left_noad| such that |delimiter(p)| holds the family and character
codes for all left parentheses. A |left_noad| never appears in an mlist
except as the first element, and a |right_noad| never appears in an mlist
except as the last element; furthermore, we either have both a |left_noad|
and a |right_noad|, or neither one is present. The |subscr| and |supscr|
fields are always |empty| in a |left_noad| and a |right_noad|.

@d under_noad (fraction_noad+1) /*|type| of a noad for underlining*/
@d over_noad (under_noad+1) /*|type| of a noad for overlining*/
@d accent_noad (over_noad+1) /*|type| of a noad for accented subformulas*/
@d accent_noad_size 5 /*number of |mem| words in an accent noad*/
@d accent_chr(A) A+4 /*the |accent_chr| field of an accent noad*/
@d vcenter_noad (accent_noad+1) /*|type| of a noad for \.{\\vcenter}*/
@d left_noad (vcenter_noad+1) /*|type| of a noad for \.{\\left}*/
@d right_noad (left_noad+1) /*|type| of a noad for \.{\\right}*/
@d delimiter(A) nucleus(A) /*|delimiter| field in left and right noads*/
@d middle_noad 1 /*|subtype| of right noad representing \.{\\middle}*/
@d scripts_allowed(A) (type(A) >= ord_noad)&&(type(A) < left_noad)

@ Math formulas can also contain instructions like \.{\\textstyle} that
override \TeX's normal style rules. A |style_node| is inserted into the
data structure to record such instructions; it is three words long, so it
is considered a node instead of a noad. The |subtype| is either |display_style|
or |text_style| or |script_style| or |script_script_style|. The
second and third words of a |style_node| are not used, but they are
present because a |choice_node| is converted to a |style_node|.

\TeX\ uses even numbers 0, 2, 4, 6 to encode the basic styles
|display_style|, \dots, |script_script_style|, and adds~1 to get the
``cramped'' versions of these styles. This gives a numerical order that
is backwards from the convention of Appendix~G in {\sl The \TeX book\/};
i.e., a smaller style has a larger numerical value.
@:TeXbook}{\sl The \TeX book@>

@d style_node (unset_node+1) /*|type| of a style node*/
@d style_node_size 3 /*number of words in a style node*/
@d display_style 0 /*|subtype| for \.{\\displaystyle}*/
@d text_style 2 /*|subtype| for \.{\\textstyle}*/
@d script_style 4 /*|subtype| for \.{\\scriptstyle}*/
@d script_script_style 6 /*|subtype| for \.{\\scriptscriptstyle}*/
@d cramped 1 /*add this to an uncramped style if you want to cramp it*/

@p static pointer new_style(small_number @!s) /*create a style node*/
{@+pointer p; /*the new node*/
p=get_node(style_node_size);type(p)=style_node;
subtype(p)=s;width(p)=0;depth(p)=0; /*the |width| and |depth| are not used*/
return p;
}

@ Finally, the \.{\\mathchoice} primitive creates a |choice_node|, which
has special subfields |display_mlist|, |text_mlist|, |script_mlist|,
and |script_script_mlist| pointing to the mlists for each style.

@d choice_node (unset_node+2) /*|type| of a choice node*/
@d display_mlist(A) info(A+1) /*mlist to be used in display style*/
@d text_mlist(A) link(A+1) /*mlist to be used in text style*/
@d script_mlist(A) info(A+2) /*mlist to be used in script style*/
@d script_script_mlist(A) link(A+2) /*mlist to be used in scriptscript style*/

@p static pointer new_choice(void) /*create a choice node*/
{@+pointer p; /*the new node*/
p=get_node(style_node_size);type(p)=choice_node;
subtype(p)=0; /*the |subtype| is not used*/
display_mlist(p)=null;text_mlist(p)=null;script_mlist(p)=null;
script_script_mlist(p)=null;
return p;
}

@ Let's consider now the previously unwritten part of |show_node_list|
that displays the things that can only be present in mlists; this
program illustrates how to access the data structures just defined.

In the context of the following program, |p| points to a node or noad that
should be displayed, and the current string contains the ``recursion history''
that leads to this point. The recursion history consists of a dot for each
outer level in which |p| is subsidiary to some node, or in which |p| is
subsidiary to the |nucleus| field of some noad; the dot is replaced by
`\.\_' or `\.\^' or `\./' or `\.\\' if |p| is descended from the |subscr|
or |supscr| or |denominator| or |numerator| fields of noads. For example,
the current string would be `\.{.\^.\_/}' if |p| points to the |ord_noad| for
|x| in the (ridiculous) formula
`\.{\$\\sqrt\{a\^\{\\mathinner\{b\_\{c\\over x+y\}\}\}\}\$}'.

@<Cases of |show_node_list| that arise...@>=
case style_node: print_style(subtype(p));@+break;
case choice_node: @<Display choice node |p|@>@;@+break;
case ord_noad: case op_noad: case bin_noad:
  case rel_noad: case open_noad: case close_noad:
  case punct_noad: case inner_noad:
  case radical_noad: case over_noad: case under_noad:
  case vcenter_noad: case accent_noad:
  case left_noad: case right_noad: @<Display normal noad |p|@>@;@+break;
case fraction_noad: @<Display fraction noad |p|@>@;@+break;

@ Here are some simple routines used in the display of noads.

@<Declare procedures needed for displaying the elements of mlists@>=
static void print_fam_and_char(pointer @!p) /*prints family and character*/
{@+print_esc("fam");print_int(fam(p));print_char(' ');
print_ASCII(qo(character(p)));
}
@#
static void print_delimiter(pointer @!p) /*prints a delimiter as 24-bit hex value*/
{@+int a; /*accumulator*/
a=small_fam(p)*256+qo(small_char(p));
a=a*0x1000+large_fam(p)*256+qo(large_char(p));
if (a < 0) print_int(a); /*this should never happen*/
else print_hex(a);
}

@ The next subroutine will descend to another level of recursion when a
subsidiary mlist needs to be displayed. The parameter |c| indicates what
character is to become part of the recursion history. An empty mlist is
distinguished from a field with |math_type(p)==empty|, because these are
not equivalent (as explained above).
@^recursion@>

@<Declare procedures needed for displaying...@>=
static void show_info(void); /*|show_node_list(info(temp_ptr))|*/
static void print_subsidiary_data(pointer @!p, ASCII_code @!c)
   /*display a noad field*/
{@+if (cur_length >= depth_threshold)
  {@+if (math_type(p)!=empty) print(" []");
  }
else{@+append_char(c); /*include |c| in the recursion history*/
  temp_ptr=p; /*prepare for |show_info| if recursion is needed*/
  switch (math_type(p)) {
  case math_char: {@+print_ln();print_current_string();print_fam_and_char(p);
    } @+break;
  case sub_box: show_info();@+break; /*recursive call*/
  case sub_mlist: if (info(p)==null)
      {@+print_ln();print_current_string();print("{}");
      }
    else show_info();@+break; /*recursive call*/
  default:do_nothing; /*|empty|*/
  } @/
  flush_char; /*remove |c| from the recursion history*/
  }
}

@ The inelegant introduction of |show_info| in the code above seems better
than the alternative of using \PASCAL's strange |forward| declaration for a
procedure with parameters. The \PASCAL\ convention about dropping parameters
from a post-|forward| procedure is, frankly, so intolerable to the author
of \TeX\ that he would rather stoop to communication via a global temporary
variable. (A similar stoopidity occurred with respect to |hlist_out| and
|vlist_out| above, and it will occur with respect to |mlist_to_hlist| below.)
@^Knuth, Donald Ervin@>
@:PASCAL}{\PASCAL@>

@p static void show_info(void) /*the reader will kindly forgive this*/
{@+show_node_list(info(temp_ptr));
}

@ @<Declare procedures needed for displaying...@>=
static void print_style(int @!c)
{@+switch (c/2) {
case 0: print_esc("displaystyle");@+break; /*|display_style==0|*/
case 1: print_esc("textstyle");@+break; /*|text_style==2|*/
case 2: print_esc("scriptstyle");@+break; /*|script_style==4|*/
case 3: print_esc("scriptscriptstyle");@+break; /*|script_script_style==6|*/
default:print("Unknown style!");
}
}

@ @<Display choice node |p|@>=
{@+print_esc("mathchoice");
append_char('D');show_node_list(display_mlist(p));flush_char;
append_char('T');show_node_list(text_mlist(p));flush_char;
append_char('S');show_node_list(script_mlist(p));flush_char;
append_char('s');show_node_list(script_script_mlist(p));flush_char;
}

@ @<Display normal noad |p|@>=
{@+switch (type(p)) {
case ord_noad: print_esc("mathord");@+break;
case op_noad: print_esc("mathop");@+break;
case bin_noad: print_esc("mathbin");@+break;
case rel_noad: print_esc("mathrel");@+break;
case open_noad: print_esc("mathopen");@+break;
case close_noad: print_esc("mathclose");@+break;
case punct_noad: print_esc("mathpunct");@+break;
case inner_noad: print_esc("mathinner");@+break;
case over_noad: print_esc("overline");@+break;
case under_noad: print_esc("underline");@+break;
case vcenter_noad: print_esc("vcenter");@+break;
case radical_noad: {@+print_esc("radical");print_delimiter(left_delimiter(p));
  } @+break;
case accent_noad: {@+print_esc("accent");print_fam_and_char(accent_chr(p));
  } @+break;
case left_noad: {@+print_esc("left");print_delimiter(delimiter(p));
  } @+break;
case right_noad: {@+if (subtype(p)==normal) print_esc("right");
  else print_esc("middle");
  print_delimiter(delimiter(p));
  }
}
if (type(p) < left_noad)
  {@+if (subtype(p)!=normal)
    if (subtype(p)==limits) print_esc("limits");
    else print_esc("nolimits");
  print_subsidiary_data(nucleus(p),'.');
  }
print_subsidiary_data(supscr(p),'^');
print_subsidiary_data(subscr(p),'_');
}

@ @<Display fraction noad |p|@>=
{@+print_esc("fraction, thickness ");
if (thickness(p)==default_code) print("= default");
else print_scaled(thickness(p));
if ((small_fam(left_delimiter(p))!=0)||@+
  (small_char(left_delimiter(p))!=min_quarterword)||@|
  (large_fam(left_delimiter(p))!=0)||@|
  (large_char(left_delimiter(p))!=min_quarterword))
  {@+print(", left-delimiter ");print_delimiter(left_delimiter(p));
  }
if ((small_fam(right_delimiter(p))!=0)||@|
  (small_char(right_delimiter(p))!=min_quarterword)||@|
  (large_fam(right_delimiter(p))!=0)||@|
  (large_char(right_delimiter(p))!=min_quarterword))
  {@+print(", right-delimiter ");print_delimiter(right_delimiter(p));
  }
print_subsidiary_data(numerator(p),'\\');
print_subsidiary_data(denominator(p),'/');
}

@ That which can be displayed can also be destroyed.

@<Cases of |flush_node_list| that arise...@>=
case style_node: {@+free_node(p, style_node_size);goto done;
  }
case choice_node: {@+flush_node_list(display_mlist(p));
  flush_node_list(text_mlist(p));
  flush_node_list(script_mlist(p));
  flush_node_list(script_script_mlist(p));
  free_node(p, style_node_size);goto done;
  }
case ord_noad: case op_noad: case bin_noad:
  case rel_noad: case open_noad: case close_noad:
  case punct_noad: case inner_noad:
  case radical_noad: case over_noad: case under_noad:
  case vcenter_noad: case accent_noad: @t@>@;@/
  {@+if (math_type(nucleus(p)) >= sub_box)
    flush_node_list(info(nucleus(p)));
  if (math_type(supscr(p)) >= sub_box)
    flush_node_list(info(supscr(p)));
  if (math_type(subscr(p)) >= sub_box)
    flush_node_list(info(subscr(p)));
  if (type(p)==radical_noad) free_node(p, radical_noad_size);
  else if (type(p)==accent_noad) free_node(p, accent_noad_size);
  else free_node(p, noad_size);
  goto done;
  }
case left_noad: case right_noad: {@+free_node(p, noad_size);goto done;
  }
case fraction_noad: {@+flush_node_list(info(numerator(p)));
  flush_node_list(info(denominator(p)));
  free_node(p, fraction_noad_size);goto done;
  }

@* Subroutines for math mode.
In order to convert mlists to hlists, i.e., noads to nodes, we need several
subroutines that are conveniently dealt with now.

Let us first introduce the macros that make it easy to get at the parameters and
other font information. A size code, which is a multiple of 16, is added to a
family number to get an index into the table of internal font numbers
for each combination of family and size.  (Be alert: Size codes get
larger as the type gets smaller.)

@d text_size 0 /*size code for the largest size in a family*/
@d script_size 16 /*size code for the medium size in a family*/
@d script_script_size 32 /*size code for the smallest size in a family*/

@<Basic printing procedures@>=
static void print_size(int @!s)
{@+if (s==text_size) print_esc("textfont");
else if (s==script_size) print_esc("scriptfont");
else print_esc("scriptscriptfont");
}

@ Before an mlist is converted to an hlist, \TeX\ makes sure that
the fonts in family~2 have enough parameters to be math-symbol
fonts, and that the fonts in family~3 have enough parameters to be
math-extension fonts. The math-symbol parameters are referred to by using the
following macros, which take a size code as their parameter; for example,
|num1(cur_size)| gives the value of the |num1| parameter for the current size.
@^parameters for symbols@>
@^font parameters@>

@d mathsy_end(A) fam_fnt(2+A)]].sc
@d mathsy(A) font_info[A+param_base[mathsy_end
@d math_x_height mathsy(5) /*height of `\.x'*/
@d math_quad mathsy(6) /*\.{18mu}*/
@d num1 mathsy(8) /*numerator shift-up in display styles*/
@d num2 mathsy(9) /*numerator shift-up in non-display, non-\.{\\atop}*/
@d num3 mathsy(10) /*numerator shift-up in non-display \.{\\atop}*/
@d denom1 mathsy(11) /*denominator shift-down in display styles*/
@d denom2 mathsy(12) /*denominator shift-down in non-display styles*/
@d sup1 mathsy(13) /*superscript shift-up in uncramped display style*/
@d sup2 mathsy(14) /*superscript shift-up in uncramped non-display*/
@d sup3 mathsy(15) /*superscript shift-up in cramped styles*/
@d sub1 mathsy(16) /*subscript shift-down if superscript is absent*/
@d sub2 mathsy(17) /*subscript shift-down if superscript is present*/
@d sup_drop mathsy(18) /*superscript baseline below top of large box*/
@d sub_drop mathsy(19) /*subscript baseline below bottom of large box*/
@d delim1 mathsy(20) /*size of \.{\\atopwithdelims} delimiters
  in display styles*/
@d delim2 mathsy(21) /*size of \.{\\atopwithdelims} delimiters in non-displays*/
@d axis_height mathsy(22) /*height of fraction lines above the baseline*/
@d total_mathsy_params 22

@ The math-extension parameters have similar macros, but the size code is
omitted (since it is always |cur_size| when we refer to such parameters).
@^parameters for symbols@>
@^font parameters@>

@d mathex(A) font_info[A+param_base[fam_fnt(3+cur_size)]].sc
@d default_rule_thickness mathex(8) /*thickness of \.{\\over} bars*/
@d big_op_spacing1 mathex(9) /*minimum clearance above a displayed op*/
@d big_op_spacing2 mathex(10) /*minimum clearance below a displayed op*/
@d big_op_spacing3 mathex(11) /*minimum baselineskip above displayed op*/
@d big_op_spacing4 mathex(12) /*minimum baselineskip below displayed op*/
@d big_op_spacing5 mathex(13) /*padding above and below displayed limits*/
@d total_mathex_params 13

@ We also need to compute the change in style between mlists and their
subsidiaries. The following macros define the subsidiary style for
an overlined nucleus (|cramped_style|), for a subscript or a superscript
(|sub_style| or |sup_style|), or for a numerator or denominator (|num_style|
or |denom_style|).

@d cramped_style(A) 2*(A/2)+cramped /*cramp the style*/
@d sub_style(A) 2*(A/4)+script_style+cramped /*smaller and cramped*/
@d sup_style(A) 2*(A/4)+script_style+(A%2) /*smaller*/
@d num_style(A) A+2-2*(A/6) /*smaller unless already script-script*/
@d denom_style(A) 2*(A/2)+cramped+2-2*(A/6) /*smaller, cramped*/

@ When the style changes, the following piece of program computes associated
information:

@<Set up the values of |cur_size| and |cur_mu|, based on |cur_style|@>=
{@+if (cur_style < script_style) cur_size=text_size;
else cur_size=16*((cur_style-text_style)/2);
cur_mu=x_over_n(math_quad(cur_size), 18);
}

@ Here is a function that returns a pointer to a rule node having a given
thickness |t|. The rule will extend horizontally to the boundary of the vlist
that eventually contains it.

@p static pointer fraction_rule(scaled @!t)
   /*construct the bar for a fraction*/
{@+pointer p; /*the new node*/
p=new_rule();height(p)=t;depth(p)=0;return p;
}

@ The |overbar| function returns a pointer to a vlist box that consists of
a given box |b|, above which has been placed a kern of height |k| under a
fraction rule of thickness |t| under additional space of height |t|.

@p static pointer overbar(pointer @!b, scaled @!k, scaled @!t)
{@+pointer p, @!q; /*nodes being constructed*/
p=new_kern(k);link(p)=b;q=fraction_rule(t);link(q)=p;
p=new_kern(t);link(p)=q;return vpack(p, natural);
}

@ The |var_delimiter| function, which finds or constructs a sufficiently
large delimiter, is the most interesting of the auxiliary functions that
currently concern us. Given a pointer |d| to a delimiter field in some noad,
together with a size code |s| and a vertical distance |v|, this function
returns a pointer to a box that contains the smallest variant of |d| whose
height plus depth is |v| or more. (And if no variant is large enough, it
returns the largest available variant.) In particular, this routine will
construct arbitrarily large delimiters from extensible components, if
|d| leads to such characters.

The value returned is a box whose |shift_amount| has been set so that
the box is vertically centered with respect to the axis in the given size.
If a built-up symbol is returned, the height of the box before shifting
will be the height of its topmost component.

@p @t\4@>@<Declare subprocedures for |var_delimiter|@>@;
static pointer var_delimiter(pointer @!d, small_number @!s, scaled @!v)
{@+
pointer b; /*the box that will be constructed*/
internal_font_number @!f, @!g; /*best-so-far and tentative font codes*/
quarterword @!c, @!x, @!y; /*best-so-far and tentative character codes*/
int @!m, @!n; /*the number of extensible pieces*/
scaled @!u; /*height-plus-depth of a tentative character*/
scaled @!w; /*largest height-plus-depth so far*/
four_quarters @!q; /*character info*/
eight_bits @!hd; /*height-depth byte*/
four_quarters @!r; /*extensible pieces*/
small_number @!z; /*runs through font family members*/
bool @!large_attempt; /*are we trying the ``large'' variant?*/
f=null_font;w=0;large_attempt=false;
z=small_fam(d);x=small_char(d);
loop@+{@+@<Look at the variants of |(z,x)|; set |f| and |c| whenever a better
character is found; |goto found| as soon as a large enough variant is encountered@>;
  if (large_attempt) goto found; /*there were none large enough*/
  large_attempt=true;z=large_fam(d);x=large_char(d);
  }
found: if (f!=null_font)
  @<Make variable |b| point to a box for |(f,c)|@>;
else{@+b=new_null_box();
  width(b)=null_delimiter_space; /*use this width if no delimiter was found*/
  }
shift_amount(b)=half(height(b)-depth(b))-axis_height(s);
return b;
}

@ The search process is complicated slightly by the facts that some of the
characters might not be present in some of the fonts, and they might not
be probed in increasing order of height.

@<Look at the variants of |(z,x)|; set |f| and |c|...@>=
if ((z!=0)||(x!=min_quarterword))
  {@+z=z+s+16;
  @/do@+{z=z-16;g=fam_fnt(z);
  if (g!=null_font)
    @<Look at the list of characters starting with |x| in font |g|; set |f|
and |c| whenever a better character is found; |goto found| as soon as a large
enough variant is encountered@>;
  }@+ while (!(z < 16));
  }

@ @<Look at the list of characters starting with |x|...@>=
{@+y=x;
if ((qo(y) >= font_bc[g])&&(qo(y) <= font_ec[g]))
  {@+resume: q=char_info(g, y);
  if (char_exists(q))
    {@+if (char_tag(q)==ext_tag)
      {@+f=g;c=y;goto found;
      }
    hd=height_depth(q);
    u=char_height(g, hd)+char_depth(g, hd);
    if (u > w)
      {@+f=g;c=y;w=u;
      if (u >= v) goto found;
      }
    if (char_tag(q)==list_tag)
      {@+y=rem_byte(q);goto resume;
      }
    }
  }
}

@ Here is a subroutine that creates a new box, whose list contains a
single character, and whose width includes the italic correction for
that character. The height or depth of the box will be negative, if
the height or depth of the character is negative; thus, this routine
may deliver a slightly different result than |hpack| would produce.

@<Declare subprocedures for |var_delimiter|@>=
static pointer char_box(internal_font_number @!f, quarterword @!c)
{@+four_quarters q;
eight_bits @!hd; /*|height_depth| byte*/
pointer @!b, @!p; /*the new box and its character node*/
q=char_info(f, c);hd=height_depth(q);
b=new_null_box();width(b)=char_width(f, q)+char_italic(f, q);
height(b)=char_height(f, hd);depth(b)=char_depth(f, hd);
p=get_avail();character(p)=c;font(p)=f;list_ptr(b)=p;return b;
}

@ When the following code is executed, |char_tag(q)| will be equal to
|ext_tag| if and only if a built-up symbol is supposed to be returned.

@<Make variable |b| point to a box for |(f,c)|@>=
if (char_tag(q)==ext_tag)
  @<Construct an extensible character in a new box |b|, using recipe |rem_byte(q)|
and font |f|@>@;
else b=char_box(f, c)

@ When we build an extensible character, it's handy to have the
following subroutine, which puts a given character on top
of the characters already in box |b|:

@<Declare subprocedures for |var_delimiter|@>=
static void stack_into_box(pointer @!b, internal_font_number @!f,
  quarterword @!c)
{@+pointer p; /*new node placed into |b|*/
p=char_box(f, c);link(p)=list_ptr(b);list_ptr(b)=p;
height(b)=height(p);
}

@ Another handy subroutine computes the height plus depth of
a given character:

@<Declare subprocedures for |var_delimiter|@>=
static scaled height_plus_depth(internal_font_number @!f, quarterword @!c)
{@+four_quarters q;
eight_bits @!hd; /*|height_depth| byte*/
q=char_info(f, c);hd=height_depth(q);
return char_height(f, hd)+char_depth(f, hd);
}

@ @<Construct an extensible...@>=
{@+b=new_null_box();
type(b)=vlist_node;
r=font_info[exten_base[f]+rem_byte(q)].qqqq;@/
@<Compute the minimum suitable height, |w|, and the corresponding number of
extension steps, |n|; also set |width(b)|@>;
c=ext_bot(r);
if (c!=min_quarterword) stack_into_box(b, f, c);
c=ext_rep(r);
for (m=1; m<=n; m++) stack_into_box(b, f, c);
c=ext_mid(r);
if (c!=min_quarterword)
  {@+stack_into_box(b, f, c);c=ext_rep(r);
  for (m=1; m<=n; m++) stack_into_box(b, f, c);
  }
c=ext_top(r);
if (c!=min_quarterword) stack_into_box(b, f, c);
depth(b)=w-height(b);
}

@ The width of an extensible character is the width of the repeatable
module. If this module does not have positive height plus depth,
we don't use any copies of it, otherwise we use as few as possible
(in groups of two if there is a middle part).

@<Compute the minimum suitable height, |w|, and...@>=
c=ext_rep(r);u=height_plus_depth(f, c);
w=0;q=char_info(f, c);width(b)=char_width(f, q)+char_italic(f, q);@/
c=ext_bot(r);@+if (c!=min_quarterword) w=w+height_plus_depth(f, c);
c=ext_mid(r);@+if (c!=min_quarterword) w=w+height_plus_depth(f, c);
c=ext_top(r);@+if (c!=min_quarterword) w=w+height_plus_depth(f, c);
n=0;
if (u > 0) while (w < v)
  {@+w=w+u;incr(n);
  if (ext_mid(r)!=min_quarterword) w=w+u;
  }

@ The next subroutine is much simpler; it is used for numerators and
denominators of fractions as well as for displayed operators and
their limits above and below. It takes a given box~|b| and
changes it so that the new box is centered in a box of width~|w|.
The centering is done by putting \.{\\hss} glue at the left and right
of the list inside |b|, then packaging the new box; thus, the
actual box might not really be centered, if it already contains
infinite glue.

The given box might contain a single character whose italic correction
has been added to the width of the box; in this case a compensating
kern is inserted.

@p static pointer rebox(pointer @!b, scaled @!w)
{@+pointer p; /*temporary register for list manipulation*/
internal_font_number @!f; /*font in a one-character box*/
scaled @!v; /*width of a character without italic correction*/
if ((width(b)!=w)&&(list_ptr(b)!=null))
  {@+if (type(b)==vlist_node) b=hpack(b, natural);
  p=list_ptr(b);
  if ((is_char_node(p))&&(link(p)==null))
    {@+f=font(p);v=char_width(f, char_info(f, character(p)));
    if (v!=width(b)) link(p)=new_kern(width(b)-v);
    }
  list_ptr(b)=null; flush_node_list(b);
  b=new_glue(ss_glue);link(b)=p;
  while (link(p)!=null) p=link(p);
  link(p)=new_glue(ss_glue);
  return hpack(b, w, 0, 0, exactly);
  }
else{@+width(b)=w;return b;
  }
}

@ Here is a subroutine that creates a new glue specification from another
one that is expressed in `\.{mu}', given the value of the math unit.

@d mu_mult(A) nx_plus_y(n, A, xn_over_d(A, f, 0200000))

@p static pointer math_glue(pointer @!g, scaled @!m)
{@+pointer p; /*the new glue specification*/
int @!n; /*integer part of |m|*/
scaled @!f; /*fraction part of |m|*/
n=x_over_n(m, 0200000);f=rem;@/
if (f < 0)
  {@+decr(n);f=f+0200000;
  }
p=get_node(glue_spec_size);
width(p)=mu_mult(width(g)); /*convert \.{mu} to \.{pt}*/
stretch_order(p)=stretch_order(g);
if (stretch_order(p)==normal) stretch(p)=mu_mult(stretch(g));
else stretch(p)=stretch(g);
shrink_order(p)=shrink_order(g);
if (shrink_order(p)==normal) shrink(p)=mu_mult(shrink(g));
else shrink(p)=shrink(g);
return p;
}

@ The |math_kern| subroutine removes |mu_glue| from a kern node, given
the value of the math unit.

@p static void math_kern(pointer @!p, scaled @!m)
{@+int @!n; /*integer part of |m|*/
scaled @!f; /*fraction part of |m|*/
if (subtype(p)==mu_glue)
  {@+n=x_over_n(m, 0200000);f=rem;@/
  if (f < 0)
    {@+decr(n);f=f+0200000;
    }
  width(p)=mu_mult(width(p));subtype(p)=explicit;
  }
}

@ Sometimes it is necessary to destroy an mlist. The following
subroutine empties the current list, assuming that |abs(mode)==mmode|.

@p static void flush_math(void)
{@+flush_node_list(link(head));flush_node_list(incompleat_noad);
link(head)=null;tail=head;incompleat_noad=null;
}

@* Typesetting math formulas.
\TeX's most important routine for dealing with formulas is called
|mlist_to_hlist|.  After a formula has been scanned and represented as an
mlist, this routine converts it to an hlist that can be placed into a box
or incorporated into the text of a paragraph. There are three implicit
parameters, passed in global variables: |cur_mlist| points to the first
node or noad in the given mlist (and it might be |null|); |cur_style| is a
style code; and |mlist_penalties| is |true| if penalty nodes for potential
line breaks are to be inserted into the resulting hlist. After
|mlist_to_hlist| has acted, |link(temp_head)| points to the translated hlist.

Since mlists can be inside mlists, the procedure is recursive. And since this
is not part of \TeX's inner loop, the program has been written in a manner
that stresses compactness over efficiency.
@^recursion@>

@<Glob...@>=
static pointer @!cur_mlist; /*beginning of mlist to be translated*/
static small_number @!cur_style; /*style code at current place in the list*/
static small_number @!cur_size; /*size code corresponding to |cur_style|*/
static scaled @!cur_mu; /*the math unit width corresponding to |cur_size|*/
static bool @!mlist_penalties; /*should |mlist_to_hlist| insert penalties?*/

@ The recursion in |mlist_to_hlist| is due primarily to a subroutine
called |clean_box| that puts a given noad field into a box using a given
math style; |mlist_to_hlist| can call |clean_box|, which can call
|mlist_to_hlist|.
@^recursion@>

The box returned by |clean_box| is ``clean'' in the
sense that its |shift_amount| is zero.

@p static void mlist_to_hlist(void);@/
static pointer clean_box(pointer @!p, small_number @!s)
{@+
pointer q; /*beginning of a list to be boxed*/
small_number @!save_style; /*|cur_style| to be restored*/
pointer @!x; /*box to be returned*/
pointer @!r; /*temporary pointer*/
switch (math_type(p)) {
case math_char: {@+cur_mlist=new_noad();mem[nucleus(cur_mlist)]=mem[p];
  } @+break;
case sub_box: {@+q=info(p);goto found;
  }
case sub_mlist: cur_mlist=info(p);@+break;
default:{@+q=new_null_box();goto found;
  }
} @/
save_style=cur_style;cur_style=s;mlist_penalties=false;@/
mlist_to_hlist();q=link(temp_head); /*recursive call*/
cur_style=save_style; /*restore the style*/
@<Set up the values of |cur_size| and |cur_mu|, based on |cur_style|@>;
found: if (is_char_node(q)||(q==null)) x=hpack(q, natural);
  else if ((link(q)==null)&&(type(q) <= vlist_node)&&(shift_amount(q)==0))
    x=q; /*it's already clean*/
  else x=hpack(q, natural);
@<Simplify a trivial box@>;
return x;
}

@ Here we save memory space in a common case.

@<Simplify a trivial box@>=
q=list_ptr(x);
if (is_char_node(q))
  {@+r=link(q);
  if (r!=null) if (link(r)==null) if (!is_char_node(r))
   if (type(r)==kern_node)  /*unneeded italic correction*/
    {@+free_node(r, small_node_size);link(q)=null;
    }
  }

@ It is convenient to have a procedure that converts a |math_char|
field to an ``unpacked'' form. The |fetch| routine sets |cur_f|, |cur_c|,
and |cur_i| to the font code, character code, and character information bytes of
a given noad field. It also takes care of issuing error messages for
nonexistent characters; in such cases, |char_exists(cur_i)| will be |false|
after |fetch| has acted, and the field will also have been reset to |empty|.

@p static void fetch(pointer @!a) /*unpack the |math_char| field |a|*/
{@+cur_c=character(a);cur_f=fam_fnt(fam(a)+cur_size);
if (cur_f==null_font)
  @<Complain about an undefined family and set |cur_i| null@>@;
else{@+if ((qo(cur_c) >= font_bc[cur_f])&&(qo(cur_c) <= font_ec[cur_f]))
    cur_i=char_info(cur_f, cur_c);
  else cur_i=null_character;
  if (!(char_exists(cur_i)))
    {@+char_warning(cur_f, qo(cur_c));
    math_type(a)=empty;cur_i=null_character;
    }
  }
}

@ @<Complain about an undefined family...@>=
{@+print_err("");print_size(cur_size);print_char(' ');
print_int(fam(a));print(" is undefined (character ");
print_ASCII(qo(cur_c));print_char(')');
help4("Somewhere in the math formula just ended, you used the",@/
"stated character from an undefined font family. For example,",@/
"plain TeX doesn't allow \\it or \\sl in subscripts. Proceed,",@/
"and I'll try to forget that I needed that character.");
error();cur_i=null_character;math_type(a)=empty;
}

@ The outputs of |fetch| are placed in global variables.

@<Glob...@>=
static internal_font_number @!cur_f; /*the |font| field of a |math_char|*/
static quarterword @!cur_c; /*the |character| field of a |math_char|*/
static four_quarters @!cur_i; /*the |char_info| of a |math_char|,
  or a lig/kern instruction*/

@ We need to do a lot of different things, so |mlist_to_hlist| makes two
passes over the given mlist.

The first pass does most of the processing: It removes ``mu'' spacing from
glue, it recursively evaluates all subsidiary mlists so that only the
top-level mlist remains to be handled, it puts fractions and square roots
and such things into boxes, it attaches subscripts and superscripts, and
it computes the overall height and depth of the top-level mlist so that
the size of delimiters for a |left_noad| and a |right_noad| will be known.
The hlist resulting from each noad is recorded in that noad's |new_hlist|
field, an integer field that replaces the |nucleus| or |thickness|.
@^recursion@>

The second pass eliminates all noads and inserts the correct glue and
penalties between nodes.

@d new_hlist(A) mem[nucleus(A)].i /*the translation of an mlist*/

@ Here is the overall plan of |mlist_to_hlist|, and the list of its
local variables.

@p @t\4@>@<Declare math construction procedures@>@;
static void mlist_to_hlist(void)
{@+

pointer mlist; /*beginning of the given list*/
bool @!penalties; /*should penalty nodes be inserted?*/
small_number @!style; /*the given style*/
small_number @!save_style; /*holds |cur_style| during recursion*/
pointer @!q; /*runs through the mlist*/
pointer @!r; /*the most recent noad preceding |q|*/
small_number @!r_type; /*the |type| of noad |r|, or |op_noad| if |r==null|*/
small_number @!t; /*the effective |type| of noad |q| during the second pass*/
pointer @!p, @!x, @!y, @!z; /*temporary registers for list construction*/
int @!pen; /*a penalty to be inserted*/
small_number @!s; /*the size of a noad to be deleted*/
scaled @!max_h, @!max_d; /*maximum height and depth of the list translated so far*/
scaled @!delta; /*offset between subscript and superscript*/
mlist=cur_mlist;penalties=mlist_penalties;
style=cur_style; /*tuck global parameters away as local variables*/
q=mlist;r=null;r_type=op_noad;max_h=0;max_d=0;
@<Set up the values of |cur_size| and |cur_mu|, based on |cur_style|@>;
while (q!=null) @<Process node-or-noad |q| as much as possible in preparation
for the second pass of |mlist_to_hlist|, then move to the next item in the
mlist@>;
@<Convert \(a)a final |bin_noad| to an |ord_noad|@>;
@<Make a second pass over the mlist, removing all noads and inserting the
proper spacing and penalties@>;
}

@ We use the fact that no character nodes appear in an mlist, hence
the field |type(q)| is always present.

@<Process node-or-noad...@>=
{@+@<Do first-pass processing based on |type(q)|; |goto done_with_noad| if
a noad has been fully processed, |goto check_dimensions| if it has been translated
into |new_hlist(q)|, or |goto done_with_node| if a node has been fully processed@>;
check_dimensions: z=hpack(new_hlist(q), natural);
if (height(z) > max_h) max_h=height(z);
if (depth(z) > max_d) max_d=depth(z);
list_ptr(z)=null; flush_node_list(z);
done_with_noad: r=q;r_type=type(r);
if (r_type==right_noad)
  {@+r_type=left_noad;cur_style=style;@<Set up the values...@>;
  }
done_with_node: q=link(q);
}

@ One of the things we must do on the first pass is change a |bin_noad| to
an |ord_noad| if the |bin_noad| is not in the context of a binary operator.
The values of |r| and |r_type| make this fairly easy.

@<Do first-pass processing...@>=
reswitch: delta=0;
switch (type(q)) {
case bin_noad: switch (r_type) {
  case bin_noad: case op_noad: case rel_noad:
  case open_noad: case punct_noad: case left_noad:
    {@+type(q)=ord_noad;goto reswitch;
    }
  default:do_nothing;
  } @+break;
case rel_noad: case close_noad: case punct_noad:
  case right_noad: {@+@t@>@;@/
  @<Convert \(a)a final |bin_noad| to an |ord_noad|@>;
  if (type(q)==right_noad) goto done_with_noad;
  } @+break;
@t\4@>@<Cases for noads that can follow a |bin_noad|@>@;
@t\4@>@<Cases for nodes that can appear in an mlist, after which we |goto
done_with_node|@>@;
default:confusion("mlist1");
@:this can't happen mlist1}{\quad mlist1@>
} @/
@<Convert \(n)|nucleus(q)| to an hlist and attach the sub/superscripts@>@;

@ @<Convert \(a)a final |bin_noad| to an |ord_noad|@>=
if (r_type==bin_noad) type(r)=ord_noad

@ @<Cases for nodes that can appear in an mlist...@>=
case style_node: {@+cur_style=subtype(q);
  @<Set up the values of |cur_size| and |cur_mu|, based on |cur_style|@>;
  goto done_with_node;
  }
case choice_node: @<Change this node to a style node followed by the correct
choice, then |goto done_with_node|@>@;
case ins_node: case mark_node: case adjust_node:
  case whatsit_node: case penalty_node:
  case disc_node: goto done_with_node;
case rule_node: {@+if (height(q) > max_h) max_h=height(q);
  if (depth(q) > max_d) max_d=depth(q);goto done_with_node;
  }
case glue_node: {@+@<Convert \(m)math glue to ordinary glue@>;
  goto done_with_node;
  }
case kern_node: {@+math_kern(q, cur_mu);goto done_with_node;
  }

@ @d choose_mlist(A) {@+p=A(q);A(q)=null;@+}

@<Change this node to a style node...@>=
{@+switch (cur_style/2) {
case 0: choose_mlist(display_mlist)@;@+break; /*|display_style==0|*/
case 1: choose_mlist(text_mlist)@;@+break; /*|text_style==2|*/
case 2: choose_mlist(script_mlist)@;@+break; /*|script_style==4|*/
case 3: choose_mlist(script_script_mlist); /*|script_script_style==6|*/
}  /*there are no other cases*/
flush_node_list(display_mlist(q));
flush_node_list(text_mlist(q));
flush_node_list(script_mlist(q));
flush_node_list(script_script_mlist(q));@/
type(q)=style_node;subtype(q)=cur_style;width(q)=0;depth(q)=0;
if (p!=null)
  {@+z=link(q);link(q)=p;
  while (link(p)!=null) p=link(p);
  link(p)=z;
  }
goto done_with_node;
}

@ Conditional math glue (`\.{\\nonscript}') results in a |glue_node|
pointing to |zero_glue|, with |subtype(q)==cond_math_glue|; in such a case
the node following will be eliminated if it is a glue or kern node and if the
current size is different from |text_size|. Unconditional math glue
(`\.{\\muskip}') is converted to normal glue by multiplying the dimensions
by |cur_mu|.
@!@:non\_script\_}{\.{\\nonscript} primitive@>

@<Convert \(m)math glue to ordinary glue@>=
if (subtype(q)==mu_glue)
  {@+x=glue_ptr(q);
  y=math_glue(x, cur_mu);delete_glue_ref(x);glue_ptr(q)=y;
  subtype(q)=normal;
  }
else if ((cur_size!=text_size)&&(subtype(q)==cond_math_glue))
  {@+p=link(q);
  if (p!=null) if ((type(p)==glue_node)||(type(p)==kern_node))
    {@+link(q)=link(p);link(p)=null;flush_node_list(p);
    }
  }

@ @<Cases for noads that can follow a |bin_noad|@>=
case left_noad: goto done_with_noad;
case fraction_noad: {@+make_fraction(q);goto check_dimensions;
  }
case op_noad: {@+delta=make_op(q);
  if (subtype(q)==limits) goto check_dimensions;
  } @+break;
case ord_noad: make_ord(q);@+break;
case open_noad: case inner_noad: do_nothing;@+break;
case radical_noad: make_radical(q);@+break;
case over_noad: make_over(q);@+break;
case under_noad: make_under(q);@+break;
case accent_noad: make_math_accent(q);@+break;
case vcenter_noad: make_vcenter(q);@+break;

@ Most of the actual construction work of |mlist_to_hlist| is done
by procedures with names
like |make_fraction|, |make_radical|, etc. To illustrate
the general setup of such procedures, let's begin with a couple of
simple ones.

@<Declare math...@>=
static void make_over(pointer @!q)
{@+info(nucleus(q))=@|
  overbar(clean_box(nucleus(q), cramped_style(cur_style)),@|
  3*default_rule_thickness, default_rule_thickness);
math_type(nucleus(q))=sub_box;
}

@ @<Declare math...@>=
static void make_under(pointer @!q)
{@+pointer p, @!x, @!y; /*temporary registers for box construction*/
scaled @!delta; /*overall height plus depth*/
x=clean_box(nucleus(q), cur_style);
p=new_kern(3*default_rule_thickness);link(x)=p;
link(p)=fraction_rule(default_rule_thickness);
y=vpack(x, natural);
delta=height(y)+depth(y)+default_rule_thickness;
height(y)=height(x);depth(y)=delta-height(y);
info(nucleus(q))=y;math_type(nucleus(q))=sub_box;
}

@ @<Declare math...@>=
static void make_vcenter(pointer @!q)
{@+pointer v; /*the box that should be centered vertically*/
scaled @!delta; /*its height plus depth*/
v=info(nucleus(q));
if (type(v)!=vlist_node &&
    !(type(v)==whatsit_node && (subtype(v)==vset_node || subtype(v)==vpack_node)))
   confusion("vcenter");
@:this can't happen vcenter}{\quad vcenter@>
delta=height(v)+depth(v);
height(v)=axis_height(cur_size)+half(delta);
depth(v)=delta-height(v);
}

@ According to the rules in the \.{DVI} file specifications, we ensure alignment
@^square roots@>
between a square root sign and the rule above its nucleus by assuming that the
baseline of the square-root symbol is the same as the bottom of the rule. The
height of the square-root symbol will be the thickness of the rule, and the
depth of the square-root symbol should exceed or equal the height-plus-depth
of the nucleus plus a certain minimum clearance~|clr|. The symbol will be
placed so that the actual clearance is |clr| plus half the excess.

@<Declare math...@>=
static void make_radical(pointer @!q)
{@+pointer x, @!y; /*temporary registers for box construction*/
scaled @!delta, @!clr; /*dimensions involved in the calculation*/
x=clean_box(nucleus(q), cramped_style(cur_style));
if (cur_style < text_style)  /*display style*/
  clr=default_rule_thickness+(abs(math_x_height(cur_size))/4);
else{@+clr=default_rule_thickness;clr=clr+(abs(clr)/4);
  }
y=var_delimiter(left_delimiter(q), cur_size, height(x)+depth(x)+clr+
  default_rule_thickness);
delta=depth(y)-(height(x)+depth(x)+clr);
if (delta > 0) clr=clr+half(delta); /*increase the actual clearance*/
shift_amount(y)=-(height(x)+clr);
link(y)=overbar(x, clr, height(y));
info(nucleus(q))=hpack(y, natural);math_type(nucleus(q))=sub_box;
}

@ Slants are not considered when placing accents in math mode. The accenter is
centered over the accentee, and the accent width is treated as zero with
respect to the size of the final box.

@<Declare math...@>=
static void make_math_accent(pointer @!q)
{@+
pointer p, @!x, @!y; /*temporary registers for box construction*/
int @!a; /*address of lig/kern instruction*/
quarterword @!c; /*accent character*/
internal_font_number @!f; /*its font*/
four_quarters @!i; /*its |char_info|*/
scaled @!s; /*amount to skew the accent to the right*/
scaled @!h; /*height of character being accented*/
scaled @!delta; /*space to remove between accent and accentee*/
scaled @!w; /*width of the accentee, not including sub/superscripts*/
fetch(accent_chr(q));
if (char_exists(cur_i))
  {@+i=cur_i;c=cur_c;f=cur_f;@/
  @<Compute the amount of skew@>;
  x=clean_box(nucleus(q), cramped_style(cur_style));w=width(x);h=height(x);
  @<Switch to a larger accent if available and appropriate@>;
  if (h < x_height(f)) delta=h;@+else delta=x_height(f);
  if ((math_type(supscr(q))!=empty)||(math_type(subscr(q))!=empty))
    if (math_type(nucleus(q))==math_char)
      @<Swap the subscript and superscript into box |x|@>;
  y=char_box(f, c);
  shift_amount(y)=s+half(w-width(y));
  width(y)=0;p=new_kern(-delta);link(p)=x;link(y)=p;
  y=vpack(y, natural);width(y)=width(x);
  if (height(y) < h) @<Make the height of box |y| equal to |h|@>;
  info(nucleus(q))=y;
  math_type(nucleus(q))=sub_box;
  }
}

@ @<Make the height of box |y|...@>=
{@+p=new_kern(h-height(y));link(p)=list_ptr(y);list_ptr(y)=p;
height(y)=h;
}

@ @<Switch to a larger accent if available and appropriate@>=
loop@+{@+if (char_tag(i)!=list_tag) goto done;
  y=rem_byte(i);
  i=char_info(f, y);
  if (!char_exists(i)) goto done;
  if (char_width(f, i) > w) goto done;
  c=y;
  }
done:

@ @<Compute the amount of skew@>=
s=0;
if (math_type(nucleus(q))==math_char)
  {@+fetch(nucleus(q));
  if (char_tag(cur_i)==lig_tag)
    {@+a=lig_kern_start(cur_f, cur_i);
    cur_i=font_info[a].qqqq;
    if (skip_byte(cur_i) > stop_flag)
      {@+a=lig_kern_restart(cur_f, cur_i);
      cur_i=font_info[a].qqqq;
      }
    loop@+{@+if (qo(next_char(cur_i))==skew_char[cur_f])
        {@+if (op_byte(cur_i) >= kern_flag)
          if (skip_byte(cur_i) <= stop_flag) s=char_kern(cur_f, cur_i);
        goto done1;
        }
      if (skip_byte(cur_i) >= stop_flag) goto done1;
      a=a+qo(skip_byte(cur_i))+1;
      cur_i=font_info[a].qqqq;
      }
    }
  }
done1:

@ @<Swap the subscript and superscript into box |x|@>=
{@+flush_node_list(x);x=new_noad();
mem[nucleus(x)]=mem[nucleus(q)];
mem[supscr(x)]=mem[supscr(q)];
mem[subscr(x)]=mem[subscr(q)];@/
mem[supscr(q)].hh=empty_field;
mem[subscr(q)].hh=empty_field;@/
math_type(nucleus(q))=sub_mlist;info(nucleus(q))=x;
x=clean_box(nucleus(q), cur_style);delta=delta+height(x)-h;h=height(x);
}

@ The |make_fraction| procedure is a bit different because it sets
|new_hlist(q)| directly rather than making a sub-box.

@<Declare math...@>=
static void make_fraction(pointer @!q)
{@+pointer p, @!v, @!x, @!y, @!z; /*temporary registers for box construction*/
scaled @!delta, @!delta1, @!delta2, @!shift_up, @!shift_down, @!clr;
   /*dimensions for box calculations*/
if (thickness(q)==default_code) thickness(q)=default_rule_thickness;
@<Create equal-width boxes |x| and |z| for the numerator and denominator,
and compute the default amounts |shift_up| and |shift_down| by which they
are displaced from the baseline@>;
if (thickness(q)==0) @<Adjust \(s)|shift_up| and |shift_down| for the case
of no fraction line@>@;
else@<Adjust \(s)|shift_up| and |shift_down| for the case of a fraction line@>;
@<Construct a vlist box for the fraction, according to |shift_up| and |shift_down|@>;
@<Put the \(f)fraction into a box with its delimiters, and make |new_hlist(q)|
point to it@>;
}

@ @<Create equal-width boxes |x| and |z| for the numerator and denom...@>=
x=clean_box(numerator(q), num_style(cur_style));
z=clean_box(denominator(q), denom_style(cur_style));
if (width(x) < width(z)) x=rebox(x, width(z));
else z=rebox(z, width(x));
if (cur_style < text_style)  /*display style*/
  {@+shift_up=num1(cur_size);shift_down=denom1(cur_size);
  }
else{@+shift_down=denom2(cur_size);
  if (thickness(q)!=0) shift_up=num2(cur_size);
  else shift_up=num3(cur_size);
  }

@ The numerator and denominator must be separated by a certain minimum
clearance, called |clr| in the following program. The difference between
|clr| and the actual clearance is twice |delta|.

@<Adjust \(s)|shift_up| and |shift_down| for the case of no fraction line@>=
{@+if (cur_style < text_style) clr=7*default_rule_thickness;
else clr=3*default_rule_thickness;
delta=half(clr-((shift_up-depth(x))-(height(z)-shift_down)));
if (delta > 0)
  {@+shift_up=shift_up+delta;
  shift_down=shift_down+delta;
  }
}

@ In the case of a fraction line, the minimum clearance depends on the actual
thickness of the line.

@<Adjust \(s)|shift_up| and |shift_down| for the case of a fraction line@>=
{@+if (cur_style < text_style) clr=3*thickness(q);
else clr=thickness(q);
delta=half(thickness(q));
delta1=clr-((shift_up-depth(x))-(axis_height(cur_size)+delta));
delta2=clr-((axis_height(cur_size)-delta)-(height(z)-shift_down));
if (delta1 > 0) shift_up=shift_up+delta1;
if (delta2 > 0) shift_down=shift_down+delta2;
}

@ @<Construct a vlist box for the fraction...@>=
v=new_null_box();type(v)=vlist_node;
height(v)=shift_up+height(x);depth(v)=depth(z)+shift_down;
width(v)=width(x); /*this also equals |width(z)|*/
if (thickness(q)==0)
  {@+p=new_kern((shift_up-depth(x))-(height(z)-shift_down));
  link(p)=z;
  }
else{@+y=fraction_rule(thickness(q));@/
  p=new_kern((axis_height(cur_size)-delta)-@|(height(z)-shift_down));@/
  link(y)=p;link(p)=z;@/
  p=new_kern((shift_up-depth(x))-(axis_height(cur_size)+delta));
  link(p)=y;
  }
link(x)=p;list_ptr(v)=x

@ @<Put the \(f)fraction into a box with its delimiters...@>=
if (cur_style < text_style) delta=delim1(cur_size);
else delta=delim2(cur_size);
x=var_delimiter(left_delimiter(q), cur_size, delta);link(x)=v;@/
z=var_delimiter(right_delimiter(q), cur_size, delta);link(v)=z;@/
new_hlist(q)=hpack(x, natural)

@ If the nucleus of an |op_noad| is a single character, it is to be
centered vertically with respect to the axis, after first being enlarged
(via a character list in the font) if we are in display style.  The normal
convention for placing displayed limits is to put them above and below the
operator in display style.

The italic correction is removed from the character if there is a subscript
and the limits are not being displayed. The |make_op|
routine returns the value that should be used as an offset between
subscript and superscript.

After |make_op| has acted, |subtype(q)| will be |limits| if and only if
the limits have been set above and below the operator. In that case,
|new_hlist(q)| will already contain the desired final box.

@<Declare math...@>=
static scaled make_op(pointer @!q)
{@+scaled delta; /*offset between subscript and superscript*/
pointer @!p, @!v, @!x, @!y, @!z; /*temporary registers for box construction*/
quarterword @!c;@+four_quarters @!i; /*registers for character examination*/
scaled @!shift_up, @!shift_down; /*dimensions for box calculation*/
if ((subtype(q)==normal)&&(cur_style < text_style))
  subtype(q)=limits;
if (math_type(nucleus(q))==math_char)
  {@+fetch(nucleus(q));
  if ((cur_style < text_style)&&(char_tag(cur_i)==list_tag))  /*make it larger*/
    {@+c=rem_byte(cur_i);i=char_info(cur_f, c);
    if (char_exists(i))
      {@+cur_c=c;cur_i=i;character(nucleus(q))=c;
      }
    }
  delta=char_italic(cur_f, cur_i);x=clean_box(nucleus(q), cur_style);
  if ((math_type(subscr(q))!=empty)&&(subtype(q)!=limits))
    width(x)=width(x)-delta; /*remove italic correction*/
  shift_amount(x)=half(height(x)-depth(x))-axis_height(cur_size);
     /*center vertically*/
  math_type(nucleus(q))=sub_box;info(nucleus(q))=x;
  }
else delta=0;
if (subtype(q)==limits)
  @<Construct a box with limits above and below it, skewed by |delta|@>;
return delta;
}

@ The following program builds a vlist box |v| for displayed limits. The
width of the box is not affected by the fact that the limits may be skewed.

@<Construct a box with limits above and below it...@>=
{@+x=clean_box(supscr(q), sup_style(cur_style));
y=clean_box(nucleus(q), cur_style);
z=clean_box(subscr(q), sub_style(cur_style));
v=new_null_box();type(v)=vlist_node;width(v)=width(y);
if (width(x) > width(v)) width(v)=width(x);
if (width(z) > width(v)) width(v)=width(z);
x=rebox(x, width(v));y=rebox(y, width(v));z=rebox(z, width(v));@/
shift_amount(x)=half(delta);shift_amount(z)=-shift_amount(x);
height(v)=height(y);depth(v)=depth(y);
@<Attach the limits to |y| and adjust |height(v)|, |depth(v)| to account for
their presence@>;
new_hlist(q)=v;
}

@ We use |shift_up| and |shift_down| in the following program for the
amount of glue between the displayed operator |y| and its limits |x| and
|z|. The vlist inside box |v| will consist of |x| followed by |y| followed
by |z|, with kern nodes for the spaces between and around them.

@<Attach the limits to |y| and adjust |height(v)|, |depth(v)|...@>=
if (math_type(supscr(q))==empty)
  {@+list_ptr(x)=null; flush_node_list(x);list_ptr(v)=y;
  }
else{@+shift_up=big_op_spacing3-depth(x);
  if (shift_up < big_op_spacing1) shift_up=big_op_spacing1;
  p=new_kern(shift_up);link(p)=y;link(x)=p;@/
  p=new_kern(big_op_spacing5);link(p)=x;list_ptr(v)=p;
  height(v)=height(v)+big_op_spacing5+height(x)+depth(x)+shift_up;
  }
if (math_type(subscr(q))==empty)@/
  {@+list_ptr(z)=null;@+flush_node_list(z);@+}
else{@+shift_down=big_op_spacing4-height(z);
  if (shift_down < big_op_spacing2) shift_down=big_op_spacing2;
  p=new_kern(shift_down);link(y)=p;link(p)=z;@/
  p=new_kern(big_op_spacing5);link(z)=p;
  depth(v)=depth(v)+big_op_spacing5+height(z)+depth(z)+shift_down;
  }

@ A ligature found in a math formula does not create a |ligature_node|, because
there is no question of hyphenation afterwards; the ligature will simply be
stored in an ordinary |char_node|, after residing in an |ord_noad|.

The |math_type| is converted to |math_text_char| here if we would not want to
apply an italic correction to the current character unless it belongs
to a math font (i.e., a font with |space==0|).

No boundary characters enter into these ligatures.

@<Declare math...@>=
static void make_ord(pointer @!q)
{@+
int a; /*address of lig/kern instruction*/
pointer @!p, @!r; /*temporary registers for list manipulation*/
restart: @t@>@;@/
if (math_type(subscr(q))==empty) if (math_type(supscr(q))==empty)
 if (math_type(nucleus(q))==math_char)
  {@+p=link(q);
  if (p!=null) if ((type(p) >= ord_noad)&&(type(p) <= punct_noad))
    if (math_type(nucleus(p))==math_char)
    if (fam(nucleus(p))==fam(nucleus(q)))
      {@+math_type(nucleus(q))=math_text_char;
      fetch(nucleus(q));
      if (char_tag(cur_i)==lig_tag)
        {@+a=lig_kern_start(cur_f, cur_i);
        cur_c=character(nucleus(p));
        cur_i=font_info[a].qqqq;
        if (skip_byte(cur_i) > stop_flag)
          {@+a=lig_kern_restart(cur_f, cur_i);
          cur_i=font_info[a].qqqq;
          }
        loop@+{@+@<If instruction |cur_i| is a kern with |cur_c|, attach the
kern after~|q|; or if it is a ligature with |cur_c|, combine noads |q| and~|p|
appropriately; then |return| if the cursor has moved past a noad, or |goto
restart|@>;
          if (skip_byte(cur_i) >= stop_flag) return;
          a=a+qo(skip_byte(cur_i))+1;
          cur_i=font_info[a].qqqq;
          }
        }
      }
  }
}

@ Note that a ligature between an |ord_noad| and another kind of noad
is replaced by an |ord_noad|, when the two noads collapse into one.
But we could make a parenthesis (say) change shape when it follows
certain letters. Presumably a font designer will define such
ligatures only when this convention makes sense.

\chardef\@@='174 % vertical line to indicate character retention

@<If instruction |cur_i| is a kern with |cur_c|,...@>=
if (next_char(cur_i)==cur_c) if (skip_byte(cur_i) <= stop_flag)
  if (op_byte(cur_i) >= kern_flag)
    {@+p=new_kern(char_kern(cur_f, cur_i));
    link(p)=link(q);link(q)=p;return;
    }
  else{@+check_interrupt; /*allow a way out of infinite ligature loop*/
    switch (op_byte(cur_i)) {
  case qi(1): case qi(5): character(nucleus(q))=rem_byte(cur_i);@+break; /*\.{=:\@@}, \.{=:\@@>}*/
  case qi(2): case qi(6): character(nucleus(p))=rem_byte(cur_i);@+break; /*\.{\@@=:}, \.{\@@=:>}*/
  case qi(3): case qi(7): case qi(11): {@+r=new_noad(); /*\.{\@@=:\@@}, \.{\@@=:\@@>}, \.{\@@=:\@@>>}*/
      character(nucleus(r))=rem_byte(cur_i);
      fam(nucleus(r))=fam(nucleus(q));@/
      link(q)=r;link(r)=p;
      if (op_byte(cur_i) < qi(11)) math_type(nucleus(r))=math_char;
      else math_type(nucleus(r))=math_text_char; /*prevent combination*/
      } @+break;
    default:{@+link(q)=link(p);
      character(nucleus(q))=rem_byte(cur_i); /*\.{=:}*/
      mem[subscr(q)]=mem[subscr(p)];mem[supscr(q)]=mem[supscr(p)];@/
      free_node(p, noad_size);
      }
    }
    if (op_byte(cur_i) > qi(3)) return;
    math_type(nucleus(q))=math_char;goto restart;
    }

@ When we get to the following part of the program, we have ``fallen through''
from cases that did not lead to |check_dimensions| or |done_with_noad| or
|done_with_node|. Thus, |q|~points to a noad whose nucleus may need to be
converted to an hlist, and whose subscripts and superscripts need to be
appended if they are present.

If |nucleus(q)| is not a |math_char|, the variable |delta| is the amount
by which a superscript should be moved right with respect to a subscript
when both are present.
@^subscripts@>
@^superscripts@>

@<Convert \(n)|nucleus(q)| to an hlist and attach the sub/superscripts@>=
switch (math_type(nucleus(q))) {
case math_char: case math_text_char:
  @<Create a character node |p| for |nucleus(q)|, possibly followed by a kern
node for the italic correction, and set |delta| to the italic correction if
a subscript is present@>@;@+break;
case empty: p=null;@+break;
case sub_box: p=info(nucleus(q));@+break;
case sub_mlist: {@+cur_mlist=info(nucleus(q));save_style=cur_style;
  mlist_penalties=false;mlist_to_hlist(); /*recursive call*/
@^recursion@>
  cur_style=save_style;@<Set up the values...@>;
  p=hpack(link(temp_head), natural);
  } @+break;
default:confusion("mlist2");
@:this can't happen mlist2}{\quad mlist2@>
} @/
new_hlist(q)=p;
if ((math_type(subscr(q))==empty)&&(math_type(supscr(q))==empty))
  goto check_dimensions;
make_scripts(q, delta)

@ @<Create a character node |p| for |nucleus(q)|...@>=
{@+fetch(nucleus(q));
if (char_exists(cur_i))
  {@+delta=char_italic(cur_f, cur_i);p=new_character(cur_f, qo(cur_c));
  if ((math_type(nucleus(q))==math_text_char)&&(space(cur_f)!=0))
    delta=0; /*no italic correction in mid-word of text font*/
  if ((math_type(subscr(q))==empty)&&(delta!=0))
    {@+link(p)=new_kern(delta);delta=0;
    }
  }
else p=null;
}

@ The purpose of |make_scripts(q, delta)| is to attach the subscript and/or
superscript of noad |q| to the list that starts at |new_hlist(q)|,
given that the subscript and superscript aren't both empty. The superscript
will appear to the right of the subscript by a given distance |delta|.

We set |shift_down| and |shift_up| to the minimum amounts to shift the
baseline of subscripts and superscripts based on the given nucleus.

@<Declare math...@>=
static void make_scripts(pointer @!q, scaled @!delta)
{@+pointer p, @!x, @!y, @!z; /*temporary registers for box construction*/
scaled @!shift_up, @!shift_down, @!clr; /*dimensions in the calculation*/
small_number @!t; /*subsidiary size code*/
p=new_hlist(q);
if (is_char_node(p))
  {@+shift_up=0;shift_down=0;
  }
else{@+z=hpack(p, natural);
  if (cur_style < script_style) t=script_size;@+else t=script_script_size;
  shift_up=height(z)-sup_drop(t);
  shift_down=depth(z)+sub_drop(t);
  list_ptr(z)=null;flush_node_list(z);
  }
if (math_type(supscr(q))==empty)
  @<Construct a subscript box |x| when there is no superscript@>@;
else{@+@<Construct a superscript box |x|@>;
  if (math_type(subscr(q))==empty) shift_amount(x)=-shift_up;
  else@<Construct a sub/superscript combination box |x|, with the superscript
offset by |delta|@>;
  }
if (new_hlist(q)==null) new_hlist(q)=x;
else{@+p=new_hlist(q);
  while (link(p)!=null) p=link(p);
  link(p)=x;
  }
}

@ When there is a subscript without a superscript, the top of the subscript
should not exceed the baseline plus four-fifths of the x-height.

@<Construct a subscript box |x| when there is no superscript@>=
{@+x=clean_box(subscr(q), sub_style(cur_style));
width(x)=width(x)+script_space;
if (shift_down < sub1(cur_size)) shift_down=sub1(cur_size);
clr=height(x)-(abs(math_x_height(cur_size)*4)/5);
if (shift_down < clr) shift_down=clr;
shift_amount(x)=shift_down;
}

@ The bottom of a superscript should never descend below the baseline plus
one-fourth of the x-height.

@<Construct a superscript box |x|@>=
{@+x=clean_box(supscr(q), sup_style(cur_style));
width(x)=width(x)+script_space;
if (odd(cur_style)) clr=sup3(cur_size);
else if (cur_style < text_style) clr=sup1(cur_size);
else clr=sup2(cur_size);
if (shift_up < clr) shift_up=clr;
clr=depth(x)+(abs(math_x_height(cur_size))/4);
if (shift_up < clr) shift_up=clr;
}

@ When both subscript and superscript are present, the subscript must be
separated from the superscript by at least four times |default_rule_thickness|.
If this condition would be violated, the subscript moves down, after which
both subscript and superscript move up so that the bottom of the superscript
is at least as high as the baseline plus four-fifths of the x-height.

@<Construct a sub/superscript combination box |x|...@>=
{@+y=clean_box(subscr(q), sub_style(cur_style));
width(y)=width(y)+script_space;
if (shift_down < sub2(cur_size)) shift_down=sub2(cur_size);
clr=4*default_rule_thickness-
  ((shift_up-depth(x))-(height(y)-shift_down));
if (clr > 0)
  {@+shift_down=shift_down+clr;
  clr=(abs(math_x_height(cur_size)*4)/5)-(shift_up-depth(x));
  if (clr > 0)
    {@+shift_up=shift_up+clr;
    shift_down=shift_down-clr;
    }
  }
shift_amount(x)=delta; /*superscript is |delta| to the right of the subscript*/
p=new_kern((shift_up-depth(x))-(height(y)-shift_down));link(x)=p;link(p)=y;
x=vpack(x, natural);shift_amount(x)=shift_down;
}

@ We have now tied up all the loose ends of the first pass of |mlist_to_hlist|.
The second pass simply goes through and hooks everything together with the
proper glue and penalties. It also handles the |left_noad| and |right_noad| that
might be present, since |max_h| and |max_d| are now known. Variable |p| points
to a node at the current end of the final hlist.

@<Make a second pass over the mlist,...@>=
p=temp_head;link(p)=null;q=mlist;r_type=0;cur_style=style;
@<Set up the values of |cur_size| and |cur_mu|, based on |cur_style|@>;
while (q!=null)
  {@+@<If node |q| is a style node, change the style and |goto delete_q|;
otherwise if it is not a noad, put it into the hlist, advance |q|, and |goto
done|; otherwise set |s| to the size of noad |q|, set |t| to the associated
type (|ord_noad.. inner_noad|), and set |pen| to the associated penalty@>;
  @<Append inter-element spacing based on |r_type| and |t|@>;
  @<Append any |new_hlist| entries for |q|, and any appropriate penalties@>;
  if (type(q)==right_noad) t=open_noad;
  r_type=t;
  delete_q: r=q;q=link(q);free_node(r, s);
  done: ;}

@ Just before doing the big |case| switch in the second pass, the program
sets up default values so that most of the branches are short.

@<If node |q| is a style node, change the style...@>=
t=ord_noad;s=noad_size;pen=inf_penalty;
switch (type(q)) {
case op_noad: case open_noad: case close_noad:
  case punct_noad: case inner_noad: t=type(q);@+break;
case bin_noad: {@+t=bin_noad;pen=bin_op_penalty;
  } @+break;
case rel_noad: {@+t=rel_noad;pen=rel_penalty;
  } @+break;
case ord_noad: case vcenter_noad: case over_noad:
  case under_noad: do_nothing;@+break;
case radical_noad: s=radical_noad_size;@+break;
case accent_noad: s=accent_noad_size;@+break;
case fraction_noad: s=fraction_noad_size;@+break;
case left_noad: case right_noad: t=make_left_right(q, style, max_d, max_h);@+break;
case style_node: @<Change the current style and |goto delete_q|@>@;
case whatsit_node: case penalty_node:
  case rule_node: case disc_node: case adjust_node:
  case ins_node: case mark_node:
 case glue_node: case kern_node: @t@>@;@/
  {@+link(p)=q;p=q;q=link(q);link(p)=null;goto done;
  }
default:confusion("mlist3");
@:this can't happen mlist3}{\quad mlist3@>
}

@ The |make_left_right| function constructs a left or right delimiter of
the required size and returns the value |open_noad| or |close_noad|. The
|right_noad| and |left_noad| will both be based on the original |style|,
so they will have consistent sizes.

We use the fact that |right_noad-left_noad==close_noad-open_noad|.

@<Declare math...@>=
static small_number make_left_right(pointer @!q, small_number @!style,
  scaled @!max_d, scaled @!max_h)
{@+scaled delta, @!delta1, @!delta2; /*dimensions used in the calculation*/
cur_style=style;@<Set up the values...@>;
delta2=max_d+axis_height(cur_size);
delta1=max_h+max_d-delta2;
if (delta2 > delta1) delta1=delta2; /*|delta1| is max distance from axis*/
delta=(delta1/500)*delimiter_factor;
delta2=delta1+delta1-delimiter_shortfall;
if (delta < delta2) delta=delta2;
new_hlist(q)=var_delimiter(delimiter(q), cur_size, delta);
return type(q)-(left_noad-open_noad); /*|open_noad| or |close_noad|*/
}

@ @<Change the current style and |goto delete_q|@>=
{@+cur_style=subtype(q);s=style_node_size;
@<Set up the values of |cur_size| and |cur_mu|, based on |cur_style|@>;
goto delete_q;
}

@ The inter-element spacing in math formulas depends on an $8\times8$ table that
\TeX\ preloads as a 64-digit string. The elements of this string have the
following significance:
$$\vbox{\halign{#\hfil\cr
\.0 means no space;\cr
\.1 means a conditional thin space (\.{\\nonscript\\mskip\\thinmuskip});\cr
\.2 means a thin space (\.{\\mskip\\thinmuskip});\cr
\.3 means a conditional medium space
  (\.{\\nonscript\\mskip\\medmuskip});\cr
\.4 means a conditional thick space
  (\.{\\nonscript\\mskip\\thickmuskip});\cr
\.* means an impossible case.\cr}}$$
This is all pretty cryptic, but {\sl The \TeX book\/} explains what is
supposed to happen, and the string makes it happen.
@:TeXbook}{\sl The \TeX book@>

A global variable |magic_offset| is computed so that if |a| and |b| are
in the range |ord_noad dotdot inner_noad|, then |str_pool[a*8+b+magic_offset]|
is the digit for spacing between noad types |a| and |b|.

If \PASCAL\ had provided a good way to preload constant arrays, this part of
the program would not have been so strange.
@:PASCAL}{\PASCAL@>

@d math_spacing @;@/
@t\hskip-35pt@>
"0234000122*4000133**3**344*0400400*000000234000111*1111112341011"
@t$ \hskip-35pt$@>

@ @<Glob...@>=
static const int @!magic_offset=-9*ord_noad; /*used to find inter-element spacing*/

@ @<Append inter-element spacing based on |r_type| and |t|@>=
if (r_type > 0)  /*not the first noad*/
  {@+switch (so(math_spacing[r_type*8+t+magic_offset])) {
  case '0': x=0;@+break;
  case '1': if (cur_style < script_style) x=thin_mu_skip_code;@+else x=0;@+break;
  case '2': x=thin_mu_skip_code;@+break;
  case '3': if (cur_style < script_style) x=med_mu_skip_code;@+else x=0;@+break;
  case '4': if (cur_style < script_style) x=thick_mu_skip_code;@+else x=0;@+break;
  default:confusion("mlist4");
@:this can't happen mlist4}{\quad mlist4@>
  }
  if (x!=0)
    {@+y=math_glue(glue_par(x), cur_mu);
    z=new_glue(y);glue_ref_count(y)=null;link(p)=z;p=z;@/
    subtype(z)=x+1; /*store a symbolic subtype*/
    }
  }

@ We insert a penalty node after the hlist entries of noad |q| if |pen|
is not an ``infinite'' penalty, and if the node immediately following |q|
is not a penalty node or a |rel_noad| or absent entirely.

@<Append any |new_hlist| entries for |q|, and any appropriate penalties@>=
if (new_hlist(q)!=null)
  {@+link(p)=new_hlist(q);
  @/do@+{p=link(p);
  }@+ while (!(link(p)==null));
  }
if (penalties) if (link(q)!=null) if (pen < inf_penalty)
  {@+r_type=type(link(q));
  if (r_type!=penalty_node) if (r_type!=rel_noad)
    {@+z=new_penalty(pen);link(p)=z;p=z;
    }
  }

@* Alignment.
It's sort of a miracle whenever \.{\\halign} and \.{\\valign} work, because
they cut across so many of the control structures of \TeX.

Therefore the
present page is probably not the best place for a beginner to start reading
this program; it is better to master everything else first.

Let us focus our thoughts on an example of what the input might be, in order
to get some idea about how the alignment miracle happens. The example doesn't
do anything useful, but it is sufficiently general to indicate all of the
special cases that must be dealt with; please do not be disturbed by its
apparent complexity and meaninglessness.
$$\vbox{\halign{\.{#}\hfil\cr
{}\\tabskip 2pt plus 3pt\cr
{}\\halign to 300pt\{u1\#v1\&\cr
\hskip 50pt\\tabskip 1pt plus 1fil u2\#v2\&\cr
\hskip 50pt u3\#v3\\cr\cr
\hskip 25pt a1\&\\omit a2\&\\vrule\\cr\cr
\hskip 25pt \\noalign\{\\vskip 3pt\}\cr
\hskip 25pt b1\\span b2\\cr\cr
\hskip 25pt \\omit\&c2\\span\\omit\\cr\}\cr}}$$
Here's what happens:

\yskip
(0) When `\.{\\halign to 300pt\{}' is scanned, the |scan_spec| routine
places the 300pt dimension onto the |save_stack|, and an |align_group|
code is placed above it. This will make it possible to complete the alignment
when the matching `\.\}' is found.

(1) The preamble is scanned next. Macros in the preamble are not expanded,
@^preamble@>
except as part of a tabskip specification. For example, if \.{u2} had been
a macro in the preamble above, it would have been expanded, since \TeX\
must look for `\.{minus...}' as part of the tabskip glue. A ``preamble list''
is constructed based on the user's preamble; in our case it contains the
following seven items:
$$\vbox{\halign{\.{#}\hfil\qquad&(#)\hfil\cr
{}\\glue 2pt plus 3pt&the tabskip preceding column 1\cr
{}\\alignrecord, width $-\infty$&preamble info for column 1\cr
{}\\glue 2pt plus 3pt&the tabskip between columns 1 and 2\cr
{}\\alignrecord, width $-\infty$&preamble info for column 2\cr
{}\\glue 1pt plus 1fil&the tabskip between columns 2 and 3\cr
{}\\alignrecord, width $-\infty$&preamble info for column 3\cr
{}\\glue 1pt plus 1fil&the tabskip following column 3\cr}}$$
These ``alignrecord'' entries have the same size as an |unset_node|,
since they will later be converted into such nodes. However, at the
moment they have no |type| or |subtype| fields; they have |info| fields
instead, and these |info| fields are initially set to the value |end_span|,
for reasons explained below. Furthermore, the alignrecord nodes have no
|height| or |depth| fields; these are renamed |u_part| and |v_part|,
and they point to token lists for the templates of the alignment.
For example, the |u_part| field in the first alignrecord points to the
token list `\.{u1}', i.e., the template preceding the `\.\#' for column~1.

(2) \TeX\ now looks at what follows the \.{\\cr} that ended the preamble.
It is not `\.{\\noalign}' or `\.{\\omit}', so this input is put back to
be read again, and the template `\.{u1}' is fed to the scanner. Just
before reading `\.{u1}', \TeX\ goes into restricted horizontal mode.
Just after reading `\.{u1}', \TeX\ will see `\.{a1}', and then (when the
{\.\&} is sensed) \TeX\ will see `\.{v1}'. Then \TeX\ scans an |endv|
token, indicating the end of a column. At this point an |unset_node| is
created, containing the contents of the current hlist (i.e., `\.{u1a1v1}').
The natural width of this unset node replaces the |width| field of the
alignrecord for column~1; in general, the alignrecords will record the
maximum natural width that has occurred so far in a given column.

(3) Since `\.{\\omit}' follows the `\.\&', the templates for column~2
are now bypassed. Again \TeX\ goes into restricted horizontal mode and
makes an |unset_node| from the resulting hlist; but this time the
hlist contains simply `\.{a2}'. The natural width of the new unset box
is remembered in the |width| field of the alignrecord for column~2.

(4) A third |unset_node| is created for column 3, using essentially the
mechanism that worked for column~1; this unset box contains `\.{u3\\vrule
v3}'. The vertical rule in this case has running dimensions that will later
extend to the height and depth of the whole first row, since each |unset_node|
in a row will eventually inherit the height and depth of its enclosing box.

(5) The first row has now ended; it is made into a single unset box
comprising the following seven items:
$$\vbox{\halign{\hbox to 325pt{\qquad\.{#}\hfil}\cr
{}\\glue 2pt plus 3pt\cr
{}\\unsetbox for 1 column: u1a1v1\cr
{}\\glue 2pt plus 3pt\cr
{}\\unsetbox for 1 column: a2\cr
{}\\glue 1pt plus 1fil\cr
{}\\unsetbox for 1 column: u3\\vrule v3\cr
{}\\glue 1pt plus 1fil\cr}}$$
The width of this unset row is unimportant, but it has the correct height
and depth, so the correct baselineskip glue will be computed as the row
is inserted into a vertical list.

(6) Since `\.{\\noalign}' follows the current \.{\\cr}, \TeX\ appends
additional material (in this case \.{\\vskip 3pt}) to the vertical list.
While processing this material, \TeX\ will be in internal vertical
mode, and |no_align_group| will be on |save_stack|.

(7) The next row produces an unset box that looks like this:
$$\vbox{\halign{\hbox to 325pt{\qquad\.{#}\hfil}\cr
{}\\glue 2pt plus 3pt\cr
{}\\unsetbox for 2 columns: u1b1v1u2b2v2\cr
{}\\glue 1pt plus 1fil\cr
{}\\unsetbox for 1 column: {\rm(empty)}\cr
{}\\glue 1pt plus 1fil\cr}}$$
The natural width of the unset box that spans columns 1~and~2 is stored
in a ``span node,'' which we will explain later; the |info| field of the
alignrecord for column~1 now points to the new span node, and the |info|
of the span node points to |end_span|.

(8) The final row produces the unset box
$$\vbox{\halign{\hbox to 325pt{\qquad\.{#}\hfil}\cr
{}\\glue 2pt plus 3pt\cr
{}\\unsetbox for 1 column: {\rm(empty)}\cr
{}\\glue 2pt plus 3pt\cr
{}\\unsetbox for 2 columns: u2c2v2\cr
{}\\glue 1pt plus 1fil\cr}}$$
A new span node is attached to the alignrecord for column 2.

(9) The last step is to compute the true column widths and to change all the
unset boxes to hboxes, appending the whole works to the vertical list that
encloses the \.{\\halign}. The rules for deciding on the final widths of
each unset column box will be explained below.

\yskip\noindent
Note that as \.{\\halign} is being processed, we fearlessly give up control
to the rest of \TeX. At critical junctures, an alignment routine is
called upon to step in and do some little action, but most of the time
these routines just lurk in the background. It's something like
post-hypnotic suggestion.

@ We have mentioned that alignrecords contain no |height| or |depth| fields.
Their |glue_sign| and |glue_order| are pre-empted as well, since it
is necessary to store information about what to do when a template ends.
This information is called the |extra_info| field.

@d u_part(A) mem[A+height_offset].i /*pointer to \<u_j> token list*/
@d v_part(A) mem[A+depth_offset].i /*pointer to \<v_j> token list*/
@d extra_info(A) info(A+list_offset) /*info to remember during template*/

@ Alignments can occur within alignments, so a small stack is used to access
the alignrecord information. At each level we have a |preamble| pointer,
indicating the beginning of the preamble list; a |cur_align| pointer,
indicating the current position in the preamble list; a |cur_span| pointer,
indicating the value of |cur_align| at the beginning of a sequence of
spanned columns; a |cur_loop| pointer, indicating the tabskip glue before
an alignrecord that should be copied next if the current list is extended;
and the |align_state| variable, which indicates the nesting of braces so
that \.{\\cr} and \.{\\span} and tab marks are properly intercepted.
There also are pointers |cur_head| and |cur_tail| to the head and tail
of a list of adjustments being moved out from horizontal mode to
vertical~mode.

The current values of these seven quantities appear in global variables;
when they have to be pushed down, they are stored in 5-word nodes, and
|align_ptr| points to the topmost such node.

@d preamble link(align_head) /*the current preamble list*/
@d align_stack_node_size 5 /*number of |mem| words to save alignment states*/

@<Glob...@>=
static pointer @!cur_align; /*current position in preamble list*/
static pointer @!cur_span; /*start of currently spanned columns in preamble list*/
static pointer @!cur_loop; /*place to copy when extending a periodic preamble*/
static pointer @!align_ptr; /*most recently pushed-down alignment stack node*/
static pointer @!cur_head, @!cur_tail; /*adjustment list pointers*/

@ The |align_state| and |preamble| variables are initialized elsewhere.

@<Set init...@>=
align_ptr=null;cur_align=null;cur_span=null;cur_loop=null;
cur_head=null;cur_tail=null;

@ Alignment stack maintenance is handled by a pair of trivial routines
called |push_alignment| and |pop_alignment|.

@p static void push_alignment(void)
{@+pointer p; /*the new alignment stack node*/
p=get_node(align_stack_node_size);
link(p)=align_ptr;info(p)=cur_align;
llink(p)=preamble;rlink(p)=cur_span;
mem[p+2].i=cur_loop;mem[p+3].i=align_state;
info(p+4)=cur_head;link(p+4)=cur_tail;
align_ptr=p;
cur_head=get_avail();
}
@#
static void pop_alignment(void)
{@+pointer p; /*the top alignment stack node*/
free_avail(cur_head);
p=align_ptr;
cur_tail=link(p+4);cur_head=info(p+4);
align_state=mem[p+3].i;cur_loop=mem[p+2].i;
cur_span=rlink(p);preamble=llink(p);
cur_align=info(p);align_ptr=link(p);
free_node(p, align_stack_node_size);
}

@ \TeX\ has eight procedures that govern alignments: |init_align| and
|fin_align| are used at the very beginning and the very end; |init_row| and
|fin_row| are used at the beginning and end of individual rows; |init_span|
is used at the beginning of a sequence of spanned columns (possibly involving
only one column); |init_col| and |fin_col| are used at the beginning and
end of individual columns; and |align_peek| is used after \.{\\cr} to see
whether the next item is \.{\\noalign}.

We shall consider these routines in the order they are first used during
the course of a complete \.{\\halign}, namely |init_align|, |align_peek|,
|init_row|, |init_span|, |init_col|, |fin_col|, |fin_row|, |fin_align|.

@ When \.{\\halign} or \.{\\valign} has been scanned in an appropriate
mode, \TeX\ calls |init_align|, whose task is to get everything off to a
good start. This mostly involves scanning the preamble and putting its
information into the preamble list.
@^preamble@>

@p @t\4@>@<Declare the procedure called |get_preamble_token|@>@t@>@/
static void align_peek(void);@/
static void normal_paragraph(void);@/
static void init_align(void)
{@+
pointer save_cs_ptr; /*|warning_index| value for error messages*/
pointer @!p; /*for short-term temporary use*/
save_cs_ptr=cur_cs; /*\.{\\halign} or \.{\\valign}, usually*/
push_alignment();align_state=-1000000; /*enter a new alignment level*/
@<Check for improper alignment in displayed math@>;
push_nest(); /*enter a new semantic level*/
@<Change current mode to |-vmode| for \.{\\halign}, |-hmode| for \.{\\valign}@>;
scan_spec(align_group, false);@/
@<Scan the preamble and record it in the |preamble| list@>;
new_save_level(align_group);
if (every_cr!=null) begin_token_list(every_cr, every_cr_text);
align_peek(); /*look for \.{\\noalign} or \.{\\omit}*/
}

@ In vertical modes, |prev_depth| already has the correct value. But
if we are in |mmode| (displayed formula mode), we reach out to the
enclosing vertical mode for the |prev_depth| value that produces the
correct baseline calculations.

@<Change current mode...@>=
if (mode==mmode)
  {@+mode=-vmode;prev_depth=nest[nest_ptr-2].aux_field.sc;
  }
else if (mode > 0) negate(mode)

@ When \.{\\halign} is used as a displayed formula, there should be
no other pieces of mlists present.

@<Check for improper alignment in displayed math@>=
if ((mode==mmode)&&((tail!=head)||(incompleat_noad!=null)))
  {@+print_err("Improper ");print_esc("halign");print(" inside $$'s");
@.Improper \\halign...@>
  help3("Displays can use special alignments (like \\eqalignno)",@/
  "only if nothing but the alignment itself is between $$'s.",@/
  "So I've deleted the formulas that preceded this alignment.");
  error();flush_math();
  }

@ @<Scan the preamble and record it in the |preamble| list@>=
preamble=null;cur_align=align_head;cur_loop=null;scanner_status=aligning;
warning_index=save_cs_ptr;align_state=-1000000;
   /*at this point, |cur_cmd==left_brace|*/
loop@+{@+@<Append the current tabskip glue to the preamble list@>;
  if (cur_cmd==car_ret) goto done; /*\.{\\cr} ends the preamble*/
  @<Scan preamble text until |cur_cmd| is |tab_mark| or |car_ret|, looking
for changes in the tabskip glue; append an alignrecord to the preamble list@>;
  }
done: scanner_status=normal

@ @<Append the current tabskip glue to the preamble list@>=
link(cur_align)=new_param_glue(tab_skip_code);
cur_align=link(cur_align)

@ @<Scan preamble text until |cur_cmd| is |tab_mark| or |car_ret|...@>=
@<Scan the template \<u_j>, putting the resulting token list in |hold_head|@>;
link(cur_align)=new_null_box();cur_align=link(cur_align); /*a new alignrecord*/
info(cur_align)=end_span;width(cur_align)=null_flag;
u_part(cur_align)=link(hold_head);
@<Scan the template \<v_j>, putting the resulting token list in |hold_head|@>;
v_part(cur_align)=link(hold_head)

@ We enter `\.{\\span}' into |eqtb| with |tab_mark| as its command code,
and with |span_code| as the command modifier. This makes \TeX\ interpret it
essentially the same as an alignment delimiter like `\.\&', yet it is
recognizably different when we need to distinguish it from a normal delimiter.
It also turns out to be useful to give a special |cr_code| to `\.{\\cr}',
and an even larger |cr_cr_code| to `\.{\\crcr}'.

The end of a template is represented by two ``frozen'' control sequences
called \.{\\endtemplate}. The first has the command code |end_template|, which
is | > outer_call|, so it will not easily disappear in the presence of errors.
The |get_x_token| routine converts the first into the second, which has |endv|
as its command code.

@d span_code 256 /*distinct from any character*/
@d cr_code 257 /*distinct from |span_code| and from any character*/
@d cr_cr_code (cr_code+1) /*this distinguishes \.{\\crcr} from \.{\\cr}*/
@d end_template_token cs_token_flag+frozen_end_template

@<Put each of \TeX's primitives into the hash table@>=
primitive("span", tab_mark, span_code);@/
@!@:span\_}{\.{\\span} primitive@>
primitive("cr", car_ret, cr_code);
@!@:cr\_}{\.{\\cr} primitive@>
text(frozen_cr)=text(cur_val);eqtb[frozen_cr]=eqtb[cur_val];@/
primitive("crcr", car_ret, cr_cr_code);
@!@:cr\_cr\_}{\.{\\crcr} primitive@>
text(frozen_end_template)=text(frozen_endv)=s_no("endtemplate");
@.endtemplate@>
eq_type(frozen_endv)=endv;equiv(frozen_endv)=null_list;
eq_level(frozen_endv)=level_one;@/
eqtb[frozen_end_template]=eqtb[frozen_endv];
eq_type(frozen_end_template)=end_template;

@ @<Cases of |print_cmd_chr|...@>=
case tab_mark: if (chr_code==span_code) print_esc("span");
  else chr_cmd("alignment tab character ")@;@+break;
case car_ret: if (chr_code==cr_code) print_esc("cr");
  else print_esc("crcr");@+break;

@ The preamble is copied directly, except that \.{\\tabskip} causes a change
to the tabskip glue, thereby possibly expanding macros that immediately
follow it. An appearance of \.{\\span} also causes such an expansion.

Note that if the preamble contains `\.{\\global\\tabskip}', the `\.{\\global}'
token survives in the preamble and the `\.{\\tabskip}' defines new
tabskip glue (locally).

@<Declare the procedure called |get_preamble_token|@>=
static void get_preamble_token(void)
{@+
restart: get_token();
while ((cur_chr==span_code)&&(cur_cmd==tab_mark))
  {@+get_token(); /*this token will be expanded once*/
  if (cur_cmd > max_command)
    {@+expand();get_token();
    }
  }
if (cur_cmd==endv)
  fatal_error("(interwoven alignment preambles are not allowed)");
@.interwoven alignment preambles...@>
if ((cur_cmd==assign_glue)&&(cur_chr==glue_base+tab_skip_code))
  {@+scan_optional_equals();scan_glue(glue_val);
  if (global_defs > 0) geq_define(glue_base+tab_skip_code, glue_ref, cur_val);
  else eq_define(glue_base+tab_skip_code, glue_ref, cur_val);
  goto restart;
  }
}

@ Spaces are eliminated from the beginning of a template.

@<Scan the template \<u_j>...@>=
p=hold_head;link(p)=null;
loop@+{@+get_preamble_token();
  if (cur_cmd==mac_param) goto done1;
  if ((cur_cmd <= car_ret)&&(cur_cmd >= tab_mark)&&(align_state==-1000000))
   if ((p==hold_head)&&(cur_loop==null)&&(cur_cmd==tab_mark)
    ) cur_loop=cur_align;
   else{@+print_err("Missing # inserted in alignment preamble");
@.Missing \# inserted...@>
    help3("There should be exactly one # between &'s, when an",@/
    "\\halign or \\valign is being set up. In this case you had",@/
    "none, so I've put one in; maybe that will work.");
    back_error();goto done1;
    }
  else if ((cur_cmd!=spacer)||(p!=hold_head))
    {@+link(p)=get_avail();p=link(p);info(p)=cur_tok;
    }
  }
done1:

@ @<Scan the template \<v_j>...@>=
p=hold_head;link(p)=null;
loop@+{@+resume: get_preamble_token();
  if ((cur_cmd <= car_ret)&&(cur_cmd >= tab_mark)&&(align_state==-1000000))
    goto done2;
  if (cur_cmd==mac_param)
    {@+print_err("Only one # is allowed per tab");
@.Only one \# is allowed...@>
    help3("There should be exactly one # between &'s, when an",@/
    "\\halign or \\valign is being set up. In this case you had",@/
    "more than one, so I'm ignoring all but the first.");
    error();goto resume;
    }
  link(p)=get_avail();p=link(p);info(p)=cur_tok;
  }
done2: link(p)=get_avail();p=link(p);
info(p)=end_template_token /*put \.{\\endtemplate} at the end*/

@ The tricky part about alignments is getting the templates into the
scanner at the right time, and recovering control when a row or column
is finished.

We usually begin a row after each \.{\\cr} has been sensed, unless that
\.{\\cr} is followed by \.{\\noalign} or by the right brace that terminates
the alignment. The |align_peek| routine is used to look ahead and do
the right thing; it either gets a new row started, or gets a \.{\\noalign}
started, or finishes off the alignment.

@<Declare the procedure called |align_peek|@>=
static void align_peek(void)
{@+
restart: align_state=1000000;
@/do@+{get_x_or_protected();
}@+ while (!(cur_cmd!=spacer));
if (cur_cmd==no_align)
  {@+scan_left_brace();new_save_level(no_align_group);
  if (mode==-vmode) normal_paragraph();
  }
else if (cur_cmd==right_brace) fin_align();
else if ((cur_cmd==car_ret)&&(cur_chr==cr_cr_code))
  goto restart; /*ignore \.{\\crcr}*/
else{@+init_row(); /*start a new row*/
  init_col(); /*start a new column and replace what we peeked at*/
  }
}

@ To start a row (i.e., a `row' that rhymes with `dough' but not with `bough'),
we enter a new semantic level, copy the first tabskip glue, and change
from internal vertical mode to restricted horizontal mode or vice versa.
The |space_factor| and |prev_depth| are not used on this semantic level,
but we clear them to zero just to be tidy.

@p @t\4@>@<Declare the procedure called |init_span|@>@t@>@/
static void init_row(void)
{@+push_nest();mode=(-hmode-vmode)-mode;
if (mode==-hmode) space_factor=0;@+else prev_depth=0;
tail_append(new_glue(glue_ptr(preamble)));
subtype(tail)=tab_skip_code+1;@/
cur_align=link(preamble);cur_tail=cur_head;init_span(cur_align);
}

@ The parameter to |init_span| is a pointer to the alignrecord where the
next column or group of columns will begin. A new semantic level is
entered, so that the columns will generate a list for subsequent packaging.

@<Declare the procedure called |init_span|@>=
static void init_span(pointer @!p)
{@+push_nest();
if (mode==-hmode) space_factor=1000;
else{@+prev_depth=ignore_depth;normal_paragraph();
  }
cur_span=p;
}

@ When a column begins, we assume that |cur_cmd| is either |omit| or else
the current token should be put back into the input until the \<u_j>
template has been scanned.  (Note that |cur_cmd| might be |tab_mark| or
|car_ret|.)  We also assume that |align_state| is approximately 1000000 at
this time.  We remain in the same mode, and start the template if it is
called for.

@p static void init_col(void)
{@+extra_info(cur_align)=cur_cmd;
if (cur_cmd==omit) align_state=0;
else{@+back_input();begin_token_list(u_part(cur_align), u_template);
  }  /*now |align_state==1000000|*/
}

@ The scanner sets |align_state| to zero when the \<u_j> template ends. When
a subsequent \.{\\cr} or \.{\\span} or tab mark occurs with |align_state==0|,
the scanner activates the following code, which fires up the \<v_j> template.
We need to remember the |cur_chr|, which is either |cr_cr_code|, |cr_code|,
|span_code|, or a character code, depending on how the column text has ended.

This part of the program had better not be activated when the preamble
to another alignment is being scanned, or when no alignment preamble is active.

@<Insert the \(v)\<v_j>...@>=
{@+if ((scanner_status==aligning)||(cur_align==null))
  fatal_error("(interwoven alignment preambles are not allowed)");
@.interwoven alignment preambles...@>
cur_cmd=extra_info(cur_align);extra_info(cur_align)=cur_chr;
if (cur_cmd==omit) begin_token_list(omit_template, v_template);
else begin_token_list(v_part(cur_align), v_template);
align_state=1000000;goto restart;
}

@ The token list |omit_template| just referred to is a constant token
list that contains the special control sequence \.{\\endtemplate} only.

@<Initialize the special...@>=
info(omit_template)=end_template_token; /*|link(omit_template)==null|*/

@ When the |endv| command at the end of a \<v_j> template comes through the
scanner, things really start to happen; and it is the |fin_col| routine
that makes them happen. This routine returns |true| if a row as well as a
column has been finished.

@p static bool fin_col(void)
{@+
pointer p; /*the alignrecord after the current one*/
pointer @!q, @!r; /*temporary pointers for list manipulation*/
pointer @!s; /*a new span node*/
pointer @!u; /*a new unset box*/
scaled @!w; /*natural width*/
glue_ord @!o; /*order of infinity*/
halfword @!n; /*span counter*/
if (cur_align==null) confusion("endv");
q=link(cur_align);@+if (q==null) confusion("endv");
@:this can't happen endv}{\quad endv@>
if (align_state < 500000)
  fatal_error("(interwoven alignment preambles are not allowed)");
@.interwoven alignment preambles...@>
p=link(q);
@<If the preamble list has been traversed, check that the row has ended@>;
if (extra_info(cur_align)!=span_code)
  {@+unsave();new_save_level(align_group);@/
  @<Package an unset box for the current column and record its width@>;
  @<Copy the tabskip glue between columns@>;
  if (extra_info(cur_align) >= cr_code)
    {@+return true;
    }
  init_span(p);
  }
align_state=1000000;
@/do@+{get_x_or_protected();
}@+ while (!(cur_cmd!=spacer));
cur_align=p;
init_col();return false;
}

@ @<If the preamble list has been traversed, check that the row has ended@>=
if ((p==null)&&(extra_info(cur_align) < cr_code))
 if (cur_loop!=null) @<Lengthen the preamble periodically@>@;
 else{@+print_err("Extra alignment tab has been changed to ");
@.Extra alignment tab...@>
  print_esc("cr");
  help3("You have given more \\span or & marks than there were",@/
  "in the preamble to the \\halign or \\valign now in progress.",@/
  "So I'll assume that you meant to type \\cr instead.");
  extra_info(cur_align)=cr_code;error();
  }

@ @<Lengthen the preamble...@>=
{@+link(q)=new_null_box();p=link(q); /*a new alignrecord*/
info(p)=end_span;width(p)=null_flag;cur_loop=link(cur_loop);
@<Copy the templates from node |cur_loop| into node |p|@>;
cur_loop=link(cur_loop);
link(p)=new_glue(glue_ptr(cur_loop));
subtype(link(p))=tab_skip_code+1;
}

@ @<Copy the templates from node |cur_loop| into node |p|@>=
q=hold_head;r=u_part(cur_loop);
while (r!=null)
  {@+link(q)=get_avail();q=link(q);info(q)=info(r);r=link(r);
  }
link(q)=null;u_part(p)=link(hold_head);
q=hold_head;r=v_part(cur_loop);
while (r!=null)
  {@+link(q)=get_avail();q=link(q);info(q)=info(r);r=link(r);
  }
link(q)=null;v_part(p)=link(hold_head)

@ @<Copy the tabskip glue...@>=
tail_append(new_glue(glue_ptr(link(cur_align))));
subtype(tail)=tab_skip_code+1

@ @<Package an unset...@>=
{@+if (mode==-hmode)
  {@+adjust_tail=cur_tail;u=hpack(link(head), natural);
  if (type(u)==hlist_node) w=width(u);
  else
#if 0
    w=max_dimen+1;
#else
    w = width(u);
#endif
  cur_tail=adjust_tail;adjust_tail=null;
  }
else{@+u=vpackage(link(head), natural, 0);
  if (type(u)==vlist_node) w=height(u);
  else w=max_dimen+1;
  }
n=min_quarterword; /*this represents a span count of 1*/
if (cur_span!=cur_align) @<Update width entry for spanned columns@>@;
else if (w > width(cur_align)) width(cur_align)=w;
if (type(u)==whatsit_node)
{ if (subtype(u)==hset_node ||subtype(u)==vset_node) type(u)=unset_set_node;
  else type(u)=unset_pack_node;
  span_count(u)=n;
}
else if (type(u)==hlist_node ||type(u)==vlist_node)
{ type(u)=unset_node;span_count(u)=n;
@<Determine the stretch order@>;
glue_order(u)=o;glue_stretch(u)=total_stretch[o];@/
@<Determine the shrink order@>;
glue_sign(u)=o;glue_shrink(u)=total_shrink[o];@/
}
pop_nest();link(tail)=u;tail=u;
}

@ A span node is a 2-word record containing |width|, |info|, and |link|
fields. The |link| field is not really a link, it indicates the number of
spanned columns; the |info| field points to a span node for the same
starting column, having a greater extent of spanning, or to |end_span|,
which has the largest possible |link| field; the |width| field holds the
largest natural width corresponding to a particular set of spanned columns.

A list of the maximum widths so far, for spanned columns starting at a
given column, begins with the |info| field of the alignrecord for that
column.

@d span_node_size 2 /*number of |mem| words for a span node*/

@<Initialize the special list heads...@>=
link(end_span)=max_quarterword+1;info(end_span)=null;

@ @<Update width entry for spanned columns@>=
{@+q=cur_span;
@/do@+{incr(n);q=link(link(q));
}@+ while (!(q==cur_align));
if (n > max_quarterword) confusion("256 spans"); /*this can happen, but won't*/
@^system dependencies@>
@:this can't happen 256 spans}{\quad 256 spans@>
q=cur_span;while (link(info(q)) < n) q=info(q);
if (link(info(q)) > n)
  {@+s=get_node(span_node_size);info(s)=info(q);link(s)=n;
  info(q)=s;width(s)=w;
  }
else if (width(info(q)) < w) width(info(q))=w;
}

@ At the end of a row, we append an unset box to the current vlist (for
\.{\\halign}) or the current hlist (for \.{\\valign}). This unset box
contains the unset boxes for the columns, separated by the tabskip glue.
Everything will be set later.

@p static void fin_row(void)
{@+pointer p; /*the new unset box*/
if (mode==-hmode)
  {@+p=hpack(link(head), natural);
  pop_nest();append_to_vlist(p);
  if (cur_head!=cur_tail)
    {@+link(tail)=link(cur_head);tail=cur_tail;
    }
  }
else{@+p=vpack(link(head), natural);pop_nest();
  link(tail)=p;tail=p;space_factor=1000;
  }
type(p)=unset_node;glue_stretch(p)=0;
if (every_cr!=null) begin_token_list(every_cr, every_cr_text);
align_peek();
}  /*note that |glue_shrink(p)==0| since |glue_shrink====shift_amount|*/

@ Finally, we will reach the end of the alignment, and we can breathe a
sigh of relief that memory hasn't overflowed. All the unset boxes will now be
set so that the columns line up, taking due account of spanned columns.

@p static void do_assignments(void);@/
static void resume_after_display(void);@/
static void build_page(void);@/
static void fin_align(void)
{@+pointer @!p, @!q, @!r, @!s, @!u, @!v; /*registers for the list operations*/
scaled @!t, @!w; /*width of column*/
bool x=false; /* indicates an extended alignment */
scaled @!o; /*shift offset for unset boxes*/
halfword @!n; /*matching span amount*/
scaled @!rule_save; /*temporary storage for |overfull_rule|*/
memory_word @!aux_save; /*temporary storage for |aux|*/
if (cur_group!=align_group) confusion("align1");
@:this can't happen align}{\quad align@>
unsave(); /*that |align_group| was for individual entries*/
if (cur_group!=align_group) confusion("align0");
unsave(); /*that |align_group| was for the whole alignment*/
if (nest[nest_ptr-1].mode_field==mmode) o=display_indent;
  else o=0;
@<Go through the preamble list, determining the column widths and changing
the alignrecords to dummy unset boxes@>;
if (x)
{ @<Handle an alignment that depends on |hsize| or |vsize|@>@;
  pop_alignment();
}
else
{ @<Package the preamble list, to determine the actual tabskip glue amounts,
  and let |p| point to this prototype box@>;
  @<Set the glue in all the unset boxes of the current list@>;
  flush_node_list(p);pop_alignment();
}
@<Insert the \(c)current list into its environment@>;
} @/
@t\4@>@<Declare the procedure called |align_peek|@>@;
@ @<Handle an alignment that depends on |hsize| or |vsize|@>=
 pointer r=get_node(align_node_size);
 save_ptr=save_ptr-2;pack_begin_line=-mode_line;

 type(r)=whatsit_node; subtype(r)=align_node;
 align_preamble(r)=preamble;
 align_list(r)=link(head);
 align_extent(r)=new_xdimen(saved(1),saved_hfactor(1),saved_vfactor(1));
 align_m(r)= saved(0);
 align_v(r)= (mode!=-vmode);
 link(head)=r; tail=r;
 pack_begin_line=0;

@ It's time now to dismantle the preamble list and to compute the column
widths. Let $w_{ij}$ be the maximum of the natural widths of all entries
that span columns $i$ through $j$, inclusive. The alignrecord for column~$i$
contains $w_{ii}$ in its |width| field, and there is also a linked list of
the nonzero $w_{ij}$ for increasing $j$, accessible via the |info| field;
these span nodes contain the value $j-i+|min_quarterword|$ in their
|link| fields. The values of $w_{ii}$ were initialized to |null_flag|, which
we regard as $-\infty$.

The final column widths are defined by the formula
$$w_j=\max_{1\le i\le j}\biggl( w_{ij}-\sum_{i\le k<j}(t_k+w_k)\biggr),$$
where $t_k$ is the natural width of the tabskip glue between columns
$k$ and~$k+1$. However, if $w_{ij}=-\infty$ for all |i| in the range
|1 <= i <= j| (i.e., if every entry that involved column~|j| also involved
column~|j+1|), we let $w_j=0$, and we zero out the tabskip glue after
column~|j|.

\TeX\ computes these values by using the following scheme: First $w_1=w_{11}$.
Then replace $w_{2j}$ by $\max(w_{2j},w_{1j}-t_1-w_1)$, for all $j>1$.
Then $w_2=w_{22}$. Then replace $w_{3j}$ by $\max(w_{3j},w_{2j}-t_2-w_2)$
for all $j>2$; and so on. If any $w_j$ turns out to be $-\infty$, its
value is changed to zero and so is the next tabskip.

@<Go through the preamble list,...@>=
q=link(preamble);
@/do@+{flush_list(u_part(q));flush_list(v_part(q));
p=link(link(q));
if (width(q)==null_flag)
  @<Nullify |width(q)| and the tabskip glue following this column@>;
if (info(q)!=end_span)
  @<Merge the widths in the span nodes of |q| with those of |p|, destroying
the span nodes of |q|@>;
type(q)=unset_node;span_count(q)=min_quarterword;height(q)=0;
depth(q)=0;glue_order(q)=normal;glue_sign(q)=normal;
glue_stretch(q)=0;glue_shrink(q)=0;
#if 0 /* Table nodes are not implemented in the 1.2 viewer */
if (width(q)>max_dimen) x=true;
#endif
q=p;
}@+ while (!(q==null))

@ @<Nullify |width(q)| and the tabskip glue following this column@>=
{@+width(q)=0;r=link(q);s=glue_ptr(r);
if (s!=zero_glue)
  {@+add_glue_ref(zero_glue);delete_glue_ref(s);
  glue_ptr(r)=zero_glue;
  }
}

@ Merging of two span-node lists is a typical exercise in the manipulation of
linearly linked data structures. The essential invariant in the following
|@/do@+{| loop is that we want to dispense with node |r|, in |q|'s list,
and |u| is its successor; all nodes of |p|'s list up to and including |s|
have been processed, and the successor of |s| matches |r| or precedes |r|
or follows |r|, according as |link(r)==n| or |link(r) > n| or |link(r) < n|.

@<Merge the widths...@>=
{@+t=width(q)+width(glue_ptr(link(q)));
r=info(q);s=end_span;info(s)=p;n=min_quarterword+1;
@/do@+{width(r)=width(r)-t;u=info(r);
while (link(r) > n)
  {@+s=info(s);n=link(info(s))+1;
  }
if (link(r) < n)
  {@+info(r)=info(s);info(s)=r;decr(link(r));s=r;
  }
else{@+if (width(r) > width(info(s))) width(info(s))=width(r);
  free_node(r, span_node_size);
  }
r=u;
}@+ while (!(r==end_span));
}

@ Now the preamble list has been converted to a list of alternating unset
boxes and tabskip glue, where the box widths are equal to the final
column sizes. In case of \.{\\valign}, we change the widths to heights,
so that a correct error message will be produced if the alignment is
overfull or underfull.

@<Package the preamble list...@>=
save_ptr=save_ptr-2;pack_begin_line=-mode_line;
if (mode==-vmode)
  {@+rule_save=overfull_rule;
  overfull_rule=0; /*prevent rule from being packaged*/
  p=hpack(preamble, saved(1), saved_hfactor(1), saved_vfactor(1), saved(0));overfull_rule=rule_save;
  }
else{@+q=link(preamble);
  @/do@+{height(q)=width(q);width(q)=0;q=link(link(q));
  }@+ while (!(q==null));
  p=vpack(preamble, saved(1), saved_hfactor(1), saved_vfactor(1), saved(0));
  q=link(preamble);
  @/do@+{width(q)=height(q);height(q)=0;q=link(link(q));
  }@+ while (!(q==null));
  }
pack_begin_line=0

@ @<Set the glue in all the unset...@>=
q=link(head);s=head;
while (q!=null)
  {@+if (!is_char_node(q))
    if (type(q)==unset_node)
      @<Set the unset box |q| and the unset boxes in it@>@;
    else if (type(q)==rule_node)
      @<Make the running dimensions in rule |q| extend to the boundaries of
the alignment@>;
  s=q;q=link(q);
  }

@ @<Make the running dimensions in rule |q| extend...@>=
{@+if (is_running(width(q))) width(q)=width(p);
if (is_running(height(q))) height(q)=height(p);
if (is_running(depth(q))) depth(q)=depth(p);
if (o!=0)
  {@+r=link(q);link(q)=null;q=hpack(q, natural);
  shift_amount(q)=o;link(q)=r;link(s)=q;
  }
}

@ The unset box |q| represents a row that contains one or more unset boxes,
depending on how soon \.{\\cr} occurred in that row.

@<Set the unset box |q| and the unset boxes in it@>=
{@+if (mode==-vmode)
  {@+type(q)=hlist_node;width(q)=width(p);
  }
else{@+type(q)=vlist_node;height(q)=height(p);
  }
glue_order(q)=glue_order(p);glue_sign(q)=glue_sign(p);
glue_set(q)=glue_set(p);shift_amount(q)=o;
r=link(list_ptr(q));s=link(list_ptr(p));
@/do@+{@<Set the glue in node |r| and change it from an unset node@>;
r=link(link(r));s=link(link(s));
}@+ while (!(r==null));
}

@ A box made from spanned columns will be followed by tabskip glue nodes and
by empty boxes as if there were no spanning. This permits perfect alignment
of subsequent entries, and it prevents values that depend on floating point
arithmetic from entering into the dimensions of any boxes.

@<Set the glue in node |r|...@>=
n=span_count(r);t=width(s);w=t;u=hold_head;
while (n > min_quarterword)
  {@+decr(n);
  @<Append tabskip glue and an empty box to list |u|, and update |s| and |t|
as the prototype nodes are passed@>;
  }
if (mode==-vmode)
  @<Make the unset node |r| into an |hlist_node| of width |w|, setting the
glue as if the width were |t|@>@;
else@<Make the unset node |r| into a |vlist_node| of height |w|, setting the
glue as if the height were |t|@>;
shift_amount(r)=0;
if (u!=hold_head)  /*append blank boxes to account for spanned nodes*/
  {@+link(u)=link(r);link(r)=link(hold_head);r=u;
  }

@ @<Append tabskip glue and an empty box to list |u|...@>=
s=link(s);v=glue_ptr(s);link(u)=new_glue(v);u=link(u);
subtype(u)=tab_skip_code+1;t=t+width(v);
if (glue_sign(p)==stretching)
  {@+if (stretch_order(v)==glue_order(p))
    t=t+round(unfix(glue_set(p))*stretch(v));
@^real multiplication@>
  }
else if (glue_sign(p)==shrinking)
  {@+if (shrink_order(v)==glue_order(p))
    t=t-round(unfix(glue_set(p))*shrink(v));
  }
s=link(s);link(u)=new_null_box();u=link(u);t=t+width(s);
if (mode==-vmode) width(u)=width(s);@+else
  {@+type(u)=vlist_node;height(u)=width(s);
  }

@ @<Make the unset node |r| into an |hlist_node| of width |w|...@>=
{@+height(r)=height(q);depth(r)=depth(q);
if (t==width(r))
  {@+glue_sign(r)=normal;glue_order(r)=normal;
  set_glue_ratio_zero(glue_set(r));
  }
else if (t > width(r))
  {@+glue_sign(r)=stretching;
  if (glue_stretch(r)==0) set_glue_ratio_zero(glue_set(r));
  else glue_set(r)=fix((t-width(r))/(double)glue_stretch(r));
@^real division@>
  }
else{@+glue_order(r)=glue_sign(r);glue_sign(r)=shrinking;
  if (glue_shrink(r)==0) set_glue_ratio_zero(glue_set(r));
  else if ((glue_order(r)==normal)&&(width(r)-t > glue_shrink(r)))
    set_glue_ratio_one(glue_set(r));
  else glue_set(r)=fix((width(r)-t)/(double)glue_shrink(r));
  }
width(r)=w;type(r)=hlist_node;
}

@ @<Make the unset node |r| into a |vlist_node| of height |w|...@>=
{@+width(r)=width(q);
if (t==height(r))
  {@+glue_sign(r)=normal;glue_order(r)=normal;
  set_glue_ratio_zero(glue_set(r));
  }
else if (t > height(r))
  {@+glue_sign(r)=stretching;
  if (glue_stretch(r)==0) set_glue_ratio_zero(glue_set(r));
  else glue_set(r)=fix((t-height(r))/(double)glue_stretch(r));
@^real division@>
  }
else{@+glue_order(r)=glue_sign(r);glue_sign(r)=shrinking;
  if (glue_shrink(r)==0) set_glue_ratio_zero(glue_set(r));
  else if ((glue_order(r)==normal)&&(height(r)-t > glue_shrink(r)))
    set_glue_ratio_one(glue_set(r));
  else glue_set(r)=fix((height(r)-t)/(double)glue_shrink(r));
  }
height(r)=w;type(r)=vlist_node;
}

@ We now have a completed alignment, in the list that starts at |head|
and ends at |tail|. This list will be merged with the one that encloses
it. (In case the enclosing mode is |mmode|, for displayed formulas,
we will need to insert glue before and after the display; that part of the
program will be deferred until we're more familiar with such operations.)

In restricted horizontal mode, the |clang| part of |aux| is undefined;
an over-cautious \PASCAL\ runtime system may complain about this.
@^dirty \PASCAL@>

@<Insert the \(c)current list into its environment@>=
aux_save=aux;p=link(head);q=tail;pop_nest();
if (mode==mmode) @<Finish an alignment in a display@>@;
else{@+aux=aux_save;link(tail)=p;
  if (p!=null) tail=q;
  if (mode==vmode) build_page();
  }

@* Breaking paragraphs into lines.
We come now to what is probably the most interesting algorithm of \TeX:
the mechanism for choosing the ``best possible'' breakpoints that yield
the individual lines of a paragraph. \TeX's line-breaking algorithm takes
a given horizontal list and converts it to a sequence of boxes that are
appended to the current vertical list. In the course of doing this, it
creates a special data structure containing three kinds of records that are
not used elsewhere in \TeX. Such nodes are created while a paragraph is
being processed, and they are destroyed afterwards; thus, the other parts
of \TeX\ do not need to know anything about how line-breaking is done.

The method used here is based on an approach devised by Michael F. Plass and
@^Plass, Michael Frederick@>
@^Knuth, Donald Ervin@>
the author in 1977, subsequently generalized and improved by the same two
people in 1980. A detailed discussion appears in {\sl Software---Practice
and Experience \bf11} (1981), 1119--1184, where it is shown that the
line-breaking problem can be regarded as a special case of the problem of
computing the shortest path in an acyclic network. The cited paper includes
numerous examples and describes the history of line breaking as it has been
practiced by printers through the ages. The present implementation adds two
new ideas to the algorithm of 1980: Memory space requirements are considerably
reduced by using smaller records for inactive nodes than for active ones,
and arithmetic overflow is avoided by using ``delta distances'' instead of
keeping track of the total distance from the beginning of the paragraph to the
current point.

@ The |line_break| procedure should be invoked only in horizontal mode; it
leaves that mode and places its output into the current vlist of the
enclosing vertical mode (or internal vertical mode).
There is one explicit parameter:  |final_widow_penalty| is the amount of
additional penalty to be inserted before the final line of the paragraph.

There are also a number of implicit parameters: The hlist to be broken
starts at |link(head)|, and it is nonempty. The value of |prev_graf| in the
enclosing semantic level tells where the paragraph should begin in the
sequence of line numbers, in case hanging indentation or \.{\\parshape}
is in use; |prev_graf| is zero unless this paragraph is being continued
after a displayed formula.  Other implicit parameters, such as the
|par_shape_ptr| and various penalties to use for hyphenation, etc., appear
in |eqtb|.

After |line_break| has acted, it will have updated the current vlist and the
value of |prev_graf|. Furthermore, the global variable |just_box| will
point to the final box created by |line_break|, so that the width of this
line can be ascertained when it is necessary to decide whether to use
|above_display_skip| or |above_display_short_skip| before a displayed formula.

@<Glob...@>=
static pointer @!just_box; /*the |hlist_node| for the last line of the new paragraph*/

@ Since |line_break| is a rather lengthy procedure---sort of a small world unto
itself---we must build it up little by little, somewhat more cautiously
than we have done with the simpler procedures of \TeX. Here is the
general outline.

@p @t\4@>@<Declare subprocedures for |line_break|@>@;
static void line_break(int @!final_widow_penalty)
{@+
@<Local variables for line breaking@>@;
pack_begin_line=mode_line; /*this is for over/underfull box messages*/
@<Get ready to start line breaking@>;
@<Find optimal breakpoints@>;
@<Break the paragraph at the chosen breakpoints, justify the resulting lines
to the correct widths, and append them to the current vertical list@>;
@<Clean up the memory by removing the break nodes@>;
pack_begin_line=0;
}
@#
@t\4@>@<Declare \eTeX\ procedures for use by |main_control|@>@;

@ The first task is to move the list from |head| to |temp_head| and go
into the enclosing semantic level. We also append the \.{\\parfillskip}
glue to the end of the paragraph, removing a space (or other glue node) if
it was there, since spaces usually precede blank lines and instances of
`\.{\$\$}'. The |par_fill_skip| is preceded by an infinite penalty, so
it will never be considered as a potential breakpoint.

This code assumes that a |glue_node| and a |penalty_node| occupy the
same number of |mem|~words.
@^data structure assumptions@>

@<Get ready to start...@>=
link(temp_head)=link(head);
if (is_char_node(tail)) tail_append(new_penalty(inf_penalty))@;
else if (type(tail)!=glue_node) tail_append(new_penalty(inf_penalty))@;
else{@+type(tail)=penalty_node;delete_glue_ref(glue_ptr(tail));
  flush_node_list(leader_ptr(tail));penalty(tail)=inf_penalty;
  }
link(tail)=new_param_glue(par_fill_skip_code);
init_cur_lang=prev_graf%0200000;
init_l_hyf=prev_graf/020000000;
init_r_hyf=(prev_graf/0200000)%0100;
pop_nest();

@ When looking for optimal line breaks, \TeX\ creates a ``break node'' for
each break that is {\sl feasible}, in the sense that there is a way to end
a line at the given place without requiring any line to stretch more than
a given tolerance. A break node is characterized by three things: the position
of the break (which is a pointer to a |glue_node|, |math_node|, |penalty_node|,
or |disc_node|); the ordinal number of the line that will follow this
breakpoint; and the fitness classification of the line that has just
ended, i.e., |tight_fit|, |decent_fit|, |loose_fit|, or |very_loose_fit|.

@d tight_fit 3 /*fitness classification for lines shrinking 0.5 to 1.0 of their
  shrinkability*/
@d loose_fit 1 /*fitness classification for lines stretching 0.5 to 1.0 of their
  stretchability*/
@d very_loose_fit 0 /*fitness classification for lines stretching more than
  their stretchability*/
@d decent_fit 2 /*fitness classification for all other lines*/

@ The algorithm essentially determines the best possible way to achieve
each feasible combination of position, line, and fitness. Thus, it answers
questions like, ``What is the best way to break the opening part of the
paragraph so that the fourth line is a tight line ending at such-and-such
a place?'' However, the fact that all lines are to be the same length
after a certain point makes it possible to regard all sufficiently large
line numbers as equivalent, when the looseness parameter is zero, and this
makes it possible for the algorithm to save space and time.

An ``active node'' and a ``passive node'' are created in |mem| for each
feasible breakpoint that needs to be considered. Active nodes are three
words long and passive nodes are two words long. We need active nodes only
for breakpoints near the place in the paragraph that is currently being
examined, so they are recycled within a comparatively short time after
they are created.

@ An active node for a given breakpoint contains six fields:

\yskip\hang|link| points to the next node in the list of active nodes; the
last active node has |link==last_active|.

\yskip\hang|break_node| points to the passive node associated with this
breakpoint.

\yskip\hang|line_number| is the number of the line that follows this
breakpoint.

\yskip\hang|fitness| is the fitness classification of the line ending at this
breakpoint.

\yskip\hang|type| is either |hyphenated| or |unhyphenated|, depending on
whether this breakpoint is a |disc_node|.

\yskip\hang|total_demerits| is the minimum possible sum of demerits over all
lines leading from the beginning of the paragraph to this breakpoint.

\yskip\noindent
The value of |link(active)| points to the first active node on a linked list
of all currently active nodes. This list is in order by |line_number|,
except that nodes with |line_number > easy_line| may be in any order relative
to each other.

@d active_node_size 3 /*number of words in active nodes*/
@d fitness(A) subtype(A) /*|very_loose_fit dotdot tight_fit| on final line for this break*/
@d break_node(A) rlink(A) /*pointer to the corresponding passive node*/
@d line_number(A) llink(A) /*line that begins at this breakpoint*/
@d total_demerits(A) mem[A+2].i /*the quantity that \TeX\ minimizes*/
@d unhyphenated 0 /*the |type| of a normal active break node*/
@d hyphenated 1 /*the |type| of an active node that breaks at a |disc_node|*/
@d last_active active /*the active list ends where it begins*/

@ @<Initialize the special list heads...@>=
type(last_active)=hyphenated;line_number(last_active)=max_halfword;
subtype(last_active)=0; /*the |subtype| is never examined by the algorithm*/

@ The passive node for a given breakpoint contains only four fields:

\yskip\hang|link| points to the passive node created just before this one,
if any, otherwise it is |null|.

\yskip\hang|cur_break| points to the position of this breakpoint in the
horizontal list for the paragraph being broken.

\yskip\hang|prev_break| points to the passive node that should precede this
one in an optimal path to this breakpoint.

\yskip\hang|serial| is equal to |n| if this passive node is the |n|th
one created during the current pass. (This field is used only when
printing out detailed statistics about the line-breaking calculations.)

\yskip\noindent
There is a global variable called |passive| that points to the most
recently created passive node. Another global variable, |printed_node|,
is used to help print out the paragraph when detailed information about
the line-breaking computation is being displayed.

@d passive_node_size 2 /*number of words in passive nodes*/
@d cur_break(A) rlink(A) /*in passive node, points to position of this breakpoint*/
@d prev_break(A) llink(A) /*points to passive node that should precede this one*/
@d serial(A) info(A) /*serial number for symbolic identification*/

@<Glob...@>=
static pointer @!passive; /*most recent node on passive list*/
static pointer @!printed_node; /*most recent node that has been printed*/
static halfword @!pass_number; /*the number of passive nodes allocated on this pass*/

@ The active list also contains ``delta'' nodes that help the algorithm
compute the badness of individual lines. Such nodes appear only between two
active nodes, and they have |type==delta_node|. If |p| and |r| are active nodes
and if |q| is a delta node between them, so that |link(p)==q| and |link(q)==r|,
then |q| tells the space difference between lines in the horizontal list that
start after breakpoint |p| and lines that start after breakpoint |r|. In
other words, if we know the length of the line that starts after |p| and
ends at our current position, then the corresponding length of the line that
starts after |r| is obtained by adding the amounts in node~|q|. A delta node
contains six scaled numbers, since it must record the net change in glue
stretchability with respect to all orders of infinity. The natural width
difference appears in |mem[q+1].sc|; the stretch differences in units of
pt, fil, fill, and filll appear in |mem[q+2 dotdot q+5].sc|; and the shrink difference
appears in |mem[q+6].sc|. The |subtype| field of a delta node is not used.

@d delta_node_size 7 /*number of words in a delta node*/
@d delta_node 2 /*|type| field in a delta node*/

@ As the algorithm runs, it maintains a set of six delta-like registers
for the length of the line following the first active breakpoint to the
current position in the given hlist. When it makes a pass through the
active list, it also maintains a similar set of six registers for the
length following the active breakpoint of current interest. A third set
holds the length of an empty line (namely, the sum of \.{\\leftskip} and
\.{\\rightskip}); and a fourth set is used to create new delta nodes.

When we pass a delta node we want to do operations like
$$\hbox{\ignorespaces|for
k=1 to 6 do cur_active_width[k]=cur_active_width[k]+mem[q+k].sc|};$$ and we
want to do this without the overhead of |for| loops. The |do_all_six|
macro makes such six-tuples convenient.

@d do_all_six(A) A(1);A(2);A(3);A(4);A(5);A(6)

@<Glob...@>=
static scaled @!active_width0[6], *const @!active_width = @!active_width0-1;
   /*distance from first active node to~|cur_p|*/
static scaled @!cur_active_width0[6],
  *const @!cur_active_width = @!cur_active_width0-1; /*distance from current active node*/
static scaled @!background0[6], *const @!background = @!background0-1; /*length of an ``empty'' line*/
static scaled @!break_width0[6], *const @!break_width = @!break_width0-1; /*length being computed after current break*/

@ Let's state the principles of the delta nodes more precisely and concisely,
so that the following programs will be less obscure. For each legal
breakpoint~|p| in the paragraph, we define two quantities $\alpha(p)$ and
$\beta(p)$ such that the length of material in a line from breakpoint~|p|
to breakpoint~|q| is $\gamma+\beta(q)-\alpha(p)$, for some fixed $\gamma$.
Intuitively, $\alpha(p)$ and $\beta(q)$ are the total length of material from
the beginning of the paragraph to a point ``after'' a break at |p| and to a
point ``before'' a break at |q|; and $\gamma$ is the width of an empty line,
namely the length contributed by \.{\\leftskip} and \.{\\rightskip}.

Suppose, for example, that the paragraph consists entirely of alternating
boxes and glue skips; let the boxes have widths $x_1\ldots x_n$ and
let the skips have widths $y_1\ldots y_n$, so that the paragraph can be
represented by $x_1y_1\ldots x_ny_n$. Let $p_i$ be the legal breakpoint
at $y_i$; then $\alpha(p_i)=x_1+y_1+\cdots+x_i+y_i$, and $\beta(p_i)=
x_1+y_1+\cdots+x_i$. To check this, note that the length of material from
$p_2$ to $p_5$, say, is $\gamma+x_3+y_3+x_4+y_4+x_5=\gamma+\beta(p_5)
-\alpha(p_2)$.

The quantities $\alpha$, $\beta$, $\gamma$ involve glue stretchability and
shrinkability as well as a natural width. If we were to compute $\alpha(p)$
and $\beta(p)$ for each |p|, we would need multiple precision arithmetic, and
the multiprecise numbers would have to be kept in the active nodes.
\TeX\ avoids this problem by working entirely with relative differences
or ``deltas.'' Suppose, for example, that the active list contains
$a_1\,\delta_1\,a_2\,\delta_2\,a_3$, where the |a|'s are active breakpoints
and the $\delta$'s are delta nodes. Then $\delta_1=\alpha(a_1)-\alpha(a_2)$
and $\delta_2=\alpha(a_2)-\alpha(a_3)$. If the line breaking algorithm is
currently positioned at some other breakpoint |p|, the |active_width| array
contains the value $\gamma+\beta(p)-\alpha(a_1)$. If we are scanning through
the list of active nodes and considering a tentative line that runs from
$a_2$ to~|p|, say, the |cur_active_width| array will contain the value
$\gamma+\beta(p)-\alpha(a_2)$. Thus, when we move from $a_2$ to $a_3$,
we want to add $\alpha(a_2)-\alpha(a_3)$ to |cur_active_width|; and this
is just $\delta_2$, which appears in the active list between $a_2$ and
$a_3$. The |background| array contains $\gamma$. The |break_width| array
will be used to calculate values of new delta nodes when the active
list is being updated.

@ Glue nodes in a horizontal list that is being paragraphed are not supposed to
include ``infinite'' shrinkability; that is why the algorithm maintains
four registers for stretching but only one for shrinking. If the user tries to
introduce infinite shrinkability, the shrinkability will be reset to finite
and an error message will be issued. A boolean variable |no_shrink_error_yet|
prevents this error message from appearing more than once per paragraph.

@d check_shrinkage(A) if ((shrink_order(A)!=normal)&&(shrink(A)!=0))
  {@+A=finite_shrink(A);
  }

@<Glob...@>=
static bool @!no_shrink_error_yet; /*have we complained about infinite shrinkage?*/

@ @<Declare subprocedures for |line_break|@>=
static pointer finite_shrink(pointer @!p) /*recovers from infinite shrinkage*/
{@+pointer q; /*new glue specification*/
if (no_shrink_error_yet)
  {@+no_shrink_error_yet=false;
#ifdef @!STAT
  if (tracing_paragraphs > 0) end_diagnostic(true);
#endif
@;
  print_err("Infinite glue shrinkage found in a paragraph");
@.Infinite glue shrinkage...@>
  help5("The paragraph just ended includes some glue that has",@/
  "infinite shrinkability, e.g., `\\hskip 0pt minus 1fil'.",@/
  "Such glue doesn't belong there---it allows a paragraph",@/
  "of any length to fit on one line. But it's safe to proceed,",@/
  "since the offensive shrinkability has been made finite.");
  error();
#ifdef @!STAT
  if (tracing_paragraphs > 0) begin_diagnostic();
#endif
@;
  }
q=new_spec(p);shrink_order(q)=normal;
delete_glue_ref(p);return q;
}

@ @<Get ready to start...@>=
no_shrink_error_yet=true;@/
check_shrinkage(left_skip);check_shrinkage(right_skip);@/
q=left_skip;r=right_skip;background[1]=width(q)+width(r);@/
background[2]=0;background[3]=0;background[4]=0;background[5]=0;@/
background[2+stretch_order(q)]=stretch(q);@/
background[2+stretch_order(r)]=@|background[2+stretch_order(r)]+stretch(r);@/
background[6]=shrink(q)+shrink(r);

@ A pointer variable |cur_p| runs through the given horizontal list as we look
for breakpoints. This variable is global, since it is used both by |line_break|
and by its subprocedure |try_break|.

Another global variable called |threshold| is used to determine the feasibility
of individual lines: Breakpoints are feasible if there is a way to reach
them without creating lines whose badness exceeds |threshold|.  (The
badness is compared to |threshold| before penalties are added, so that
penalty values do not affect the feasibility of breakpoints, except that
no break is allowed when the penalty is 10000 or more.) If |threshold|
is 10000 or more, all legal breaks are considered feasible, since the
|badness| function specified above never returns a value greater than~10000.

Up to three passes might be made through the paragraph in an attempt to find at
least one set of feasible breakpoints. On the first pass, we have
|threshold==pretolerance| and |second_pass==final_pass==false|.
If this pass fails to find a
feasible solution, |threshold| is set to |tolerance|, |second_pass| is set
|true|, and an attempt is made to hyphenate as many words as possible.
If that fails too, we add |emergency_stretch| to the background
stretchability and set |final_pass==true|.

@<Glob...@>=
static pointer @!cur_p; /*the current breakpoint under consideration*/
static bool @!second_pass; /*is this our second attempt to break this paragraph?*/
static bool @!final_pass; /*is this our final attempt to break this paragraph?*/
static int @!threshold; /*maximum badness on feasible lines*/

@ The heart of the line-breaking procedure is `|try_break|', a subroutine
that tests if the current breakpoint |cur_p| is feasible, by running
through the active list to see what lines of text can be made from active
nodes to~|cur_p|.  If feasible breaks are possible, new break nodes are
created.  If |cur_p| is too far from an active node, that node is
deactivated.

The parameter |pi| to |try_break| is the penalty associated
with a break at |cur_p|; we have |pi==eject_penalty| if the break is forced,
and |pi==inf_penalty| if the break is illegal.

The other parameter, |break_type|, is set to |hyphenated| or |unhyphenated|,
depending on whether or not the current break is at a |disc_node|. The
end of a paragraph is also regarded as `|hyphenated|'; this case is
distinguishable by the condition |cur_p==null|.

@d copy_to_cur_active(A) cur_active_width[A]=active_width[A]
@<Declare subprocedures for |line_break|@>=
static void try_break(int @!pi, small_number @!break_type)
{@+
pointer r; /*runs through the active list*/
pointer @!prev_r; /*stays a step behind |r|*/
halfword @!old_l; /*maximum line number in current equivalence class of lines*/
bool @!no_break_yet; /*have we found a feasible break at |cur_p|?*/
@<Other local variables for |try_break|@>@;
@<Make sure that |pi| is in the proper range@>;
no_break_yet=true;prev_r=active;old_l=0;
do_all_six(copy_to_cur_active);
loop@+{@+resume: r=link(prev_r);
  @<If node |r| is of type |delta_node|, update |cur_active_width|, set |prev_r|
and |prev_prev_r|, then |goto resume|@>;
  @<If a line number class has ended, create new active nodes for the best
feasible breaks in that class; then |return| if |r=last_active|, otherwise
compute the new |line_width|@>;
  @<Consider the demerits for a line from |r| to |cur_p|; deactivate node
|r| if it should no longer be active; then |goto resume| if a line from
|r| to |cur_p| is infeasible, otherwise record a new feasible break@>;
  }
end: ;
#ifdef @!STAT
@<Update the value of |printed_node| for symbolic displays@>;
#endif
@;
}

@ @<Other local variables for |try_break|@>=
pointer @!prev_prev_r; /*a step behind |prev_r|, if |type(prev_r)==delta_node|*/
pointer @!s; /*runs through nodes ahead of |cur_p|*/
pointer @!q; /*points to a new node being created*/
pointer @!v; /*points to a glue specification or a node ahead of |cur_p|*/
int @!t; /*node count, if |cur_p| is a discretionary node*/
internal_font_number @!f; /*used in character width calculation*/
halfword @!l; /*line number of current active node*/
bool @!node_r_stays_active; /*should node |r| remain in the active list?*/
scaled @!line_width; /*the current line will be justified to this width*/
int @!fit_class; /*possible fitness class of test line*/
halfword @!b; /*badness of test line*/
int @!d; /*demerits of test line*/
bool @!artificial_demerits; /*has |d| been forced to zero?*/
#ifdef @!STAT
pointer @!save_link; /*temporarily holds value of |link(cur_p)|*/
#endif
scaled @!shortfall; /*used in badness calculations*/

@ @<Make sure that |pi| is in the proper range@>=
if (abs(pi) >= inf_penalty)
  if (pi > 0) goto end; /*this breakpoint is inhibited by infinite penalty*/
  else pi=eject_penalty /*this breakpoint will be forced*/

@ The following code uses the fact that |type(last_active)!=delta_node|.

@d update_width(A) @|
  cur_active_width[A]=cur_active_width[A]+mem[r+A].sc

@<If node |r|...@>=
@^inner loop@>
if (type(r)==delta_node)
  {@+do_all_six(update_width);
  prev_prev_r=prev_r;prev_r=r;goto resume;
  }

@ As we consider various ways to end a line at |cur_p|, in a given line number
class, we keep track of the best total demerits known, in an array with
one entry for each of the fitness classifications. For example,
|minimal_demerits[tight_fit]| contains the fewest total demerits of feasible
line breaks ending at |cur_p| with a |tight_fit| line; |best_place[tight_fit]|
points to the passive node for the break before~|cur_p| that achieves such
an optimum; and |best_pl_line[tight_fit]| is the |line_number| field in the
active node corresponding to |best_place[tight_fit]|. When no feasible break
sequence is known, the |minimal_demerits| entries will be equal to
|awful_bad|, which is $2^{30}-1$. Another variable, |minimum_demerits|,
keeps track of the smallest value in the |minimal_demerits| array.

@d awful_bad 07777777777 /*more than a billion demerits*/

@<Global...@>=
static int @!minimal_demerits0[tight_fit-very_loose_fit+1],
  *const @!minimal_demerits = @!minimal_demerits0-very_loose_fit; /*best total
  demerits known for current line class and position, given the fitness*/
static int @!minimum_demerits; /*best total demerits known for current line class
  and position*/
static pointer @!best_place0[tight_fit-very_loose_fit+1],
  *const @!best_place = @!best_place0-very_loose_fit; /*how to achieve
  |minimal_demerits|*/
static halfword @!best_pl_line0[tight_fit-very_loose_fit+1],
  *const @!best_pl_line = @!best_pl_line0-very_loose_fit; /*corresponding
  line number*/

@ @<Get ready to start...@>=
minimum_demerits=awful_bad;
minimal_demerits[tight_fit]=awful_bad;
minimal_demerits[decent_fit]=awful_bad;
minimal_demerits[loose_fit]=awful_bad;
minimal_demerits[very_loose_fit]=awful_bad;

@ The first part of the following code is part of \TeX's inner loop, so
we don't want to waste any time. The current active node, namely node |r|,
contains the line number that will be considered next. At the end of the
list we have arranged the data structure so that |r==last_active| and
|line_number(last_active) > old_l|.
@^inner loop@>

@<If a line number class...@>=
{@+l=line_number(r);
if (l > old_l)
  {@+ /*now we are no longer in the inner loop*/
  if ((minimum_demerits < awful_bad)&&@|
      ((old_l!=easy_line)||(r==last_active)))
    @<Create new active nodes for the best feasible breaks just found@>;
  if (r==last_active) goto end;
  @<Compute the new line width@>;
  }
}

@ It is not necessary to create new active nodes having |minimal_demerits|
greater than
|minimum_demerits+abs(adj_demerits)|, since such active nodes will never
be chosen in the final paragraph breaks. This observation allows us to
omit a substantial number of feasible breakpoints from further consideration.

@<Create new active nodes...@>=
{@+if (no_break_yet) @<Compute the values of |break_width|@>;
@<Insert a delta node to prepare for breaks at |cur_p|@>;
if (abs(adj_demerits) >= awful_bad-minimum_demerits)
  minimum_demerits=awful_bad-1;
else minimum_demerits=minimum_demerits+abs(adj_demerits);
for (fit_class=very_loose_fit; fit_class<=tight_fit; fit_class++)
  {@+if (minimal_demerits[fit_class] <= minimum_demerits)
    @<Insert a new active node from |best_place[fit_class]| to |cur_p|@>;
  minimal_demerits[fit_class]=awful_bad;
  }
minimum_demerits=awful_bad;
@<Insert a delta node to prepare for the next active node@>;
}

@ When we insert a new active node for a break at |cur_p|, suppose this
new node is to be placed just before active node |a|; then we essentially
want to insert `$\delta\,|cur_p|\,\delta^\prime$' before |a|, where
$\delta=\alpha(a)-\alpha(|cur_p|)$ and $\delta^\prime=\alpha(|cur_p|)-\alpha(a)$
in the notation explained above.  The |cur_active_width| array now holds
$\gamma+\beta(|cur_p|)-\alpha(a)$; so $\delta$ can be obtained by
subtracting |cur_active_width| from the quantity $\gamma+\beta(|cur_p|)-
\alpha(|cur_p|)$. The latter quantity can be regarded as the length of a
line ``from |cur_p| to |cur_p|''; we call it the |break_width| at |cur_p|.

The |break_width| is usually negative, since it consists of the background
(which is normally zero) minus the width of nodes following~|cur_p| that are
eliminated after a break. If, for example, node |cur_p| is a glue node, the
width of this glue is subtracted from the background; and we also look
ahead to eliminate all subsequent glue and penalty and kern and math
nodes, subtracting their widths as well.

Kern nodes do not disappear at a line break unless they are |explicit|.

@d set_break_width_to_background(A) break_width[A]=background[A]

@<Compute the values of |break...@>=
{@+no_break_yet=false;do_all_six(set_break_width_to_background);
s=cur_p;
if (break_type > unhyphenated) if (cur_p!=null)
  @<Compute the discretionary |break_width| values@>;
while (s!=null)
  {@+if (is_char_node(s)) goto done;
  switch (type(s)) {
  case glue_node: @<Subtract glue from |break_width|@>@;@+break;
  case penalty_node: do_nothing;@+break;
  case math_node: break_width[1]=break_width[1]-width(s);@+break;
  case kern_node: if (subtype(s)!=explicit) goto done;
    else break_width[1]=break_width[1]-width(s);@+break;
  default:goto done;
  } @/
  s=link(s);
  }
done: ;}

@ @<Subtract glue from |break...@>=
{@+v=glue_ptr(s);break_width[1]=break_width[1]-width(v);
break_width[2+stretch_order(v)]=break_width[2+stretch_order(v)]-stretch(v);
break_width[6]=break_width[6]-shrink(v);
}

@ When |cur_p| is a discretionary break, the length of a line ``from |cur_p| to
|cur_p|'' has to be defined properly so that the other calculations work out.
Suppose that the pre-break text at |cur_p| has length $l_0$, the post-break
text has length $l_1$, and the replacement text has length |l|. Suppose
also that |q| is the node following the replacement text. Then length of a
line from |cur_p| to |q| will be computed as $\gamma+\beta(q)-\alpha(|cur_p|)$,
where $\beta(q)=\beta(|cur_p|)-l_0+l$. The actual length will be the background
plus $l_1$, so the length from |cur_p| to |cur_p| should be $\gamma+l_0+l_1-l$.
If the post-break text of the discretionary is empty, a break may also
discard~|q|; in that unusual case we subtract the length of~|q| and any
other nodes that will be discarded after the discretionary break.

The value of $l_0$ need not be computed, since |line_break| will put
it into the global variable |disc_width| before calling |try_break|.

@<Glob...@>=
static scaled @!disc_width; /*the length of discretionary material preceding a break*/

@ @<Compute the discretionary |break...@>=
{@+t=replace_count(cur_p);v=cur_p;s=post_break(cur_p);
while (t > 0)
  {@+decr(t);v=link(v);
  @<Subtract the width of node |v| from |break_width|@>;
  }
while (s!=null)
  {@+@<Add the width of node |s| to |break_width|@>;
  s=link(s);
  }
break_width[1]=break_width[1]+disc_width;
if (post_break(cur_p)==null) s=link(v);
           /*nodes may be discardable after the break*/
}

@ Replacement texts and discretionary texts are supposed to contain
only character nodes, kern nodes, ligature nodes, and box or rule nodes.

@<Subtract the width of node |v|...@>=
if (is_char_node(v))
  {@+f=font(v);
  break_width[1]=break_width[1]-char_width(f, char_info(f, character(v)));
  }
else switch (type(v)) {
  case ligature_node: {@+f=font(lig_char(v));@/
    break_width[1]=@|break_width[1]-
      char_width(f, char_info(f, character(lig_char(v))));
    } @+break;
  case hlist_node: case vlist_node: case rule_node:
  case kern_node:
    break_width[1]=break_width[1]-width(v);@+break;
  default:confusion("disc1");
@:this can't happen disc1}{\quad disc1@>
  }

@ @<Add the width of node |s| to |b...@>=
if (is_char_node(s))
  {@+f=font(s);
  break_width[1]=@|break_width[1]+char_width(f, char_info(f, character(s)));
  }
else switch (type(s)) {
  case ligature_node: {@+f=font(lig_char(s));
    break_width[1]=break_width[1]+
      char_width(f, char_info(f, character(lig_char(s))));
    } @+break;
  case hlist_node: case vlist_node: case rule_node:
  case kern_node:
    break_width[1]=break_width[1]+width(s);@+break;
  default:confusion("disc2");
@:this can't happen disc2}{\quad disc2@>
  }

@ We use the fact that |type(active)!=delta_node|.

@d convert_to_break_width(A) @|
  mem[prev_r+A].sc=@|@t\hskip10pt@>mem[prev_r+A].sc
  -cur_active_width[A]+break_width[A]
@d store_break_width(A) active_width[A]=break_width[A]
@d new_delta_to_break_width(A) @|
  mem[q+A].sc=break_width[A]-cur_active_width[A]

@<Insert a delta node to prepare for breaks at |cur_p|@>=
if (type(prev_r)==delta_node)  /*modify an existing delta node*/
  {@+do_all_six(convert_to_break_width);
  }
else if (prev_r==active)  /*no delta node needed at the beginning*/
  {@+do_all_six(store_break_width);
  }
else{@+q=get_node(delta_node_size);link(q)=r;type(q)=delta_node;@/
  subtype(q)=0; /*the |subtype| is not used*/
  do_all_six(new_delta_to_break_width);
  link(prev_r)=q;prev_prev_r=prev_r;prev_r=q;
  }

@ When the following code is performed, we will have just inserted at
least one active node before |r|, so |type(prev_r)!=delta_node|.

@d new_delta_from_break_width(A) @|mem[q+A].sc=
    cur_active_width[A]-break_width[A]

@<Insert a delta node to prepare for the next active node@>=
if (r!=last_active)
  {@+q=get_node(delta_node_size);link(q)=r;type(q)=delta_node;@/
  subtype(q)=0; /*the |subtype| is not used*/
  do_all_six(new_delta_from_break_width);
  link(prev_r)=q;prev_prev_r=prev_r;prev_r=q;
  }

@ When we create an active node, we also create the corresponding
passive node.

@<Insert a new active node from |best_place[fit_class]| to |cur_p|@>=
{@+q=get_node(passive_node_size);
link(q)=passive;passive=q;cur_break(q)=cur_p;
#ifdef @!STAT
incr(pass_number);serial(q)=pass_number;
#endif
@;@/
prev_break(q)=best_place[fit_class];@/
q=get_node(active_node_size);break_node(q)=passive;
line_number(q)=best_pl_line[fit_class]+1;
fitness(q)=fit_class;type(q)=break_type;
total_demerits(q)=minimal_demerits[fit_class];
link(q)=r;link(prev_r)=q;prev_r=q;
#ifdef @!STAT
if (tracing_paragraphs > 0)
  @<Print a symbolic description of the new break node@>;
#endif
@;@/
}

@ @<Print a symbolic description of the new break node@>=
{@+print_nl("@@@@");print_int(serial(passive));
@.\AT\AT@>
print(": line ");print_int(line_number(q)-1);
print_char('.');print_int(fit_class);
if (break_type==hyphenated) print_char('-');
print(" t=");print_int(total_demerits(q));
print(" -> @@@@");
if (prev_break(passive)==null) print_char('0');
else print_int(serial(prev_break(passive)));
}

@ The length of lines depends on whether the user has specified
\.{\\parshape} or \.{\\hangindent}. If |par_shape_ptr| is not null, it
points to a $(2n+1)$-word record in |mem|, where the |info| in the first
word contains the value of |n|, and the other $2n$ words contain the left
margins and line lengths for the first |n| lines of the paragraph; the
specifications for line |n| apply to all subsequent lines. If
|par_shape_ptr==null|, the shape of the paragraph depends on the value of
|n==hang_after|; if |n >= 0|, hanging indentation takes place on lines |n+1|,
|n+2|, \dots, otherwise it takes place on lines 1, \dots, $\vert
n\vert$. When hanging indentation is active, the left margin is
|hang_indent|, if |hang_indent >= 0|, else it is 0; the line length is
$|hsize|-\vert|hang_indent|\vert$. The normal setting is
|par_shape_ptr==null|, |hang_after==1|, and |hang_indent==0|.
Note that if |hang_indent==0|, the value of |hang_after| is irrelevant.
@^length of lines@> @^hanging indentation@>

@<Glob...@>=
static halfword @!easy_line; /*line numbers | > easy_line| are equivalent in break nodes*/
static halfword @!last_special_line; /*line numbers | > last_special_line| all have
  the same width*/
static scaled @!first_width; /*the width of all lines | <= last_special_line|, if
  no \.{\\parshape} has been specified*/
static scaled @!second_width; /*the width of all lines | > last_special_line|*/
static scaled @!first_indent; /*left margin to go with |first_width|*/
static scaled @!second_indent; /*left margin to go with |second_width|*/

@ We compute the values of |easy_line| and the other local variables relating
to line length when the |line_break| procedure is initializing itself.

@<Get ready to start...@>=
if (par_shape_ptr==null)
  if (hang_indent==0)
    {@+last_special_line=0;second_width=hsize;
    second_indent=0;
    }
  else@<Set line length parameters in preparation for hanging indentation@>@;
else{@+last_special_line=info(par_shape_ptr)-1;
  second_width=mem[par_shape_ptr+2*(last_special_line+1)].sc;
  second_indent=mem[par_shape_ptr+2*last_special_line+1].sc;
  }
if (looseness==0) easy_line=last_special_line;
else easy_line=max_halfword

@ @<Set line length parameters in preparation for hanging indentation@>=
{@+last_special_line=abs(hang_after);
if (hang_after < 0)
  {@+first_width=hsize-abs(hang_indent);
  if (hang_indent >= 0) first_indent=hang_indent;
  else first_indent=0;
  second_width=hsize;second_indent=0;
  }
else{@+first_width=hsize;first_indent=0;
  second_width=hsize-abs(hang_indent);
  if (hang_indent >= 0) second_indent=hang_indent;
  else second_indent=0;
  }
}

@ When we come to the following code, we have just encountered the first
active node~|r| whose |line_number| field contains |l|. Thus we want to
compute the length of the $l\mskip1mu$th line of the current paragraph. Furthermore,
we want to set |old_l| to the last number in the class of line numbers
equivalent to~|l|.

@<Compute the new line width@>=
if (l > easy_line)
  {@+line_width=second_width;old_l=max_halfword-1;
  }
else{@+old_l=l;
  if (l > last_special_line) line_width=second_width;
  else if (par_shape_ptr==null) line_width=first_width;
  else line_width=mem[par_shape_ptr+2*l@,].sc;
  }

@ The remaining part of |try_break| deals with the calculation of
demerits for a break from |r| to |cur_p|.

The first thing to do is calculate the badness, |b|. This value will always
be between zero and |inf_bad+1|; the latter value occurs only in the
case of lines from |r| to |cur_p| that cannot shrink enough to fit the necessary
width. In such cases, node |r| will be deactivated.
We also deactivate node~|r| when a break at~|cur_p| is forced, since future
breaks must go through a forced break.

@<Consider the demerits for a line from |r| to |cur_p|...@>=
{@+artificial_demerits=false;@/
@^inner loop@>
shortfall=line_width-cur_active_width[1]; /*we're this much too short*/
if (shortfall > 0)
  @<Set the value of |b| to the badness for stretching the line, and compute
the corresponding |fit_class|@>@;
else@<Set the value of |b| to the badness for shrinking the line, and compute
the corresponding |fit_class|@>;
if ((b > inf_bad)||(pi==eject_penalty))
  @<Prepare to deactivate node~|r|, and |goto deactivate| unless there is
a reason to consider lines of text from |r| to |cur_p|@>@;
else{@+prev_r=r;
  if (b > threshold) goto resume;
  node_r_stays_active=true;
  }
@<Record a new feasible break@>;
if (node_r_stays_active) goto resume; /*|prev_r| has been set to |r|*/
deactivate: @<Deactivate node |r|@>;
}

@ When a line must stretch, the available stretchability can be found in the
subarray |cur_active_width[2 dotdot 5]|, in units of points, fil, fill, and filll.

The present section is part of \TeX's inner loop, and it is most often performed
when the badness is infinite; therefore it is worth while to make a quick
test for large width excess and small stretchability, before calling the
|badness| subroutine.
@^inner loop@>

@<Set the value of |b| to the badness for stretching...@>=
if ((cur_active_width[3]!=0)||(cur_active_width[4]!=0)||@|
  (cur_active_width[5]!=0))
  {@+b=0;fit_class=decent_fit; /*infinite stretch*/
  }
else{@+if (shortfall > 7230584) if (cur_active_width[2] < 1663497)
    {@+b=inf_bad;fit_class=very_loose_fit;goto done1;
    }
  b=badness(shortfall, cur_active_width[2]);
  if (b > 12)
    if (b > 99) fit_class=very_loose_fit;
    else fit_class=loose_fit;
  else fit_class=decent_fit;
  done1: ;
  }

@ Shrinkability is never infinite in a paragraph;
we can shrink the line from |r| to |cur_p| by at most |cur_active_width[6]|.

@<Set the value of |b| to the badness for shrinking...@>=
{@+if (-shortfall > cur_active_width[6]) b=inf_bad+1;
else b=badness(-shortfall, cur_active_width[6]);
if (b > 12) fit_class=tight_fit;@+else fit_class=decent_fit;
}

@ During the final pass, we dare not lose all active nodes, lest we lose
touch with the line breaks already found. The code shown here makes sure
that such a catastrophe does not happen, by permitting overfull boxes as
a last resort. This particular part of \TeX\ was a source of several subtle
bugs before the correct program logic was finally discovered; readers
who seek to ``improve'' \TeX\ should therefore think thrice before daring
to make any changes here.
@^overfull boxes@>

@<Prepare to deactivate node~|r|, and |goto deactivate| unless...@>=
{@+if (final_pass&&(minimum_demerits==awful_bad)&&@|
   (link(r)==last_active)&&
   (prev_r==active))
  artificial_demerits=true; /*set demerits zero, this break is forced*/
else if (b > threshold) goto deactivate;
node_r_stays_active=false;
}

@ When we get to this part of the code, the line from |r| to |cur_p| is
feasible, its badness is~|b|, and its fitness classification is |fit_class|.
We don't want to make an active node for this break yet, but we will
compute the total demerits and record them in the |minimal_demerits| array,
if such a break is the current champion among all ways to get to |cur_p|
in a given line-number class and fitness class.

@<Record a new feasible break@>=
if (artificial_demerits) d=0;
else@<Compute the demerits, |d|, from |r| to |cur_p|@>;
#ifdef @!STAT
if (tracing_paragraphs > 0)
  @<Print a symbolic description of this feasible break@>;
#endif
@;@/
d=d+total_demerits(r); /*this is the minimum total demerits
  from the beginning to |cur_p| via |r|*/
if (d <= minimal_demerits[fit_class])
  {@+minimal_demerits[fit_class]=d;
  best_place[fit_class]=break_node(r);best_pl_line[fit_class]=l;
  if (d < minimum_demerits) minimum_demerits=d;
  }

@ @<Print a symbolic description of this feasible break@>=
{@+if (printed_node!=cur_p)
  @<Print the list between |printed_node| and |cur_p|, then set |printed_node:=cur_p|@>;
print_nl("@@");
@.\AT@>
if (cur_p==null) print_esc("par");
else if (type(cur_p)!=glue_node)
  {@+if (type(cur_p)==penalty_node) print_esc("penalty");
  else if (type(cur_p)==disc_node) print_esc("discretionary");
  else if (type(cur_p)==kern_node) print_esc("kern");
  else print_esc("math");
  }
print(" via @@@@");
if (break_node(r)==null) print_char('0');
else print_int(serial(break_node(r)));
print(" b=");
if (b > inf_bad) print_char('*');@+else print_int(b);
@.*\relax@>
print(" p=");print_int(pi);print(" d=");
if (artificial_demerits) print_char('*');@+else print_int(d);
}

@ @<Print the list between |printed_node| and |cur_p|...@>=
{@+print_nl("");
if (cur_p==null) short_display(link(printed_node));
else{@+save_link=link(cur_p);
  link(cur_p)=null;print_nl("");short_display(link(printed_node));
  link(cur_p)=save_link;
  }
printed_node=cur_p;
}

@ When the data for a discretionary break is being displayed, we will have
printed the |pre_break| and |post_break| lists; we want to skip over the
third list, so that the discretionary data will not appear twice.  The
following code is performed at the very end of |try_break|.

@<Update the value of |printed_node|...@>=
if (cur_p==printed_node) if (cur_p!=null) if (type(cur_p)==disc_node)
  {@+t=replace_count(cur_p);
  while (t > 0)
    {@+decr(t);printed_node=link(printed_node);
    }
  }

@ @<Compute the demerits, |d|, from |r| to |cur_p|@>=
{@+d=line_penalty+b;
if (abs(d) >= 10000) d=100000000;@+else d=d*d;
if (pi!=0)
  if (pi > 0) d=d+pi*pi;
  else if (pi > eject_penalty) d=d-pi*pi;
if ((break_type==hyphenated)&&(type(r)==hyphenated))
  if (cur_p!=null) d=d+double_hyphen_demerits;
  else d=d+final_hyphen_demerits;
if (abs(fit_class-fitness(r)) > 1) d=d+adj_demerits;
}

@ When an active node disappears, we must delete an adjacent delta node if the
active node was at the beginning or the end of the active list, or if it
was surrounded by delta nodes. We also must preserve the property that
|cur_active_width| represents the length of material from |link(prev_r)|
to~|cur_p|.

@d combine_two_deltas(A) @|mem[prev_r+A].sc=mem[prev_r+A].sc+mem[r+A].sc
@d downdate_width(A) @|cur_active_width[A]=cur_active_width[A]-
  mem[prev_r+A].sc

@<Deactivate node |r|@>=
link(prev_r)=link(r);free_node(r, active_node_size);
if (prev_r==active) @<Update the active widths, since the first active node
has been deleted@>@;
else if (type(prev_r)==delta_node)
  {@+r=link(prev_r);
  if (r==last_active)
    {@+do_all_six(downdate_width);
    link(prev_prev_r)=last_active;
    free_node(prev_r, delta_node_size);prev_r=prev_prev_r;
    }
  else if (type(r)==delta_node)
    {@+do_all_six(update_width);
    do_all_six(combine_two_deltas);
    link(prev_r)=link(r);free_node(r, delta_node_size);
    }
  }

@ The following code uses the fact that |type(last_active)!=delta_node|. If the
active list has just become empty, we do not need to update the
|active_width| array, since it will be initialized when an active
node is next inserted.

@d update_active(A) active_width[A]=active_width[A]+mem[r+A].sc

@<Update the active widths,...@>=
{@+r=link(active);
if (type(r)==delta_node)
  {@+do_all_six(update_active);
  do_all_six(copy_to_cur_active);
  link(active)=link(r);free_node(r, delta_node_size);
  }
}

@* Breaking paragraphs into lines, continued.
So far we have gotten a little way into the |line_break| routine, having
covered its important |try_break| subroutine. Now let's consider the
rest of the process.

The main loop of |line_break| traverses the given hlist,
starting at |link(temp_head)|, and calls |try_break| at each legal
breakpoint. A variable called |auto_breaking| is set to true except
within math formulas, since glue nodes are not legal breakpoints when
they appear in formulas.

The current node of interest in the hlist is pointed to by |cur_p|. Another
variable, |prev_p|, is usually one step behind |cur_p|, but the real
meaning of |prev_p| is this: If |type(cur_p)==glue_node| then |cur_p| is a legal
breakpoint if and only if |auto_breaking| is true and |prev_p| does not
point to a glue node, penalty node, explicit kern node, or math node.

The following declarations provide for a few other local variables that are
used in special calculations.

@<Local variables for line breaking@>=
bool @!auto_breaking; /*is node |cur_p| outside a formula?*/
pointer @!prev_p; /*helps to determine when glue nodes are breakpoints*/
pointer @!q, @!r, @!s, @!prev_s; /*miscellaneous nodes of temporary interest*/
internal_font_number @!f; /*used when calculating character widths*/

@ The `\ignorespaces|loop|\unskip' in the following code is performed at most
thrice per call of |line_break|, since it is actually a pass over the
entire paragraph.

@<Find optimal breakpoints@>=
threshold=pretolerance;
if (threshold >= 0)
  {
#ifdef @!STAT
if (tracing_paragraphs > 0)
    {@+begin_diagnostic();print_nl("@@firstpass");@+} @;
#endif
@;@/
  second_pass=false;final_pass=false;
  }
else{@+threshold=tolerance;second_pass=true;
  final_pass=(emergency_stretch <= 0);
#ifdef @!STAT
  if (tracing_paragraphs > 0) begin_diagnostic();
#endif
@;
  }
loop@+{@+if (threshold > inf_bad) threshold=inf_bad;
  if (second_pass) @<Initialize for hyphenating a paragraph@>;
  @<Create an active breakpoint representing the beginning of the paragraph@>;
  cur_p=link(temp_head);auto_breaking=true;@/
  prev_p=cur_p; /*glue at beginning is not a legal breakpoint*/
  while ((cur_p!=null)&&(link(active)!=last_active))
    @<Call |try_break| if |cur_p| is a legal breakpoint; on the second pass,
also try to hyphenate the next word, if |cur_p| is a glue node; then advance
|cur_p| to the next node of the paragraph that could possibly be a legal breakpoint@>;
  if (cur_p==null)
    @<Try the final line break at the end of the paragraph, and |goto done|
if the desired breakpoints have been found@>;
  @<Clean up the memory by removing the break nodes@>;
  if (!second_pass)
    {
#ifdef @!STAT
if (tracing_paragraphs > 0) print_nl("@@secondpass");@;
#endif
    threshold=tolerance;second_pass=true;final_pass=(emergency_stretch <= 0);
    }  /*if at first you don't succeed, \dots*/
  else{
#ifdef @!STAT
if (tracing_paragraphs > 0)
      print_nl("@@emergencypass");@;
#endif
    background[2]=background[2]+emergency_stretch;final_pass=true;
    }
  }
done:
#ifdef @!STAT
if (tracing_paragraphs > 0)
  {@+end_diagnostic(true);normalize_selector();
  }
#endif

@ The active node that represents the starting point does not need a
corresponding passive node.

@d store_background(A) active_width[A]=background[A]

@<Create an active breakpoint representing the beginning of the paragraph@>=
q=get_node(active_node_size);
type(q)=unhyphenated;fitness(q)=decent_fit;
link(q)=last_active;break_node(q)=null;
line_number(q)=prev_graf+1;total_demerits(q)=0;link(active)=q;
do_all_six(store_background);@/
passive=null;printed_node=temp_head;pass_number=0;
font_in_short_display=null_font

@ @<Clean...@>=
q=link(active);
while (q!=last_active)
  {@+cur_p=link(q);
  if (type(q)==delta_node) free_node(q, delta_node_size);
  else free_node(q, active_node_size);
  q=cur_p;
  }
q=passive;
while (q!=null)
  {@+cur_p=link(q);
  free_node(q, passive_node_size);
  q=cur_p;
  }

@ Here is the main switch in the |line_break| routine, where legal breaks
are determined. As we move through the hlist, we need to keep the |active_width|
array up to date, so that the badness of individual lines is readily calculated
by |try_break|. It is convenient to use the short name |act_width| for
the component of active width that represents real width as opposed to glue.

@d act_width active_width[1] /*length from first active node to current node*/
@d kern_break {@+if (!is_char_node(link(cur_p))&&auto_breaking)
    if (type(link(cur_p))==glue_node) try_break(0, unhyphenated);
  act_width=act_width+width(cur_p);
  }

@<Call |try_break| if |cur_p| is a legal breakpoint...@>=
{@+if (is_char_node(cur_p))
  @<Advance \(c)|cur_p| to the node following the present string of characters@>;
switch (type(cur_p)) {
case hlist_node: case vlist_node: case rule_node: act_width=act_width+width(cur_p);@+break;
case whatsit_node: @<Advance \(p)past a whatsit node in the \(l)|line_break|
loop@>@;@+break;
case glue_node: {@+@<If node |cur_p| is a legal breakpoint, call |try_break|;
then update the active widths by including the glue in |glue_ptr(cur_p)|@>;
  if (second_pass&&auto_breaking)
    hyphenate_word();
  } @+break;
case kern_node: if (subtype(cur_p)==explicit) kern_break@;
  else act_width=act_width+width(cur_p);@+break;
case ligature_node: {@+f=font(lig_char(cur_p));
  act_width=act_width+char_width(f, char_info(f, character(lig_char(cur_p))));
  } @+break;
case disc_node: @<Try to break after a discretionary fragment, then |goto
done5|@>@;
case math_node: {@+auto_breaking=(subtype(cur_p)==after);kern_break;
  } @+break;
case penalty_node: try_break(penalty(cur_p), unhyphenated);@+break;
case mark_node: case ins_node: case adjust_node: do_nothing;@+break;
default:confusion("paragraph");
@:this can't happen paragraph}{\quad paragraph@>
} @/
prev_p=cur_p;cur_p=link(cur_p);
done5: ;}

@ The code that passes over the characters of words in a paragraph is
part of \TeX's inner loop, so it has been streamlined for speed. We use
the fact that `\.{\\parfillskip}' glue appears at the end of each paragraph;
it is therefore unnecessary to check if |link(cur_p)==null| when |cur_p| is a
character node.
@^inner loop@>

@<Advance \(c)|cur_p| to the node following the present string...@>=
{@+prev_p=cur_p;
@/do@+{f=font(cur_p);
act_width=act_width+char_width(f, char_info(f, character(cur_p)));
cur_p=link(cur_p);
}@+ while (!(!is_char_node(cur_p)));
}

@ When node |cur_p| is a glue node, we look at |prev_p| to see whether or not
a breakpoint is legal at |cur_p|, as explained above.

@<If node |cur_p| is a legal breakpoint, call...@>=
if (auto_breaking)
  {@+if (is_char_node(prev_p)) try_break(0, unhyphenated);
  else if (precedes_break(prev_p)) try_break(0, unhyphenated);
  else if ((type(prev_p)==kern_node)&&(subtype(prev_p)!=explicit))
    try_break(0, unhyphenated);
  }
check_shrinkage(glue_ptr(cur_p));q=glue_ptr(cur_p);
act_width=act_width+width(q);@|
active_width[2+stretch_order(q)]=@|
  active_width[2+stretch_order(q)]+stretch(q);@/
active_width[6]=active_width[6]+shrink(q)

@ The following code knows that discretionary texts contain
only character nodes, kern nodes, box nodes, rule nodes, and ligature nodes.

@<Try to break after a discretionary fragment...@>=
{@+s=pre_break(cur_p);disc_width=0;
if (s==null) try_break(ex_hyphen_penalty, hyphenated);
else{@+@/do@+{@<Add the width of node |s| to |disc_width|@>;
    s=link(s);
  }@+ while (!(s==null));
  act_width=act_width+disc_width;
  try_break(hyphen_penalty, hyphenated);
  act_width=act_width-disc_width;
  }
r=replace_count(cur_p);s=link(cur_p);
while (r > 0)
  {@+@<Add the width of node |s| to |act_width|@>;
  decr(r);s=link(s);
  }
prev_p=cur_p;cur_p=s;goto done5;
}

@ @<Add the width of node |s| to |disc_width|@>=
if (is_char_node(s))
  {@+f=font(s);
  disc_width=disc_width+char_width(f, char_info(f, character(s)));
  }
else switch (type(s)) {
  case ligature_node: {@+f=font(lig_char(s));
    disc_width=disc_width+
      char_width(f, char_info(f, character(lig_char(s))));
    } @+break;
  case hlist_node: case vlist_node: case rule_node:
  case kern_node:
    disc_width=disc_width+width(s);@+break;
  default:confusion("disc3");
@:this can't happen disc3}{\quad disc3@>
  }

@ @<Add the width of node |s| to |act_width|@>=
if (is_char_node(s))
  {@+f=font(s);
  act_width=act_width+char_width(f, char_info(f, character(s)));
  }
else switch (type(s)) {
  case ligature_node: {@+f=font(lig_char(s));
    act_width=act_width+
      char_width(f, char_info(f, character(lig_char(s))));
    } @+break;
  case hlist_node: case vlist_node: case rule_node:
  case kern_node:
    act_width=act_width+width(s);@+break;
  default:confusion("disc4");
@:this can't happen disc4}{\quad disc4@>
  }

@ The forced line break at the paragraph's end will reduce the list of
breakpoints so that all active nodes represent breaks at |cur_p==null|.
On the first pass, we insist on finding an active node that has the
correct ``looseness.'' On the final pass, there will be at least one active
node, and we will match the desired looseness as well as we can.

The global variable |best_bet| will be set to the active node for the best
way to break the paragraph, and a few other variables are used to
help determine what is best.

@<Glob...@>=
static pointer @!best_bet; /*use this passive node and its predecessors*/
static int @!fewest_demerits; /*the demerits associated with |best_bet|*/
static halfword @!best_line; /*line number following the last line of the new paragraph*/
static int @!actual_looseness; /*the difference between |line_number(best_bet)|
  and the optimum |best_line|*/
static int @!line_diff; /*the difference between the current line number and
  the optimum |best_line|*/

@ @<Try the final line break at the end of the paragraph...@>=
{@+try_break(eject_penalty, hyphenated);
if (link(active)!=last_active)
  {@+@<Find an active node with fewest demerits@>;
  if (looseness==0) goto done;
  @<Find the best active node for the desired looseness@>;
  if ((actual_looseness==looseness)||final_pass) goto done;
  }
}

@ @<Find an active node...@>=
r=link(active);fewest_demerits=awful_bad;
@/do@+{if (type(r)!=delta_node) if (total_demerits(r) < fewest_demerits)
  {@+fewest_demerits=total_demerits(r);best_bet=r;
  }
r=link(r);
}@+ while (!(r==last_active));
best_line=line_number(best_bet)

@ The adjustment for a desired looseness is a slightly more complicated
version of the loop just considered. Note that if a paragraph is broken
into segments by displayed equations, each segment will be subject to the
looseness calculation, independently of the other segments.

@<Find the best active node...@>=
{@+r=link(active);actual_looseness=0;
@/do@+{if (type(r)!=delta_node)
  {@+line_diff=line_number(r)-best_line;
  if (((line_diff < actual_looseness)&&(looseness <= line_diff))||@|
  ((line_diff > actual_looseness)&&(looseness >= line_diff)))
    {@+best_bet=r;actual_looseness=line_diff;
    fewest_demerits=total_demerits(r);
    }
  else if ((line_diff==actual_looseness)&&@|
    (total_demerits(r) < fewest_demerits))
    {@+best_bet=r;fewest_demerits=total_demerits(r);
    }
  }
r=link(r);
}@+ while (!(r==last_active));
best_line=line_number(best_bet);
}

@ Once the best sequence of breakpoints has been found (hurray), we call on the
procedure |post_line_break| to finish the remainder of the work.
(By introducing this subprocedure, we are able to keep |line_break|
from getting extremely long.)

@<Break the paragraph at the chosen...@>=
post_line_break(final_widow_penalty)

@ The total number of lines that will be set by |post_line_break|
is |best_line-prev_graf-1|. The last breakpoint is specified by
|break_node(best_bet)|, and this passive node points to the other breakpoints
via the |prev_break| links. The finishing-up phase starts by linking the
relevant passive nodes in forward order, changing |prev_break| to
|next_break|. (The |next_break| fields actually reside in the same memory
space as the |prev_break| fields did, but we give them a new name because
of their new significance.) Then the lines are justified, one by one.

@d next_break prev_break /*new name for |prev_break| after links are reversed*/

@<Declare subprocedures for |line_break|@>=
static void post_line_break(int @!final_widow_penalty)
{@+
pointer q, @!r, @!s; /*temporary registers for list manipulation*/
bool @!disc_break; /*was the current break at a discretionary node?*/
bool @!post_disc_break; /*and did it have a nonempty post-break part?*/
scaled @!cur_width; /*width of line number |cur_line|*/
scaled @!cur_indent; /*left margin of line number |cur_line|*/
quarterword @!t; /*used for replacement counts in discretionary nodes*/
int @!pen; /*use when calculating penalties between lines*/
halfword @!cur_line; /*the current line number being justified*/
@<Reverse the links of the relevant passive nodes, setting |cur_p| to the
first breakpoint@>;
cur_line=prev_graf+1;
@/do@+{@<Justify the line ending at breakpoint |cur_p|, and append it to the
current vertical list, together with associated penalties and other insertions@>;
incr(cur_line);cur_p=next_break(cur_p);
if (cur_p!=null) if (!post_disc_break)
  @<Prune unwanted nodes at the beginning of the next line@>;
}@+ while (!(cur_p==null));
if ((cur_line!=best_line)||(link(temp_head)!=null))
  confusion("line breaking");
@:this can't happen line breaking}{\quad line breaking@>
prev_graf=best_line-1;
}

@ The job of reversing links in a list is conveniently regarded as the job
of taking items off one stack and putting them on another. In this case we
take them off a stack pointed to by |q| and having |prev_break| fields;
we put them on a stack pointed to by |cur_p| and having |next_break| fields.
Node |r| is the passive node being moved from stack to stack.

@<Reverse the links of the relevant passive nodes...@>=
q=break_node(best_bet);cur_p=null;
@/do@+{r=q;q=prev_break(q);next_break(r)=cur_p;cur_p=r;
}@+ while (!(q==null))

@ Glue and penalty and kern and math nodes are deleted at the beginning of
a line, except in the anomalous case that the node to be deleted is actually
one of the chosen breakpoints. Otherwise
the pruning done here is designed to match
the lookahead computation in |try_break|, where the |break_width| values
are computed for non-discretionary breakpoints.

@<Prune unwanted nodes at the beginning of the next line@>=
{@+r=temp_head;
loop@+{@+q=link(r);
  if (q==cur_break(cur_p)) goto done1;
     /*|cur_break(cur_p)| is the next breakpoint*/
   /*now |q| cannot be |null|*/
  if (is_char_node(q)) goto done1;
  if (non_discardable(q)) goto done1;
  if (type(q)==kern_node) if (subtype(q)!=explicit) goto done1;
  r=q; /*now |type(q)==glue_node|, |kern_node|, |math_node|, or |penalty_node|*/
  }
done1: if (r!=temp_head)
  {@+link(r)=null;flush_node_list(link(temp_head));
  link(temp_head)=q;
  }
}

@ The current line to be justified appears in a horizontal list starting
at |link(temp_head)| and ending at |cur_break(cur_p)|. If |cur_break(cur_p)| is
a glue node, we reset the glue to equal the |right_skip| glue; otherwise
we append the |right_skip| glue at the right. If |cur_break(cur_p)| is a
discretionary node, we modify the list so that the discretionary break
is compulsory, and we set |disc_break| to |true|. We also append
the |left_skip| glue at the left of the line, unless it is zero.

@<Justify the line ending at breakpoint |cur_p|, and append it...@>=
@<Modify the end of the line to reflect the nature of the break and to include
\.{\\rightskip}; also set the proper value of |disc_break|@>;
@<Put the \(l)\.{\\leftskip} glue at the left and detach this line@>;
@<Call the packaging subroutine, setting |just_box| to the justified box@>;
@<Append the new box to the current vertical list, followed by the list of
special nodes taken out of the box by the packager@>;
@<Append a penalty node, if a nonzero penalty is appropriate@>@;

@ At the end of the following code, |q| will point to the final node on the
list about to be justified.

@<Modify the end of the line...@>=
q=cur_break(cur_p);disc_break=false;post_disc_break=false;
if (q!=null)  /*|q| cannot be a |char_node|*/
  if (type(q)==glue_node)
    {@+delete_glue_ref(glue_ptr(q));
    glue_ptr(q)=right_skip;
    subtype(q)=right_skip_code+1;add_glue_ref(right_skip);
    goto done;
    }
  else{@+if (type(q)==disc_node)
      @<Change discretionary to compulsory and set |disc_break:=true|@>@;
    else if ((type(q)==math_node)||(type(q)==kern_node)) width(q)=0;
    }
else{@+q=temp_head;
  while (link(q)!=null) q=link(q);
  }
@<Put the \(r)\.{\\rightskip} glue after node |q|@>;
done:

@ @<Change discretionary to compulsory...@>=
{@+t=replace_count(q);
@<Destroy the |t| nodes following |q|, and make |r| point to the following
node@>;
if (post_break(q)!=null) @<Transplant the post-break list@>;
if (pre_break(q)!=null) @<Transplant the pre-break list@>;
link(q)=r;disc_break=true;
}

@ @<Destroy the |t| nodes following |q|...@>=
if (t==0) r=link(q);
else{@+r=q;
  while (t > 1)
    {@+r=link(r);decr(t);
    }
  s=link(r);
  r=link(s);link(s)=null;
  flush_node_list(link(q));set_replace_count(q,0);
  }

@ We move the post-break list from inside node |q| to the main list by
re\-attaching it just before the present node |r|, then resetting |r|.

@<Transplant the post-break list@>=
{@+s=post_break(q);
while (link(s)!=null) s=link(s);
link(s)=r;r=post_break(q);post_break(q)=null;post_disc_break=true;
}

@ We move the pre-break list from inside node |q| to the main list by
re\-attaching it just after the present node |q|, then resetting |q|.

@<Transplant the pre-break list@>=
{@+s=pre_break(q);link(q)=s;
while (link(s)!=null) s=link(s);
pre_break(q)=null;q=s;
}

@ @<Put the \(r)\.{\\rightskip} glue after node |q|@>=
r=new_param_glue(right_skip_code);link(r)=link(q);link(q)=r;q=r

@ The following code begins with |q| at the end of the list to be
justified. It ends with |q| at the beginning of that list, and with
|link(temp_head)| pointing to the remainder of the paragraph, if any.

@<Put the \(l)\.{\\leftskip} glue at the left...@>=
r=link(q);link(q)=null;q=link(temp_head);link(temp_head)=r;
if (left_skip!=zero_glue)
  {@+r=new_param_glue(left_skip_code);
  link(r)=q;q=r;
  }

@ @<Append the new box to the current vertical list...@>=
append_to_vlist(just_box);
if (adjust_head!=adjust_tail)
  {@+link(tail)=link(adjust_head);tail=adjust_tail;
   }
adjust_tail=null

@ Now |q| points to the hlist that represents the current line of the
paragraph. We need to compute the appropriate line width, pack the
line into a box of this size, and shift the box by the appropriate
amount of indentation.

@<Call the packaging subroutine...@>=
if (cur_line > last_special_line)
  {@+cur_width=second_width;cur_indent=second_indent;
  }
else if (par_shape_ptr==null)
  {@+cur_width=first_width;cur_indent=first_indent;
  }
else{@+cur_width=mem[par_shape_ptr+2*cur_line].sc;
  cur_indent=mem[par_shape_ptr+2*cur_line-1].sc;
  }
adjust_tail=adjust_head;just_box=hpack(q, cur_width, 0, 0, exactly);
shift_amount(just_box)=cur_indent

@ Penalties between the lines of a paragraph come from club and widow lines,
from the |inter_line_penalty| parameter, and from lines that end at
discretionary breaks.  Breaking between lines of a two-line paragraph gets
both club-line and widow-line penalties. The local variable |pen| will
be set to the sum of all relevant penalties for the current line, except
that the final line is never penalized.

@<Append a penalty node, if a nonzero penalty is appropriate@>=
if (cur_line+1!=best_line)
  {@+pen=inter_line_penalty;
  if (cur_line==prev_graf+1) pen=pen+club_penalty;
  if (cur_line+2==best_line) pen=pen+final_widow_penalty;
  if (disc_break) pen=pen+broken_penalty;
  if (pen!=0)
    {@+r=new_penalty(pen);
    link(tail)=r;tail=r;
    }
  }

@* Pre-hyphenation.
When the line-breaking routine is unable to find a feasible sequence of
breakpoints, it makes a second pass over the paragraph, attempting to
hyphenate the hyphenatable words. The goal of hyphenation is to insert
discretionary material into the paragraph so that there are more
potential places to break.

The general rules for hyphenation are somewhat complex and technical,
because we want to be able to hyphenate words that are preceded or
followed by punctuation marks, and because we want the rules to work
for languages other than English. We also must contend with the fact
that hyphens might radically alter the ligature and kerning structure
of a word.

A sequence of characters will be considered for hyphenation only if it
belongs to a ``potentially hyphenatable part'' of the current paragraph.
This is a sequence of nodes $p_0p_1\ldots p_m$ where $p_0$ is a glue node,
$p_1\ldots p_{m-1}$ are either character or ligature or whatsit or
implicit kern nodes, and $p_m$ is a glue or penalty or insertion or adjust
or mark or whatsit or explicit kern node.  (Therefore hyphenation is
disabled by boxes, math formulas, and discretionary nodes already inserted
by the user.) The ligature nodes among $p_1\ldots p_{m-1}$ are effectively
expanded into the original non-ligature characters; the kern nodes and
whatsits are ignored. Each character |c| is now classified as either a
nonletter (if |lc_code(c)==0|), a lowercase letter (if
|lc_code(c)==c|), or an uppercase letter (otherwise); an uppercase letter
is treated as if it were |lc_code(c)| for purposes of hyphenation. The
characters generated by $p_1\ldots p_{m-1}$ may begin with nonletters; let
$c_1$ be the first letter that is not in the middle of a ligature. Whatsit
nodes preceding $c_1$ are ignored; a whatsit found after $c_1$ will be the
terminating node $p_m$. All characters that do not have the same font as
$c_1$ will be treated as nonletters. The |hyphen_char| for that font
must be between 0 and 255, otherwise hyphenation will not be attempted.
\TeX\ looks ahead for as many consecutive letters $c_1\ldots c_n$ as
possible; however, |n| must be less than 64, so a character that would
otherwise be $c_{64}$ is effectively not a letter. Furthermore $c_n$ must
not be in the middle of a ligature.  In this way we obtain a string of
letters $c_1\ldots c_n$ that are generated by nodes $p_a\ldots p_b$, where
|1 <= a <= b+1 <= m|. If |n >= l_hyf+r_hyf|, this string qualifies for hyphenation;
however, |uc_hyph| must be positive, if $c_1$ is uppercase.

The hyphenation process takes place in three stages. First, the candidate
sequence $c_1\ldots c_n$ is found; then potential positions for hyphens
are determined by referring to hyphenation tables; and finally, the nodes
$p_a\ldots p_b$ are replaced by a new sequence of nodes that includes the
discretionary breaks found.

Fortunately, we do not have to do all this calculation very often, because
of the way it has been taken out of \TeX's inner loop. For example, when
the second edition of the author's 700-page book {\sl Seminumerical
Algorithms} was typeset by \TeX, only about 1.2 hyphenations needed to be
@^Knuth, Donald Ervin@>
tried per paragraph, since the line breaking algorithm needed to use two
passes on only about 5 per cent of the paragraphs.

@<Initialize for hyphenating...@>=
{
#ifdef @!INIT
if (trie_not_ready) init_trie();
#endif
@;@/
cur_lang=init_cur_lang;l_hyf=init_l_hyf;r_hyf=init_r_hyf;
set_hyph_index;
}

@ The letters $c_1\ldots c_n$ that are candidates for hyphenation are placed
into an array called |hc|; the number |n| is placed into |hn|; pointers to
nodes $p_{a-1}$ and~$p_b$ in the description above are placed into variables
|ha| and |hb|; and the font number is placed into |hf|.

@<Glob...@>=
static int16_t @!hc[66]; /*word to be hyphenated*/
static int @!hn; /*the number of positions occupied in |hc|;
                                  not always a |small_number|*/
static pointer @!ha, @!hb; /*nodes |ha dotdot hb| should be replaced by the hyphenated result*/
static internal_font_number @!hf; /*font number of the letters in |hc|*/
static int16_t @!hu[64]; /*like |hc|, before conversion to lowercase*/
static int @!hyf_char; /*hyphen character of the relevant font*/
static ASCII_code @!cur_lang, @!init_cur_lang; /*current hyphenation table of interest*/
static int @!l_hyf, @!r_hyf, @!init_l_hyf, @!init_r_hyf; /*limits on fragment sizes*/
static halfword @!hyf_bchar; /*boundary character after $c_n$*/

@ Hyphenation routines need a few more local variables.

@<Local variables for line...@>=
small_number @!j; /*an index into |hc| or |hu|*/
int @!c; /*character being considered for hyphenation*/

@ When the following code is activated, the |line_break| procedure is in its
second pass, and |cur_p| points to a glue node.

@p
static void hyphenate_word(void)@t\2\2@>@/
{ pointer @!q, @!s, @!prev_s;@t\1@> /*miscellaneous nodes of temporary interest*/
  small_number @!j; /*an index into |hc| or |hu|*/
  uint8_t @!c; /*character being considered for hyphenation*/

  prev_s=cur_p;s=link(prev_s);
if (s!=null)
  {@+@<Skip to node |ha|, or |goto done1| if no hyphenation should be attempted@>;
  if (l_hyf+r_hyf > 63) goto done1;
  @<Skip to node |hb|, putting letters into |hu| and |hc|@>;
  @<Check that the nodes following |hb| permit hyphenation and that at least
|l_hyf+r_hyf| letters have been found, otherwise |goto done1|@>;
  hyphenate();
  }
done1: ;}

@ @<Declare subprocedures for |line_break|@>=
@t\4@>@<Declare the function called |reconstitute|@>@;
static void hyphenate(void)
{@+
@<Local variables for hyphenation@>@;
@<Find hyphen locations for the word in |hc|, or |return|@>;
@<If no hyphens were found, |return|@>;
@<Replace nodes |ha..hb| by a sequence of nodes that includes the discretionary
hyphens@>;
}

@ The first thing we need to do is find the node |ha| just before the
first letter.

@<Skip to node |ha|, or |goto done1|...@>=
loop@+{@+if (is_char_node(s))
    {@+c=qo(character(s));hf=font(s);
    }
  else if (type(s)==ligature_node)
    if (lig_ptr(s)==null) goto resume;
    else{@+q=lig_ptr(s);c=qo(character(q));hf=font(q);
      }
  else if ((type(s)==kern_node)&&(subtype(s)==normal)) goto resume;
  else if (type(s)==whatsit_node)
    {@+@<Advance \(p)past a whatsit node in the \(p)pre-hyphenation loop@>;
    goto resume;
    }
  else goto done1;
  set_lc_code(c);
  if (hc[0]!=0)
    if ((hc[0]==c)||(uc_hyph > 0)) goto done2;
    else goto done1;
resume: prev_s=s;s=link(prev_s);
  }
done2: hyf_char=hyphen_char[hf];
if (hyf_char < 0) goto done1;
if (hyf_char > 255) goto done1;
ha=prev_s

@ The word to be hyphenated is now moved to the |hu| and |hc| arrays.

@<Skip to node |hb|, putting letters...@>=
hn=0;
loop@+{@+if (is_char_node(s))
    {@+if (font(s)!=hf) goto done3;
    hyf_bchar=character(s);c=qo(hyf_bchar);
    set_lc_code(c);
    if (hc[0]==0) goto done3;
    if (hn==63) goto done3;
    hb=s;incr(hn);hu[hn]=c;hc[hn]=hc[0];hyf_bchar=non_char;
    }
  else if (type(s)==ligature_node)
    @<Move the characters of a ligature node to |hu| and |hc|; but |goto done3|
if they are not all letters@>@;
  else if ((type(s)==kern_node)&&(subtype(s)==normal))
    {@+hb=s;
    hyf_bchar=font_bchar[hf];
    }
  else goto done3;
  s=link(s);
  }
done3:

@ We let |j| be the index of the character being stored when a ligature node
is being expanded, since we do not want to advance |hn| until we are sure
that the entire ligature consists of letters. Note that it is possible
to get to |done3| with |hn==0| and |hb| not set to any value.

@<Move the characters of a ligature node to |hu| and |hc|...@>=
{@+if (font(lig_char(s))!=hf) goto done3;
j=hn;q=lig_ptr(s);@+if (q > null) hyf_bchar=character(q);
while (q > null)
  {@+c=qo(character(q));
  set_lc_code(c);
  if (hc[0]==0) goto done3;
  if (j==63) goto done3;
  incr(j);hu[j]=c;hc[j]=hc[0];@/
  q=link(q);
  }
hb=s;hn=j;
if (odd(subtype(s))) hyf_bchar=font_bchar[hf];@+else hyf_bchar=non_char;
}

@ @<Check that the nodes following |hb| permit hyphenation...@>=
if (hn < l_hyf+r_hyf) goto done1; /*|l_hyf| and |r_hyf| are | >= 1|*/
loop@+{@+if (!(is_char_node(s)))
    switch (type(s)) {
    case ligature_node: do_nothing;@+break;
    case kern_node: if (subtype(s)!=normal) goto done4;@+break;
    case whatsit_node: case glue_node:
  case penalty_node: case ins_node: case adjust_node:
  case mark_node:
      goto done4;
    default:goto done1;
    }
  s=link(s);
  }
done4:

@* Post-hyphenation.
If a hyphen may be inserted between |hc[j]| and |hc[j+1]|, the hyphenation
procedure will set |hyf[j]| to some small odd number. But before we look
at \TeX's hyphenation procedure, which is independent of the rest of the
line-breaking algorithm, let us consider what we will do with the hyphens
it finds, since it is better to work on this part of the program before
forgetting what |ha| and |hb|, etc., are all about.

@<Glob...@>=
static int8_t @!hyf[65]; /*odd values indicate discretionary hyphens*/
static pointer @!init_list; /*list of punctuation characters preceding the word*/
static bool @!init_lig; /*does |init_list| represent a ligature?*/
static bool @!init_lft; /*if so, did the ligature involve a left boundary?*/

@ @<Local variables for hyphenation@>=
int @!i, @!j, @!l; /*indices into |hc| or |hu|*/
pointer @!q, @!r, @!s; /*temporary registers for list manipulation*/
halfword @!bchar; /*boundary character of hyphenated word, or |non_char|*/

@ \TeX\ will never insert a hyphen that has fewer than
\.{\\lefthyphenmin} letters before it or fewer than
\.{\\righthyphenmin} after it; hence, a short word has
comparatively little chance of being hyphenated. If no hyphens have
been found, we can save time by not having to make any changes to the
paragraph.

@<If no hyphens were found, |return|@>=
for (j=l_hyf; j<=hn-r_hyf; j++) if (odd(hyf[j])) goto found1;
return;
found1:

@ If hyphens are in fact going to be inserted, \TeX\ first deletes the
subsequence of nodes between |ha| and~|hb|. An attempt is made to
preserve the effect that implicit boundary characters and punctuation marks
had on ligatures inside the hyphenated word, by storing a left boundary or
preceding character in |hu[0]| and by storing a possible right boundary
in |bchar|. We set |j=0| if |hu[0]| is to be part of the reconstruction;
otherwise |j=1|.
The variable |s| will point to the tail of the current hlist, and
|q| will point to the node following |hb|, so that
things can be hooked up after we reconstitute the hyphenated word.

@<Replace nodes |ha..hb| by a sequence of nodes...@>=
q=link(hb);link(hb)=null;r=link(ha);link(ha)=null;bchar=hyf_bchar;
if (is_char_node(ha))
  if (font(ha)!=hf) goto found2;
  else{@+init_list=ha;init_lig=false;hu[0]=qo(character(ha));
    }
else if (type(ha)==ligature_node)
  if (font(lig_char(ha))!=hf) goto found2;
  else{@+init_list=lig_ptr(ha);init_lig=true;init_lft=(subtype(ha) > 1);
    hu[0]=qo(character(lig_char(ha)));
    if (init_list==null) if (init_lft)
      {@+hu[0]=256;init_lig=false;
      }  /*in this case a ligature will be reconstructed from scratch*/
    free_node(ha, small_node_size);
    }
else{@+ /*no punctuation found; look for left boundary*/
  if (!is_char_node(r)) if (type(r)==ligature_node)
   if (subtype(r) > 1) goto found2;
  j=1;s=ha;init_list=null;goto common_ending;
  }
s=cur_p; /*we have |cur_p!=ha| because |type(cur_p)==glue_node|*/
while (link(s)!=ha) s=link(s);
j=0;goto common_ending;
found2: s=ha;j=0;hu[0]=256;init_lig=false;init_list=null;
common_ending: flush_node_list(r);
@<Reconstitute nodes for the hyphenated word, inserting discretionary hyphens@>;
flush_list(init_list)

@ We must now face the fact that the battle is not over, even though the
{\def\!{\kern-1pt}%
hyphens have been found: The process of reconstituting a word can be nontrivial
because ligatures might change when a hyphen is present. {\sl The \TeX book\/}
discusses the difficulties of the word ``difficult'', and
the discretionary material surrounding a
hyphen can be considerably more complex than that. Suppose
\.{abcdef} is a word in a font for which the only ligatures are \.{b\!c},
\.{c\!d}, \.{d\!e}, and \.{e\!f}. If this word permits hyphenation
between \.b and \.c, the two patterns with and without hyphenation are
$\.a\,\.b\,\.-\,\.{c\!d}\,\.{e\!f}$ and $\.a\,\.{b\!c}\,\.{d\!e}\,\.f$.
Thus the insertion of a hyphen might cause effects to ripple arbitrarily
far into the rest of the word. A further complication arises if additional
hyphens appear together with such rippling, e.g., if the word in the
example just given could also be hyphenated between \.c and \.d; \TeX\
avoids this by simply ignoring the additional hyphens in such weird cases.}

Still further complications arise in the presence of ligatures that do not
delete the original characters. When punctuation precedes the word being
hyphenated, \TeX's method is not perfect under all possible scenarios,
because punctuation marks and letters can propagate information back and forth.
For example, suppose the original pre-hyphenation pair
\.{*a} changes to \.{*y} via a \.{\@@=:} ligature, which changes to \.{xy}
via a \.{=:\@@} ligature; if $p_{a-1}=\.x$ and $p_a=\.y$, the reconstitution
procedure isn't smart enough to obtain \.{xy} again. In such cases the
font designer should include a ligature that goes from \.{xa} to \.{xy}.

@ The processing is facilitated by a subroutine called |reconstitute|. Given
a string of characters $x_j\ldots x_n$, there is a smallest index $m\ge j$
such that the ``translation'' of $x_j\ldots x_n$ by ligatures and kerning
has the form $y_1\ldots y_t$ followed by the translation of $x_{m+1}\ldots x_n$,
where $y_1\ldots y_t$ is some nonempty sequence of character, ligature, and
kern nodes. We call $x_j\ldots x_m$ a ``cut prefix'' of $x_j\ldots x_n$.
For example, if $x_1x_2x_3=\.{fly}$, and if the font contains `fl' as a
ligature and a kern between `fl' and `y', then $m=2$, $t=2$, and $y_1$ will
be a ligature node for `fl' followed by an appropriate kern node~$y_2$.
In the most common case, $x_j$~forms no ligature with $x_{j+1}$ and we
simply have $m=j$, $y_1=x_j$. If $m<n$ we can repeat the procedure on
$x_{m+1}\ldots x_n$ until the entire translation has been found.

The |reconstitute| function returns the integer $m$ and puts the nodes
$y_1\ldots y_t$ into a linked list starting at |link(hold_head)|,
getting the input $x_j\ldots x_n$ from the |hu| array. If $x_j=256$,
we consider $x_j$ to be an implicit left boundary character; in this
case |j| must be strictly less than~|n|. There is a
parameter |bchar|, which is either 256 or an implicit right boundary character
assumed to be present just following~$x_n$. (The value |hu[n+1]| is never
explicitly examined, but the algorithm imagines that |bchar| is there.)

If there exists an index |k| in the range $j\le k\le m$ such that |hyf[k]|
is odd and such that the result of |reconstitute| would have been different
if $x_{k+1}$ had been |hchar|, then |reconstitute| sets |hyphen_passed|
to the smallest such~|k|. Otherwise it sets |hyphen_passed| to zero.

A special convention is used in the case |j==0|: Then we assume that the
translation of |hu[0]| appears in a special list of charnodes starting at
|init_list|; moreover, if |init_lig| is |true|, then |hu[0]| will be
a ligature character, involving a left boundary if |init_lft| is |true|.
This facility is provided for cases when a hyphenated
word is preceded by punctuation (like single or double quotes) that might
affect the translation of the beginning of the word.

@<Glob...@>=
static small_number @!hyphen_passed; /*first hyphen in a ligature, if any*/

@ @<Declare the function called |reconstitute|@>=
static
  small_number reconstitute(small_number @!j, small_number @!n, halfword @!bchar, halfword @!hchar)
{@+
pointer @!p; /*temporary register for list manipulation*/
pointer @!t; /*a node being appended to*/
four_quarters @!q; /*character information or a lig/kern instruction*/
halfword @!cur_rh; /*hyphen character for ligature testing*/
halfword @!test_char; /*hyphen or other character for ligature testing*/
scaled @!w; /*amount of kerning*/
font_index @!k; /*position of current lig/kern instruction*/
hyphen_passed=0;t=hold_head;w=0;link(hold_head)=null;
  /*at this point |ligature_present==lft_hit==rt_hit==false|*/
@<Set up data structures with the cursor following position |j|@>;
resume: @<If there's a ligature or kern at the cursor position, update the
data structures, possibly advancing~|j|; continue until the cursor moves@>;
@<Append a ligature and/or kern to the translation; |goto resume| if the
stack of inserted ligatures is nonempty@>;
return j;
}

@ The reconstitution procedure shares many of the global data structures
by which \TeX\ has processed the words before they were hyphenated.
There is an implied ``cursor'' between characters |cur_l| and |cur_r|;
these characters will be tested for possible ligature activity. If
|ligature_present| then |cur_l| is a ligature character formed from the
original characters following |cur_q| in the current translation list.
There is a ``ligature stack'' between the cursor and character |j+1|,
consisting of pseudo-ligature nodes linked together by their |link| fields.
This stack is normally empty unless a ligature command has created a new
character that will need to be processed later. A pseudo-ligature is
a special node having a |character| field that represents a potential
ligature and a |lig_ptr| field that points to a |char_node| or is |null|.
We have
$$|cur_r|=\cases{|character(lig_stack)|,&if |lig_stack > null|;\cr
  \hbox{|qi(hu[j+1])|},&if |lig_stack==null| and |j < n|;\cr
  bchar,&if |lig_stack==null| and |j==n|.\cr}$$

@<Glob...@>=
static halfword @!cur_l, @!cur_r; /*characters before and after the cursor*/
static pointer @!cur_q; /*where a ligature should be detached*/
static pointer @!lig_stack; /*unfinished business to the right of the cursor*/
static bool @!ligature_present; /*should a ligature node be made for |cur_l|?*/
static bool @!lft_hit, @!rt_hit; /*did we hit a ligature with a boundary character?*/

@ @d append_charnode_to_t(A) {@+link(t)=get_avail();t=link(t);
    font(t)=hf;character(t)=A;
    }
@d set_cur_r {@+if (j < n) cur_r=qi(hu[j+1]);@+else cur_r=bchar;
    if (odd(hyf[j])) cur_rh=hchar;@+else cur_rh=non_char;
    }

@<Set up data structures with the cursor following position |j|@>=
cur_l=qi(hu[j]);cur_q=t;
if (j==0)
  {@+ligature_present=init_lig;p=init_list;
  if (ligature_present) lft_hit=init_lft;
  while (p > null)
    {@+append_charnode_to_t(character(p));p=link(p);
    }
  }
else if (cur_l < non_char) append_charnode_to_t(cur_l);
lig_stack=null;set_cur_r

@ We may want to look at the lig/kern program twice, once for a hyphen
and once for a normal letter. (The hyphen might appear after the letter
in the program, so we'd better not try to look for both at once.)

@<If there's a ligature or kern at the cursor position, update...@>=
if (cur_l==non_char)
  {@+k=bchar_label[hf];
  if (k==non_address) goto done;@+else q=font_info[k].qqqq;
  }
else{@+q=char_info(hf, cur_l);
  if (char_tag(q)!=lig_tag) goto done;
  k=lig_kern_start(hf, q);q=font_info[k].qqqq;
  if (skip_byte(q) > stop_flag)
    {@+k=lig_kern_restart(hf, q);q=font_info[k].qqqq;
    }
  }  /*now |k| is the starting address of the lig/kern program*/
if (cur_rh < non_char) test_char=cur_rh;@+else test_char=cur_r;
loop@+{@+if (next_char(q)==test_char) if (skip_byte(q) <= stop_flag)
    if (cur_rh < non_char)
      {@+hyphen_passed=j;hchar=non_char;cur_rh=non_char;
      goto resume;
      }
    else{@+if (hchar < non_char) if (odd(hyf[j]))
        {@+hyphen_passed=j;hchar=non_char;
        }
      if (op_byte(q) < kern_flag)
      @<Carry out a ligature replacement, updating the cursor structure and
possibly advancing~|j|; |goto resume| if the cursor doesn't advance, otherwise
|goto done|@>;
      w=char_kern(hf, q);goto done; /*this kern will be inserted below*/
     }
  if (skip_byte(q) >= stop_flag)
    if (cur_rh==non_char) goto done;
    else{@+cur_rh=non_char;goto resume;
      }
  k=k+qo(skip_byte(q))+1;q=font_info[k].qqqq;
  }
done:

@ @d wrap_lig(A) if (ligature_present)
    {@+p=new_ligature(hf, cur_l, link(cur_q));
    if (lft_hit)
      {@+subtype(p)=2;lft_hit=false;
      }
    if (A) if (lig_stack==null)
      {@+incr(subtype(p));rt_hit=false;
      }
    link(cur_q)=p;t=p;ligature_present=false;
    }
@d pop_lig_stack {@+if (lig_ptr(lig_stack) > null)
    {@+link(t)=lig_ptr(lig_stack); /*this is a charnode for |hu[j+1]|*/
    t=link(t);incr(j);
    }
  p=lig_stack;lig_stack=link(p);free_node(p, small_node_size);
  if (lig_stack==null) set_cur_r@;@+else cur_r=character(lig_stack);
  }  /*if |lig_stack| isn't |null| we have |cur_rh==non_char|*/

@<Append a ligature and/or kern to the translation...@>=
wrap_lig(rt_hit);
if (w!=0)
  {@+link(t)=new_kern(w);t=link(t);w=0;
  }
if (lig_stack > null)
  {@+cur_q=t;cur_l=character(lig_stack);ligature_present=true;
  pop_lig_stack;goto resume;
  }

@ @<Carry out a ligature replacement, updating the cursor structure...@>=
{@+if (cur_l==non_char) lft_hit=true;
if (j==n) if (lig_stack==null) rt_hit=true;
check_interrupt; /*allow a way out in case there's an infinite ligature loop*/
switch (op_byte(q)) {
case qi(1): case qi(5): {@+cur_l=rem_byte(q); /*\.{=:\@@}, \.{=:\@@>}*/
  ligature_present=true;
  } @+break;
case qi(2): case qi(6): {@+cur_r=rem_byte(q); /*\.{\@@=:}, \.{\@@=:>}*/
  if (lig_stack > null) character(lig_stack)=cur_r;
  else{@+lig_stack=new_lig_item(cur_r);
    if (j==n) bchar=non_char;
    else{@+p=get_avail();lig_ptr(lig_stack)=p;
      character(p)=qi(hu[j+1]);font(p)=hf;
      }
    }
  } @+break;
case qi(3): {@+cur_r=rem_byte(q); /*\.{\@@=:\@@}*/
  p=lig_stack;lig_stack=new_lig_item(cur_r);link(lig_stack)=p;
  } @+break;
case qi(7): case qi(11): {@+wrap_lig(false); /*\.{\@@=:\@@>}, \.{\@@=:\@@>>}*/
  cur_q=t;cur_l=rem_byte(q);ligature_present=true;
  } @+break;
default:{@+cur_l=rem_byte(q);ligature_present=true; /*\.{=:}*/
  if (lig_stack > null) pop_lig_stack@;
  else if (j==n) goto done;
  else{@+append_charnode_to_t(cur_r);incr(j);set_cur_r;
    }
  }
}
if (op_byte(q) > qi(4)) if (op_byte(q)!=qi(7)) goto done;
goto resume;
}

@ Okay, we're ready to insert the potential hyphenations that were found.
When the following program is executed, we want to append the word
|hu[1 dotdot hn]| after node |ha|, and node |q| should be appended to the result.
During this process, the variable |i| will be a temporary
index into |hu|; the variable |j| will be an index to our current position
in |hu|; the variable |l| will be the counterpart of |j|, in a discretionary
branch; the variable |r| will point to new nodes being created; and
we need a few new local variables:

@<Local variables for hyph...@>=
pointer @!major_tail, @!minor_tail; /*the end of lists in the main and
  discretionary branches being reconstructed*/
ASCII_code @!c; /*character temporarily replaced by a hyphen*/
int @!c_loc; /*where that character came from*/
int @!r_count; /*replacement count for discretionary*/
pointer @!hyf_node; /*the hyphen, if it exists*/

@ When the following code is performed, |hyf[0]| and |hyf[hn]| will be zero.

@<Reconstitute nodes for the hyphenated word...@>=
@/do@+{l=j;j=reconstitute(j, hn, bchar, qi(hyf_char))+1;
if (hyphen_passed==0)
  {@+link(s)=link(hold_head);
  while (link(s) > null) s=link(s);
  if (odd(hyf[j-1]))
    {@+l=j;hyphen_passed=j-1;link(hold_head)=null;
    }
  }
if (hyphen_passed > 0)
  @<Create and append a discretionary node as an alternative to the unhyphenated
word, and continue to develop both branches until they become equivalent@>;
}@+ while (!(j > hn));
link(s)=q

@ In this repeat loop we will insert another discretionary if |hyf[j-1]| is
odd, when both branches of the previous discretionary end at position |j-1|.
Strictly speaking, we aren't justified in doing this, because we don't know
that a hyphen after |j-1| is truly independent of those branches. But in almost
all applications we would rather not lose a potentially valuable hyphenation
point. (Consider the word `difficult', where the letter `c' is in position |j|.)

@d advance_major_tail {@+major_tail=link(major_tail);incr(r_count);
    }

@<Create and append a discretionary node as an alternative...@>=
@/do@+{r=get_node(small_node_size);
link(r)=link(hold_head);type(r)=disc_node;
major_tail=r;r_count=0;
while (link(major_tail) > null) advance_major_tail;
i=hyphen_passed;hyf[i]=0;
@<Put the \(c)characters |hu[l..i]| and a hyphen into |pre_break(r)|@>;
@<Put the \(c)characters |hu[i+1..]| into |post_break(r)|, appending to this
list and to |major_tail| until synchronization has been achieved@>;
@<Move pointer |s| to the end of the current list, and set |replace_count(r)|
appropriately@>;
hyphen_passed=j-1;link(hold_head)=null;
}@+ while (!(!odd(hyf[j-1])))

@ The new hyphen might combine with the previous character via ligature
or kern. At this point we have |l-1 <= i < j| and |i < hn|.

@<Put the \(c)characters |hu[l..i]| and a hyphen into |pre_break(r)|@>=
minor_tail=null;pre_break(r)=null;hyf_node=new_character(hf, hyf_char);
if (hyf_node!=null)
  {@+incr(i);c=hu[i];hu[i]=hyf_char;free_avail(hyf_node);
  }
while (l <= i)
  {@+l=reconstitute(l, i, font_bchar[hf], non_char)+1;
  if (link(hold_head) > null)
    {@+if (minor_tail==null) pre_break(r)=link(hold_head);
    else link(minor_tail)=link(hold_head);
    minor_tail=link(hold_head);
    while (link(minor_tail) > null) minor_tail=link(minor_tail);
    }
  }
if (hyf_node!=null)
  {@+hu[i]=c; /*restore the character in the hyphen position*/
  l=i;decr(i);
  }

@ The synchronization algorithm begins with |l==i+1 <= j|.

@<Put the \(c)characters |hu[i+1..]| into |post_break(r)|...@>=
minor_tail=null;post_break(r)=null;c_loc=0;
if (bchar_label[hf]!=non_address)  /*put left boundary at beginning of new line*/
  {@+decr(l);c=hu[l];c_loc=l;hu[l]=256;
  }
while (l < j)
  {@+@/do@+{l=reconstitute(l, hn, bchar, non_char)+1;
  if (c_loc > 0)
    {@+hu[c_loc]=c;c_loc=0;
    }
  if (link(hold_head) > null)
    {@+if (minor_tail==null) post_break(r)=link(hold_head);
    else link(minor_tail)=link(hold_head);
    minor_tail=link(hold_head);
    while (link(minor_tail) > null) minor_tail=link(minor_tail);
    }
  }@+ while (!(l >= j));
  while (l > j)
    @<Append characters of |hu[j..]| to |major_tail|, advancing~|j|@>;
  }

@ @<Append characters of |hu[j..]|...@>=
{@+j=reconstitute(j, hn, bchar, non_char)+1;
link(major_tail)=link(hold_head);
while (link(major_tail) > null) advance_major_tail;
}

@ Ligature insertion can cause a word to grow exponentially in size. Therefore
we must test the size of |r_count| here, even though the hyphenated text
was at most 63 characters long.

@<Move pointer |s| to the end of the current list...@>=
if (r_count > 127)  /*we have to forget the discretionary hyphen*/
  {@+link(s)=link(r);link(r)=null;flush_node_list(r);
  }
else{@+link(s)=r;set_replace_count(r,r_count);set_auto_disc(r);
  }
s=major_tail

@* Hyphenation.
When a word |hc[1 dotdot hn]| has been set up to contain a candidate for hyphenation,
\TeX\ first looks to see if it is in the user's exception dictionary. If not,
hyphens are inserted based on patterns that appear within the given word,
using an algorithm due to Frank~M. Liang.
@^Liang, Franklin Mark@>

Let's consider Liang's method first, since it is much more interesting than the
exception-lookup routine.  The algorithm begins by setting |hyf[j]| to zero
for all |j|, and invalid characters are inserted into |hc[0]|
and |hc[hn+1]| to serve as delimiters. Then a reasonably fast method is
used to see which of a given set of patterns occurs in the word
|hc[0 dotdot(hn+1)]|. Each pattern $p_1\ldots p_k$ of length |k| has an associated
sequence of |k+1| numbers $n_0\ldots n_k$; and if the pattern occurs in
|hc[(j+1)dotdot(j+k)]|, \TeX\ will set |hyf[j+i]=@tmax@>(hyf[j+i],@t$n\_i$@>)| for
|0 <= i <= k|. After this has been done for each pattern that occurs, a
discretionary hyphen will be inserted between |hc[j]| and |hc[j+1]| when
|hyf[j]| is odd, as we have already seen.

The set of patterns $p_1\ldots p_k$ and associated numbers $n_0\ldots n_k$
depends, of course, on the language whose words are being hyphenated, and
on the degree of hyphenation that is desired. A method for finding
appropriate |p|'s and |n|'s, from a given dictionary of words and acceptable
hyphenations, is discussed in Liang's Ph.D. thesis (Stanford University,
1983); \TeX\ simply starts with the patterns and works from there.

@ The patterns are stored in a compact table that is also efficient for
retrieval, using a variant of ``trie memory'' [cf.\ {\sl The Art of
Computer Programming \bf3} (1973), 481--505]. We can find each pattern
$p_1\ldots p_k$ by letting $z_0$ be one greater than the relevant language
index and then, for |1 <= i <= k|,
setting |@t$z\_i$@>=trie_link@t$(z\_{i-1})+p\_i$@>|; the pattern will be
identified by the number $z_k$. Since all the pattern information is
packed together into a single |trie_link| array, it is necessary to
prevent confusion between the data from inequivalent patterns, so another
table is provided such that |trie_char@t$(z\_i)=p\_i$@>| for all |i|. There
is also a table |trie_op|$(z_k)$ to identify the numbers $n_0\ldots n_k$
associated with $p_1\ldots p_k$.

Comparatively few different number sequences $n_0\ldots n_k$ actually occur,
since most of the |n|'s are generally zero. Therefore the number sequences
are encoded in such a way that |trie_op|$(z_k)$ is only one byte long.
If |trie_op(@t$z\_k$@>)!=min_quarterword|, when $p_1\ldots p_k$ has matched
the letters in |hc[(l-k+1)dotdot l@,]| of language |t|,
we perform all of the required operations
for this pattern by carrying out the following little program: Set
|v=trie_op(@t$z\_k$@>)|. Then set |v=v+op_start[t]|,
|hyf[l-hyf_distance[v]]=@tmax@>(hyf[l-hyf_distance[v]], hyf_num[v])|,
and |v=hyf_next[v]|; repeat, if necessary, until |v==min_quarterword|.

@<Types...@>=
typedef int32_t trie_pointer; /*an index into |trie|*/

@ @d trie_link(A) trie[A].rh /*``downward'' link in a trie*/
@d trie_char(A) trie[A].b1 /*character matched at this trie location*/
@d trie_op(A) trie[A].b0 /*program for hyphenation at this trie location*/

@<Glob...@>=
static two_halves @!trie[trie_size+1]; /*|trie_link|, |trie_char|, |trie_op|*/
static small_number @!hyf_distance0[trie_op_size],
  *const @!hyf_distance = @!hyf_distance0-1; /*position |k-j| of $n_j$*/
static small_number @!hyf_num0[trie_op_size],
  *const @!hyf_num = @!hyf_num0-1; /*value of $n_j$*/
static quarterword @!hyf_next0[trie_op_size],
  *const @!hyf_next = @!hyf_next0-1; /*continuation code*/
static uint16_t @!op_start[256]; /*offset for current language*/

@ @<Local variables for hyph...@>=
trie_pointer @!z; /*an index into |trie|*/
int @!v; /*an index into |hyf_distance|, etc.*/

@ Assuming that these auxiliary tables have been set up properly, the
hyphenation algorithm is quite short. In the following code we set |hc[hn+2]|
to the impossible value 256, in order to guarantee that |hc[hn+3]| will
never be fetched.

@<Find hyphen locations for the word in |hc|...@>=
for (j=0; j<=hn; j++) hyf[j]=0;
@<Look for the word |hc[1..hn]| in the exception table, and |goto found| (with
|hyf| containing the hyphens) if an entry is found@>;
if (trie_char(cur_lang+1)!=qi(cur_lang)) return; /*no patterns for |cur_lang|*/
hc[0]=0;hc[hn+1]=0;hc[hn+2]=256; /*insert delimiters*/
for (j=0; j<=hn-r_hyf+1; j++)
  {@+z=trie_link(cur_lang+1)+hc[j];l=j;
  while (hc[l]==qo(trie_char(z)))
    {@+if (trie_op(z)!=min_quarterword)
      @<Store \(m)maximum values in the |hyf| table@>;
    incr(l);z=trie_link(z)+hc[l];
    }
  }
found: for (j=0; j<=l_hyf-1; j++) hyf[j]=0;
for (j=0; j<=r_hyf-1; j++) hyf[hn-j]=0

@ @<Store \(m)maximum values in the |hyf| table@>=
{@+v=trie_op(z);
@/do@+{v=v+op_start[cur_lang];i=l-hyf_distance[v];
if (hyf_num[v] > hyf[i]) hyf[i]=hyf_num[v];
v=hyf_next[v];
}@+ while (!(v==min_quarterword));
}

@ The exception table that is built by \TeX's \.{\\hyphenation} primitive is
organized as an ordered hash table [cf.\ Amble and Knuth, {\sl The Computer
@^Amble, Ole@> @^Knuth, Donald Ervin@>
Journal\/ \bf17} (1974), 135--142] using linear probing. If $\alpha$ and
$\beta$ are words, we will say that $\alpha<\beta$ if $\vert\alpha\vert<
\vert\beta\vert$ or if $\vert\alpha\vert=\vert\beta\vert$ and
$\alpha$ is lexicographically smaller than $\beta$. (The notation $\vert
\alpha\vert$ stands for the length of $\alpha$.) The idea of ordered hashing
is to arrange the table so that a given word $\alpha$ can be sought by computing
a hash address $h=h(\alpha)$ and then looking in table positions |h|, |h-1|,
\dots, until encountering the first word $\le\alpha$. If this word is
different from $\alpha$, we can conclude that $\alpha$ is not in the table.

The words in the table point to lists in |mem| that specify hyphen positions
in their |info| fields. The list for $c_1\ldots c_n$ contains the number |k| if
the word $c_1\ldots c_n$ has a discretionary hyphen between $c_k$ and
$c_{k+1}$.

@<Types...@>=
typedef int16_t hyph_pointer; /*an index into the ordered hash table*/

@ @<Glob...@>=
static str_number @!hyph_word[hyph_size+1]; /*exception words*/
static pointer @!hyph_list[hyph_size+1]; /*lists of hyphen positions*/
static hyph_pointer @!hyph_count; /*the number of words in the exception dictionary*/

@ @<Local variables for init...@>=
int @!z; /*runs through the exception dictionary*/

@ @<Set init...@>=
for (z=0; z<=hyph_size; z++)
  {@+hyph_word[z]=0;hyph_list[z]=null;
  }
hyph_count=0;

@ The algorithm for exception lookup is quite simple, as soon as we have
a few more local variables to work with.

@<Local variables for hyph...@>=
hyph_pointer @!h; /*an index into |hyph_word| and |hyph_list|*/
str_number @!k; /*an index into |str_start|*/
pool_pointer @!u; /*an index into |str_pool|*/

@ First we compute the hash code |h|, then we search until we either
find the word or we don't. Words from different languages are kept
separate by appending the language code to the string.

@<Look for the word |hc[1...@>=
h=hc[1];incr(hn);hc[hn]=cur_lang;
for (j=2; j<=hn; j++) h=(h+h+hc[j])%hyph_size;
loop@+{@+@<If the string |hyph_word[h]| is less than \(hc)|hc[1..hn]|, |goto
not_found|; but if the two strings are equal, set |hyf| to the hyphen positions
and |goto found|@>;
  if (h > 0) decr(h);@+else h=hyph_size;
  }
not_found: decr(hn)

@ @<If the string |hyph_word[h]| is less than \(hc)...@>=
k=hyph_word[h];if (k==0) goto not_found;
if (length(k) < hn) goto not_found;
if (length(k)==hn)
  {@+j=1;u=str_start[k];
  @/do@+{if (so(str_pool[u]) < hc[j]) goto not_found;
  if (so(str_pool[u]) > hc[j]) goto done;
  incr(j);incr(u);
  }@+ while (!(j > hn));
  @<Insert hyphens as specified in |hyph_list[h]|@>;
  decr(hn);goto found;
  }
done:

@ @<Insert hyphens as specified...@>=
s=hyph_list[h];
while (s!=null)
  {@+hyf[info(s)]=1;s=link(s);
  }

@ @<Search |hyph_list| for pointers to |p|@>=
for (q=0; q<=hyph_size; q++)
  {@+if (hyph_list[q]==p)
    {@+print_nl("HYPH(");print_int(q);print_char(')');
    }
  }

@ We have now completed the hyphenation routine, so the |line_break| procedure
is finished at last. Since the hyphenation exception table is fresh in our
minds, it's a good time to deal with the routine that adds new entries to it.

When \TeX\ has scanned `\.{\\hyphenation}', it calls on a procedure named
|new_hyph_exceptions| to do the right thing.

@d set_cur_lang if (language <= 0) cur_lang=0;
  else if (language > 255) cur_lang=0;
  else cur_lang=language

@p static void new_hyph_exceptions(void) /*enters new exceptions*/
{@+
int n; /*length of current word; not always a |small_number|*/
int @!j; /*an index into |hc|*/
hyph_pointer @!h; /*an index into |hyph_word| and |hyph_list|*/
str_number @!k; /*an index into |str_start|*/
pointer @!p; /*head of a list of hyphen positions*/
pointer @!q; /*used when creating a new node for list |p|*/
str_number @!s, @!t; /*strings being compared or stored*/
pool_pointer @!u, @!v; /*indices into |str_pool|*/
scan_left_brace(); /*a left brace must follow \.{\\hyphenation}*/
set_cur_lang;
#ifdef @!INIT
if (trie_not_ready)
  {@+hyph_index=0;goto not_found1;
  }
#endif
set_hyph_index;
not_found1:
@<Enter as many hyphenation exceptions as are listed, until coming to a right
brace; then |return|@>;
}

@ @<Enter as many...@>=
n=0;p=null;
loop@+{@+get_x_token();
  reswitch: switch (cur_cmd) {
  case letter: case other_char: case char_given: @<Append a new letter or
hyphen@>@;@+break;
  case char_num: {@+scan_char_num();cur_chr=cur_val;cur_cmd=char_given;
    goto reswitch;
    }
  case spacer: case right_brace: {@+if (n > 1) @<Enter a hyphenation exception@>;
    if (cur_cmd==right_brace) return;
    n=0;p=null;
    } @+break;
  default:@<Give improper \.{\\hyphenation} error@>@;
  }
  }

@ @<Give improper \.{\\hyph...@>=
{@+print_err("Improper ");print_esc("hyphenation");
@.Improper \\hyphenation...@>
  print(" will be flushed");
help2("Hyphenation exceptions must contain only letters",@/
  "and hyphens. But continue; I'll forgive and forget.");
error();
}

@ @<Append a new letter or hyphen@>=
if (cur_chr=='-') @<Append the value |n| to list |p|@>@;
else{@+set_lc_code(cur_chr);
  if (hc[0]==0)
    {@+print_err("Not a letter");
@.Not a letter@>
    help2("Letters in \\hyphenation words must have \\lccode>0.",@/
      "Proceed; I'll ignore the character I just read.");
    error();
    }
  else if (n < 63)
    {@+incr(n);hc[n]=hc[0];
    }
  }

@ @<Append the value |n| to list |p|@>=
{@+if (n < 63)
  {@+q=get_avail();link(q)=p;info(q)=n;p=q;
  }
}

@ @<Enter a hyphenation exception@>=
{@+incr(n);hc[n]=cur_lang;str_room(n);h=0;
for (j=1; j<=n; j++)
  {@+h=(h+h+hc[j])%hyph_size;
  append_char(hc[j]);
  }
s=make_string();
@<Insert the \(p)pair |(s,p)| into the exception table@>;
}

@ @<Insert the \(p)pair |(s,p)|...@>=
if (hyph_count==hyph_size) overflow("exception dictionary", hyph_size);
@:TeX capacity exceeded exception dictionary}{\quad exception dictionary@>
incr(hyph_count);
while (hyph_word[h]!=0)
  {@+@<If the string |hyph_word[h]| is less than \(or)or equal to |s|, interchange
|(hyph_word[h],hyph_list[h])| with |(s,p)|@>;
  if (h > 0) decr(h);@+else h=hyph_size;
  }
hyph_word[h]=s;hyph_list[h]=p

@ @<If the string |hyph_word[h]| is less than \(or)...@>=
k=hyph_word[h];
if (length(k) < length(s)) goto found;
if (length(k) > length(s)) goto not_found;
u=str_start[k];v=str_start[s];
@/do@+{if (str_pool[u] < str_pool[v]) goto found;
if (str_pool[u] > str_pool[v]) goto not_found;
incr(u);incr(v);
}@+ while (!(u==str_start[k+1]));
found: q=hyph_list[h];hyph_list[h]=p;p=q;@/
t=hyph_word[h];hyph_word[h]=s;s=t;
not_found:

@* Initializing the hyphenation tables.
The trie for \TeX's hyphenation algorithm is built from a sequence of
patterns following a \.{\\patterns} specification. Such a specification
is allowed only in \.{INITEX}, since the extra memory for auxiliary tables
and for the initialization program itself would only clutter up the
production version of \TeX\ with a lot of deadwood.

The first step is to build a trie that is linked, instead of packed
into sequential storage, so that insertions are readily made.
After all patterns have been processed, \.{INITEX}
compresses the linked trie by identifying common subtries. Finally the
trie is packed into the efficient sequential form that the hyphenation
algorithm actually uses.

@<Declare subprocedures for |line_break|@>=
#ifdef @!INIT
@<Declare procedures for preprocessing hyphenation patterns@>@;
#endif

@ Before we discuss trie building in detail, let's consider the simpler
problem of creating the |hyf_distance|, |hyf_num|, and |hyf_next| arrays.

Suppose, for example, that \TeX\ reads the pattern `\.{ab2cde1}'. This is
a pattern of length 5, with $n_0\ldots n_5=0\,0\,2\,0\,0\,1$ in the
notation above. We want the corresponding |trie_op| code |v| to have
|hyf_distance[v]==3|, |hyf_num[v]==2|, and |hyf_next[v]==@t$v^\prime$@>|,
where the auxiliary |trie_op| code $v^\prime$ has
|hyf_distance[@t$v^\prime$@>]==0|, |hyf_num[@t$v^\prime$@>]==1|, and
|hyf_next[@t$v^\prime$@>]==min_quarterword|.

\TeX\ computes an appropriate value |v| with the |new_trie_op| subroutine
below, by setting
$$\hbox{|@t$v^\prime$@>=new_trie_op(0, 1, min_quarterword)|,\qquad
|v=new_trie_op(3, 2,@t$v^\prime$@>)|.}$$
This subroutine looks up its three
parameters in a special hash table, assigning a new value only if these
three have not appeared before for the current language.

The hash table is called |trie_op_hash|, and the number of entries it contains
is |trie_op_ptr|.

@<Glob...@>=
#ifdef @!INIT
static uint16_t @!trie_op_hash0[trie_op_size+trie_op_size+1],
  *const @!trie_op_hash = @!trie_op_hash0+trie_op_size;
   /*trie op codes for quadruples*/
static quarterword @!trie_used[256];
   /*largest opcode used so far for this language*/
static ASCII_code @!trie_op_lang0[trie_op_size],
  *const @!trie_op_lang = @!trie_op_lang0-1;
   /*language part of a hashed quadruple*/
static quarterword @!trie_op_val0[trie_op_size],
  *const @!trie_op_val = @!trie_op_val0-1;
   /*opcode corresponding to a hashed quadruple*/
static int @!trie_op_ptr; /*number of stored ops so far*/
#endif

@ It's tempting to remove the |overflow| stops in the following procedure;
|new_trie_op| could return |min_quarterword| (thereby simply ignoring
part of a hyphenation pattern) instead of aborting the job. However, that would
lead to different hyphenation results on different installations of \TeX\
using the same patterns. The |overflow| stops are necessary for portability
of patterns.

@<Declare procedures for preprocessing hyph...@>=
static quarterword new_trie_op(small_number @!d, small_number @!n, quarterword @!v)
{@+
int h; /*trial hash location*/
quarterword @!u; /*trial op code*/
int @!l; /*pointer to stored data*/
h=abs(n+313*d+361*v+1009*cur_lang)%(trie_op_size+trie_op_size)
  -trie_op_size;
loop@+{@+l=trie_op_hash[h];
  if (l==0)  /*empty position found for a new op*/
    {@+if (trie_op_ptr==trie_op_size)
      overflow("pattern memory ops", trie_op_size);
    u=trie_used[cur_lang];
    if (u==max_quarterword)
      overflow("pattern memory ops per language",
        max_quarterword-min_quarterword);
    incr(trie_op_ptr);incr(u);trie_used[cur_lang]=u;
    hyf_distance[trie_op_ptr]=d;
    hyf_num[trie_op_ptr]=n;hyf_next[trie_op_ptr]=v;
    trie_op_lang[trie_op_ptr]=cur_lang;trie_op_hash[h]=trie_op_ptr;
    trie_op_val[trie_op_ptr]=u;return u;
    }
  if ((hyf_distance[l]==d)&&(hyf_num[l]==n)&&(hyf_next[l]==v)
   &&(trie_op_lang[l]==cur_lang))
    {@+return trie_op_val[l];
    }
  if (h > -trie_op_size) decr(h);@+else h=trie_op_size;
  }
}

@ After |new_trie_op| has compressed the necessary opcode information,
plenty of information is available to unscramble the data into the
final form needed by our hyphenation algorithm.

@<Sort \(t)the hyphenation op tables into proper order@>=
op_start[0]=-min_quarterword;
for (j=1; j<=255; j++) op_start[j]=op_start[j-1]+qo(trie_used[j-1]);
for (j=1; j<=trie_op_ptr; j++)
  trie_op_hash[j]=op_start[trie_op_lang[j]]+trie_op_val[j]; /*destination*/
for (j=1; j<=trie_op_ptr; j++) while (trie_op_hash[j] > j)
  {@+k=trie_op_hash[j];@/
  t=hyf_distance[k];hyf_distance[k]=hyf_distance[j];hyf_distance[j]=t;@/
  t=hyf_num[k];hyf_num[k]=hyf_num[j];hyf_num[j]=t;@/
  t=hyf_next[k];hyf_next[k]=hyf_next[j];hyf_next[j]=t;@/
  trie_op_hash[j]=trie_op_hash[k];trie_op_hash[k]=k;
  }

@ Before we forget how to initialize the data structures that have been
mentioned so far, let's write down the code that gets them started.

@<Initialize table entries...@>=
for (k=-trie_op_size; k<=trie_op_size; k++) trie_op_hash[k]=0;
for (k=0; k<=255; k++) trie_used[k]=min_quarterword;
trie_op_ptr=0;

@ The linked trie that is used to preprocess hyphenation patterns appears
in several global arrays. Each node represents an instruction of the form
``if you see character |c|, then perform operation |o|, move to the
next character, and go to node |l|; otherwise go to node |r|.''
The four quantities |c|, |o|, |l|, and |r| are stored in four arrays
|trie_c|, |trie_o|, |trie_l|, and |trie_r|. The root of the trie
is |trie_l[0]|, and the number of nodes is |trie_ptr|. Null trie
pointers are represented by zero. To initialize the trie, we simply
set |trie_l[0]| and |trie_ptr| to zero. We also set |trie_c[0]| to some
arbitrary value, since the algorithm may access it.

The algorithms maintain the condition
$$\hbox{|trie_c[trie_r[z]] > trie_c[z]|\qquad
whenever |z!=0| and |trie_r[z]!=0|};$$ in other words, sibling nodes are
ordered by their |c| fields.

@d trie_root trie_l[0] /*root of the linked trie*/

@<Glob...@>=
#ifdef @!INIT
static packed_ASCII_code @!trie_c[trie_size+1];
   /*characters to match*/
@t\hskip10pt@>static quarterword @!trie_o[trie_size+1];
   /*operations to perform*/
@t\hskip10pt@>static trie_pointer @!trie_l[trie_size+1];
   /*left subtrie links*/
@t\hskip10pt@>static trie_pointer @!trie_r[trie_size+1];
   /*right subtrie links*/
@t\hskip10pt@>static trie_pointer @!trie_ptr; /*the number of nodes in the trie*/
@t\hskip10pt@>static trie_pointer @!trie_hash[trie_size+1];
   /*used to identify equivalent subtries*/
#endif

@ Let us suppose that a linked trie has already been constructed.
Experience shows that we can often reduce its size by recognizing common
subtries; therefore another hash table is introduced for this purpose,
somewhat similar to |trie_op_hash|. The new hash table will be
initialized to zero.

The function |trie_node(p)| returns |p| if |p| is distinct from other nodes
that it has seen, otherwise it returns the number of the first equivalent
node that it has seen.

Notice that we might make subtries equivalent even if they correspond to
patterns for different languages, in which the trie ops might mean quite
different things. That's perfectly all right.

@<Declare procedures for preprocessing hyph...@>=
static trie_pointer trie_node(trie_pointer @!p) /*converts
  to a canonical form*/
{@+
trie_pointer h; /*trial hash location*/
trie_pointer @!q; /*trial trie node*/
h=abs(trie_c[p]+1009*trie_o[p]+@|
    2718*trie_l[p]+3142*trie_r[p])%trie_size;
loop@+{@+q=trie_hash[h];
  if (q==0)
    {@+trie_hash[h]=p;return p;
    }
  if ((trie_c[q]==trie_c[p])&&(trie_o[q]==trie_o[p])&&@|
    (trie_l[q]==trie_l[p])&&(trie_r[q]==trie_r[p]))
    {@+return q;
    }
  if (h > 0) decr(h);@+else h=trie_size;
  }
}

@ A neat recursive procedure is now able to compress a trie by
traversing it and applying |trie_node| to its nodes in ``bottom up''
fashion. We will compress the entire trie by clearing |trie_hash| to
zero and then saying `|trie_root=compress_trie(trie_root)|'.
@^recursion@>

@<Declare procedures for preprocessing hyph...@>=
static trie_pointer compress_trie(trie_pointer @!p)
{@+if (p==0) return 0;
else{@+trie_l[p]=compress_trie(trie_l[p]);
  trie_r[p]=compress_trie(trie_r[p]);
  return trie_node(p);
  }
}

@ The compressed trie will be packed into the |trie| array using a
``top-down first-fit'' procedure. This is a little tricky, so the reader
should pay close attention: The |trie_hash| array is cleared to zero
again and renamed |trie_ref| for this phase of the operation; later on,
|trie_ref[p]| will be nonzero only if the linked trie node |p| is the
smallest character
in a family and if the characters |c| of that family have been allocated to
locations |trie_ref[p]+c| in the |trie| array. Locations of |trie| that
are in use will have |trie_link==0|, while the unused holes in |trie|
will be doubly linked with |trie_link| pointing to the next larger vacant
location and |trie_back| pointing to the next smaller one. This double
linking will have been carried out only as far as |trie_max|, where
|trie_max| is the largest index of |trie| that will be needed.
To save time at the low end of the trie, we maintain array entries
|trie_min[c]| pointing to the smallest hole that is greater than~|c|.
Another array |trie_taken| tells whether or not a given location is
equal to |trie_ref[p]| for some |p|; this array is used to ensure that
distinct nodes in the compressed trie will have distinct |trie_ref|
entries.

@d trie_ref trie_hash /*where linked trie families go into |trie|*/
@d trie_back(A) trie[A].lh /*backward links in |trie| holes*/

@<Glob...@>=
#ifdef @!INIT
static bool @!trie_taken0[trie_size],
  *const @!trie_taken = @!trie_taken0-1;
   /*does a family start here?*/
@t\hskip10pt@>static trie_pointer @!trie_min[256];
   /*the first possible slot for each character*/
@t\hskip10pt@>static trie_pointer @!trie_max; /*largest location used in |trie|*/
@t\hskip10pt@>static bool @!trie_not_ready; /*is the trie still in linked form?*/
#endif

@ Each time \.{\\patterns} appears, it contributes further patterns to
the future trie, which will be built only when hyphenation is attempted or
when a format file is dumped. The boolean variable |trie_not_ready|
will change to |false| when the trie is compressed; this will disable
further patterns.

@<Initialize table entries...@>=
trie_not_ready=true;trie_root=0;trie_c[0]=si(0);trie_ptr=0;

@ Here is how the trie-compression data structures are initialized.
If storage is tight, it would be possible to overlap |trie_op_hash|,
|trie_op_lang|, and |trie_op_val| with |trie|, |trie_hash|, and |trie_taken|,
because we finish with the former just before we need the latter.

@<Get ready to compress the trie@>=
@<Sort \(t)the hyphenation...@>;
for (p=0; p<=trie_size; p++) trie_hash[p]=0;
hyph_root=compress_trie(hyph_root);
trie_root=compress_trie(trie_root); /*identify equivalent subtries*/
for (p=0; p<=trie_ptr; p++) trie_ref[p]=0;
for (p=0; p<=255; p++) trie_min[p]=p+1;
trie_link(0)=1;trie_max=0

@ The |first_fit| procedure finds the smallest hole |z| in |trie| such that
a trie family starting at a given node |p| will fit into vacant positions
starting at |z|. If |c==trie_c[p]|, this means that location |z-c| must
not already be taken by some other family, and that |z-c+@t$c^\prime$@>|
must be vacant for all characters $c^\prime$ in the family. The procedure
sets |trie_ref[p]| to |z-c| when the first fit has been found.

@<Declare procedures for preprocessing hyph...@>=
static void first_fit(trie_pointer @!p) /*packs a family into |trie|*/
{@+
trie_pointer h; /*candidate for |trie_ref[p]|*/
trie_pointer @!z; /*runs through holes*/
trie_pointer @!q; /*runs through the family starting at |p|*/
ASCII_code @!c; /*smallest character in the family*/
trie_pointer @!l, @!r; /*left and right neighbors*/
int @!ll; /*upper limit of |trie_min| updating*/
c=so(trie_c[p]);
z=trie_min[c]; /*get the first conceivably good hole*/
loop@+{@+h=z-c;@/
  @<Ensure that |trie_max>=h+256|@>;
  if (trie_taken[h]) goto not_found;
  @<If all characters of the family fit relative to |h|, then |goto found|,\30\
otherwise |goto not_found|@>;
  not_found: z=trie_link(z); /*move to the next hole*/
  }
found: @<Pack the family into |trie| relative to |h|@>;
}

@ By making sure that |trie_max| is at least |h+256|, we can be sure that
|trie_max > z|, since |h==z-c|. It follows that location |trie_max| will
never be occupied in |trie|, and we will have |trie_max >= trie_link(z)|.

@<Ensure that |trie_max>=h+256|@>=
if (trie_max < h+256)
  {@+if (trie_size <= h+256) overflow("pattern memory", trie_size);
@:TeX capacity exceeded pattern memory}{\quad pattern memory@>
  @/do@+{incr(trie_max);trie_taken[trie_max]=false;
  trie_link(trie_max)=trie_max+1;trie_back(trie_max)=trie_max-1;
  }@+ while (!(trie_max==h+256));
  }

@ @<If all characters of the family fit relative to |h|...@>=
q=trie_r[p];
while (q > 0)
  {@+if (trie_link(h+so(trie_c[q]))==0) goto not_found;
  q=trie_r[q];
  }
goto found

@ @<Pack the family into |trie| relative to |h|@>=
trie_taken[h]=true;trie_ref[p]=h;q=p;
@/do@+{z=h+so(trie_c[q]);l=trie_back(z);r=trie_link(z);
trie_back(r)=l;trie_link(l)=r;trie_link(z)=0;
if (l < 256)
  {@+if (z < 256) ll=z;@+else ll=256;
  @/do@+{trie_min[l]=r;incr(l);
  }@+ while (!(l==ll));
  }
q=trie_r[q];
}@+ while (!(q==0))

@ To pack the entire linked trie, we use the following recursive procedure.
@^recursion@>

@<Declare procedures for preprocessing hyph...@>=
static void trie_pack(trie_pointer @!p) /*pack subtries of a family*/
{@+trie_pointer q; /*a local variable that need not be saved on recursive calls*/
@/do@+{q=trie_l[p];
if ((q > 0)&&(trie_ref[q]==0))
  {@+first_fit(q);trie_pack(q);
  }
p=trie_r[p];
}@+ while (!(p==0));
}

@ When the whole trie has been allocated into the sequential table, we
must go through it once again so that |trie| contains the correct
information. Null pointers in the linked trie will be represented by the
value~0, which properly implements an ``empty'' family.

@<Move the data into |trie|@>=
h.rh=0;h.b0=min_quarterword;h.b1=min_quarterword; /*|trie_link=0|,
  |trie_op=min_quarterword|, |trie_char=qi(0)|*/
if (trie_max==0)  /*no patterns were given*/
  {@+for (r=0; r<=256; r++) trie[r]=h;
  trie_max=256;
  }
else{@+if (hyph_root > 0) trie_fix(hyph_root);
  if (trie_root > 0) trie_fix(trie_root); /*this fixes the non-holes in |trie|*/
  r=0; /*now we will zero out all the holes*/
  @/do@+{s=trie_link(r);trie[r]=h;r=s;
  }@+ while (!(r > trie_max));
  }
trie_char(0)=qi('?'); /*make |trie_char(c)!=c| for all |c|*/

@ The fixing-up procedure is, of course, recursive. Since the linked trie
usually has overlapping subtries, the same data may be moved several
times; but that causes no harm, and at most as much work is done as it
took to build the uncompressed trie.
@^recursion@>

@<Declare procedures for preprocessing hyph...@>=
static void trie_fix(trie_pointer @!p) /*moves |p| and its siblings into |trie|*/
{@+trie_pointer q; /*a local variable that need not be saved on recursive calls*/
ASCII_code @!c; /*another one that need not be saved*/
trie_pointer @!z; /*|trie| reference; this local variable must be saved*/
z=trie_ref[p];
@/do@+{q=trie_l[p];c=so(trie_c[p]);
trie_link(z+c)=trie_ref[q];trie_char(z+c)=qi(c);trie_op(z+c)=trie_o[p];
if (q > 0) trie_fix(q);
p=trie_r[p];
}@+ while (!(p==0));
}

@ Now let's go back to the easier problem, of building the linked
trie.  When \.{INITEX} has scanned the `\.{\\patterns}' control
sequence, it calls on |new_patterns| to do the right thing.

@<Declare procedures for preprocessing hyph...@>=
static void new_patterns(void) /*initializes the hyphenation pattern data*/
{@+
int k, @!l; /*indices into |hc| and |hyf|;
                  not always in |small_number| range*/
bool @!digit_sensed; /*should the next digit be treated as a letter?*/
quarterword @!v; /*trie op code*/
trie_pointer @!p, @!q; /*nodes of trie traversed during insertion*/
bool @!first_child; /*is |p==trie_l[q]|?*/
int @!c; /*character being inserted*/
if (trie_not_ready)
  {@+set_cur_lang;scan_left_brace(); /*a left brace must follow \.{\\patterns}*/
  @<Enter all of the patterns into a linked trie, until coming to a right
brace@>;
  if (saving_hyph_codes > 0)
    @<Store hyphenation codes for current language@>;
  }
else{@+print_err("Too late for ");print_esc("patterns");
  help1("All patterns must be given before typesetting begins.");
  error();link(garbage)=scan_toks(false, false);flush_list(def_ref);
  }
}

@ Novices are not supposed to be using \.{\\patterns}, so the error
messages are terse. (Note that all error messages appear in \TeX's string
pool, even if they are used only by \.{INITEX}.)

@<Enter all of the patterns into a linked trie...@>=
k=0;hyf[0]=0;digit_sensed=false;
loop@+{@+get_x_token();
  switch (cur_cmd) {
  case letter: case other_char: @<Append a new letter or a hyphen level@>@;@+break;
  case spacer: case right_brace: {@+if (k > 0)
      @<Insert a new pattern into the linked trie@>;
    if (cur_cmd==right_brace) goto done;
    k=0;hyf[0]=0;digit_sensed=false;
    } @+break;
  default:{@+print_err("Bad ");print_esc("patterns");
@.Bad \\patterns@>
    help1("(See Appendix H.)");error();
    }
  }
  }
done:

@ @<Append a new letter or a hyphen level@>=
if (digit_sensed||(cur_chr < '0')||(cur_chr > '9'))
  {@+if (cur_chr=='.') cur_chr=0; /*edge-of-word delimiter*/
  else{@+cur_chr=lc_code(cur_chr);
    if (cur_chr==0)
      {@+print_err("Nonletter");
@.Nonletter@>
      help1("(See Appendix H.)");error();
      }
    }
  if (k < 63)
    {@+incr(k);hc[k]=cur_chr;hyf[k]=0;digit_sensed=false;
    }
  }
else if (k < 63)
  {@+hyf[k]=cur_chr-'0';digit_sensed=true;
  }

@ When the following code comes into play, the pattern $p_1\ldots p_k$
appears in |hc[1 dotdot k]|, and the corresponding sequence of numbers $n_0\ldots
n_k$ appears in |hyf[0 dotdot k]|.

@<Insert a new pattern into the linked trie@>=
{@+@<Compute the trie op code, |v|, and set |l:=0|@>;
q=0;hc[0]=cur_lang;
while (l <= k)
  {@+c=hc[l];incr(l);p=trie_l[q];first_child=true;
  while ((p > 0)&&(c > so(trie_c[p])))
    {@+q=p;p=trie_r[q];first_child=false;
    }
  if ((p==0)||(c < so(trie_c[p])))
    @<Insert a new trie node between |q| and |p|, and make |p| point to it@>;
  q=p; /*now node |q| represents $p_1\ldots p_{l-1}$*/
  }
if (trie_o[q]!=min_quarterword)
  {@+print_err("Duplicate pattern");
@.Duplicate pattern@>
  help1("(See Appendix H.)");error();
  }
trie_o[q]=v;
}

@ @<Insert a new trie node between |q| and |p|...@>=
{@+if (trie_ptr==trie_size) overflow("pattern memory", trie_size);
@:TeX capacity exceeded pattern memory}{\quad pattern memory@>
incr(trie_ptr);trie_r[trie_ptr]=p;p=trie_ptr;trie_l[p]=0;
if (first_child) trie_l[q]=p;@+else trie_r[q]=p;
trie_c[p]=si(c);trie_o[p]=min_quarterword;
}

@ @<Compute the trie op code, |v|...@>=
if (hc[1]==0) hyf[0]=0;
if (hc[k]==0) hyf[k]=0;
l=k;v=min_quarterword;
loop@+{@+if (hyf[l]!=0) v=new_trie_op(k-l, hyf[l], v);
  if (l > 0) decr(l);@+else goto done1;
  }
done1:

@ Finally we put everything together: Here is how the trie gets to its
final, efficient form.
The following packing routine is rigged so that the root of the linked
tree gets mapped into location 1 of |trie|, as required by the hyphenation
algorithm. This happens because the first call of |first_fit| will
``take'' location~1.

@<Declare procedures for preprocessing hyphenation patterns@>=
static void init_trie(void)
{@+int @!p; /*pointer for initialization*/
int @!j, @!k, @!t; /*all-purpose registers for initialization*/
int @!r, @!s; /*used to clean up the packed |trie|*/
two_halves @!h; /*template used to zero out |trie|'s holes*/
@<Get ready to compress the trie@>;
if (trie_root!=0)
  {@+first_fit(trie_root);trie_pack(trie_root);
  }
if (hyph_root!=0) @<Pack all stored |hyph_codes|@>;
@<Move the data into |trie|@>;
trie_not_ready=false;
}

@* Breaking vertical lists into pages.
The |vsplit| procedure, which implements \TeX's \.{\\vsplit} operation,
is considerably simpler than |line_break| because it doesn't have to
worry about hyphenation, and because its mission is to discover a single
break instead of an optimum sequence of breakpoints.  But before we get
into the details of |vsplit|, we need to consider a few more basic things.

@ A subroutine called |prune_page_top| takes a pointer to a vlist and
returns a pointer to a modified vlist in which all glue, kern, and penalty nodes
have been deleted before the first box or rule node. However, the first
box or rule is actually preceded by a newly created glue node designed so that
the topmost baseline will be at distance |split_top_skip| from the top,
whenever this is possible without backspacing.

When the second argument |s| is |false| the deleted nodes are destroyed,
otherwise they are collected in a list starting at |split_disc|.

In this routine and those that follow, we make use of the fact that a
vertical list contains no character nodes, hence the |type| field exists
for each node in the list.
@^data structure assumptions@>

@p static pointer prune_page_top(pointer @!p, bool @!s)
   /*adjust top after page break*/
{@+pointer prev_p; /*lags one step behind |p|*/
pointer @!q, @!r; /*temporary variables for list manipulation*/
prev_p=temp_head;link(temp_head)=p;
while (p!=null)
  switch (type(p)) {
  case hlist_node: case vlist_node: case rule_node: @<Insert glue for |split_top_skip|
and set~|p:=null|@>@;@+break;
  case whatsit_node: case mark_node: case ins_node: {@+prev_p=p;p=link(prev_p);
    } @+break;
  case glue_node: case kern_node: case penalty_node: {@+q=p;p=link(q);link(q)=null;
    link(prev_p)=p;
    if (s)
      {@+if (split_disc==null) split_disc=q;@+else link(r)=q;
      r=q;
      }
    else flush_node_list(q);
    } @+break;
  default:confusion("pruning");
@:this can't happen pruning}{\quad pruning@>
  }
return link(temp_head);
}

@ @<Insert glue for |split_top_skip|...@>=
{@+q=new_skip_param(split_top_skip_code);link(prev_p)=q;link(q)=p;
   /*now |temp_ptr==glue_ptr(q)|*/
if (width(temp_ptr) > height(p)) width(temp_ptr)=width(temp_ptr)-height(p);
else width(temp_ptr)=0;
p=null;
}

@ The next subroutine finds the best place to break a given vertical list
so as to obtain a box of height~|h|, with maximum depth~|d|.
A pointer to the beginning of the vertical list is given,
and a pointer to the optimum breakpoint is returned. The list is effectively
followed by a forced break, i.e., a penalty node with the |eject_penalty|;
if the best break occurs at this artificial node, the value |null| is returned.

An array of six |scaled| distances is used to keep track of the height
from the beginning of the list to the current place, just as in |line_break|.
In fact, we use one of the same arrays, only changing its name to reflect
its new significance.

@d active_height active_width /*new name for the six distance variables*/
@d cur_height active_height[1] /*the natural height*/
@d set_height_zero(A) active_height[A]=0 /*initialize the height to zero*/
@#
@p static pointer vert_break(pointer @!p, scaled @!h, scaled @!d)
   /*finds optimum page break*/
{@+
pointer prev_p; /*if |p| is a glue node, |type(prev_p)| determines
  whether |p| is a legal breakpoint*/
pointer @!q, @!r; /*glue specifications*/
int @!pi; /*penalty value*/
int @!b; /*badness at a trial breakpoint*/
int @!least_cost; /*the smallest badness plus penalties found so far*/
pointer @!best_place; /*the most recent break that leads to |least_cost|*/
scaled @!prev_dp; /*depth of previous box in the list*/
small_number @!t; /*|type| of the node following a kern*/
prev_p=p; /*an initial glue node is not a legal breakpoint*/
least_cost=awful_bad;do_all_six(set_height_zero);prev_dp=0;
loop@+{@+@<If node |p| is a legal breakpoint, check if this break is the best
known, and |goto done| if |p| is null or if the page-so-far is already too
full to accept more stuff@>;
  prev_p=p;p=link(prev_p);
  }
done: return best_place;
}

@ A global variable |best_height_plus_depth| will be set to the natural size
of the box that corresponds to the optimum breakpoint found by |vert_break|.
(This value is used by the insertion-splitting algorithm of the page builder.)

@<Glob...@>=
static scaled @!best_height_plus_depth; /*height of the best box, without stretching or
  shrinking*/

@ A subtle point to be noted here is that the maximum depth~|d| might be
negative, so |cur_height| and |prev_dp| might need to be corrected even
after a glue or kern node.

@<If node |p| is a legal breakpoint, check...@>=
if (p==null) pi=eject_penalty;
else@<Use node |p| to update the current height and depth measurements; if
this node is not a legal breakpoint, |goto not_found| or |update_heights|,
otherwise set |pi| to the associated penalty at the break@>;
@<Check if node |p| is a new champion breakpoint; then \(go)|goto done| if
|p| is a forced break or if the page-so-far is already too full@>;
if ((type(p) < glue_node)||(type(p) > kern_node)) goto not_found;
update_heights: @<Update the current height and depth measurements with respect
to a glue or kern node~|p|@>;
not_found: if (prev_dp > d)
    {@+cur_height=cur_height+prev_dp-d;
    prev_dp=d;
    }

@ @<Use node |p| to update the current height and depth measurements...@>=
switch (type(p)) {
case hlist_node: case vlist_node: case rule_node: {@+@t@>@;@/
  cur_height=cur_height+prev_dp+height(p);prev_dp=depth(p);
  goto not_found;
  }
case whatsit_node: @<Process whatsit |p| in |vert_break| loop, |goto not_found|@>;
case glue_node: if (precedes_break(prev_p)) pi=0;
  else goto update_heights;@+break;
case kern_node: {@+if (link(p)==null) t=penalty_node;
  else t=type(link(p));
  if (t==glue_node) pi=0;@+else goto update_heights;
  } @+break;
case penalty_node: pi=penalty(p);@+break;
case mark_node: case ins_node: goto not_found;
default:confusion("vertbreak");
@:this can't happen vertbreak}{\quad vertbreak@>
}

@ @d deplorable 100000 /*more than |inf_bad|, but less than |awful_bad|*/

@<Check if node |p| is a new champion breakpoint; then \(go)...@>=
if (pi < inf_penalty)
  {@+@<Compute the badness, |b|, using |awful_bad| if the box is too full@>;
  if (b < awful_bad)
    if (pi <= eject_penalty) b=pi;
    else if (b < inf_bad) b=b+pi;
      else b=deplorable;
  if (b <= least_cost)
    {@+best_place=p;least_cost=b;
    best_height_plus_depth=cur_height+prev_dp;
    }
  if ((b==awful_bad)||(pi <= eject_penalty)) goto done;
  }

@ @<Compute the badness, |b|, using |awful_bad| if the box is too full@>=
if (cur_height < h)
  if ((active_height[3]!=0)||(active_height[4]!=0)||
    (active_height[5]!=0)) b=0;
  else b=badness(h-cur_height, active_height[2]);
else if (cur_height-h > active_height[6]) b=awful_bad;
else b=badness(cur_height-h, active_height[6])

@ Vertical lists that are subject to the |vert_break| procedure should not
contain infinite shrinkability, since that would permit any amount of
information to ``fit'' on one page.

@<Update the current height and depth measurements with...@>=
if (type(p)==kern_node) q=p;
else{@+q=glue_ptr(p);
  active_height[2+stretch_order(q)]=@|
    active_height[2+stretch_order(q)]+stretch(q);@/
  active_height[6]=active_height[6]+shrink(q);
  if ((shrink_order(q)!=normal)&&(shrink(q)!=0))
    {@+@t@>@;@/
    print_err("Infinite glue shrinkage found in box being split");@/
@.Infinite glue shrinkage...@>
    help4("The box you are \\vsplitting contains some infinitely",@/
      "shrinkable glue, e.g., `\\vss' or `\\vskip 0pt minus 1fil'.",@/
      "Such glue doesn't belong there; but you can safely proceed,",@/
      "since the offensive shrinkability has been made finite.");
    error();r=new_spec(q);shrink_order(r)=normal;delete_glue_ref(q);
    glue_ptr(p)=r;q=r;
    }
  }
cur_height=cur_height+prev_dp+width(q);prev_dp=0

@ Now we are ready to consider |vsplit| itself. Most of
its work is accomplished by the two subroutines that we have just considered.

Given the number of a vlist box |n|, and given a desired page height |h|,
the |vsplit| function finds the best initial segment of the vlist and
returns a box for a page of height~|h|. The remainder of the vlist, if
any, replaces the original box, after removing glue and penalties and
adjusting for |split_top_skip|. Mark nodes in the split-off box are used to
set the values of |split_first_mark| and |split_bot_mark|; we use the
fact that |split_first_mark==null| if and only if |split_bot_mark==null|.

The original box becomes ``void'' if and only if it has been entirely
extracted.  The extracted box is ``void'' if and only if the original
box was void (or if it was, erroneously, an hlist box).

@p @t\4@>@<Declare the function called |do_marks|@>@;
static pointer vsplit(halfword @!n, scaled @!h)
   /*extracts a page of height |h| from box |n|*/
{@+
pointer v; /*the box to be split*/
pointer p; /*runs through the vlist*/
pointer q; /*points to where the break occurs*/
cur_val=n;fetch_box(v);
flush_node_list(split_disc);split_disc=null;
if (sa_mark!=null)
  if (do_marks(vsplit_init, 0, sa_mark)) sa_mark=null;
if (split_first_mark!=null)
  {@+delete_token_ref(split_first_mark);split_first_mark=null;
  delete_token_ref(split_bot_mark);split_bot_mark=null;
  }
@<Dispense with trivial cases of void or bad boxes@>;
q=vert_break(list_ptr(v), h, split_max_depth);
@<Look at all the marks in nodes before the break, and set the final link
to |null| at the break@>;
q=prune_page_top(q, saving_vdiscards > 0);
p=list_ptr(v);list_ptr(v)=null;flush_node_list(v);
if (q!=null) q=vpack(q, natural);
change_box(q); /*the |eq_level| of the box stays the same*/
return vpackage(p, h, 0, 0, exactly, split_max_depth);
}

@ @<Dispense with trivial cases of void or bad boxes@>=
if (v==null)
  {@+return null;
  }
if (type(v)!=vlist_node)
  {@+print_err("");print_esc("vsplit");print(" needs a ");
  print_esc("vbox");
@:vsplit\_}{\.{\\vsplit needs a \\vbox}@>
  help2("The box you are trying to split is an \\hbox.",@/
  "I can't split such a box, so I'll leave it alone.");
  error();return null;
  }

@ It's possible that the box begins with a penalty node that is the
``best'' break, so we must be careful to handle this special case correctly.

@<Look at all the marks...@>=
p=list_ptr(v);
if (p==q) list_ptr(v)=null;
else loop@+{@+if (type(p)==mark_node)
    if (mark_class(p)!=0) @<Update the current marks for |vsplit|@>@;
    else if (split_first_mark==null)
      {@+split_first_mark=mark_ptr(p);
      split_bot_mark=split_first_mark;
      token_ref_count(split_first_mark)=@|
        token_ref_count(split_first_mark)+2;
      }
    else{@+delete_token_ref(split_bot_mark);
      split_bot_mark=mark_ptr(p);
      add_token_ref(split_bot_mark);
      }
  if (link(p)==q)
    {@+link(p)=null;goto done;
    }
  p=link(p);
  }
done:

@* The page builder.
When \TeX\ appends new material to its main vlist in vertical mode, it uses
a method something like |vsplit| to decide where a page ends, except that
the calculations are done ``on line'' as new items come in.
The main complication in this process is that insertions must be put
into their boxes and removed from the vlist, in a more-or-less optimum manner.

We shall use the term ``current page'' for that part of the main vlist that
is being considered as a candidate for being broken off and sent to the
user's output routine. The current page starts at |link(page_head)|, and
it ends at |page_tail|.  We have |page_head==page_tail| if this list is empty.
@^current page@>

Utter chaos would reign if the user kept changing page specifications
while a page is being constructed, so the page builder keeps the pertinent
specifications frozen as soon as the page receives its first box or
insertion.  The global variable |page_contents| is |empty| when the
current page contains only mark nodes and content-less whatsit nodes; it
is |inserts_only| if the page contains only insertion nodes in addition to
marks and whatsits.  Glue nodes, kern nodes, and penalty nodes are
discarded until a box or rule node appears, at which time |page_contents|
changes to |box_there|.  As soon as |page_contents| becomes non-|empty|,
the current |vsize| and |max_depth| are squirreled away into |page_goal|
and |page_max_depth|; the latter values will be used until the page has
been forwarded to the user's output routine. The \.{\\topskip} adjustment
is made when |page_contents| changes to |box_there|.

Although |page_goal| starts out equal to |vsize|, it is decreased by the
scaled natural height-plus-depth of the insertions considered so far, and by
the \.{\\skip} corrections for those insertions. Therefore it represents
the size into which the non-inserted material should fit, assuming that
all insertions in the current page have been made.

The global variables |best_page_break| and |least_page_cost| correspond
respectively to the local variables |best_place| and |least_cost| in the
|vert_break| routine that we have already studied; i.e., they record the
location and value of the best place currently known for breaking the
current page. The value of |page_goal| at the time of the best break is
stored in |best_size|.

@d inserts_only 1
   /*|page_contents| when an insert node has been contributed, but no boxes*/
@d box_there 2 /*|page_contents| when a box or rule has been contributed*/

@<Glob...@>=
static pointer @!page_tail; /*the final node on the current page*/
static int @!page_contents; /*what is on the current page so far?*/
static scaled @!page_max_depth; /*maximum box depth on page being built*/
static pointer @!best_page_break; /*break here to get the best page known so far*/
static int @!least_page_cost; /*the score for this currently best page*/
static scaled @!best_size; /*its |page_goal|*/

@ The page builder has another data structure to keep track of insertions.
This is a list of four-word nodes, starting and ending at |page_ins_head|.
That is, the first element of the list is node |r@t$\_1$@>==link(page_ins_head)|;
node $r_j$ is followed by |r@t$\_{j+1}$@>==link(r@t$\_j$@>)|; and if there are
|n| items we have |r@t$\_{n+1}$@>==page_ins_head|. The |subtype| field of
each node in this list refers to an insertion number; for example, `\.{\\insert
250}' would correspond to a node whose |subtype| is |qi(250)|
(the same as the |subtype| field of the relevant |ins_node|). These |subtype|
fields are in increasing order, and |subtype(page_ins_head)==
qi(255)|, so |page_ins_head| serves as a convenient sentinel
at the end of the list. A record is present for each insertion number that
appears in the current page.

The |type| field in these nodes distinguishes two possibilities that
might occur as we look ahead before deciding on the optimum page break.
If |type(r)==inserting|, then |height(r)| contains the total of the
height-plus-depth dimensions of the box and all its inserts seen so far.
If |type(r)==split_up|, then no more insertions will be made into this box,
because at least one previous insertion was too big to fit on the current
page; |broken_ptr(r)| points to the node where that insertion will be
split, if \TeX\ decides to split it, |broken_ins(r)| points to the
insertion node that was tentatively split, and |height(r)| includes also the
natural height plus depth of the part that would be split off.

In both cases, |last_ins_ptr(r)| points to the last |ins_node|
encountered for box |qo(subtype(r))| that would be at least partially
inserted on the next page; and |best_ins_ptr(r)| points to the last
such |ins_node| that should actually be inserted, to get the page with
minimum badness among all page breaks considered so far. We have
|best_ins_ptr(r)==null| if and only if no insertion for this box should
be made to produce this optimum page.

The data structure definitions here use the fact that the |@!height| field
appears in the fourth word of a box node.
@^data structure assumptions@>

@d page_ins_node_size 4 /*number of words for a page insertion node*/
@d inserting 0 /*an insertion class that has not yet overflowed*/
@d split_up 1 /*an overflowed insertion class*/
@d broken_ptr(A) link(A+1)
   /*an insertion for this class will break here if anywhere*/
@d broken_ins(A) info(A+1) /*this insertion might break at |broken_ptr|*/
@d last_ins_ptr(A) link(A+2) /*the most recent insertion for this |subtype|*/
@d best_ins_ptr(A) info(A+2) /*the optimum most recent insertion*/

@<Initialize the special list heads...@>=
subtype(page_ins_head)=qi(255);
type(page_ins_head)=split_up;link(page_ins_head)=page_ins_head;

@ An array |page_so_far| records the heights and depths of everything
on the current page. This array contains six |scaled| numbers, like the
similar arrays already considered in |line_break| and |vert_break|; and it
also contains |page_goal| and |page_depth|, since these values are
all accessible to the user via |set_page_dimen| commands. The
value of |page_so_far[1]| is also called |page_total|.  The stretch
and shrink components of the \.{\\skip} corrections for each insertion are
included in |page_so_far|, but the natural space components of these
corrections are not, since they have been subtracted from |page_goal|.

The variable |page_depth| records the depth of the current page; it has been
adjusted so that it is at most |page_max_depth|. The variable
|last_glue| points to the glue specification of the most recent node
contributed from the contribution list, if this was a glue node; otherwise
|last_glue==max_halfword|. (If the contribution list is nonempty,
however, the value of |last_glue| is not necessarily accurate.)
The variables |last_penalty|, |last_kern|, and |last_node_type|
are similar.  And
finally, |insert_penalties| holds the sum of the penalties associated with
all split and floating insertions.

@d page_goal page_so_far[0] /*desired height of information on page being built*/
@d page_total page_so_far[1] /*height of the current page*/
@d page_shrink page_so_far[6] /*shrinkability of the current page*/
@d page_depth page_so_far[7] /*depth of the current page*/

@<Glob...@>=
static scaled @!page_so_far[8]; /*height and glue of the current page*/
static pointer @!last_glue; /*used to implement \.{\\lastskip}*/
static int @!last_penalty; /*used to implement \.{\\lastpenalty}*/
static scaled @!last_kern; /*used to implement \.{\\lastkern}*/
static int @!last_node_type; /*used to implement \.{\\lastnodetype}*/
static int @!insert_penalties; /*sum of the penalties for insertions
  that were held over*/

@ @<Put each...@>=
primitive("pagegoal", set_page_dimen, 0);
@!@:page\_goal\_}{\.{\\pagegoal} primitive@>
primitive("pagetotal", set_page_dimen, 1);
@!@:page\_total\_}{\.{\\pagetotal} primitive@>
primitive("pagestretch", set_page_dimen, 2);
@!@:page\_stretch\_}{\.{\\pagestretch} primitive@>
primitive("pagefilstretch", set_page_dimen, 3);
@!@:page\_fil\_stretch\_}{\.{\\pagefilstretch} primitive@>
primitive("pagefillstretch", set_page_dimen, 4);
@!@:page\_fill\_stretch\_}{\.{\\pagefillstretch} primitive@>
primitive("pagefilllstretch", set_page_dimen, 5);
@!@:page\_filll\_stretch\_}{\.{\\pagefilllstretch} primitive@>
primitive("pageshrink", set_page_dimen, 6);
@!@:page\_shrink\_}{\.{\\pageshrink} primitive@>
primitive("pagedepth", set_page_dimen, 7);
@!@:page\_depth\_}{\.{\\pagedepth} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case set_page_dimen: switch (chr_code) {
case 0: print_esc("pagegoal");@+break;
case 1: print_esc("pagetotal");@+break;
case 2: print_esc("pagestretch");@+break;
case 3: print_esc("pagefilstretch");@+break;
case 4: print_esc("pagefillstretch");@+break;
case 5: print_esc("pagefilllstretch");@+break;
case 6: print_esc("pageshrink");@+break;
default:print_esc("pagedepth");
} @+break;

@ @d print_plus(A, B) if (page_so_far[A]!=0)
  {@+print(" plus ");print_scaled(page_so_far[A]);print(B);@+}

@p static void print_totals(void)
{@+print_scaled(page_total);
print_plus(2,"");
print_plus(3,"fil");
print_plus(4,"fill");
print_plus(5,"filll");
if (page_shrink!=0)
  {@+print(" minus ");print_scaled(page_shrink);
  }
}

@ @<Show the status of the current page@>=
if (page_head!=page_tail)
  {@+print_nl("### current page:");
  if (output_active) print(" (held over for next output)");
@.held over for next output@>
  show_box(link(page_head));
  if (page_contents > empty)
    {@+print_nl("total height ");print_totals();
@:total\_height}{\.{total height}@>
    print_nl(" goal height ");print_scaled(page_goal);
@.goal height@>
    r=link(page_ins_head);
    while (r!=page_ins_head)
      {@+print_ln();print_esc("insert");t=qo(subtype(r));
      print_int(t);print(" adds ");
      if (count(t)==1000) t=height(r);
      else t=x_over_n(height(r), 1000)*count(t);
      print_scaled(t);
      if (type(r)==split_up)
        {@+q=page_head;t=0;
        @/do@+{q=link(q);
        if ((type(q)==ins_node)&&(subtype(q)==subtype(r))) incr(t);
        }@+ while (!(q==broken_ins(r)));
        print(", #");print_int(t);print(" might split");
        }
      r=link(r);
      }
    }
  }

@ Here is a procedure that is called when the |page_contents| is changing
from |empty| to |inserts_only| or |box_there|.

@d set_page_so_far_zero(A) page_so_far[A]=0

@p static void freeze_page_specs(small_number @!s)
{@+page_contents=s;
page_goal=vsize;page_max_depth=max_depth;
page_depth=0;do_all_six(set_page_so_far_zero);
least_page_cost=awful_bad;
#ifdef @!STAT
if (tracing_pages > 0)
  {@+begin_diagnostic();
  print_nl("%% goal height=");print_scaled(page_goal);
@.goal height@>
  print(", max depth=");print_scaled(page_max_depth);
  end_diagnostic(false);
  } @;
#endif
@;@/
}

@ Pages are built by appending nodes to the current list in \TeX's
vertical mode, which is at the outermost level of the semantic nest. This
vlist is split into two parts; the ``current page'' that we have been
talking so much about already, and the ``contribution list'' that receives
new nodes as they are created.  The current page contains everything that
the page builder has accounted for in its data structures, as described
above, while the contribution list contains other things that have been
generated by other parts of \TeX\ but have not yet been
seen by the page builder.
The contribution list starts at |link(contrib_head)|, and it ends at the
current node in \TeX's vertical mode.

When \TeX\ has appended new material in vertical mode, it calls the procedure
|build_page|, which tries to catch up by moving nodes from the contribution
list to the current page. This procedure will succeed in its goal of
emptying the contribution list, unless a page break is discovered, i.e.,
unless the current page has grown to the point where the optimum next
page break has been determined. In the latter case, the nodes after the
optimum break will go back onto the contribution list, and control will
effectively pass to the user's output routine.

We make |type(page_head)==glue_node|, so that an initial glue node on
the current page will not be considered a valid breakpoint.

@<Initialize the special list...@>=
type(page_head)=glue_node;subtype(page_head)=normal;

@ The global variable |output_active| is true during the time the
user's output routine is driving \TeX.

@<Glob...@>=
static bool @!output_active; /*are we in the midst of an output routine?*/

@ @<Set init...@>=
output_active=false;insert_penalties=0;

@ The page builder is ready to start a fresh page if we initialize
the following state variables. (However, the page insertion list is initialized
elsewhere.)

@<Start a new current page@>=
page_contents=empty;page_tail=page_head;link(page_head)=null;@/
last_glue=max_halfword;last_penalty=0;last_kern=0;
last_node_type=-1;
page_depth=0;page_max_depth=0

@ At certain times box 255 is supposed to be void (i.e., |null|),
or an insertion box is supposed to be ready to accept a vertical list.
If not, an error message is printed, and the following subroutine
flushes the unwanted contents, reporting them to the user.

@p static void box_error(eight_bits @!n)
{@+error();begin_diagnostic();
print_nl("The following box has been deleted:");
@.The following...deleted@>
show_box(box(n));end_diagnostic(true);
flush_node_list(box(n));box(n)=null;
}

@ The following procedure guarantees that a given box register
does not contain an \.{\\hbox}.

@p static void ensure_vbox(eight_bits @!n)
{@+pointer p; /*the box register contents*/
p=box(n);
if (p!=null) if (type(p)==hlist_node)
  {@+print_err("Insertions can only be added to a vbox");
@.Insertions can only...@>
  help3("Tut tut: You're trying to \\insert into a",@/
    "\\box register that now contains an \\hbox.",@/
    "Proceed, and I'll discard its present contents.");
  box_error(n);
  }
}

@ \TeX\ is not always in vertical mode at the time |build_page|
is called; the current mode reflects what \TeX\ should return to, after
the contribution list has been emptied. A call on |build_page| should
be immediately followed by `|goto big_switch|', which is \TeX's central
control point.

@p
static void update_last_values(pointer p)
{@<Update the values of |last_glue|, |last_penalty|, and |last_kern|@>;
}

@ @d contrib_tail nest[0].tail_field /*tail of the contribution list*/

@<Make the contribution list empty...@>=
if (nest_ptr==0) tail=contrib_head; /*vertical mode*/
else contrib_tail=contrib_head /*other modes*/

@ @<Update the values of |last_glue|...@>=
if (last_glue!=max_halfword) delete_glue_ref(last_glue);
last_penalty=0;last_kern=0;
last_node_type=type(p)+1;
if (type(p)==glue_node)
  {@+last_glue=glue_ptr(p);add_glue_ref(last_glue);
  }
else{@+last_glue=max_halfword;
  if (type(p)==penalty_node) last_penalty=penalty(p);
  else if (type(p)==kern_node) last_kern=width(p);
  }

@ The code here is an example of a many-way switch into routines that
merge together in different places. Some people call this unstructured
programming, but the author doesn't see much wrong with it, as long as
@^Knuth, Donald Ervin@>
the various labels have a well-understood meaning.

@<Move node |p| to the current page;...@>=
@<If the current page is empty and node |p| is to be deleted, |goto done1|;
otherwise use node |p| to update the state of the current page; if this node
is an insertion, |goto contribute|; otherwise if this node is not a legal
breakpoint, |goto contribute| or |update_heights|; otherwise set |pi| to the
penalty associated with this breakpoint@>;
@<Check if node |p| is a new champion breakpoint; then \(if)if it is time
for a page break, prepare for output, and either fire up the user's output
routine and |return| or ship out the page and |goto done|@>;
if ((type(p) < glue_node)||(type(p) > kern_node)) goto contribute;
update_heights: @<Update the current page measurements with respect to the
glue or kern specified by node~|p|@>;
contribute: @<Make sure that |page_max_depth| is not exceeded@>;
@<Link node |p| into the current page and |goto done|@>;
done1: @<Recycle node |p|@>;
done:

@ @<Link node |p| into the current page and |goto done|@>=
link(page_tail)=p;page_tail=p;
link(contrib_head)=link(p);link(p)=null;goto done

@ @<Recycle node |p|@>=
link(contrib_head)=link(p);link(p)=null;
if (saving_vdiscards > 0)
  {@+if (page_disc==null) page_disc=p;@+else link(tail_page_disc)=p;
  tail_page_disc=p;
  }
else flush_node_list(p)

@ The title of this section is already so long, it seems best to avoid
making it more accurate but still longer, by mentioning the fact that a
kern node at the end of the contribution list will not be contributed until
we know its successor.

@<If the current page is empty...@>=
switch (type(p)) {
case hlist_node: case vlist_node: case rule_node: if (page_contents < box_there)
    @<Initialize the current page, insert the \.{\\topskip} glue ahead of
|p|, and |goto resume|@>@;
  else@<Prepare to move a box or rule node to the current page, then |goto
contribute|@>@;@+break;
case whatsit_node: @<Prepare to move whatsit |p| to the current page, then
|goto contribute|@>;
case glue_node: if (page_contents < box_there) goto done1;
  else if (precedes_break(page_tail)) pi=0;
  else goto update_heights;@+break;
case kern_node: if (page_contents < box_there) goto done1;
  else if (link(p)==null) return;
  else if (type(link(p))==glue_node) pi=0;
  else goto update_heights;@+break;
case penalty_node: if (page_contents < box_there) goto done1;@+else pi=penalty(p);@+break;
case mark_node: goto contribute;
case ins_node: @<Append an insertion to the current page and |goto contribute|@>@;
default:confusion("page");
@:this can't happen page}{\quad page@>
}

@ @<Initialize the current page, insert the \.{\\topskip} glue...@>=
{@+if (page_contents==empty) freeze_page_specs(box_there);
else page_contents=box_there;
q=new_skip_param(top_skip_code); /*now |temp_ptr==glue_ptr(q)|*/
if (width(temp_ptr) > height(p)) width(temp_ptr)=width(temp_ptr)-height(p);
else width(temp_ptr)=0;
link(q)=p;link(contrib_head)=q;goto resume;
}

@ @<Prepare to move a box or rule node to the current page...@>=
{@+page_total=page_total+page_depth+height(p);
page_depth=depth(p);
goto contribute;
}

@ @<Make sure that |page_max_depth| is not exceeded@>=
if (page_depth > page_max_depth)
  {@+page_total=@|
    page_total+page_depth-page_max_depth;@/
  page_depth=page_max_depth;
  }

@ @<Update the current page measurements with respect to the glue...@>=
if (type(p)==kern_node) q=p;
else{@+q=glue_ptr(p);
  page_so_far[2+stretch_order(q)]=@|
    page_so_far[2+stretch_order(q)]+stretch(q);@/
  page_shrink=page_shrink+shrink(q);
  if ((shrink_order(q)!=normal)&&(shrink(q)!=0))
    {@+@t@>@;@/
    print_err("Infinite glue shrinkage found on current page");@/
@.Infinite glue shrinkage...@>
    help4("The page about to be output contains some infinitely",@/
      "shrinkable glue, e.g., `\\vss' or `\\vskip 0pt minus 1fil'.",@/
      "Such glue doesn't belong there; but you can safely proceed,",@/
      "since the offensive shrinkability has been made finite.");
    error();
    r=new_spec(q);shrink_order(r)=normal;delete_glue_ref(q);
    glue_ptr(p)=r;q=r;
    }
  }
page_total=page_total+page_depth+width(q);page_depth=0

@ @<Check if node |p| is a new champion breakpoint; then \(if)...@>=
if (pi < inf_penalty)
  {@+@<Compute the badness, |b|, of the current page, using |awful_bad| if
the box is too full@>;
  if (b < awful_bad)
    if (pi <= eject_penalty) c=pi;
    else if (b < inf_bad) c=b+pi+insert_penalties;
      else c=deplorable;
  else c=b;
  if (insert_penalties >= 10000) c=awful_bad;
#ifdef @!STAT
  if (tracing_pages > 0) @<Display the page break cost@>;
#endif
@;@/
  if (c <= least_page_cost)
    {@+best_page_break=p;best_size=page_goal;
    least_page_cost=c;
    r=link(page_ins_head);
    while (r!=page_ins_head)
      {@+best_ins_ptr(r)=last_ins_ptr(r);
      r=link(r);
      }
    }
  if ((c==awful_bad)||(pi <= eject_penalty))
    {@+fire_up(p); /*output the current page at the best place*/
    if (output_active) return; /*user's output routine will act*/
    goto done; /*the page has been shipped out by default output routine*/
    }
  }

@ @<Display the page break cost@>=
{@+begin_diagnostic();print_nl("%");
print(" t=");print_totals();@/
print(" g=");print_scaled(page_goal);@/
print(" b=");
if (b==awful_bad) print_char('*');@+else print_int(b);
@.*\relax@>
print(" p=");print_int(pi);
print(" c=");
if (c==awful_bad) print_char('*');@+else print_int(c);
if (c <= least_page_cost) print_char('#');
end_diagnostic(false);
}

@ @<Compute the badness, |b|, of the current page...@>=
if (page_total < page_goal)
  if ((page_so_far[3]!=0)||(page_so_far[4]!=0)||@|
    (page_so_far[5]!=0)) b=0;
  else b=badness(page_goal-page_total, page_so_far[2]);
else if (page_total-page_goal > page_shrink) b=awful_bad;
else b=badness(page_total-page_goal, page_shrink)

@ @<Append an insertion to the current page and |goto contribute|@>=
{@+if (page_contents==empty) freeze_page_specs(inserts_only);
n=subtype(p);r=page_ins_head;
while (n >= subtype(link(r))) r=link(r);
n=qo(n);
if (subtype(r)!=qi(n))
  @<Create a page insertion node with |subtype(r)=qi(n)|, and include the
glue correction for box |n| in the current page state@>;
if (type(r)==split_up) insert_penalties=insert_penalties+float_cost(p);
else{@+last_ins_ptr(r)=p;
  delta=page_goal-page_total-page_depth+page_shrink;
     /*this much room is left if we shrink the maximum*/
  if (count(n)==1000) h=height(p);
  else h=x_over_n(height(p), 1000)*count(n); /*this much room is needed*/
  if (((h <= 0)||(h <= delta))&&(height(p)+height(r) <= dimen(n)))
    {@+page_goal=page_goal-h;height(r)=height(r)+height(p);
    }
  else@<Find the best way to split the insertion, and change |type(r)| to
|split_up|@>;
  }
goto contribute;
}

@ We take note of the value of \.{\\skip} |n| and the height plus depth
of \.{\\box}~|n| only when the first \.{\\insert}~|n| node is
encountered for a new page. A user who changes the contents of \.{\\box}~|n|
after that first \.{\\insert}~|n| had better be either extremely careful
or extremely lucky, or both.

@<Create a page insertion node...@>=
{@+q=get_node(page_ins_node_size);link(q)=link(r);link(r)=q;r=q;
subtype(r)=qi(n);type(r)=inserting;ensure_vbox(n);
if (box(n)==null) height(r)=0;
else height(r)=height(box(n))+depth(box(n));
best_ins_ptr(r)=null;@/
q=skip(n);
if (count(n)==1000) h=height(r);
else h=x_over_n(height(r), 1000)*count(n);
page_goal=page_goal-h-width(q);@/
page_so_far[2+stretch_order(q)]=@|page_so_far[2+stretch_order(q)]+stretch(q);@/
page_shrink=page_shrink+shrink(q);
if ((shrink_order(q)!=normal)&&(shrink(q)!=0))
  {@+print_err("Infinite glue shrinkage inserted from ");print_esc("skip");
@.Infinite glue shrinkage...@>
  print_int(n);
  help3("The correction glue for page breaking with insertions",@/
    "must have finite shrinkability. But you may proceed,",@/
    "since the offensive shrinkability has been made finite.");
  error();
  }
}

@ Here is the code that will split a long footnote between pages, in an
emergency. The current situation deserves to be recapitulated: Node |p|
is an insertion into box |n|; the insertion will not fit, in its entirety,
either because it would make the total contents of box |n| greater than
\.{\\dimen} |n|, or because it would make the incremental amount of growth
|h| greater than the available space |delta|, or both. (This amount |h| has
been weighted by the insertion scaling factor, i.e., by \.{\\count} |n|
over 1000.) Now we will choose the best way to break the vlist of the
insertion, using the same criteria as in the \.{\\vsplit} operation.

@<Find the best way to split the insertion...@>=
{@+if (count(n) <= 0) w=max_dimen;
else{@+w=page_goal-page_total-page_depth;
  if (count(n)!=1000) w=x_over_n(w, count(n))*1000;
  }
if (w > dimen(n)-height(r)) w=dimen(n)-height(r);
q=vert_break(ins_ptr(p), w, depth(p));
height(r)=height(r)+best_height_plus_depth;
#ifdef @!STAT
if (tracing_pages > 0) @<Display the insertion split cost@>;
#endif
@;@/
if (count(n)!=1000)
  best_height_plus_depth=x_over_n(best_height_plus_depth, 1000)*count(n);
page_goal=page_goal-best_height_plus_depth;
type(r)=split_up;broken_ptr(r)=q;broken_ins(r)=p;
if (q==null) insert_penalties=insert_penalties+eject_penalty;
else if (type(q)==penalty_node) insert_penalties=insert_penalties+penalty(q);
}

@ @<Display the insertion split cost@>=
{@+begin_diagnostic();print_nl("% split");print_int(n);
@.split@>
print(" to ");print_scaled(w);
print_char(',');print_scaled(best_height_plus_depth);@/
print(" p=");
if (q==null) print_int(eject_penalty);
else if (type(q)==penalty_node) print_int(penalty(q));
else print_char('0');
end_diagnostic(false);
}

@ When the page builder has looked at as much material as could appear before
the next page break, it makes its decision. The break that gave minimum
badness will be used to put a completed ``page'' into box 255, with insertions
appended to their other boxes.

We also set the values of |top_mark|, |first_mark|, and |bot_mark|. The
program uses the fact that |bot_mark!=null| implies |first_mark!=null|;
it also knows that |bot_mark==null| implies |top_mark==first_mark==null|.

The |fire_up| subroutine prepares to output the current page at the best
place; then it fires up the user's output routine, if there is one,
or it simply ships out the page. There is one parameter, |c|, which represents
the node that was being contributed to the page when the decision to
force an output was made.

@<Declare the procedure called |fire_up|@>=
static void fire_up(pointer @!c)
{@+
pointer p, @!q, @!r, @!s; /*nodes being examined and/or changed*/
pointer @!prev_p; /*predecessor of |p|*/
int @!n; /*insertion box number*/
bool @!wait; /*should the present insertion be held over?*/
int @!save_vbadness; /*saved value of |vbadness|*/
scaled @!save_vfuzz; /*saved value of |vfuzz|*/
pointer @!save_split_top_skip; /*saved value of |split_top_skip|*/
@<Set the value of |output_penalty|@>;
if (sa_mark!=null)
  if (do_marks(fire_up_init, 0, sa_mark)) sa_mark=null;
if (bot_mark!=null)
  {@+if (top_mark!=null) delete_token_ref(top_mark);
  top_mark=bot_mark;add_token_ref(top_mark);
  delete_token_ref(first_mark);first_mark=null;
  }
@<Put the \(o)optimal current page into box 255, update |first_mark| and |bot_mark|,
append insertions to their boxes, and put the remaining nodes back on the
contribution list@>;
if (sa_mark!=null)
  if (do_marks(fire_up_done, 0, sa_mark)) sa_mark=null;
if ((top_mark!=null)&&(first_mark==null))
  {@+first_mark=top_mark;add_token_ref(top_mark);
  }
if (output_routine!=null)
  if (dead_cycles >= max_dead_cycles)
    @<Explain that too many dead cycles have occurred in a row@>@;
  else@<Fire up the user's output routine and |return|@>;
@<Perform the default output routine@>;
}

@ @<Set the value of |output_penalty|@>=
if (type(best_page_break)==penalty_node)
  {@+geq_word_define(int_base+output_penalty_code, penalty(best_page_break));
  penalty(best_page_break)=inf_penalty;
  }
else geq_word_define(int_base+output_penalty_code, inf_penalty)

@ As the page is finally being prepared for output,
pointer |p| runs through the vlist, with |prev_p| trailing behind;
pointer |q| is the tail of a list of insertions that
are being held over for a subsequent page.

@<Put the \(o)optimal current page into box 255...@>=
if (c==best_page_break) best_page_break=null; /*|c| not yet linked in*/
@<Ensure that box 255 is empty before output@>;
insert_penalties=0; /*this will count the number of insertions held over*/
save_split_top_skip=split_top_skip;
if (holding_inserts <= 0)
  @<Prepare all the boxes involved in insertions to act as queues@>;
q=hold_head;link(q)=null;prev_p=page_head;p=link(prev_p);
while (p!=best_page_break)
  {@+if (type(p)==ins_node)
    {@+if (holding_inserts <= 0)
       @<Either insert the material specified by node |p| into the appropriate
box, or hold it for the next page; also delete node |p| from the current page@>;
    }
  else if (type(p)==mark_node)
    if (mark_class(p)!=0) @<Update the current marks for |fire_up|@>@;
    else@<Update the values of |first_mark| and |bot_mark|@>;
  prev_p=p;p=link(prev_p);
  }
split_top_skip=save_split_top_skip;
@<Break the current page at node |p|, put it in box~255, and put the remaining
nodes on the contribution list@>;
@<Delete \(t)the page-insertion nodes@>@;

@ @<Ensure that box 255 is empty before output@>=
if (box(255)!=null)
  {@+print_err("");print_esc("box");print("255 is not void");
@:box255}{\.{\\box255 is not void}@>
  help2("You shouldn't use \\box255 except in \\output routines.",@/
    "Proceed, and I'll discard its present contents.");
  box_error(255);
  }

@ @<Update the values of |first_mark| and |bot_mark|@>=
{@+if (first_mark==null)
  {@+first_mark=mark_ptr(p);
  add_token_ref(first_mark);
  }
if (bot_mark!=null) delete_token_ref(bot_mark);
bot_mark=mark_ptr(p);add_token_ref(bot_mark);
}

@ When the following code is executed, the current page runs from node
|link(page_head)| to node |prev_p|, and the nodes from |p| to |page_tail|
are to be placed back at the front of the contribution list. Furthermore
the heldover insertions appear in a list from |link(hold_head)| to |q|; we
will put them into the current page list for safekeeping while the user's
output routine is active.  We might have |q==hold_head|; and |p==null| if
and only if |prev_p==page_tail|. Error messages are suppressed within
|vpackage|, since the box might appear to be overfull or underfull simply
because the stretch and shrink from the \.{\\skip} registers for inserts
are not actually present in the box.

@<Break the current page at node |p|, put it...@>=
if (p!=null)
  {@+if (link(contrib_head)==null)
    if (nest_ptr==0) tail=page_tail;
    else contrib_tail=page_tail;
  link(page_tail)=link(contrib_head);
  link(contrib_head)=p;
  link(prev_p)=null;
  }
save_vbadness=vbadness;vbadness=inf_bad;
save_vfuzz=vfuzz;vfuzz=max_dimen; /*inhibit error messages*/
box(255)=vpackage(link(page_head), best_size, 0, 0, exactly, page_max_depth);
vbadness=save_vbadness;vfuzz=save_vfuzz;
if (last_glue!=max_halfword) delete_glue_ref(last_glue);
@<Start a new current page@>; /*this sets |last_glue=max_halfword|*/
if (q!=hold_head)
  {@+link(page_head)=link(hold_head);page_tail=q;
  }

@ If many insertions are supposed to go into the same box, we want to know
the position of the last node in that box, so that we don't need to waste time
when linking further information into it. The |last_ins_ptr| fields of the
page insertion nodes are therefore used for this purpose during the
packaging phase.

@<Prepare all the boxes involved in insertions to act as queues@>=
{@+r=link(page_ins_head);
while (r!=page_ins_head)
  {@+if (best_ins_ptr(r)!=null)
    {@+n=qo(subtype(r));ensure_vbox(n);
    if (box(n)==null) box(n)=new_null_box();
    p=box(n)+list_offset;
    while (link(p)!=null) p=link(p);
    last_ins_ptr(r)=p;
    }
  r=link(r);
  }
}

@ @<Delete \(t)the page-insertion nodes@>=
r=link(page_ins_head);
while (r!=page_ins_head)
  {@+q=link(r);free_node(r, page_ins_node_size);r=q;
  }
link(page_ins_head)=page_ins_head

@ We will set |best_ins_ptr=null| and package the box corresponding to
insertion node~|r|, just after making the final insertion into that box.
If this final insertion is `|split_up|', the remainder after splitting
and pruning (if any) will be carried over to the next page.

@<Either insert the material specified by node |p| into...@>=
{@+r=link(page_ins_head);
while (subtype(r)!=subtype(p)) r=link(r);
if (best_ins_ptr(r)==null) wait=true;
else{@+wait=false;s=last_ins_ptr(r);link(s)=ins_ptr(p);
  if (best_ins_ptr(r)==p)
    @<Wrap up the box specified by node |r|, splitting node |p| if called
for; set |wait:=true| if node |p| holds a remainder after splitting@>@;
  else{@+while (link(s)!=null) s=link(s);
    last_ins_ptr(r)=s;
    }
  }
@<Either append the insertion node |p| after node |q|, and remove it from
the current page, or delete |node(p)|@>;
}

@ @<Wrap up the box specified by node |r|, splitting node |p| if...@>=
{@+if (type(r)==split_up)
  if ((broken_ins(r)==p)&&(broken_ptr(r)!=null))
    {@+while (link(s)!=broken_ptr(r)) s=link(s);
    link(s)=null;
    split_top_skip=split_top_ptr(p);
    ins_ptr(p)=prune_page_top(broken_ptr(r), false);
    if (ins_ptr(p)!=null)
      {@+temp_ptr=vpack(ins_ptr(p), natural);
      height(p)=height(temp_ptr)+depth(temp_ptr);
      list_ptr(temp_ptr)=null;flush_node_list(temp_ptr);wait=true;
      }
    }
best_ins_ptr(r)=null;
n=qo(subtype(r));
temp_ptr=list_ptr(box(n));
list_ptr(box(n))=null;flush_node_list(box(n));
box(n)=vpack(temp_ptr, natural);
}

@ @<Either append the insertion node |p|...@>=
link(prev_p)=link(p);link(p)=null;
if (wait)
  {@+link(q)=p;q=p;incr(insert_penalties);
  }
else{@+delete_glue_ref(split_top_ptr(p));
  free_node(p, ins_node_size);
  }
p=prev_p

@ The list of heldover insertions, running from |link(page_head)| to
|page_tail|, must be moved to the contribution list when the user has
specified no output routine.

@<Perform the default output routine@>=
{@+if (link(page_head)!=null)
  {@+if (link(contrib_head)==null)
    if (nest_ptr==0) tail=page_tail;@+else contrib_tail=page_tail;
  else link(page_tail)=link(contrib_head);
  link(contrib_head)=link(page_head);
  link(page_head)=null;page_tail=page_head;
  }
flush_node_list(page_disc);page_disc=null;
ship_out(box(255));box(255)=null;
}

@ @<Explain that too many dead cycles have occurred in a row@>=
{@+print_err("Output loop---");print_int(dead_cycles);
@.Output loop...@>
print(" consecutive dead cycles");
help3("I've concluded that your \\output is awry; it never does a",@/
"\\shipout, so I'm shipping \\box255 out myself. Next time",@/
"increase \\maxdeadcycles if you want me to be more patient!");error();
}

@ @<Fire up the user's output routine and |return|@>=
{@+output_active=true;
incr(dead_cycles);
push_nest();mode=-vmode;prev_depth=ignore_depth;mode_line=-line;
begin_token_list(output_routine, output_text);
new_save_level(output_group);normal_paragraph();
scan_left_brace();
return;
}

@ When the user's output routine finishes, it has constructed a vlist
in internal vertical mode, and \TeX\ will do the following:

@<Resume the page builder after an output routine has come to an end@>=
{@+if ((loc!=null)||
 ((token_type!=output_text)&&(token_type!=backed_up)))
  @<Recover from an unbalanced output routine@>;
end_token_list(); /*conserve stack space in case more outputs are triggered*/
end_graf();unsave();output_active=false;insert_penalties=0;@/
@<Ensure that box 255 is empty after output@>;
if (tail!=head)  /*current list goes after heldover insertions*/
  {@+link(page_tail)=link(head);
  page_tail=tail;
  }
if (link(page_head)!=null)  /*and both go before heldover contributions*/
  {@+if (link(contrib_head)==null) contrib_tail=page_tail;
  link(page_tail)=link(contrib_head);
  link(contrib_head)=link(page_head);
  link(page_head)=null;page_tail=page_head;
  }
flush_node_list(page_disc);page_disc=null;
pop_nest();build_page();
}

@ @<Recover from an unbalanced output routine@>=
{@+print_err("Unbalanced output routine");
@.Unbalanced output routine@>
help2("Your sneaky output routine has problematic {'s and/or }'s.",@/
"I can't handle that very well; good luck.");error();
@/do@+{get_token();
}@+ while (!(loc==null));
}  /*loops forever if reading from a file, since |null==min_halfword <= 0|*/

@ @<Ensure that box 255 is empty after output@>=
if (box(255)!=null)
  {@+print_err("Output routine didn't use all of ");
  print_esc("box");print_int(255);
@.Output routine didn't use...@>
  help3("Your \\output commands should empty \\box255,",@/
    "e.g., by saying `\\shipout\\box255'.",@/
    "Proceed; I'll discard its present contents.");
  box_error(255);
  }

@* The chief executive.
We come now to the |main_control| routine, which contains the master
switch that causes all the various pieces of \TeX\ to do their things,
in the right order.

In a sense, this is the grand climax of the program: It applies all the
tools that we have worked so hard to construct. In another sense, this is
the messiest part of the program: It necessarily refers to other pieces
of code all over the place, so that a person can't fully understand what is
going on without paging back and forth to be reminded of conventions that
are defined elsewhere. We are now at the hub of the web, the central nervous
system that touches most of the other parts and ties them together.
@^brain@>

The structure of |main_control| itself is quite simple. There's a label
called |big_switch|, at which point the next token of input is fetched
using |get_x_token|. Then the program branches at high speed into one of
about 100 possible directions, based on the value of the current
mode and the newly fetched command code; the sum |abs(mode)+cur_cmd|
indicates what to do next. For example, the case `|vmode+letter|' arises
when a letter occurs in vertical mode (or internal vertical mode); this
case leads to instructions that initialize a new paragraph and enter
horizontal mode.

The big |case| statement that contains this multiway switch has been labeled
|reswitch|, so that the program can |goto reswitch| when the next token
has already been fetched. Most of the cases are quite short; they call
an ``action procedure'' that does the work for that case, and then they
either |goto reswitch| or they ``fall through'' to the end of the |case|
statement, which returns control back to |big_switch|. Thus, |main_control|
is not an extremely large procedure, in spite of the multiplicity of things
it must do; it is small enough to be handled by \PASCAL\ compilers that put
severe restrictions on procedure size.
@!@^action procedure@>

One case is singled out for special treatment, because it accounts for most
of \TeX's activities in typical applications. The process of reading simple
text and converting it into |char_node| records, while looking for ligatures
and kerns, is part of \TeX's ``inner loop''; the whole program runs
efficiently when its inner loop is fast, so this part has been written
with particular care.

@ We shall concentrate first on the inner loop of |main_control|, deferring
consideration of the other cases until later.
@^inner loop@>

@p @t\4@>@<Declare action procedures for use by |main_control|@>@;
@t\4@>@<Declare the procedure called |handle_right_brace|@>@;
static void main_control(void) /*governs \TeX's activities*/
{@+




int @!t; /*general-purpose temporary variable*/
if (every_job!=null) begin_token_list(every_job, every_job_text);
big_switch: get_x_token();@/
reswitch: @<Give diagnostic information, if requested@>;
switch (abs(mode)+cur_cmd) {
case hmode+letter: case hmode+other_char:
  case hmode+char_given: goto main_loop;
case hmode+char_num: {@+scan_char_num();cur_chr=cur_val;goto main_loop;@+}
case hmode+no_boundary: {@+get_x_token();
  if ((cur_cmd==letter)||(cur_cmd==other_char)||(cur_cmd==char_given)||
   (cur_cmd==char_num)) cancel_boundary=true;
  goto reswitch;
  }
case hmode+spacer: if (space_factor==1000) goto append_normal_space;
  else app_space();@+break;
case hmode+ex_space: case mmode+ex_space: goto append_normal_space;
@t\4@>@<Cases of |main_control| that are not part of the inner loop@>@;
}  /*of the big |case| statement*/
goto big_switch;
main_loop: @<Append character |cur_chr| and the following characters (if~any)
to the current hlist in the current font; |goto reswitch| when a non-character
has been fetched@>;
append_normal_space: @<Append a normal inter-word space to the current list,
then |goto big_switch|@>;
}

@ When a new token has just been fetched at |big_switch|, we have an
ideal place to monitor \TeX's activity.
@^debugging@>

@<Give diagnostic information, if requested@>=
if (interrupt!=0) if (OK_to_interrupt)
  {@+back_input();check_interrupt;goto big_switch;
  }
#ifdef @!DEBUG
if (panicking) check_mem(false);@;
#endif
if (tracing_commands > 0) show_cur_cmd_chr()

@ The following part of the program was first written in a structured
manner, according to the philosophy that ``premature optimization is
the root of all evil.'' Then it was rearranged into pieces of
spaghetti so that the most common actions could proceed with little or
no redundancy.

The original unoptimized form of this algorithm resembles the
|reconstitute| procedure, which was described earlier in connection with
hyphenation. Again we have an implied ``cursor'' between characters
|cur_l| and |cur_r|. The main difference is that the |lig_stack| can now
contain a charnode as well as pseudo-ligatures; that stack is now
usually nonempty, because the next character of input (if any) has been
appended to it. In |main_control| we have
$$|cur_r|=\cases{|character(lig_stack)|,&if |lig_stack > null|;\cr
  |font_bchar[cur_font]|,&otherwise;\cr}$$
except when |character(lig_stack)==font_false_bchar[cur_font]|.
Several additional global variables are needed.

@<Glob...@>=
static internal_font_number @!main_f; /*the current font*/
static four_quarters @!main_i; /*character information bytes for |cur_l|*/
static four_quarters @!main_j; /*ligature/kern command*/
static font_index @!main_k; /*index into |font_info|*/
static pointer @!main_p; /*temporary register for list manipulation*/
static int @!main_s; /*space factor value*/
static halfword @!bchar; /*boundary character of current font, or |non_char|*/
static halfword @!false_bchar; /*nonexistent character matching |bchar|, or |non_char|*/
static bool @!cancel_boundary; /*should the left boundary be ignored?*/
static bool @!ins_disc; /*should we insert a discretionary node?*/

@ The boolean variables of the main loop are normally false, and always reset
to false before the loop is left. That saves us the extra work of initializing
each time.

@<Set init...@>=
ligature_present=false;cancel_boundary=false;lft_hit=false;rt_hit=false;
ins_disc=false;

@ We leave the |space_factor| unchanged if |sf_code(cur_chr)==0|; otherwise we
set it equal to |sf_code(cur_chr)|, except that it should never change
from a value less than 1000 to a value exceeding 1000. The most common
case is |sf_code(cur_chr)==1000|, so we want that case to be fast.

The overall structure of the main loop is presented here. Some program labels
are inside the individual sections.
@^inner loop@>

@d adjust_space_factor @t@>@;@/
  main_s=sf_code(cur_chr);
  if (main_s==1000) space_factor=1000;
  else if (main_s < 1000)
    {@+if (main_s > 0) space_factor=main_s;
    }
  else if (space_factor < 1000) space_factor=1000;
  else space_factor=main_s

@<Append character |cur_chr|...@>=
adjust_space_factor;@/
main_f=cur_font;
bchar=font_bchar[main_f];false_bchar=font_false_bchar[main_f];
if (mode > 0) if (language!=clang) fix_language();
fast_get_avail(lig_stack);font(lig_stack)=main_f;cur_l=qi(cur_chr);
character(lig_stack)=cur_l;@/
cur_q=tail;
if (cancel_boundary)
  {@+cancel_boundary=false;main_k=non_address;
  }
else main_k=bchar_label[main_f];
if (main_k==non_address) goto main_loop_move2; /*no left boundary processing*/
cur_r=cur_l;cur_l=non_char;
goto main_lig_loop1; /*begin with cursor after left boundary*/
@#
main_loop_wrapup: @<Make a ligature node, if |ligature_present|; insert a
null discretionary, if appropriate@>;
main_loop_move: @<If the cursor is immediately followed by the right boundary,
|goto reswitch|; if it's followed by an invalid character, |goto big_switch|;
otherwise move the cursor one step to the right and |goto main_lig_loop|@>;
main_loop_lookahead: @<Look ahead for another character, or leave |lig_stack|
empty if there's none there@>;
main_lig_loop: @<If there's a ligature/kern command relevant to |cur_l| and
|cur_r|, adjust the text appropriately; exit to |main_loop_wrapup|@>;
main_loop_move_lig: @<Move the cursor past a pseudo-ligature, then |goto main_loop_lookahead|
or |main_lig_loop|@>@;

@ If |link(cur_q)| is nonnull when |wrapup| is invoked, |cur_q| points to
the list of characters that were consumed while building the ligature
character~|cur_l|.

A discretionary break is not inserted for an explicit hyphen when we are in
restricted horizontal mode. In particular, this avoids putting discretionary
nodes inside of other discretionaries.
@^inner loop@>

@d pack_lig(X)  /*the parameter is either |rt_hit| or |false|*/
  {@+main_p=new_ligature(main_f, cur_l, link(cur_q));
  if (lft_hit)
    {@+subtype(main_p)=2;lft_hit=false;
    }
  if (X) if (lig_stack==null)
    {@+incr(subtype(main_p));rt_hit=false;
    }
  link(cur_q)=main_p;tail=main_p;ligature_present=false;
  }

@d wrapup(A) if (cur_l < non_char)
  {@+if (link(cur_q) > null)
    if (character(tail)==qi(hyphen_char[main_f])) ins_disc=true;
  if (ligature_present) pack_lig(A);
  if (ins_disc)
    {@+ins_disc=false;
    if (mode > 0) tail_append(new_disc());
    }
  }

@<Make a ligature node, if |ligature_present|;...@>=
wrapup(rt_hit)

@ @<If the cursor is immediately followed by the right boundary...@>=
@^inner loop@>
if (lig_stack==null) goto reswitch;
cur_q=tail;cur_l=character(lig_stack);
main_loop_move1: if (!is_char_node(lig_stack)) goto main_loop_move_lig;
main_loop_move2: if ((cur_chr < font_bc[main_f])||(cur_chr > font_ec[main_f]))
  {@+char_warning(main_f, cur_chr);free_avail(lig_stack);goto big_switch;
  }
main_i=char_info(main_f, cur_l);
if (!char_exists(main_i))
  {@+char_warning(main_f, cur_chr);free_avail(lig_stack);goto big_switch;
  }
link(tail)=lig_stack;tail=lig_stack /*|main_loop_lookahead| is next*/

@ Here we are at |main_loop_move_lig|.
When we begin this code we have |cur_q==tail| and |cur_l==character(lig_stack)|.

@<Move the cursor past a pseudo-ligature...@>=
main_p=lig_ptr(lig_stack);
if (main_p > null) tail_append(main_p); /*append a single character*/
temp_ptr=lig_stack;lig_stack=link(temp_ptr);
free_node(temp_ptr, small_node_size);
main_i=char_info(main_f, cur_l);ligature_present=true;
if (lig_stack==null)
  if (main_p > null) goto main_loop_lookahead;
  else cur_r=bchar;
else cur_r=character(lig_stack);
goto main_lig_loop

@ The result of \.{\\char} can participate in a ligature or kern, so we must
look ahead for it.

@<Look ahead for another character...@>=
get_next(); /*set only |cur_cmd| and |cur_chr|, for speed*/
if (cur_cmd==letter) goto main_loop_lookahead1;
if (cur_cmd==other_char) goto main_loop_lookahead1;
if (cur_cmd==char_given) goto main_loop_lookahead1;
x_token(); /*now expand and set |cur_cmd|, |cur_chr|, |cur_tok|*/
if (cur_cmd==letter) goto main_loop_lookahead1;
if (cur_cmd==other_char) goto main_loop_lookahead1;
if (cur_cmd==char_given) goto main_loop_lookahead1;
if (cur_cmd==char_num)
  {@+scan_char_num();cur_chr=cur_val;goto main_loop_lookahead1;
  }
if (cur_cmd==no_boundary) bchar=non_char;
cur_r=bchar;lig_stack=null;goto main_lig_loop;
main_loop_lookahead1: adjust_space_factor;
fast_get_avail(lig_stack);font(lig_stack)=main_f;
cur_r=qi(cur_chr);character(lig_stack)=cur_r;
if (cur_r==false_bchar) cur_r=non_char /*this prevents spurious ligatures*/

@ Even though comparatively few characters have a lig/kern program, several
of the instructions here count as part of \TeX's inner loop, since a
@^inner loop@>
potentially long sequential search must be performed. For example, tests with
Computer Modern Roman showed that about 40 per cent of all characters
actually encountered in practice had a lig/kern program, and that about four
lig/kern commands were investigated for every such character.

At the beginning of this code we have |main_i==char_info(main_f, cur_l)|.

@<If there's a ligature/kern command...@>=
if (char_tag(main_i)!=lig_tag) goto main_loop_wrapup;
if (cur_r==non_char) goto main_loop_wrapup;
main_k=lig_kern_start(main_f, main_i);main_j=font_info[main_k].qqqq;
if (skip_byte(main_j) <= stop_flag) goto main_lig_loop2;
main_k=lig_kern_restart(main_f, main_j);
main_lig_loop1: main_j=font_info[main_k].qqqq;
main_lig_loop2: if (next_char(main_j)==cur_r)
 if (skip_byte(main_j) <= stop_flag)
  @<Do ligature or kern command, returning to |main_lig_loop| or |main_loop_wrapup|
or |main_loop_move|@>;
if (skip_byte(main_j)==qi(0)) incr(main_k);
else{@+if (skip_byte(main_j) >= stop_flag) goto main_loop_wrapup;
  main_k=main_k+qo(skip_byte(main_j))+1;
  }
goto main_lig_loop1

@ When a ligature or kern instruction matches a character, we know from
|read_font_info| that the character exists in the font, even though we
haven't verified its existence in the normal way.

This section could be made into a subroutine, if the code inside
|main_control| needs to be shortened.

\chardef\@@='174 % vertical line to indicate character retention

@<Do ligature or kern command...@>=
{@+if (op_byte(main_j) >= kern_flag)
  {@+wrapup(rt_hit);
  tail_append(new_kern(char_kern(main_f, main_j)));goto main_loop_move;
  }
if (cur_l==non_char) lft_hit=true;
else if (lig_stack==null) rt_hit=true;
check_interrupt; /*allow a way out in case there's an infinite ligature loop*/
switch (op_byte(main_j)) {
case qi(1): case qi(5): {@+cur_l=rem_byte(main_j); /*\.{=:\@@}, \.{=:\@@>}*/
  main_i=char_info(main_f, cur_l);ligature_present=true;
  } @+break;
case qi(2): case qi(6): {@+cur_r=rem_byte(main_j); /*\.{\@@=:}, \.{\@@=:>}*/
  if (lig_stack==null)  /*right boundary character is being consumed*/
    {@+lig_stack=new_lig_item(cur_r);bchar=non_char;
    }
  else if (is_char_node(lig_stack))  /*|link(lig_stack)==null|*/
    {@+main_p=lig_stack;lig_stack=new_lig_item(cur_r);
    lig_ptr(lig_stack)=main_p;
    }
  else character(lig_stack)=cur_r;
  } @+break;
case qi(3): {@+cur_r=rem_byte(main_j); /*\.{\@@=:\@@}*/
  main_p=lig_stack;lig_stack=new_lig_item(cur_r);
  link(lig_stack)=main_p;
  } @+break;
case qi(7): case qi(11): {@+wrapup(false); /*\.{\@@=:\@@>}, \.{\@@=:\@@>>}*/
  cur_q=tail;cur_l=rem_byte(main_j);
  main_i=char_info(main_f, cur_l);ligature_present=true;
  } @+break;
default:{@+cur_l=rem_byte(main_j);ligature_present=true; /*\.{=:}*/
  if (lig_stack==null) goto main_loop_wrapup;
  else goto main_loop_move1;
  }
}
if (op_byte(main_j) > qi(4))
  if (op_byte(main_j)!=qi(7)) goto main_loop_wrapup;
if (cur_l < non_char) goto main_lig_loop;
main_k=bchar_label[main_f];goto main_lig_loop1;
}

@ The occurrence of blank spaces is almost part of \TeX's inner loop,
@^inner loop@>
since we usually encounter about one space for every five non-blank characters.
Therefore |main_control| gives second-highest priority to ordinary spaces.

When a glue parameter like \.{\\spaceskip} is set to `\.{0pt}', we will
see to it later that the corresponding glue specification is precisely
|zero_glue|, not merely a pointer to some specification that happens
to be full of zeroes. Therefore it is simple to test whether a glue parameter
is zero or~not.

@<Append a normal inter-word space...@>=
if (space_skip==zero_glue)
  {@+@<Find the glue specification, |main_p|, for text spaces in the current
font@>;
  temp_ptr=new_glue(main_p);
  }
else temp_ptr=new_param_glue(space_skip_code);
link(tail)=temp_ptr;tail=temp_ptr;
goto big_switch

@ Having |font_glue| allocated for each text font saves both time and memory.
If any of the three spacing parameters are subsequently changed by the
use of \.{\\fontdimen}, the |find_font_dimen| procedure deallocates the
|font_glue| specification allocated here.

@<Find the glue specification...@>=
{@+main_p=font_glue[cur_font];
if (main_p==null)
  {@+main_p=new_spec(zero_glue);main_k=param_base[cur_font]+space_code;
  width(main_p)=font_info[main_k].sc; /*that's |space(cur_font)|*/
  stretch(main_p)=font_info[main_k+1].sc; /*and |space_stretch(cur_font)|*/
  shrink(main_p)=font_info[main_k+2].sc; /*and |space_shrink(cur_font)|*/
  font_glue[cur_font]=main_p;
  }
}

@ @<Declare act...@>=
static void app_space(void) /*handle spaces when |space_factor!=1000|*/
{@+pointer @!q; /*glue node*/
if ((space_factor >= 2000)&&(xspace_skip!=zero_glue))
  q=new_param_glue(xspace_skip_code);
else{@+if (space_skip!=zero_glue) main_p=space_skip;
  else@<Find the glue specification...@>;
  main_p=new_spec(main_p);
  @<Modify the glue specification in |main_p| according to the space factor@>;
  q=new_glue(main_p);glue_ref_count(main_p)=null;
  }
link(tail)=q;tail=q;
}

@ @<Modify the glue specification in |main_p| according to the space factor@>=
if (space_factor >= 2000) width(main_p)=width(main_p)+extra_space(cur_font);
stretch(main_p)=xn_over_d(stretch(main_p), space_factor, 1000);
shrink(main_p)=xn_over_d(shrink(main_p), 1000, space_factor)

@ Whew---that covers the main loop. We can now proceed at a leisurely
pace through the other combinations of possibilities.

@d any_mode(A) case vmode+A: case hmode+A:
  case mmode+A /*for mode-independent commands*/

@<Cases of |main_control| that are not part of the inner loop@>=
any_mode(relax): case vmode+spacer: case mmode+spacer:
  case mmode+no_boundary: do_nothing;
any_mode(ignore_spaces): {@+@<Get the next non-blank non-call...@>;
  goto reswitch;
  }
case vmode+stop: if (its_all_over()) return;@+break; /*this is the only way out*/
@t\4@>@<Forbidden cases detected in |main_control|@>@+@, any_mode(mac_param):
  report_illegal_case();@+break;
@<Math-only cases in non-math modes, or vice versa@>: insert_dollar_sign();@+break;
@t\4@>@<Cases of |main_control| that build boxes and lists@>@;
@t\4@>@<Cases of |main_control| that don't depend on |mode|@>@;
@t\4@>@<Cases of |main_control| that are for extensions to \TeX@>@;

@ Here is a list of cases where the user has probably gotten into or out of math
mode by mistake. \TeX\ will insert a dollar sign and rescan the current token.

@d non_math(A) case vmode+A: case hmode+A

@<Math-only cases in non-math modes...@>=
non_math(sup_mark): non_math(sub_mark): non_math(math_char_num):
non_math(math_given): non_math(math_comp): non_math(delim_num):
non_math(left_right): non_math(above): non_math(radical):
non_math(math_style): non_math(math_choice): non_math(vcenter):
non_math(non_script): non_math(mkern): non_math(limit_switch):
non_math(mskip): non_math(math_accent):
case mmode+endv: case mmode+par_end: case mmode+stop:
  case mmode+vskip: case mmode+un_vbox:
case mmode+valign: case mmode+hrule

@ @<Declare action...@>=
static void insert_dollar_sign(void)
{@+back_input();cur_tok=math_shift_token+'$';
print_err("Missing $ inserted");
@.Missing \$ inserted@>
help2("I've inserted a begin-math/end-math symbol since I think",@/
"you left one out. Proceed, with fingers crossed.");ins_error();
}

@ When erroneous situations arise, \TeX\ usually issues an error message
specific to the particular error. For example, `\.{\\noalign}' should
not appear in any mode, since it is recognized by the |align_peek| routine
in all of its legitimate appearances; a special error message is given
when `\.{\\noalign}' occurs elsewhere. But sometimes the most appropriate
error message is simply that the user is not allowed to do what he or she
has attempted. For example, `\.{\\moveleft}' is allowed only in vertical mode,
and `\.{\\lower}' only in non-vertical modes.  Such cases are enumerated
here and in the other sections referred to under `See also \dots.'

@<Forbidden cases...@>=
case vmode+vmove: case hmode+hmove: case mmode+hmove: any_mode(last_item):

@ The `|you_cant|' procedure prints a line saying that the current command
is illegal in the current mode; it identifies these things symbolically.

@<Declare action...@>=
static void you_cant(void)
{@+print_err("You can't use `");
@.You can't use x in y mode@>
print_cmd_chr(cur_cmd, cur_chr);
print("' in ");print_mode(mode);
}

@ @<Declare act...@>=
static void report_illegal_case(void)
{@+you_cant();
help4("Sorry, but I'm not programmed to handle this case;",@/
"I'll just pretend that you didn't ask for it.",@/
"If you're in the wrong mode, you might be able to",@/
"return to the right one by typing `I}' or `I$' or `I\\par'.");@/
error();
}

@ Some operations are allowed only in privileged modes, i.e., in cases
that |mode > 0|. The |privileged| function is used to detect violations
of this rule; it issues an error message and returns |false| if the
current |mode| is negative.

@<Declare act...@>=
static bool privileged(void)
{@+if (mode > 0) return true;
else{@+report_illegal_case();return false;
  }
}

@ Either \.{\\dump} or \.{\\end} will cause |main_control| to enter the
endgame, since both of them have `|stop|' as their command code.

@<Put each...@>=
primitive("end", stop, 0);@/
@!@:end\_}{\.{\\end} primitive@>
primitive("dump", stop, 1);@/
@!@:dump\_}{\.{\\dump} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case stop: if (chr_code==1) print_esc("dump");@+else print_esc("end");@+break;

@ We don't want to leave |main_control| immediately when a |stop| command
is sensed, because it may be necessary to invoke an \.{\\output} routine
several times before things really grind to a halt. (The output routine
might even say `\.{\\gdef\\end\{...\}}', to prolong the life of the job.)
Therefore |its_all_over| is |true| only when the current page
and contribution list are empty, and when the last output was not a
``dead cycle.''

@<Declare act...@>=
static bool its_all_over(void) /*do this when \.{\\end} or \.{\\dump} occurs*/
{@+
if (privileged())
  {@+if ((page_head==page_tail)&&(dead_cycles==0))
    {
       if (head==tail) return true;
       else if (option_no_empty_page)
       { pointer p=link(head);
         while (p!=null)
         { if (is_visible(p)) break;
           else p=link(p);
         }
         if (p==null) return true;
       }
    }
  back_input(); /*we will try to end again after ejecting residual material*/
  tail_append(new_set_node());
  set_extent(tail)=new_xdimen(dimen_par(hsize_code),
      dimen_par_hfactor(hsize_code),dimen_par_vfactor(hsize_code));
  tail_append(new_glue(fill_glue));
  tail_append(new_penalty(2*(eject_penalty)));@/
  build_page(); /*append \.{\\hbox to \\hsize\{\}\\vfill\\penalty-'10000000000}*/
  }
return false;
}

@* Building boxes and lists.
The most important parts of |main_control| are concerned with \TeX's
chief mission of box-making. We need to control the activities that put
entries on vlists and hlists, as well as the activities that convert
those lists into boxes. All of the necessary machinery has already been
developed; it remains for us to ``push the buttons'' at the right times.

@ As an introduction to these routines, let's consider one of the simplest
cases: What happens when `\.{\\hrule}' occurs in vertical mode, or
`\.{\\vrule}' in horizontal mode or math mode? The code in |main_control|
is short, since the |scan_rule_spec| routine already does most of what is
required; thus, there is no need for a special action procedure.

Note that baselineskip calculations are disabled after a rule in vertical
mode, by setting |prev_depth=ignore_depth|.

@<Cases of |main_control| that build...@>=
case vmode+hrule: case hmode+vrule: case mmode+vrule: {@+tail_append(scan_rule_spec());
  if (abs(mode)==vmode) prev_depth=ignore_depth;
  else if (abs(mode)==hmode) space_factor=1000;
  } @+break;

@ The processing of things like \.{\\hskip} and \.{\\vskip} is slightly
more complicated. But the code in |main_control| is very short, since
it simply calls on the action routine |append_glue|. Similarly, \.{\\kern}
activates |append_kern|.

@<Cases of |main_control| that build...@>=
case vmode+vskip: case hmode+hskip: case mmode+hskip:
  case mmode+mskip: append_glue();@+break;
any_mode(kern): case mmode+mkern: append_kern();@+break;

@ The |hskip| and |vskip| command codes are used for control sequences
like \.{\\hss} and \.{\\vfil} as well as for \.{\\hskip} and \.{\\vskip}.
The difference is in the value of |cur_chr|.

@d fil_code 0 /*identifies \.{\\hfil} and \.{\\vfil}*/
@d fill_code 1 /*identifies \.{\\hfill} and \.{\\vfill}*/
@d ss_code 2 /*identifies \.{\\hss} and \.{\\vss}*/
@d fil_neg_code 3 /*identifies \.{\\hfilneg} and \.{\\vfilneg}*/
@d skip_code 4 /*identifies \.{\\hskip} and \.{\\vskip}*/
@d mskip_code 5 /*identifies \.{\\mskip}*/

@<Put each...@>=
primitive("hskip", hskip, skip_code);@/
@!@:hskip\_}{\.{\\hskip} primitive@>
primitive("hfil", hskip, fil_code);
@!@:hfil\_}{\.{\\hfil} primitive@>
primitive("hfill", hskip, fill_code);@/
@!@:hfill\_}{\.{\\hfill} primitive@>
primitive("hss", hskip, ss_code);
@!@:hss\_}{\.{\\hss} primitive@>
primitive("hfilneg", hskip, fil_neg_code);@/
@!@:hfil\_neg\_}{\.{\\hfilneg} primitive@>
primitive("vskip", vskip, skip_code);@/
@!@:vskip\_}{\.{\\vskip} primitive@>
primitive("vfil", vskip, fil_code);
@!@:vfil\_}{\.{\\vfil} primitive@>
primitive("vfill", vskip, fill_code);@/
@!@:vfill\_}{\.{\\vfill} primitive@>
primitive("vss", vskip, ss_code);
@!@:vss\_}{\.{\\vss} primitive@>
primitive("vfilneg", vskip, fil_neg_code);@/
@!@:vfil\_neg\_}{\.{\\vfilneg} primitive@>
primitive("mskip", mskip, mskip_code);@/
@!@:mskip\_}{\.{\\mskip} primitive@>
primitive("kern", kern, explicit);
@!@:kern\_}{\.{\\kern} primitive@>
primitive("mkern", mkern, mu_glue);@/
@!@:mkern\_}{\.{\\mkern} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case hskip: switch (chr_code) {
  case skip_code: print_esc("hskip");@+break;
  case fil_code: print_esc("hfil");@+break;
  case fill_code: print_esc("hfill");@+break;
  case ss_code: print_esc("hss");@+break;
  default:print_esc("hfilneg");
  } @+break;
case vskip: switch (chr_code) {
  case skip_code: print_esc("vskip");@+break;
  case fil_code: print_esc("vfil");@+break;
  case fill_code: print_esc("vfill");@+break;
  case ss_code: print_esc("vss");@+break;
  default:print_esc("vfilneg");
  } @+break;
case mskip: print_esc("mskip");@+break;
case kern: print_esc("kern");@+break;
case mkern: print_esc("mkern");@+break;

@ All the work relating to glue creation has been relegated to the
following subroutine. It does not call |build_page|, because it is
used in at least one place where that would be a mistake.

@<Declare action...@>=
static void append_glue(void)
{@+small_number s; /*modifier of skip command*/
s=cur_chr;
switch (s) {
case fil_code: cur_val=fil_glue;@+break;
case fill_code: cur_val=fill_glue;@+break;
case ss_code: cur_val=ss_glue;@+break;
case fil_neg_code: cur_val=fil_neg_glue;@+break;
case skip_code: scan_glue(glue_val);@+break;
case mskip_code: scan_glue(mu_val);
}  /*now |cur_val| points to the glue specification*/
tail_append(new_glue(cur_val));
if (s >= skip_code)
  {@+decr(glue_ref_count(cur_val));
  if (s > skip_code) subtype(tail)=mu_glue;
  }
}

@ @<Declare act...@>=
static void append_kern(void)
{@+quarterword s; /*|subtype| of the kern node*/
s=cur_chr;scan_dimen(s==mu_glue, false, false);
tail_append(new_kern(cur_val));subtype(tail)=s;
}

@ Many of the actions related to box-making are triggered by the appearance
of braces in the input. For example, when the user says `\.{\\hbox}
\.{to} \.{100pt\{$\langle\,\hbox{\rm hlist}\,\rangle$\}}' in vertical mode,
the information about the box size (100pt, |exactly|) is put onto |save_stack|
with a level boundary word just above it, and |cur_group=adjusted_hbox_group|;
\TeX\ enters restricted horizontal mode to process the hlist. The right
brace eventually causes |save_stack| to be restored to its former state,
at which time the information about the box size (100pt, |exactly|) is
available once again; a box is packaged and we leave restricted horizontal
mode, appending the new box to the current list of the enclosing mode
(in this case to the current list of vertical mode), followed by any
vertical adjustments that were removed from the box by |hpack|.

The next few sections of the program are therefore concerned with the
treatment of left and right curly braces.

@ If a left brace occurs in the middle of a page or paragraph, it simply
introduces a new level of grouping, and the matching right brace will not have
such a drastic effect. Such grouping affects neither the mode nor the
current list.

@<Cases of |main_control| that build...@>=
non_math(left_brace): new_save_level(simple_group);@+break;
any_mode(begin_group): new_save_level(semi_simple_group);@+break;
any_mode(end_group): if (cur_group==semi_simple_group) unsave();
  else off_save();@+break;

@ We have to deal with errors in which braces and such things are not
properly nested. Sometimes the user makes an error of commission by
inserting an extra symbol, but sometimes the user makes an error of omission.
\TeX\ can't always tell one from the other, so it makes a guess and tries
to avoid getting into a loop.

The |off_save| routine is called when the current group code is wrong. It tries
to insert something into the user's input that will help clean off
the top level.

@<Declare act...@>=
static void off_save(void)
{@+pointer p; /*inserted token*/
if (cur_group==bottom_level)
  @<Drop current token and complain that it was unmatched@>@;
else{@+back_input();p=get_avail();link(temp_head)=p;
  print_err("Missing ");
  @<Prepare to insert a token that matches |cur_group|, and print what it
is@>;
  print(" inserted");ins_list(link(temp_head));
  help5("I've inserted something that you may have forgotten.",@/
  "(See the <inserted text> above.)",@/
  "With luck, this will get me unwedged. But if you",@/
  "really didn't forget anything, try typing `2' now; then",@/
  "my insertion and my current dilemma will both disappear.");
  error();
  }
}

@ At this point, |link(temp_head)==p|, a pointer to an empty one-word node.

@<Prepare to insert a token that matches |cur_group|...@>=
switch (cur_group) {
case semi_simple_group: {@+info(p)=cs_token_flag+frozen_end_group;
  print_esc("endgroup");
@.Missing \\endgroup inserted@>
  } @+break;
case math_shift_group: {@+info(p)=math_shift_token+'$';print_char('$');
@.Missing \$ inserted@>
  } @+break;
case math_left_group: {@+info(p)=cs_token_flag+frozen_right;link(p)=get_avail();
  p=link(p);info(p)=other_token+'.';print_esc("right.");
@.Missing \\right\hbox{.} inserted@>
@^null delimiter@>
  } @+break;
default:{@+info(p)=right_brace_token+'}';print_char('}');
@.Missing \} inserted@>
  }
}

@ @<Drop current token and complain that it was unmatched@>=
{@+print_err("Extra ");print_cmd_chr(cur_cmd, cur_chr);
@.Extra x@>
help1("Things are pretty mixed up, but I think the worst is over.");@/
error();
}

@ The routine for a |right_brace| character branches into many subcases,
since a variety of things may happen, depending on |cur_group|. Some
types of groups are not supposed to be ended by a right brace; error
messages are given in hopes of pinpointing the problem. Most branches
of this routine will be filled in later, when we are ready to understand
them; meanwhile, we must prepare ourselves to deal with such errors.

@<Cases of |main_control| that build...@>=
any_mode(right_brace): handle_right_brace();@+break;

@ @<Declare the procedure called |handle_right_brace|@>=
static void handle_right_brace(void)
{@+pointer p, @!q; /*for short-term use*/
scaled @!d; /*holds |split_max_depth| in |insert_group|*/
int @!f; /*holds |floating_penalty| in |insert_group|*/
switch (cur_group) {
case simple_group: unsave();@+break;
case bottom_level: {@+print_err("Too many }'s");
@.Too many \}'s@>
  help2("You've closed more groups than you opened.",@/
  "Such booboos are generally harmless, so keep going.");error();
  } @+break;
case semi_simple_group: case math_shift_group:
  case math_left_group: extra_right_brace();@+break;
@t\4@>@<Cases of |handle_right_brace| where a |right_brace| triggers a delayed
action@>@;
default:confusion("rightbrace");
@:this can't happen rightbrace}{\quad rightbrace@>
}
}

@ @<Declare act...@>=
static void extra_right_brace(void)
{@+print_err("Extra }, or forgotten ");
@.Extra \}, or forgotten x@>
switch (cur_group) {
case semi_simple_group: print_esc("endgroup");@+break;
case math_shift_group: print_char('$');@+break;
case math_left_group: print_esc("right");
} @/
help5("I've deleted a group-closing symbol because it seems to be",@/
"spurious, as in `$x}$'. But perhaps the } is legitimate and",@/
"you forgot something else, as in `\\hbox{$x}'. In such cases",@/
"the way to recover is to insert both the forgotten and the",@/
"deleted material, e.g., by typing `I$}'.");error();
incr(align_state);
}

@ Here is where we clear the parameters that are supposed to revert to their
default values after every paragraph and when internal vertical mode is entered.

@<Declare act...@>=
static void normal_paragraph(void)
{@+if (looseness!=0) eq_word_define(int_base+looseness_code, 0);
if (hang_indent!=0) eq_word_define(dimen_base+hang_indent_code, 0);
if (hang_after!=1) eq_word_define(int_base+hang_after_code, 1);
if (par_shape_ptr!=null) eq_define(par_shape_loc, shape_ref, null);
if (inter_line_penalties_ptr!=null)
  eq_define(inter_line_penalties_loc, shape_ref, null);
}

@ Now let's turn to the question of how \.{\\hbox} is treated. We actually
need to consider also a slightly larger context, since constructions like
`\.{\\setbox3=}\penalty0\.{\\hbox...}' and
`\.{\\leaders}\penalty0\.{\\hbox...}' and
`\.{\\lower3.8pt\\hbox...}'
are supposed to invoke quite
different actions after the box has been packaged. Conversely,
constructions like `\.{\\setbox3=}' can be followed by a variety of
different kinds of boxes, and we would like to encode such things in an
efficient way.

In other words, there are two problems: to represent the context of a box,
and to represent its type.

The first problem is solved by putting a ``context code'' on the |save_stack|,
just below the two entries that give the dimensions produced by |scan_spec|.
The context code is either a (signed) shift amount, or it is a large
integer | >= box_flag|, where |box_flag==@t$2^{30}$@>|. Codes |box_flag| through
|global_box_flag-1| represent `\.{\\setbox0}' through `\.{\\setbox32767}';
codes |global_box_flag| through |ship_out_flag-1| represent
`\.{\\global\\setbox0}' through `\.{\\global\\setbox32767}';
code |ship_out_flag| represents `\.{\\shipout}'; and codes |leader_flag|
through |leader_flag+2| represent `\.{\\leaders}', `\.{\\cleaders}',
and `\.{\\xleaders}'.

The second problem is solved by giving the command code |make_box| to all
control sequences that produce a box, and by using the following |chr_code|
values to distinguish between them: |box_code|, |copy_code|, |last_box_code|,
|vsplit_code|, |vtop_code|, |vtop_code+vmode|, and |vtop_code+hmode|, where
the latter two are used to denote \.{\\vbox} and \.{\\hbox}, respectively.

@d box_flag 010000000000 /*context code for `\.{\\setbox0}'*/
@d global_box_flag 010000100000 /*context code for `\.{\\global\\setbox0}'*/
@d ship_out_flag 010000200000 /*context code for `\.{\\shipout}'*/
@d leader_flag 010000200001 /*context code for `\.{\\leaders}'*/
@d box_code 0 /*|chr_code| for `\.{\\box}'*/
@d copy_code 1 /*|chr_code| for `\.{\\copy}'*/
@d last_box_code 2 /*|chr_code| for `\.{\\lastbox}'*/
@d vsplit_code 3 /*|chr_code| for `\.{\\vsplit}'*/
@d vtop_code 4 /*|chr_code| for `\.{\\vtop}'*/

@<Put each...@>=
primitive("moveleft", hmove, 1);
@!@:move\_left\_}{\.{\\moveleft} primitive@>
primitive("moveright", hmove, 0);@/
@!@:move\_right\_}{\.{\\moveright} primitive@>
primitive("raise", vmove, 1);
@!@:raise\_}{\.{\\raise} primitive@>
primitive("lower", vmove, 0);
@!@:lower\_}{\.{\\lower} primitive@>
@#
primitive("box", make_box, box_code);
@!@:box\_}{\.{\\box} primitive@>
primitive("copy", make_box, copy_code);
@!@:copy\_}{\.{\\copy} primitive@>
primitive("lastbox", make_box, last_box_code);
@!@:last\_box\_}{\.{\\lastbox} primitive@>
primitive("vsplit", make_box, vsplit_code);
@!@:vsplit\_}{\.{\\vsplit} primitive@>
primitive("vtop", make_box, vtop_code);@/
@!@:vtop\_}{\.{\\vtop} primitive@>
primitive("vbox", make_box, vtop_code+vmode);
@!@:vbox\_}{\.{\\vbox} primitive@>
primitive("hbox", make_box, vtop_code+hmode);@/
@!@:hbox\_}{\.{\\hbox} primitive@>
primitive("shipout", leader_ship, a_leaders-1); /*|ship_out_flag==leader_flag-1|*/
@!@:ship\_out\_}{\.{\\shipout} primitive@>
primitive("leaders", leader_ship, a_leaders);
@!@:leaders\_}{\.{\\leaders} primitive@>
primitive("cleaders", leader_ship, c_leaders);
@!@:c\_leaders\_}{\.{\\cleaders} primitive@>
primitive("xleaders", leader_ship, x_leaders);
@!@:x\_leaders\_}{\.{\\xleaders} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case hmove: if (chr_code==1) print_esc("moveleft");@+else print_esc("moveright");@+break;
case vmove: if (chr_code==1) print_esc("raise");@+else print_esc("lower");@+break;
case make_box: switch (chr_code) {
  case box_code: print_esc("box");@+break;
  case copy_code: print_esc("copy");@+break;
  case last_box_code: print_esc("lastbox");@+break;
  case vsplit_code: print_esc("vsplit");@+break;
  case vtop_code: print_esc("vtop");@+break;
  case vtop_code+vmode: print_esc("vbox");@+break;
  default:print_esc("hbox");
  } @+break;
case leader_ship: if (chr_code==a_leaders) print_esc("leaders");
  else if (chr_code==c_leaders) print_esc("cleaders");
  else if (chr_code==x_leaders) print_esc("xleaders");
  else print_esc("shipout");@+break;

@ Constructions that require a box are started by calling |scan_box| with
a specified context code. The |scan_box| routine verifies
that a |make_box| command comes next and then it calls |begin_box|.

@<Cases of |main_control| that build...@>=
case vmode+hmove: case hmode+vmove: case mmode+vmove: {@+t=cur_chr;
  scan_normal_dimen;
  if (t==0) scan_box(cur_val);@+else scan_box(-cur_val);
  } @+break;
any_mode(leader_ship): scan_box(leader_flag-a_leaders+cur_chr);@+break;
any_mode(make_box): begin_box(0);@+break;

@ The global variable |cur_box| will point to a newly made box. If the box
is void, we will have |cur_box==null|. Otherwise we will have
|type(cur_box)==hlist_node| or |vlist_node| or |rule_node|; the |rule_node|
case can occur only with leaders.

@<Glob...@>=
static pointer @!cur_box; /*box to be placed into its context*/

@ The |box_end| procedure does the right thing with |cur_box|, if
|box_context| represents the context as explained above.

@<Declare act...@>=
static void box_end(int @!box_context)
{@+pointer p; /*|ord_noad| for new box in math mode*/
small_number @!a; /*global prefix*/
if (box_context < box_flag) @<Append box |cur_box| to the current list, shifted
by |box_context|@>@;
else if (box_context < ship_out_flag) @<Store \(c)|cur_box| in a box register@>@;
else if (cur_box!=null)
  if (box_context > ship_out_flag) @<Append a new leader node that uses |cur_box|@>@;
  else ship_out(cur_box);
}

@ The global variable |adjust_tail| will be non-null if and only if the
current box might include adjustments that should be appended to the
current vertical list.

@<Append box |cur_box| to the current...@>=
{@+if (cur_box!=null)
  {@+shift_amount(cur_box)=box_context;
  if (abs(mode)==vmode)
    {@+append_to_vlist(cur_box);
    if (adjust_tail!=null)
      {@+if (adjust_head!=adjust_tail)
        {@+link(tail)=link(adjust_head);tail=adjust_tail;
        }
      adjust_tail=null;
      }
    if (mode > 0) build_page();
    }
  else{@+if (abs(mode)==hmode) space_factor=1000;
    else{@+p=new_noad();
      math_type(nucleus(p))=sub_box;
      info(nucleus(p))=cur_box;cur_box=p;
      }
    link(tail)=cur_box;tail=cur_box;
    }
  }
}

@ @<Store \(c)|cur_box| in a box register@>=
{@+if (box_context < global_box_flag)
  {@+cur_val=box_context-box_flag;a=0;
  }
else{@+cur_val=box_context-global_box_flag;a=4;
  }
if (cur_val < 256) define(box_base+cur_val, box_ref, cur_box);
else sa_def_box;
}

@ @<Append a new leader node...@>=
{@+@<Get the next non-blank non-relax...@>;
if (((cur_cmd==hskip)&&(abs(mode)!=vmode))||@|
   ((cur_cmd==vskip)&&(abs(mode)==vmode)))
  {@+append_glue();subtype(tail)=box_context-(leader_flag-a_leaders);
  leader_ptr(tail)=cur_box;
  }
else{@+print_err("Leaders not followed by proper glue");
@.Leaders not followed by...@>
  help3("You should say `\\leaders <box or rule><hskip or vskip>'.",@/
  "I found the <box or rule>, but there's no suitable",@/
  "<hskip or vskip>, so I'm ignoring these leaders.");back_error();
  flush_node_list(cur_box);
  }
}

@ Now that we can see what eventually happens to boxes, we can consider
the first steps in their creation. The |begin_box| routine is called when
|box_context| is a context specification, |cur_chr| specifies the type of
box desired, and |cur_cmd==make_box|.

@<Declare act...@>=
static void begin_box(int @!box_context)
{@+
pointer @!p, @!q; /*run through the current list*/
int @!m; /*the length of a replacement list*/
halfword @!k; /*0 or |vmode| or |hmode|*/
halfword @!n; /*a box number*/
switch (cur_chr) {
case box_code: {@+scan_register_num();fetch_box(cur_box);
  change_box(null); /*the box becomes void, at the same level*/
  } @+break;
case copy_code: {@+scan_register_num();fetch_box(q);cur_box=copy_node_list(q);
  } @+break;
case last_box_code: @<If the current list ends with a box node, delete it
from the list and make |cur_box| point to it; otherwise set |cur_box:=null|@>@;@+break;
case vsplit_code: @<Split off part of a vertical box, make |cur_box| point
to it@>@;@+break;
default:@<Initiate the construction of an hbox or vbox, then |return|@>@;
} @/
box_end(box_context); /*in simple cases, we use the box immediately*/
}

@ Note that the condition |!is_char_node(tail)| implies that |head!=tail|,
since |head| is a one-word node.

@<If the current list ends with a box node, delete it...@>=
{@+cur_box=null;
if (abs(mode)==mmode)
  {@+you_cant();help1("Sorry; this \\lastbox will be void.");error();
  }
else if ((mode==vmode)&&(head==tail))
  {@+you_cant();
  help2("Sorry...I usually can't take things from the current page.",@/
    "This \\lastbox will therefore be void.");error();
  }
else{@+if (!is_char_node(tail))
    if ((type(tail)==hlist_node)||(type(tail)==vlist_node))
      @<Remove the last box, unless it's part of a discretionary@>;
  }
}

@ @<Remove the last box...@>=
{@+q=head;
@/do@+{p=q;
if (!is_char_node(q)) if (type(q)==disc_node)
  {@+for (m=1; m<=replace_count(q); m++) p=link(p);
  if (p==tail) goto done;
  }
q=link(p);
}@+ while (!(q==tail));
cur_box=tail;shift_amount(cur_box)=0;
tail=p;link(p)=null;
done: ;}

@ Here we deal with things like `\.{\\vsplit 13 to 100pt}'.

@<Split off part of a vertical box, make |cur_box| point to it@>=
{@+scan_register_num();n=cur_val;
if (!scan_keyword("to"))
@.to@>
  {@+print_err("Missing `to' inserted");
@.Missing `to' inserted@>
  help2("I'm working on `\\vsplit<box number> to <dimen>';",@/
  "will look for the <dimen> next.");error();
  }
scan_normal_dimen;
cur_box=vsplit(n, cur_val);
}

@ Here is where we enter restricted horizontal mode or internal vertical
mode, in order to make a box.

@<Initiate the construction of an hbox or vbox, then |return|@>=
{@+k=cur_chr-vtop_code;saved(0)=box_context;
if (k==hmode)
  if ((box_context < box_flag)&&(abs(mode)==vmode))
    scan_spec(adjusted_hbox_group, true);
  else scan_spec(hbox_group, true);
else{@+if (k==vmode) scan_spec(vbox_group, true);
  else{@+scan_spec(vtop_group, true);k=vmode;
    }
  normal_paragraph();
  }
push_nest();mode=-k;
if (k==vmode)
  {@+prev_depth=ignore_depth;
  if (every_vbox!=null) begin_token_list(every_vbox, every_vbox_text);
  }
else{@+space_factor=1000;
  if (every_hbox!=null) begin_token_list(every_hbox, every_hbox_text);
  }
return;
}

@ @<Declare act...@>=
static void scan_box(int @!box_context)
   /*the next input should specify a box or perhaps a rule*/
{@+@<Get the next non-blank non-relax...@>;
if (cur_cmd==make_box) begin_box(box_context);
else if ((box_context >= leader_flag)&&((cur_cmd==hrule)||(cur_cmd==vrule)))
  {@+cur_box=scan_rule_spec();box_end(box_context);
  }
else{@+@t@>@;@/
  print_err("A <box> was supposed to be here");@/
@.A <box> was supposed to...@>
  help3("I was expecting to see \\hbox or \\vbox or \\copy or \\box or",@/
  "something like that. So you might find something missing in",@/
  "your output. But keep trying; you can fix this later.");back_error();
  }
}

@ When the right brace occurs at the end of an \.{\\hbox} or \.{\\vbox} or
\.{\\vtop} construction, the |package| routine comes into action. We might
also have to finish a paragraph that hasn't ended.

@<Cases of |handle...@>=
case hbox_group: package(0);@+break;
case adjusted_hbox_group: {@+adjust_tail=adjust_head;package(0);
  } @+break;
case vbox_group: {@+end_graf();package(0);
  } @+break;
case vtop_group: {@+end_graf();package(vtop_code);
  } @+break;

@ @<Declare action...@>=
static void package(small_number @!c)
{@+scaled h; /*height of box*/
pointer @!p; /*first node in a box*/
scaled @!d; /*max depth*/
d=box_max_depth;unsave();save_ptr=save_ptr-3;
if (mode==-hmode) cur_box=hpack(link(head), saved(2), saved_hfactor(2), saved_vfactor(2),  saved(1));
else{@+cur_box=vpackage(link(head), saved(2), saved_hfactor(2), saved_vfactor(2), saved(1), d);
  if (c==vtop_code) @<Readjust the height and depth of |cur_box|, for \.{\\vtop}@>;
  }
pop_nest();box_end(saved(0));
}

@ The height of a `\.{\\vtop}' box is inherited from the first item on its list,
if that item is an |hlist_node|, |vlist_node|, or |rule_node|; otherwise
the \.{\\vtop} height is zero.


@<Readjust the height...@>=
{@+if (type(cur_box)==vlist_node)
  {@+h=0;p=list_ptr(cur_box);
    if (p!=null && type(p) <= rule_node) h=height(p);
    depth(cur_box)=depth(cur_box)-h+height(cur_box);height(cur_box)=h;
  }
  else if (type(cur_box) == whatsit_node)
  { if (subtype(cur_box)==vpack_node)
      pack_limit(cur_box)^=MAX_DIMEN+1;
    else if(subtype(cur_box)==vset_node)
    { height(cur_box)=height(cur_box)+depth(cur_box);
      depth(cur_box)^=MAX_DIMEN+1;
    }
  }
}

@ A paragraph begins when horizontal-mode material occurs in vertical mode,
or when the paragraph is explicitly started by `\.{\\indent}' or
`\.{\\noindent}'.

@<Put each...@>=
primitive("indent", start_par, 1);
@!@:indent\_}{\.{\\indent} primitive@>
primitive("noindent", start_par, 0);
@!@:no\_indent\_}{\.{\\noindent} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case start_par: if (chr_code==0) print_esc("noindent");@+else print_esc("indent");@+break;

@ @<Cases of |main_control| that build...@>=
case vmode+start_par: new_graf(cur_chr > 0);@+break;
case vmode+letter: case vmode+other_char:
  case vmode+char_num: case vmode+char_given:
   case vmode+math_shift: case vmode+un_hbox:
  case vmode+vrule:
   case vmode+accent: case vmode+discretionary:
  case vmode+hskip: case vmode+valign:
   case vmode+ex_space: case vmode+no_boundary: @t@>@;@/
  {@+back_input();new_graf(true);
  } @+break;

@ @<Declare act...@>=
static small_number norm_min(int @!h)
{@+if (h <= 0) return 1;@+else if (h >= 63) return 63;@+
else return h;
}
@#
static void new_graf(bool @!indented)
{@+prev_graf=0;
if ((mode==vmode)||(head!=tail))
  tail_append(new_param_glue(par_skip_code));
push_nest();mode=hmode;space_factor=1000;set_cur_lang;clang=cur_lang;
prev_graf=(norm_min(left_hyphen_min)*0100+norm_min(right_hyphen_min))
             *0200000+cur_lang;
if (indented)
  {@+tail=new_null_box();link(head)=tail;width(tail)=par_indent;@+
  }
if (every_par!=null) begin_token_list(every_par, every_par_text);
if (nest_ptr==1) build_page(); /*put |par_skip| glue on current page*/
}

@ @<Cases of |main_control| that build...@>=
case hmode+start_par: case mmode+start_par: indent_in_hmode();@+break;

@ @<Declare act...@>=
static void indent_in_hmode(void)
{@+pointer p, @!q;
if (cur_chr > 0)  /*\.{\\indent}*/
  {@+p=new_null_box();width(p)=par_indent;
  if (abs(mode)==hmode) space_factor=1000;
  else{@+q=new_noad();math_type(nucleus(q))=sub_box;
    info(nucleus(q))=p;p=q;
    }
  tail_append(p);
  }
}

@ A paragraph ends when a |par_end| command is sensed, or when we are in
horizontal mode when reaching the right brace of vertical-mode routines
like \.{\\vbox}, \.{\\insert}, or \.{\\output}.

@<Cases of |main_control| that build...@>=
case vmode+par_end: {@+normal_paragraph();
  if (mode > 0) build_page();
  } @+break;
case hmode+par_end: {@+if (align_state < 0) off_save(); /*this tries to
    recover from an alignment that didn't end properly*/
  end_graf(); /*this takes us to the enclosing mode, if |mode > 0|*/
  if (mode==vmode) build_page();
  } @+break;
case hmode+stop: case hmode+vskip: case hmode+hrule:
  case hmode+un_vbox: case hmode+halign: head_for_vmode();@+break;

@ @<Declare act...@>=
static void head_for_vmode(void)
{@+if (mode < 0)
  if (cur_cmd!=hrule) off_save();
  else{@+print_err("You can't use `");
    print_esc("hrule");print("' here except with leaders");
@.You can't use \\hrule...@>
    help2("To put a horizontal rule in an hbox or an alignment,",@/
      "you should use \\leaders or \\hrulefill (see The TeXbook).");
    error();
    }
else{@+back_input();cur_tok=par_token;back_input();token_type=inserted;
  }
}

@ @<Declare act...@>=
static void end_graf(void)
{@+if (mode==hmode)
  {@+if (head==tail) pop_nest(); /*null paragraphs are ignored*/
  else hline_break(widow_penalty);
  normal_paragraph();
  error_count=0;
  }
}

@ Insertion and adjustment and mark nodes are constructed by the following
pieces of the program.

@<Cases of |main_control| that build...@>=
any_mode(insert): case hmode+vadjust:
  case mmode+vadjust: begin_insert_or_adjust();@+break;
any_mode(mark): make_mark();@+break;

@ @<Forbidden...@>=
case vmode+vadjust:

@ @<Declare act...@>=
static void begin_insert_or_adjust(void)
{@+if (cur_cmd==vadjust) cur_val=255;
else{@+scan_eight_bit_int();
  if (cur_val==255)
    {@+print_err("You can't ");print_esc("insert");print_int(255);
@.You can't \\insert255@>
    help1("I'm changing to \\insert0; box 255 is special.");
    error();cur_val=0;
    }
  }
saved(0)=cur_val;incr(save_ptr);
new_save_level(insert_group);scan_left_brace();normal_paragraph();
push_nest();mode=-vmode;prev_depth=ignore_depth;
}

@ @<Cases of |handle...@>=
case insert_group: {@+end_graf();q=split_top_skip;add_glue_ref(q);
  d=split_max_depth;f=floating_penalty;unsave();decr(save_ptr);
   /*now |saved(0)| is the insertion number, or 255 for |vadjust|*/
  p=link(head);pop_nest();
  if (saved(0) < 255)
    {@+tail_append(get_node(ins_node_size));
    type(tail)=ins_node;subtype(tail)=qi(saved(0));
    height(tail)=0; ins_ptr(tail)=p; hget_stream_no(subtype(tail));
    split_top_ptr(tail)=q;depth(tail)=d;float_cost(tail)=f;
    }
  else{@+tail_append(get_node(small_node_size));
    type(tail)=adjust_node;@/
    subtype(tail)=0; /*the |subtype| is not used*/
    adjust_ptr(tail)=p;delete_glue_ref(q);
    }
  if (nest_ptr==0) build_page();
  } @+break;
case output_group: @<Resume the page builder...@>@;@+break;
case page_group: hfinish_page_group();@+break;
case stream_group: hfinish_stream_group();@+break;
case stream_before_group:  hfinish_stream_before_group();@+break;
case stream_after_group: hfinish_stream_after_group();@+break;
case outline_group: hfinish_outline_group();@+break;

@ @<Declare act...@>=
static void make_mark(void)
{@+pointer p; /*new node*/
halfword @!c; /*the mark class*/
if (cur_chr==0) c=0;
else{@+scan_register_num();c=cur_val;
  }
p=scan_toks(false, true);p=get_node(small_node_size);
mark_class(p)=c;
type(p)=mark_node;subtype(p)=0; /*the |subtype| is not used*/
mark_ptr(p)=def_ref;link(tail)=p;tail=p;
}

@ Penalty nodes get into a list via the |break_penalty| command.
@^penalties@>

@<Cases of |main_control| that build...@>=
any_mode(break_penalty): append_penalty();@+break;

@ @<Declare action...@>=
static void append_penalty(void)
{@+scan_int();tail_append(new_penalty(cur_val));
if (mode==vmode) build_page();
}

@ The |remove_item| command removes a penalty, kern, or glue node if it
appears at the tail of the current list, using a brute-force linear scan.
Like \.{\\lastbox}, this command is not allowed in vertical mode (except
internal vertical mode), since the current list in vertical mode is sent
to the page builder.  But if we happen to be able to implement it in
vertical mode, we do.

@<Cases of |main_control| that build...@>=
any_mode(remove_item): delete_last();@+break;

@ When |delete_last| is called, |cur_chr| is the |type| of node that
will be deleted, if present.

@<Declare action...@>=
static void delete_last(void)
{@+
pointer @!p, @!q; /*run through the current list*/
int @!m; /*the length of a replacement list*/
if ((mode==vmode)&&(tail==head))
  @<Apologize for inability to do the operation now, unless \.{\\unskip} follows
non-glue@>@;
else{@+if (!is_char_node(tail)) if (type(tail)==cur_chr)
    {@+q=head;
    @/do@+{p=q;
    if (!is_char_node(q)) if (type(q)==disc_node)
      {@+for (m=1; m<=replace_count(q); m++) p=link(p);
      if (p==tail) return;
      }
    q=link(p);
    }@+ while (!(q==tail));
    link(p)=null;flush_node_list(tail);tail=p;
    }
  }
}

@ @<Apologize for inability to do the operation...@>=
{@+if ((cur_chr!=glue_node)||(last_glue!=max_halfword))
  {@+you_cant();
  help2("Sorry...I usually can't take things from the current page.",@/
    "Try `I\\vskip-\\lastskip' instead.");
  if (cur_chr==kern_node) help_line[0]=
    ("Try `I\\kern-\\lastkern' instead.");
  else if (cur_chr!=glue_node) help_line[0]=@|
    ("Perhaps you can make the output routine do it.");
  error();
  }
}

@ @<Put each...@>=
primitive("unpenalty", remove_item, penalty_node);@/
@!@:un\_penalty\_}{\.{\\unpenalty} primitive@>
primitive("unkern", remove_item, kern_node);@/
@!@:un\_kern\_}{\.{\\unkern} primitive@>
primitive("unskip", remove_item, glue_node);@/
@!@:un\_skip\_}{\.{\\unskip} primitive@>
primitive("unhbox", un_hbox, box_code);@/
@!@:un\_hbox\_}{\.{\\unhbox} primitive@>
primitive("unhcopy", un_hbox, copy_code);@/
@!@:un\_hcopy\_}{\.{\\unhcopy} primitive@>
primitive("unvbox", un_vbox, box_code);@/
@!@:un\_vbox\_}{\.{\\unvbox} primitive@>
primitive("unvcopy", un_vbox, copy_code);@/
@!@:un\_vcopy\_}{\.{\\unvcopy} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case remove_item: if (chr_code==glue_node) print_esc("unskip");
  else if (chr_code==kern_node) print_esc("unkern");
  else print_esc("unpenalty");@+break;
case un_hbox: if (chr_code==copy_code) print_esc("unhcopy");
  else print_esc("unhbox");@+break;
case un_vbox: if (chr_code==copy_code) print_esc("unvcopy")
  @<Cases of |un_vbox| for |print_cmd_chr|@>;@/
  else print_esc("unvbox");@+break;

@ The |un_hbox| and |un_vbox| commands unwrap one of the 256 current boxes.

@<Cases of |main_control| that build...@>=
case vmode+un_vbox: case hmode+un_hbox:
  case mmode+un_hbox: unpackage();@+break;

@ @<Declare act...@>=
static void unpackage(void)
{@+
pointer p; /*the box*/
int @!c; /*should we copy?*/
if (cur_chr > copy_code) @<Handle saved items and |goto done|@>;
c=cur_chr;scan_register_num();fetch_box(p);
if (p==null) return;
if ((abs(mode)==mmode)||@|
   ((abs(mode)==vmode)&& (type(p)!=vlist_node)
                      && (type(p)!=whatsit_node || (subtype(p)!=vset_node
                                                && subtype(p)!=vpack_node))) ||@|
   ((abs(mode)==hmode)&& (type(p)!=hlist_node)
                      && (type(p)!=whatsit_node || ( subtype(p)!=hset_node
                                                && subtype(p)!=hpack_node))))
  {@+print_err("Incompatible list can't be unboxed");
@.Incompatible list...@>
  help3("Sorry, Pandora. (You sneaky devil.)",@/
  "I refuse to unbox an \\hbox in vertical mode or vice versa.",@/
  "And I can't open any boxes in math mode.");@/
  error();return;
  }
if (c==copy_code) link(tail)=copy_node_list(list_ptr(p));
else{@+link(tail)=list_ptr(p);change_box(null);
  list_ptr(p)=null;flush_node_list(p);
  }
done:
while (link(tail)!=null) tail=link(tail);
}

@ @<Forbidden...@>=case vmode+ital_corr:

@ Italic corrections are converted to kern nodes when the |ital_corr| command
follows a character. In math mode the same effect is achieved by appending
a kern of zero here, since italic corrections are supplied later.

@<Cases of |main_control| that build...@>=
case hmode+ital_corr: append_italic_correction();@+break;
case mmode+ital_corr: tail_append(new_kern(0))@;@+break;

@ @<Declare act...@>=
static void append_italic_correction(void)
{@+
pointer p; /*|char_node| at the tail of the current list*/
internal_font_number @!f; /*the font in the |char_node|*/
if (tail!=head)
  {@+if (is_char_node(tail)) p=tail;
  else if (type(tail)==ligature_node) p=lig_char(tail);
  else return;
  f=font(p);
  tail_append(new_kern(char_italic(f, char_info(f, character(p)))));
  subtype(tail)=explicit;
  }
}

@ Discretionary nodes are easy in the common case `\.{\\-}', but in the
general case we must process three braces full of items.

@<Put each...@>=
primitive("-", discretionary, 1);
@!@:Single-character primitives -}{\quad\.{\\-}@>
primitive("discretionary", discretionary, 0);
@!@:discretionary\_}{\.{\\discretionary} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case discretionary: if (chr_code==1)
  print_esc("-");@+else print_esc("discretionary");@+break;

@ @<Cases of |main_control| that build...@>=
case hmode+discretionary: case mmode+discretionary: append_discretionary();@+break;

@ The space factor does not change when we append a discretionary node,
but it starts out as 1000 in the subsidiary lists.

@<Declare act...@>=
static void append_discretionary(void)
{@+int c; /*hyphen character*/
tail_append(new_disc());
if (cur_chr==1)
  {@+c=hyphen_char[cur_font];
  if (c >= 0) if (c < 256) pre_break(tail)=new_character(cur_font, c);
  }
else{@+incr(save_ptr);saved(-1)=0;new_save_level(disc_group);
  scan_left_brace();push_nest();mode=-hmode;space_factor=1000;
  }
}

@ The three discretionary lists are constructed somewhat as if they were
hboxes. A~subroutine called |build_discretionary| handles the transitions.
(This is sort of fun.)

@<Cases of |handle...@>=
case disc_group: build_discretionary();@+break;

@ @<Declare act...@>=
static void build_discretionary(void)
{@+
pointer p, @!q; /*for link manipulation*/
int @!n; /*length of discretionary list*/
unsave();
@<Prune the current list, if necessary, until it contains only |char_node|,
|kern_node|, |hlist_node|, |vlist_node|, |rule_node|, and |ligature_node|
items; set |n| to the length of the list, and set |q| to the list's tail@>;
p=link(head);pop_nest();
switch (saved(-1)) {
case 0: pre_break(tail)=p;@+break;
case 1: post_break(tail)=p;@+break;
case 2: @<Attach list |p| to the current list, and record its length; then
finish up and |return|@>;
}  /*there are no other cases*/
incr(saved(-1));new_save_level(disc_group);scan_left_brace();
push_nest();mode=-hmode;space_factor=1000;
}

@ @<Attach list |p| to the current...@>=
{@+if ((n > 0)&&(abs(mode)==mmode))
  {@+print_err("Illegal math ");print_esc("discretionary");
@.Illegal math \\disc...@>
  help2("Sorry: The third part of a discretionary break must be",@/
  "empty, in math formulas. I had to delete your third part.");
  flush_node_list(p);n=0;error();
  }
else link(tail)=p;
if (n <= 0x7F) set_replace_count(tail,n);
else{@+print_err("Discretionary list is too long");
@.Discretionary list is too long@>
  help2("Wow---I never thought anybody would tweak me here.",@/
  "You can't seriously need such a huge discretionary list?");
  error();
  }
if (n > 0) tail=q;
decr(save_ptr);return;
}

@ During this loop, |p==link(q)| and there are |n| items preceding |p|.

@<Prune the current list, if necessary...@>=
q=head;p=link(q);n=0;
while (p!=null)
  {@+if (!is_char_node(p)) if (type(p) > rule_node)
    if (type(p)!=kern_node) if (type(p)!=ligature_node)
      {@+print_err("Improper discretionary list");
@.Improper discretionary list@>
      help1("Discretionary lists must contain only boxes and kerns.");@/
      error();
      begin_diagnostic();
      print_nl("The following discretionary sublist has been deleted:");
@.The following...deleted@>
      show_box(p);
      end_diagnostic(true);
      flush_node_list(p);link(q)=null;goto done;
      }
  q=p;p=link(q);incr(n);
  }
done:

@ We need only one more thing to complete the horizontal mode routines, namely
the \.{\\accent} primitive.

@<Cases of |main_control| that build...@>=
case hmode+accent: make_accent();@+break;

@ The positioning of accents is straightforward but tedious. Given an accent
of width |a|, designed for characters of height |x| and slant |s|;
and given a character of width |w|, height |h|, and slant |t|: We will shift
the accent down by |x-h|, and we will insert kern nodes that have the effect of
centering the accent over the character and shifting the accent to the
right by $\delta={1\over2}(w-a)+h\cdot t-x\cdot s$.  If either character is
absent from the font, we will simply use the other, without shifting.

@<Declare act...@>=
static void make_accent(void)
{@+double s, @!t; /*amount of slant*/
pointer @!p, @!q, @!r; /*character, box, and kern nodes*/
internal_font_number @!f; /*relevant font*/
scaled @!a, @!h, @!x, @!w, @!delta; /*heights and widths, as explained above*/
four_quarters @!i; /*character information*/
scan_char_num();f=cur_font;p=new_character(f, cur_val);
if (p!=null)
  {@+x=x_height(f);s=slant(f)/float_constant(65536);
@^real division@>
  a=char_width(f, char_info(f, character(p)));@/
  do_assignments();@/
  @<Create a character node |q| for the next character, but set |q:=null|
if problems arise@>;
  if (q!=null) @<Append the accent with appropriate kerns, then set |p:=q|@>;
  link(tail)=p;tail=p;space_factor=1000;
  }
}

@ @<Create a character node |q| for the next...@>=
q=null;f=cur_font;
if ((cur_cmd==letter)||(cur_cmd==other_char)||(cur_cmd==char_given))
  q=new_character(f, cur_chr);
else if (cur_cmd==char_num)
  {@+scan_char_num();q=new_character(f, cur_val);
  }
else back_input()

@ The kern nodes appended here must be distinguished from other kerns, lest
they be wiped away by the hyphenation algorithm or by a previous line break.

The two kerns are computed with (machine-dependent) |double| arithmetic, but
their sum is machine-independent; the net effect is machine-independent,
because the user cannot remove these nodes nor access them via \.{\\lastkern}.

@<Append the accent with appropriate kerns...@>=
{@+t=slant(f)/float_constant(65536);
@^real division@>
i=char_info(f, character(q));
w=char_width(f, i);h=char_height(f, height_depth(i));
if (h!=x)  /*the accent must be shifted up or down*/
  {@+p=hpack(p, natural);shift_amount(p)=x-h;
  }
delta=round((w-a)/float_constant(2)+h*t-x*s);
@^real multiplication@>
@^real addition@>
r=new_kern(delta);subtype(r)=acc_kern;link(tail)=r;link(r)=p;
tail=new_kern(-a-delta);subtype(tail)=acc_kern;link(p)=tail;p=q;
}

@ When `\.{\\cr}' or `\.{\\span}' or a tab mark comes through the scanner
into |main_control|, it might be that the user has foolishly inserted
one of them into something that has nothing to do with alignment. But it is
far more likely that a left brace or right brace has been omitted, since
|get_next| takes actions appropriate to alignment only when `\.{\\cr}'
or `\.{\\span}' or tab marks occur with |align_state==0|. The following
program attempts to make an appropriate recovery.

@<Cases of |main_control| that build...@>=
any_mode(car_ret): any_mode(tab_mark): align_error();@+break;
any_mode(no_align): no_align_error();@+break;
any_mode(omit): omit_error();@+break;

@ @<Declare act...@>=
static void align_error(void)
{@+if (abs(align_state) > 2)
  @<Express consternation over the fact that no alignment is in progress@>@;
else{@+back_input();
  if (align_state < 0)
    {@+print_err("Missing { inserted");
@.Missing \{ inserted@>
    incr(align_state);cur_tok=left_brace_token+'{';
    }
  else{@+print_err("Missing } inserted");
@.Missing \} inserted@>
    decr(align_state);cur_tok=right_brace_token+'}';
    }
  help3("I've put in what seems to be necessary to fix",@/
    "the current column of the current alignment.",@/
    "Try to go on, since this might almost work.");ins_error();
  }
}

@ @<Express consternation...@>=
{@+print_err("Misplaced ");print_cmd_chr(cur_cmd, cur_chr);
@.Misplaced \&@>
@.Misplaced \\span@>
@.Misplaced \\cr@>
if (cur_tok==tab_token+'&')
  {@+help6("I can't figure out why you would want to use a tab mark",@/
  "here. If you just want an ampersand, the remedy is",@/
  "simple: Just type `I\\&' now. But if some right brace",@/
  "up above has ended a previous alignment prematurely,",@/
  "you're probably due for more error messages, and you",@/
  "might try typing `S' now just to see what is salvageable.");
  }
else{@+help5("I can't figure out why you would want to use a tab mark",@/
  "or \\cr or \\span just now. If something like a right brace",@/
  "up above has ended a previous alignment prematurely,",@/
  "you're probably due for more error messages, and you",@/
  "might try typing `S' now just to see what is salvageable.");
  }
error();
}

@ The help messages here contain a little white lie, since \.{\\noalign}
and \.{\\omit} are allowed also after `\.{\\noalign\{...\}}'.

@<Declare act...@>=
static void no_align_error(void)
{@+print_err("Misplaced ");print_esc("noalign");
@.Misplaced \\noalign@>
help2("I expect to see \\noalign only after the \\cr of",@/
  "an alignment. Proceed, and I'll ignore this case.");error();
}
static void omit_error(void)
{@+print_err("Misplaced ");print_esc("omit");
@.Misplaced \\omit@>
help2("I expect to see \\omit only after tab marks or the \\cr of",@/
  "an alignment. Proceed, and I'll ignore this case.");error();
}

@ We've now covered most of the abuses of \.{\\halign} and \.{\\valign}.
Let's take a look at what happens when they are used correctly.

@<Cases of |main_control| that build...@>=
case vmode+halign: case hmode+valign: init_align();@+break;
case mmode+halign: if (privileged())
  if (cur_group==math_shift_group) init_align();
  else off_save();@+break;
case vmode+endv: case hmode+endv: do_endv();@+break;

@ An |align_group| code is supposed to remain on the |save_stack|
during an entire alignment, until |fin_align| removes it.

A devious user might force an |endv| command to occur just about anywhere;
we must defeat such hacks.

@<Declare act...@>=
static void do_endv(void)
{@+base_ptr=input_ptr;input_stack[base_ptr]=cur_input;
while ((input_stack[base_ptr].index_field!=v_template)&&
      (input_stack[base_ptr].loc_field==null)&&
      (input_stack[base_ptr].state_field==token_list)) decr(base_ptr);
if ((input_stack[base_ptr].index_field!=v_template)||
      (input_stack[base_ptr].loc_field!=null)||
      (input_stack[base_ptr].state_field!=token_list))
  fatal_error("(interwoven alignment preambles are not allowed)");
@.interwoven alignment preambles...@>
 if (cur_group==align_group)
  {@+end_graf();
  if (fin_col()) fin_row();
  }
else off_save();
}

@ @<Cases of |handle_right_brace|...@>=
case align_group: {@+back_input();cur_tok=cs_token_flag+frozen_cr;
  print_err("Missing ");print_esc("cr");print(" inserted");
@.Missing \\cr inserted@>
  help1("I'm guessing that you meant to end an alignment here.");
  ins_error();
  } @+break;

@ @<Cases of |handle_right_brace|...@>=
case no_align_group: {@+end_graf();unsave();align_peek();
  } @+break;

@ Finally, \.{\\endcsname} is not supposed to get through to |main_control|.

@<Cases of |main_control| that build...@>=
any_mode(end_cs_name): cs_error();@+break;

@ @<Declare act...@>=
static void cs_error(void)
{@+print_err("Extra ");print_esc("endcsname");
@.Extra \\endcsname@>
help1("I'm ignoring this, since I wasn't doing a \\csname.");
error();
}

@* Building math lists.
The routines that \TeX\ uses to create mlists are similar to those we have
just seen for the generation of hlists and vlists. But it is necessary to
make ``noads'' as well as nodes, so the reader should review the
discussion of math mode data structures before trying to make sense out of
the following program.

Here is a little routine that needs to be done whenever a subformula
is about to be processed. The parameter is a code like |math_group|.

@<Declare act...@>=
static void push_math(group_code @!c)
{@+push_nest();mode=-mmode;incompleat_noad=null;new_save_level(c);
}

@ We get into math mode from horizontal mode when a `\.\$' (i.e., a
|math_shift| character) is scanned. We must check to see whether this
`\.\$' is immediately followed by another, in case display math mode is
called for.

@<Cases of |main_control| that build...@>=
case hmode+math_shift: init_math();@+break;

@ @<Declare act...@>=
static void init_math(void)
{@+
scaled w; /*new or partial |pre_display_size|*/
scaled @!l; /*new |display_width|*/
scaled @!s; /*new |display_indent|*/
pointer @!p; /*current node when calculating |pre_display_size|*/
pointer @!q; /*glue specification when calculating |pre_display_size|*/
internal_font_number @!f; /*font in current |char_node|*/
int @!n; /*scope of paragraph shape specification*/
scaled @!v; /*|w| plus possible glue amount*/
scaled @!d; /*increment to |v|*/
get_token(); /*|get_x_token| would fail on \.{\\ifmmode}\thinspace!*/
if ((cur_cmd==math_shift)&&(mode > 0)) @<Go into display math mode@>@;
else{@+back_input();@<Go into ordinary math mode@>;
  }
}

@ @<Go into ordinary math mode@>=
{@+push_math(math_shift_group);eq_word_define(int_base+cur_fam_code,-1);
if (every_math!=null) begin_token_list(every_math, every_math_text);
}

@ We get into ordinary math mode from display math mode when `\.{\\eqno}' or
`\.{\\leqno}' appears. In such cases |cur_chr| will be 0 or~1, respectively;
the value of |cur_chr| is placed onto |save_stack| for safe keeping.

@<Cases of |main_control| that build...@>=
case mmode+eq_no: if (privileged())
  if (cur_group==math_shift_group) start_eq_no();
  else off_save();@+break;

@ @<Put each...@>=
primitive("eqno", eq_no, 0);
@!@:eq\_no\_}{\.{\\eqno} primitive@>
primitive("leqno", eq_no, 1);
@!@:leq\_no\_}{\.{\\leqno} primitive@>

@ When \TeX\ is in display math mode, |cur_group==math_shift_group|,
so it is not necessary for the |start_eq_no| procedure to test for
this condition.

@<Declare act...@>=
static void start_eq_no(void)
{@+saved(0)=cur_chr;incr(save_ptr);
@<Go into ordinary math mode@>;
}

@ @<Cases of |print_cmd_chr|...@>=
case eq_no: if (chr_code==1) print_esc("leqno");@+else print_esc("eqno");@+break;

@ @<Forbidden...@>=non_math(eq_no):

@ When we enter display math mode, we need to call |line_break| to
process the partial paragraph that has just been interrupted by the
display. Then we can set the proper values of |display_width| and
|display_indent| and |pre_display_size|.

@<Go into display math mode@>=
{ if (head!=tail && !(type(tail)==whatsit_node && subtype(tail)==disp_node))
 { if (is_char_node(tail)) tail_append(new_penalty(inf_penalty))@;
   else if (type(tail)!=glue_node) tail_append(new_penalty(inf_penalty))@;
   else
   {@+type(tail)=penalty_node;delete_glue_ref(glue_ptr(tail));
    flush_node_list(leader_ptr(tail));penalty(tail)=inf_penalty;
   }
  tail_append(new_param_glue(par_fill_skip_code));
  }
@<Calculate the length, |l|, and the shift amount, |s|, of the display lines@>;
push_math(math_shift_group);mode=mmode;
eq_word_define(int_base+cur_fam_code,-1);@/
eq_word_define(dimen_base+display_width_code, l); cur_hfactor=0;
eq_word_define(dimen_base+pre_display_size_code, w);
eq_word_define(dimen_base+display_indent_code, s);
if (every_display!=null) begin_token_list(every_display, every_display_text);
}

@ @<Calculate the natural width, |w|, by which...@>=
v=shift_amount(just_box)+2*quad(cur_font);w=-max_dimen;
p=list_ptr(just_box);
while (p!=null)
  {@+@<Let |d| be the natural width of node |p|; if the node is ``visible,''
|goto found|; if the node is glue that stretches or shrinks, set |v:=max_dimen|@>;
  if (v < max_dimen) v=v+d;
  goto not_found;
  found: if (v < max_dimen)
    {@+v=v+d;w=v;
    }
  else{@+w=max_dimen;goto done;
    }
  not_found: p=link(p);
  }
done:

@ @<Let |d| be the natural width of node |p|...@>=
reswitch: if (is_char_node(p))
  {@+f=font(p);d=char_width(f, char_info(f, character(p)));
  goto found;
  }
switch (type(p)) {
case hlist_node: case vlist_node: case rule_node: {@+d=width(p);goto found;
  }
case ligature_node: @<Make node |p| look like a |char_node|...@>@;
case kern_node: case math_node: d=width(p);@+break;
case glue_node: @<Let |d| be the natural width of this glue; if stretching
or shrinking, set |v:=max_dimen|; |goto found| in the case of leaders@>@;@+break;
case whatsit_node: @<Let |d| be the width of the whatsit |p|@>;@+break;
default:d=0;
}

@ We need to be careful that |w|, |v|, and |d| do not depend on any |glue_set|
values, since such values are subject to system-dependent rounding.
System-dependent numbers are not allowed to infiltrate parameters like
|pre_display_size|, since \TeX82 is supposed to make the same decisions on all
machines.

@<Let |d| be the natural width of this glue...@>=
{@+q=glue_ptr(p);d=width(q);
if (glue_sign(just_box)==stretching)
  {@+if ((glue_order(just_box)==stretch_order(q))&&@|
     (stretch(q)!=0))
    v=max_dimen;
  }
else if (glue_sign(just_box)==shrinking)
  {@+if ((glue_order(just_box)==shrink_order(q))&&@|
     (shrink(q)!=0))
    v=max_dimen;
  }
if (subtype(p) >= a_leaders) goto found;
}

@ A displayed equation is considered to be three lines long, so we
calculate the length and offset of line number |prev_graf+2|.

@<Calculate the length, |l|,...@>=
if (par_shape_ptr==null)
  if ((hang_indent!=0)&&@|
   (((hang_after >= 0)&&(prev_graf+2 > hang_after))||@|
    (prev_graf+1 < -hang_after)))
    {@+l=-abs(hang_indent); cur_hfactor=unity;
    if (hang_indent > 0) s=hang_indent;@+else s=0;
    }
  else{@+l=0;s=0; cur_hfactor=unity;
    }
else{@+n=info(par_shape_ptr);
  if (prev_graf+2 >= n) p=par_shape_ptr+2*n;
  else p=par_shape_ptr+2*(prev_graf+2);
  s=mem[p-1].sc;l=mem[p].sc;cur_hfactor=0;
  }

@ Subformulas of math formulas cause a new level of math mode to be entered,
on the semantic nest as well as the save stack. These subformulas arise in
several ways: (1)~A left brace by itself indicates the beginning of a
subformula that will be put into a box, thereby freezing its glue and
preventing line breaks. (2)~A subscript or superscript is treated as a
subformula if it is not a single character; the same applies to
the nucleus of things like \.{\\underline}. (3)~The \.{\\left} primitive
initiates a subformula that will be terminated by a matching \.{\\right}.
The group codes placed on |save_stack| in these three cases are
|math_group|, |math_group|, and |math_left_group|, respectively.

Here is the code that handles case (1); the other cases are not quite as
trivial, so we shall consider them later.

@<Cases of |main_control| that build...@>=
case mmode+left_brace: {@+tail_append(new_noad());
  back_input();scan_math(nucleus(tail));
  } @+break;

@ Recall that the |nucleus|, |subscr|, and |supscr| fields in a noad are
broken down into subfields called |math_type| and either |info| or
|(fam, character)|. The job of |scan_math| is to figure out what to place
in one of these principal fields; it looks at the subformula that
comes next in the input, and places an encoding of that subformula
into a given word of |mem|.

@d fam_in_range ((cur_fam >= 0)&&(cur_fam < 16))

@<Declare act...@>=
static void scan_math(pointer @!p)
{@+
int c; /*math character code*/
restart: @<Get the next non-blank non-relax...@>;
reswitch: switch (cur_cmd) {
case letter: case other_char: case char_given: {@+c=ho(math_code(cur_chr));
    if (c==0100000)
      {@+@<Treat |cur_chr| as an active character@>;
      goto restart;
      }
    } @+break;
case char_num: {@+scan_char_num();cur_chr=cur_val;cur_cmd=char_given;
  goto reswitch;
  }
case math_char_num: {@+scan_fifteen_bit_int();c=cur_val;
  } @+break;
case math_given: c=cur_chr;@+break;
case delim_num: {@+scan_twenty_seven_bit_int();c=cur_val/010000;
  } @+break;
default:@<Scan a subformula enclosed in braces and |return|@>@;
} @/
math_type(p)=math_char;character(p)=qi(c%256);
if ((c >= var_code)&&fam_in_range) fam(p)=cur_fam;
else fam(p)=(c/256)%16;
}

@ An active character that is an |outer_call| is allowed here.

@<Treat |cur_chr|...@>=
{@+cur_cs=cur_chr+active_base;
cur_cmd=eq_type(cur_cs);cur_chr=equiv(cur_cs);
x_token();back_input();
}

@ The pointer |p| is placed on |save_stack| while a complex subformula
is being scanned.

@<Scan a subformula...@>=
{@+back_input();scan_left_brace();@/
saved(0)=p;incr(save_ptr);push_math(math_group);return;
}

@ The simplest math formula is, of course, `\.{\${ }\$}', when no noads are
generated. The next simplest cases involve a single character, e.g.,
`\.{\$x\$}'. Even though such cases may not seem to be very interesting,
the reader can perhaps understand how happy the author was when `\.{\$x\$}'
was first properly typeset by \TeX. The code in this section was used.
@^Knuth, Donald Ervin@>

@<Cases of |main_control| that build...@>=
case mmode+letter: case mmode+other_char:
  case mmode+char_given:
  set_math_char(ho(math_code(cur_chr)));@+break;
case mmode+char_num: {@+scan_char_num();cur_chr=cur_val;
  set_math_char(ho(math_code(cur_chr)));
  } @+break;
case mmode+math_char_num: {@+scan_fifteen_bit_int();set_math_char(cur_val);
  } @+break;
case mmode+math_given: set_math_char(cur_chr);@+break;
case mmode+delim_num: {@+scan_twenty_seven_bit_int();
  set_math_char(cur_val/010000);
  } @+break;

@ The |set_math_char| procedure creates a new noad appropriate to a given
math code, and appends it to the current mlist. However, if the math code
is sufficiently large, the |cur_chr| is treated as an active character and
nothing is appended.

@<Declare act...@>=
static void set_math_char(int @!c)
{@+pointer p; /*the new noad*/
if (c >= 0100000)
  @<Treat |cur_chr|...@>@;
else{@+p=new_noad();math_type(nucleus(p))=math_char;
  character(nucleus(p))=qi(c%256);
  fam(nucleus(p))=(c/256)%16;
  if (c >= var_code)
    {@+if (fam_in_range) fam(nucleus(p))=cur_fam;
    type(p)=ord_noad;
    }
  else type(p)=ord_noad+(c/010000);
  link(tail)=p;tail=p;
  }
}

@ Primitive math operators like \.{\\mathop} and \.{\\underline} are given
the command code |math_comp|, supplemented by the noad type that they
generate.

@<Put each...@>=
primitive("mathord", math_comp, ord_noad);
@!@:math\_ord\_}{\.{\\mathord} primitive@>
primitive("mathop", math_comp, op_noad);
@!@:math\_op\_}{\.{\\mathop} primitive@>
primitive("mathbin", math_comp, bin_noad);
@!@:math\_bin\_}{\.{\\mathbin} primitive@>
primitive("mathrel", math_comp, rel_noad);
@!@:math\_rel\_}{\.{\\mathrel} primitive@>
primitive("mathopen", math_comp, open_noad);
@!@:math\_open\_}{\.{\\mathopen} primitive@>
primitive("mathclose", math_comp, close_noad);
@!@:math\_close\_}{\.{\\mathclose} primitive@>
primitive("mathpunct", math_comp, punct_noad);
@!@:math\_punct\_}{\.{\\mathpunct} primitive@>
primitive("mathinner", math_comp, inner_noad);
@!@:math\_inner\_}{\.{\\mathinner} primitive@>
primitive("underline", math_comp, under_noad);
@!@:underline\_}{\.{\\underline} primitive@>
primitive("overline", math_comp, over_noad);@/
@!@:overline\_}{\.{\\overline} primitive@>
primitive("displaylimits", limit_switch, normal);
@!@:display\_limits\_}{\.{\\displaylimits} primitive@>
primitive("limits", limit_switch, limits);
@!@:limits\_}{\.{\\limits} primitive@>
primitive("nolimits", limit_switch, no_limits);
@!@:no\_limits\_}{\.{\\nolimits} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case math_comp: switch (chr_code) {
  case ord_noad: print_esc("mathord");@+break;
  case op_noad: print_esc("mathop");@+break;
  case bin_noad: print_esc("mathbin");@+break;
  case rel_noad: print_esc("mathrel");@+break;
  case open_noad: print_esc("mathopen");@+break;
  case close_noad: print_esc("mathclose");@+break;
  case punct_noad: print_esc("mathpunct");@+break;
  case inner_noad: print_esc("mathinner");@+break;
  case under_noad: print_esc("underline");@+break;
  default:print_esc("overline");
  } @+break;
case limit_switch: if (chr_code==limits) print_esc("limits");
  else if (chr_code==no_limits) print_esc("nolimits");
  else print_esc("displaylimits");@+break;

@ @<Cases of |main_control| that build...@>=
case mmode+math_comp: {@+tail_append(new_noad());
  type(tail)=cur_chr;scan_math(nucleus(tail));
  } @+break;
case mmode+limit_switch: math_limit_switch();@+break;

@ @<Declare act...@>=
static void math_limit_switch(void)
{@+
if (head!=tail) if (type(tail)==op_noad)
  {@+subtype(tail)=cur_chr;return;
  }
print_err("Limit controls must follow a math operator");
@.Limit controls must follow...@>
help1("I'm ignoring this misplaced \\limits or \\nolimits command.");error();
}

@ Delimiter fields of noads are filled in by the |scan_delimiter| routine.
The first parameter of this procedure is the |mem| address where the
delimiter is to be placed; the second tells if this delimiter follows
\.{\\radical} or not.

@<Declare act...@>=
static void scan_delimiter(pointer @!p, bool @!r)
{@+if (r) scan_twenty_seven_bit_int();
else{@+@<Get the next non-blank non-relax...@>;
  switch (cur_cmd) {
  case letter: case other_char: cur_val=del_code(cur_chr);@+break;
  case delim_num: scan_twenty_seven_bit_int();@+break;
  default:cur_val=-1;
  }
  }
if (cur_val < 0) @<Report that an invalid delimiter code is being changed
to null; set~|cur_val:=0|@>;
small_fam(p)=(cur_val/04000000)%16;
small_char(p)=qi((cur_val/010000)%256);
large_fam(p)=(cur_val/256)%16;
large_char(p)=qi(cur_val%256);
}

@ @<Report that an invalid delimiter...@>=
{@+print_err("Missing delimiter (. inserted)");
@.Missing delimiter...@>
help6("I was expecting to see something like `(' or `\\{' or",@/
  "`\\}' here. If you typed, e.g., `{' instead of `\\{', you",@/
  "should probably delete the `{' by typing `1' now, so that",@/
  "braces don't get unbalanced. Otherwise just proceed.",@/
  "Acceptable delimiters are characters whose \\delcode is",@/
  "nonnegative, or you can use `\\delimiter <delimiter code>'.");
back_error();cur_val=0;
}

@ @<Cases of |main_control| that build...@>=
case mmode+radical: math_radical();@+break;

@ @<Declare act...@>=
static void math_radical(void)
{@+tail_append(get_node(radical_noad_size));
type(tail)=radical_noad;subtype(tail)=normal;
mem[nucleus(tail)].hh=empty_field;
mem[subscr(tail)].hh=empty_field;
mem[supscr(tail)].hh=empty_field;
scan_delimiter(left_delimiter(tail), true);scan_math(nucleus(tail));
}

@ @<Cases of |main_control| that build...@>=
case mmode+accent: case mmode+math_accent: math_ac();@+break;

@ @<Declare act...@>=
static void math_ac(void)
{@+if (cur_cmd==accent)
  @<Complain that the user should have said \.{\\mathaccent}@>;
tail_append(get_node(accent_noad_size));
type(tail)=accent_noad;subtype(tail)=normal;
mem[nucleus(tail)].hh=empty_field;
mem[subscr(tail)].hh=empty_field;
mem[supscr(tail)].hh=empty_field;
math_type(accent_chr(tail))=math_char;
scan_fifteen_bit_int();
character(accent_chr(tail))=qi(cur_val%256);
if ((cur_val >= var_code)&&fam_in_range) fam(accent_chr(tail))=cur_fam;
else fam(accent_chr(tail))=(cur_val/256)%16;
scan_math(nucleus(tail));
}

@ @<Complain that the user should have said \.{\\mathaccent}@>=
{@+print_err("Please use ");print_esc("mathaccent");
print(" for accents in math mode");
@.Please use \\mathaccent...@>
help2("I'm changing \\accent to \\mathaccent here; wish me luck.",@/
  "(Accents are not the same in formulas as they are in text.)");
error();
}

@ @<Cases of |main_control| that build...@>=
case mmode+vcenter: {@+scan_spec(vcenter_group, false);normal_paragraph();
  push_nest();mode=-vmode;prev_depth=ignore_depth;
  if (every_vbox!=null) begin_token_list(every_vbox, every_vbox_text);
  } @+break;

@ @<Cases of |handle...@>=
case vcenter_group: {@+end_graf();unsave();save_ptr=save_ptr-2;
  p=vpack(link(head), saved(1), saved_hfactor(1), saved_vfactor(1), saved(0));pop_nest();
  tail_append(new_noad());type(tail)=vcenter_noad;
  math_type(nucleus(tail))=sub_box;info(nucleus(tail))=p;
  } @+break;

@ The routine that inserts a |style_node| holds no surprises.

@<Put each...@>=
primitive("displaystyle", math_style, display_style);
@!@:display\_style\_}{\.{\\displaystyle} primitive@>
primitive("textstyle", math_style, text_style);
@!@:text\_style\_}{\.{\\textstyle} primitive@>
primitive("scriptstyle", math_style, script_style);
@!@:script\_style\_}{\.{\\scriptstyle} primitive@>
primitive("scriptscriptstyle", math_style, script_script_style);
@!@:script\_script\_style\_}{\.{\\scriptscriptstyle} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case math_style: print_style(chr_code);@+break;

@ @<Cases of |main_control| that build...@>=
case mmode+math_style: tail_append(new_style(cur_chr))@;@+break;
case mmode+non_script: {@+tail_append(new_glue(zero_glue));
  subtype(tail)=cond_math_glue;
  } @+break;
case mmode+math_choice: append_choices();@+break;

@ The routine that scans the four mlists of a \.{\\mathchoice} is very
much like the routine that builds discretionary nodes.

@<Declare act...@>=
static void append_choices(void)
{@+tail_append(new_choice());incr(save_ptr);saved(-1)=0;
push_math(math_choice_group);scan_left_brace();
}

@ @<Cases of |handle_right_brace|...@>=
case math_choice_group: build_choices();@+break;

@ @<Declare act...@>=
@t\4@>@<Declare the function called |fin_mlist|@>@t@>@;@/
static void build_choices(void)
{@+
pointer p; /*the current mlist*/
unsave();p=fin_mlist(null);
switch (saved(-1)) {
case 0: display_mlist(tail)=p;@+break;
case 1: text_mlist(tail)=p;@+break;
case 2: script_mlist(tail)=p;@+break;
case 3: {@+script_script_mlist(tail)=p;decr(save_ptr);return;
  }
}  /*there are no other cases*/
incr(saved(-1));push_math(math_choice_group);scan_left_brace();
}

@ Subscripts and superscripts are attached to the previous nucleus by the
@^superscripts@>@^subscripts@>
action procedure called |sub_sup|. We use the facts that |sub_mark==sup_mark+1|
and |subscr(p)==supscr(p)+1|.

@<Cases of |main_control| that build...@>=
case mmode+sub_mark: case mmode+sup_mark: sub_sup();@+break;

@ @<Declare act...@>=
static void sub_sup(void)
{@+small_number t; /*type of previous sub/superscript*/
pointer @!p; /*field to be filled by |scan_math|*/
t=empty;p=null;
if (tail!=head) if (scripts_allowed(tail))
  {@+p=supscr(tail)+cur_cmd-sup_mark; /*|supscr| or |subscr|*/
  t=math_type(p);
  }
if ((p==null)||(t!=empty)) @<Insert a dummy noad to be sub/superscripted@>;
scan_math(p);
}

@ @<Insert a dummy...@>=
{@+tail_append(new_noad());
p=supscr(tail)+cur_cmd-sup_mark; /*|supscr| or |subscr|*/
if (t!=empty)
  {@+if (cur_cmd==sup_mark)
    {@+print_err("Double superscript");
@.Double superscript@>
    help1("I treat `x^1^2' essentially like `x^1{}^2'.");
    }
  else{@+print_err("Double subscript");
@.Double subscript@>
    help1("I treat `x_1_2' essentially like `x_1{}_2'.");
    }
  error();
  }
}

@ An operation like `\.{\\over}' causes the current mlist to go into a
state of suspended animation: |incompleat_noad| points to a |fraction_noad|
that contains the mlist-so-far as its numerator, while the denominator
is yet to come. Finally when the mlist is finished, the denominator will
go into the incompleat fraction noad, and that noad will become the
whole formula, unless it is surrounded by `\.{\\left}' and `\.{\\right}'
delimiters.

@d above_code 0 /* `\.{\\above}' */
@d over_code 1 /* `\.{\\over}' */
@d atop_code 2 /* `\.{\\atop}' */
@d delimited_code 3 /* `\.{\\abovewithdelims}', etc.*/

@<Put each...@>=
primitive("above", above, above_code);@/
@!@:above\_}{\.{\\above} primitive@>
primitive("over", above, over_code);@/
@!@:over\_}{\.{\\over} primitive@>
primitive("atop", above, atop_code);@/
@!@:atop\_}{\.{\\atop} primitive@>
primitive("abovewithdelims", above, delimited_code+above_code);@/
@!@:above\_with\_delims\_}{\.{\\abovewithdelims} primitive@>
primitive("overwithdelims", above, delimited_code+over_code);@/
@!@:over\_with\_delims\_}{\.{\\overwithdelims} primitive@>
primitive("atopwithdelims", above, delimited_code+atop_code);
@!@:atop\_with\_delims\_}{\.{\\atopwithdelims} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case above: switch (chr_code) {
  case over_code: print_esc("over");@+break;
  case atop_code: print_esc("atop");@+break;
  case delimited_code+above_code: print_esc("abovewithdelims");@+break;
  case delimited_code+over_code: print_esc("overwithdelims");@+break;
  case delimited_code+atop_code: print_esc("atopwithdelims");@+break;
  default:print_esc("above");
  } @+break;

@ @<Cases of |main_control| that build...@>=
case mmode+above: math_fraction();@+break;

@ @<Declare act...@>=
static void math_fraction(void)
{@+small_number c; /*the type of generalized fraction we are scanning*/
c=cur_chr;
if (incompleat_noad!=null)
  @<Ignore the fraction operation and complain about this ambiguous case@>@;
else{@+incompleat_noad=get_node(fraction_noad_size);
  type(incompleat_noad)=fraction_noad;
  subtype(incompleat_noad)=normal;
  math_type(numerator(incompleat_noad))=sub_mlist;
  info(numerator(incompleat_noad))=link(head);
  mem[denominator(incompleat_noad)].hh=empty_field;
  mem[left_delimiter(incompleat_noad)].qqqq=null_delimiter;
  mem[right_delimiter(incompleat_noad)].qqqq=null_delimiter;@/
  link(head)=null;tail=head;
  @<Use code |c| to distinguish between generalized fractions@>;
  }
}

@ @<Use code |c|...@>=
if (c >= delimited_code)
  {@+scan_delimiter(left_delimiter(incompleat_noad), false);
  scan_delimiter(right_delimiter(incompleat_noad), false);
  }
switch (c%delimited_code) {
case above_code: {@+scan_normal_dimen;
  thickness(incompleat_noad)=cur_val;
  } @+break;
case over_code: thickness(incompleat_noad)=default_code;@+break;
case atop_code: thickness(incompleat_noad)=0;
}  /*there are no other cases*/

@ @<Ignore the fraction...@>=
{@+if (c >= delimited_code)
  {@+scan_delimiter(garbage, false);scan_delimiter(garbage, false);
  }
if (c%delimited_code==above_code) scan_normal_dimen;
print_err("Ambiguous; you need another { and }");
@.Ambiguous...@>
help3("I'm ignoring this fraction specification, since I don't",@/
  "know whether a construction like `x \\over y \\over z'",@/
  "means `{x \\over y} \\over z' or `x \\over {y \\over z}'.");
error();
}

@ At the end of a math formula or subformula, the |fin_mlist| routine is
called upon to return a pointer to the newly completed mlist, and to
pop the nest back to the enclosing semantic level. The parameter to
|fin_mlist|, if not null, points to a |right_noad| that ends the
current mlist; this |right_noad| has not yet been appended.

@<Declare the function called |fin_mlist|@>=
static pointer fin_mlist(pointer @!p)
{@+pointer q; /*the mlist to return*/
if (incompleat_noad!=null) @<Compleat the incompleat noad@>@;
else{@+link(tail)=p;q=link(head);
  }
pop_nest();return q;
}

@ @<Compleat...@>=
{@+math_type(denominator(incompleat_noad))=sub_mlist;
info(denominator(incompleat_noad))=link(head);
if (p==null) q=incompleat_noad;
else{@+q=info(numerator(incompleat_noad));
  if ((type(q)!=left_noad)||(delim_ptr==null)) confusion("right");
@:this can't happen right}{\quad right@>
  info(numerator(incompleat_noad))=link(delim_ptr);
  link(delim_ptr)=incompleat_noad;link(incompleat_noad)=p;
  }
}

@ Now at last we're ready to see what happens when a right brace occurs
in a math formula. Two special cases are simplified here: Braces are effectively
removed when they surround a single Ord without sub/superscripts, or when they
surround an accent that is the nucleus of an Ord atom.

@<Cases of |handle...@>=
case math_group: {@+unsave();decr(save_ptr);@/
  math_type(saved(0))=sub_mlist;p=fin_mlist(null);info(saved(0))=p;
  if (p!=null) if (link(p)==null)
   if (type(p)==ord_noad)
    {@+if (math_type(subscr(p))==empty)
     if (math_type(supscr(p))==empty)
      {@+mem[saved(0)].hh=mem[nucleus(p)].hh;
      free_node(p, noad_size);
      }
    }
  else if (type(p)==accent_noad) if (saved(0)==nucleus(tail))
   if (type(tail)==ord_noad) @<Replace the tail of the list by |p|@>;
  } @+break;

@ @<Replace the tail...@>=
{@+q=head;while (link(q)!=tail) q=link(q);
link(q)=p;free_node(tail, noad_size);tail=p;
}

@ We have dealt with all constructions of math mode except `\.{\\left}' and
`\.{\\right}', so the picture is completed by the following sections of
the program.

@<Put each...@>=
primitive("left", left_right, left_noad);
@!@:left\_}{\.{\\left} primitive@>
primitive("right", left_right, right_noad);
@!@:right\_}{\.{\\right} primitive@>
text(frozen_right)=text(cur_val);eqtb[frozen_right]=eqtb[cur_val];

@ @<Cases of |print_cmd_chr|...@>=
case left_right: if (chr_code==left_noad) print_esc("left")
@/@<Cases of |left_right| for |print_cmd_chr|@>;@/
else print_esc("right");@+break;

@ @<Cases of |main_control| that build...@>=
case mmode+left_right: math_left_right();@+break;

@ @<Declare act...@>=
static void math_left_right(void)
{@+small_number t; /*|left_noad| or |right_noad|*/
pointer @!p; /*new noad*/
pointer @!q; /*resulting mlist*/
t=cur_chr;
if ((t!=left_noad)&&(cur_group!=math_left_group))
  @<Try to recover from mismatched \.{\\right}@>@;
else{@+p=new_noad();type(p)=t;
  scan_delimiter(delimiter(p), false);
  if (t==middle_noad)
    {@+type(p)=right_noad;subtype(p)=middle_noad;
    }
  if (t==left_noad) q=p;
  else{@+q=fin_mlist(p);unsave(); /*end of |math_left_group|*/
    }
  if (t!=right_noad)
    {@+push_math(math_left_group);link(head)=q;tail=p;
    delim_ptr=p;
    }
  else{@+
    tail_append(new_noad());type(tail)=inner_noad;
    math_type(nucleus(tail))=sub_mlist;
    info(nucleus(tail))=q;
    }
  }
}

@ @<Try to recover from mismatch...@>=
{@+if (cur_group==math_shift_group)
  {@+scan_delimiter(garbage, false);
  print_err("Extra ");
  if (t==middle_noad)
    {@+print_esc("middle");
@.Extra \\middle.@>
    help1("I'm ignoring a \\middle that had no matching \\left.");
    }
  else{@+print_esc("right");
@.Extra \\right.@>
    help1("I'm ignoring a \\right that had no matching \\left.");
    }
  error();
  }
else off_save();
}

@ Here is the only way out of math mode.

@<Cases of |main_control| that build...@>=
case mmode+math_shift: if (cur_group==math_shift_group) after_math();
  else off_save();@+break;

@ @<Declare act...@>=
static void after_math(void)
{@+bool l; /*`\.{\\leqno}' instead of `\.{\\eqno}'*/
bool @!danger; /*not enough symbol fonts are present*/
int @!m; /*|mmode| or |-mmode|*/
pointer @!p; /*the formula*/
pointer @!a; /*box containing equation number*/
danger=false;
@<Check that the necessary fonts for math symbols are present; if not, flush
the current math lists and set |danger:=true|@>;
m=mode;l=false;p=fin_mlist(null); /*this pops the nest*/
if (mode==-m)  /*end of equation number*/
  {@+@<Check that another \.\$ follows@>;
  cur_mlist=p;cur_style=text_style;mlist_penalties=false;
  mlist_to_hlist();a=hpack(link(temp_head), natural);
  unsave();decr(save_ptr); /*now |cur_group==math_shift_group|*/
  if (saved(0)==1) l=true;
  danger=false;
  @<Check that the necessary fonts for math symbols are present; if not, flush
the current math lists and set |danger:=true|@>;
  m=mode;p=fin_mlist(null);
  }
else a=null;
if (m < 0) @<Finish math in text@>@;
else{@+if (a==null) @<Check that another \.\$ follows@>;
  @<Finish displayed math@>;
  }
}

@ @<Check that the necessary fonts...@>=
if ((font_params[fam_fnt(2+text_size)] < total_mathsy_params)||@|
   (font_params[fam_fnt(2+script_size)] < total_mathsy_params)||@|
   (font_params[fam_fnt(2+script_script_size)] < total_mathsy_params))
  {@+print_err("Math formula deleted: Insufficient symbol fonts");@/
@.Math formula deleted...@>
  help3("Sorry, but I can't typeset math unless \\textfont 2",@/
    "and \\scriptfont 2 and \\scriptscriptfont 2 have all",@/
    "the \\fontdimen values needed in math symbol fonts.");
  error();flush_math();danger=true;
  }
else if ((font_params[fam_fnt(3+text_size)] < total_mathex_params)||@|
   (font_params[fam_fnt(3+script_size)] < total_mathex_params)||@|
   (font_params[fam_fnt(3+script_script_size)] < total_mathex_params))
  {@+print_err("Math formula deleted: Insufficient extension fonts");@/
  help3("Sorry, but I can't typeset math unless \\textfont 3",@/
    "and \\scriptfont 3 and \\scriptscriptfont 3 have all",@/
    "the \\fontdimen values needed in math extension fonts.");
  error();flush_math();danger=true;
  }

@ The |unsave| is done after everything else here; hence an appearance of
`\.{\\mathsurround}' inside of `\.{\$...\$}' affects the spacing at these
particular \.\$'s. This is consistent with the conventions of
`\.{\$\$...\$\$}', since `\.{\\abovedisplayskip}' inside a display affects the
space above that display.

@<Finish math in text@>=
{@+tail_append(new_math(math_surround, before));
cur_mlist=p;cur_style=text_style;mlist_penalties=(mode > 0);mlist_to_hlist();
link(tail)=link(temp_head);
while (link(tail)!=null) tail=link(tail);
tail_append(new_math(math_surround, after));
space_factor=1000;unsave();
}

@ \TeX\ gets to the following part of the program when the first `\.\$' ending
a display has been scanned.

@<Check that another \.\$ follows@>=
{@+get_x_token();
if (cur_cmd!=math_shift)
  {@+print_err("Display math should end with $$");
@.Display math...with \$\$@>
  help2("The `$' that I just saw supposedly matches a previous `$$'.",@/
    "So I shall assume that you typed `$$' both times.");
  back_error();
  }
}

@ We have saved the worst for last: The fussiest part of math mode processing
occurs when a displayed formula is being centered and placed with an optional
equation number.

@<Local variables for finishing...@>=
pointer @!b; /*box containing the equation*/
scaled @!w; /*width of the equation*/
scaled @!z; /*width of the line*/
scaled @!e; /*width of equation number*/
scaled @!q; /*width of equation number plus space to separate from equation*/
scaled @!d; /*displacement of equation in the line*/
scaled @!s; /*move the line right this much*/
small_number @!g1, @!g2; /*glue parameter codes for before and after*/
pointer @!r; /*kern node used to position the display*/
pointer @!t; /*tail of adjustment list*/

@ At this time |p| points to the mlist for the formula; |a| is either
|null| or it points to a box containing the equation number; and we are in
vertical mode (or internal vertical mode).

@<Finish displayed math@>=
cur_mlist=p;cur_style=display_style;mlist_penalties=false;
mlist_to_hlist();p=link(temp_head); link(temp_head)=null;@/
{@+ pointer q;
   q=new_disp_node();
   if (!danger) { display_formula(q)=p; display_eqno(q)=a; display_left(q)=l; }
  /* adding parameter nodes */
  if (hang_indent!=0)
  { new_param_node(dimen_type,hang_indent_code,hang_indent);
    if (hang_after!=1)
      new_param_node(int_type,hang_after_code,hang_after);
  }
  new_param_node(dimen_type,line_skip_limit_code,line_skip_limit);
  new_param_node(glue_type,line_skip_code,line_skip);
  new_param_node(glue_type,baseline_skip_code,baseline_skip);
  display_params(q)=link(temp_head); link(temp_head)=null;
  display_no_bs(q)= prev_depth <= ignore_depth;
  tail_append(q);
}
resume_after_display()

@ @<Declare act...@>=
static void resume_after_display(void)
{@+if (cur_group!=math_shift_group) confusion("display");
@:this can't happen display}{\quad display@>
unsave();
mode=hmode;space_factor=1000;set_cur_lang;clang=cur_lang;
prev_graf=(norm_min(left_hyphen_min)*0100+norm_min(right_hyphen_min))
             *0200000+cur_lang;
@<Scan an optional space@>;
}

@ The user can force the equation number to go on a separate line
by causing its width to be zero.

@<Squeeze the equation as much as possible...@>=
{@+if ((e!=0)&&((w-total_shrink[normal]+q <= z)||@|
   (total_shrink[fil]!=0)||(total_shrink[fill]!=0)||
   (total_shrink[filll]!=0)))
  {@+list_ptr(b)=null;flush_node_list(b);
  b=hpack(p, z-q, 0, 0, exactly);
  }
else{@+e=0;
  if (w > z)
    {@+list_ptr(b)=null;flush_node_list(b);
    b=hpack(p, z, 0, 0, exactly);
    }
  }
w=width(b);
}

@ We try first to center the display without regard to the existence of
the equation number. If that would make it too close (where ``too close''
means that the space between display and equation number is less than the
width of the equation number), we either center it in the remaining space
or move it as far from the equation number as possible. The latter alternative
is taken only if the display begins with glue, since we assume that the
user put glue there to control the spacing precisely.

@<Determine the displacement, |d|, of the left edge of the equation...@>=
d=half(z-w);
if ((e > 0)&&(d < 2*e))  /*too close*/
  {@+d=half(z-w-e);
  if (p!=null) if (!is_char_node(p)) if (type(p)==glue_node) d=0;
  }

@ If the equation number is set on a line by itself, either before or
after the formula, we append an infinite penalty so that no page break will
separate the display from its number; and we use the same size and
displacement for all three potential lines of the display, even though
`\.{\\parshape}' may specify them differently.

@<Append the glue or equation number preceding the display@>=
tail_append(new_penalty(pre_display_penalty));@/
if ((d+s <= pre_display_size)||l)  /*not enough clearance*/
  {@+g1=above_display_skip_code;g2=below_display_skip_code;
  }
else{@+g1=above_display_short_skip_code;
  g2=below_display_short_skip_code;
  }
if (l&&(e==0))  /*it follows that |type(a)==hlist_node|*/
  {@+shift_amount(a)=s;append_to_vlist(a);
  tail_append(new_penalty(inf_penalty));
  }
else tail_append(new_param_glue(g1))

@ @<Append the display and perhaps also the equation number@>=
if (e!=0)
  {@+r=new_kern(z-w-e-d);
  if (l)
    {@+link(a)=r;link(r)=b;b=a;d=0;
    }
  else{@+link(b)=r;link(r)=a;
    }
  b=hpack(b, natural);
  }
shift_amount(b)=s+d;append_to_vlist(b)

@ @<Append the glue or equation number following the display@>=
if ((a!=null)&&(e==0)&&!l)
  {@+tail_append(new_penalty(inf_penalty));
  shift_amount(a)=s+z-width(a);
  append_to_vlist(a);
  g2=0;
  }
if (t!=adjust_head)  /*migrating material comes after equation number*/
  {@+link(tail)=link(adjust_head);tail=t;
  }
tail_append(new_penalty(post_display_penalty));
if (g2 > 0) tail_append(new_param_glue(g2))

@ When \.{\\halign} appears in a display, the alignment routines operate
essentially as they do in vertical mode. Then the following program is
activated, with |p| and |q| pointing to the beginning and end of the
resulting list, and with |aux_save| holding the |prev_depth| value.

@<Finish an alignment in a display@>=
{@+do_assignments();
if (cur_cmd!=math_shift) @<Pontificate about improper alignment in display@>@;
else@<Check that another \.\$ follows@>;
pop_nest();
prev_depth=aux_save.sc;
tail_append(new_disp_node());
display_formula(tail)=vpack(p, natural);
/* adding parameter nodes */
link(temp_head)=null;
if (hang_indent!=0)
{ new_param_node(dimen_type,hang_indent_code,hang_indent);
  if (hang_after!=1)
    new_param_node(int_type,hang_after_code,hang_after);
}
new_param_node(dimen_type,line_skip_limit_code,line_skip_limit);
new_param_node(glue_type,line_skip_code,line_skip);
new_param_node(glue_type,baseline_skip_code,baseline_skip);
display_params(tail)=link(temp_head); link(temp_head)=null;
display_no_bs(tail)= prev_depth <= ignore_depth;
resume_after_display();
}

@ @<Pontificate...@>=
{@+print_err("Missing $$ inserted");
@.Missing {\$\$} inserted@>
help2("Displays can use special alignments (like \\eqalignno)",@/
  "only if nothing but the alignment itself is between $$'s.");
back_error();
}

@* Mode-independent processing.
The long |main_control| procedure has now been fully specified, except for
certain activities that are independent of the current mode. These activities
do not change the current vlist or hlist or mlist; if they change anything,
it is the value of a parameter or the meaning of a control sequence.

Assignments to values in |eqtb| can be global or local. Furthermore, a
control sequence can be defined to be `\.{\\long}', `\.{\\protected}',
or `\.{\\outer}', and it might or might not be expanded. The prefixes
`\.{\\global}', `\.{\\long}', `\.{\\protected}',
and `\.{\\outer}' can occur in any order. Therefore we assign binary numeric
codes, making it possible to accumulate the union of all specified prefixes
by adding the corresponding codes.  (\PASCAL's |set| operations could also
have been used.)

@<Put each...@>=
primitive("long", prefix, 1);
@!@:long\_}{\.{\\long} primitive@>
primitive("outer", prefix, 2);
@!@:outer\_}{\.{\\outer} primitive@>
primitive("global", prefix, 4);
@!@:global\_}{\.{\\global} primitive@>
primitive("def", def, 0);
@!@:def\_}{\.{\\def} primitive@>
primitive("gdef", def, 1);
@!@:gdef\_}{\.{\\gdef} primitive@>
primitive("edef", def, 2);
@!@:edef\_}{\.{\\edef} primitive@>
primitive("xdef", def, 3);
@!@:xdef\_}{\.{\\xdef} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case prefix: if (chr_code==1) print_esc("long");
  else if (chr_code==2) print_esc("outer")
  @/@<Cases of |prefix| for |print_cmd_chr|@>;@/
  else print_esc("global");@+break;
case def: if (chr_code==0) print_esc("def");
  else if (chr_code==1) print_esc("gdef");
  else if (chr_code==2) print_esc("edef");
  else print_esc("xdef");@+break;

@ Every prefix, and every command code that might or might not be prefixed,
calls the action procedure |prefixed_command|. This routine accumulates
a sequence of prefixes until coming to a non-prefix, then it carries out
the command.

@<Cases of |main_control| that don't...@>=
any_mode(toks_register):
any_mode(assign_toks):
any_mode(assign_int):
any_mode(assign_dimen):
any_mode(assign_glue):
any_mode(assign_mu_glue):
any_mode(assign_font_dimen):
any_mode(assign_font_int):
any_mode(set_aux):
any_mode(set_prev_graf):
any_mode(set_page_dimen):
any_mode(set_page_int):
any_mode(set_box_dimen):
any_mode(set_shape):
any_mode(def_code):
any_mode(def_family):
any_mode(set_font):
any_mode(def_font):
any_mode(internal_register):
any_mode(advance):
any_mode(multiply):
any_mode(divide):
any_mode(prefix):
any_mode(let):
any_mode(shorthand_def):
any_mode(read_to_cs):
any_mode(def):
any_mode(set_box):
any_mode(hyph_data):
any_mode(set_interaction): prefixed_command();@+break;

@ If the user says, e.g., `\.{\\global\\global}', the redundancy is
silently accepted.

@<Declare act...@>=
@t\4@>@<Declare subprocedures for |prefixed_command|@>@t@>@;@/
static void prefixed_command(void)
{@+
small_number a; /*accumulated prefix codes so far*/
internal_font_number @!f; /*identifies a font*/
int @!j; /*index into a \.{\\parshape} specification*/
font_index @!k; /*index into |font_info|*/
pointer @!p, @!q; /*for temporary short-term use*/
int @!n; /*ditto*/
bool @!e; /*should a definition be expanded? or was \.{\\let} not done?*/
a=0;
while (cur_cmd==prefix)
  {@+if (!odd(a/cur_chr)) a=a+cur_chr;
  @<Get the next non-blank non-relax...@>;
  if (cur_cmd <= max_non_prefixed_command)
    @<Discard erroneous prefixes and |return|@>;
  if (tracing_commands > 2) if (eTeX_ex) show_cur_cmd_chr();
  }
@<Discard the prefixes \.{\\long} and \.{\\outer} if they are irrelevant@>;
@<Adjust \(f)for the setting of \.{\\globaldefs}@>;
switch (cur_cmd) {
@t\4@>@<Assignments@>@;
default:confusion("prefix");
@:this can't happen prefix}{\quad prefix@>
}
done: @<Insert a token saved by \.{\\afterassignment}, if any@>;
}

@ @<Discard erroneous...@>=
{@+print_err("You can't use a prefix with `");
@.You can't use a prefix with x@>
print_cmd_chr(cur_cmd, cur_chr);print_char('\'');
help1("I'll pretend you didn't say \\long or \\outer or \\global.");
if (eTeX_ex) help_line[0]=@|
  "I'll pretend you didn't say \\long or \\outer or \\global or \\protected.";
back_error();return;
}

@ @<Discard the prefixes...@>=
if (a >= 8)
  {@+j=protected_token;a=a-8;
  }
else j=0;
if ((cur_cmd!=def)&&((a%4!=0)||(j!=0)))
  {@+print_err("You can't use `");print_esc("long");print("' or `");
  print_esc("outer");
  help1("I'll pretend you didn't say \\long or \\outer here.");
  if (eTeX_ex)
    {@+help_line[0]=@|
      "I'll pretend you didn't say \\long or \\outer or \\protected here.";
    print("' or `");print_esc("protected");
    }
  print("' with `");
@.You can't use \\long...@>
  print_cmd_chr(cur_cmd, cur_chr);print_char('\'');
  error();
  }

@ The previous routine does not have to adjust |a| so that |a%4==0|,
since the following routines test for the \.{\\global} prefix as follows.

@d global (a >= 4)
@d define(A, B, C) if (global) geq_define(A, B, C);@+else eq_define(A, B, C)
@d word_define(A, B) if (global) geq_word_define(A, B);@+else eq_word_define(A, B)

@<Adjust \(f)for the setting of \.{\\globaldefs}@>=
if (global_defs!=0)
  if (global_defs < 0)
    {@+if (global) a=a-4;
    }
  else{@+if (!global) a=a+4;
    }

@ When a control sequence is to be defined, by \.{\\def} or \.{\\let} or
something similar, the |get_r_token| routine will substitute a special
control sequence for a token that is not redefinable.

@<Declare subprocedures for |prefixed_command|@>=
static void get_r_token(void)
{@+
restart: @/do@+{get_token();
}@+ while (!(cur_tok!=space_token));
if ((cur_cs==0)||(cur_cs > frozen_control_sequence))
  {@+print_err("Missing control sequence inserted");
@.Missing control...@>
  help5("Please don't say `\\def cs{...}', say `\\def\\cs{...}'.",@/
  "I've inserted an inaccessible control sequence so that your",@/
  "definition will be completed without mixing me up too badly.",@/
  "You can recover graciously from this error, if you're",@/
  "careful; see exercise 27.2 in The TeXbook.");
@:TeXbook}{\sl The \TeX book@>
  if (cur_cs==0) back_input();
  cur_tok=cs_token_flag+frozen_protection;ins_error();goto restart;
  }
}

@ @<Initialize table entries...@>=
text(frozen_protection)=s_no("inaccessible");
@.inaccessible@>

@ Here's an example of the way many of the following routines operate.
(Unfortunately, they aren't all as simple as this.)

@<Assignments@>=
case set_font: define(cur_font_loc, data, cur_chr);@+break;

@ When a |def| command has been scanned,
|cur_chr| is odd if the definition is supposed to be global, and
|cur_chr >= 2| if the definition is supposed to be expanded.

@<Assignments@>=
case def: {@+if (odd(cur_chr)&&!global&&(global_defs >= 0)) a=a+4;
  e=(cur_chr >= 2);get_r_token();p=cur_cs;
  q=scan_toks(true, e);
  if (j!=0)
    {@+q=get_avail();info(q)=j;link(q)=link(def_ref);
    link(def_ref)=q;
    }
  define(p, call+(a%4), def_ref);
  } @+break;

@ Both \.{\\let} and \.{\\futurelet} share the command code |let|.

@<Put each...@>=
primitive("let", let, normal);@/
@!@:let\_}{\.{\\let} primitive@>
primitive("futurelet", let, normal+1);@/
@!@:future\_let\_}{\.{\\futurelet} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case let: if (chr_code!=normal) print_esc("futurelet");@+else print_esc("let");@+break;

@ @<Assignments@>=
case let: {@+n=cur_chr;
  get_r_token();p=cur_cs;
  if (n==normal)
    {@+@/do@+{get_token();
    }@+ while (!(cur_cmd!=spacer));
    if (cur_tok==other_token+'=')
      {@+get_token();
      if (cur_cmd==spacer) get_token();
      }
    }
  else{@+get_token();q=cur_tok;get_token();back_input();
    cur_tok=q;back_input(); /*look ahead, then back up*/
    }  /*note that |back_input| doesn't affect |cur_cmd|, |cur_chr|*/
  if (cur_cmd >= call) add_token_ref(cur_chr);
  else if ((cur_cmd==internal_register)||(cur_cmd==toks_register))
    if ((cur_chr < mem_bot)||(cur_chr > lo_mem_stat_max))
      add_sa_ref(cur_chr);
  define(p, cur_cmd, cur_chr);
  } @+break;

@ A \.{\\chardef} creates a control sequence whose |cmd| is |char_given|;
a \.{\\mathchardef} creates a control sequence whose |cmd| is |math_given|;
and the corresponding |chr| is the character code or math code. A \.{\\countdef}
or \.{\\dimendef} or \.{\\skipdef} or \.{\\muskipdef} creates a control
sequence whose |cmd| is |assign_int| or \dots\ or |assign_mu_glue|, and the
corresponding |chr| is the |eqtb| location of the internal register in question.

@d char_def_code 0 /*|shorthand_def| for \.{\\chardef}*/
@d math_char_def_code 1 /*|shorthand_def| for \.{\\mathchardef}*/
@d count_def_code 2 /*|shorthand_def| for \.{\\countdef}*/
@d dimen_def_code 3 /*|shorthand_def| for \.{\\dimendef}*/
@d skip_def_code 4 /*|shorthand_def| for \.{\\skipdef}*/
@d mu_skip_def_code 5 /*|shorthand_def| for \.{\\muskipdef}*/
@d toks_def_code 6 /*|shorthand_def| for \.{\\toksdef}*/

@<Put each...@>=
primitive("chardef", shorthand_def, char_def_code);@/
@!@:char\_def\_}{\.{\\chardef} primitive@>
primitive("mathchardef", shorthand_def, math_char_def_code);@/
@!@:math\_char\_def\_}{\.{\\mathchardef} primitive@>
primitive("countdef", shorthand_def, count_def_code);@/
@!@:count\_def\_}{\.{\\countdef} primitive@>
primitive("dimendef", shorthand_def, dimen_def_code);@/
@!@:dimen\_def\_}{\.{\\dimendef} primitive@>
primitive("skipdef", shorthand_def, skip_def_code);@/
@!@:skip\_def\_}{\.{\\skipdef} primitive@>
primitive("muskipdef", shorthand_def, mu_skip_def_code);@/
@!@:mu\_skip\_def\_}{\.{\\muskipdef} primitive@>
primitive("toksdef", shorthand_def, toks_def_code);@/
@!@:toks\_def\_}{\.{\\toksdef} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case shorthand_def: switch (chr_code) {
  case char_def_code: print_esc("chardef");@+break;
  case math_char_def_code: print_esc("mathchardef");@+break;
  case count_def_code: print_esc("countdef");@+break;
  case dimen_def_code: print_esc("dimendef");@+break;
  case skip_def_code: print_esc("skipdef");@+break;
  case mu_skip_def_code: print_esc("muskipdef");@+break;
  default:print_esc("toksdef");
  } @+break;
case char_given: {@+print_esc("char");print_hex(chr_code);
  } @+break;
case math_given: {@+print_esc("mathchar");print_hex(chr_code);
  } @+break;

@ We temporarily define |p| to be |relax|, so that an occurrence of |p|
while scanning the definition will simply stop the scanning instead of
producing an ``undefined control sequence'' error or expanding the
previous meaning.  This allows, for instance, `\.{\\chardef\\foo=123\\foo}'.

@<Assignments@>=
case shorthand_def: {@+n=cur_chr;get_r_token();p=cur_cs;define(p, relax, 256);
  scan_optional_equals();
  switch (n) {
  case char_def_code: {@+scan_char_num();define(p, char_given, cur_val);
    } @+break;
  case math_char_def_code: {@+scan_fifteen_bit_int();define(p, math_given, cur_val);
    } @+break;
  default:{@+scan_register_num();
    if (cur_val > 255)
      {@+j=n-count_def_code; /*|int_val dotdot box_val|*/
      if (j > mu_val) j=tok_val; /*|int_val dotdot mu_val| or |tok_val|*/
      find_sa_element(j, cur_val, true);add_sa_ref(cur_ptr);
      if (j==tok_val) j=toks_register;@+else j=internal_register;
      define(p, j, cur_ptr);
      }
    else
    switch (n) {
    case count_def_code: define(p, assign_int, count_base+cur_val);@+break;
    case dimen_def_code: define(p, assign_dimen, scaled_base+cur_val);@+break;
    case skip_def_code: define(p, assign_glue, skip_base+cur_val);@+break;
    case mu_skip_def_code: define(p, assign_mu_glue, mu_skip_base+cur_val);@+break;
    case toks_def_code: define(p, assign_toks, toks_base+cur_val);
    }  /*there are no other cases*/
    }
  }
  } @+break;

@ @<Assignments@>=
case read_to_cs: {@+j=cur_chr;scan_int();n=cur_val;
  if (!scan_keyword("to"))
@.to@>
    {@+print_err("Missing `to' inserted");
@.Missing `to'...@>
    help2("You should have said `\\read<number> to \\cs'.",@/
    "I'm going to look for the \\cs now.");error();
    }
  get_r_token();
  p=cur_cs;read_toks(n, p, j);define(p, call, cur_val);
  } @+break;

@ The token-list parameters, \.{\\output} and \.{\\everypar}, etc., receive
their values in the following way. (For safety's sake, we place an
enclosing pair of braces around an \.{\\output} list.)

@<Assignments@>=
case toks_register: case assign_toks: {@+q=cur_cs;
  e=false; /*just in case, will be set |true| for sparse array elements*/
  if (cur_cmd==toks_register)
    if (cur_chr==mem_bot)
      {@+scan_register_num();
      if (cur_val > 255)
        {@+find_sa_element(tok_val, cur_val, true);
        cur_chr=cur_ptr;e=true;
        }
      else cur_chr=toks_base+cur_val;
      }
    else e=true;
  p=cur_chr; /*|p==every_par_loc| or |output_routine_loc| or \dots*/
  scan_optional_equals();
  @<Get the next non-blank non-relax non-call token@>;
  if (cur_cmd!=left_brace) @<If the right-hand side is a token parameter or
token register, finish the assignment and |goto done|@>;
  back_input();cur_cs=q;q=scan_toks(false, false);
  if (link(def_ref)==null)  /*empty list: revert to the default*/
    {@+sa_define(p, null, p, undefined_cs, null);free_avail(def_ref);
    }
  else{@+if ((p==output_routine_loc)&&!e)  /*enclose in curlies*/
      {@+link(q)=get_avail();q=link(q);
      info(q)=right_brace_token+'}';
      q=get_avail();info(q)=left_brace_token+'{';
      link(q)=link(def_ref);link(def_ref)=q;
      }
    sa_define(p, def_ref, p, call, def_ref);
    }
  } @+break;

@ @<If the right-hand side is a token parameter...@>=
if ((cur_cmd==toks_register)||(cur_cmd==assign_toks))
  {@+if (cur_cmd==toks_register)
    if (cur_chr==mem_bot)
      {@+scan_register_num();
      if (cur_val < 256) q=equiv(toks_base+cur_val);
      else{@+find_sa_element(tok_val, cur_val, false);
        if (cur_ptr==null) q=null;
        else q=sa_ptr(cur_ptr);
        }
      }
    else q=sa_ptr(cur_chr);
  else q=equiv(cur_chr);
  if (q==null) sa_define(p, null, p, undefined_cs, null);
  else{@+add_token_ref(q);sa_define(p, q, p, call, q);
    }
  goto done;
  }

@ Similar routines are used to assign values to the numeric parameters.

@<Assignments@>=
case assign_int: {@+p=cur_chr;scan_optional_equals();scan_int();
  word_define(p, cur_val);
  } @+break;
case assign_dimen: {@+p=cur_chr;scan_optional_equals();
  scan_normal_dimen;word_define(p, cur_val);
  } @+break;
case assign_glue: case assign_mu_glue: {@+p=cur_chr;n=cur_cmd;scan_optional_equals();
  if (n==assign_mu_glue) scan_glue(mu_val);@+else scan_glue(glue_val);
  trap_zero_glue();
  define(p, glue_ref, cur_val);
  } @+break;

@ When a glue register or parameter becomes zero, it will always point to
|zero_glue| because of the following procedure. (Exception: The tabskip
glue isn't trapped while preambles are being scanned.)

@<Declare subprocedures for |prefixed_command|@>=
static void trap_zero_glue(void)
{@+if ((width(cur_val)==0)&&(stretch(cur_val)==0)&&(shrink(cur_val)==0))
  {@+add_glue_ref(zero_glue);
  delete_glue_ref(cur_val);cur_val=zero_glue;
  }
}

@ The various character code tables are changed by the |def_code| commands,
and the font families are declared by |def_family|.

@<Put each...@>=
primitive("catcode", def_code, cat_code_base);
@!@:cat\_code\_}{\.{\\catcode} primitive@>
primitive("mathcode", def_code, math_code_base);
@!@:math\_code\_}{\.{\\mathcode} primitive@>
primitive("lccode", def_code, lc_code_base);
@!@:lc\_code\_}{\.{\\lccode} primitive@>
primitive("uccode", def_code, uc_code_base);
@!@:uc\_code\_}{\.{\\uccode} primitive@>
primitive("sfcode", def_code, sf_code_base);
@!@:sf\_code\_}{\.{\\sfcode} primitive@>
primitive("delcode", def_code, del_code_base);
@!@:del\_code\_}{\.{\\delcode} primitive@>
primitive("textfont", def_family, math_font_base);
@!@:text\_font\_}{\.{\\textfont} primitive@>
primitive("scriptfont", def_family, math_font_base+script_size);
@!@:script\_font\_}{\.{\\scriptfont} primitive@>
primitive("scriptscriptfont", def_family, math_font_base+script_script_size);
@!@:script\_script\_font\_}{\.{\\scriptscriptfont} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case def_code: if (chr_code==cat_code_base) print_esc("catcode");
  else if (chr_code==math_code_base) print_esc("mathcode");
  else if (chr_code==lc_code_base) print_esc("lccode");
  else if (chr_code==uc_code_base) print_esc("uccode");
  else if (chr_code==sf_code_base) print_esc("sfcode");
  else print_esc("delcode");@+break;
case def_family: print_size(chr_code-math_font_base);@+break;

@ The different types of code values have different legal ranges; the
following program is careful to check each case properly.

@<Assignments@>=
case def_code: {@+@<Let |n| be the largest legal code value, based on |cur_chr|@>;
  p=cur_chr;scan_char_num();p=p+cur_val;scan_optional_equals();
  scan_int();
  if (((cur_val < 0)&&(p < del_code_base))||(cur_val > n))
    {@+print_err("Invalid code (");print_int(cur_val);
@.Invalid code@>
    if (p < del_code_base) print("), should be in the range 0..");
    else print("), should be at most ");
    print_int(n);
    help1("I'm going to use 0 instead of that illegal code value.");@/
    error();cur_val=0;
    }
  if (p < math_code_base) define(p, data, cur_val);
  else if (p < del_code_base) define(p, data, hi(cur_val));
  else word_define(p, cur_val);
  } @+break;

@ @<Let |n| be the largest...@>=
if (cur_chr==cat_code_base) n=max_char_code;
else if (cur_chr==math_code_base) n=0100000;
else if (cur_chr==sf_code_base) n=077777;
else if (cur_chr==del_code_base) n=077777777;
else n=255

@ @<Assignments@>=
case def_family: {@+p=cur_chr;scan_four_bit_int();p=p+cur_val;
  scan_optional_equals();scan_font_ident();define(p, data, cur_val);
  } @+break;

@ Next we consider changes to \TeX's numeric registers.

@<Assignments@>=
case internal_register: case advance:
  case multiply: case divide: do_register_command(a);@+break;

@ We use the fact that |internal_register < advance < multiply < divide|.

@<Declare subprocedures for |prefixed_command|@>=
static void do_register_command(small_number @!a)
{@+
pointer l, @!q, @!r, @!s; /*for list manipulation*/
int @!p; /*type of register involved*/
bool @!e; /*does |l| refer to a sparse array element?*/
int @!w; /*integer or dimen value of |l|*/
q=cur_cmd;
e=false; /*just in case, will be set |true| for sparse array elements*/
@<Compute the register location |l| and its type |p|; but |return| if invalid@>;
if (q==internal_register) scan_optional_equals();
else if (scan_keyword("by")) do_nothing; /*optional `\.{by}'*/
@.by@>
arith_error=false;
if (q < multiply) @<Compute result of |register| or |advance|, put it in |cur_val|@>@;
else@<Compute result of |multiply| or |divide|, put it in |cur_val|@>;
if (arith_error)
  {@+print_err("Arithmetic overflow");
@.Arithmetic overflow@>
  help2("I can't carry out that multiplication or division,",@/
    "since the result is out of range.");
  if (p >= glue_val) delete_glue_ref(cur_val);
  error();return;
  }
if (p < glue_val) sa_word_define(l, cur_val);
else{@+trap_zero_glue();sa_define(l, cur_val, l, glue_ref, cur_val);
  }
}

@ Here we use the fact that the consecutive codes |int_val dotdot mu_val| and
|assign_int dotdot assign_mu_glue| correspond to each other nicely.

@<Compute the register location |l| and its type |p|...@>=
{@+if (q!=internal_register)
  {@+get_x_token();
  if ((cur_cmd >= assign_int)&&(cur_cmd <= assign_mu_glue))
    {@+l=cur_chr;p=cur_cmd-assign_int;goto found;
    }
  if (cur_cmd!=internal_register)
    {@+print_err("You can't use `");print_cmd_chr(cur_cmd, cur_chr);
@.You can't use x after ...@>
    print("' after ");print_cmd_chr(q, 0);
    help1("I'm forgetting what you said and not changing anything.");
    error();return;
    }
  }
if ((cur_chr < mem_bot)||(cur_chr > lo_mem_stat_max))
  {@+l=cur_chr;p=sa_type(l);e=true;
  }
else{@+p=cur_chr-mem_bot;scan_register_num();
  if (cur_val > 255)
    {@+find_sa_element(p, cur_val, true);l=cur_ptr;e=true;
    }
  else
switch (p) {
case int_val: l=cur_val+count_base;@+break;
case dimen_val: l=cur_val+scaled_base;@+break;
case glue_val: l=cur_val+skip_base;@+break;
case mu_val: l=cur_val+mu_skip_base;
}  /*there are no other cases*/
  }
}
found: if (p < glue_val) @+if (e) w=sa_int(l);@+else w=eqtb[l].i;
else if (e) s=sa_ptr(l);@+else s=equiv(l)

@ @<Compute result of |register| or |advance|...@>=
if (p < glue_val)
  {@+if (p==int_val) scan_int();@+else scan_normal_dimen;
  if (q==advance)
  { cur_val=cur_val+w;
    if (!e && l>=dimen_base)
    { cur_hfactor+=hfactor_eqtb[l].sc;
      cur_vfactor+=vfactor_eqtb[l].sc;
    }
  }
  }
else{@+scan_glue(p);
  if (q==advance) @<Compute the sum of two glue specs@>;
  }

@ @<Compute the sum of two glue specs@>=
{@+q=new_spec(cur_val);r=s;
delete_glue_ref(cur_val);
width(q)=width(q)+width(r);
if (stretch(q)==0) stretch_order(q)=normal;
if (stretch_order(q)==stretch_order(r)) stretch(q)=stretch(q)+stretch(r);
else if ((stretch_order(q) < stretch_order(r))&&(stretch(r)!=0))
  {@+stretch(q)=stretch(r);stretch_order(q)=stretch_order(r);
  }
if (shrink(q)==0) shrink_order(q)=normal;
if (shrink_order(q)==shrink_order(r)) shrink(q)=shrink(q)+shrink(r);
else if ((shrink_order(q) < shrink_order(r))&&(shrink(r)!=0))
  {@+shrink(q)=shrink(r);shrink_order(q)=shrink_order(r);
  }
cur_val=q;
}

@ @<Compute result of |multiply| or |divide|...@>=
{@+scan_int();
if (p < glue_val)
  if (q==multiply)
    if (p==int_val) cur_val=mult_integers(w, cur_val);
    else cur_val=nx_plus_y(w, cur_val, 0);
  else cur_val=x_over_n(w, cur_val);
else{@+r=new_spec(s);
  if (q==multiply)
    {@+width(r)=nx_plus_y(width(s), cur_val, 0);
    stretch(r)=nx_plus_y(stretch(s), cur_val, 0);
    shrink(r)=nx_plus_y(shrink(s), cur_val, 0);
    }
  else{@+width(r)=x_over_n(width(s), cur_val);
    stretch(r)=x_over_n(stretch(s), cur_val);
    shrink(r)=x_over_n(shrink(s), cur_val);
    }
  cur_val=r;
  }
}

@ The processing of boxes is somewhat different, because we may need
to scan and create an entire box before we actually change the value of the old
one.

@<Assignments@>=
case set_box: {@+scan_register_num();
  if (global) n=global_box_flag+cur_val;@+else n=box_flag+cur_val;
  scan_optional_equals();
  if (set_box_allowed) scan_box(n);
  else{@+print_err("Improper ");print_esc("setbox");
@.Improper \\setbox@>
    help2("Sorry, \\setbox is not allowed after \\halign in a display,",@/
    "or between \\accent and an accented character.");error();
    }
  } @+break;

@ The |space_factor| or |prev_depth| settings are changed when a |set_aux|
command is sensed. Similarly, |prev_graf| is changed in the presence of
|set_prev_graf|, and |dead_cycles| or |insert_penalties| in the presence of
|set_page_int|. These definitions are always global.

When some dimension of a box register is changed, the change isn't exactly
global; but \TeX\ does not look at the \.{\\global} switch.

@<Assignments@>=
case set_aux: alter_aux();@+break;
case set_prev_graf: alter_prev_graf();@+break;
case set_page_dimen: alter_page_so_far();@+break;
case set_page_int: alter_integer();@+break;
case set_box_dimen: alter_box_dimen();@+break;

@ @<Declare subprocedures for |prefixed_command|@>=
static void alter_aux(void)
{@+halfword c; /*|hmode| or |vmode|*/
if (cur_chr!=abs(mode)) report_illegal_case();
else{@+c=cur_chr;scan_optional_equals();
  if (c==vmode)
    {@+scan_normal_dimen;prev_depth=cur_val;
    }
  else{@+scan_int();
    if ((cur_val <= 0)||(cur_val > 32767))
      {@+print_err("Bad space factor");
@.Bad space factor@>
      help1("I allow only values in the range 1..32767 here.");
      int_error(cur_val);
      }
    else space_factor=cur_val;
    }
  }
}

@ @<Declare subprocedures for |prefixed_command|@>=
static void alter_prev_graf(void)
{@+int p; /*index into |nest|*/
nest[nest_ptr]=cur_list;p=nest_ptr;
while (abs(nest[p].mode_field)!=vmode) decr(p);
scan_optional_equals();scan_int();
if (cur_val < 0)
  {@+print_err("Bad ");print_esc("prevgraf");
@.Bad \\prevgraf@>
  help1("I allow only nonnegative values here.");
  int_error(cur_val);
  }
else{@+nest[p].pg_field=cur_val;cur_list=nest[nest_ptr];
  }
}

@ @<Declare subprocedures for |prefixed_command|@>=
static void alter_page_so_far(void)
{@+int c; /*index into |page_so_far|*/
c=cur_chr;scan_optional_equals();scan_normal_dimen;
page_so_far[c]=cur_val;
}

@ @<Declare subprocedures for |prefixed_command|@>=
static void alter_integer(void)
{@+small_number c;
   /*0 for \.{\\deadcycles}, 1 for \.{\\insertpenalties}, etc.*/
c=cur_chr;scan_optional_equals();scan_int();
if (c==0) dead_cycles=cur_val
@/@<Cases for |alter_integer|@>@;@/
else insert_penalties=cur_val;
}

@ @<Declare subprocedures for |prefixed_command|@>=
static void alter_box_dimen(void)
{@+small_number c; /*|width_offset| or |height_offset| or |depth_offset|*/
pointer @!b; /*box register*/
c=cur_chr;scan_register_num();fetch_box(b);scan_optional_equals();
scan_normal_dimen;
if (b!=null) mem[b+c].sc=cur_val;
}

@ Paragraph shapes are set up in the obvious way.

@<Assignments@>=
case set_shape: {@+q=cur_chr;scan_optional_equals();scan_int();n=cur_val;
  if (n <= 0) p=null;
  else if (q > par_shape_loc)
    {@+n=(cur_val/2)+1;p=get_node(2*n+1);info(p)=n;
    n=cur_val;mem[p+1].i=n; /*number of penalties*/
    for (j=p+2; j<=p+n+1; j++)
      {@+scan_int();mem[j].i=cur_val; /*penalty values*/
      }
    if (!odd(n)) mem[p+n+2].i=0; /*unused*/
    }
  else{@+
    scaled fh=0, fv=0;
    p=get_node(2*n+1);info(p)=n;
    for (j=1; j<=n; j++)
      {@+scan_normal_dimen;
      mem[p+2*j-1].sc=cur_val; /*indentation*/
      scan_normal_dimen;
      if (j==1) {fh=cur_hfactor; fv=cur_vfactor;}
      mem[p+2*j].sc=cur_val; /*width*/
      }
    cur_hfactor=fh; cur_vfactor=fv;
    }
  define(q, shape_ref, p);
  } @+break;

@ Here's something that isn't quite so obvious. It guarantees that
|info(par_shape_ptr)| can hold any positive~|n| for which |get_node(2*n+1)|
doesn't overflow the memory capacity.

@<Check the ``constant''...@>=
if (2*max_halfword < mem_top-mem_min) bad=41;

@ New hyphenation data is loaded by the |hyph_data| command.

@<Put each...@>=
primitive("hyphenation", hyph_data, 0);
@!@:hyphenation\_}{\.{\\hyphenation} primitive@>
primitive("patterns", hyph_data, 1);
@!@:patterns\_}{\.{\\patterns} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case hyph_data: if (chr_code==1) print_esc("patterns");
  else print_esc("hyphenation");@+break;

@ @<Assignments@>=
case hyph_data: if (cur_chr==1)
    {
#ifdef @!INIT
new_patterns();goto done;@;
#endif
    print_err("Patterns can be loaded only by INITEX");
@.Patterns can be...@>
    help0;error();
    @/do@+{get_token();}@+ while (!(cur_cmd==right_brace)); /*flush the patterns*/
    return;
    }
  else{@+new_hyph_exceptions();goto done;
    } @+break;

@ All of \TeX's parameters are kept in |eqtb| except the font information,
the interaction mode, and the hyphenation tables; these are strictly global.

@<Assignments@>=
case assign_font_dimen: {@+find_font_dimen(true);k=cur_val;
  scan_optional_equals();scan_normal_dimen;font_info[k].sc=cur_val;
  } @+break;
case assign_font_int: {@+n=cur_chr;scan_font_ident();f=cur_val;
  scan_optional_equals();scan_int();
  if (n==0) hyphen_char[f]=cur_val;@+else skew_char[f]=cur_val;
  } @+break;

@ @<Put each...@>=
primitive("hyphenchar", assign_font_int, 0);
@!@:hyphen\_char\_}{\.{\\hyphenchar} primitive@>
primitive("skewchar", assign_font_int, 1);
@!@:skew\_char\_}{\.{\\skewchar} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case assign_font_int: if (chr_code==0) print_esc("hyphenchar");
  else print_esc("skewchar");@+break;

@ Here is where the information for a new font gets loaded.

@<Assignments@>=
case def_font: new_font(a);@+break;

@ @<Declare subprocedures for |prefixed_command|@>=
static void new_font(small_number @!a)
{@+
pointer u; /*user's font identifier*/
scaled @!s; /*stated ``at'' size, or negative of scaled magnification*/
int @!f; /*runs through existing fonts*/
str_number @!t; /*name for the frozen font identifier*/
int @!old_setting; /*holds |selector| setting*/
str_number @!flushable_string; /*string not yet referenced*/
if (job_name==0) open_log_file();
   /*avoid confusing \.{texput} with the font name*/
@.texput@>
get_r_token();u=cur_cs;
if (u >= hash_base) t=text(u);
else if (u >= single_base)
  if (u==null_cs) t=s_no("FONT");@+else t=u-single_base;
else{@+old_setting=selector;selector=new_string;
  print("FONT");printn(u-active_base);selector=old_setting;
@.FONTx@>
  str_room(1);t=make_string();
  }
define(u, set_font, null_font);scan_optional_equals();scan_file_name();
@<Scan the font size specification@>;
@<If this font has already been loaded, set |f| to the internal font number
and |goto common_ending|@>;
f=read_font_info(u, cur_name, cur_area, s);
common_ending: define(u, set_font, f);eqtb[font_id_base+f]=eqtb[u];font_id_text(f)=t;
}

@ @<Scan the font size specification@>=
name_in_progress=true; /*this keeps |cur_name| from being changed*/
if (scan_keyword("at")) @<Put the \(p)(positive) `at' size into |s|@>@;
@.at@>
else if (scan_keyword("scaled"))
@.scaled@>
  {@+scan_int();s=-cur_val;
  if ((cur_val <= 0)||(cur_val > 32768))
    {@+print_err("Illegal magnification has been changed to 1000");@/
@.Illegal magnification...@>
    help1("The magnification ratio must be between 1 and 32768.");
    int_error(cur_val);s=-1000;
    }
  }
else s=-1000;
name_in_progress=false

@ @<Put the \(p)(positive) `at' size into |s|@>=
{@+scan_normal_dimen;s=cur_val;
if ((s <= 0)||(s >= 01000000000))
  {@+print_err("Improper `at' size (");
  print_scaled(s);print("pt), replaced by 10pt");
@.Improper `at' size...@>
  help2("I can only handle fonts at positive sizes that are",@/
  "less than 2048pt, so I've changed what you said to 10pt.");
  error();s=10*unity;
  }
}

@ When the user gives a new identifier to a font that was previously loaded,
the new name becomes the font identifier of record. Font names `\.{xyz}' and
`\.{XYZ}' are considered to be different.

@<If this font has already been loaded...@>=
flushable_string=str_ptr-1;
for (f=font_base+1; f<=font_ptr; f++)
  if (str_eq_str(font_name[f], cur_name)&&str_eq_str(font_area[f], cur_area))
    {@+if (cur_name==flushable_string)
      {@+flush_string;cur_name=font_name[f];
      }
    if (s > 0)
      {@+if (s==font_size[f]) goto common_ending;
      }
    else if (font_size[f]==xn_over_d(font_dsize[f],-s, 1000))
      goto common_ending;
    }

@ @<Cases of |print_cmd_chr|...@>=
case set_font: {@+print("select font ");slow_print(font_name[chr_code]);
  if (font_size[chr_code]!=font_dsize[chr_code])
    {@+print(" at ");print_scaled(font_size[chr_code]);
    print("pt");
    }
  } @+break;

@ @<Put each...@>=
primitive("batchmode", set_interaction, batch_mode);
@!@:batch\_mode\_}{\.{\\batchmode} primitive@>
primitive("nonstopmode", set_interaction, nonstop_mode);
@!@:nonstop\_mode\_}{\.{\\nonstopmode} primitive@>
primitive("scrollmode", set_interaction, scroll_mode);
@!@:scroll\_mode\_}{\.{\\scrollmode} primitive@>
primitive("errorstopmode", set_interaction, error_stop_mode);
@!@:error\_stop\_mode\_}{\.{\\errorstopmode} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case set_interaction: switch (chr_code) {
  case batch_mode: print_esc("batchmode");@+break;
  case nonstop_mode: print_esc("nonstopmode");@+break;
  case scroll_mode: print_esc("scrollmode");@+break;
  default:print_esc("errorstopmode");
  } @+break;

@ @<Assignments@>=
case set_interaction: new_interaction();@+break;

@ @<Declare subprocedures for |prefixed_command|@>=
static void new_interaction(void)
{@+print_ln();
interaction=cur_chr;
@<Initialize the print |selector| based on |interaction|@>;
if (log_opened) selector=selector+2;
}

@ The \.{\\afterassignment} command puts a token into the global
variable |after_token|. This global variable is examined just after
every assignment has been performed.

@<Glob...@>=
static halfword @!after_token; /*zero, or a saved token*/

@ @<Set init...@>=
after_token=0;

@ @<Cases of |main_control| that don't...@>=
any_mode(after_assignment): {@+get_token();after_token=cur_tok;
  } @+break;

@ @<Insert a token saved by \.{\\afterassignment}, if any@>=
if (after_token!=0)
  {@+cur_tok=after_token;back_input();after_token=0;
  }

@ Here is a procedure that might be called `Get the next non-blank non-relax
non-call non-assignment token'.

@<Declare act...@>=
static void do_assignments(void)
{@+
loop{@+@<Get the next non-blank non-relax...@>;
  if (cur_cmd <= max_non_prefixed_command) return;
  set_box_allowed=false;prefixed_command();set_box_allowed=true;
  }
}

@ @<Cases of |main_control| that don't...@>=
any_mode(after_group): {@+get_token();save_for_after(cur_tok);
  } @+break;

@ Files for \.{\\read} are opened and closed by the |in_stream| command.

@<Put each...@>=
primitive("openin", in_stream, 1);
@!@:open\_in\_}{\.{\\openin} primitive@>
primitive("closein", in_stream, 0);
@!@:close\_in\_}{\.{\\closein} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case in_stream: if (chr_code==0) print_esc("closein");
  else print_esc("openin");@+break;

@ @<Cases of |main_control| that don't...@>=
any_mode(in_stream): open_or_close_in();@+break;

@ @<Declare act...@>=
static void open_or_close_in(void)
{@+int c; /*1 for \.{\\openin}, 0 for \.{\\closein}*/
int @!n; /*stream number*/
c=cur_chr;scan_four_bit_int();n=cur_val;
if (read_open[n]!=closed)
  {@+a_close(&read_file[n]);read_open[n]=closed;
  }
if (c!=0)
  {@+scan_optional_equals();scan_file_name();
  pack_cur_name(".tex");
   if (a_open_in(&read_file[n])) read_open[n]=just_open;
  }
}

@ The user can issue messages to the terminal, regardless of the
current mode.

@<Cases of |main_control| that don't...@>=
any_mode(message): issue_message();@+break;

@ @<Put each...@>=
primitive("message", message, 0);
@!@:message\_}{\.{\\message} primitive@>
primitive("errmessage", message, 1);
@!@:err\_message\_}{\.{\\errmessage} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case message: if (chr_code==0) print_esc("message");
  else print_esc("errmessage");@+break;

@ @<Declare act...@>=
static void issue_message(void)
{@+int old_setting; /*holds |selector| setting*/
int @!c; /*identifies \.{\\message} and \.{\\errmessage}*/
str_number @!s; /*the message*/
c=cur_chr;link(garbage)=scan_toks(false, true);
old_setting=selector;selector=new_string;
token_show(def_ref);selector=old_setting;
flush_list(def_ref);
str_room(1);s=make_string();
if (c==0) @<Print string |s| on the terminal@>@;
else@<Print string |s| as an error message@>;
flush_string;
}

@ @<Print string |s| on the terminal@>=
{@+if (term_offset+length(s) > max_print_line-2) print_ln();
else if ((term_offset > 0)||(file_offset > 0)) print_char(' ');
slow_print(s);update_terminal;
}

@ If \.{\\errmessage} occurs often in |scroll_mode|, without user-defined
\.{\\errhelp}, we don't want to give a long help message each time. So we
give a verbose explanation only once.

@<Glob...@>=
static bool @!long_help_seen; /*has the long \.{\\errmessage} help been used?*/

@ @<Set init...@>=long_help_seen=false;

@ @<Print string |s| as an error message@>=
{@+print_err("");slow_print(s);
if (err_help!=null) use_err_help=true;
else if (long_help_seen) help1("(That was another \\errmessage.)")@;
else{@+if (interaction < error_stop_mode) long_help_seen=true;
  help4("This error message was generated by an \\errmessage",@/
  "command, so I can't give any explicit help.",@/
  "Pretend that you're Hercule Poirot: Examine all clues,",@/
@^Poirot, Hercule@>
  "and deduce the truth by order and method.");
  }
error();use_err_help=false;
}

@ The |error| routine calls on |give_err_help| if help is requested from
the |err_help| parameter.

@p static void give_err_help(void)
{@+token_show(err_help);
}

@ The \.{\\uppercase} and \.{\\lowercase} commands are implemented by
building a token list and then changing the cases of the letters in it.

@<Cases of |main_control| that don't...@>=
any_mode(case_shift): shift_case();@+break;

@ @<Put each...@>=
primitive("lowercase", case_shift, lc_code_base);
@!@:lowercase\_}{\.{\\lowercase} primitive@>
primitive("uppercase", case_shift, uc_code_base);
@!@:uppercase\_}{\.{\\uppercase} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case case_shift: if (chr_code==lc_code_base) print_esc("lowercase");
  else print_esc("uppercase");@+break;

@ @<Declare act...@>=
static void shift_case(void)
{@+pointer b; /*|lc_code_base| or |uc_code_base|*/
pointer @!p; /*runs through the token list*/
halfword @!t; /*token*/
eight_bits @!c; /*character code*/
b=cur_chr;p=scan_toks(false, false);p=link(def_ref);
while (p!=null)
  {@+@<Change the case of the token in |p|, if a change is appropriate@>;
  p=link(p);
  }
back_list(link(def_ref));free_avail(def_ref); /*omit reference count*/
}

@ When the case of a |chr_code| changes, we don't change the |cmd|.
We also change active characters, using the fact that
|cs_token_flag+active_base| is a multiple of~256.
@^data structure assumptions@>

@<Change the case of the token in |p|, if a change is appropriate@>=
t=info(p);
if (t < cs_token_flag+single_base)
  {@+c=t%256;
  if (equiv(b+c)!=0) info(p)=t-c+equiv(b+c);
  }

@ We come finally to the last pieces missing from |main_control|, namely the
`\.{\\show}' commands that are useful when debugging.

@<Cases of |main_control| that don't...@>=
any_mode(xray): show_whatever();@+break;

@ @d show_code 0 /* \.{\\show} */
@d show_box_code 1 /* \.{\\showbox} */
@d show_the_code 2 /* \.{\\showthe} */
@d show_lists_code 3 /* \.{\\showlists} */

@<Put each...@>=
primitive("show", xray, show_code);
@!@:show\_}{\.{\\show} primitive@>
primitive("showbox", xray, show_box_code);
@!@:show\_box\_}{\.{\\showbox} primitive@>
primitive("showthe", xray, show_the_code);
@!@:show\_the\_}{\.{\\showthe} primitive@>
primitive("showlists", xray, show_lists_code);
@!@:show\_lists\_code\_}{\.{\\showlists} primitive@>

@ @<Cases of |print_cmd_chr|...@>=
case xray: switch (chr_code) {
  case show_box_code: print_esc("showbox");@+break;
  case show_the_code: print_esc("showthe");@+break;
  case show_lists_code: print_esc("showlists");@+break;
  @<Cases of |xray| for |print_cmd_chr|@>@;@/
  default:print_esc("show");
  } @+break;

@ @<Declare act...@>=
static void show_whatever(void)
{@+
pointer p; /*tail of a token list to show*/
small_number @!t; /*type of conditional being shown*/
int @!m; /*upper bound on |fi_or_else| codes*/
int @!l; /*line where that conditional began*/
int @!n; /*level of \.{\\if...\\fi} nesting*/
switch (cur_chr) {
case show_lists_code: {@+begin_diagnostic();show_activities();
  } @+break;
case show_box_code: @<Show the current contents of a box@>@;@+break;
case show_code: @<Show the current meaning of a token, then |goto common_ending|@>@;
@<Cases for |show_whatever|@>@;@/
default:@<Show the current value of some parameter or register, then |goto
common_ending|@>@;
} @/
@<Complete a potentially long \.{\\show} command@>;
common_ending: if (interaction < error_stop_mode)
  {@+help0;decr(error_count);
  }
else if (tracing_online > 0)
  {@+@t@>@;@/
  help3("This isn't an error message; I'm just \\showing something.",@/
  "Type `I\\show...' to show more (e.g., \\show\\cs,",@/
  "\\showthe\\count10, \\showbox255, \\showlists).");
  }
else{@+@t@>@;@/
  help5("This isn't an error message; I'm just \\showing something.",@/
  "Type `I\\show...' to show more (e.g., \\show\\cs,",@/
  "\\showthe\\count10, \\showbox255, \\showlists).",@/
  "And type `I\\tracingonline=1\\show...' to show boxes and",@/
  "lists on your terminal as well as in the transcript file.");
  }
error();
}

@ @<Show the current meaning of a token...@>=
{@+get_token();
if (interaction==error_stop_mode) wake_up_terminal;
print_nl("> ");
if (cur_cs!=0)
  {@+sprint_cs(cur_cs);print_char('=');
  }
print_meaning();goto common_ending;
}

@ @<Cases of |print_cmd_chr|...@>=
case undefined_cs: print("undefined");@+break;
case call: case long_call: case outer_call:
  case long_outer_call: {@+n=cmd-call;
  if (info(link(chr_code))==protected_token) n=n+4;
  if (odd(n/4)) print_esc("protected");
  if (odd(n)) print_esc("long");
  if (odd(n/2)) print_esc("outer");
  if (n > 0) print_char(' ');
  print("macro");
  } @+break;
case end_template: print_esc("outer endtemplate");@+break;

@ @<Show the current contents of a box@>=
{@+scan_register_num();fetch_box(p);begin_diagnostic();
print_nl("> \\box");print_int(cur_val);print_char('=');
if (p==null) print("void");@+else show_box(p);
}

@ @<Show the current value of some parameter...@>=
{@+the_toks();
if (interaction==error_stop_mode) wake_up_terminal;
print_nl("> ");token_show(temp_head);
flush_list(link(temp_head));goto common_ending;
}

@ @<Complete a potentially long \.{\\show} command@>=
end_diagnostic(true);print_err("OK");
@.OK@>
if (selector==term_and_log) if (tracing_online <= 0)
  {@+selector=term_only;print(" (see the transcript file)");
  selector=term_and_log;
  }

@* Dumping and undumping the tables.
After \.{INITEX} has seen a collection of fonts and macros, it
can write all the necessary information on an auxiliary file so
that production versions of \TeX\ are able to initialize their
memory at high speed. The present section of the program takes
care of such output and input. We shall consider simultaneously
the processes of storing and restoring,
so that the inverse relation between them is clear.
@.INITEX@>

The global variable |format_ident| is a string that is printed right
after the |banner| line when \TeX\ is ready to start. For \.{INITEX} this
string says simply `\.{ (INITEX)}'; for other versions of \TeX\ it says,
for example, `\.{ (preloaded format=plain 1982.11.19)}', showing the year,
month, and day that the format file was created. We have |format_ident==0|
before \TeX's tables are loaded.

@<Glob...@>=
static str_number @!format_ident, frozen_format_ident;

@ @<Set init...@>=
format_ident=frozen_format_ident=0;

@ We keep a copy of the initial value, be able to test for it later.

@<Initialize table entries...@>=
format_ident=frozen_format_ident=s_no(" (INITEX)");

@ @<Declare act...@>=
#ifdef @!INIT
static void store_fmt_file(void)
{@+
int j, @!k, @!l; /*all-purpose indices*/
int @!p, @!q; /*all-purpose pointers*/
int @!x; /*something to dump*/
four_quarters @!w; /*four ASCII codes*/
@<If dumping is not allowed, abort@>;
@<Create the |format_ident|, open the format file, and inform the user that
dumping has begun@>;
eqtb[dimen_base+hsize_code].i=hhsize;
eqtb[dimen_base+vsize_code].i=hvsize;
@<Dump constants for consistency check@>;
@<Dump the string pool@>;
@<Dump the dynamic memory@>;
@<Dump the table of equivalents@>;
@<Dump the font information@>;
@<Dump the hyphenation tables@>;
@<Dump a couple more things and the closing check word@>;
@<Close the format file@>;
eqtb[dimen_base+hsize_code].i=0;
eqtb[dimen_base+vsize_code].i=0;
}
#endif

@ Corresponding to the procedure that dumps a format file, we have a function
that reads one in. The function returns |false| if the dumped format is
incompatible with the present \TeX\ table sizes, etc.

@d too_small(X) {@+wake_up_terminal;
  wterm_ln("---! Must increase the %s", X);
@.Must increase the x@>
  goto bad_fmt;
  }

@p @t\4@>@<Declare the function called |open_fmt_file|@>@;
static bool load_fmt_file(void)
{@+
int j, @!k; /*all-purpose indices*/
int @!p, @!q; /*all-purpose pointers*/
int @!x; /*something undumped*/
four_quarters @!w; /*four ASCII codes*/
@<Undump constants for consistency check@>;
@<Undump the string pool@>;
@<Undump the dynamic memory@>;
@<Undump the table of equivalents@>;
@<Undump the font information@>;
@<Undump the hyphenation tables@>;
@<Undump a couple more things and the closing check word@>;
return true; /*it worked!*/
bad_fmt: wake_up_terminal;
  wterm_ln("(Fatal format file error; I'm stymied)");
@.Fatal format file error@>
return false;
}

@ The user is not allowed to dump a format file unless |save_ptr==0|.
This condition implies that |cur_level==level_one|, hence
the |xeq_level| array is constant and it need not be dumped.

@<If dumping is not allowed, abort@>=
if (save_ptr!=0)
  {@+print_err("You can't dump inside a group");
@.You can't dump...@>
  help1("`{...\\dump}' is a no-no.");succumb;
  }

@ Format files consist of |memory_word| items, and we use the following
macros to dump words of different types:

@d dump_wd(A) {@+fmt_file.d=A;put(fmt_file);@+}
@d dump_int(A) {@+fmt_file.d.i=A;put(fmt_file);@+}
@d dump_hh(A) {@+fmt_file.d.hh=A;put(fmt_file);@+}
@d dump_qqqq(A) {@+fmt_file.d.qqqq=A;put(fmt_file);@+}

@<Glob...@>=
static word_file @!fmt_file; /*for input or output of format information*/

@ The inverse macros are slightly more complicated, since we need to check
the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
read an integer value |x| that is supposed to be in the range |a <= x <= b|.
System error messages should be suppressed when undumping.
@^system dependencies@>

@d undump_wd(A) {@+get(fmt_file);A=fmt_file.d;@+}
@d undump_int(A) {@+get(fmt_file);A=fmt_file.d.i;@+}
@d undump_hh(A) {@+get(fmt_file);A=fmt_file.d.hh;@+}
@d undump_qqqq(A) {@+get(fmt_file);A=fmt_file.d.qqqq;@+}
@d undump(A, B, C) {@+undump_int(x);if ((x < A)||(x > B)) goto bad_fmt;@+else C=x;@+}
@d undump_size(A, B, C, D) {@+undump_int(x);
  if (x < A) goto bad_fmt;if (x > B) too_small(C)@;@+else D=x;@+}

@ The next few sections of the program should make it clear how we use the
dump/undump macros.

@<Dump constants for consistency check@>=
dump_int(0);@/
@<Dump the \eTeX\ state@>@/
@<Dump the \Prote\ state@>@/
@<Dump the |ROM| array@>@/
dump_int(mem_bot);@/
dump_int(mem_top);@/
dump_int(eqtb_size);@/
dump_int(hash_prime);@/
dump_int(hyph_size)

@ Sections of a \.{WEB} program that are ``commented out'' still contribute
strings to the string pool; therefore \.{INITEX} and \TeX\ will have
the same strings. (And it is, of course, a good thing that they do.)
@.WEB@>
@^string pool@>

@<Undump constants for consistency check@>=
x=fmt_file.d.i;
if (x!=0) goto bad_fmt; /*check that strings are the same*/
@/@<Undump the \eTeX\ state@>@/
@/@<Undump the \Prote\ state@>@/
@/@<Undump the |ROM| array@>@/
undump_int(x);
if (x!=mem_bot) goto bad_fmt;
undump_int(x);
if (x!=mem_top) goto bad_fmt;
undump_int(x);
if (x!=eqtb_size) goto bad_fmt;
undump_int(x);
if (x!=hash_prime) goto bad_fmt;
undump_int(x);
if (x!=hyph_size) goto bad_fmt

@ @d dump_four_ASCII
  w.b0=qi(so(str_pool[k]));w.b1=qi(so(str_pool[k+1]));
  w.b2=qi(so(str_pool[k+2]));w.b3=qi(so(str_pool[k+3]));
  dump_qqqq(w)

@<Dump the string pool@>=
dump_int(pool_ptr);
dump_int(str_ptr);
for (k=0; k<=str_ptr; k++) dump_int(str_start[k]);
k=0;
while (k+4 < pool_ptr)
  {@+dump_four_ASCII;k=k+4;
  }
k=pool_ptr-4;dump_four_ASCII;
print_ln();print_int(str_ptr);print(" strings of total length ");
print_int(pool_ptr)

@ @d undump_four_ASCII
  undump_qqqq(w);
  str_pool[k]=si(qo(w.b0));str_pool[k+1]=si(qo(w.b1));
  str_pool[k+2]=si(qo(w.b2));str_pool[k+3]=si(qo(w.b3))

@<Undump the string pool@>=
undump_size(0, pool_size,"string pool size", pool_ptr);
undump_size(0, max_strings,"max strings", str_ptr);
for (k=0; k<=str_ptr; k++) undump(0, pool_ptr, str_start[k]);
k=0;
while (k+4 < pool_ptr)
  {@+undump_four_ASCII;k=k+4;
  }
k=pool_ptr-4;undump_four_ASCII;
init_str_ptr=str_ptr;init_pool_ptr=pool_ptr

@ By sorting the list of available spaces in the variable-size portion of
|mem|, we are usually able to get by without having to dump very much
of the dynamic memory.

We recompute |var_used| and |dyn_used|, so that \.{INITEX} dumps valid
information even when it has not been gathering statistics.

@<Dump the dynamic memory@>=
sort_avail();var_used=0;
dump_int(lo_mem_max);dump_int(rover);
if (eTeX_ex) for (k=int_val; k<=tok_val; k++) dump_int(sa_root[k]);
p=mem_bot;q=rover;x=0;
@/do@+{for (k=p; k<=q+1; k++) dump_wd(mem[k]);
x=x+q+2-p;var_used=var_used+q-p;
p=q+node_size(q);q=rlink(q);
}@+ while (!(q==rover));
var_used=var_used+lo_mem_max-p;dyn_used=mem_end+1-hi_mem_min;@/
for (k=p; k<=lo_mem_max; k++) dump_wd(mem[k]);
x=x+lo_mem_max+1-p;
dump_int(hi_mem_min);dump_int(avail);
for (k=hi_mem_min; k<=mem_end; k++) dump_wd(mem[k]);
x=x+mem_end+1-hi_mem_min;
p=avail;
while (p!=null)
  {@+decr(dyn_used);p=link(p);
  }
dump_int(var_used);dump_int(dyn_used);
print_ln();print_int(x);
print(" memory locations dumped; current usage is ");
print_int(var_used);print_char('&');print_int(dyn_used)

@ @<Undump the dynamic memory@>=
undump(lo_mem_stat_max+1000, hi_mem_stat_min-1, lo_mem_max);
undump(lo_mem_stat_max+1, lo_mem_max, rover);
if (eTeX_ex) for (k=int_val; k<=tok_val; k++)
  undump(null, lo_mem_max, sa_root[k]);
p=mem_bot;q=rover;
@/do@+{for (k=p; k<=q+1; k++) undump_wd(mem[k]);
p=q+node_size(q);
if ((p > lo_mem_max)||((q >= rlink(q))&&(rlink(q)!=rover))) goto bad_fmt;
q=rlink(q);
}@+ while (!(q==rover));
for (k=p; k<=lo_mem_max; k++) undump_wd(mem[k]);
if (mem_min < mem_bot-2)  /*make more low memory available*/
  {@+p=llink(rover);q=mem_min+1;
  link(mem_min)=null;info(mem_min)=null; /*we don't use the bottom word*/
  rlink(p)=q;llink(rover)=q;@/
  rlink(q)=rover;llink(q)=p;link(q)=empty_flag;
  node_size(q)=mem_bot-q;
  }
undump(lo_mem_max+1, hi_mem_stat_min, hi_mem_min);
undump(null, mem_top, avail);mem_end=mem_top;
for (k=hi_mem_min; k<=mem_end; k++) undump_wd(mem[k]);
undump_int(var_used);undump_int(dyn_used)

@ @<Dump the table of equivalents@>=
@<Dump regions 1 to 4 of |eqtb|@>;
@<Dump regions 5 and 6 of |eqtb|@>;
dump_int(par_loc);dump_int(write_loc);@/
dump_int(input_loc);@/
@<Dump the hash table@>@;

@ @<Undump the table of equivalents@>=
@<Undump regions 1 to 6 of |eqtb|@>;
undump(hash_base, frozen_control_sequence, par_loc);
par_token=cs_token_flag+par_loc;@/
undump(hash_base, frozen_control_sequence, write_loc);@/
undump(hash_base, frozen_control_sequence, input_loc);
input_token=cs_token_flag+input_loc;@/
@<Undump the hash table@>@;

@ The table of equivalents usually contains repeated information, so we dump it
in compressed form: The sequence of $n+2$ values $(n,x_1,\ldots,x_n,m)$ in the
format file represents $n+m$ consecutive entries of |eqtb|, with |m| extra
copies of $x_n$, namely $(x_1,\ldots,x_n,x_n,\ldots,x_n)$.

@<Dump regions 1 to 4 of |eqtb|@>=
k=active_base;
@/do@+{j=k;
while (j < int_base-1)
  {@+if ((equiv(j)==equiv(j+1))&&(eq_type(j)==eq_type(j+1))&&@|
    (eq_level(j)==eq_level(j+1))) goto found1;
  incr(j);
  }
l=int_base;goto done1; /*|j==int_base-1|*/
found1: incr(j);l=j;
while (j < int_base-1)
  {@+if ((equiv(j)!=equiv(j+1))||(eq_type(j)!=eq_type(j+1))||@|
    (eq_level(j)!=eq_level(j+1))) goto done1;
  incr(j);
  }
done1: dump_int(l-k);
while (k < l)
  {@+dump_wd(eqtb[k]);incr(k);
  }
k=j+1;dump_int(k-l);
}@+ while (!(k==int_base))

@ @<Dump regions 5 and 6 of |eqtb|@>=
@/do@+{j=k;
while (j < eqtb_size)
  {@+if (eqtb[j].i==eqtb[j+1].i) goto found2;
  incr(j);
  }
l=eqtb_size+1;goto done2; /*|j==eqtb_size|*/
found2: incr(j);l=j;
while (j < eqtb_size)
  {@+if (eqtb[j].i!=eqtb[j+1].i) goto done2;
  incr(j);
  }
done2: dump_int(l-k);
while (k < l)
  {@+dump_wd(eqtb[k]);incr(k);
  }
k=j+1;dump_int(k-l);
}@+ while (!(k > eqtb_size))

@ @<Undump regions 1 to 6 of |eqtb|@>=
k=active_base;
@/do@+{undump_int(x);
if ((x < 1)||(k+x > eqtb_size+1)) goto bad_fmt;
for (j=k; j<=k+x-1; j++) undump_wd(eqtb[j]);
k=k+x;
undump_int(x);
if ((x < 0)||(k+x > eqtb_size+1)) goto bad_fmt;
for (j=k; j<=k+x-1; j++) eqtb[j]=eqtb[k-1];
k=k+x;
}@+ while (!(k > eqtb_size))

@ A different scheme is used to compress the hash table, since its lower
region is usually sparse. When |text(p)!=0| for |p <= hash_used|, we output
two words, |p| and |hash[p]|. The hash table is, of course, densely packed
for |p >= hash_used|, so the remaining entries are output in a~block.

@<Dump the hash table@>=
dump_int(hash_used);cs_count=frozen_control_sequence-1-hash_used;
for (p=hash_base; p<=hash_used; p++) if (text(p)!=0)
  {@+dump_int(p);dump_hh(hash[p]);incr(cs_count);
  }
for (p=hash_used+1; p<=undefined_control_sequence-1; p++) dump_hh(hash[p]);
dump_int(cs_count);@/
print_ln();print_int(cs_count);print(" multiletter control sequences")

@ @<Undump the hash table@>=
undump(hash_base, frozen_control_sequence, hash_used);p=hash_base-1;
@/do@+{undump(p+1, hash_used, p);undump_hh(hash[p]);
}@+ while (!(p==hash_used));
for (p=hash_used+1; p<=undefined_control_sequence-1; p++) undump_hh(hash[p]);
undump_int(cs_count)

@ @<Dump the font information@>=
dump_int(fmem_ptr);
for (k=0; k<=fmem_ptr-1; k++) dump_wd(font_info[k]);
dump_int(font_ptr);
for (k=null_font; k<=font_ptr; k++)
  @<Dump the array info for internal font number |k|@>;
print_ln();print_int(fmem_ptr-7);print(" words of font info for ");
print_int(font_ptr-font_base);print(" preloaded font");
if (font_ptr!=font_base+1) print_char('s')

@ @<Undump the font information@>=
undump_size(7, font_mem_size,"font mem size", fmem_ptr);
for (k=0; k<=fmem_ptr-1; k++) undump_wd(font_info[k]);
undump_size(font_base, font_max,"font max", font_ptr);
for (k=null_font; k<=font_ptr; k++)
  @<Undump the array info for internal font number |k|@>@;

@ @<Dump the array info for internal font number |k|@>=
{@+dump_qqqq(font_check[k]);
dump_int(font_size[k]);
dump_int(font_dsize[k]);
dump_int(font_params[k]);@/
dump_int(hyphen_char[k]);
dump_int(skew_char[k]);@/
dump_int(font_name[k]);
dump_int(font_area[k]);@/
dump_int(font_bc[k]);
dump_int(font_ec[k]);@/
dump_int(char_base[k]);
dump_int(width_base[k]);
dump_int(height_base[k]);@/
dump_int(depth_base[k]);
dump_int(italic_base[k]);
dump_int(lig_kern_base[k]);@/
dump_int(kern_base[k]);
dump_int(exten_base[k]);
dump_int(param_base[k]);@/
dump_int(font_glue[k]);@/
dump_int(bchar_label[k]);
dump_int(font_bchar[k]);
dump_int(font_false_bchar[k]);@/
print_nl("\\font");printn_esc(font_id_text(k));print_char('=');
print_file_name(font_name[k], font_area[k],empty_string);
if (font_size[k]!=font_dsize[k])
  {@+print(" at ");print_scaled(font_size[k]);print("pt");
  }
}

@ @<Undump the array info for internal font number |k|@>=
{@+undump_qqqq(font_check[k]);@/
undump_int(font_size[k]);
undump_int(font_dsize[k]);
undump(min_halfword, max_halfword, font_params[k]);@/
undump_int(hyphen_char[k]);
undump_int(skew_char[k]);@/
undump(0, str_ptr, font_name[k]);
undump(0, str_ptr, font_area[k]);@/
undump(0, 255, font_bc[k]);
undump(0, 255, font_ec[k]);@/
undump_int(char_base[k]);
undump_int(width_base[k]);
undump_int(height_base[k]);@/
undump_int(depth_base[k]);
undump_int(italic_base[k]);
undump_int(lig_kern_base[k]);@/
undump_int(kern_base[k]);
undump_int(exten_base[k]);
undump_int(param_base[k]);@/
undump(min_halfword, lo_mem_max, font_glue[k]);@/
undump(0, fmem_ptr-1, bchar_label[k]);
undump(min_quarterword, non_char, font_bchar[k]);
undump(min_quarterword, non_char, font_false_bchar[k]);
}

@ @<Dump the hyphenation tables@>=
dump_int(hyph_count);
for (k=0; k<=hyph_size; k++) if (hyph_word[k]!=0)
  {@+dump_int(k);dump_int(hyph_word[k]);dump_int(hyph_list[k]);
  }
print_ln();print_int(hyph_count);print(" hyphenation exception");
if (hyph_count!=1) print_char('s');
if (trie_not_ready) init_trie();
dump_int(trie_max);
dump_int(hyph_start);
for (k=0; k<=trie_max; k++) dump_hh(trie[k]);
dump_int(trie_op_ptr);
for (k=1; k<=trie_op_ptr; k++)
  {@+dump_int(hyf_distance[k]);
  dump_int(hyf_num[k]);
  dump_int(hyf_next[k]);
  }
print_nl("Hyphenation trie of length ");print_int(trie_max);
@.Hyphenation trie...@>
print(" has ");print_int(trie_op_ptr);print(" op");
if (trie_op_ptr!=1) print_char('s');
print(" out of ");print_int(trie_op_size);
for (k=255; k>=0; k--) if (trie_used[k] > min_quarterword)
  {@+print_nl("  ");print_int(qo(trie_used[k]));
  print(" for language ");print_int(k);
  dump_int(k);dump_int(qo(trie_used[k]));
  }

@ Only ``nonempty'' parts of |op_start| need to be restored.

@<Undump the hyphenation tables@>=
undump(0, hyph_size, hyph_count);
for (k=1; k<=hyph_count; k++)
  {@+undump(0, hyph_size, j);
  undump(0, str_ptr, hyph_word[j]);
  undump(min_halfword, max_halfword, hyph_list[j]);
  }
undump_size(0, trie_size,"trie size", j);
#ifdef @!INIT
trie_max=j;
#endif
undump(0, j, hyph_start);
for (k=0; k<=j; k++) undump_hh(trie[k]);
undump_size(0, trie_op_size,"trie op size", j);
#ifdef @!INIT
trie_op_ptr=j;
#endif
for (k=1; k<=j; k++)
  {@+undump(0, 63, hyf_distance[k]); /*a |small_number|*/
  undump(0, 63, hyf_num[k]);
  undump(min_quarterword, max_quarterword, hyf_next[k]);
  }
#ifdef @!INIT
for (k=0; k<=255; k++) trie_used[k]=min_quarterword;
#endif
@;@/
k=256;
while (j > 0)
  {@+undump(0, k-1, k);undump(1, j, x);
#ifdef @!INIT
trie_used[k]=qi(x);
#endif
@;@/
  j=j-x;op_start[k]=qo(j);
  }
#ifdef @!INIT
trie_not_ready=false
#endif

@ We have already printed a lot of statistics, so we set |tracing_stats=0|
to prevent them from appearing again.

@<Dump a couple more things and the closing check word@>=
dump_int(interaction);dump_int(format_ident);dump_int(69069);
tracing_stats=0

@ @<Undump a couple more things and the closing check word@>=
undump(batch_mode, error_stop_mode, interaction);
if (interaction_option>=0) interaction=interaction_option;  /* \TeX\ Live */
undump(0, str_ptr, format_ident);
undump_int(x);
if ((x!=69069)||eof(fmt_file)) goto bad_fmt

@ @<Create the |format_ident|...@>=
selector=new_string;
print(" (preloaded format=");printn(job_name);print_char(' ');
print_int(year);print_char('.');
print_int(month);print_char('.');print_int(day);print_char(')');
if (interaction==batch_mode) selector=log_only;
else selector=term_and_log;
str_room(1);
format_ident=make_string();
pack_job_name(format_extension);
while (!w_open_out(&fmt_file))
  prompt_file_name("format file name", format_extension);
print_nl("Beginning to dump on file ");
@.Beginning to dump...@>
slow_print(w_make_name_string(&fmt_file));flush_string;
print_nl("");slow_print(format_ident)

@ @<Close the format file@>=
w_close(&fmt_file)

@* The main program.
This is it: the part of \TeX\ that executes all those procedures we have
written.

Well---almost. Let's leave space for a few more routines that we may
have forgotten.

@p @<Last-minute procedures@>@;

@ We have noted that there are two versions of \TeX82. One, called \.{INITEX},
@.INITEX@>
has to be run first; it initializes everything from scratch, without
reading a format file, and it has the capability of dumping a format file.
The other one is called `\.{VIRTEX}'; it is a ``virgin'' program that needs
@.VIRTEX@>
to input a format file in order to get started. \.{VIRTEX} typically has
more memory capacity than \.{INITEX}, because it does not need the space
consumed by the auxiliary hyphenation tables and the numerous calls on
|primitive|, etc.

The \.{VIRTEX} program cannot read a format file instantaneously, of course;
the best implementations therefore allow for production versions of \TeX\ that
not only avoid the loading routine for \PASCAL\ object code, they also have
a format file pre-loaded. This is impossible to do if we stick to standard
\PASCAL; but there is a simple way to fool many systems into avoiding the
initialization, as follows:\quad(1)~We declare a global integer variable
called |ready_already|. The probability is negligible that this
variable holds any particular value like 314159 when \.{VIRTEX} is first
loaded.\quad(2)~After we have read in a format file and initialized
everything, we set |ready_already=314159|.\quad(3)~Soon \.{VIRTEX}
will print `\.*', waiting for more input; and at this point we
interrupt the program and save its core image in some form that the
operating system can reload speedily.\quad(4)~When that core image is
activated, the program starts again at the beginning; but now
|ready_already==314159| and all the other global variables have
their initial values too. The former chastity has vanished!

In other words, if we allow ourselves to test the condition
|ready_already==314159|, before |ready_already| has been
assigned a value, we can avoid the lengthy initialization. Dirty tricks
rarely pay off so handsomely.
@^dirty \PASCAL@>
@^system dependencies@>

On systems that allow such preloading, the standard program called \.{TeX}
should be the one that has \.{plain} format preloaded, since that agrees
with {\sl The \TeX book}. Other versions, e.g., \.{AmSTeX}, should also
@:TeXbook}{\sl The \TeX book@>
@.AmSTeX@>
@.plain@>
be provided for commonly used formats.

@<Glob...@>=
static int @!ready_already; /*a sacrifice of purity for economy*/

@ Now this is really it: \TeX\ starts and ends here.

The initial test involving |ready_already| should be deleted if the
\PASCAL\ runtime system is smart enough to detect such a ``mistake.''
@^system dependencies@>

@p
int main(int argc, char *argv[]) {@! /*|start_here|*/
hlog=stderr;
  main_init(argc, argv); /* \TeX\ Live */
history=fatal_error_stop; /*in case we quit during initialization*/
t_open_out; /*open the terminal for output*/
if (ready_already==314159) goto start_of_TEX;
@<Check the ``constant'' values...@>@;
if (bad > 0)
  {@+wterm_ln("Ouch---my internal constants have been clobbered!"
    "---case %d", bad);
@.Ouch...clobbered@>
  exit(0);
  }
get_strings_started();
initialize(); /*set global variables to their starting values*/
#ifdef @!INIT
if (iniversion)  /* \TeX\ Live */
{ init_prim(); /*call |primitive| for each primitive*/
  init_str_ptr=str_ptr;init_pool_ptr=pool_ptr;fix_date_and_time(); }
#endif
ready_already=314159;
start_of_TEX: @<Initialize the output routines@>;
@<Get the first line of input and prepare to start@>;
history=spotless; /*ready to go!*/
hhsize=hsize; hvsize=vsize; hout_allocate();@/
main_control();  /*come to life*/
final_cleanup(); /*prepare for death*/
close_files_and_terminate();
ready_already=0;
return 0; }

@ Here we do whatever is needed to complete \TeX's job gracefully on the
local operating system. The code here might come into play after a fatal
error; it must therefore consist entirely of ``safe'' operations that
cannot produce error messages. For example, it would be a mistake to call
|str_room| or |make_string| at this time, because a call on |overflow|
might lead to an infinite loop.
@^system dependencies@>
(Actually there's one way to get error messages, via |prepare_mag|;
but that can't cause infinite recursion.)
@^recursion@>

If |final_cleanup| is bypassed, this program doesn't bother to close
the input files that may still be open.

@<Last-minute...@>=
static void close_files_and_terminate(void)
{@+int k; /*all-purpose index*/
@<Finish the extensions@>;new_line_char=-1;
#ifdef @!STAT
if (tracing_stats > 0) @<Output statistics about this job@>;@;
#endif
wake_up_terminal; hint_close();
if (log_opened)
  {@+wlog_cr;a_close(&log_file);selector=selector-2;
  if (selector==term_only)
    {@+print_nl("Transcript written on ");
@.Transcript written...@>
    slow_print(log_name);print_char('.');print_nl("");
    }
  }
}

@ The present section goes directly to the log file instead of using
|print| commands, because there's no need for these strings to take
up |str_pool| memory when a non-{\bf stat} version of \TeX\ is being used.

@<Output statistics...@>=
if (log_opened)
  {@+wlog_ln(" ");
  wlog_ln("Here is how much of TeX's memory you used:");
@.Here is how much...@>
  wlog(" %d string", str_ptr-init_str_ptr);
  if (str_ptr!=init_str_ptr+1) wlog( "s" );
  wlog_ln( " out of %d", max_strings-init_str_ptr);@/
  wlog_ln( " %d string characters out of %d", pool_ptr-init_pool_ptr,
    pool_size-init_pool_ptr);@/
  wlog_ln(" %d words of memory out of %d", lo_mem_max-mem_min+mem_end-hi_mem_min+2,@|
    mem_end+1-mem_min);@/
  wlog_ln(" %d multiletter control sequences out of %d", cs_count, hash_size);@/
  wlog(" %d words of font info for %d font", fmem_ptr, font_ptr-font_base);
  if (font_ptr!=font_base+1) wlog("s");
  wlog_ln( ", out of %d for %d", font_mem_size, font_max-font_base);@/
  wlog(" %d hyphenation exception", hyph_count);
  if (hyph_count!=1) wlog("s");
  wlog_ln( " out of %d", hyph_size);@/
  wlog_ln(" %di,%dn,%dp,%db,%ds stack positions out of %di,%dn,%dp,%db,%ds",
    max_in_stack, max_nest_stack,@|
    max_param_stack,@|
    max_buf_stack+1,@|
    max_save_stack+6,@|
    stack_size,
    nest_size,
    param_size,
    buf_size,
    save_size );
  }

@ We get to the |final_cleanup| routine when \.{\\end} or \.{\\dump} has
been scanned and |its_all_over|\kern-2pt.

@<Last-minute...@>=
static void final_cleanup(void)
{@+
int c; /*0 for \.{\\end}, 1 for \.{\\dump}*/
c=cur_chr;if (c!=1) new_line_char=-1;
if (job_name==0) open_log_file();
while (input_ptr > 0)
  if (state==token_list) end_token_list();@+else end_file_reading();
while (open_parens > 0)
  {@+print(" )");decr(open_parens);
  }
if (cur_level > level_one)
  {@+print_nl("(");print_esc("end occurred ");
  print("inside a group at level ");
@:end\_}{\.{(\\end occurred...)}@>
  print_int(cur_level-level_one);print_char(')');
  if (eTeX_ex) show_save_groups();
  }
while (cond_ptr!=null)
  {@+print_nl("(");print_esc("end occurred ");
  print("when ");print_cmd_chr(if_test, cur_if);
  if (if_line!=0)
    {@+print(" on line ");print_int(if_line);
    }
  print(" was incomplete)");
  if_line=if_line_field(cond_ptr);
  cur_if=subtype(cond_ptr);temp_ptr=cond_ptr;
  cond_ptr=link(cond_ptr);free_node(temp_ptr, if_node_size);
  }
if (history!=spotless)
 if (((history==warning_issued)||(interaction < error_stop_mode)))
  if (selector==term_and_log)
  {@+selector=term_only;
  print_nl("(see the transcript file for additional information)");
@.see the transcript file...@>
  selector=term_and_log;
  }
if (c==1)
  {
#ifdef @!INIT
for (c=top_mark_code; c<=split_bot_mark_code; c++)
    if (cur_mark[c]!=null) delete_token_ref(cur_mark[c]);
  if (sa_mark!=null)
    if (do_marks(destroy_marks, 0, sa_mark)) sa_mark=null;
  for (c=last_box_code; c<=vsplit_code; c++) flush_node_list(disc_ptr[c]);
  if (last_glue!=max_halfword) delete_glue_ref(last_glue);
  store_fmt_file();return;
#endif
  print_nl("(\\dump is performed only by INITEX)");return;
@:dump\_}{\.{\\dump...only by INITEX}@>
  }
}

@ @<Last-minute...@>=
#ifdef @!INIT
static void init_prim(void) /*initialize all the primitives*/
{@+no_new_control_sequence=false;
first=0;
@<Put each...@>;
no_new_control_sequence=true;
}
#endif

@ When we begin the following code, \TeX's tables may still contain garbage;
the strings might not even be present. Thus we must proceed cautiously to get
bootstrapped in.

But when we finish this part of the program, \TeX\ is ready to call on the
|main_control| routine to do its work.

@<Get the first line...@>=
{@+@<Initialize the input routines@>;
@<Enable \eTeX\ and furthermore Prote, if requested@>@;@/
if ((format_ident==0)||(buffer[loc]=='&'))
  {@+if (format_ident!=0) initialize(); /*erase preloaded format*/
  if (!open_fmt_file()) exit(0);
  if (!load_fmt_file())
    {@+w_close(&fmt_file);exit(0);
    }
  w_close(&fmt_file);
  while ((loc < limit)&&(buffer[loc]==' ')) incr(loc);
  }
if (eTeX_ex) wterm_ln("entering extended mode");
if (Prote_ex) {@+Prote_initialize();
  }
if (end_line_char_inactive) decr(limit);
else buffer[limit]=end_line_char;
fix_date_and_time();@/
@<Initialize the print |selector|...@>;
if ((loc < limit)&&(cat_code(buffer[loc])!=escape)) start_input();
   /*\.{\\input} assumed*/
}

@* Debugging.
Once \TeX\ is working, you should be able to diagnose most errors with
the \.{\\show} commands and other diagnostic features. But for the initial
stages of debugging, and for the revelation of really deep mysteries, you
can compile \TeX\ with a few more aids, including the \PASCAL\ runtime
checks and its debugger. An additional routine called |debug_help|
will also come into play when you type `\.D' after an error message;
|debug_help| also occurs just before a fatal error causes \TeX\ to succumb.
@^debugging@>
@^system dependencies@>

The interface to |debug_help| is primitive, but it is good enough when used
with a \PASCAL\ debugger that allows you to set breakpoints and to read
variables and change their values. After getting the prompt `\.{debug \#}', you
type either a negative number (this exits |debug_help|), or zero (this
goes to a location where you can set a breakpoint, thereby entering into
dialog with the \PASCAL\ debugger), or a positive number |m| followed by
an argument |n|. The meaning of |m| and |n| will be clear from the
program below. (If |m==13|, there is an additional argument, |l|.)
@.debug \#@>

@<Last-minute...@>=
#ifdef @!DEBUG
static void debug_help(void) /*routine to display various things*/
{@+
int k, @!l, @!m, @!n;
clear_terminal;
  loop{@+wake_up_terminal;
  print_nl("debug # (-1 to exit):");update_terminal;
@.debug \#@>
  if (fscanf(term_in.f," %d",&m)<1 ||
      m < 0) return;
  else if (m==0)
    {@+goto breakpoint;@/ /*go to every declared label at least once*/
    breakpoint: m=0; /*'BREAKPOINT'*/@/
    }
  else{@+fscanf(term_in.f," %d",&n);
    switch (m) {
    @t\4@>@<Numbered cases for |debug_help|@>@;
    default:print("?");
    }
    }
  }
}
#endif

@ @<Numbered cases...@>=
case 1: print_word(mem[n]);@+break; /*display |mem[n]| in all forms*/
case 2: print_int(info(n));@+break;
case 3: print_int(link(n));@+break;
case 4: print_word(eqtb[n]);@+break;
case 5: print_word(font_info[n]);@+break;
case 6: print_word(save_stack[n]);@+break;
case 7: show_box(n);@+break;
   /*show a box, abbreviated by |show_box_depth| and |show_box_breadth|*/
case 8: {@+breadth_max=10000;depth_threshold=pool_size-pool_ptr-10;
  show_node_list(n); /*show a box in its entirety*/
  } @+break;
case 9: show_token_list(n, null, 1000);@+break;
case 10: slow_print(n);@+break;
case 11: check_mem(n > 0);@+break; /*check wellformedness; print new busy locations if |n > 0|*/
case 12: search_mem(n);@+break; /*look for pointers to |n|*/
case 13: {@+fscanf(term_in.f," %d",&l);print_cmd_chr(n, l);
  } @+break;
case 14: for (k=0; k<=n; k++) printn(buffer[k]);@+break;
case 15: {@+font_in_short_display=null_font;short_display(n);
  } @+break;
case 16: panicking=!panicking;@+break;

@* Extensions.
The program above includes a bunch of ``hooks'' that allow further
capabilities to be added without upsetting \TeX's basic structure.
Most of these hooks are concerned with ``whatsit'' nodes, which are
intended to be used for special purposes; whenever a new extension to
\TeX\ involves a new kind of whatsit node, a corresponding change needs
to be made to the routines below that deal with such nodes,
but it will usually be unnecessary to make many changes to the
other parts of this program.

In order to demonstrate how extensions can be made, we shall treat
`\.{\\write}', `\.{\\openout}', `\.{\\closeout}', `\.{\\immediate}',
`\.{\\special}', and `\.{\\setlanguage}' as if they were extensions.
These commands are actually primitives of \TeX, and they should
appear in all implementations of the system; but let's try to imagine
that they aren't. Then the program below illustrates how a person
could add them.

Sometimes, of course, an extension will require changes to \TeX\ itself;
no system of hooks could be complete enough for all conceivable extensions.
The features associated with `\.{\\write}' are almost all confined to the
following paragraphs, but there are small parts of the |print_ln| and
|print_char| procedures that were introduced specifically to \.{\\write}
characters. Furthermore one of the token lists recognized by the scanner
is a |write_text|; and there are a few other miscellaneous places where we
have already provided for some aspect of \.{\\write}.  The goal of a \TeX\
extender should be to minimize alterations to the standard parts of the
program, and to avoid them completely if possible. He or she should also
be quite sure that there's no easy way to accomplish the desired goals
with the standard features that \TeX\ already has. ``Think thrice before
extending,'' because that may save a lot of work, and it will also keep
incompatible extensions of \TeX\ from proliferating.
@^system dependencies@>
@^extensions to \TeX@>

@ First let's consider the format of whatsit nodes that are used to represent
the data associated with \.{\\write} and its relatives. Recall that a whatsit
has |type==whatsit_node|, and the |subtype| is supposed to distinguish
different kinds of whatsits. Each node occupies two or more words; the
exact number is immaterial, as long as it is readily determined from the
|subtype| or other data.

We shall introduce five |subtype| values here, corresponding to the
control sequences \.{\\openout}, \.{\\write}, \.{\\closeout}, \.{\\special}, and
\.{\\setlanguage}. The second word of I/O whatsits has a |write_stream| field
that identifies the write-stream number (0 to 15, or 16 for out-of-range and
positive, or 17 for out-of-range and negative).
In the case of \.{\\write} and \.{\\special}, there is also a field that
points to the reference count of a token list that should be sent. In the
case of \.{\\openout}, we need three words and three auxiliary subfields
to hold the string numbers for name, area, and extension.

@d write_node_size 2 /*number of words in a write/whatsit node*/
@d open_node_size 3 /*number of words in an open/whatsit node*/
@d open_node 0 /*|subtype| in whatsits that represent files to \.{\\openout}*/
@d write_node 1 /*|subtype| in whatsits that represent things to \.{\\write}*/
@d close_node 2 /*|subtype| in whatsits that represent streams to \.{\\closeout}*/
@d special_node 3 /*|subtype| in whatsits that represent \.{\\special} things*/
@d language_node 4 /*|subtype| in whatsits that change the current language*/
@d what_lang(A) link(A+1) /*language number, in the range |0 dotdot 255|*/
@d what_lhm(A) type(A+1) /*minimum left fragment, in the range |1 dotdot 63|*/
@d what_rhm(A) subtype(A+1) /*minimum right fragment, in the range |1 dotdot 63|*/
@d write_tokens(A) link(A+1) /*reference count of token list to write*/
@d write_stream(A) info(A+1) /*stream number (0 to 17)*/
@d open_name(A) link(A+1) /*string number of file name to open*/
@d open_area(A) info(A+2) /*string number of file area for |open_name|*/
@d open_ext(A) link(A+2) /*string number of file extension for |open_name|*/  @#

@d hitex_ext save_pos_code+1
@d param_node         hitex_ext /*|subtype| that records the change of a parameter*/
@d param_node_size 3 /* number of memory words in a |param_node| */
@d param_type(A) type(A+1) /* type of parameter */
@d int_type   0 /* type of an |int_par| node */
@d dimen_type  1 /* type of an |dimen_par| node */
@d glue_type  2 /* type of an |glue_par| node */
@d param_no(A) subtype(A+1) /* the parameter number */
@d param_value(A)  mem[A+2] /* the parameter value */@#

@d par_node        hitex_ext+1 /*|subtype|  that records a paragraph*/
@d par_node_size 5 /* number of memory words in a |par_node| */
@d par_penalty(A)  mem[A+1].i /* the final penalty */
@d par_extent(A)   link(A+3) /* the extent */@#
@d par_params(A)   info(A+4) /* list of parameter nodes */
@d par_list(A)     link(A+4) /* list of content nodes */

@d disp_node           hitex_ext+2 /*|subtype| that records a math display*/
@d disp_node_size    3 /* number of memory words in a |disp_node| */
@d display_left(A)    type(A+1) /* 1=left 0=right */
@d display_no_bs(A)    subtype(A+1) /* |prev_depth==ignore_depth| */
@d display_params(A)   link(A+1) /* list of parameter nodes */
@d display_formula(A)  link(A+2) /* formula list */
@d display_eqno(A)     info(A+2) /* box with equation number */@#

@d baseline_node    hitex_ext+3  /*|subtype| that records a |baseline_skip| */
@d baseline_node_size small_node_size /* This is 2; we will convert baseline nodes to glue nodes */
@d baseline_node_no(A) mem[A+1].i /* baseline reference */@#

@d image_node    hitex_ext+4  /*|subtype| that records an image */
@d image_node_size 6 /* number of memory words in an |image_node| */
@d image_xwidth(A)  link(A+1)  /*extended width of image */
@d image_xheight(A) info(A+1)  /*extended height of image */
@d image_aspect(A)  mem[(A)+2].sc /* aspect ratio of image */
@d image_no(A)     link(A+3)  /* the section number */
@d image_name(A)   info(A+3)  /*string number of file name */
@d image_area(A)   info(A+4)  /*string number of file area */
@d image_ext(A)    link(A+4)  /*string number of file extension */
@d image_alt(A)    link(A+5)  /* alternative image description text */@#

@d hpack_node         hitex_ext+5 /* a hlist that needs to go to hpack */
@d vpack_node         hitex_ext+6 /* a vlist that needs to go to vpackage */
@d pack_node_size       box_node_size /* a box node up to |list_ptr|*/
@d pack_m(A)  type(A+list_offset) /* either additional or exactly */
@d pack_limit(A)        mem[(A)+1+list_offset].sc /* depth limit in |vpack| */
@d pack_extent(A) link(A+2+list_offset) /* extent */@#

@d hset_node         hitex_ext+7  /* represents a hlist that needs |glue_set| */
@d vset_node         hitex_ext+8  /* represents a vlist that needs |glue_set| */
@d set_node_size     box_node_size /* up to |list_ptr| like a box node */
@d set_stretch_order glue_sign
@d set_shrink_order  glue_order
@d set_stretch(A)    mem[(A)+1+list_offset].sc /* replaces |glue_set| */
@d set_extent(A)     pack_extent(A) /* extent */
@d set_shrink(A)     mem[(A)+3+list_offset].sc @#

@d align_node          hitex_ext+9 /* represents an alignment */
@d align_node_size     4
@d align_extent(A)     link(A+2) /* the extent of the alignment */
@d align_m(A)          type(A+2) /* either additional or exactly */
@d align_v(A)          subtype(A+2) /* true if vertical */
@d align_preamble(A)   info(A+3) /* the preamble */
@d align_list(A)       link(A+3) /* the unset rows/columns */

@d setpage_node       hitex_ext+10 /* represents a page template */
@d setpage_node_size  6
@d setpage_name(A)    link(A+1)
@d setpage_number(A)  type(A+1) /* the \HINT/ number */
@d setpage_id(A)      subtype(A+1)  /* the \TeX\ number */
@d setpage_priority(A) info(A+2)
@d setpage_topskip(A) link(A+2)
@d setpage_depth(A)   mem[A+3].sc /* maximum depth */
@d setpage_height(A)  info(A+4) /* extended dimension number */
@d setpage_width(A)   link(A+4) /* extended dimension number */
@d setpage_list(A)    info(A+5) /* the template itself */
@d setpage_streams(A) link(A+5)   /* list of stream definitions */

@d setstream_node         hitex_ext+11 /* represents a stream definition */
@d setstream_node_size    6
@d setstream_number(A)    type(A+1)
@d setstream_insertion(A) subtype(A+1)
@d setstream_mag(A)       link(A+1) /* magnification factor */
@d setstream_preferred(A)  type(A+2)
@d setstream_next(A)      subtype(A+2)
@d setstream_ratio(A)     link(A+2) /* split ratio */
@d setstream_max(A)       info(A+3) /* extended dimension number */
@d setstream_width(A)     link(A+3) /* extended dimension number */
@d setstream_topskip(A)   info(A+4)
@d setstream_height(A)    link(A+4)
@d setstream_before(A)    info(A+5)
@d setstream_after(A)     link(A+5)

@d stream_node     hitex_ext+12 /* represents a stream insertion point */
@d stream_node_size 2
@d stream_number(A)   type(A+1)
@d stream_insertion(A) subtype(A+1)

@d stream_after_node  hitex_ext+13 /* never allocated */
@d stream_before_node hitex_ext+14 /* never allocated */

@d xdimen_node hitex_ext+15
@d xdimen_node_size    4
@d xdimen_ref_count(A) link(A)
@d xdimen_width(A)     mem[A+1].sc
@d xdimen_hfactor(A)   mem[A+2].sc
@d xdimen_vfactor(A)   mem[A+3].sc

@d ignore_node hitex_ext+16 /* ignored used to attach extra information */
@d ignore_node_size small_node_size /* same as |disc_node| */
@d ignore_info(A)    type(A+1)
@d ignore_list(A)    link(A+1)

@d label_node hitex_ext+17 /* represents a link to a another location */
@d label_node_size 2
@d label_has_name(A)  type(A+1) /* 1 for a name , 0 for a number */
@d label_where(A)  subtype(A+1) /* 1 for top, 2 for bot, 3 for mid */
@d label_ptr(A) link(A+1) /* for a name the token list or the number */
@d label_ref(A) link(A+1) /*alternatively the label number */

@d start_link_node hitex_ext+18 /* represents a link to a another location */
@d end_link_node hitex_ext+19 /* represents a link to a another location */
@d link_node_size 2 /* second word like a |label_node| */

@d outline_node hitex_ext+20 /* represents an outline item */
@d outline_node_size 4 /* second word like a |label_node| */
@d outline_ptr(A)   link(A+2) /* text to be displayed */
@d outline_depth(A) mem[A+3].i /* depth of sub items */


@ The sixteen possible \.{\\write} streams are represented by the |write_file|
array. The |j|th file is open if and only if |write_open[j]==true|. The last
two streams are special; |write_open[16]| represents a stream number
greater than 15, while |write_open[17]| represents a negative stream number,
and both of these variables are always |false|.

@<Glob...@>=
static alpha_file @!write_file[16];
static bool @!write_open[18];

@ @<Set init...@>=
for (k=0; k<=17; k++) write_open[k]=false;

@ Extensions might introduce new command codes; but it's best to use
|extension| with a modifier, whenever possible, so that |main_control|
stays the same.

@d immediate_code 4 /*command modifier for \.{\\immediate}*/
@d latex_first_extension_code 5
@d latespecial_node (latex_first_extension_code+0) /*|subtype| in whatsits that represent \.{\\special} things expanded during output*/
@d set_language_code (latex_first_extension_code+1) /*command modifier for \.{\\setlanguage}*/
@d TeX_last_extension_cmd_mod set_language_code

@<Put each...@>=
primitive("openout", extension, open_node);@/
@!@:open\_out\_}{\.{\\openout} primitive@>
primitive("write", extension, write_node);write_loc=cur_val;@/
@!@:write\_}{\.{\\write} primitive@>
primitive("closeout", extension, close_node);@/
@!@:close\_out\_}{\.{\\closeout} primitive@>
primitive("special", extension, special_node);@/
@!@:special\_}{\.{\\special} primitive@>
primitive("immediate", extension, immediate_code);@/
@!@:immediate\_}{\.{\\immediate} primitive@>

primitive("setlanguage", extension, set_language_code);@/
@!@:set\_language\_}{\.{\\setlanguage} primitive@>

primitive("HINTversion", last_item, HINT_version_code);
@!@:HINT\_version\_}{\.{\\HINTversion} primitive@>

primitive("HINTminorversion", last_item, HINT_minor_version_code);
@!@:HINT\_minor\_version\_}{\.{\\HINTminorversion} primitive@>

primitive("HINTdest", extension, label_node);@/
@!@:HINTdest\_}{\.{\\HINTdest} primitive@>

primitive("HINTstartlink", extension, start_link_node);@/
@!@:startlink\_}{\.{\\HINTstartlink} primitive@>

primitive("HINTendlink", extension, end_link_node);@/
@!@:HINTendlink\_}{\.{\\HINTendlink} primitive@>

primitive("HINToutline", extension, outline_node);@/
@!@:HINToutline\_}{\.{\\HINToutline} primitive@>

primitive("HINTimage", extension, image_node);@/
@!@:image\_}{\.{\\image} primitive@>

primitive("HINTsetpage", extension, setpage_node);@/
@!@:setpage\_}{\.{\\setpage} primitive@>

primitive("HINTstream", extension, stream_node);@/
@!@:stream\_}{\.{\\stream} primitive@>

primitive("HINTsetstream", extension, setstream_node);@/
@!@:setstream\_}{\.{\\setstream} primitive@>

primitive("HINTbefore", extension, stream_before_node);@/
@!@:before\_}{\.{\\before} primitive@>

primitive("HINTafter", extension, stream_after_node);@/
@!@:after\_}{\.{\\after} primitive@>


@ The variable |write_loc| just introduced is used to provide an
appropriate error message in case of ``runaway'' write texts.

@<Glob...@>=
static pointer @!write_loc; /*|eqtb| address of \.{\\write}*/

@ @<Cases of |print_cmd_chr|...@>=
case extension: switch (chr_code) {
  case open_node: print_esc("openout");@+break;
  case write_node: print_esc("write");@+break;
  case close_node: print_esc("closeout");@+break;
  case special_node: print_esc("special");@+break;
  case image_node: print_esc("HINTimage");@+break;
  case start_link_node: print_esc("HINTstartlink");@+break;
  case end_link_node: print_esc("HINTendlink");@+break;
  case label_node: print_esc("HINTdest");@+break;
  case outline_node: print_esc("HINToutline");@+break;
  case setpage_node: print_esc("HINTsetpage");@+break;
  case stream_before_node: print_esc("HINTbefore");@+break;
  case stream_after_node: print_esc("HINTafter");@+break;
  case setstream_node: print_esc("HINTsetstream");@+break;
  case stream_node: print_esc("HINTstream");@+break;
  case param_node: print("[HINT internal: parameter list]");@+break;
  case par_node: print("[HINT internal: paragraph]");@+break;
  case disp_node: print("[HINT internal: display]");@+break;
  case baseline_node: print("[HINT internal: baselineskip]");@+break;
  case hpack_node: print("[HINT internal: hpack]");@+break;
  case vpack_node: print("[HINT internal: vpack");@+break;
  case hset_node: print("[HINT internal: hset]");@+break;
  case vset_node: print("[HINT internal: vset]");@+break;
  case align_node: print("[HINT internal: align]");@+break;
  case xdimen_node: print("[HINT internal: xdimen]");@+break;
  case ignore_node: print("[HINT internal: ignore]");@+break;
  case immediate_code: print_esc("immediate");@+break;
  case set_language_code: print_esc("setlanguage");@+break;
  @/@<Cases of |extension| for |print_cmd_chr|@>@/
  default:print("[unknown extension!]");
  } @+break;

@ When an |extension| command occurs in |main_control|, in any mode,
the |do_extension| routine is called.

@<Cases of |main_control| that are for extensions...@>=
any_mode(extension): do_extension();

@ @<Declare act...@>=
@t\4@>@<Declare procedures needed in |do_extension|@>@;
static void do_extension(void)
{@+int @!k; /*all-purpose integer*/
pointer @!p; /*all-purpose pointer*/
switch (cur_chr) {
case open_node: @<Implement \.{\\openout}@>@;@+break;
case write_node: @<Implement \.{\\write}@>@;@+break;
case close_node: @<Implement \.{\\closeout}@>@;@+break;
case special_node: @<Implement \.{\\special}@>@;@+break;
case param_node:
case par_node:
case disp_node:
case baseline_node:
case hpack_node:
case vpack_node:
case hset_node:
case vset_node:
case align_node: @+break;@#
case image_node:@/
{@+ pointer p;
  scan_optional_equals();
  scan_file_name();
  p=new_image_node(cur_name,cur_area,cur_ext);
  loop {
    if (scan_keyword("width"))
    {@+scan_normal_dimen; image_xwidth(p)=new_xdimen(cur_val,cur_hfactor,cur_vfactor); }
    else if (scan_keyword("height"))
    {@+scan_normal_dimen; image_xheight(p)=new_xdimen(cur_val,cur_hfactor,cur_vfactor); }
    else
      break;
  }
  { scaled iw,ih;
    double ia;
    pointer r,q;
    hextract_image_dimens(image_no(p),&ia,&iw,&ih);
    image_aspect(p)=round(ia*ONE);
    r=image_xwidth(p);
    q=image_xheight(p);
    if (r==null && q==null)
    { if (iw>0)
      { image_xwidth(p)=r=new_xdimen(iw,0,0);
        image_xheight(p)=q=new_xdimen(ih,0,0);
      }
      else if (iw<0)
      { MESSAGE("Unable to determine size of image %s; using 72dpi.\n",
		dir[image_no(p)].file_name);
	image_xwidth(p)=r=new_xdimen(-iw*ONE,0,0);
        image_xheight(p)=q=new_xdimen(-ih*ONE,0,0);
      }
      else
      { MESSAGE("Unable to determine size of image %s; using 100pt x 100pt\n",
		dir[image_no(p)].file_name);
 	image_xwidth(p)=r=new_xdimen(100*ONE,0,0);
        image_xheight(p)=q=new_xdimen(100*ONE,0,0);
     }
    }
    else if (r!=null && q==null)
      image_xheight(p)=q=new_xdimen(round(xdimen_width(r)/ia),
	      round(xdimen_hfactor(r)/ia),round(xdimen_vfactor(r)/ia));
    else if (r==null && q!=null)
       image_xwidth(p)=r=new_xdimen(round(xdimen_width(q)*ia),
 	      round(xdimen_hfactor(q)*ia),round(xdimen_vfactor(q)*ia));
  }
  if (abs(mode)==vmode)
  { prev_depth=ignore_depth; /* this could be deleted if baseline nodes treat
                                images as boxes in the viewer */
    append_to_vlist(p); /* image nodes have height, width, and depth like boxes */
  }
  else
    tail_append(p);
  break;
}
case start_link_node:
  if (abs(mode) == vmode)
    fatal_error("HINTstartlink cannot be used in vertical mode");
  else
  { new_whatsit(start_link_node,link_node_size);
    scan_label(tail);
  }
  break;
case end_link_node:
  if (abs(mode) == vmode)
    fatal_error("HINTendlink cannot be used in vertical mode");
  else
    new_whatsit(end_link_node,link_node_size);
  break;
case label_node:
  new_whatsit(label_node,label_node_size);
    scan_destination(tail);
    if (scan_keyword("top")) label_where(tail)=1;
    else if (scan_keyword("bot")) label_where(tail)=2;
    else label_where(tail)=3;
    scan_spaces();
  break;
case outline_node:
  new_whatsit(outline_node,outline_node_size);
  scan_label(tail);
  if (scan_keyword("depth"))
  {  scan_int();
     outline_depth(tail)= cur_val;
  }
  else outline_depth(tail)=0;
  outline_ptr(tail)=null;
  new_save_level(outline_group);scan_left_brace();
  push_nest();mode=-hmode;prev_depth=ignore_depth;space_factor=1000;
  break;
case setpage_node:
{ uint8_t n;@+
  pointer t;
  scan_eight_bit_int(); n=cur_val;
  if (n==0)
  { print_err("Illegal redefinition of page template 0"); print_int(n); error(); break;}
  scan_optional_equals();
  scan_file_name(); /* this should be improved to use |scan_name|*/
  t=new_setpage_node(n,cur_name);
  loop {
    if (scan_keyword("priority"))
    {@+scan_eight_bit_int();setpage_priority(t)=cur_val; }
    else if (scan_keyword("width"))
    {@+scan_normal_dimen; delete_xdimen_ref(setpage_width(t));
      setpage_width(t)=new_xdimen(cur_val,cur_hfactor,cur_vfactor); }
    else if (scan_keyword("height"))
    {@+scan_normal_dimen;  delete_xdimen_ref(setpage_height(t));
     setpage_height(t)=new_xdimen(cur_val,cur_hfactor,cur_vfactor); }
    else
      break;
  }
  new_save_level(page_group);scan_left_brace();normal_paragraph();
  push_nest();mode=-vmode;prev_depth=ignore_depth;
  break;
}
case stream_node:
{ uint8_t n;
  scan_eight_bit_int(); n=cur_val;
  new_whatsit(stream_node,stream_node_size);
  stream_insertion(tail)=n;
  stream_number(tail)=hget_stream_no(n);
  break;
}
case setstream_node:
{ uint8_t n;
  pointer t, s;
  scan_eight_bit_int(); n=cur_val;
  scan_optional_equals();
  t=link(setpage_head);
  if (t==null) { print_err("\\setstream without \\setpage"); error(); break;}
  s=new_setstream_node(n);
  link(s)=setpage_streams(t); setpage_streams(t)=s;
  loop {
    if (scan_keyword("preferred"))
    {@+scan_eight_bit_int();
      if (cur_val!=255)
        setstream_preferred(s)=hget_stream_no(cur_val); }
    else if (scan_keyword("next"))
    {@+scan_eight_bit_int();
      if (cur_val!=255)
        setstream_next(s)=hget_stream_no(cur_val); }
    else if (scan_keyword("ratio"))
    {@+scan_int();setstream_ratio(s)=cur_val; }
    else
      break;
  }
  new_save_level(stream_group);scan_left_brace();normal_paragraph();
  push_nest();mode=-vmode;prev_depth=ignore_depth;
  break;
}
case stream_before_node:
  scan_optional_equals();
  new_save_level(stream_before_group);scan_left_brace();normal_paragraph();
  push_nest();mode=-vmode;prev_depth=ignore_depth;
  break;
case stream_after_node:
  scan_optional_equals();
  new_save_level(stream_after_group);scan_left_brace();normal_paragraph();
  push_nest();mode=-vmode;prev_depth=ignore_depth;
  break;
case xdimen_node:
case ignore_node: @+break;
case immediate_code: @<Implement \.{\\immediate}@>@;@+break;
case set_language_code: @<Implement \.{\\setlanguage}@>@;@+break;
@/@<Cases for |do_extension|@>@/
default:confusion("ext1");
@:this can't happen ext1}{\quad ext1@>
}
}

@ @<Declare procedures needed in |do_extension|@>=
static void scan_spaces(void)
{ @<Get the next non-blank non-call token@>;
  back_input();
}
static void scan_destination(pointer p)
{@+if (scan_keyword("name"))
  { label_has_name(p)=1;
    scan_toks(false,true); label_ptr(p)=def_ref;
  }
  else if (scan_keyword("num"))
  { label_has_name(p)=0; scan_int(); label_ptr(p)=cur_val;
  }
  else
  { print_err("`name {...}' or `num 000' expected. Inserted `num 0'.");
    label_has_name(p)=0; label_ptr(p)=0;
    error();
    return;
  }
  scan_spaces();
}
static void scan_label(pointer p)
{ if (!scan_keyword("goto"))
    print_err("keyword `goto' inserted");
  scan_destination(p);
}

@ Here is a subroutine that creates a whatsit node having a given |subtype|
and a given number of words. It initializes only the first word of the whatsit,
and appends it to the current list.

@<Declare procedures needed in |do_extension|@>=
static void new_whatsit(small_number @!s, small_number @!w)
{@+pointer p; /*the new node*/
p=get_node(w);type(p)=whatsit_node;subtype(p)=s;
link(tail)=p;tail=p;
}

@ The next subroutine uses |cur_chr| to decide what sort of whatsit is
involved, and also inserts a |write_stream| number.

@<Declare procedures needed in |do_ext...@>=
static void new_write_whatsit(small_number @!w)
{@+new_whatsit(cur_chr, w);
if (w!=write_node_size) scan_four_bit_int();
else{@+scan_int();
  if (cur_val < 0) cur_val=17;
  else if (cur_val > 15) cur_val=16;
  }
write_stream(tail)=cur_val;
}

@ @<Implement \.{\\openout}@>=
{@+new_write_whatsit(open_node_size);
scan_optional_equals();scan_file_name();@/
open_name(tail)=cur_name;open_area(tail)=cur_area;open_ext(tail)=cur_ext;
}

@ When `\.{\\write 12\{...\}}' appears, we scan the token list `\.{\{...\}}'
without expanding its macros; the macros will be expanded later when this
token list is rescanned.

@<Implement \.{\\write}@>=
{@+k=cur_cs;new_write_whatsit(write_node_size);@/
cur_cs=k;p=scan_toks(false, false);write_tokens(tail)=def_ref;
}

@ @<Implement \.{\\closeout}@>=
{@+new_write_whatsit(write_node_size);write_tokens(tail)=null;
}

@ When `\.{\\special\{...\}}' appears, we expand the macros in the token
list as in \.{\\xdef} and \.{\\mark}.  When marked with \.{shipout}, we keep
tokens unexpanded for now.

@<Implement \.{\\special}@>=
{@+if (scan_keyword("shipout"))
{@+new_whatsit(latespecial_node, write_node_size);write_stream(tail)=null;
p=scan_toks(false, false);write_tokens(tail)=def_ref;
} else
{@+new_whatsit(special_node, write_node_size);write_stream(tail)=null;
p=scan_toks(false, true);write_tokens(tail)=def_ref;
} }

@ Each new type of node that appears in our data structure must be capable
of being displayed, copied, destroyed, and so on. The routines that we
need for write-oriented whatsits are somewhat like those for mark nodes;
other extensions might, of course, involve more subtlety here.

@<Basic printing...@>=
static void print_mark(int @!p);
static void print_label(pointer @!p)
{ print("goto ");
  if (label_has_name(p)) { print("name "); print_mark(label_ptr(p));}
  else { print("num "); print_int(label_ptr(p));}
}

static void print_write_whatsit(char *@!s, pointer @!p)
{@+print_esc(s);
if (write_stream(p) < 16) print_int(write_stream(p));
else if (write_stream(p)==16) print_char('*');
@.*\relax@>
else print_char('-');
}

@ @<Display the whatsit...@>=
switch (subtype(p)) {
case open_node: {@+print_write_whatsit("openout", p);
  print_char('=');print_file_name(open_name(p), open_area(p), open_ext(p));
  } @+break;
case write_node: {@+print_write_whatsit("write", p);
  print_mark(write_tokens(p));
  } @+break;
case close_node: print_write_whatsit("closeout", p);@+break;
case latespecial_node: {@+print_esc("special");print(" shipout");
  print_mark(write_tokens(p));
  } @+break;
case special_node: {@+print_esc("special");
  print_mark(write_tokens(p));
  } @+break;
case language_node: {@+print_esc("setlanguage");
  print_int(what_lang(p));print(" (hyphenmin ");
  print_int(what_lhm(p));print_char(',');
  print_int(what_rhm(p));print_char(')');
  } @+break;
@/@<Cases for displaying the |whatsit| node@>@/
case param_node: print_esc("parameter ");
  print_int(param_type(p));print_char(',');print_int(param_no(p));
  print_char(':');print_int(param_value(p).i);
  break;
case par_node: print_esc("paragraph(");
  print_xdimen(par_extent(p));
  print(", ");
  print_int(par_penalty(p));
  print_char(')');
  node_list_display(par_params(p));
  node_list_display(par_list(p));
  break;
case disp_node: print_esc("display ");
  node_list_display(display_eqno(p));
  if (display_left(p)) print("left "); else  print("right ");
  node_list_display(display_formula(p));
  node_list_display(display_params(p));
  break;
case baseline_node: print_esc("baselineskip ");
  print_baseline_skip(baseline_node_no(p));
  break;
case hset_node: case vset_node:
  print_char('\\');
  print_char(subtype(p)==hset_node?'h':'v');
  print("set(");
  print_scaled(height(p)); print_char('+');
  print_scaled(depth(p)); print(")x"); print_scaled(width(p));
  if (shift_amount(p)!=0)
    {@+print(", shifted ");print_scaled(shift_amount(p));
    }
  if (set_stretch(p)!=0)
  {@+print(", stretch ");print_glue(set_stretch(p),set_stretch_order(p),"pt");
    }
  if (set_shrink(p)!=0)
  {@+print(", shrink ");print_glue(set_shrink(p),set_shrink_order(p),"pt");
    }
  print(", extent "); print_xdimen(set_extent(p));
  node_list_display(list_ptr(p)); /*recursive call*/
  break;
case hpack_node: case vpack_node:
  print_char('\\');
  print_char(subtype(p)==hpack_node?'h':'v');
  print("pack(");
  print(pack_m(p)==exactly?"exactly ":"additional ");
  print_xdimen(pack_extent(p));
  if (subtype(p)==vpack_node && pack_limit(p)!=max_dimen) { print(", limit "); print_scaled(pack_limit(p)); }
  print_char(')');
  node_list_display(list_ptr(p));
  break;
case image_node:
  print_esc("HINTimage(");
  print("width ");print_xdimen(image_xheight(p));
  print(" height "); print_xdimen(image_xwidth(p));
  print(" aspect "); print_scaled(image_aspect(p));
  print("), section ");print_int(image_no(p));
  if (image_name(p)!=0) {print(", "); printn(image_name(p));}
  break;
case align_node:
  print_esc("align(");
  print(align_m(p)==exactly?"exactly ":"additional ");
  print_xdimen(align_extent(p));print_char(')');
  node_list_display(align_preamble(p));
  print_char(':');
  node_list_display(align_list(p));
  break;
case setpage_node:
  print_esc("HINTsetpage");print_int(setpage_number(p));print_char(' '); printn(setpage_name(p));
  print(" priority ");print_int(setpage_priority(p));
  print(" width ");print_xdimen(setpage_width(p));
  print(" height ");print_xdimen(setpage_height(p));
  print_ln();print_current_string();print(".\\topskip=");print_spec(setpage_topskip(p),0);
  print_ln();print_current_string();print(".\\maxdepth=");print_scaled(setpage_depth(p));
  node_list_display(setpage_list(p));
  node_list_display(setpage_streams(p));
  break;
case setstream_node:
  print_esc("HINTsetstream");print_int(setstream_insertion(p));
  print_char('(');print_int(setstream_number(p));print_char(')');
  if (setstream_preferred(p)!=255) { print(" preferred ");print_int(setstream_preferred(p)); }
  if (setstream_ratio(p)>0) { print(" ratio ");print_int(setstream_ratio(p)); }
  if (setstream_next(p)!=255) { print(" next ");print_int(setstream_next(p)); }
  append_char('.');
  print_ln();print_current_string();print_esc("count");print_int(setstream_insertion(p));print_char('=');
    print_int(setstream_mag(p));
   print_ln();print_current_string();print_esc("dimen");print_int(setstream_insertion(p));print_char('=');
    print_xdimen(setstream_max(p));
   print_ln();print_current_string();print_esc("skip");print_int(setstream_insertion(p));print_char('=');
    print_spec(setstream_height(p),0);
   print_ln();print_current_string();print_esc("hsize=");print_xdimen(setstream_width(p));
   print_ln();print_current_string();print_esc("topskip=");print_spec(setstream_topskip(p),0);
  if (setstream_before(p)!=null) { print_ln();print_current_string();print_esc("HINTbefore");node_list_display(setstream_before(p));}
  if (setstream_after(p)!=null) { print_ln();print_current_string();print_esc("HINTafter");node_list_display(setstream_after(p));}
  flush_char;
  break;
case ignore_node:
  print_esc("ignore ");print_int(ignore_info(p));print_char(':');
  node_list_display(ignore_list(p));
  break;
case start_link_node:
  print_esc("HINTstartlink ");
  print_label(p);
  break;
case end_link_node:
  print_esc("HINTendlink ");
  break;
case label_node:
  print_esc("HINTdest ");
  print_label(p);
  if (label_where(p)==1) print("top");
  else if (label_where(p)==2) print("bot");
  else if (label_where(p)==3) print("mid");
  else print("undefined");
  break;
case outline_node:
  print_esc("HINToutline");
  print_label(p);
  print(" depth "); print_int(outline_depth(p));
  if (outline_ptr(p)==null) print("{}"); else
  { print_ln();print_current_string();node_list_display(outline_ptr(p));}
  break;
case stream_node:
  print_esc("HINTstream");print_int(stream_insertion(p));
  print_char('(');print_int(stream_number(p));print_char(')');
  break;
case xdimen_node:
  print_esc("xdimen ");print_xdimen(p);
  break;
default: print("whatsit?");
}

@ @<Make a partial copy of the whatsit...@>=
switch (subtype(p)) {
case open_node: {@+r=get_node(open_node_size);words=open_node_size;
  } @+break;
case write_node: case special_node: case latespecial_node: {@+r=get_node(write_node_size);
  add_token_ref(write_tokens(p));words=write_node_size;
  } @+break;
case close_node: case language_node: {@+r=get_node(small_node_size);
  words=small_node_size;
  } @+break;
@/@<Cases for making a partial copy of the whatsit node@>@/
case param_node:
{@+r=get_node(param_node_size);
  if (param_type(p)==glue_type) add_glue_ref(param_value(p).i);
  words=param_node_size;
  } @+break;
case par_node:
{@+r=get_node(par_node_size);
  add_xdimen_ref(par_extent(p));
  par_params(r)=copy_node_list(par_params(p));
  par_list(r)=copy_node_list(par_list(p));
  words=par_node_size-1;
  } @+break;
case disp_node:
{@+r=get_node(disp_node_size);
  display_left(r)=display_left(p);
  display_no_bs(r)=display_no_bs(p);
  display_eqno(r)=copy_node_list(display_eqno(p));
  display_formula(r)=copy_node_list(display_formula(p));
  display_params(r)=copy_node_list(display_params(p));
  words=disp_node_size-2;
  } @+break;
case baseline_node:
{@+r=get_node(baseline_node_size);
  words=baseline_node_size;
  } @+break;
case hpack_node: case vpack_node:
{@+r=get_node(pack_node_size);
  mem[r+7]=mem[p+7];mem[r+6]=mem[p+6];mem[r+5]=mem[p+5]; /*copy the last three words*/
  list_ptr(r)=copy_node_list(list_ptr(p));/*this affects |mem[r+5]|*/
  add_xdimen_ref(pack_extent(p));/*this affects |mem[r+7]|*/
  words=5;
  } @+break;
case hset_node: case vset_node:
{@+r=get_node(set_node_size);
  mem[r+8]=mem[p+8];mem[r+7]=mem[p+7];mem[r+6]=mem[p+6];mem[r+5]=mem[p+5]; /*copy the last four words*/
  list_ptr(r)=copy_node_list(list_ptr(p)); /*this affects |mem[r+5]|*/
  add_xdimen_ref(set_extent(p));/*this affects |mem[r+7]|*/
  words=5;
  } @+break;
case image_node:
    r=get_node(image_node_size);
    add_xdimen_ref(image_xheight(p));add_xdimen_ref(image_xwidth(p));
    image_alt(r)=copy_node_list(image_alt(p));
    words=image_node_size-1;
    break;
case align_node:
  {@+r=get_node(align_node_size);
     align_preamble(r)=copy_node_list(align_preamble(p));
     align_list(r)=copy_node_list(align_list(p));
     add_xdimen_ref(align_extent(p));
     words=align_node_size-1;
  } @+break;
case setpage_node:
  {@+r=get_node(setpage_node_size);
     add_glue_ref(setpage_topskip(p));
     add_xdimen_ref(setpage_height(p));
     add_xdimen_ref(setpage_width(p));
     setpage_list(r)=copy_node_list(setpage_list(p));
     setpage_streams(r)=copy_node_list(setpage_streams(p));
     words=setpage_node_size-1;
  } @+break;
case setstream_node:
  {@+r=get_node(setstream_node_size);
     add_xdimen_ref(setstream_max(p));
     add_xdimen_ref(setstream_width(p));
     add_glue_ref(setstream_topskip(p));
     add_glue_ref(setstream_height(p));
    setstream_before(r)=copy_node_list(setstream_before(p));
    setstream_after(r)=copy_node_list(setstream_after(p));
    words=setstream_node_size-1;
  } @+break;
case ignore_node:
    r=get_node(ignore_node_size);
    ignore_info(r)=ignore_info(p);
    ignore_list(r)=copy_node_list(ignore_list(p));
    words=ignore_node_size-1;
  break;
case start_link_node:
    r=get_node(link_node_size);
    if (label_has_name(p)) add_token_ref(label_ptr(p));
    words=link_node_size;
    break;
case end_link_node:
    r=get_node(link_node_size);
    words=link_node_size;
    break;
case label_node:
    r=get_node(label_node_size);
    if (label_has_name(p)) add_token_ref(label_ptr(p));
    words=label_node_size;
    break;
case outline_node:
    r=get_node(outline_node_size);
    if (label_has_name(p)) add_token_ref(label_ptr(p));
    outline_ptr(r)=copy_node_list(outline_ptr(p));
    words=outline_node_size-1;
    break;
case stream_node:
    r=get_node(stream_node_size);
    words=stream_node_size;
  break;
case xdimen_node:
    r=get_node(xdimen_node_size);
    words=xdimen_node_size;
  break;
default:confusion("ext2");
@:this can't happen ext2}{\quad ext2@>
}

@ @<Wipe out the whatsit...@>=
{@+switch (subtype(p)) {
case open_node: free_node(p, open_node_size);@+break;
case write_node: case special_node: case latespecial_node: {@+delete_token_ref(write_tokens(p));
  free_node(p, write_node_size);goto done;
  }
case close_node: case language_node: free_node(p, small_node_size);@+break;
case param_node:
  if (param_type(p)==glue_type) fast_delete_glue_ref(param_value(p).i);
  free_node(p, param_node_size);@+break;
case par_node:
  delete_xdimen_ref(par_extent(p));
  flush_node_list(par_params(p));
  flush_node_list(par_list(p));
  free_node(p, par_node_size);@+break;
case disp_node:
  flush_node_list(display_eqno(p));
  flush_node_list(display_formula(p));
  flush_node_list(display_params(p));
  free_node(p, disp_node_size);@+break;
case  baseline_node:
  free_node(p, baseline_node_size);@+break;
case  hpack_node: case  vpack_node:
  delete_xdimen_ref(pack_extent(p));
  flush_node_list(list_ptr(p));
  free_node(p, pack_node_size);@+break;
case  hset_node: case  vset_node:
  delete_xdimen_ref(set_extent(p));
  flush_node_list(list_ptr(p));
  free_node(p, set_node_size);@+break;
case image_node:
  delete_xdimen_ref(image_xwidth(p)); delete_xdimen_ref(image_xheight(p));
  flush_node_list(image_alt(p));
  free_node(p,image_node_size);@+break;
case align_node:
  delete_xdimen_ref(align_extent(p));
  flush_node_list(align_preamble(p));
  flush_node_list(align_list(p));
  free_node(p, align_node_size);@+break;
case setpage_node:
  delete_glue_ref(setpage_topskip(p));
  delete_xdimen_ref(setpage_height(p));
  delete_xdimen_ref(setpage_width(p));
  flush_node_list(setpage_list(p));
  flush_node_list(setpage_streams(p));
  free_node(p, setpage_node_size);@+break;
case setstream_node:
  delete_xdimen_ref(setstream_max(p));
  delete_xdimen_ref(setstream_width(p));
  delete_glue_ref(setstream_topskip(p));
  delete_glue_ref(setstream_height(p));
  flush_node_list(setstream_before(p));
  flush_node_list(setstream_after(p));
  free_node(p,setstream_node_size); @+break;
case ignore_node:
  flush_node_list(ignore_list(p));
  free_node(p,ignore_node_size); @+break;
case start_link_node:
  if (label_has_name(p)) delete_token_ref(label_ptr(p));
  free_node(p,link_node_size);@+break;
case end_link_node:
  free_node(p,link_node_size);@+break;
case label_node:
  if (label_has_name(p)) delete_token_ref(label_ptr(p));
  free_node(p,label_node_size);@+break;
case outline_node:
  if (label_has_name(p)) delete_token_ref(label_ptr(p));
  flush_node_list(outline_ptr(p));
  free_node(p,outline_node_size);@+break;
case stream_node:
  free_node(p,stream_node_size); @+break;
case xdimen_node:
  free_node(p,xdimen_node_size);
@/@<Cases for wiping out the whatsit node@>@/
default:confusion("ext3");
@:this can't happen ext3}{\quad ext3@>
} @/
goto done;
}

@ @<Incorporate a whatsit node into a vbox@>=do_nothing

@ @<Incorporate a whatsit node into an hbox@>=do_nothing

@ @<Let |d| be the width of the whatsit |p|@>=d=0

@ @d adv_past(A) @+if (subtype(A)==language_node)
    {@+cur_lang=what_lang(A);l_hyf=what_lhm(A);r_hyf=what_rhm(A);
    set_hyph_index;
    }

@<Advance \(p)past a whatsit node in the \(l)|line_break| loop@>=@+
adv_past(cur_p)

@ @<Advance \(p)past a whatsit node in the \(p)pre-hyphenation loop@>=@+
adv_past(s)

@ @<Prepare to move whatsit |p| to the current page, then |goto contribute|@>=
goto contribute

@ @<Process whatsit |p| in |vert_break| loop, |goto not_found|@>=
goto not_found

@ @<Output the whatsit node |p| in a vlist@>=
out_what(p)

@ @<Output the whatsit node |p| in an hlist@>=
out_what(p)

@ After all this preliminary shuffling, we come finally to the routines
that actually send out the requested data. Let's do \.{\\special} first
(it's easier).

@<Declare procedures needed in |hlist_out|, |vlist_out|@>=
static void special_out(pointer @!p)
{@+pointer @!q, @!r; /*temporary variables for list manipulation*/
int @!old_mode; /*saved |mode|*/

if (subtype(p)==latespecial_node)
  {@+@<Expand macros in the token list and make |link(def_ref)| point to the
result@>;
  write_tokens(p)=def_ref;
  }
}

@ To write a token list, we must run it through \TeX's scanner, expanding
macros and \.{\\the} and \.{\\number}, etc. This might cause runaways,
if a delimited macro parameter isn't matched, and runaways would be
extremely confusing since we are calling on \TeX's scanner in the middle
of a \.{\\shipout} command. Therefore we will put a dummy control sequence as
a ``stopper,'' right after the token list. This control sequence is
artificially defined to be \.{\\outer}.
@:end\_write\_}{\.{\\endwrite}@>

@<Initialize table...@>=
text(end_write)=s_no("endwrite");eq_level(end_write)=level_one;
eq_type(end_write)=outer_call;equiv(end_write)=null;

@ @<Declare procedures needed in |hlist_out|, |vlist_out|@>=
static void write_out(pointer @!p)
{@+int old_setting; /*holds print |selector|*/
int @!old_mode; /*saved |mode|*/
small_number @!j; /*write stream number*/
pointer @!q, @!r; /*temporary variables for list manipulation*/
@<Expand macros in the token list and make |link(def_ref)| point to the result@>;
old_setting=selector;j=write_stream(p);
if (write_open[j]) selector=j;
else{@+ /*write to the terminal if file isn't open*/
  if ((j==17)&&(selector==term_and_log)) selector=log_only;
  print_nl("");
  }
token_show(def_ref);print_ln();
flush_list(def_ref);selector=old_setting;
}

@ The final line of this routine is slightly subtle; at least, the author
didn't think about it until getting burnt! There is a used-up token list
@^Knuth, Donald Ervin@>
on the stack, namely the one that contained |end_write_token|. (We
insert this artificial `\.{\\endwrite}' to prevent runaways, as explained
above.) If it were not removed, and if there were numerous writes on a
single page, the stack would overflow.

@d end_write_token cs_token_flag+end_write

@<Expand macros in the token list and...@>=
q=get_avail();info(q)=right_brace_token+'}';@/
r=get_avail();link(q)=r;info(r)=end_write_token;ins_list(q);@/
begin_token_list(write_tokens(p), write_text);@/
q=get_avail();info(q)=left_brace_token+'{';ins_list(q);
 /*now we're ready to scan
  `\.\{$\langle\,$token list$\,\rangle$\.{\} \\endwrite}'*/
old_mode=mode;mode=0;
   /*disable \.{\\prevdepth}, \.{\\spacefactor}, \.{\\lastskip}, \.{\\prevgraf}*/
cur_cs=write_loc;q=scan_toks(false, true); /*expand macros, etc.*/
get_token();@+if (cur_tok!=end_write_token)
  @<Recover from an unbalanced write command@>;
mode=old_mode;
end_token_list() /*conserve stack space*/

@ @<Recover from an unbalanced write command@>=
{@+print_err("Unbalanced write command");
@.Unbalanced write...@>
help2("On this page there's a \\write with fewer real {'s than }'s.",@/
"I can't handle that very well; good luck.");error();
@/do@+{get_token();
}@+ while (!(cur_tok==end_write_token));
}

@ The |out_what| procedure takes care of outputting whatsit nodes for
|vlist_out| and |hlist_out|\kern-.3pt.

@<Declare procedures needed in |hlist_out|, |vlist_out|@>=
@t\4@>@<Declare procedures needed in |out_what|@>@;
static void out_what(pointer @!p)
{@+small_number j; /*write stream number*/
switch (subtype(p)) {
case open_node: case write_node: case close_node: @<Do some work that has
been queued up for \.{\\write}@>@;@+break;
case special_node: case latespecial_node: special_out(p);@+break;
case language_node:
case save_pos_code: do_nothing;@+break;
default:confusion("ext4");
@:this can't happen ext4}{\quad ext4@>
}
}

@ We don't implement \.{\\write} inside of leaders. (The reason is that
the number of times a leader box appears might be different in different
implementations, due to machine-dependent rounding in the glue calculations.)
@^leaders@>

@<Do some work that has been queued up...@>=
if (!doing_leaders)
  {@+j=write_stream(p);
  if (subtype(p)==write_node) write_out(p);
  else{@+if (write_open[j]) a_close(&write_file[j]);
    if (subtype(p)==close_node) write_open[j]=false;
    else if (j < 16)
      {@+cur_name=open_name(p);cur_area=open_area(p);
      cur_ext=open_ext(p);
      pack_cur_name(".tex");
      while (!a_open_out(&write_file[j]))
        prompt_file_name("output file name",".tex");
      write_open[j]=true;
      }
    }
  }

@ The presence of `\.{\\immediate}' causes the |do_extension| procedure
to descend to one level of recursion. Nothing happens unless \.{\\immediate}
is followed by `\.{\\openout}', `\.{\\write}', or `\.{\\closeout}'.
@^recursion@>

@<Implement \.{\\immediate}@>=
{@+get_x_token();
if ((cur_cmd==extension)&&(cur_chr <= close_node))
  {@+p=tail;do_extension(); /*append a whatsit node*/
  out_what(tail); /*do the action immediately*/
  flush_node_list(tail);tail=p;link(p)=null;
  }
else back_input();
}

@ The \.{\\language} extension is somewhat different.
We need a subroutine that comes into play when a character of
a non-|clang| language is being appended to the current paragraph.

@<Declare action...@>=
static void fix_language(void)
{@+ASCII_code @!l; /*the new current language*/
if (language <= 0) l=0;
else if (language > 255) l=0;
else l=language;
if (l!=clang)
  {@+new_whatsit(language_node, small_node_size);
  what_lang(tail)=l;clang=l;@/
  what_lhm(tail)=norm_min(left_hyphen_min);
  what_rhm(tail)=norm_min(right_hyphen_min);
  }
}

@ @<Implement \.{\\setlanguage}@>=
if (abs(mode)!=hmode) report_illegal_case();
else{@+new_whatsit(language_node, small_node_size);
  scan_int();
  if (cur_val <= 0) clang=0;
  else if (cur_val > 255) clang=0;
  else clang=cur_val;
  what_lang(tail)=clang;
  what_lhm(tail)=norm_min(left_hyphen_min);
  what_rhm(tail)=norm_min(right_hyphen_min);
  }

@ @<Finish the extensions@>=
for (k=0; k<=15; k++) if (write_open[k]) a_close(&write_file[k])

@* The extended features of \eTeX.
The program has three modes of operation:  (1)~In \TeX\ compatibility mode
it fully deserves the name \TeX\ and there are neither extended features
nor additional primitive commands.  There are, however, a few
modifications that would be legitimate in any implementation of \TeX\
such as, e.g., preventing inadequate results of the glue to \.{DVI}
unit conversion during |ship_out|.  (2)~In extended mode there are
additional primitive commands and the extended features of \eTeX\ are
available.  (3)~In \Prote\ mode there are supplementary primitive
commands that will be discussed in the section below.

The distinction between these three modes of operation initially takes
place when a `virgin' \.{eINITEX} starts without reading a format file.
Later on the values of all \eTeX\ state variables are inherited when
\.{eVIRTEX} (or \.{eINITEX}) reads a format file.

The code below is designed to work for cases where `$|@t\#\&{ifdef} \.{INIT}@>|\ldots|@t\#\&{endif}@>|$'
is a run-time switch.

@<Enable \eTeX\ and furthermore Prote, if requested@>=
#ifdef @!INIT
if (iniversion && (buffer[loc]=='*'||etexp))  /* \TeX\ Live */
  {@+no_new_control_sequence=false;
  @<Generate all \eTeX\ primitives@>@;
  if (buffer[loc]=='*') incr(loc);  /* \TeX\ Live */
  eTeX_mode=1; /*enter extended mode*/
  @<Initialize variables for \eTeX\ extended mode@>@;
  if (buffer[loc]=='*'||ltxp) {@+
    @<Check \Prote\ ``constant'' values for consistency@>@;
    @<Generate all \Prote\ primitives@>@;
    if (buffer[loc]=='*')incr(loc);
    Prote_mode=1; /*enter \Prote\ mode*/
    }
  }
#endif
@;@/
if (!no_new_control_sequence)  /*just entered extended mode ?*/
  no_new_control_sequence=true;@+else

@ The \eTeX\ features available in extended mode are grouped into two
categories:  (1)~Some of them are permanently enabled and have no
semantic effect as long as none of the additional primitives are
executed.  (2)~The remaining \eTeX\ features are optional and can be
individually enabled and disabled.  For each optional feature there is
an \eTeX\ state variable named \.{\\...state}; the feature is enabled,
resp.\ disabled by assigning a positive, resp.\ non-positive value to
that integer.

@d eTeX_state_base (int_base+eTeX_state_code)
@d eTeX_state(A) eqtb[eTeX_state_base+A].i /*an \eTeX\ state variable*/
@#
@d eTeX_version_code eTeX_int /*code for \.{\\eTeXversion}*/

@<Generate all \eTeX...@>=
primitive("lastnodetype", last_item, last_node_type_code);
@!@:last\_node\_type\_}{\.{\\lastnodetype} primitive@>
primitive("eTeXversion", last_item, eTeX_version_code);
@!@:eTeX\_version\_}{\.{\\eTeXversion} primitive@>
primitive("eTeXrevision", convert, eTeX_revision_code);@/
@!@:eTeX\_revision\_}{\.{\\eTeXrevision} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case last_node_type_code: print_esc("lastnodetype");@+break;
case eTeX_version_code: print_esc("eTeXversion");@+break;

@ @<Cases for fetching an integer value@>=
case eTeX_version_code: cur_val=eTeX_version;@+break;

@ @d eTeX_ex (eTeX_mode==1) /*is this extended mode?*/

@<Glob...@>=
static int @!eTeX_mode; /*identifies compatibility and extended mode*/

@ @<Initialize table entries...@>=
eTeX_mode=0; /*initially we are in compatibility mode*/
@<Initialize variables for \eTeX\ compatibility mode@>@;

@ @<Dump the \eTeX\ state@>=
dump_int(eTeX_mode);
for (j=0; j<=eTeX_states-1; j++) eTeX_state(j)=0; /*disable all enhancements*/

@ @<Undump the \eTeX\ state@>=
undump(0, 1, eTeX_mode);
if (eTeX_ex)
  {@+@<Initialize variables for \eTeX\ extended mode@>;
  }
else{@+@<Initialize variables for \eTeX\ compatibility mode@>;
  }

@ The |eTeX_enabled| function simply returns its first argument as
result.  This argument is |true| if an optional \eTeX\ feature is
currently enabled; otherwise, if the argument is |false|, the function
gives an error message.

@<Declare \eTeX\ procedures for use...@>=
static bool eTeX_enabled(bool @!b, quarterword @!j, halfword @!k)
{@+if (!b)
  {@+print_err("Improper ");print_cmd_chr(j, k);
  help1("Sorry, this optional e-TeX feature has been disabled.");error();
  }
return b;
}

@ First we implement the additional \eTeX\ parameters in the table of
equivalents.

@<Generate all \eTeX...@>=
primitive("everyeof", assign_toks, every_eof_loc);
@!@:every\_eof\_}{\.{\\everyeof} primitive@>
primitive("tracingassigns", assign_int, int_base+tracing_assigns_code);@/
@!@:tracing\_assigns\_}{\.{\\tracingassigns} primitive@>
primitive("tracinggroups", assign_int, int_base+tracing_groups_code);@/
@!@:tracing\_groups\_}{\.{\\tracinggroups} primitive@>
primitive("tracingifs", assign_int, int_base+tracing_ifs_code);@/
@!@:tracing\_ifs\_}{\.{\\tracingifs} primitive@>
primitive("tracingscantokens", assign_int, int_base+tracing_scan_tokens_code);@/
@!@:tracing\_scan\_tokens\_}{\.{\\tracingscantokens} primitive@>
primitive("tracingnesting", assign_int, int_base+tracing_nesting_code);@/
@!@:tracing\_nesting\_}{\.{\\tracingnesting} primitive@>
primitive("savingvdiscards", assign_int, int_base+saving_vdiscards_code);@/
@!@:saving\_vdiscards\_}{\.{\\savingvdiscards} primitive@>
primitive("savinghyphcodes", assign_int, int_base+saving_hyph_codes_code);@/
@!@:saving\_hyph\_codes\_}{\.{\\savinghyphcodes} primitive@>

@ @d every_eof equiv(every_eof_loc)

@<Cases of |assign_toks| for |print_cmd_chr|@>=
case every_eof_loc: print_esc("everyeof");@+break;

@ @<Cases for |print_param|@>=
case tracing_assigns_code: print_esc("tracingassigns");@+break;
case tracing_groups_code: print_esc("tracinggroups");@+break;
case tracing_ifs_code: print_esc("tracingifs");@+break;
case tracing_scan_tokens_code: print_esc("tracingscantokens");@+break;
case tracing_nesting_code: print_esc("tracingnesting");@+break;
case saving_vdiscards_code: print_esc("savingvdiscards");@+break;
case saving_hyph_codes_code: print_esc("savinghyphcodes");@+break;

@ In order to handle \.{\\everyeof} we need an array |eof_seen| of
boolean variables.

@<Glob...@>=
static bool @!eof_seen0[max_in_open],
  *const @!eof_seen = @!eof_seen0-1; /*has eof been seen?*/

@ The |print_group| procedure prints the current level of grouping and
the name corresponding to |cur_group|.

@<Declare \eTeX\ procedures for tr...@>=
static void print_group(bool @!e)
{@+
switch (cur_group) {
  case bottom_level: {@+print("bottom level");return;
    }
  case simple_group: case semi_simple_group:
    {@+if (cur_group==semi_simple_group) print("semi ");
    print("simple");
    } @+break;
  case hbox_group: case adjusted_hbox_group:
    {@+if (cur_group==adjusted_hbox_group) print("adjusted ");
    print("hbox");
    } @+break;
  case vbox_group: print("vbox");@+break;
  case vtop_group: print("vtop");@+break;
  case align_group: case no_align_group:
    {@+if (cur_group==no_align_group) print("no ");
    print("align");
    } @+break;
  case output_group: print("output");@+break;
  case disc_group: print("disc");@+break;
  case insert_group: print("insert");@+break;
  case vcenter_group: print("vcenter");@+break;
  case math_group: case math_choice_group:
  case math_shift_group: case math_left_group:
    {@+print("math");
    if (cur_group==math_choice_group) print(" choice");
    else if (cur_group==math_shift_group) print(" shift");
    else if (cur_group==math_left_group) print(" left");
    }
  }  /*there are no other cases*/
print(" group (level ");print_int(qo(cur_level));print_char(')');
if (saved(-1)!=0)
  {@+if (e) print(" entered at line ");else print(" at line ");
  print_int(saved(-1));
  }
}

@ The |group_trace| procedure is called when a new level of grouping
begins (|e==false|) or ends (|e==true|) with |saved(-1)| containing the
line number.

@<Declare \eTeX\ procedures for tr...@>=
#ifdef @!STAT
static void group_trace(bool @!e)
{@+begin_diagnostic();print_char('{');
if (e) print("leaving ");else print("entering ");
print_group(e);print_char('}');end_diagnostic(false);
}
#endif

@ The \.{\\currentgrouplevel} and \.{\\currentgrouptype} commands return
the current level of grouping and the type of the current group
respectively.

@d current_group_level_code (eTeX_int+1) /*code for \.{\\currentgrouplevel}*/
@d current_group_type_code (eTeX_int+2) /*code for \.{\\currentgrouptype}*/

@<Generate all \eTeX...@>=
primitive("currentgrouplevel", last_item, current_group_level_code);
@!@:current\_group\_level\_}{\.{\\currentgrouplevel} primitive@>
primitive("currentgrouptype", last_item, current_group_type_code);
@!@:current\_group\_type\_}{\.{\\currentgrouptype} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case current_group_level_code: print_esc("currentgrouplevel");@+break;
case current_group_type_code: print_esc("currentgrouptype");@+break;

@ @<Cases for fetching an integer value@>=
case current_group_level_code: cur_val=cur_level-level_one;@+break;
case current_group_type_code: cur_val=cur_group;@+break;

@ The \.{\\currentiflevel}, \.{\\currentiftype}, and
\.{\\currentifbranch} commands return the current level of conditionals
and the type and branch of the current conditional.

@d current_if_level_code (eTeX_int+3) /*code for \.{\\currentiflevel}*/
@d current_if_type_code (eTeX_int+4) /*code for \.{\\currentiftype}*/
@d current_if_branch_code (eTeX_int+5) /*code for \.{\\currentifbranch}*/

@<Generate all \eTeX...@>=
primitive("currentiflevel", last_item, current_if_level_code);
@!@:current\_if\_level\_}{\.{\\currentiflevel} primitive@>
primitive("currentiftype", last_item, current_if_type_code);
@!@:current\_if\_type\_}{\.{\\currentiftype} primitive@>
primitive("currentifbranch", last_item, current_if_branch_code);
@!@:current\_if\_branch\_}{\.{\\currentifbranch} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case current_if_level_code: print_esc("currentiflevel");@+break;
case current_if_type_code: print_esc("currentiftype");@+break;
case current_if_branch_code: print_esc("currentifbranch");@+break;

@ @<Cases for fetching an integer value@>=
case current_if_level_code: {@+q=cond_ptr;cur_val=0;
  while (q!=null)
    {@+incr(cur_val);q=link(q);
    }
  } @+break;
case current_if_type_code: if (cond_ptr==null) cur_val=0;
  else if (cur_if < unless_code) cur_val=cur_if+1;
  else cur_val=-(cur_if-unless_code+1);@+break;
case current_if_branch_code:
  if ((if_limit==or_code)||(if_limit==else_code)) cur_val=1;
  else if (if_limit==fi_code) cur_val=-1;
  else cur_val=0;@+break;

@ The \.{\\fontcharwd}, \.{\\fontcharht}, \.{\\fontchardp}, and
\.{\\fontcharic} commands return information about a character in a
font.

@d font_char_wd_code eTeX_dim /*code for \.{\\fontcharwd}*/
@d font_char_ht_code (eTeX_dim+1) /*code for \.{\\fontcharht}*/
@d font_char_dp_code (eTeX_dim+2) /*code for \.{\\fontchardp}*/
@d font_char_ic_code (eTeX_dim+3) /*code for \.{\\fontcharic}*/

@<Generate all \eTeX...@>=
primitive("fontcharwd", last_item, font_char_wd_code);
@!@:font\_char\_wd\_}{\.{\\fontcharwd} primitive@>
primitive("fontcharht", last_item, font_char_ht_code);
@!@:font\_char\_ht\_}{\.{\\fontcharht} primitive@>
primitive("fontchardp", last_item, font_char_dp_code);
@!@:font\_char\_dp\_}{\.{\\fontchardp} primitive@>
primitive("fontcharic", last_item, font_char_ic_code);
@!@:font\_char\_ic\_}{\.{\\fontcharic} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case font_char_wd_code: print_esc("fontcharwd");@+break;
case font_char_ht_code: print_esc("fontcharht");@+break;
case font_char_dp_code: print_esc("fontchardp");@+break;
case font_char_ic_code: print_esc("fontcharic");@+break;

@ @<Cases for fetching a dimension value@>=
case font_char_wd_code:
case font_char_ht_code:
case font_char_dp_code:
case font_char_ic_code: {@+scan_font_ident();q=cur_val;scan_char_num();
  if ((font_bc[q] <= cur_val)&&(font_ec[q] >= cur_val))
    {@+i=char_info(q, qi(cur_val));
    switch (m) {
    case font_char_wd_code: cur_val=char_width(q, i);@+break;
    case font_char_ht_code: cur_val=char_height(q, height_depth(i));@+break;
    case font_char_dp_code: cur_val=char_depth(q, height_depth(i));@+break;
    case font_char_ic_code: cur_val=char_italic(q, i);
    }  /*there are no other cases*/
    }
  else cur_val=0;
  } @+break;

@ The \.{\\parshapedimen}, \.{\\parshapeindent}, and \.{\\parshapelength}
commands return the indent and length parameters of the current
\.{\\parshape} specification.

@d par_shape_length_code (eTeX_dim+4) /*code for \.{\\parshapelength}*/
@d par_shape_indent_code (eTeX_dim+5) /*code for \.{\\parshapeindent}*/
@d par_shape_dimen_code (eTeX_dim+6) /*code for \.{\\parshapedimen}*/

@<Generate all \eTeX...@>=
primitive("parshapelength", last_item, par_shape_length_code);
@!@:par\_shape\_length\_}{\.{\\parshapelength} primitive@>
primitive("parshapeindent", last_item, par_shape_indent_code);
@!@:par\_shape\_indent\_}{\.{\\parshapeindent} primitive@>
primitive("parshapedimen", last_item, par_shape_dimen_code);
@!@:par\_shape\_dimen\_}{\.{\\parshapedimen} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case par_shape_length_code: print_esc("parshapelength");@+break;
case par_shape_indent_code: print_esc("parshapeindent");@+break;
case par_shape_dimen_code: print_esc("parshapedimen");@+break;

@ @<Cases for fetching a dimension value@>=
case par_shape_length_code:
case par_shape_indent_code:
case par_shape_dimen_code: {@+q=cur_chr-par_shape_length_code;scan_int();
  if ((par_shape_ptr==null)||(cur_val <= 0)) cur_val=0;
  else{@+if (q==2)
      {@+q=cur_val%2;cur_val=(cur_val+q)/2;
      }
    if (cur_val > info(par_shape_ptr)) cur_val=info(par_shape_ptr);
    cur_val=mem[par_shape_ptr+2*cur_val-q].sc;
    }
  cur_val_level=dimen_val;
  } @+break;

@ The \.{\\showgroups} command displays all currently active grouping
levels.

@d show_groups 4 /* \.{\\showgroups} */

@<Generate all \eTeX...@>=
primitive("showgroups", xray, show_groups);
@!@:show\_groups\_}{\.{\\showgroups} primitive@>

@ @<Cases of |xray| for |print_cmd_chr|@>=
case show_groups: print_esc("showgroups");@+break;

@ @<Cases for |show_whatever|@>=
case show_groups: {@+begin_diagnostic();show_save_groups();
  } @+break;

@ @<Types...@>=
typedef int32_t save_pointer; /*index into |save_stack|*/

@ The modifications of \TeX\ required for the display produced by the
|show_save_groups| procedure were first discussed by Donald~E. Knuth in
{\sl TUGboat\/} {\bf 11}, 165--170 and 499--511, 1990.
@^Knuth, Donald Ervin@>

In order to understand a group type we also have to know its mode.
Since unrestricted horizontal modes are not associated with grouping,
they are skipped when traversing the semantic nest.

@<Declare \eTeX\ procedures for use...@>=
static void show_save_groups(void)
{@+
int p; /*index into |nest|*/
int @!m; /*mode*/
save_pointer @!v; /*saved value of |save_ptr|*/
quarterword @!l; /*saved value of |cur_level|*/
group_code @!c; /*saved value of |cur_group|*/
int @!a; /*to keep track of alignments*/
int @!i;
quarterword @!j;
char *@!s;
p=nest_ptr;nest[p]=cur_list; /*put the top level into the array*/
v=save_ptr;l=cur_level;c=cur_group;
save_ptr=cur_boundary;decr(cur_level);@/
a=1;
print_nl("");print_ln();
loop@+{@+print_nl("### ");print_group(true);
  if (cur_group==bottom_level) goto done;
  @/do@+{m=nest[p].mode_field;
  if (p > 0) decr(p);else m=vmode;
  }@+ while (!(m!=hmode));
  print(" (");
  switch (cur_group) {
    case simple_group: {@+incr(p);goto found2;
      }
    case hbox_group: case adjusted_hbox_group: s="hbox";@+break;
    case vbox_group: s="vbox";@+break;
    case vtop_group: s="vtop";@+break;
    case align_group: if (a==0)
        {@+if (m==-vmode) s="halign";else s="valign";
        a=1;goto found1;
        }
      else{@+if (a==1) print("align entry");else print_esc("cr");
        if (p >= a) p=p-a;
        a=0;goto found;
        } @+break;
    case no_align_group:
      {@+incr(p);a=-1;print_esc("noalign");goto found2;
      }
    case output_group:
      {@+print_esc("output");goto found;
      }
    case math_group: goto found2;
    case disc_group: case math_choice_group:
      {@+if (cur_group==disc_group) print_esc("discretionary");
      else print_esc("mathchoice");
      for (i=1; i<=3; i++) if (i <= saved(-2)) print("{}");
      goto found2;
      }
    case insert_group:
      {@+if (saved(-2)==255) print_esc("vadjust");
      else{@+print_esc("insert");print_int(saved(-2));
        }
      goto found2;
      }
    case vcenter_group: {@+s="vcenter";goto found1;
      }
    case semi_simple_group: {@+incr(p);print_esc("begingroup");goto found;
      }
    case math_shift_group:
      {@+if (m==mmode) print_char('$');
      else if (nest[p].mode_field==mmode)
        {@+print_cmd_chr(eq_no, saved(-2));goto found;
        }
      print_char('$');goto found;
      }
    case math_left_group:
      {@+if (type(nest[p+1].eTeX_aux_field)==left_noad) print_esc("left");
      else print_esc("middle");
      goto found;
      }
    }  /*there are no other cases*/
  @<Show the box context@>;
  found1: print_esc(s);@<Show the box packaging info@>;
  found2: print_char('{');
  found: print_char(')');decr(cur_level);
  cur_group=save_level(save_ptr);save_ptr=save_index(save_ptr);
  }
done: save_ptr=v;cur_level=l;cur_group=c;
}

@ @<Show the box packaging info@>=
if (saved(-2)!=0)
  {@+print_char(' ');
  if (saved(-3)==exactly) print("to");else print("spread");
  print_scaled(saved(-2));print("pt");
  }

@ @<Show the box context@>=
i=saved(-4);
if (i!=0)
  if (i < box_flag)
    {@+if (abs(nest[p].mode_field)==vmode) j=hmove;else j=vmove;
    if (i > 0) print_cmd_chr(j, 0);else print_cmd_chr(j, 1);
    print_scaled(abs(i));print("pt");
    }
  else if (i < ship_out_flag)
    {@+if (i >= global_box_flag)
      {@+print_esc("global");i=i-(global_box_flag-box_flag);
      }
    print_esc("setbox");print_int(i-box_flag);print_char('=');
    }
  else print_cmd_chr(leader_ship, i-(leader_flag-a_leaders))

@ The |scan_general_text| procedure is much like |scan_toks(false, false)|,
but will be invoked via |expand|, i.e., recursively.
@^recursion@>

@<Declare \eTeX\ procedures for sc...@>=
static void scan_general_text(void);

@ The token list (balanced text) created by |scan_general_text| begins
at |link(temp_head)| and ends at |cur_val|.  (If |cur_val==temp_head|,
the list is empty.)

@<Declare \eTeX\ procedures for tok...@>=
static void scan_general_text(void)
{@+
int s; /*to save |scanner_status|*/
pointer @!w; /*to save |warning_index|*/
pointer @!d; /*to save |def_ref|*/
pointer @!p; /*tail of the token list being built*/
pointer @!q; /*new node being added to the token list via |store_new_token|*/
halfword @!unbalance; /*number of unmatched left braces*/
s=scanner_status;w=warning_index;d=def_ref;
scanner_status=absorbing;warning_index=cur_cs;
def_ref=get_avail();token_ref_count(def_ref)=null;p=def_ref;
scan_left_brace(); /*remove the compulsory left brace*/
unbalance=1;
loop@+{@+get_token();
  if (cur_tok < right_brace_limit)
    if (cur_cmd < right_brace) incr(unbalance);
    else{@+decr(unbalance);
      if (unbalance==0) goto found;
      }
  store_new_token(cur_tok);
  }
found: q=link(def_ref);free_avail(def_ref); /*discard reference count*/
if (q==null) cur_val=temp_head;@+else cur_val=p;
link(temp_head)=q;
scanner_status=s;warning_index=w;def_ref=d;
}

@ The \.{\\showtokens} command displays a token list.

@d show_tokens 5 /* \.{\\showtokens} , must be odd! */

@<Generate all \eTeX...@>=
primitive("showtokens", xray, show_tokens);
@!@:show\_tokens\_}{\.{\\showtokens} primitive@>

@ @<Cases of |xray| for |print_cmd_chr|@>=
case show_tokens: print_esc("showtokens");@+break;

@ The \.{\\unexpanded} primitive prevents expansion of tokens much as
the result from \.{\\the} applied to a token variable.  The
\.{\\detokenize} primitive converts a token list into a list of
character tokens much as if the token list were written to a file.  We
use the fact that the command modifiers for \.{\\unexpanded} and
\.{\\detokenize} are odd whereas those for \.{\\the} and \.{\\showthe}
are even.

@<Generate all \eTeX...@>=
primitive("unexpanded", the, 1);@/
@!@:unexpanded\_}{\.{\\unexpanded} primitive@>
primitive("detokenize", the, show_tokens);@/
@!@:detokenize\_}{\.{\\detokenize} primitive@>

@ @<Cases of |the| for |print_cmd_chr|@>=;
else if (chr_code==1) print_esc("unexpanded");
else print_esc("detokenize")

@ @<Handle \.{\\unexpanded} or \.{\\detokenize} and |return|@>=
if (odd(cur_chr))
  {@+c=cur_chr;scan_general_text();
  if (c==1) return cur_val;
  else{@+old_setting=selector;selector=new_string;b=pool_ptr;
    p=get_avail();link(p)=link(temp_head);
    token_show(p);flush_list(p);
    selector=old_setting;return str_toks(b);
    }

  }

@ The \.{\\showifs} command displays all currently active conditionals.

@d show_ifs 6 /* \.{\\showifs} */

@<Generate all \eTeX...@>=
primitive("showifs", xray, show_ifs);
@!@:show\_ifs\_}{\.{\\showifs} primitive@>

@ @<Cases of |xray| for |print_cmd_chr|@>=
case show_ifs: print_esc("showifs");@+break;

@ @d print_if_line(A) if (A!=0)
  {@+print(" entered on line ");print_int(A);
  }

@<Cases for |show_whatever|@>=
case show_ifs: {@+begin_diagnostic();print_nl("");print_ln();
  if (cond_ptr==null)
    {@+print_nl("### ");print("no active conditionals");
    }
  else{@+p=cond_ptr;n=0;
    @/do@+{incr(n);p=link(p);@+}@+ while (!(p==null));
    p=cond_ptr;t=cur_if;l=if_line;m=if_limit;
    @/do@+{print_nl("### level ");print_int(n);print(": ");
    print_cmd_chr(if_test, t);
    if (m==fi_code) print_esc("else");
    print_if_line(l);
    decr(n);t=subtype(p);l=if_line_field(p);m=type(p);p=link(p);
    }@+ while (!(p==null));
    }
  } @+break;

@ The \.{\\interactionmode} primitive allows to query and set the
interaction mode.

@<Generate all \eTeX...@>=
primitive("interactionmode", set_page_int, 2);
@!@:interaction\_mode\_}{\.{\\interactionmode} primitive@>

@ @<Cases of |set_page_int| for |print_cmd_chr|@>=;
else if (chr_code==2) print_esc("interactionmode")

@ @<Cases for `Fetch the |dead_cycles| or the |insert_penalties|'@>=;
else if (m==2) cur_val=interaction

@ @<Declare \eTeX\ procedures for use...@>=
static void new_interaction(void);

@ @<Cases for |alter_integer|@>=;
else if (c==2)
  {@+if ((cur_val < batch_mode)||(cur_val > error_stop_mode))
    {@+print_err("Bad interaction mode");
@.Bad interaction mode@>
    help2("Modes are 0=batch, 1=nonstop, 2=scroll, and",@/
    "3=errorstop. Proceed, and I'll ignore this case.");
    int_error(cur_val);
    }
  else{@+cur_chr=cur_val;new_interaction();
    }
  }

@ The |middle| feature of \eTeX\ allows one ore several \.{\\middle}
delimiters to appear between \.{\\left} and \.{\\right}.

@<Generate all \eTeX...@>=
primitive("middle", left_right, middle_noad);
@!@:middle\_}{\.{\\middle} primitive@>

@ @<Cases of |left_right| for |print_cmd_chr|@>=;
else if (chr_code==middle_noad) print_esc("middle")

@ The |scan_tokens| feature of \eTeX\ defines the \.{\\scantokens}
primitive.

@<Generate all \eTeX...@>=
primitive("scantokens", input, 2);
@!@:scan\_tokens\_}{\.{\\scantokens} primitive@>

@ @<Cases of |input| for |print_cmd_chr|@>=;
else if (chr_code==2) print_esc("scantokens")

@ @<Cases for |input|@>=;
else if (cur_chr==2) pseudo_start()

@ The global variable |pseudo_files| is used to maintain a stack of
pseudo files.  The |info| field of each pseudo file points to a linked
list of variable size nodes representing lines not yet processed: the
|info| field of the first word contains the size of this node, all the
following words contain ASCII codes.

@<Glob...@>=
static pointer @!pseudo_files; /*stack of pseudo files*/

@ @<Set init...@>=
pseudo_files=null;

@ The |pseudo_start| procedure initiates reading from a pseudo file.

@<Declare \eTeX\ procedures for ex...@>=
static void pseudo_start(void);

@ @<Declare \eTeX\ procedures for tok...@>=
static void pseudo_start(void)
{@+int old_setting; /*holds |selector| setting*/
str_number @!s; /*string to be converted into a pseudo file*/
pool_pointer @!l, @!m; /*indices into |str_pool|*/
pointer @!p, @!q, @!r; /*for list construction*/
four_quarters @!w; /*four ASCII codes*/
int @!nl, @!sz;
scan_general_text();
old_setting=selector;selector=new_string;
token_show(temp_head);selector=old_setting;
flush_list(link(temp_head));
str_room(1);s=make_string();
@<Convert string |s| into a new pseudo file@>;
flush_string;
@<Initiate input from new pseudo file@>;
}

@ @<Convert string |s| into a new pseudo file@>=
str_pool[pool_ptr]=si(' ');l=str_start[s];
nl=si(new_line_char);
p=get_avail();q=p;
while (l < pool_ptr)
  {@+m=l;
  while ((l < pool_ptr)&&(str_pool[l]!=nl)) incr(l);
  sz=(l-m+7)/4;
  if (sz==1) sz=2;
  r=get_node(sz);link(q)=r;q=r;info(q)=hi(sz);
  while (sz > 2)
    {@+decr(sz);incr(r);
    w.b0=qi(so(str_pool[m]));w.b1=qi(so(str_pool[m+1]));
    w.b2=qi(so(str_pool[m+2]));w.b3=qi(so(str_pool[m+3]));
    mem[r].qqqq=w;m=m+4;
    }
  w.b0=qi(' ');w.b1=qi(' ');w.b2=qi(' ');w.b3=qi(' ');
  if (l > m)
    {@+w.b0=qi(so(str_pool[m]));
    if (l > m+1)
      {@+w.b1=qi(so(str_pool[m+1]));
      if (l > m+2)
        {@+w.b2=qi(so(str_pool[m+2]));
        if (l > m+3) w.b3=qi(so(str_pool[m+3]));
        }
      }
    }
  mem[r+1].qqqq=w;
  if (str_pool[l]==nl) incr(l);
  }
info(p)=link(p);link(p)=pseudo_files;pseudo_files=p

@ @<Initiate input from new pseudo file@>=
begin_file_reading(); /*set up |cur_file| and new level of input*/
line=0;limit=start;loc=limit+1; /*force line read*/
if (tracing_scan_tokens > 0)
  {@+if (term_offset > max_print_line-3) print_ln();
  else if ((term_offset > 0)||(file_offset > 0)) print_char(' ');
  name=19;print("( ");incr(open_parens);update_terminal;
  }
else name=18

@ Here we read a line from the current pseudo file into |buffer|.

@<Declare \eTeX\ procedures for tr...@>=
static bool pseudo_input(void) /*inputs the next line or returns |false|*/
{@+pointer p; /*current line from pseudo file*/
int @!sz; /*size of node |p|*/
four_quarters @!w; /*four ASCII codes*/
int @!r; /*loop index*/
last=first; /*cf.\ Matthew 19\thinspace:\thinspace30*/
p=info(pseudo_files);
if (p==null) return false;
else{@+info(pseudo_files)=link(p);sz=ho(info(p));
  if (4*sz-3 >= buf_size-last)
    @<Report overflow of the input buffer, and abort@>;
  last=first;
  for (r=p+1; r<=p+sz-1; r++)
    {@+w=mem[r].qqqq;
    buffer[last]=w.b0;buffer[last+1]=w.b1;
    buffer[last+2]=w.b2;buffer[last+3]=w.b3;
    last=last+4;
    }
  if (last >= max_buf_stack) max_buf_stack=last+1;
  while ((last > first)&&(buffer[last-1]==' ')) decr(last);
  free_node(p, sz);
  return true;
  }
}

@ When we are done with a pseudo file we `close' it.

@<Declare \eTeX\ procedures for tr...@>=
static void pseudo_close(void) /*close the top level pseudo file*/
{@+pointer p, @!q;
p=link(pseudo_files);q=info(pseudo_files);
free_avail(pseudo_files);pseudo_files=p;
while (q!=null)
  {@+p=q;q=link(p);free_node(p, ho(info(p)));
  }
}

@ @<Dump the \eTeX\ state@>=
while (pseudo_files!=null) pseudo_close(); /*flush pseudo files*/

@ @<Generate all \eTeX...@>=
primitive("readline", read_to_cs, 1);@/
@!@:read\_line\_}{\.{\\readline} primitive@>

@ @<Cases of |read| for |print_cmd_chr|@>=;
else print_esc("readline")

@ @<Handle \.{\\readline} and |goto done|@>=
if (j==1)
  {@+while (loc <= limit)  /*current line not yet finished*/
    {@+cur_chr=buffer[loc];incr(loc);
    if (cur_chr==' ') cur_tok=space_token;
    @+else cur_tok=cur_chr+other_token;
    store_new_token(cur_tok);
    }
  goto done;
  }

@ Here we define the additional conditionals of \eTeX\ as well as the
\.{\\unless} prefix.

@d if_def_code 17 /* `\.{\\ifdefined}' */
@d if_cs_code 18 /* `\.{\\ifcsname}' */
@d if_font_char_code 19 /* `\.{\\iffontchar}' */
@d eTeX_last_if_test_cmd_mod if_font_char_code
@d eTeX_last_expand_after_cmd_mod 1

@<Generate all \eTeX...@>=
primitive("unless", expand_after, 1);@/
@!@:unless\_}{\.{\\unless} primitive@>
primitive("ifdefined", if_test, if_def_code);
@!@:if\_defined\_}{\.{\\ifdefined} primitive@>
primitive("ifcsname", if_test, if_cs_code);
@!@:if\_cs\_name\_}{\.{\\ifcsname} primitive@>
primitive("iffontchar", if_test, if_font_char_code);
@!@:if\_font\_char\_}{\.{\\iffontchar} primitive@>

@ @<Cases of |expandafter| for |print_cmd_chr|@>=
case 1: print_esc("unless");@+break;

@ @<Cases of |if_test| for |print_cmd_chr|@>=
case if_def_code: print_esc("ifdefined");@+break;
case if_cs_code: print_esc("ifcsname");@+break;
case if_font_char_code: print_esc("iffontchar");@+break;

@ The result of a boolean condition is reversed when the conditional is
preceded by \.{\\unless}.

@<Negate a boolean conditional and |goto reswitch|@>=
{@+get_token();
if ((cur_cmd==if_test)&&(cur_chr!=if_case_code))
  {@+cur_chr=cur_chr+unless_code;goto reswitch;
  }
print_err("You can't use `");print_esc("unless");print("' before `");
@.You can't use \\unless...@>
print_cmd_chr(cur_cmd, cur_chr);print_char('\'');
help1("Continue, and I'll forget that it ever happened.");
back_error();
}

@ The conditional \.{\\ifdefined} tests if a control sequence is
defined.

We need to reset |scanner_status|, since \.{\\outer} control sequences
are allowed, but we might be scanning a macro definition or preamble.

@<Cases for |conditional|@>=
case if_def_code: {@+save_scanner_status=scanner_status;
  scanner_status=normal;
  get_next();b=(cur_cmd!=undefined_cs);
  scanner_status=save_scanner_status;
  } @+break;

@ The conditional \.{\\ifcsname} is equivalent to \.{\{\\expandafter}
\.{\}\\expandafter} \.{\\ifdefined} \.{\\csname}, except that no new
control sequence will be entered into the hash table (once all tokens
preceding the mandatory \.{\\endcsname} have been expanded).

@<Cases for |conditional|@>=
case if_cs_code: {@+n=get_avail();p=n; /*head of the list of characters*/
  @/do@+{get_x_token();
  if (cur_cs==0) store_new_token(cur_tok);
  }@+ while (!(cur_cs!=0));
  if (cur_cmd!=end_cs_name) @<Complain about missing \.{\\endcsname}@>;
  @<Look up the characters of list |n| in the hash table, and set |cur_cs|@>;
  flush_list(n);
  b=(eq_type(cur_cs)!=undefined_cs);
  } @+break;

@ @<Look up the characters of list |n| in the hash table...@>=
m=first;p=link(n);
while (p!=null)
  {@+if (m >= max_buf_stack)
    {@+max_buf_stack=m+1;
    if (max_buf_stack==buf_size)
      overflow("buffer size", buf_size);
@:TeX capacity exceeded buffer size}{\quad buffer size@>
    }
  buffer[m]=info(p)%0400;incr(m);p=link(p);
  }
if (m==first) cur_cs=null_cs; /*the list is empty*/
else if (m > first+1)
  cur_cs=id_lookup(first, m-first); /*|no_new_control_sequence| is |true|*/
else cur_cs=single_base+buffer[first] /*the list has length one*/

@ The conditional \.{\\iffontchar} tests the existence of a character in
a font.

@<Cases for |conditional|@>=
case if_font_char_code: {@+scan_font_ident();n=cur_val;scan_char_num();
  if ((font_bc[n] <= cur_val)&&(font_ec[n] >= cur_val))
    b=char_exists(char_info(n, qi(cur_val)));
  else b=false;
  } @+break;

@ The \.{protected} feature of \eTeX\ defines the \.{\\protected} prefix
command for macro definitions.  Such macros are protected against
expansions when lists of expanded tokens are built, e.g., for \.{\\edef}
or during \.{\\write}.

@<Generate all \eTeX...@>=
primitive("protected", prefix, 8);
@!@:protected\_}{\.{\\protected} primitive@>

@ @<Cases of |prefix| for |print_cmd_chr|@>=;
else if (chr_code==8) print_esc("protected")

@ The |get_x_or_protected| procedure is like |get_x_token| except that
protected macros are not expanded.

@<Declare \eTeX\ procedures for sc...@>=
static void get_x_or_protected(void) /*sets |cur_cmd|, |cur_chr|, |cur_tok|,
  and expands non-protected macros*/
{@+
loop@+{@+get_token();
  if (cur_cmd <= max_command) return;
  if ((cur_cmd >= call)&&(cur_cmd < end_template))
    if (info(link(cur_chr))==protected_token) return;
  expand();
  }
}

@ A group entered (or a conditional started) in one file may end in a
different file.  Such slight anomalies, although perfectly legitimate,
may cause errors that are difficult to locate.  In order to be able to
give a warning message when such anomalies occur, \eTeX\ uses the
|grp_stack| and |if_stack| arrays to record the initial |cur_boundary|
and |cond_ptr| values for each input file.

@<Glob...@>=
static save_pointer @!grp_stack[max_in_open+1]; /*initial |cur_boundary|*/
static pointer @!if_stack[max_in_open+1]; /*initial |cond_ptr|*/

@ When a group ends that was apparently entered in a different input
file, the |group_warning| procedure is invoked in order to update the
|grp_stack|.  If moreover \.{\\tracingnesting} is positive we want to
give a warning message.  The situation is, however, somewhat complicated
by two facts:  (1)~There may be |grp_stack| elements without a
corresponding \.{\\input} file or \.{\\scantokens} pseudo file (e.g.,
error insertions from the terminal); and (2)~the relevant information is
recorded in the |name_field| of the |input_stack| only loosely
synchronized with the |in_open| variable indexing |grp_stack|.

@<Declare \eTeX\ procedures for tr...@>=
static void group_warning(void)
{@+int i; /*index into |grp_stack|*/
bool @!w; /*do we need a warning?*/
base_ptr=input_ptr;input_stack[base_ptr]=cur_input;
   /*store current state*/
i=in_open;w=false;
while ((grp_stack[i]==cur_boundary)&&(i > 0))
  {@+@<Set variable |w| to indicate if this case should be reported@>;
  grp_stack[i]=save_index(save_ptr);decr(i);
  }
if (w)
  {@+print_nl("Warning: end of ");print_group(true);
@.Warning: end of...@>
  print(" of a different file");print_ln();
  if (tracing_nesting > 1) show_context();
  if (history==spotless) history=warning_issued;
  }
}

@ This code scans the input stack in order to determine the type of the
current input file.

@<Set variable |w| to...@>=
if (tracing_nesting > 0)
  {@+while ((input_stack[base_ptr].state_field==token_list)||@|
    (input_stack[base_ptr].index_field > i)) decr(base_ptr);
  if (input_stack[base_ptr].name_field > 17) w=true;
  }

@ When a conditional ends that was apparently started in a different
input file, the |if_warning| procedure is invoked in order to update the
|if_stack|.  If moreover \.{\\tracingnesting} is positive we want to
give a warning message (with the same complications as above).

@<Declare \eTeX\ procedures for tr...@>=
static void if_warning(void)
{@+int i; /*index into |if_stack|*/
bool @!w; /*do we need a warning?*/
base_ptr=input_ptr;input_stack[base_ptr]=cur_input;
   /*store current state*/
i=in_open;w=false;
while (if_stack[i]==cond_ptr)
  {@+@<Set variable |w| to...@>;
  if_stack[i]=link(cond_ptr);decr(i);
  }
if (w)
  {@+print_nl("Warning: end of ");print_cmd_chr(if_test, cur_if);
@.Warning: end of...@>
  print_if_line(if_line);print(" of a different file");print_ln();
  if (tracing_nesting > 1) show_context();
  if (history==spotless) history=warning_issued;
  }
}

@ Conversely, the |file_warning| procedure is invoked when a file ends
and some groups entered or conditionals started while reading from that
file are still incomplete.

@<Declare \eTeX\ procedures for tr...@>=
static void file_warning(void)
{@+pointer p; /*saved value of |save_ptr| or |cond_ptr|*/
quarterword @!l; /*saved value of |cur_level| or |if_limit|*/
quarterword @!c; /*saved value of |cur_group| or |cur_if|*/
int @!i; /*saved value of |if_line|*/
p=save_ptr;l=cur_level;c=cur_group;save_ptr=cur_boundary;
while (grp_stack[in_open]!=save_ptr)
  {@+decr(cur_level);
  print_nl("Warning: end of file when ");
@.Warning: end of file when...@>
  print_group(true);print(" is incomplete");@/
  cur_group=save_level(save_ptr);save_ptr=save_index(save_ptr);
  }
save_ptr=p;cur_level=l;cur_group=c; /*restore old values*/
p=cond_ptr;l=if_limit;c=cur_if;i=if_line;
while (if_stack[in_open]!=cond_ptr)
  {@+print_nl("Warning: end of file when ");
@.Warning: end of file when...@>
  print_cmd_chr(if_test, cur_if);
  if (if_limit==fi_code) print_esc("else");
  print_if_line(if_line);print(" is incomplete");@/
  if_line=if_line_field(cond_ptr);cur_if=subtype(cond_ptr);
  if_limit=type(cond_ptr);cond_ptr=link(cond_ptr);
  }
cond_ptr=p;if_limit=l;cur_if=c;if_line=i; /*restore old values*/
print_ln();
if (tracing_nesting > 1) show_context();
if (history==spotless) history=warning_issued;
}

@ Here are the additional \eTeX\ primitives for expressions.

@<Generate all \eTeX...@>=
primitive("numexpr", last_item, eTeX_expr-int_val+int_val);
@!@:num\_expr\_}{\.{\\numexpr} primitive@>
primitive("dimexpr", last_item, eTeX_expr-int_val+dimen_val);
@!@:dim\_expr\_}{\.{\\dimexpr} primitive@>
primitive("glueexpr", last_item, eTeX_expr-int_val+glue_val);
@!@:glue\_expr\_}{\.{\\glueexpr} primitive@>
primitive("muexpr", last_item, eTeX_expr-int_val+mu_val);
@!@:mu\_expr\_}{\.{\\muexpr} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case eTeX_expr-int_val+int_val: print_esc("numexpr");@+break;
case eTeX_expr-int_val+dimen_val: print_esc("dimexpr");@+break;
case eTeX_expr-int_val+glue_val: print_esc("glueexpr");@+break;
case eTeX_expr-int_val+mu_val: print_esc("muexpr");@+break;

@ This code for reducing |cur_val_level| and\slash or negating the
result is similar to the one for all the other cases of
|scan_something_internal|, with the difference that |scan_expr| has
already increased the reference count of a glue specification.

@<Process an expression and |return|@>=
{@+if (m < eTeX_mu)
  {@+switch (m) {
  @/@<Cases for fetching a glue value@>@/
  }  /*there are no other cases*/
  cur_val_level=glue_val;
  }
else if (m < eTeX_expr)
  {@+switch (m) {
  @/@<Cases for fetching a mu value@>@/
  }  /*there are no other cases*/
  cur_val_level=mu_val;
  }
else{@+cur_val_level=m-eTeX_expr+int_val;scan_expr();
  }
while (cur_val_level > level)
  {@+if (cur_val_level==glue_val)
    {@+m=cur_val;cur_val=width(m);delete_glue_ref(m);
    }
  else if (cur_val_level==mu_val) mu_error();
  decr(cur_val_level);
  }
if (negative)
  if (cur_val_level >= glue_val)
    {@+m=cur_val;cur_val=new_spec(m);delete_glue_ref(m);
    @<Negate all three glue components of |cur_val|@>;
    }
  else negate(cur_val);
return;
}

@ @<Declare \eTeX\ procedures for sc...@>=
static void scan_expr(void);

@ The |scan_expr| procedure scans and evaluates an expression.

@<Declare procedures needed for expressions@>=
@t\4@>@<Declare subprocedures for |scan_expr|@>@;
static void scan_expr(void) /*scans and evaluates an expression*/
{@+
bool a, @!b; /*saved values of |arith_error|*/
small_number @!l; /*type of expression*/
small_number @!r; /*state of expression so far*/
small_number @!s; /*state of term so far*/
small_number @!o; /*next operation or type of next factor*/
int @!e; /*expression so far*/
int @!t; /*term so far*/
int @!f; /*current factor*/
int @!n; /*numerator of combined multiplication and division*/
pointer @!p; /*top of expression stack*/
pointer @!q; /*for stack manipulations*/
l=cur_val_level;a=arith_error;b=false;p=null;
@<Scan and evaluate an expression |e| of type |l|@>;
if (b)
  {@+print_err("Arithmetic overflow");
@.Arithmetic overflow@>
  help2("I can't evaluate this expression,",@/
    "since the result is out of range.");
  error();
  if (l >= glue_val)
    {@+delete_glue_ref(e);e=zero_glue;add_glue_ref(e);
    }
  else e=0;
  }
arith_error=a;cur_val=e;cur_val_level=l;
}

@ Evaluating an expression is a recursive process:  When the left
parenthesis of a subexpression is scanned we descend to the next level
of recursion; the previous level is resumed with the matching right
parenthesis.

@d expr_none 0 /*\.( seen, or \.( $\langle\it expr\rangle$ \.) seen*/
@d expr_add 1 /*\.( $\langle\it expr\rangle$ \.+ seen*/
@d expr_sub 2 /*\.( $\langle\it expr\rangle$ \.- seen*/
@d expr_mult 3 /*$\langle\it term\rangle$ \.* seen*/
@d expr_div 4 /*$\langle\it term\rangle$ \./ seen*/
@d expr_scale 5 /*$\langle\it term\rangle$ \.*
  $\langle\it factor\rangle$ \./ seen*/

@<Scan and eval...@>=
restart: r=expr_none;e=0;s=expr_none;t=0;n=0;
resume: if (s==expr_none) o=l;@+else o=int_val;
@<Scan a factor |f| of type |o| or start a subexpression@>;
found: @<Scan the next operator and set |o|@>;
arith_error=b;
@<Make sure that |f| is in the proper range@>;
switch (s) {@<Cases for evaluation of the current term@>@;
}  /*there are no other cases*/
if (o > expr_sub) s=o;@+else@<Evaluate the current expression@>;
b=arith_error;
if (o!=expr_none) goto resume;
if (p!=null) @<Pop the expression stack and |goto found|@>@;

@ @<Scan the next op...@>=
@<Get the next non-blank non-call token@>;
if (cur_tok==other_token+'+') o=expr_add;
else if (cur_tok==other_token+'-') o=expr_sub;
else if (cur_tok==other_token+'*') o=expr_mult;
else if (cur_tok==other_token+'/') o=expr_div;
else{@+o=expr_none;
  if (p==null)
    {@+if (cur_cmd!=relax) back_input();
    }
  else if (cur_tok!=other_token+')')
    {@+print_err("Missing ) inserted for expression");
@.Missing ) inserted@>
    help1("I was expecting to see `+', `-', `*', `/', or `)'. Didn't.");
    back_error();
    }
  }

@ @<Scan a factor...@>=
@<Get the next non-blank non-call token@>;
if (cur_tok==other_token+'(')
  @<Push the expression stack and |goto restart|@>;
back_input();
if (o==int_val) scan_int();
else if (o==dimen_val) scan_normal_dimen;
else if (o==glue_val) scan_normal_glue();
else scan_mu_glue();
f=cur_val

@ @<Declare \eTeX\ procedures for sc...@>=
static void scan_normal_glue(void);@/
static void scan_mu_glue(void);

@ Here we declare two trivial procedures in order to avoid mutually
recursive procedures with parameters.

@<Declare procedures needed for expressions@>=
static void scan_normal_glue(void)
{@+scan_glue(glue_val);
}
@#
static void scan_mu_glue(void)
{@+scan_glue(mu_val);
}

@ Parenthesized subexpressions can be inside expressions, and this
nesting has a stack.  Seven local variables represent the top of the
expression stack:  |p| points to pushed-down entries, if any; |l|
specifies the type of expression currently beeing evaluated; |e| is the
expression so far and |r| is the state of its evaluation; |t| is the
term so far and |s| is the state of its evaluation; finally |n| is the
numerator for a combined multiplication and division, if any.

@d expr_node_size 4 /*number of words in stack entry for subexpressions*/
@d expr_e_field(A) mem[A+1].i /*saved expression so far*/
@d expr_t_field(A) mem[A+2].i /*saved term so far*/
@d expr_n_field(A) mem[A+3].i /*saved numerator*/

@<Push the expression...@>=
{@+q=get_node(expr_node_size);link(q)=p;type(q)=l;
subtype(q)=4*s+r;
expr_e_field(q)=e;expr_t_field(q)=t;expr_n_field(q)=n;
p=q;l=o;goto restart;
}

@ @<Pop the expression...@>=
{@+f=e;q=p;
e=expr_e_field(q);t=expr_t_field(q);n=expr_n_field(q);
s=subtype(q)/4;r=subtype(q)%4;
l=type(q);p=link(q);free_node(q, expr_node_size);
goto found;
}

@ We want to make sure that each term and (intermediate) result is in
the proper range.  Integer values must not exceed |infinity|
($2^{31}-1$) in absolute value, dimensions must not exceed |max_dimen|
($2^{30}-1$).  We avoid the absolute value of an integer, because this
might fail for the value $-2^{31}$ using 32-bit arithmetic.

@d num_error(A)  /*clear a number or dimension and set |arith_error|*/
  {@+arith_error=true;A=0;
  }
@d glue_error(A)  /*clear a glue spec and set |arith_error|*/
  {@+arith_error=true;delete_glue_ref(A);A=new_spec(zero_glue);
  }

@<Make sure that |f|...@>=
if ((l==int_val)||(s > expr_sub))
  {@+if ((f > infinity)||(f < -infinity)) num_error(f);
  }
else if (l==dimen_val)
  {@+if (abs(f) > max_dimen) num_error(f);
  }
else{@+if ((abs(width(f)) > max_dimen)||@|
   (abs(stretch(f)) > max_dimen)||@|
   (abs(shrink(f)) > max_dimen)) glue_error(f);
  }

@ Applying the factor |f| to the partial term |t| (with the operator
|s|) is delayed until the next operator |o| has been scanned.  Here we
handle the first factor of a partial term.  A glue spec has to be copied
unless the next operator is a right parenthesis; this allows us later on
to simply modify the glue components.

@d normalize_glue(A)
  if (stretch(A)==0) stretch_order(A)=normal;
  if (shrink(A)==0) shrink_order(A)=normal

@<Cases for evaluation of the current term@>=
case expr_none: if ((l >= glue_val)&&(o!=expr_none))
    {@+t=new_spec(f);delete_glue_ref(f);normalize_glue(t);
    }
  else t=f;@+break;

@ When a term |t| has been completed it is copied to, added to, or
subtracted from the expression |e|.

@d expr_add_sub(A, B, C) add_or_sub(A, B, C, r==expr_sub)
@d expr_a(A, B) expr_add_sub(A, B, max_dimen)

@<Evaluate the current expression@>=
{@+s=expr_none;
if (r==expr_none) e=t;
else if (l==int_val) e=expr_add_sub(e, t, infinity);
else if (l==dimen_val) e=expr_a(e, t);
else@<Compute the sum or difference of two glue specs@>;
r=o;
}

@ The function |add_or_sub(x, y, max_answer, negative)| computes the sum
(for |negative==false|) or difference (for |negative==true|) of |x| and
|y|, provided the absolute value of the result does not exceed
|max_answer|.

@<Declare subprocedures for |scan_expr|@>=
static int add_or_sub(int @!x, int @!y, int @!max_answer, bool @!negative)
{@+int a; /*the answer*/
if (negative) negate(y);
if (x >= 0)
  if (y <= max_answer-x) a=x+y;@+else num_error(a)@;
else if (y >= -max_answer-x) a=x+y;@+else num_error(a);
return a;
}

@ We know that |stretch_order(e) > normal| implies |stretch(e)!=0| and
|shrink_order(e) > normal| implies |shrink(e)!=0|.

@<Compute the sum or diff...@>=
{@+width(e)=expr_a(width(e), width(t));
if (stretch_order(e)==stretch_order(t))
  stretch(e)=expr_a(stretch(e), stretch(t));
else if ((stretch_order(e) < stretch_order(t))&&(stretch(t)!=0))
  {@+stretch(e)=stretch(t);stretch_order(e)=stretch_order(t);
  }
if (shrink_order(e)==shrink_order(t))
  shrink(e)=expr_a(shrink(e), shrink(t));
else if ((shrink_order(e) < shrink_order(t))&&(shrink(t)!=0))
  {@+shrink(e)=shrink(t);shrink_order(e)=shrink_order(t);
  }
delete_glue_ref(t);normalize_glue(e);
}

@ If a multiplication is followed by a division, the two operations are
combined into a `scaling' operation.  Otherwise the term |t| is
multiplied by the factor |f|.

@d expr_m(A) A=nx_plus_y(A, f, 0)

@<Cases for evaluation of the current term@>=
case expr_mult: if (o==expr_div)
    {@+n=f;o=expr_scale;
    }
  else if (l==int_val) t=mult_integers(t, f);
  else if (l==dimen_val) expr_m(t);
  else{@+expr_m(width(t));expr_m(stretch(t));expr_m(shrink(t));
    } @+break;

@ Here we divide the term |t| by the factor |f|.

@d expr_d(A) A=quotient(A, f)

@<Cases for evaluation of the current term@>=
case expr_div: if (l < glue_val) expr_d(t);
  else{@+expr_d(width(t));expr_d(stretch(t));expr_d(shrink(t));
    } @+break;

@ The function |quotient(n, d)| computes the rounded quotient
$q=\lfloor n/d+{1\over2}\rfloor$, when $n$ and $d$ are positive.

@<Declare subprocedures for |scan_expr|@>=
static int quotient(int @!n, int @!d)
{@+bool negative; /*should the answer be negated?*/
int @!a; /*the answer*/
if (d==0) num_error(a)@;
else{@+if (d > 0) negative=false;
  else{@+negate(d);negative=true;
    }
  if (n < 0)
    {@+negate(n);negative=!negative;
    }
  a=n/d;n=n-a*d;d=n-d; /*avoid certain compiler optimizations!*/
  if (d+n >= 0) incr(a);
  if (negative) negate(a);
  }
return a;
}

@ Here the term |t| is multiplied by the quotient $n/f$.

@d expr_s(A) A=fract(A, n, f, max_dimen)

@<Cases for evaluation of the current term@>=
case expr_scale: if (l==int_val) t=fract(t, n, f, infinity);
  else if (l==dimen_val) expr_s(t);
  else{@+expr_s(width(t));expr_s(stretch(t));expr_s(shrink(t));
    }

@ Finally, the function |fract(x, n, d, max_answer)| computes the integer
$q=\lfloor xn/d+{1\over2}\rfloor$, when $x$, $n$, and $d$ are positive
and the result does not exceed |max_answer|.  We can't use floating
point arithmetic since the routine must produce identical results in all
cases; and it would be too dangerous to multiply by~|n| and then divide
by~|d|, in separate operations, since overflow might well occur.  Hence
this subroutine simulates double precision arithmetic, somewhat
analogous to \MF's |make_fraction| and |take_fraction| routines.

@<Declare subprocedures for |scan_expr|@>=
static int fract(int @!x, int @!n, int @!d, int @!max_answer)
{@+
bool negative; /*should the answer be negated?*/
int @!a; /*the answer*/
int @!f; /*a proper fraction*/
int @!h; /*smallest integer such that |2*h >= d|*/
int @!r; /*intermediate remainder*/
int @!t; /*temp variable*/
if (d==0) goto too_big;
a=0;
if (d > 0) negative=false;
else{@+negate(d);negative=true;
  }
if (x < 0)
  {@+negate(x);negative=!negative;
  }
else if (x==0) goto done;
if (n < 0)
  {@+negate(n);negative=!negative;
  }
t=n/d;
if (t > max_answer/x) goto too_big;
a=t*x;n=n-t*d;
if (n==0) goto found;
t=x/d;
if (t > (max_answer-a)/n) goto too_big;
a=a+t*n;x=x-t*d;
if (x==0) goto found;
if (x < n)
  {@+t=x;x=n;n=t;
  }  /*now |0 < n <= x < d|*/
@<Compute \(f)$f=\lfloor xn/d+{1\over2}\rfloor$@>@;
if (f > (max_answer-a)) goto too_big;
a=a+f;
found: if (negative) negate(a);
goto done;
too_big: num_error(a);
done: return a;
}

@ The loop here preserves the following invariant relations
between |f|, |x|, |n|, and~|r|:
(i)~$f+\lfloor(xn+(r+d))/d\rfloor=\lfloor x_0n_0/d+{1\over2}\rfloor$;
(ii)~|-d <= r < 0 < n <= x < d|, where $x_0$, $n_0$ are the original values of~$x$
and $n$.

Notice that the computation specifies |(x-d)+x| instead of |(x+x)-d|,
because the latter could overflow.

@<Compute \(f)$f=\lfloor xn/d+{1\over2}\rfloor$@>=
f=0;r=(d/2)-d;h=-r;
loop@+{@+if (odd(n))
    {@+r=r+x;
    if (r >= 0)
      {@+r=r-d;incr(f);
      }
    }
  n=n/2;
  if (n==0) goto found1;
  if (x < h) x=x+x;
  else{@+t=x-d;x=t+x;f=f+n;
      if (x < n)
        {@+if (x==0) goto found1;
        t=x;x=n;n=t;
        }
    }
  }
found1:

@ The \.{\\gluestretch}, \.{\\glueshrink}, \.{\\gluestretchorder}, and
\.{\\glueshrinkorder} commands return the stretch and shrink components
and their orders of ``infinity'' of a glue specification.

@d glue_stretch_order_code (eTeX_int+6) /*code for \.{\\gluestretchorder}*/
@d glue_shrink_order_code (eTeX_int+7) /*code for \.{\\glueshrinkorder}*/
@d glue_stretch_code (eTeX_dim+7) /*code for \.{\\gluestretch}*/
@d glue_shrink_code (eTeX_dim+8) /*code for \.{\\glueshrink}*/

@<Generate all \eTeX...@>=
primitive("gluestretchorder", last_item, glue_stretch_order_code);
@!@:glue\_stretch\_order\_}{\.{\\gluestretchorder} primitive@>
primitive("glueshrinkorder", last_item, glue_shrink_order_code);
@!@:glue\_shrink\_order\_}{\.{\\glueshrinkorder} primitive@>
primitive("gluestretch", last_item, glue_stretch_code);
@!@:glue\_stretch\_}{\.{\\gluestretch} primitive@>
primitive("glueshrink", last_item, glue_shrink_code);
@!@:glue\_shrink\_}{\.{\\glueshrink} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case glue_stretch_order_code: print_esc("gluestretchorder");@+break;
case glue_shrink_order_code: print_esc("glueshrinkorder");@+break;
case glue_stretch_code: print_esc("gluestretch");@+break;
case glue_shrink_code: print_esc("glueshrink");@+break;

@ @<Cases for fetching an integer value@>=
case glue_stretch_order_code: case glue_shrink_order_code:
  {@+scan_normal_glue();q=cur_val;
  if (m==glue_stretch_order_code) cur_val=stretch_order(q);
  else cur_val=shrink_order(q);
  delete_glue_ref(q);
  }

@ @<Cases for fetching a dimension value@>=
case glue_stretch_code: case glue_shrink_code:
  {@+scan_normal_glue();q=cur_val;
  if (m==glue_stretch_code) cur_val=stretch(q);
  else cur_val=shrink(q);
  delete_glue_ref(q);
  }

@ The \.{\\mutoglue} and \.{\\gluetomu} commands convert ``math'' glue
into normal glue and vice versa; they allow to manipulate math glue with
\.{\\gluestretch} etc.

@d mu_to_glue_code eTeX_glue /*code for \.{\\mutoglue}*/
@d glue_to_mu_code eTeX_mu /*code for \.{\\gluetomu}*/

@<Generate all \eTeX...@>=
primitive("mutoglue", last_item, mu_to_glue_code);
@!@:mu\_to\_glue\_}{\.{\\mutoglue} primitive@>
primitive("gluetomu", last_item, glue_to_mu_code);
@!@:glue\_to\_mu\_}{\.{\\gluetomu} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case mu_to_glue_code: print_esc("mutoglue");@+break;
case glue_to_mu_code: print_esc("gluetomu");@+break;

@ @<Cases for fetching a glue value@>=
case mu_to_glue_code: scan_mu_glue();

@ @<Cases for fetching a mu value@>=
case glue_to_mu_code: scan_normal_glue();

@ \eTeX\ (in extended mode) supports 32768 (i.e., $2^{15}$) count,
dimen, skip, muskip, box, and token registers.  As in \TeX\ the first
256 registers of each kind are realized as arrays in the table of
equivalents; the additional registers are realized as tree structures
built from variable-size nodes with individual registers existing only
when needed.  Default values are used for nonexistent registers:  zero
for count and dimen values, |zero_glue| for glue (skip and muskip)
values, void for boxes, and |null| for token lists (and current marks
discussed below).

Similarly there are 32768 mark classes; the command \.{\\marks}|n|
creates a mark node for a given mark class |0 <= n <= 32767| (where
\.{\\marks0} is synonymous to \.{\\mark}).  The page builder (actually
the |fire_up| routine) and the |vsplit| routine maintain the current
values of |top_mark|, |first_mark|, |bot_mark|, |split_first_mark|, and
|split_bot_mark| for each mark class.  They are accessed as
\.{\\topmarks}|n| etc., and \.{\\topmarks0} is again synonymous to
\.{\\topmark}.  As in \TeX\ the five current marks for mark class zero
are realized as |cur_mark| array.  The additional current marks are
again realized as tree structure with individual mark classes existing
only when needed.

@<Generate all \eTeX...@>=
primitive("marks", mark, marks_code);
@!@:marks\_}{\.{\\marks} primitive@>
primitive("topmarks", top_bot_mark, top_mark_code+marks_code);
@!@:top\_marks\_}{\.{\\topmarks} primitive@>
primitive("firstmarks", top_bot_mark, first_mark_code+marks_code);
@!@:first\_marks\_}{\.{\\firstmarks} primitive@>
primitive("botmarks", top_bot_mark, bot_mark_code+marks_code);
@!@:bot\_marks\_}{\.{\\botmarks} primitive@>
primitive("splitfirstmarks", top_bot_mark, split_first_mark_code+marks_code);
@!@:split\_first\_marks\_}{\.{\\splitfirstmarks} primitive@>
primitive("splitbotmarks", top_bot_mark, split_bot_mark_code+marks_code);
@!@:split\_bot\_marks\_}{\.{\\splitbotmarks} primitive@>

@ The |scan_register_num| procedure scans a register number that must
not exceed 255 in compatibility mode resp.\ 32767 in extended mode.

@<Declare \eTeX\ procedures for ex...@>=
static void scan_register_num(void);

@ @<Declare procedures that scan restricted classes of integers@>=
static void scan_register_num(void)
{@+scan_int();
if ((cur_val < 0)||(cur_val > max_reg_num))
  {@+print_err("Bad register code");
@.Bad register code@>
  help2(max_reg_help_line,"I changed this one to zero.");
  int_error(cur_val);cur_val=0;
  }
}

@ @<Initialize variables for \eTeX\ comp...@>=
max_reg_num=255;
max_reg_help_line="A register number must be between 0 and 255.";

@ @<Initialize variables for \eTeX\ ext...@>=
max_reg_num=32767;
max_reg_help_line="A register number must be between 0 and 32767.";

@ @<Glob...@>=
static halfword @!max_reg_num; /*largest allowed register number*/
static char *@!max_reg_help_line; /*first line of help message*/

@ There are seven almost identical doubly linked trees, one for the
sparse array of the up to 32512 additional registers of each kind and
one for the sparse array of the up to 32767 additional mark classes.
The root of each such tree, if it exists, is an index node containing 16
pointers to subtrees for 4096 consecutive array elements.  Similar index
nodes are the starting points for all nonempty subtrees for 4096, 256,
and 16 consecutive array elements.  These four levels of index nodes are
followed by a fifth level with nodes for the individual array elements.

Each index node is nine words long.  The pointers to the 16 possible
subtrees or are kept in the |info| and |link| fields of the last eight
words.  (It would be both elegant and efficient to declare them as
array, unfortunately \PASCAL\ doesn't allow this.)

The fields in the first word of each index node and in the nodes for the
array elements are closely related.  The |link| field points to the next
lower index node and the |sa_index| field contains four bits (one
hexadecimal digit) of the register number or mark class.  For the lowest
index node the |link| field is |null| and the |sa_index| field indicates
the type of quantity (|int_val|, |dimen_val|, |glue_val|, |mu_val|,
|box_val|, |tok_val|, or |mark_val|).  The |sa_used| field in the index
nodes counts how many of the 16 pointers are non-null.

The |sa_index| field in the nodes for array elements contains the four
bits plus 16 times the type.  Therefore such a node represents a count
or dimen register if and only if |sa_index < dimen_val_limit|; it
represents a skip or muskip register if and only if
|dimen_val_limit <= sa_index < mu_val_limit|; it represents a box register
if and only if |mu_val_limit <= sa_index < box_val_limit|; it represents a
token list register if and only if
|box_val_limit <= sa_index < tok_val_limit|; finally it represents a mark
class if and only if |tok_val_limit <= sa_index|.

The |new_index| procedure creates an index node (returned in |cur_ptr|)
having given contents of the |sa_index| and |link| fields.

@d box_val 4 /*the additional box registers*/
@d mark_val 6 /*the additional mark classes*/
@#
@d dimen_val_limit 0x20 /*$2^4\cdot(|dimen_val|+1)$*/
@d mu_val_limit 0x40 /*$2^4\cdot(|mu_val|+1)$*/
@d box_val_limit 0x50 /*$2^4\cdot(|box_val|+1)$*/
@d tok_val_limit 0x60 /*$2^4\cdot(|tok_val|+1)$*/
@#
@d index_node_size 9 /*size of an index node*/
@d sa_index(A) type(A) /*a four-bit address or a type or both*/
@d sa_used(A) subtype(A) /*count of non-null pointers*/

@<Declare \eTeX\ procedures for ex...@>=
static void new_index(quarterword @!i, pointer @!q)
{@+int k; /*loop index*/
cur_ptr=get_node(index_node_size);sa_index(cur_ptr)=i;
sa_used(cur_ptr)=0;link(cur_ptr)=q;
for (k=1; k<=index_node_size-1; k++)  /*clear all 16 pointers*/
  mem[cur_ptr+k]=sa_null;
}

@ The roots of the seven trees for the additional registers and mark
classes are kept in the |sa_root| array.  The first six locations must
be dumped and undumped; the last one is also known as |sa_mark|.

@d sa_mark sa_root[mark_val] /*root for mark classes*/

@<Glob...@>=
static pointer @!sa_root0[mark_val-int_val+1],
  *const @!sa_root = @!sa_root0-int_val; /*roots of sparse arrays*/
static pointer @!cur_ptr; /*value returned by |new_index| and |find_sa_element|*/
static memory_word @!sa_null; /*two |null| pointers*/

@ @<Set init...@>=
sa_mark=null;sa_null.hh.lh=null;sa_null.hh.rh=null;

@ @<Initialize table...@>=
for (i=int_val; i<=tok_val; i++) sa_root[i]=null;

@ Given a type |t| and a sixteen-bit number |n|, the |find_sa_element|
procedure returns (in |cur_ptr|) a pointer to the node for the
corresponding array element, or |null| when no such element exists.  The
third parameter |w| is set |true| if the element must exist, e.g.,
because it is about to be modified.  The procedure has two main
branches:  one follows the existing tree structure, the other (only used
when |w| is |true|) creates the missing nodes.

We use macros to extract the four-bit pieces from a sixteen-bit register
number or mark class and to fetch or store one of the 16 pointers from
an index node.

@d if_cur_ptr_is_null_then_return_or_goto(A)  /*some tree element is missing*/
  {@+if (cur_ptr==null)
    if (w) goto A;@+else return;
  }
@#
@d hex_dig1(A) A/4096 /*the fourth lowest hexadecimal digit*/
@d hex_dig2(A) (A/256)%16 /*the third lowest hexadecimal digit*/
@d hex_dig3(A) (A/16)%16 /*the second lowest hexadecimal digit*/
@d hex_dig4(A) A%16 /*the lowest hexadecimal digit*/
@#
@d get_sa_ptr if (odd(i)) cur_ptr=link(q+(i/2)+1);
  else cur_ptr=info(q+(i/2)+1)
     /*set |cur_ptr| to the pointer indexed by |i| from index node |q|*/
@d put_sa_ptr(A) if (odd(i)) link(q+(i/2)+1)=A;
  else info(q+(i/2)+1)=A
     /*store the pointer indexed by |i| in index node |q|*/
@d add_sa_ptr {@+put_sa_ptr(cur_ptr);incr(sa_used(q));
  }  /*add |cur_ptr| as the pointer indexed by |i| in index node |q|*/
@d delete_sa_ptr {@+put_sa_ptr(null);decr(sa_used(q));
  }  /*delete the pointer indexed by |i| in index node |q|*/

@<Declare \eTeX\ procedures for ex...@>=
static void find_sa_element(small_number @!t, halfword @!n, bool @!w)
   /*sets |cur_val| to sparse array element location or |null|*/
{@+
pointer q; /*for list manipulations*/
small_number @!i; /*a four bit index*/
cur_ptr=sa_root[t];
if_cur_ptr_is_null_then_return_or_goto(not_found);@/
q=cur_ptr;i=hex_dig1(n);get_sa_ptr;
if_cur_ptr_is_null_then_return_or_goto(not_found1);@/
q=cur_ptr;i=hex_dig2(n);get_sa_ptr;
if_cur_ptr_is_null_then_return_or_goto(not_found2);@/
q=cur_ptr;i=hex_dig3(n);get_sa_ptr;
if_cur_ptr_is_null_then_return_or_goto(not_found3);@/
q=cur_ptr;i=hex_dig4(n);get_sa_ptr;
if ((cur_ptr==null)&&w) goto not_found4;
return;
not_found: new_index(t, null); /*create first level index node*/
sa_root[t]=cur_ptr;q=cur_ptr;i=hex_dig1(n);
not_found1: new_index(i, q); /*create second level index node*/
add_sa_ptr;q=cur_ptr;i=hex_dig2(n);
not_found2: new_index(i, q); /*create third level index node*/
add_sa_ptr;q=cur_ptr;i=hex_dig3(n);
not_found3: new_index(i, q); /*create fourth level index node*/
add_sa_ptr;q=cur_ptr;i=hex_dig4(n);
not_found4: @<Create a new array element of type |t| with index |i|@>;
link(cur_ptr)=q;add_sa_ptr;
}

@ The array elements for registers are subject to grouping and have an
|sa_lev| field (quite analogous to |eq_level|) instead of |sa_used|.
Since saved values as well as shorthand definitions (created by e.g.,
\.{\\countdef}) refer to the location of the respective array element,
we need a reference count that is kept in the |sa_ref| field.  An array
element can be deleted (together with all references to it) when its
|sa_ref| value is |null| and its value is the default value.
@^reference counts@>

Skip, muskip, box, and token registers use two word nodes, their values
are stored in the |sa_ptr| field.
Count and dimen registers use three word nodes, their
values are stored in the |sa_int| resp.\ |sa_dim| field in the third
word; the |sa_ptr| field is used under the name |sa_num| to store
the register number.  Mark classes use four word nodes.  The last three
words contain the five types of current marks

@d sa_lev sa_used /*grouping level for the current value*/
@d pointer_node_size 2 /*size of an element with a pointer value*/
@d sa_type(A) (sa_index(A)/16) /*type part of combined type/index*/
@d sa_ref(A) info(A+1) /*reference count of a sparse array element*/
@d sa_ptr(A) link(A+1) /*a pointer value*/
@#
@d word_node_size 3 /*size of an element with a word value*/
@d sa_num(A) sa_ptr(A) /*the register number*/
@d sa_int(A) mem[A+2].i /*an integer*/
@d sa_dim(A) mem[A+2].sc /*a dimension (a somewhat esotheric distinction)*/
@#
@d mark_class_node_size 4 /*size of an element for a mark class*/
@#
@d fetch_box(A)  /*fetch |box(cur_val)|*/
  if (cur_val < 256) A=box(cur_val);
  else{@+find_sa_element(box_val, cur_val, false);
    if (cur_ptr==null) A=null;@+else A=sa_ptr(cur_ptr);
    }

@<Create a new array element...@>=
if (t==mark_val)  /*a mark class*/
  {@+cur_ptr=get_node(mark_class_node_size);
  mem[cur_ptr+1]=sa_null;mem[cur_ptr+2]=sa_null;mem[cur_ptr+3]=sa_null;
  }
else{@+if (t <= dimen_val)  /*a count or dimen register*/
    {@+cur_ptr=get_node(word_node_size);sa_int(cur_ptr)=0;
    sa_num(cur_ptr)=n;
    }
  else{@+cur_ptr=get_node(pointer_node_size);
    if (t <= mu_val)  /*a skip or muskip register*/
      {@+sa_ptr(cur_ptr)=zero_glue;add_glue_ref(zero_glue);
      }
    else sa_ptr(cur_ptr)=null; /*a box or token list register*/
    }
  sa_ref(cur_ptr)=null; /*all registers have a reference count*/
  }
sa_index(cur_ptr)=16*t+i;sa_lev(cur_ptr)=level_one

@ The |delete_sa_ref| procedure is called when a pointer to an array
element representing a register is being removed; this means that the
reference count should be decreased by one.  If the reduced reference
count is |null| and the register has been (globally) assigned its
default value the array element should disappear, possibly together with
some index nodes.  This procedure will never be used for mark class
nodes.
@^reference counts@>

@d add_sa_ref(A) incr(sa_ref(A)) /*increase reference count*/
@#
@d change_box(A)  /*change |box(cur_val)|, the |eq_level| stays the same*/
  if (cur_val < 256) box(cur_val)=A;@+else set_sa_box(A)
@#
@d set_sa_box(X) {@+find_sa_element(box_val, cur_val, false);
  if (cur_ptr!=null)
    {@+sa_ptr(cur_ptr)=X;add_sa_ref(cur_ptr);delete_sa_ref(cur_ptr);
    }
  }

@<Declare \eTeX\ procedures for tr...@>=
static void delete_sa_ref(pointer @!q) /*reduce reference count*/
{@+
pointer p; /*for list manipulations*/
small_number @!i; /*a four bit index*/
small_number @!s; /*size of a node*/
decr(sa_ref(q));
if (sa_ref(q)!=null) return;
if (sa_index(q) < dimen_val_limit)
 if (sa_int(q)==0) s=word_node_size;
 else return;
else{@+if (sa_index(q) < mu_val_limit)
    if (sa_ptr(q)==zero_glue) delete_glue_ref(zero_glue);
    else return;
  else if (sa_ptr(q)!=null) return;
  s=pointer_node_size;
  }
@/do@+{i=hex_dig4(sa_index(q));p=q;q=link(p);free_node(p, s);
if (q==null)  /*the whole tree has been freed*/
  {@+sa_root[i]=null;return;
  }
delete_sa_ptr;s=index_node_size; /*node |q| is an index node*/
}@+ while (!(sa_used(q) > 0));
}

@ The |print_sa_num| procedure prints the register number corresponding
to an array element.

@<Basic print...@>=
static void print_sa_num(pointer @!q) /*print register number*/
{@+halfword @!n; /*the register number*/
if (sa_index(q) < dimen_val_limit) n=sa_num(q); /*the easy case*/
else{@+n=hex_dig4(sa_index(q));q=link(q);n=n+16*sa_index(q);
  q=link(q);n=n+256*(sa_index(q)+16*sa_index(link(q)));
  }
print_int(n);
}

@ Here is a procedure that displays the contents of an array element
symbolically.  It is used under similar circumstances as is
|restore_trace| (together with |show_eqtb|) for the quantities kept in
the |eqtb| array.

@<Declare \eTeX\ procedures for tr...@>=
#ifdef @!STAT
static void show_sa(pointer @!p, char *@!s)
{@+small_number t; /*the type of element*/
begin_diagnostic();print_char('{');print(s);print_char(' ');
if (p==null) print_char('?'); /*this can't happen*/
else{@+t=sa_type(p);
  if (t < box_val) print_cmd_chr(internal_register, p);
  else if (t==box_val)
    {@+print_esc("box");print_sa_num(p);
    }
  else if (t==tok_val) print_cmd_chr(toks_register, p);
  else print_char('?'); /*this can't happen either*/
  print_char('=');
  if (t==int_val) print_int(sa_int(p));
  else if (t==dimen_val)
    {@+print_scaled(sa_dim(p));print("pt");
    }
  else{@+p=sa_ptr(p);
    if (t==glue_val) print_spec(p,"pt");
    else if (t==mu_val) print_spec(p,"mu");
    else if (t==box_val)
      if (p==null) print("void");
      else{@+depth_threshold=0;breadth_max=1;show_node_list(p);
        }
    else if (t==tok_val)
      {@+if (p!=null) show_token_list(link(p), null, 32);
      }
    else print_char('?'); /*this can't happen either*/
    }
  }
print_char('}');end_diagnostic(false);
}
#endif

@ Here we compute the pointer to the current mark of type |t| and mark
class |cur_val|.

@<Compute the mark pointer...@>=
{@+find_sa_element(mark_val, cur_val, false);
if (cur_ptr!=null)
  if (odd(t)) cur_ptr=link(cur_ptr+(t/2)+1);
  else cur_ptr=info(cur_ptr+(t/2)+1);
}

@ The current marks for all mark classes are maintained by the |vsplit|
and |fire_up| routines and are finally destroyed (for \.{INITEX} only)
@.INITEX@>
by the |final_cleanup| routine.  Apart from updating the current marks
when mark nodes are encountered, these routines perform certain actions
on all existing mark classes.  The recursive |do_marks| procedure walks
through the whole tree or a subtree of existing mark class nodes and
preforms certain actions indicted by its first parameter |a|, the action
code.  The second parameter |l| indicates the level of recursion (at
most four); the third parameter points to a nonempty tree or subtree.
The result is |true| if the complete tree or subtree has been deleted.

@d vsplit_init 0 /*action code for |vsplit| initialization*/
@d fire_up_init 1 /*action code for |fire_up| initialization*/
@d fire_up_done 2 /*action code for |fire_up| completion*/
@d destroy_marks 3 /*action code for |final_cleanup|*/
@#
@d sa_top_mark(A) info(A+1) /*\.{\\topmarks}|n|*/
@d sa_first_mark(A) link(A+1) /*\.{\\firstmarks}|n|*/
@d sa_bot_mark(A) info(A+2) /*\.{\\botmarks}|n|*/
@d sa_split_first_mark(A) link(A+2) /*\.{\\splitfirstmarks}|n|*/
@d sa_split_bot_mark(A) info(A+3) /*\.{\\splitbotmarks}|n|*/

@<Declare the function called |do_marks|@>=
static bool do_marks(small_number @!a, small_number @!l, pointer @!q)
{@+int i; /*a four bit index*/
if (l < 4)  /*|q| is an index node*/
  {@+for (i=0; i<=15; i++)
    {@+get_sa_ptr;
    if (cur_ptr!=null) if (do_marks(a, l+1, cur_ptr)) delete_sa_ptr;
    }
  if (sa_used(q)==0)
    {@+free_node(q, index_node_size);q=null;
    }
  }
else /*|q| is the node for a mark class*/
  {@+switch (a) {
  @<Cases for |do_marks|@>@;
  }  /*there are no other cases*/
  if (sa_bot_mark(q)==null) if (sa_split_bot_mark(q)==null)
    {@+free_node(q, mark_class_node_size);q=null;
    }
  }
return(q==null);
}

@ At the start of the |vsplit| routine the existing |split_fist_mark|
and |split_bot_mark| are discarded.

@<Cases for |do_marks|@>=
case vsplit_init: if (sa_split_first_mark(q)!=null)
  {@+delete_token_ref(sa_split_first_mark(q));sa_split_first_mark(q)=null;
  delete_token_ref(sa_split_bot_mark(q));sa_split_bot_mark(q)=null;
  } @+break;

@ We use again the fact that |split_first_mark==null| if and only if
|split_bot_mark==null|.

@<Update the current marks for |vsplit|@>=
{@+find_sa_element(mark_val, mark_class(p), true);
if (sa_split_first_mark(cur_ptr)==null)
  {@+sa_split_first_mark(cur_ptr)=mark_ptr(p);
  add_token_ref(mark_ptr(p));
  }
else delete_token_ref(sa_split_bot_mark(cur_ptr));
sa_split_bot_mark(cur_ptr)=mark_ptr(p);
add_token_ref(mark_ptr(p));
}

@ At the start of the |fire_up| routine the old |top_mark| and
|first_mark| are discarded, whereas the old |bot_mark| becomes the new
|top_mark|.  An empty new |top_mark| token list is, however, discarded
as well in order that mark class nodes can eventually be released.  We
use again the fact that |bot_mark!=null| implies |first_mark!=null|; it
also knows that |bot_mark==null| implies |top_mark==first_mark==null|.

@<Cases for |do_marks|@>=
case fire_up_init: if (sa_bot_mark(q)!=null)
  {@+if (sa_top_mark(q)!=null) delete_token_ref(sa_top_mark(q));
  delete_token_ref(sa_first_mark(q));sa_first_mark(q)=null;
  if (link(sa_bot_mark(q))==null)  /*an empty token list*/
    {@+delete_token_ref(sa_bot_mark(q));sa_bot_mark(q)=null;
    }
  else add_token_ref(sa_bot_mark(q));
  sa_top_mark(q)=sa_bot_mark(q);
  } @+break;

@ @<Cases for |do_marks|@>=
case fire_up_done: if ((sa_top_mark(q)!=null)&&(sa_first_mark(q)==null))
  {@+sa_first_mark(q)=sa_top_mark(q);add_token_ref(sa_top_mark(q));
  } @+break;

@ @<Update the current marks for |fire_up|@>=
{@+find_sa_element(mark_val, mark_class(p), true);
if (sa_first_mark(cur_ptr)==null)
  {@+sa_first_mark(cur_ptr)=mark_ptr(p);
  add_token_ref(mark_ptr(p));
  }
if (sa_bot_mark(cur_ptr)!=null) delete_token_ref(sa_bot_mark(cur_ptr));
sa_bot_mark(cur_ptr)=mark_ptr(p);add_token_ref(mark_ptr(p));
}

@ Here we use the fact that the five current mark pointers in a mark
class node occupy the same locations as the the first five pointers of
an index node.  For systems using a run-time switch to distinguish
between \.{VIRTEX} and \.{INITEX}, the codewords `$|@t\#\&{ifdef} \.{INIT}@>|\ldots|@t\#\&{endif}@>|$'
surrounding the following piece of code should be removed.
@.INITEX@>
@^system dependencies@>

@<Cases for |do_marks|@>=
#ifdef @!INIT
case destroy_marks: for (i=top_mark_code; i<=split_bot_mark_code; i++)
  {@+get_sa_ptr;
  if (cur_ptr!=null)
    {@+delete_token_ref(cur_ptr);put_sa_ptr(null);
    }
  }
#endif

@ The command code |internal_register| is used for `\.{\\count}', `\.{\\dimen}',
etc., as well as for references to sparse array elements defined by
`\.{\\countdef}', etc.

@<Cases of |register| for |print_cmd_chr|@>=
{@+if ((chr_code < mem_bot)||(chr_code > lo_mem_stat_max))
  cmd=sa_type(chr_code);
else{@+cmd=chr_code-mem_bot;chr_code=null;
  }
if (cmd==int_val) print_esc("count");
else if (cmd==dimen_val) print_esc("dimen");
else if (cmd==glue_val) print_esc("skip");
else print_esc("muskip");
if (chr_code!=null) print_sa_num(chr_code);
}

@ Similarly the command code |toks_register| is used for `\.{\\toks}' as
well as for references to sparse array elements defined by
`\.{\\toksdef}'.

@<Cases of |toks_register| for |print_cmd_chr|@>=
{@+print_esc("toks");
if (chr_code!=mem_bot) print_sa_num(chr_code);
}

@ When a shorthand definition for an element of one of the sparse arrays
is destroyed, we must reduce the reference count.

@<Cases for |eq_destroy|@>=
case toks_register: case internal_register:
  if ((equiv_field(w) < mem_bot)||(equiv_field(w) > lo_mem_stat_max))
    delete_sa_ref(equiv_field(w));@+break;

@ The task to maintain (change, save, and restore) register values is
essentially the same when the register is realized as sparse array
element or entry in |eqtb|.  The global variable |sa_chain| is the head
of a linked list of entries saved at the topmost level |sa_level|; the
lists for lowel levels are kept in special save stack entries.

@<Glob...@>=
static pointer @!sa_chain; /*chain of saved sparse array entries*/
static quarterword @!sa_level; /*group level for |sa_chain|*/

@ @<Set init...@>=
sa_chain=null;sa_level=level_zero;

@ The individual saved items are kept in pointer or word nodes similar
to those used for the array elements: a word node with value zero is,
however, saved as pointer node with the otherwise impossible |sa_index|
value |tok_val_limit|.

@d sa_loc(A) sa_ref(A) /*location of saved item*/

@<Declare \eTeX\ procedures for tr...@>=
static void sa_save(pointer @!p) /*saves value of |p|*/
{@+pointer q; /*the new save node*/
quarterword @!i; /*index field of node*/
if (cur_level!=sa_level)
  {@+check_full_save_stack;save_type(save_ptr)=restore_sa;
  save_level(save_ptr)=sa_level;save_index(save_ptr)=sa_chain;
  incr(save_ptr);sa_chain=null;sa_level=cur_level;
  }
i=sa_index(p);
if (i < dimen_val_limit)
  {@+if (sa_int(p)==0)
    {@+q=get_node(pointer_node_size);i=tok_val_limit;
    }
  else{@+q=get_node(word_node_size);sa_int(q)=sa_int(p);
    }
  sa_ptr(q)=null;
  }
else{@+q=get_node(pointer_node_size);sa_ptr(q)=sa_ptr(p);
  }
sa_loc(q)=p;sa_index(q)=i;sa_lev(q)=sa_lev(p);
link(q)=sa_chain;sa_chain=q;add_sa_ref(p);
}

@ @<Declare \eTeX\ procedures for tr...@>=
static void sa_destroy(pointer @!p) /*destroy value of |p|*/
{@+if (sa_index(p) < mu_val_limit) delete_glue_ref(sa_ptr(p));
else if (sa_ptr(p)!=null)
  if (sa_index(p) < box_val_limit) flush_node_list(sa_ptr(p));
  else delete_token_ref(sa_ptr(p));
}

@ The procedure |sa_def| assigns a new value to sparse array elements,
and saves the former value if appropriate.  This procedure is used only
for skip, muskip, box, and token list registers.  The counterpart of
|sa_def| for count and dimen registers is called |sa_w_def|.

@d sa_define(A, B, C, D, E) if (e)
    if (global) gsa_def(A, B);@+else sa_def(A, B);
  else if (global) geq_define(C, D, E);@+else eq_define(C, D, E)
@#
@d sa_def_box  /*assign |cur_box| to |box(cur_val)|*/
  {@+find_sa_element(box_val, cur_val, true);
  if (global) gsa_def(cur_ptr, cur_box);@+else sa_def(cur_ptr, cur_box);
  }
@#
@d sa_word_define(A, B) if (e)
    if (global) gsa_w_def(A, B);@+else sa_w_def(A, B);
  else word_define(A, B)

@<Declare \eTeX\ procedures for tr...@>=
static void sa_def(pointer @!p, halfword @!e)
   /*new data for sparse array elements*/
{@+add_sa_ref(p);
if (sa_ptr(p)==e)
  {
#ifdef @!STAT
if (tracing_assigns > 0) show_sa(p,"reassigning");
#endif
@;@/
  sa_destroy(p);
  }
else{
#ifdef @!STAT
if (tracing_assigns > 0) show_sa(p,"changing");
#endif
@;@/
  if (sa_lev(p)==cur_level) sa_destroy(p);@+else sa_save(p);
  sa_lev(p)=cur_level;sa_ptr(p)=e;
#ifdef @!STAT
  if (tracing_assigns > 0) show_sa(p,"into");
#endif
@;@/
  }
delete_sa_ref(p);
}
@#
static void sa_w_def(pointer @!p, int @!w)
{@+add_sa_ref(p);
if (sa_int(p)==w)
  {
#ifdef @!STAT
if (tracing_assigns > 0) show_sa(p,"reassigning");
#endif
@;@/
  }
else{
#ifdef @!STAT
if (tracing_assigns > 0) show_sa(p,"changing");
#endif
@;@/
  if (sa_lev(p)!=cur_level) sa_save(p);
  sa_lev(p)=cur_level;sa_int(p)=w;
#ifdef @!STAT
  if (tracing_assigns > 0) show_sa(p,"into");
#endif
@;@/
  }
delete_sa_ref(p);
}

@ The |sa_def| and |sa_w_def| routines take care of local definitions.
@^global definitions@>
Global definitions are done in almost the same way, but there is no need
to save old values, and the new value is associated with |level_one|.

@<Declare \eTeX\ procedures for tr...@>=
static void gsa_def(pointer @!p, halfword @!e) /*global |sa_def|*/
{@+add_sa_ref(p);
#ifdef @!STAT
if (tracing_assigns > 0) show_sa(p,"globally changing");
#endif
@;@/
sa_destroy(p);sa_lev(p)=level_one;sa_ptr(p)=e;
#ifdef @!STAT
if (tracing_assigns > 0) show_sa(p,"into");
#endif
@;@/
delete_sa_ref(p);
}
@#
static void gsa_w_def(pointer @!p, int @!w) /*global |sa_w_def|*/
{@+add_sa_ref(p);
#ifdef @!STAT
if (tracing_assigns > 0) show_sa(p,"globally changing");
#endif
@;@/
sa_lev(p)=level_one;sa_int(p)=w;
#ifdef @!STAT
if (tracing_assigns > 0) show_sa(p,"into");
#endif
@;@/
delete_sa_ref(p);
}

@ The |sa_restore| procedure restores the sparse array entries pointed
at by |sa_chain|

@<Declare \eTeX\ procedures for tr...@>=
static void sa_restore(void)
{@+pointer p; /*sparse array element*/
@/do@+{p=sa_loc(sa_chain);
if (sa_lev(p)==level_one)
  {@+if (sa_index(p) >= dimen_val_limit) sa_destroy(sa_chain);
#ifdef @!STAT
  if (tracing_restores > 0) show_sa(p,"retaining");
#endif
@;@/
  }
else{@+if (sa_index(p) < dimen_val_limit)
    if (sa_index(sa_chain) < dimen_val_limit) sa_int(p)=sa_int(sa_chain);
    else sa_int(p)=0;
  else{@+sa_destroy(p);sa_ptr(p)=sa_ptr(sa_chain);
    }
  sa_lev(p)=sa_lev(sa_chain);
#ifdef @!STAT
  if (tracing_restores > 0) show_sa(p,"restoring");
#endif
@;@/
  }
delete_sa_ref(p);
p=sa_chain;sa_chain=link(p);
if (sa_index(p) < dimen_val_limit) free_node(p, word_node_size);
else free_node(p, pointer_node_size);
}@+ while (!(sa_chain==null));
}

@ When reading \.{\\patterns} while \.{\\savinghyphcodes} is positive
the current |lc_code| values are stored together with the hyphenation
patterns for the current language.  They will later be used instead of
the |lc_code| values for hyphenation purposes.

The |lc_code| values are stored in the linked trie analogous to patterns
$p_1$ of length~1, with |hyph_root==trie_r[0]| replacing |trie_root| and
|lc_code(p_1)| replacing the |trie_op| code.  This allows to compress
and pack them together with the patterns with minimal changes to the
existing code.

@d hyph_root trie_r[0] /*root of the linked trie for |hyph_codes|*/

@<Initialize table entries...@>=
hyph_root=0;hyph_start=0;

@ @<Store hyphenation codes for current language@>=
{@+c=cur_lang;first_child=false;p=0;
@/do@+{q=p;p=trie_r[q];
}@+ while (!((p==0)||(c <= so(trie_c[p]))));
if ((p==0)||(c < so(trie_c[p])))
  @<Insert a new trie node between |q| and |p|, and make |p| point to it@>;
q=p; /*now node |q| represents |cur_lang|*/
@<Store all current |lc_code| values@>;
}

@ We store all nonzero |lc_code| values, overwriting any previously
stored values (and possibly wasting a few trie nodes that were used
previously and are not needed now).  We always store at least one
|lc_code| value such that |hyph_index| (defined below) will not be zero.

@<Store all current |lc_code| values@>=
p=trie_l[q];first_child=true;
for (c=0; c<=255; c++)
  if ((lc_code(c) > 0)||((c==255)&&first_child))
    {@+if (p==0)
      @<Insert a new trie node between |q| and |p|, and make |p| point to
it@>@;
    else trie_c[p]=si(c);
    trie_o[p]=qi(lc_code(c));
    q=p;p=trie_r[q];first_child=false;
    }
if (first_child) trie_l[q]=0;@+else trie_r[q]=0

@ We must avoid to ``take'' location~1, in order to distinguish between
|lc_code| values and patterns.

@<Pack all stored |hyph_codes|@>=
{@+if (trie_root==0) for (p=0; p<=255; p++) trie_min[p]=p+2;
first_fit(hyph_root);trie_pack(hyph_root);
hyph_start=trie_ref[hyph_root];
}

@ The global variable |hyph_index| will point to the hyphenation codes
for the current language.

@d set_hyph_index  /*set |hyph_index| for current language*/
  if (trie_char(hyph_start+cur_lang)!=qi(cur_lang)
    ) hyph_index=0; /*no hyphenation codes for |cur_lang|*/
  else hyph_index=trie_link(hyph_start+cur_lang)
@#
@d set_lc_code(A)  /*set |hc[0]| to hyphenation or lc code for |A|*/
  if (hyph_index==0) hc[0]=lc_code(A);
  else if (trie_char(hyph_index+A)!=qi(A)) hc[0]=0;
  else hc[0]=qo(trie_op(hyph_index+A))

@<Glob...@>=
static trie_pointer @!hyph_start; /*root of the packed trie for |hyph_codes|*/
static trie_pointer @!hyph_index; /*pointer to hyphenation codes for |cur_lang|*/

@ When |saving_vdiscards| is positive then the glue, kern, and penalty
nodes removed by the page builder or by \.{\\vsplit} from the top of a
vertical list are saved in special lists instead of being discarded.

@d tail_page_disc disc_ptr[copy_code] /*last item removed by page builder*/
@d page_disc disc_ptr[last_box_code] /*first item removed by page builder*/
@d split_disc disc_ptr[vsplit_code] /*first item removed by \.{\\vsplit}*/

@<Glob...@>=
static pointer @!disc_ptr0[vsplit_code-copy_code+1],
  *const @!disc_ptr = @!disc_ptr0-copy_code; /*list pointers*/

@ @<Set init...@>=
page_disc=null;split_disc=null;

@ The \.{\\pagediscards} and \.{\\splitdiscards} commands share the
command code |un_vbox| with \.{\\unvbox} and \.{\\unvcopy}, they are
distinguished by their |chr_code| values |last_box_code| and
|vsplit_code|.  These |chr_code| values are larger than |box_code| and
|copy_code|.

@<Generate all \eTeX...@>=
primitive("pagediscards", un_vbox, last_box_code);@/
@!@:page\_discards\_}{\.{\\pagediscards} primitive@>
primitive("splitdiscards", un_vbox, vsplit_code);@/
@!@:split\_discards\_}{\.{\\splitdiscards} primitive@>

@ @<Cases of |un_vbox| for |print_cmd_chr|@>=;
else if (chr_code==last_box_code) print_esc("pagediscards");
else if (chr_code==vsplit_code) print_esc("splitdiscards")

@ @<Handle saved items and |goto done|@>=
{@+link(tail)=disc_ptr[cur_chr];disc_ptr[cur_chr]=null;
goto done;
}

@ The \.{\\interlinepenalties}, \.{\\clubpenalties}, \.{\\widowpenalties},
and \.{\\displaywidowpenalties} commands allow to define arrays of
penalty values to be used instead of the corresponding single values.

@d inter_line_penalties_ptr equiv(inter_line_penalties_loc)
@<Generate all \eTeX...@>=
primitive("interlinepenalties", set_shape, inter_line_penalties_loc);@/
@!@:inter\_line\_penalties\_}{\.{\\interlinepenalties} primitive@>
primitive("clubpenalties", set_shape, club_penalties_loc);@/
@!@:club\_penalties\_}{\.{\\clubpenalties} primitive@>
primitive("widowpenalties", set_shape, widow_penalties_loc);@/
@!@:widow\_penalties\_}{\.{\\widowpenalties} primitive@>
primitive("displaywidowpenalties", set_shape, display_widow_penalties_loc);@/
@!@:display\_widow\_penalties\_}{\.{\\displaywidowpenalties} primitive@>

@ @<Cases of |set_shape| for |print_cmd_chr|@>=
case inter_line_penalties_loc: print_esc("interlinepenalties");@+break;
case club_penalties_loc: print_esc("clubpenalties");@+break;
case widow_penalties_loc: print_esc("widowpenalties");@+break;
case display_widow_penalties_loc: print_esc("displaywidowpenalties");

@ @<Fetch a penalties array element@>=
{@+scan_int();
if ((equiv(m)==null)||(cur_val < 0)) cur_val=0;
else{@+if (cur_val > penalty(equiv(m))) cur_val=penalty(equiv(m));
  cur_val=penalty(equiv(m)+cur_val);
  }
}

@ |expand_depth| and |expand_depth_count| are used in the \eTeX\ code
above, but not defined. So we correct this in the following modules,
|expand_depth| having been defined by us as an integer paramater (hence
there is a new primitive to create in \eTeX\ mode), and
|expand_depth_count| needing to be a global. Both have to be defined to
some sensible value.

@<Glob...@>=
static int @!expand_depth_count; /*current expansion depth*/

@ @<Generate all \eTeX...@>=
primitive("expanddepth", assign_int, int_base+expand_depth_code);@/
@!@:expand\_depth\_}{\.{\\expanddepth} primitive@>

@ @<Cases for |print_param|@>=
case expand_depth_code: print_esc("expanddepth");@+break;

@ @<Initialize variables for \eTeX\ extended mode@>=
expand_depth=10000; /*value taken for compatibility with Web2C*/
expand_depth_count=0;

@* The extended features of \Prote.
\Prote\ extends furthermore \eTeX\ i.e. \eTeX\ is thus required
before adding \Prote\ own extensions. But if \eTeX\ mode has not
be enabled, the engine is still compatible with \TeX with no added
primitive commands and with a modification of code---from
\eTeX\ exclusively for now---that is sufficiently minor so that
the engine still deserves the name \TeX.

@d Prote_ex (Prote_mode==1) /*is this prote mode?*/

@<Glob...@>=
static int @!Prote_mode; /*to be or not to be; but an int to dump*/

@ We begin in \TeX\ compatibility mode. The state |Prote_mode| will be
set to $1$ only if activated by the supplementary `*' added to the one
activating the \eTeX\ extensions (in fact, this means for the user two
initial `*' in a row).

@<Initialize table entries...@>=
Prote_mode=0; /*initially we are in compatibility mode*/

@ @<Dump the \Prote\ state@>=
dump_int(Prote_mode);

@ @<Undump the \Prote\ state@>=
undump(0, 1, Prote_mode);

@ In order to not clobber the global scope with variables that are
locally used, the initializations for \Prote, if the mode is
activated, are done in a dedicated procedure. These are not part of
what is dumped.

@<Last-minute procedures@>=
static void Prote_initialize(void)
{@+int k; /*all-purpose index*/
@<\Prote\ initializations@>;
}

@ There are commands and command modifiers, these command modifiers
maybe encoding too a type. So we must not step on each other toes.

@ When we are adding primitives that deal intimately with the variables
of \TeX, in the |eqtb| regions (in our case regions 5 for integers, and
6 for dimensions), the command modifier to the various
\.{assign\_*} classes is simply the address. So we have interpolated
our added variables above since this is done by the way of WEB
pre-processing.

@ For the conditional primitives, the way is straightforward.

@d if_incsname_code (eTeX_last_if_test_cmd_mod+1) /* `\.{\\ifincsname}' */
@d if_primitive_code (eTeX_last_if_test_cmd_mod+2) /* `\.{\\ifprimitive}' */
@ The |last_item| class is for secondary internal values, that can be
dereferenced by \.{\\the} but are read-only and are mainly related to
the value of a current state or are such values but their assignation
shall trigger an action, and we shall not hook in the \.{assign\_*}
processing.

The command modifiers for the |last_item| class were, originally,
encoding too the type of the item (see m.410). But \eTeX\ has added its
extensions and we won't try to be smart: the type |cur_val_level| will
be set by switching between contiguous ranges of values of the same
type.

And we will define here all the instances of |last_item| that we add
in order to keep our number assignations gathered.

@d Prote_version_code (eTeX_last_last_item_cmd_mod+1)
   /*code for \.{\\Proteversion}*/
@d random_seed_code (eTeX_last_last_item_cmd_mod+2) /* \.{\\randomseed} */
@d elapsed_time_code (eTeX_last_last_item_cmd_mod+3) /* \.{\\elapsedtime} */
@d shell_escape_code (eTeX_last_last_item_cmd_mod+4) /* \.{\\shellescape} */
@d last_xpos_code (eTeX_last_last_item_cmd_mod+5) /* \.{\\lastxpos} */
@d last_ypos_code (eTeX_last_last_item_cmd_mod+6) /* \.{\\lastypos} */
@<Fetch a \Prote\ item@>=
{@+switch (m) {
    @/@<Cases for fetching a \Prote\ int value@>@/
    }  /*there are no other cases*/
    cur_val_level=int_val;
}

@ The \.{convert} class is for conversion of some external stuff to put
it, as a token list, into the scanner. It is not an internal value that
could be dereferenced by \.{\\the} and it is obviously not settable: it
expands to the token list.

@d Prote_revision_code (eTeX_last_convert_cmd_mod+1) /* \.{\\Proterevision}*/
@d strcmp_code (eTeX_last_convert_cmd_mod+2) /* \.{\\strcmp} */
@d set_random_seed_code (eTeX_last_convert_cmd_mod+3) /* \.{\\setrandomseed} */
@d normal_deviate_code (eTeX_last_convert_cmd_mod+4) /* \.{\\normaldeviate} */
@d uniform_deviate_code (eTeX_last_convert_cmd_mod+5) /* \.{\\uniformdeviate} */
@d creation_date_code (eTeX_last_convert_cmd_mod+6) /* \.{\\creationdate} */
@d file_size_code (eTeX_last_convert_cmd_mod+7) /* \.{\\filesize} */
@d file_mod_date_code (eTeX_last_convert_cmd_mod+8) /* \.{\\filemodedate} */
@d file_dump_code (eTeX_last_convert_cmd_mod+9) /* \.{\\filedump} */
@d mdfive_sum_code (eTeX_last_convert_cmd_mod+10) /* \.{\\mdfivesum} */
@ When modifying the meaning of something---in this case, for now,
switching to the primitive meaning if it exists---or modifying the
way expansion is done, it seems that it can be thought as a special
case of expansion, hence a variant of |expand_after|.

@d primitive_code (eTeX_last_expand_after_cmd_mod+1) /* `\.{\\primitive}' */
@d expanded_code (eTeX_last_expand_after_cmd_mod+2) /* `\.{\\expanded}' */
@ When the primitive manipulate something really external, whether
trying to insert something in the output format---\.{DVI} for
us---or dealing with the system, it doesn't fit in any cmd group and
could be called an exception. So it will be a variant of the |extension|
cmd group.

\eTeX\ didn't add new primitives to the extension command group, so we
add a related macro, equal to |TeX_last_extension_cmd_mod|, simply so
that it is locally obvious.

@d eTeX_last_extension_cmd_mod TeX_last_extension_cmd_mod /*none added*/
@d reset_timer_code (eTeX_last_extension_cmd_mod+1) /* `\.{\\resettimer}' */
@d save_pos_code (eTeX_last_extension_cmd_mod+2) /* `\.{\\savepos}' */
@*1 Identifying \Prote.

We will start by giving a mean to test that \Prote\ is activated and
to identify the version.

@<Generate all \Prote\ primitives@>=
primitive("Proteversion", last_item, Prote_version_code);
@!@:Prote\_version\_}{\.{\\Proteversion} primitive@>
primitive("Proterevision", convert, Prote_revision_code);@/
@!@:Prote\_revision\_}{\.{\\Proterevision} primitive@>

@ We use the different hooks added to insert our cases.

@<Cases of |last_item| for |print_cmd_chr|@>=
case Prote_version_code: print_esc("Proteversion");@+break;

@ @<Cases for fetching a \Prote\ int value@>=
case Prote_version_code: cur_val=Prote_version;@+break;

@ @<Cases of |convert| for |print_cmd_chr|@>=
case Prote_revision_code: print_esc("Proterevision");@+break;

@ @<Cases of `Scan the argument for command |c|'@>=
case Prote_revision_code: do_nothing;@+break;

@ @<Cases of `Print the result of command |c|'@>=
case Prote_revision_code: print(Prote_revision);@+break;

@*1 \Prote\ added token lists routines.

We will, more than once, convert a general normally expanded text
to a string. Due to the unfelicity of \PASCAL\ about forward
declarations of functions, we declare procedures that do their task
by defining global variables. In this case, |garbage| is used.

|link(garbage)| will hold the pointer to the head of the token list,
|info(garbage)| to the tail. If the two are equals, then the list is
empty. The routine making a string will take |link(garbage)| and
put the number in |info(garbage)|.

@ The first procedure scan a general text (normally) expanded. The
head of the reference count is returned in |link(garbage)|, the
tail in |info(garbage)| and if the two are equals, the list is empty.
User must keep in mind that this has to be flushed when done with!

@<Forward declarations@>=
static void scan_general_x_text(void);

@ @<Declare \Prote\ procedures for token lists@>=
static void scan_general_x_text(void)
{@+pointer d; /*to save |def_ref|*/
d=def_ref;info(garbage)=scan_toks(false, true);
link(garbage)=def_ref;
def_ref=d; /*restore whatever*/
}

@ The second procedure takes a token list defined in |link(garbage)|
and converts it to a string number that is returned in |info(garbage)|.
Neither the token list nor the string (obviously) are flushed.

@<Forward declarations@>=
static void toks_to_str(void);

@ Here we are using |token_show| that has to take a reference count.

@<Declare \Prote\ procedures for token lists@>=
static void toks_to_str(void)
{@+int old_setting; /*holds |selector| setting*/
old_setting=selector;selector=new_string;
  token_show(link(garbage));selector=old_setting;
  str_room(1); /*flirting with the limit means probably truncation*/
  info(garbage)=make_string();
}

@*1 \Prote\ added strings routines.

The next procedure sets |name_of_file| from the string given as an
argument, mimicking the |input| primitive by adding an |.tex| extension
if there is none. It silently truncates if the length of the string
exceeds the size of the name buffer and doesn't use |cur_area| and
|cur_ext|, but |name_length| is set to the real name length (without
truncating) so a test about |k <= file_name_size| allows to detect the
impossibility of opening the file without having to call external code.
The string is not flushed: it is the responsability of the code calling
the procedure to flush it if wanted.

@<Declare \Prote\ procedures for strings@>=
static void str_to_name(str_number @!s)
{@+int k; /*number of positions filled in |name_of_file|*/
ASCII_code @!c; /*character being packed*/
int @!j; /*index into |str_pool|*/
k=0;for (j=str_start[s]; j<=str_start[s+1]-1; j++) {@+
  c=so(str_pool[j]);incr(k);
  if (k <= file_name_size) name_of_file[k]=xchr[c];
  }
name_length=k;
name_of_file[name_length+1]=0;
}

@*1 Exchanging data with external routines.

In order to try to sever external handling from our core, we
introduce an all purpose exchange buffer |xchg_buffer|, that will
be an array of bytes (these can be interpreted as \.{text\_char}
or \.{ASCII\_char} or \.{eight\_bits}).

The data to be used starts at index $1$ and ends at index
|xchg_buffer_length|.

For the moment, this buffer must accommodate a numerical MD5
hash value, i.e. $16$ bytes long; will also be used to exchange $64$
bytes chunks to feed MD5 hash generation, and will have to accommodate
too the maximal size of the date returned by \.{\\creationdate} or
\.{\\filemoddate} that is $23$ \.{text\_char}. So at least $64$ for now.

@<Global...@>=
static eight_bits @!xchg_buffer0[xchg_buffer_size],
  *const @!xchg_buffer = @!xchg_buffer0-1;
   /*exchange buffer for interaction with system routines*/
static int @!xchg_buffer_length; /*last valid index in this buf; 0 means no data*/
@ @<Check \Prote\ ``constant'' values for consistency@>=
if (xchg_buffer_size < 64) bad=51;

@ When there is data in the exchange buffer, the length of the data has
to be set. When an external routine has consumed the data, it shall
reset the length to $0$.

@<\Prote\ initializations@>=
xchg_buffer_length=0;

@*1 \Prote\ states.

\.{\\shellescape} depends on a pdf\TeX\ feature, namely the ability to
escape to shell. There is no such thing in \Prote. So it expands to $0$.
Note: this a status primitive; it does not allow to set the status but
simply expands to a read-only integer reflecting it. In \Prote, it is
always $0$.

@<Generate all \Prote\ primitives@>=
primitive("shellescape", last_item, shell_escape_code);
@!@:shellescape\_}{\.{\\shellescape} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case shell_escape_code: print_esc("shellescape");@+break;

@ @<Cases for fetching a \Prote\ int value@>=
case shell_escape_code: cur_val=0;@+break;

@*1 \Prote\ conditionals.

We add the following conditionals, that are susceptible of the same
expansion rules as the other |if_test| ones.

@<Generate all \Prote\ primitives@>=
primitive("ifincsname", if_test, if_incsname_code);
@!@:if\_incsname\_}{\.{\\if} primitive@>
primitive("ifprimitive", if_test, if_primitive_code);
@!@:if\_primitive\_}{\.{\\if} primitive@>

@ @<Cases of |if_test| for |print_cmd_chr|@>=
case if_incsname_code: print_esc("ifincsname");@+break;
case if_primitive_code: print_esc("ifprimitive");@+break;

@ The conditional \.{\\ifincsname} is simple since we increment a global
variable |incsname_state| when we enter the \.{\\csname} command and
decrement it when we have reached and passed the \.{\\endcsname}---a
scope depth index.

@<\Prote\ initializations@>=
incsname_state=0;

@ @<Cases for |conditional|@>=
case if_incsname_code: b=(incsname_state > 0);@+break;

@ The conditional \.{\\ifprimitive} is true when the following control
sequence is a primitive; false otherwise. |id_lookup| can return
|undefined_control_sequence| (for a control sequence not entered in the
hash since |no_new_control_sequence| is |true|), but since it has the
\.{eq\_type} set to |undefined_cs|, the test of this latter works as
for a control sequence entered but never defined.

@ @<Cases for |conditional|@>=
case if_primitive_code: {@+@/do@+{get_token();}@+ while (!(cur_tok!=space_token));
if ((cur_cs!=0)&&(cur_cmd!=undefined_cs)&&(cur_cmd < call)) b=true;else b=false;
} @+break;

@*1 \Prote\ primitives changing definition or expansion.

The next primitives, here, are more involved since they are whether
changing the definition of a control sequence, or modifying how the
tokens will be treated.

@ Since a user level control sequence can give a new definition to a
primitive, the \.{primitive}... primitive, if the argument is a control
sequence whose name is the name of a primitive, will make this primitive
meaning the meaning of the control sequence {\it hic et nunc}. If there
was no primitive meaning, no error is raised and nothing is changed.
It can be seen as a kind of \.{expand\_after} command since it is in the
external handling of the token list creation.

Since we need to redefine the token and hence give a valid control
sequence in the |eqtb|, we have defined |frozen_primitive|. This
``frozen'' is, actually, not quite frozen by itself since we will
redefine its values according to the primitive definition we have
to restablish momentarily.  But it is indeed ``permanent'' since
it only refers to the permanently defined meanings. Hence, the
initialization of the |frozen_primitive| address is just to document
the code: these values will be overwritten on each actual call.

@<Generate all \Prote\ primitives@>=
primitive("primitive", expand_after, primitive_code);
@!@:primitive\_}{\.{\\primitive} primitive@>
text(frozen_primitive)=text(cur_val);eqtb[frozen_primitive]=eqtb[cur_val];

@ @<Cases of |expandafter| for |print_cmd_chr|@>=
case primitive_code: print_esc("primitive");@+break;

@ The problem is that the primitives are added at |level_one| and that a
redefinition as a macro at this same level by a user simply overwrites
the definition. We need then to keep these definitions.

Primitives are only added by \.{INITEX}. So we can consider what we will
call a |ROM|, since it can be only ``flashed'' by \.{INITEX} and is
read-only afterwards, a kind of BIOS table holding initial system calls
(primitives).

Since primitives are not macros (they don't need to expand or to
evaluate parameters since their definition is directly in the code),
the definition of a primitive is a couple: the command class (|cur_cmd|)
and the modifier (|cur_chr|) to distinguish between the cases---the
instances. But since, at the user level, a primitive is identified by
its name, and that a redefinition is, mandatorily, a homonym, the
location of the macro shadowing the primitive is at the same address as
was the primitive in the |eqtb|. So in order to speed-up the check, we
should organize things so that the address in the |eqtb| of a control
sequence (one character or multiletter) can be readily
converted in an address in the |ROM| array.

This array will be an array of memory word, of type |two_halves|, in
order to re-use the macro definitions set for the table of equivalents.

The one character primitives are added by direct addressing relative to
|single_base|. The multiletter primitives are added starting at
|frozen_control_sequence-1|, downwards; but there are only, at the
moment, $322$ multileter primitives defined by \TeX, $78$ such
primitives defined by \eTeX, and we are adding $24$ more. It is clear
that, looking at primitives, region 2 of |eqtb| is really a sparse array
and that, when |hash_size| is increased for format needs, there will be
a fair amount of space wasted if we simply copy, in fact, second part
of region 1 and region 2 in the |ROM|.

Yes, but it is simpler as a first approach---premature optimization is
the root of all evil. So a simple translation scheme will be enough.

The index in |ROM| will start at $1$ and will go up to $256 + 1 +
hash\_size$, that is a simple translation from |single_base| to
|ROM_base|, but only for addresses of interest, the other pointing to
an |ROM_undefined_primitive| that will allow an easy test.

@d ROM_base 1
@d ROM_size (256+1+hash_size) /*256 oc, undefined and ml*/
@d ROM_undefined_primitive 257
@d ROM_type_field(A) A.hh.b0
@d ROM_equiv_field(X) X.hh.rh
@d ROM_type(A) ROM_type_field(ROM[A]) /*command code for equivalent*/
@d set_ROM_p_from_cs(A) if ((A >= single_base)
  &&(A < frozen_control_sequence))
  p=A-single_base+ROM_base;
  else p=ROM_undefined_primitive

@<Global...@>=
static memory_word @!ROM0[ROM_size-ROM_base+1],
  *const @!ROM = @!ROM0-ROM_base;

@ Even if it will be unused in \TeX\ or \eTeX\ modes, we will initialize
it since we add code to the |primitive| procedure and we need \TeX\
and \eTeX\ ones to be registered as well, whether \.{INITEX} switches to
\Prote\ mode later or not.

@<Initialize table entries...@>=
ROM[ROM_undefined_primitive]=eqtb[undefined_control_sequence];
for (k=ROM_base; k<=256; k++) ROM[k]=ROM[ROM_undefined_primitive];
for (k=ROM_undefined_primitive+1; k<=ROM_size; k++)
  ROM[k]=ROM[ROM_undefined_primitive];

@ When a primitive is added---and this only happens in \.{INITEX}---we
have to define the corresponding address in the \.{ROM}.

@ |cur_val| has the pointer in second part of region 1 or in region 2
of |eqtb|.

@<Add primitive definition to the |ROM| array@>=
set_ROM_p_from_cs(cur_val);
ROM[p]=eqtb[cur_val];

@ This array has to be dumped since it is only defined by \.{INITEX}. It
is always dumped even if it is unused unless in \Prote\ mode.

@<Dump the |ROM| array@>=
for (k=ROM_base; k<=ROM_size; k++) dump_wd(ROM[k]);

@ And what has been dumped shall be undumped.

@<Undump the |ROM| array@>=
for (k=ROM_base; k<=ROM_size; k++) undump_wd(ROM[k]);

@ Once all this is done, the processing of \.{\\primitive} is simple:
we read the next token that has to be a control sequence. If this
control sequence belongs to region 1 or 2 and is defined in |ROM|, we
redefine the token to be the |frozen_primitive| control sequence,
redefining its codes from the |ROM| and setting the text associated for
printing purposes. If not, the token is unchanged. Then we put back the
token so that it will be processed again, maybe redefined.

@<Cases for |expandafter|@>=
case primitive_code: {@+get_token();
set_ROM_p_from_cs(cur_cs);
if ((p!=ROM_undefined_primitive)&&(ROM_type(p)!=undefined_cs)) {@+
  eqtb[frozen_primitive]=ROM[p];
  text(frozen_primitive)=text(cur_cs);
  cur_tok=cs_token_flag+frozen_primitive;
  }
back_input();
} @+break;

@ The next primitive changes the expansion of its argument that is like
a general text expanded, except that protected macros (an \eTeX\
extension) are not extanded.

@ @<Generate all \Prote\ primitives@>=
primitive("expanded", expand_after, expanded_code);@/
@!@:expanded\_}{\.{\\expanded} primitive@>

@ @<Cases of |expandafter| for |print_cmd_chr|@>=
case expanded_code: print_esc("expanded");

@ This intervenes in |expand| and we must substitute a token list to our
current token, putting it back for further reprocessing.

@<Cases for |expandafter|@>=
case expanded_code: {@+scan_general_x_text();
  back_list(link(link(garbage)));
  free_avail(link(garbage)); /*drop reference count*/
  }

@*1 \Prote\ strings related primitives.

The primitive \.{\\strcmp} text two parameters that are general text
without expansion. The two token lists created are converted to strings
and this couple of strings is then compared, character by character. If
the first string is lexicographically sorted before the second, the
expansion is $-1$; if the two strings are equal, the expansion is $0$;
if the first string is lexicographically sorted after the second, the
expansion is $1$.

@<Generate all \Prote\ primitives@>=
primitive("strcmp", convert, strcmp_code);
@!@:strcmp\_}{\.{\\strcmp} primitive@>

@ @<Cases of |convert| for |print_cmd_chr|@>=
case strcmp_code: print_esc("strcmp");@+break;

@ It should be noted that the strings comparison is \TeX\ strings
comparison: the arguments are subject to the manipulation done when
scanning a general text (squeezing non escaped blanks), and the
characters are converted according to the |xord| array. Thus it is
an |ASCII_code|---in the \TeX\ sense explained at the very beginning
of the web file, part 2---comparison and the result is the same,
as long as relative characters are mapped to the same value, whatever
the system. Nul strings are valid.

@<Cases of `Scan the argument for command |c|'@>=
case strcmp_code: {@+scan_general_x_text();toks_to_str();
  s=info(garbage);flush_list(link(garbage));
  scan_general_x_text();toks_to_str();
  t=info(garbage);flush_list(link(garbage));
  if ((length(s)==0)&&(length(t)==0)) cur_val=0;
  else if (length(s)==0) cur_val=-1;
  else if (length(t)==0) cur_val=1;
  else{@+m=str_start[s];n=str_start[t];r=false;
    while ((!r)&&(m < str_start[s+1])&&(n < str_start[t+1])) {@+
      cur_val=str_pool[m]-str_pool[n];if (cur_val!=0) r=true;
      incr(m);incr(n);
      }
    if (cur_val==0) {@+if (length(s)!=length(t))
      if (m!=str_start[s+1]) cur_val=1;else cur_val=-1;
      }
    else cur_val=cur_val/(double)abs(cur_val);
    }
  flush_string;flush_string;
  } @+break;

@ @<Cases of `Print the result of command |c|'@>=
case strcmp_code: print_int(cur_val);@+break;

@*1 \Prote\ date and time related primitives.

The following primitives are related to the time elapsed since a
defined moment in time. The creation date is fixed at the moment when
|fix_date_and_time| has been called and stays fixed afterwards. This
moment is also, by default, the reference moment for computing the time
elapsed.

@ The creation date is retrieved by the \.{\\creationdate} primitive. As
explained above, the date corresponds to the moment when
|fix_date_and_time| was called taking into account |FORCE_SOURCE_DATE|
and |SOURCE_DATE_EPOCH| (see above, m.241). If the creation date is
forced, the string will be UTC related.

The format of the string is |D: YYYYMMDDHHmmSSOHH"mm"|, `O' being the
relationship of local time to UT, that is `-' (minus), `+' or `Z';
HH followed by a single quote being the absolute value of the offset
from UT in hours (00--23), mm followed by a single quote being the
absolute value of the offset from UT in minutes (00--59). All fields
after the year are optional and default to zero values.

@ @<Generate all \Prote\ primitives@>=
primitive("creationdate", convert, creation_date_code);@/
@!@:creationdate\_}{\.{\\creationdate} primitive@>

@ @<Cases of |convert| for |print_cmd_chr|@>=
case creation_date_code: print_esc("creationdate");@+break;

@ |get_creation_date| has to be provided by the system.
@^system dependencies@>

@<Cases of `Scan the argument for command |c|'@>=
case creation_date_code: get_creation_date();@+break;

@ The date is in the |time_str| so we have simply to convert the
characters.

@<Cases of `Print the result of command |c|'@>=
case creation_date_code: for (k=0; time_str[k]!='\0'; k++)
   print_char(time_str[k]);@+break;

@ The time elapsed is a scaled integer the unit being scaled seconds,
i.e. $1/65536$ of a second.  Since our scaled integers have a
defined range, the value can not reach or pass, in plain seconds,
$32767$.

The elapsed time returned is relative to some defined moment. At
start, the reference moment is the time the date was set for
|fix_date_and_time|. This requires system support and the default
implementation here will then fix this moment at noon on 4 July 1776
and what would be returned by the function is here simply defined by
a macro: with this reference time and this basic code, |infinity| is
the permanent answer.
@^system dependencies@>

@d get_elapsed_time infinity /*a function should be implemented*/

@ @<Generate all \Prote\ primitives@>=
primitive("resettimer", extension, reset_timer_code);@/
@!@:resettimer\_}{\.{\\resettimer} primitive@>
primitive("elapsedtime", last_item, elapsed_time_code);@/
@!@:elapsedtime\_}{\.{\\elapsedtime} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case elapsed_time_code: print_esc("elapsedtime");@+break;

@ @<Cases of |extension| for |print_cmd_chr|@>=
case reset_timer_code: print_esc("resettimer");@+break;

@ @<Cases for fetching a \Prote\ int value@>=
case elapsed_time_code: cur_val=get_elapsed_time;@+break;

@ The reference moment can be reset by a call to the primitive
\.{\\resettimer}. It simply resets the reference moment to the moment
the primitive was called. The counter is not regularily incremented.
When asked about the time elapsed what is returned is the difference, in
scaled seconds, from the moment of the call to the moment of reference.
So there is no persistent variable neither a kind of clock implemented.
@^system dependencies@>

Standard \PASCAL\ doesn't provide related routines so our
syntactically correct but semantically useless routines are implemented
here: the |reset_timer| does nothing, while the |get_elapsed_time|
simply returns, even when |reset_timer| has been called, the invalid
value |infinity|.

@d reset_timer do_nothing

@ Since to reset the timer a simple call to the routine is necessary,
we simply add it to \.{main\_control} by adding it to the cases handled
by \.{do\_extension}. It contributes nothing to the token list: it is a
``fire and forget'', so no need to handle the special \.{subtype} in the
other hooks.

@<Cases for |do_extension|@>=
case reset_timer_code: reset_timer;@+break;

@*1 \Prote\ file related primitives.

The presence of the following primitives in the engine can be
questioned. Since they are very external, and their implementation, for
example in C, requires things that are not in the C standard (the
date of modification of the file, for example). So these should not be
multiplied.

@ The \.{\\filesize} primitive expands to the size, in bytes, of the
file.

@<Generate all \Prote\ primitives@>=
primitive("filesize", convert, file_size_code);
@!@:filesize\_}{\.{\\filesize} primitive@>

@ @<Cases of |convert| for |print_cmd_chr|@>=
case file_size_code: print_esc("filesize");@+break;

@ In order to be able to treat the problem when trying to open the file,
we open here and pass the file pointer, if success, to a dedicated
function in order to get its size. In case of problem, nothing is
returned.
@^system dependencies@>

@<Cases of `Scan the argument for command |c|'@>=
case file_size_code: {@+scan_general_x_text();toks_to_str();
  s=info(garbage);flush_list(link(garbage));str_to_name(s);
  cur_val=-1; /*invalid value if error*/
  cur_val=get_file_size();
  flush_string;
  } @+break;

@ @<Cases of `Print the result of command |c|'@>=
case file_size_code: if (cur_val!=-1) print_int(cur_val);@+break;

@ The \.{\\filemoddate} expands to a date with the same format as the
creation date (see \.{\\creationdate}).

@<Generate all \Prote\ primitives@>=
primitive("filemoddate", convert, file_mod_date_code);
@!@:filemoddate\_}{\.{\\filemoddate} primitive@>

@ @<Cases of |convert| for |print_cmd_chr|@>=
case file_mod_date_code: print_esc("filemoddate");@+break;

@ For getting the argument, the treatment resembles that of
\.{\\filesize} obviously, since it is only the type of information
returned that changes. The availability of this information in system
dependent. The information shall be set in |xchg_buffer|.
@^system dependencies@>

In this basic implementation, we set the string to the empty one by
simply setting |xchg_buffer_length| to $0$.

@d get_file_mtime xchg_buffer_length=0

@<Cases of `Scan the argument for command |c|'@>=
case file_mod_date_code: {@+scan_general_x_text();toks_to_str();
  s=info(garbage);flush_list(link(garbage));str_to_name(s);
  get_file_mod_date();
  flush_string;
  } @+break;

@ Printing the result consists simply in printing every
|text_char| in |time_str|.
If the length is $0$, nothing is printed.

@<Cases of `Print the result of command |c|'@>=
case file_mod_date_code: for (k=0; time_str[k]!='\0'; k++)
   print_char(time_str[k]);@+break;

@ The primitive \.{\\filedump} expands to the dump of the first
 \.{length} bytes of the file, starting from \.{offset}. Offset and
length are optional integers given, in that order, introduced resp.
by the keywords ``offset'' and ``length''. If not specified, they
default to $0$. A length of $0$ expands to nothing (it is not an error).
The file name is given as a |general text|.

@<Generate all \Prote\ primitives@>=
primitive("filedump", convert, file_dump_code);
@!@:filedump\_}{\.{\\filedump} primitive@>

@ @<Cases of |convert| for |print_cmd_chr|@>=
case file_dump_code: print_esc("filedump");@+break;

@ The scanning of the arguments is obvious from the syntax above.

Since ``offset'' and ``length'' may be given in that order, we assign
the variables \.{k} and \.{l}, in alphabetical order. These have to be
positive or nul values.

Contrary to other blocks, and for optimization purposes (in order not to
clobber the string pool with data that we can read, when necessary, one
byte at a time), \.{k}, \.{l} and \.{f} will be defined here and used
when printing.

@<Cases of `Scan the argument for command |c|'@>=
case file_dump_code: {@+k=0;l=0; /*defaults*/
  if (scan_keyword("offset")) {@+scan_int();
    if (cur_val < 0) {@+print_err("Bad ");print_esc("filedump");
@.Bad \\filedump@>
      help2("I allow only nonnegative values here.",@/
        "I changed this one to zero.");int_error(cur_val);
      }
    else k=cur_val;
    }
  if (scan_keyword("length")) {@+scan_int();
    if (cur_val < 0) {@+print_err("Bad ");print_esc("filedump");
@.Bad \\filedump@>
      help2("I allow only nonnegative values here.",@/
        "I changed this one to zero.");int_error(cur_val);
      }
    else l=cur_val;
    }
  scan_general_x_text();toks_to_str();s=info(garbage);
  flush_list(link(garbage));str_to_name(s);
  flush_string; /*this one was the filename argument*/
  } @+break;

@ The variables have been set, and the file name has been defined. We
simply print the uppercase hexadecimal transcription of every byte
requested before closing the file. Here we deal with bytes
(\.{eight\_bits} values) so there is no transcription.

@<Cases of `Print the result of command |c|'@>=
case file_dump_code:
  { FILE *f=fopen((char*)name_of_file0,"rb");
    if (f!=NULL) {@+
      fseek(f,k,SEEK_SET);
      do@+{i=fgetc(f); if (i==EOF) break;
           dig[0]=i%16;dig[1]=i/16;
           print_the_digs(2);decr(l);
       }@+ while (!(feof(f)||(l==0)));
      fclose(f);
    }
  } @+break;

@ The \.{\\mdfivesum} is obviously a variant of the \.{convert} class since
it takes values from external and put them as a token list in the
stream.

@<Generate all \Prote\ primitives@>=
primitive("mdfivesum", convert, mdfive_sum_code);
@!@:mdfivesum\_}{\.{\\mdfivesum} primitive@>

@ @<Cases of |convert| for |print_cmd_chr|@>=
case mdfive_sum_code: print_esc("mdfivesum");@+break;

@ There is an optional keyword "file" that will tell us if the | < general
text > | is to be taken as a filename or just as the string to hash. The
| < balanced text > | is expanded in both cases.

Once this is done, we ask to init the MD5 state; then fill the exchange
buffer with chunks of data and update the MD5 hash with every chunk
until source is exhausted and ask for the final ($16$ bytes numerical
value) result that will be put in the |xchg_buffer|.

Since we are looking for a ``general text'', that must be enclosed (at
least: ended; the opening brace can be implicit) by a |right_brace|,
an error will be caught with runaways.

The general text is converted to a string. It is legal to have an empty
string if the argument is not a file.

@<Cases of `Scan the argument for command |c|'@>=
case mdfive_sum_code: {@+r=scan_keyword("file");scan_general_x_text();
toks_to_str();s=info(garbage);flush_list(link(garbage));
l=get_md5_sum(s,r);
flush_string; /*done with the filename or string to hash*/
} @+break;

@ As a result, there is $16$ bytes in the |md5_digest| representing the
MD5 hash. We simply print, byte by byte, the uppercase hexadecimal
representation of this hash.

@<Cases of `Print the result of command |c|'@>=
case mdfive_sum_code: for (k=0; k<l; k++)
{@+dig[0]=md5_digest[k]%16;@+dig[1]=md5_digest[k]/16;print_the_digs(2);
} @+break;

@ This is something that we will be doing several times. We have scanned
a general text. The result is a token list that we will interpret as a
file name. We must then put this name in |name_of_file| and try to open
it, as a binary file.

|cur_area| and |cur_ext| are not set: we use the string as is.

@<Generate the MD5 hash for a file@>=
{@+str_to_name(s);
xchg_buffer_length=0; /*empty if file not opened*/
if ((name_length <= file_name_size)&&(b_open_in(&data_in))) {@+
  mdfive_init;
  r=false; /*reset it to indicate eof*/
  while (!r)
    {@+if (xchg_buffer_length==64) mdfive_update; /*resets length*/
    if (!eof(data_in))
      {@+pascal_read(data_in, i);xchg_buffer[xchg_buffer_length+1]=i;
      incr(xchg_buffer_length);
      }
    else r=true;
    }
  if (xchg_buffer_length!=0) mdfive_update; /*treats remaining*/
  b_close(&data_in);
  mdfive_final; /*may yield the empty file/nul string hash if nothing input*/
  }
}

@ For a string, the procedure is very similar. It is not an error for
the string to be the null one.

@<Generate the MD5 hash for a string@>=
{@+mdfive_init;xchg_buffer_length=0; /*proceed by 64 chunks*/
for (k=str_start[s]; k<=str_start[s+1]-1; k++)
  {@+if (xchg_buffer_length==64) mdfive_update; /*resets length*/
  xchg_buffer[xchg_buffer_length+1]=xchr[so(str_pool[k])];
  incr(xchg_buffer_length);
  }
if (xchg_buffer_length!=0) mdfive_update; /*treats remaining*/
mdfive_final;
}

@ A MD5 hash signature can be requested for a stream of bytes, this
being a string directly passed or a file.

Since the MD5 algorithm does a lot of bitwise operations, a standard
Pascal implementation has not been attempted. But since we aim to
limitate and to segregate the calls to external routines so that they do
not tamper with the internals of \TeX, we have to find a way to
communicate with the routines.

@ To obtain the MD5 hash signature of a file will need an external
implementation, since the algorithm requires bitwise operation that
standard \PASCAL does not provide. So we do not bother to try. The
present implementation returns nothing.
@^system dependencies@>

@ |mdfive_init| shall reinit the state to compute the hash value.
Nothing is taken from |xchg_buffer| and |xchg_buffer_length| is
unchanged.

@d mdfive_init do_nothing

@ |mdfive_update| takes |xchg_buffer_length| bytes to contribute to the
hash. The bytes being consumed, |xchg_buffer_length| shall be reset to
$0$.

@d mdfive_update xchg_buffer_length=0

@ |md5_final| puts the binary $16$ bytes long hash into |xchg_buffer|
and sets |xchg_buffer_length| to $16$.

Here, by default, we do nothing except carefully set
|xchg_buffer_length| to $0$ in order to state that we have consumed
the data.

@d mdfive_final xchg_buffer_length=0

@*1 Pseudo-random number generation.

These routines come from John Hobby's \MP\ and generate pseudo-random
numbers with the additive scheme recommended in Section 3.6 of
{\sl The Art of Computer Programming}; however, the results are
random fractions between 0 and |mpfract_one-1|, inclusive.

\MP\ uses 28~significant bits of precision and we have kept this in
order for the routines to behave the same way as in \MP. So the name
|mpfract| will be used instead of |scaled|, while the two are integers,
in the range defined by \TeX.

@d double(A) A=A+A /*multiply a variable by two*/
@d halfp(A) (A)/2 /*when quantity is known to be positive or zero*/

@ The subroutines for logarithm and exponential involve two tables.
The first is simple: |two_to_the[k]| equals $2^k$. The second involves
a bit more calculation, which the author claims to have done correctly:
|spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
nearest integer.

@<Glob...@>=
static int @!two_to_the[31]; /*powers of two*/
static int @!spec_log0[28], *const @!spec_log = @!spec_log0-1; /*special logarithms*/

@ @<\Prote\ initializations@>=
two_to_the[0]=1;
for (k=1; k<=30; k++) two_to_the[k]=2*two_to_the[k-1];
spec_log[1]=93032640;
spec_log[2]=38612034;
spec_log[3]=17922280;
spec_log[4]=8662214;
spec_log[5]=4261238;
spec_log[6]=2113709;
spec_log[7]=1052693;
spec_log[8]=525315;
spec_log[9]=262400;
spec_log[10]=131136;
spec_log[11]=65552;
spec_log[12]=32772;
spec_log[13]=16385;
for (k=14; k<=27; k++) spec_log[k]=two_to_the[27-k];
spec_log[28]=1;

@ Here is the routine that calculates $2^8$ times the natural logarithm
of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
when |x| is a given positive integer.

The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
and the logarithm of $2^{30}x$ remains to be added to an accumulator
register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
during the calculation, and sixteen auxiliary bits to extend |y| are
kept in~|z| during the initial argument reduction. (We add
$100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
not become negative; also, the actual amount subtracted from~|y| is~96,
not~100, because we want to add~4 for rounding before the final division by~8.)

@<Declare \Prote\ arithmetic routines@>=
static scaled m_log(scaled @!x)
{@+int @!y, @!z; /*auxiliary registers*/
int @!k; /*iteration counter*/
if (x <= 0) @<Handle non-positive logarithm@>@;
else{@+y=1302456956+4-100; /*$14\times2^{27}\ln2\approx1302456956.421063$*/
  z=27595+6553600; /*and $2^{16}\times .421063\approx 27595$*/
  while (x < mpfract_four)
    {@+double(x);y=y-93032639;z=z-48782;
    }  /*$2^{27}\ln2\approx 93032639.74436163$
      and $2^{16}\times.74436163\approx 48782$*/
  y=y+(z/unity);k=2;
  while (x > mpfract_four+4)
    @<Increase |k| until |x| can be multiplied by a factor of $2^{-k}$, and
adjust $y$ accordingly@>;
  return y/8;
  }
}

@ @<Increase |k| until |x| can...@>=
{@+z=((x-1)/two_to_the[k])+1; /*$z=\lceil x/2^k\rceil$*/
while (x < mpfract_four+z)
  {@+z=halfp(z+1);k=k+1;
  }
y=y+spec_log[k];x=x-z;
}

@ @<Handle non-positive logarithm@>=
{@+print_err("Logarithm of ");
@.Logarithm...replaced by 0@>
print_scaled(x);print(" has been replaced by 0");
help2("Since I don't take logs of non-positive numbers,",@/
  "I'm zeroing this one. Proceed, with fingers crossed.");
error();return 0;
}

@ Here is introduced the special 28bits significand |mpfract|.

@d el_gordo 017777777777 /*$2^{31}-1$, the largest value that \TeX\ likes*/
@d mpfract_half 01000000000 /*$2^{27}$, represents 0.50000000*/
@d mpfract_one 02000000000 /*$2^{28}$, represents 1.00000000*/
@d mpfract_four 010000000000 /*$2^{30}$, represents 4.00000000*/

@<Types...@>=
typedef int mpfract; /*this type is used for pseudo-random numbers*/

@ The |make_mpfract| routine produces the |mpfract| equivalent of
|p/(double)q|, given integers |p| and~|q|; it computes the integer
$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
positive. If |p| and |q| are both of the same scaled type |t|,
the ``type relation'' |make_mpfract(t, t)==mpfract| is valid;
and it's also possible to use the subroutine ``backwards,'' using
the relation |make_mpfract(t, mpfract)==t| between scaled types.

If the result would have magnitude $2^{31}$ or more, |make_mpfract|
sets |arith_error=true|. Most of \TeX's internal computations have
been designed to avoid this sort of error.

If this subroutine were programmed in assembly language on a typical
machine, we could simply compute |(@t$2^{28}$@>*p)/q|, since a
double-precision product can often be input to a fixed-point division
instruction. But when we are restricted to \PASCAL\ arithmetic it
is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique
would be about three times faster than the code adopted here, but it
would be comparatively long and tricky, involving about sixteen
additional multiplications and divisions.

The present implementation is highly portable, but slow; it avoids
multiplication and division except in the initial stage. But since it is
not part of \TeX\ inner loop, it doesn't matter.

@<Declare \Prote\ arithmetic routines@>=
static mpfract make_mpfract(int @!p, int @!q)
{@+int @!f; /*the fraction bits, with a leading 1 bit*/
int @!n; /*the integer part of $\vert p/q\vert$*/
bool @!negative; /*should the result be negated?*/
int @!be_careful; /*disables certain compiler optimizations*/
if (p >= 0) negative=false;
else{@+negate(p);negative=true;
  }
if (q <= 0)
  {
#ifdef @!DEBUG
if (q==0) confusion("/");@;
#endif
@;@/
@:this can't happen /}{\quad \./@>
  negate(q);negative=!negative;
  }
n=p/q;p=p%q;
if (n >= 8)
  {@+arith_error=true;
  if (negative) return-el_gordo;@+else return el_gordo;
  }
else{@+n=(n-1)*mpfract_one;
  @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
  if (negative) return-(f+n);@+else return f+n;
  }
}

@ The |@/do@+{| loop here preserves the following invariant relations
between |f|, |p|, and~|q|:
(i)~|0 <= p < q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
$p_0$ is the original value of~$p$.

Notice that the computation specifies
|(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
Let us hope that optimizing compilers do not miss this point; a
special variable |be_careful| is used to emphasize the necessary
order of computation. Optimizing compilers should keep |be_careful|
in a register, not store it in memory.
@^inner loop@>

@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
f=1;
@/do@+{be_careful=p-q;p=be_careful+p;
if (p >= 0) f=f+f+1;
else{@+double(f);p=p+q;
  }
}@+ while (!(f >= mpfract_one));
be_careful=p-q;
if (be_careful+p >= 0) incr(f)

@ The dual of |make_mpfract| is |take_mpfract|, which multiplies a
given integer~|q| by a fraction~|f|. When the operands are positive, it
computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
of |q| and~|f|.

@<Declare \Prote\ arithmetic routines@>=
static int take_mpfract(int @!q, mpfract @!f)
{@+int @!p; /*the fraction so far*/
bool @!negative; /*should the result be negated?*/
int @!n; /*additional multiple of $q$*/
int @!be_careful; /*disables certain compiler optimizations*/
@<Reduce to the case that |f>=0| and |q>0|@>;
if (f < mpfract_one) n=0;
else{@+n=f/mpfract_one;f=f%mpfract_one;
  if (q <= el_gordo/n) n=n*q;
  else{@+arith_error=true;n=el_gordo;
    }
  }
f=f+mpfract_one;
@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
be_careful=n-el_gordo;
if (be_careful+p > 0)
  {@+arith_error=true;n=el_gordo-p;
  }
if (negative) return-(n+p);
else return n+p;
}

@ @<Reduce to the case that |f>=0| and |q>0|@>=
if (f >= 0) negative=false;
else{@+negate(f);negative=true;
  }
if (q < 0)
  {@+negate(q);negative=!negative;
  }

@ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
=\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
$f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
@^inner loop@>

@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
p=mpfract_half; /*that's $2^{27}$; the invariants hold now with $k=28$*/
if (q < mpfract_four)
  @/do@+{if (odd(f)) p=halfp(p+q);@+else p=halfp(p);
  f=halfp(f);
  }@+ while (!(f==1));
else@/do@+{if (odd(f)) p=p+halfp(q-p);@+else p=halfp(p);
  f=halfp(f);
  }@+ while (!(f==1))

@ There's an auxiliary array |randoms| that contains 55 pseudo-random
fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
The global variable |j_random| tells which element has most recently
been consumed.

@<Glob...@>=
static mpfract @!randoms[55]; /*the last 55 random values generated*/
static int @!j_random; /*the number of unused |randoms|*/

@ This array of pseudo-random numbers is set starting from a seed value,
that is kept in the global integer |random_seed|.

@<Global...@>=
static int @!random_seed; /*seed for pseudo-random number generation*/

@ @<Generate all \Prote\ primitives@>=
primitive("randomseed", last_item, random_seed_code);@/
@!@:randomseed\_}{\.{\\randomseed} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case random_seed_code: print_esc("randomseed");@+break;

@ @<Cases for fetching a \Prote\ int value@>=
case random_seed_code: cur_val=random_seed;@+break;

@ We set the initial value from the system time. System integrators
could provide a better source of pseudo-randomness.

Every time a new seed value is assigned, the array has to be
regenerated for consumption by routines explained a little later.

@<\Prote\ initializations@>=
random_seed=sys_time;
init_randoms();

@ Since changing the value must trigger the redefinition of the array,
a dedicated primitive is defined to take the new seed and call
|init_randoms|.

@<Generate all \Prote\ primitives@>=
primitive("setrandomseed", convert, set_random_seed_code);@/
@!@:setrandomseed\_}{\.{\\setrandomseed} primitive@>

@ @<Cases of |convert| for |print_cmd_chr|@>=
case set_random_seed_code: print_esc("setrandomseed");@+break;

@ Once we have retrieved and redefined |random_seed|, we must regenerate
the |randoms| array.

@<Cases of `Scan the argument for command |c|'@>=
case set_random_seed_code: {@+scan_int();random_seed=cur_val;
  init_randoms();
  } @+break;

@ @<Cases of `Print the result of command |c|'@>=
case set_random_seed_code: print_int(random_seed);@+break;

@ To consume a random fraction, the program below will say `|next_random|'
and then it will fetch |randoms[j_random]|.

@d next_random if (j_random==0) new_randoms();
  else decr(j_random)

@<Declare \Prote\ arithmetic routines@>=
static void new_randoms(void)
{@+int @!k; /*index into |randoms|*/
int @!x; /*accumulator*/
for (k=0; k<=23; k++)
  {@+x=randoms[k]-randoms[k+31];
  if (x < 0) x=x+mpfract_one;
  randoms[k]=x;
  }
for (k=24; k<=54; k++)
  {@+x=randoms[k]-randoms[k-24];
  if (x < 0) x=x+mpfract_one;
  randoms[k]=x;
  }
j_random=54;
}

@ To initialize the |randoms| table, we call the following routine.

@<Declare \Prote\ arithmetic routines@>=
static void init_randoms(void)
{@+mpfract @!j, @!jj, @!k; /*more or less random integers*/
int @!i; /*index into |randoms|*/
j=abs(random_seed);
while (j >= mpfract_one) j=halfp(j);
k=1;
for (i=0; i<=54; i++)
  {@+jj=k;k=j-k;j=jj;
  if (k < 0) k=k+mpfract_one;
  randoms[(i*21)%55]=j;
  }
new_randoms();new_randoms();new_randoms(); /*``warm up'' the array*/
}

@ To produce a uniform random number in the range |0 <= u < x| or |0 >= u > x|
or |0==u==x|, given a |scaled| value~|x|, we proceed as shown here.

Note that the call of |mult_integers| will produce the values 0 and~|x|
with about half the probability that it will produce any other particular
values between 0 and~|x|, because it rounds its answers.

@<Declare \Prote\ arithmetic routines@>=
static scaled unif_rand(scaled @!x)
{@+scaled @!y; /*trial value*/
next_random;y=take_mpfract(abs(x), randoms[j_random]);
if (y==abs(x)) return 0;
else if (x > 0) return y;
else return-y;
}

@ This can be used by calling the following primitive.

@<Generate all \Prote\ primitives@>=
primitive("uniformdeviate", convert, uniform_deviate_code);@/
@!@:uniformdeviate\_}{\.{\\uniformdeviate} primitive@>

@ @<Cases of |convert| for |print_cmd_chr|@>=
case uniform_deviate_code: print_esc("uniformdeviate");@+break;

@ It takes one integer argument obviously that will be the argument
to the function.

@<Cases of `Scan the argument for command |c|'@>=
case uniform_deviate_code: {@+scan_int();
  cur_val=unif_rand(cur_val);
  } @+break;

@ @<Cases of `Print the result of command |c|'@>=
case uniform_deviate_code: print_int(cur_val);@+break;

@ The following somewhat different subroutine tests rigorously if $ab$ is
greater than, equal to, or less than~$cd$,
given integers $(a,b,c,d)$. In most cases a quick decision is reached.
The result is $+1$, 0, or~$-1$ in the three respective cases.

@d return_sign(A) {@+return A;
  }

@<Declare \Prote\ arithmetic routines@>=
static int ab_vs_cd(int @!a, int b, int c, int d)
{@+
int @!q, @!r; /*temporary registers*/
@<Reduce to the case that |a,c>=0|, |b,d>0|@>;
loop@+{@+q=a/d;r=c/b;
  if (q!=r)
    if (q > r) return_sign(1)@;@+else return_sign(-1);
  q=a%d;r=c%b;
  if (r==0)
    if (q==0) return_sign(0)@;@+else return_sign(1);
  if (q==0) return_sign(-1);
  a=b;b=q;c=d;d=r;
  }  /*now |a > d > 0| and |c > b > 0|*/
}

@ @<Reduce to the case that |a...@>=
if (a < 0)
  {@+negate(a);negate(b);
  }
if (c < 0)
  {@+negate(c);negate(d);
  }
if (d <= 0)
  {@+if (b >= 0)
    if (((a==0)||(b==0))&&((c==0)||(d==0))) return_sign(0)@;
    else return_sign(1);
  if (d==0)
    if (a==0) return_sign(0)@;@+else return_sign(-1);
  q=a;a=c;c=q;q=-b;b=-d;d=q;
  }
else if (b <= 0)
  {@+if (b < 0) if (a > 0) return_sign(-1);
  if (c==0) return_sign(0)@;else return_sign(-1);
  }

@ Finally, a normal deviate with mean zero and unit standard deviation
can readily be obtained with the ratio method (Algorithm 3.4.1R in
{\sl The Art of Computer Programming\/}).

@<Declare \Prote\ arithmetic routines@>=
static scaled norm_rand(void)
{@+int @!x, @!u, @!l; /*what the book would call $2^{16}X$, $2^{28}U$,
  and $-2^{24}\ln U$*/
@/do@+{
  @/do@+{next_random;
  x=take_mpfract(112429, randoms[j_random]-mpfract_half);
     /*$2^{16}\sqrt{8/e}\approx 112428.82793$*/
  next_random;u=randoms[j_random];
  }@+ while (!(abs(x) < u));
x=make_mpfract(x, u);
l=139548960-m_log(u); /*$2^{24}\cdot12\ln2\approx139548959.6165$*/
}@+ while (!(ab_vs_cd(1024, l, x, x) >= 0));
return x;
}

@ This can be used by calling the following primitive.

@<Generate all \Prote\ primitives@>=
primitive("normaldeviate", convert, normal_deviate_code);@/
@!@:normaldeviate\_}{\.{\\normaldeviate} primitive@>

@ @<Cases of |convert| for |print_cmd_chr|@>=
case normal_deviate_code: print_esc("normaldeviate");

@ @<Cases of `Scan the argument for command |c|'@>=
case normal_deviate_code: cur_val=norm_rand();

@ @<Cases of `Print the result of command |c|'@>=
case normal_deviate_code: print_int(cur_val);

@*1 DVI related primitives.

These primitives are related to positions in the DVI output.

The \TeX\ and DVI system coordinates relate to an origin that is at the
upper left corner. The \TeX\ coordinates are computed relative to an
origin that has $(0,0)$ coordinates. Coordinates grow then rightward and
downward. This is the {\sl page} coordinates relative to what is
typeset (what \TeX\ is dealing with).

But this typesetting material has to be put on what we will call {\sl
paper}. The material put into shape by \TeX\ is put on the paper. On
this paper, where will be put the \TeX\ origin? It is considered to be
$1in$ at the right and $1in$ down from the upper left corner of the
paper (see m.590, alinea 2).

@d DVI_std_x_offset 4736286 /*1 inch in sp*/
@d DVI_std_y_offset 4736286 /*1 inch in sp*/

@ But the paper size is not specified in the DVI file and is not being
dealt with by \TeX.

In order to have a common reference point, and since the \.{\\lastxpos}
and \.{\\lastypos} primitives originated in pdf\TeX, these two
primitives give positions, in scaled points, relative to the lower left
corner of the paper.

Hence the need, for these primitive, to define the paper size, with the
(misnamed) \.{\\pagewidth} and \.{\\pageheight}.

\.{\\pagewidth} and \.{\\pageheight} are dimension parameters,
initialized to $0$ by the generic \TeX\ code.

@<Generate all \Prote\ primitives@>=
primitive("pagewidth", assign_dimen, dimen_base+page_width_code);@/
@!@:pagewidth\_}{\.{\\pagewidth} primitive@>
primitive("pageheight", assign_dimen, dimen_base+page_height_code);@/
@!@:pageheight\_}{\.{\\pageheight} primitive@>

@ When instructed to, the \.{h} and \.{v} last values are transformed,
in the coordinates system defined above and saved in the global
variables |last_saved_xpos| and |last_saved_ypos|. They are
initialized to $0$ and we do not make any verification that a
call to the \.{\\savepos} primitive---to come---has been made before
retrieving their values.

@<Global...@>=
static scaled @!last_saved_xpos, last_saved_ypos; /*last (x,y) DVI pos saved*/

@ @<\Prote\ initializations@>=
last_saved_xpos=0;last_saved_ypos=0;

@ @<Set |last_saved_xpos| and |last_saved_ypos| with transformed coordinates@>=
last_saved_xpos=cur_h+DVI_std_x_offset;
last_saved_ypos=page_height-(cur_v+DVI_std_y_offset);

@ @<Generate all \Prote\ primitives@>=
primitive("lastxpos", last_item, last_xpos_code);@/
@!@:lastxpos\_}{\.{\\lastxpos} primitive@>
primitive("lastypos", last_item, last_ypos_code);@/
@!@:lastypos\_}{\.{\\lastypos} primitive@>

@ @<Cases of |last_item| for |print_cmd_chr|@>=
case last_xpos_code: print_esc("lastxpos");@+break;
case last_ypos_code: print_esc("lastypos");@+break;

@ @<Cases for fetching a \Prote\ int value@>=
case last_xpos_code: cur_val=last_saved_xpos;@+break;
case last_ypos_code: cur_val=last_saved_ypos;

@ |last_saved_xpos| and |last_saved_ypos| are only defined when
instructed to by the call the the \.{\\savepos} primitive. Since the
real work has to be done at \.{shipout} time, it is a case to be treated
like the \.{\\special} primitive, that is it belongs to the
\.{extension} class.

We will add something more in the handling of the primitive: it will
insert a \.{whatsit} in the DVI file so that one, using the program
|dvitype|, could retrieve more than one {\it hic}. So there is a counter
incremented whenever the primitive is called.

@<Global...@>=
static int last_save_pos_number; /*identifying the order of the call*/

@ @<\Prote\ initializations@>=
last_save_pos_number=0; /*i.e. none*/

@ @<Generate all \Prote\ primitives@>=
primitive("savepos", extension, save_pos_code);@/
@!@:savepos\_}{\.{\\savepos} primitive@>

@ @<Cases of |extension| for |print_cmd_chr|@>=
case save_pos_code: print_esc("savepos");@+break;

@ @<Cases for |do_extension|@>=
case save_pos_code: @<Implement \.{\\savepos}@>@;@+break;

@ We need the basic two words node, since we don't pass any parameter
and it is just an instruction to do something. So the \.{whatsit} node
is just the call.

@<Implement \.{\\savepos}@>=
{@+new_whatsit(save_pos_code, small_node_size);write_stream(tail)=null;
  write_tokens(tail)=null;
  }

@ @<Cases for displaying the |whatsit| node@>=
case save_pos_code: print_esc("savepos");@+break;

@ @<Cases for making a partial copy of the whatsit node@>=
case save_pos_code: {@+r=get_node(small_node_size);
  words=small_node_size;
  } @+break;

@ @<Cases for wiping out the whatsit node@>=
case save_pos_code: free_node(p, small_node_size);@+break;

@ So, after these trivial initializations, what will we effectively do?
When the following procedure will be called, we define |last_saved_xpos|,
|last_saved_ypos|, increment |last_save_pos_number|, and a |warning|
followed by three
|key==value| space separated definitions as a \.{\\special}, the first
being prefixed by the string |__PROTE_| (shall be considered a reserved
prefix) and the string |SAVEPOS_|, equal to the index of the call, and
the |XPOS| and |YPOS| definitions.

This is obviously, from the previous description, a variation around
|special_out|.

@<Declare procedures needed in |out_what|@>=
static void save_pos_out(pointer @!p)
{@+int old_setting; /*holds print |selector|*/
int @!k; /*index into |str_pool|*/
synch_h;synch_v;incr(last_save_pos_number);
@<Set |last_saved_xpos| and |last_saved_ypos|...@>@;
old_setting=selector;selector=new_string;
print("warning __PROTE_");print("SAVEPOS");print_char('=');
print_int(last_save_pos_number);print_char(' ');
print("XPOS");print("=");print_int(last_saved_xpos);print_char(' ');
print("YPOS");print("=");print_int(last_saved_ypos);
selector=old_setting;
str_room(1); /*abort if probably overflowed and truncated*/
dvi_out(xxx1);dvi_out(cur_length); /*it's less than 256*/
for (k=str_start[str_ptr]; k<=pool_ptr-1; k++) dvi_out(so(str_pool[k]));
pool_ptr=str_start[str_ptr]; /*forget the not commited tentative string*/
}

@ @<Cases for |out_what|@>=
case save_pos_code: save_pos_out(p);@+break;


@* Hi\TeX.
In the following we present macros, variables, and routines that
implement the various features that have been used above to replace
\TeX's native behavior.

@ Following the implementation of other engines,
the new engine returns a version number as an integer
extending the cases for |last_item|. Since the additional
primitives that we define are specific to the \HINT\ format,
we return major and minor version of the \HINT\ file
format that this program will generate.

@d HINT_version_code (eTeX_last_last_item_cmd_mod+7) /* \.{\\HINTversion} */
@d HINT_minor_version_code (eTeX_last_last_item_cmd_mod+8) /* \.{\\HINTminorversion} */

@ Now this new primitive needs its implementation.

@<Cases of |last_item| for |print_cmd_chr|@>=
case HINT_version_code: print_esc("HINTversion");@+break;
case HINT_minor_version_code: print_esc("HINTminorversion");@+break;

@ @<Cases for fetching a \Prote\ int value@>=
case HINT_version_code: cur_val=HINT_VERSION;@+break;
case HINT_minor_version_code: cur_val=HINT_MINOR_VERSION;@+break;


@ The implementation reuses code that has been written as part of
the \HINT\  file format specification; therefore we start with three
include files containing the necessary declarations.

@<Header files and function declarations@>=
#include "hierror.h"
#include "hiformat.h"
#include "hiput.h"

@ @p
@<Hi\TeX\ macros@>@;
@<Hi\TeX\ variables@>@;
@<Hi\TeX\ function declarations@>@;

@<Hi\TeX\ auxiliary routines@>@;

@<Hi\TeX\ routines@>@;

@  This is a list of forward declarations for all the functions
and variables that are used above but are defined below.


 @<Forward declarations@>=
static void hout_allocate(void);
static void hint_open(void);
static void hint_close(void);

static void hyphenate_word(void);
static void hline_break(int final_widow_penalty);
static void execute_output(pointer p);
static void hout_node(pointer p);

static int hget_stream_no(int i);
static void hfinish_stream_group(void);
static void hfinish_page_group(void);
static void hfinish_stream_before_group(void);
static void hfinish_stream_after_group(void);
static void hfinish_outline_group(void);


static pointer new_xdimen(scaled w, scaled h, scaled v);
static pointer new_baseline_node(pointer bs, pointer ls, scaled lsl);
static void print_baseline_skip(int i);
static pointer new_set_node(void);
static pointer new_setstream_node(eight_bits n);
static pointer new_setpage_node(eight_bits k, str_number n);
static pointer new_disp_node(void);
static pointer new_image_node(str_number n, str_number a, str_number e);
static void new_param_node(eight_bits t, eight_bits n, int v);


@*1 Creating new whatsit nodes.
The following functions create nodes for paragraphs, displayed equations, baseline skips,
hpack nodes, vpack nodes, hset nodes, and vset nodes.

@<Hi\TeX\ routines@>=
static pointer new_par_node(void)
{ @+ pointer p;
  p=get_node(par_node_size);
  type(p)=whatsit_node;
  subtype(p)=par_node;
  par_params(p)= par_list(p)= par_extent(p)=null;
  depth(p)=0;
  return p;
}


static pointer new_disp_node(void)
{ @+  pointer p;
  p=get_node(disp_node_size);
  type(p)=whatsit_node;
  subtype(p)=disp_node;
  display_params(p)= display_formula(p)= display_eqno(p)=null;
  return p;
}

static pointer new_baseline_node(pointer bs, pointer ls, scaled lsl)
{  @+pointer p;
  p=get_node(baseline_node_size);
  type(p)=whatsit_node;
  subtype(p)=baseline_node;
  baseline_node_no(p)=hget_baseline_no(bs, ls, lsl);
  return p;
}

static pointer new_pack_node(void)
{  @+pointer p;
  p=get_node(pack_node_size);
  type(p)=whatsit_node;
  subtype(p)=hpack_node;
  width(p)=depth(p)=height(p)=shift_amount(p)=0;
  pack_limit(p)=max_dimen;
  pack_extent(p)= list_ptr(p)=null;
  return p;
}

static pointer new_set_node(void)
{  @+pointer p;
  p=get_node(set_node_size);
  type(p)=whatsit_node;
  subtype(p)=hset_node;
  width(p)=depth(p)=height(p)=shift_amount(p)=set_stretch(p)=set_shrink(p)=0;
  set_extent(p)= list_ptr(p)=null;
  return p;
}


@ When creating a new image node, we could use the |kpse_find_tex|
function to get image files from the same directory, where we also
get the \TeX\ input files. Here we use the simpler method from plain \TeX.

@<Hi\TeX\ routines@>=
static pointer new_image_node( str_number n, str_number a, str_number e)
{ pointer p;
  int i;
  char *fn;
  int l;

  p=get_node(image_node_size);type(p)=whatsit_node;subtype(p)=image_node;
  image_name(p)=n;
  image_area(p)=a;
  image_ext(p)=e;
  fn=hfile_name(n,a,e);
  i=hnew_file_section(fn);
  image_no(p)=i;
  image_xwidth(p)=image_xheight(p)=image_alt(p)=null;
  image_aspect(p)=0;
  return p;
}

@*1 Creating parameter nodes.
The |new_param_node| function
adds parameter nodes to the current list.
It should be possible to check the parameter values against those
stored in the definition section and remove the ones that
are unchanged. It would make the parameter lists shorter, saving
some time when setting and restoring them later.
There is probably not much savings in memory space, because
most of the time a reference number is found for the parameter list.


@<Hi\TeX\ routines@>=
static void new_param_node(uint8_t t, uint8_t n, int v)
{ @+pointer p;
  @<Create the parameter node@>@;
  @<Initialize the parameter node@>@;
  link(p)=link(temp_head);
  link(temp_head)=p;
}

@ @<Create the parameter node@>=
  p=get_node(param_node_size);
  type(p)=whatsit_node;
  subtype(p)=param_node;
  param_type(p)=t;
  param_no(p)=n;

@ @<Initialize the parameter node@>=
  if (t==int_type) param_value(p).i=v;
  else if (t==dimen_type) param_value(p).sc=v;
  else  if (t==glue_type)
  {@+ param_value(p).i=v;add_glue_ref(param_value(p).i); @+}
  else
  { free_node(p, param_node_size);
    QUIT("Undefined parameter type %d",t);
  }

@*1 Hyphenation.
While the breaking of a paragraph into lines must be postponed because
{\tt hsize} is not known, hyphenation should be done as part of Hi\TeX\
because we want to keep hyphenation out of the viewer.  Therefore
Hi\TeX\ will do hyphenation for all words within a paragraph.

There is a fine point to observe here: \TeX\ will consider a word as
a candidate for automatic hyphenation only if the world ``follows'' after a
glue. (For the exact rules, see Appendix H of the \TeX-book.)
As a consequence, \TeX\ usually does not submit the first word of a
paragraph to its hyphenation routine.
Viewing paragraphs that start with a lengthy word on a narrow display
therefore often look more unsightly than necessary: the long word sticks out
into the right margin as much as it can. To remedy this situation,
Hi\TeX\ has a ``{\tt [-no]-hyphenate-first-word}'' option.
If set, which is the default, Hi\TeX\ will deviate from
\TeX's rules and submit the first word of a paragraph
to the hyphenation algorithm.

The next problem arises from \TeX's multipass approach to line breaking
and the attempt to have Hi\TeX\ choose exactly the same line breaks as
\TeX\ does:
\TeX\ distinguishes between discretionary breaks inserted by the author of a
text, and discretionary breaks discovered by the hyphenation routine.
The latter, called here ``automatic'', are used only in pass two and three
of the line breaking routine.

The function |hline_break| follows:


@<Hi\TeX\ routines@>=
static void hline_break(int final_widow_penalty)
{@+ bool auto_breaking; /*is node |cur_p| outside a formula?*/
  pointer r, s ; /*miscellaneous nodes of temporary interest*/
  pointer pp;
  scaled par_max_depth=0;
  bool par_shape_fix=false;
  if (DBGTEX&debugflags)
  { print_ln();print("Before hline_break:\n");
    breadth_max=200;
    depth_threshold=200;
    show_node_list(link(head));print_ln();
  }
  if (dimen_par_hfactor(hsize_code)==0 && dimen_par_vfactor(hsize_code)==0)
  { line_break(final_widow_penalty); /* the easy case */
    return;
  }
  /* Get ready to start line breaking */
  pp=new_par_node();
  par_penalty(pp)=final_widow_penalty;
  if(par_shape_ptr==null)
    par_extent(pp)=new_xdimen(dimen_par(hsize_code),
      dimen_par_hfactor(hsize_code),dimen_par_vfactor(hsize_code));
  else
    @<fix simple use of parshape@>@;
  link(temp_head)=link(head);
  if (is_char_node(tail))
  { tail_append(new_penalty(inf_penalty))@;
    tail_append(new_param_glue(par_fill_skip_code));
  }
  else if (type(tail)!=whatsit_node || subtype(tail)!=disp_node)
  { if (type(tail)!=glue_node) tail_append(new_penalty(inf_penalty))@;
    else
    {@+type(tail)=penalty_node;delete_glue_ref(glue_ptr(tail));
      flush_node_list(leader_ptr(tail));penalty(tail)=inf_penalty;
    }
    link(tail)=new_param_glue(par_fill_skip_code);
  }
  DBG(DBGTEX,"\nCalling line_break:\n"
             "hang_indent=0x%08X hang_after=%d",hang_indent,hang_after);
  if (line_skip_limit!=0)
    DBG(DBGTEX," line_skip_limit=0x%08X",line_skip_limit);
  DBG(DBGTEX," prev_graf=0x%08X",prev_graf);

  init_cur_lang=prev_graf%0200000;
  init_l_hyf=prev_graf/020000000;
  init_r_hyf=(prev_graf/0200000)%0100;
  pop_nest();
  DBG(DBGTEX," prev_graf=0x%08X",prev_graf);

  /* Initialize for hyphenating...*/
#ifdef INIT
  if (trie_not_ready) init_trie();
#endif
  cur_lang=init_cur_lang;l_hyf=init_l_hyf;r_hyf=init_r_hyf;
  if (DBGTEX&debugflags)
  { print_ln();print("Before hyphenation:\n");
    breadth_max=200;
    depth_threshold=200;
    show_node_list(link(temp_head));print_ln();
  }
  auto_breaking=true;
  if (option_hyphen_first && is_char_node(link(temp_head)))
  { pointer p = new_glue(zero_glue);
    link(p)=link(temp_head);
    link(temp_head) =p;
  }
  cur_p=link(temp_head);
  while (cur_p!=null)
  { /*Call |try_break| if |cur_p| is a legal breakpoint...*/
    if (is_char_node(cur_p))
	{ /* Advance |cur_p| to the node following the present string...*/
      do { int f=font(cur_p);
           scaled d = char_depth(f,height_depth(char_info(f,character(cur_p))));
           if (d>par_max_depth) par_max_depth=d;
           cur_p=link(cur_p);
      } while (is_char_node(cur_p));
	  if (cur_p==null) goto done5; /* mr: no glue and penalty at the end */
    }
    switch (type(cur_p))
	{ case whatsit_node:
	    adv_past(cur_p);
		break;
	  case glue_node:
     	if (auto_breaking) /* Try to hyphenate the following word*/
		  hyphenate_word();
        break;
	  case ligature_node:
        break;
	  case disc_node:
		/* Try to break after a discretionary fragment...*/
        r=replace_count(cur_p);s=link(cur_p);
        while (r > 0)
        { decr(r);s=link(s);
        }
          cur_p=s;
		goto done5;
	  case math_node:
	   auto_breaking=(subtype(cur_p)==after);
           break;
          case hlist_node: case vlist_node:
           if (depth(cur_p)>par_max_depth) par_max_depth=depth(cur_p);
           break;
	  default:
		break;
	}
        cur_p=link(cur_p);
done5:;
  }
  if (DBGTEX&debugflags)
  { print_ln();print("After hline_break:\n");
    breadth_max=200;
    depth_threshold=200;
    show_node_list(link(temp_head));print_ln();
  }
  depth(pp)=par_max_depth;
  par_list(pp)=link(temp_head);
  /* adding parameter nodes */
  link(temp_head)=null;

    new_param_node(int_type,pretolerance_code,pretolerance);
    new_param_node(int_type,tolerance_code,tolerance);
    new_param_node(dimen_type,emergency_stretch_code,emergency_stretch);

    new_param_node(int_type,line_penalty_code,line_penalty);
    new_param_node(int_type,hyphen_penalty_code,hyphen_penalty);
    new_param_node(int_type,ex_hyphen_penalty_code,ex_hyphen_penalty);
    new_param_node(int_type,club_penalty_code,club_penalty);
    new_param_node(int_type,widow_penalty_code,widow_penalty);
    new_param_node(int_type,broken_penalty_code,broken_penalty);
    new_param_node(int_type,inter_line_penalty_code,inter_line_penalty);
    new_param_node(int_type,double_hyphen_demerits_code,double_hyphen_demerits);
    new_param_node(int_type,final_hyphen_demerits_code,final_hyphen_demerits);
    new_param_node(int_type,adj_demerits_code,adj_demerits);
    new_param_node(int_type,looseness_code,looseness);

    if (par_shape_fix)
	{ new_param_node(int_type,hang_after_code,0);
          new_param_node(dimen_type,hang_indent_code,second_indent);
	}
    else
	{ new_param_node(int_type,hang_after_code,hang_after);
	  new_param_node(dimen_type,hang_indent_code, hang_indent);
	}

    new_param_node(dimen_type,line_skip_limit_code,line_skip_limit);
    new_param_node(glue_type,line_skip_code,line_skip);
    new_param_node(glue_type,baseline_skip_code,baseline_skip);

    new_param_node(glue_type,left_skip_code,left_skip);
    new_param_node(glue_type,right_skip_code,right_skip);
    new_param_node(glue_type,par_fill_skip_code,par_fill_skip);


  /* |par_shape| is not yet supported */
  par_params(pp)=link(temp_head);
  link(temp_head)=null;
  append_to_vlist(pp);
}

@ Currently Hi\TeX\ dos not implement the parshape feature of \TeX.
The implementation of {\tt \BS list} in \LaTeX\ does, however, depend
on a simple use of parshape where all lines have the same length
and indentation. We cover this special case be using a hanging
indentation and adjusting the paragraph width by the difference
of the normal {\tt \BS hsize} and the given length.

@<fix simple use of parshape@>=
{ last_special_line= info(par_shape_ptr)-1;
  if (last_special_line!=0)
    DBG(DBGTEX,"Warning parshape with n=%d not yet implemented",info(par_shape_ptr));
  second_width= mem[par_shape_ptr+2*(last_special_line+1)].sc;
  second_indent= mem[par_shape_ptr+2*last_special_line+1].sc;

  par_extent(pp)=new_xdimen(second_indent+second_width,
                             par_shape_hfactor,par_shape_vfactor);
  second_width=second_width+ round((double)par_shape_hfactor*hhsize/unity
               +(double)par_shape_vfactor*hvsize/unity);
  par_shape_fix=true;
}

@*1 Links, Labels, and Outlines.
The \HINT\ format knows about labels, links, and outlines.
When generating a short format \HINT\ file, links are part of
the content section, where as labels and outlines are found in
the definition section. Because labels are defined while
writing the content section, the writing of labels and outlines
 must be postponed. For that reason,
we store information about labels and outlines in dynamic arrays,
and map labels, which are identified by a name or a number,
to their index using a dynamic hash table.

We start with two functions that allocate new entries in the
dynamic arrays increasing their size if necessary.
@<Hi\TeX\ auxiliary routines@>=
static int next_label(void)
{ static int label_no=-1;
  static int labels_allocated =0;
  label_no++;
  if (label_no>0xFFFF)
   overflow("labels",0xFFFF);
  if (label_no>=labels_allocated)
  { if (labels_allocated==0)
    { labels_allocated=32; ALLOCATE(labels,labels_allocated,Label); }
    else RESIZE(labels,labels_allocated,Label);
  }
  max_ref[label_kind]=label_no;
  return label_no;
}

static int next_outline(void)
{ static int outlines_allocated =0;
  static int outline_no=-1;
  outline_no++;
  if (outline_no>0xFFFF)
   overflow("outlines",0xFFFF);
  if (outline_no>=outlines_allocated)
  { if (outlines_allocated==0)
    { outlines_allocated=32; ALLOCATE(outlines,outlines_allocated,Outline); }
    else RESIZE(outlines,outlines_allocated,Outline);
  }
  max_outline=outline_no;
  return outline_no;
}
@ While processing the content nodes, access to the labels is provided either
by name or by number through a hash table. We store table entries in linked
lists starting with a reasonably sized table of pointers. This keeps
the fixed costs low and guards against overflow and rapidly increasing
inefficiency. We start with a function to insert a new entry into
the hash table.

@<Hi\TeX\ auxiliary routines@>=
typedef struct hash_entry
{int num; char *nom; uint16_t n; struct hash_entry *next;} HashEntry;
#define LABEL_HASH 1009 /* MIX a prime number */
static HashEntry *label_hash[LABEL_HASH]={NULL};

static int insert_hash(int h, int num, char *nom)
{ HashEntry *e;
  ALLOCATE(e,1,HashEntry);
  e->n= next_label();
  if (nom!=NULL) e->nom=strdup(nom);
  else e->num=num;
  e->next= label_hash[h];
  label_hash[h]=e;
  if (e->nom!=NULL)
    DBG(DBGLABEL,"Creating new label *%d: name='%s'\n",e->n,e->nom);
  else
    DBG(DBGLABEL,"Creating new label *%d: num=%d\n",e->n,e->num);
  return e->n;
}
@ There are two cases: finding a label by name or by number.
We start with the simpler case where the number is given.
The process is straight forward:

@<Hi\TeX\ auxiliary routines@>=
static int find_label_by_number(int p)
{ unsigned int h=(unsigned int)p%LABEL_HASH;
  HashEntry *e= label_hash[h];
  while (e!=NULL)
    if (e->nom==NULL && e->num==p) return e->n;
    else e=e->next;
  return insert_hash(h,p,NULL);
}
@ To look up a label by its name as given by a token list,
we prepare ourselves by implementing two functions:
one to extract the character codes from the token list
forming the ``name''
and one to compute the hash value for a name.
The routine to find the label by name is then equivalent to the
routine we have just seen. Given a pointer |p| to
either a label, a link, or an outline node, the function |find_label|
returns the correct label reference.
Currently, we limit label names to at most 255 significant byte.

@<Hi\TeX\ auxiliary routines@>=
static char *tokens_to_name(pointer p)
{ static char s[256];
  int i=0;
  bool skip_space=0;
  while (i<255 && p!=0)@/
  { int m = info(p)/0400;@+
    int c = info(p)%0400;
    if (m==spacer && ! skip_space) @/
    { s[i++]=' '; skip_space=true;@+}
    else if ((m==letter || m==other_char) && ' '< c && c < 0x7F)@/
    {@+ s[i++]=c; skip_space=false;@+}
    p=link(p);
  }
  s[i]=0;
  return s;
}

static unsigned int name_hash(char *s)
{ unsigned int h=0;
  while (*s!=0)
    h=(h<<2)+*(s++);
  return h;
}

static int find_label_by_name(pointer p)
{ char *s=tokens_to_name(link(p));
  unsigned int h=name_hash(s)%LABEL_HASH;
  HashEntry *e= label_hash[h];
  while (e!=NULL)
    if (e->nom!=NULL && strcmp(e->nom,s)==0) return e->n;
    else e=e->next;
  return insert_hash(h,0,s);
}
@ We combine both ways of finding a label reference in the following function:

@<Hi\TeX\ auxiliary routines@>=
static int find_label(pointer p)
{@+ if (label_has_name(p)) return find_label_by_name(label_ptr(p));
  else return find_label_by_number(label_ptr(p));
}
@
After these preparations, we can implement the functions needed
when labels, links, and outlines are delivered to the page builder.

We start with looking at the labels:
When a labels is defined, the current position is recorded.
Further labels are linked together in order of descending positions,
to allow the efficient adjustment of label positions when
moving lists.

@<Hi\TeX\ auxiliary routines@>=
static void new_label(pointer p)
{ int n=find_label(p);
  if (n!=zero_label_no && labels[n].where!=LABEL_UNDEF)
  { MESSAGE("WARNING: Ignoring duplicate definition of label ");
    if (label_has_name(p)) MESSAGE("name %s\n",tokens_to_name(link(label_ptr(p))));
    else  MESSAGE("num %d\n",label_ptr(p));
  }
  else
  { labels[n].where=label_where(p);
    labels[n].pos=hpos-hstart;
    labels[n].pos0=hpos0-hstart;
    labels[n].next=first_label;
    first_label=n;
    DBG(DBGLABEL,"Defining label *%d: pos=0x%x\n",n,labels[n].pos);
  }
}
@ When a link node is written to the output, we can check
that start links and end links properly match.

@<Hi\TeX\ auxiliary routines@>=
static int last_link=-1;
static int new_start_link(pointer p)
{ int n=find_label(p);
  if (last_link>=0)
    fatal_error("Missing end link before start link");
  labels[n].used=true;
  last_link=n;
  DBG(DBGLABEL,"New link to label *%d\n",n);
  return n;
}

static int new_end_link(void)
{ int n;
  if (last_link<0)
    fatal_error("Missing start link before end link");
  n=last_link;
  last_link=-1;
  return n;
}
@ For outline nodes, we use the next two functions.
The node list representing the title can be an arbitrary
list in horizontal mode.
In general, the front end should be able to render such a
horizontal list, but at least it should be able to extract
the UTF8 character codes and display those.

@<Hi\TeX\ auxiliary routines@>=
static void new_outline(pointer p)
{ int r=find_label(p);
  int m=next_outline();
  List l;
  uint32_t pos;
  pos=hpos-hstart;
  l.t=TAG(list_kind,b001); /* this eventually should be a text */
  hout_list_node(outline_ptr(p),pos,&l);
  hset_outline(m,r,outline_depth(p),pos);
  DBG(DBGLABEL,"New outline for label *%d\n",r);
}
@ One last function is needed which is called when the |outline_group| ends
 that was started after scanning the {\tt\BS HINToutline} primitive.
@<Hi\TeX\ routines@>=
static void hfinish_outline_group(void)
{ pointer s=link(head);
  unsave();
  pop_nest();
  outline_ptr(tail)=s;
}
@*1 The New Page Builder.
Here is the new |build_page| routine of Hi\TeX:

@<Hi\TeX\ routines@>=
static void build_page(void)
{ static bool initial=true;
  if(link(contrib_head)==null||output_active)return;
  do
  { pointer p= link(contrib_head);
    pointer q=null; /* for output nodes */
    pointer *t=NULL; /*the tail of the output nodes*/
    bool eject=(type(p)==penalty_node && penalty(p)<=eject_penalty);
    int page_penalty=0;
    if (eject) page_penalty=penalty(p);
    @<Record the bottom mark@>@;
    @<Suppress empty pages if requested@>@;
    link(contrib_head)= link(p);link(p)= null;
    if (link(contrib_head)==null)
    { @<Make the contribution list empty by setting its tail to |contrib_head|@>;
    }
    update_last_values(p);
    @<Freeze the page specs if called for@>@;
    page_goal=0x3fffffff; /* maximum dimension */
    t=collect_output(&p,&q);
    if (p!=null)
    { hpos0=hpos; hout_node(p); }
recycle_p:
    flush_node_list(p);
    if (q!=null||(eject&&page_contents>=box_there))
    {
      geq_word_define(int_base+output_penalty_code, page_penalty);
empty_output:
      @<Fire up the output routine for |q|@>@;
    }
  } while(link(contrib_head)!=null);
  DBG(DBGBUFFER,"after build page dyn_used= %d\n", dyn_used);
}
@ When the |page_contents| changes from |empty| to not |empty|,
the function |hint_open| will open the output file.
While the output file is needed only much later in the
function |hput_hint|, this place was chosen to match,
as close as possible, the behavior of the
original \TeX.

@<Freeze the page specs if called for@>=
if (page_contents<box_there)
{ switch(type(p))
  { case whatsit_node:
    if (subtype(p)==baseline_node) goto recycle_p;
    else if (subtype(p)!=hset_node && subtype(p)!=vset_node &&
	subtype(p)!=hpack_node && subtype(p)!=vpack_node &&
        subtype(p)!=par_node &&  subtype(p)!=disp_node &&
	subtype(p)!=image_node && subtype(p)!=align_node)
        break; /* else fall through */
    case hlist_node: case vlist_node: case rule_node:
      if (page_contents==empty)
      { hint_open();
        freeze_page_specs(box_there);
        hfix_defaults();
      }
      else page_contents=box_there;
      break;
    case ins_node:
      if (page_contents==empty)
      { hint_open();
        freeze_page_specs(inserts_only);
        hfix_defaults();
      }
      break;
    case kern_node:
    case penalty_node:
    case glue_node: goto recycle_p;
    default:
      break;
  }
}
@ Users of \TeX\ often force the generation of empty pages for example to start
a new chapter on a right hand page with an odd page number.
This makes sense for a printed book but not for a screen reader where
there are no page numbers nor right or left hand pages.
Using a screen reader, empty pages are just annoying.
The common way to achieve an empty page is the use of {\tt \BS eject}
followed by a an empty box, a fill glue, and another  {\tt \BS eject}.

The following code tries to detect such a sequence of nodes and will eliminate
them if requested. To do so, we delay the output of nodes after
an eject penalty until either something gets printed on the page or
another eject penalty comes along. To override the delayed output,
a penalty less or equal to a double |eject_penalty| can be used.
The function |its_all_over| is an example for such a use.
It seems that the eliminated nodes do not contain anything of value
for the output routine, but the output routine might have other
resources, like the first column of a two column page, which it might
put back on the contribution list. So it is wise to call the output routine
and give it a chance.

@<Suppress empty pages if requested@>=
if (option_no_empty_page &&
    ((eject && penalty(p)>2*(eject_penalty)) ||
     (page_contents==empty && !is_visible(p))))
{ pointer r, prev_r = p;
  while (true)
  { r =link(prev_r);
    if (r==null) return;
    else if (is_visible(r)) break;
    else if (type(r)==penalty_node && penalty(r)<=eject_penalty)
    { q=p;
      link(prev_r)=null;
      link(contrib_head)=r;
      DBG(DBGPAGE,"Eliminating empty page preceding penalty %d\n",penalty(r));
      geq_word_define(int_base+output_penalty_code, penalty(r));
      goto empty_output;
    }
    prev_r=r;
  }
}

@ It remains to test a node for visibility. This is a quick (and dirty) test
because the test will not look inside boxes; it simply tests whether
the list pointer is |null|. We consider an |open_node|, |write_node|,
|close_node|, |label_node|, or |outline_node| as visible
because deleting them could cause unwanted
side effects. Possibly it would be better to regard them as invisible,
but still pass them on to the rest of the output routine.

@<Hi\TeX\ auxiliary routines@>=
static bool is_visible(pointer p)
{ switch (type(p))
  { case penalty_node:
    case kern_node:
    case glue_node:
    case mark_node:
      return false;
    case ins_node:
      return ins_ptr(p)!=null;
    case adjust_node:
      return adjust_ptr(p)!=null;
    case hlist_node:
    case vlist_node:
      return list_ptr(p)!=null;
    case whatsit_node:
      if (subtype(p)==image_node || subtype(p)==align_node || subtype(p)==disp_node ||
          subtype(p)==open_node ||subtype(p)==write_node ||subtype(p)==close_node ||
          subtype(p)==label_node || subtype(p)==outline_node )
        return true;
      else if (subtype(p)==hset_node || subtype(p)==vset_node ||
	       subtype(p)==hpack_node || subtype(p)==vpack_node)
        return list_ptr(p)!=null;
      else if (subtype(p)==par_node)
        return par_list(p)!=null;
      else
        return false;
    default: return true;
  }
}

@ Because we will need this procedure in the |its_all_over| function.
We add a forward declaration

@<Forward declarations@>=
static bool is_visible(pointer p);


@ An important feature of the new routine is the call to
|hfix_defaults|.  It occurs when the first ``visible mark'' is placed
in the output. At that point we record the current values of \TeX's
parameters which we will use to generate the definition section of the
\HINT\ file.  It is still possible to specify alternative values for
these parameters by using parameter lists but only at an additional
cost in space and time.

Furthermore, this is the point where we freeze the definition of
|hsize| and |vsize|. The current values will be regarded as the sizes
as recommended by the author.

From then on |hsize| and |vsize| are replaced by the equivalent
extended dimensions and any attempt to modify them on the global level
will be ignored. |hhsize| and |hvsize| will contain the sizes that a
regular \TeX\ engine would use.

We also compute the total page size from the page template defined
last.


@<Compute the page size@>=
{ pointer p;
  p=link(setpage_head);
  if (p==null)
  { scaled margin;
    if (hhsize<hvsize) margin=hhsize; else margin=hvsize;
    margin = margin/6 -6*unity;
    if (margin<0) margin=0;
    page_h=hhsize+2*margin;
    page_v=hvsize+2*margin;
  }
  else
  { pointer x;
    x=setpage_height(p);
    page_v=xdimen_width(x)
     +round(((double)xdimen_hfactor(x)*hhsize+(double)xdimen_vfactor(x)*hvsize)/unity);
    x=setpage_width(p);
    page_h=xdimen_width(x)
     +round(((double)xdimen_hfactor(x)*hhsize+(double)xdimen_vfactor(x)*hvsize)/unity);
  }
}
@ @<Hi\TeX\ variables@>=
static scaled page_h, page_v;
@ @<Switch |hsize| and |vsize| to extended dimensions@>=
  hsize=0; vsize=0;
  dimen_par_hfactor(hsize_code)= unity;
  dimen_par_vfactor(vsize_code)= unity;
@ There is one point where we can not simply forgo the
output routine: \.{\\write} commands. Unless the \.{\\write} is
decorated with an \.{\\immediate}, the whatsit node generated from it
will lay dormant in the contribution list (and later the page) until
the output routine passes it as part of the finished page to the |ship_out|
routine. There it will come to life and write its token list out.
The whatsit nodes from \.{\\openout} and \.{\\closeout} commands
behave similarly.

It is not possible to ignore the output routine
because the output routine may change the environment in which the
token list of a \.{\\write} will be expanded.
For example \LaTeX\ redefines \.{\\protect} to be \.{\\noexpand}.
As a consequence we have to implement a simplified version
of \TeX's usual process to fire up the output routine.

The |collect_output| routine takes a node list |*p|,
removes the output nodes and appends them to |*q|, with |q|
always pointing to the tail pointer.

@<Hi\TeX\ auxiliary routines@>=
static pointer *collect_output(pointer *p, pointer *q)
{ while (*p!=null)
  { @<Collect output nodes from |*p|@>@;
    p=&(link(*p));
  }
  return q;
}
@ \TeX\ does not permit output nodes in leaders, so we don't check them;
further we do not check the pre- and post-break lists of
discretionary breaks.

@<Collect output nodes from |*p|@>=
if (!is_char_node(*p))
{ pointer r=*p;
  switch (type(r))
  {
#if 0
    case glue_node: /* possibly the output routine might like these */
    case penalty_node:
      { *p=link(r); link(r)=null; *q=r; q=&(link(r));
        if (*p==null) return q;
      }
      break;
#endif
    case whatsit_node:
      switch (subtype(r))
      { case open_node: case write_node: case close_node:
        case special_node: case latespecial_node:
        { *p=link(r); link(r)=null; *q=r; q=&(link(r));
          if (*p==null) return q;
        }
          break;
        case par_node: q=collect_output(&par_list(r),q);
          break;
        case disp_node:
          if (display_left(r)) q=collect_output(&display_eqno(r),q);
          q=collect_output(&display_formula(r),q);
          if (!display_left(r)) q=collect_output(&display_eqno(r),q);
          break;
        case hset_node: case vset_node: case hpack_node: case vpack_node:
          q=collect_output(&list_ptr(r),q);
          break;
        case align_node:
          q=collect_output(&align_list(r),q);
          break;
        default: break;
      }
      break;
    case hlist_node: case vlist_node:
      q=collect_output(&list_ptr(r),q);
      break;
    case ins_node:
      q=collect_output(&ins_ptr(r),q);
      break;
    case adjust_node:
      q=collect_output(&adjust_ptr(r),q);
      break;
    default: break;
  }
}


@ @<Fire up the output routine for |q|@>=
{ pointer r=new_null_box();type(r)=vlist_node;
  subtype(r)=0;shift_amount(r)=0;height(r)=hvsize;
  if (t==NULL) list_ptr(r)=null; /* or |new_glue(fill_glue);| ?  */
  else { list_ptr(r)=q;  *t=new_glue(fill_glue); }
  flush_node_list(box(255)); /* just in case \dots */
  box(255)=r;
  if (output_routine!=null)
  {@+output_active=true;
    if (bot_mark!=null)
    {@+if (top_mark!=null) delete_token_ref(top_mark);
      top_mark=bot_mark;add_token_ref(top_mark);
      if (first_mark!=null) delete_token_ref(first_mark);
      first_mark=bot_mark;add_token_ref(first_mark);
    }
    DBG(DBGPAGE,"Starting the output routine (output penalty=%d)\n",output_penalty);
    push_nest();mode=-vmode;prev_depth=ignore_depth;mode_line=-line;
    begin_token_list(output_routine, output_text);
    new_save_level(output_group);normal_paragraph();
    scan_left_brace();
    return;
  }
  else
  {
    ship_out(box(255)); box(255)=null;
  }
}

@ The |ship_out| routine just calls |execute_output|.
Because the output routine might have added plenty
of decorations around the list of output nodes,
we have to find them again.

@<Hi\TeX\ routines@>=
static void execute_output(pointer p)
{@+while (p!=null)
  { @<Execute output nodes from |p|@>@;
    p=link(p);
  }
}
@ @<Execute output nodes from |p|@>=
if (!is_char_node(p))
  switch (type(p))
  { case whatsit_node:
      switch (subtype(p))
      { case open_node: case write_node: case close_node:
        case special_node: case latespecial_node:
          out_what(p);
          break;
        case par_node: execute_output(par_list(p));
          break;
        case disp_node:
          if (display_left(p)) execute_output(display_eqno(p));
          execute_output(display_formula(p));
          if (!display_left(p)) execute_output(display_eqno(p));
          break;
        case hset_node: case vset_node: case hpack_node: case vpack_node:
          execute_output(list_ptr(p));
          break;
        case align_node:
          execute_output(align_list(p));
          break;
        default: break;
      }
      break;
    case hlist_node: case vlist_node:
      execute_output(list_ptr(p));
      break;
    case ins_node:
      execute_output(ins_ptr(p));
      break;
    case adjust_node:
      execute_output(adjust_ptr(p));
      break;
    default: break;
  }
@ Invoking the user's output routine is a risky endeavor
if marks are not initialized properly. In our case
we will have always |top_mark| equal to |first_mark| and
|bot_mark|.

@<Record the bottom mark@>=
if (type(p)==mark_node)
{ if (bot_mark!=null) delete_token_ref(bot_mark);
  bot_mark=mark_ptr(p);add_token_ref(bot_mark);
}



@*1 Replacing {\tt hpack} and {\tt vpack}.
The following routines extend \TeX's original routines. They check for
any dependency of the box size on {\tt hsize} or {\tt vsize} and
create an hset node or hpack node if such a dependency was found.


@<Hi\TeX\ routines@>=

static pointer hpack(pointer p,scaled w, scaled hf, scaled vf, small_number m)
{
  pointer r; /*the box node that will be returned*/
  pointer q; /*trails behind |p|*/
  scaled h,d,x; /*height, depth, and natural width*/
  scaled s; /*shift amount*/
  pointer g; /*points to a glue specification*/
  glue_ord o, sto, sho; /*order of infinity*/
  internal_font_number f; /*the font in a |char_node|*/
  four_quarters i;  /*font information about a |char_node|*/
  eight_bits hd; /*height and depth indices for a character*/
  bool repack=false; /* whether repacking is necessary */
  last_badness= 0;r= get_node(box_node_size);type(r)= hlist_node;
  subtype(r)= min_quarterword;shift_amount(r)= 0;
  q= r+list_offset;link(q)= p;
  h= 0;@<Clear dimensions to zero@>;
  while(p!=null) {
reswitch:
    while(is_char_node(p))
      @<Incorporate character dimensions into the dimensions of the hbox that will contain~it,
then move to the next node@>;
    if (p!=null)
    { switch(type(p)){
      case hlist_node: case vlist_node: case rule_node: case unset_node: case unset_set_node: case unset_pack_node:
        @<Incorporate box dimensions into the dimensions of the hbox that will contain~it@>@;@+break;
      case ins_node: case mark_node: case adjust_node: if (adjust_tail!=null)
        @<Transfer node |p| to the adjustment list@>@;@+break;
      case glue_node: @<Incorporate glue into the horizontal totals@>@;@+break;
      case kern_node: case math_node: x=x+width(p);@+break;
      case ligature_node: @<Make node |p| look like a |char_node| and |goto reswitch|@>@;
      case whatsit_node: @<Incorporate the various extended boxes into an hbox@>@;@+break;
      default:do_nothing;
      }
      p= link(p);
    }
  }

  if (adjust_tail!=null) link(adjust_tail)= null;
  height(r)= h;depth(r)= d;
  if (repack) /* convert to a |hpack_node| */
  { q=new_pack_node();
    height(q)=h;
    depth(q)=d;
    width(q)=x;
    subtype(q)=hpack_node;
    list_ptr(q)=list_ptr(r);
    list_ptr(r)=null;
    free_node(r, box_node_size);
    pack_limit(q)=max_dimen; /* no limit, not used */
    pack_m(q)=m;
    pack_extent(q)=new_xdimen(w,hf,vf);
    return q;
  }
  else if (hf!=0 || vf!=0 )  /* convert to a hset node */
  { if (total_stretch[filll]!=0)sto= filll;
    else if (total_stretch[fill]!=0)sto= fill;
    else if (total_stretch[fil]!=0)sto= fil;
    else sto= normal;

    if (total_shrink[filll]!=0)sho= filll;
    else if (total_shrink[fill]!=0)sho= fill;
    else if (total_shrink[fil]!=0)sho= fil;
    else sho= normal;
    q=new_set_node();
    subtype(q)=hset_node;
    height(q)=h;
    depth(q)=d;
    width(q)=x; /* the natural width */
    shift_amount(q)=shift_amount(r);
    list_ptr(q)=list_ptr(r);
    list_ptr(r)=null;
    free_node(r, box_node_size);
    if (m==exactly)
      set_extent(q)=new_xdimen(w,hf,vf);
    else
      set_extent(q)=new_xdimen(x+w,hf,vf);
    set_stretch_order(q)=sto;
    set_shrink_order(q)=sho;
    set_stretch(q)=total_stretch[sto];
    set_shrink(q)=total_shrink[sho];
    return q;
  }

@<Determine the value of |width(r)| and the appropriate glue setting; then |return|
or |goto common_ending|@>;
common_ending:
  if (pack_begin_line!=0)
	{ if (pack_begin_line> 0)print(") in paragraph at lines ");
	  else print(") in alignment at lines ");
	  print_int(abs(pack_begin_line));
	  print("--");
	}
  else print(") detected at line ");
      print_int(line);
  print_ln();
  font_in_short_display= null_font;short_display(list_ptr(r));print_ln();
  begin_diagnostic();show_box(r);end_diagnostic(true);
end:return r;
}

@ Now we consider the various whatsit nodes that are new in Hi\TeX.
In most cases, it is no longer possible to determine the dimensions so that
the |hpack| function is forced to return a hpack node. The hpack nodes cause
special trouble when converting mlists to hlists because there the dimensions
are necessary for positioning the parts of the formulas.
A clean solution requires to postpone such computations to the \HINT\ viewer.
For now we adopt a simpler solution and supply an educated guess which is
reasonable since the boxes that occur in math formulas are often not very
complicated. | graph_node|s should not be in a horizontal list, and |disp_node|s
should be only inside |graph_node|s.

@<Incorporate the various extended boxes into an hbox@>=
switch (subtype(p))
{ case par_node: if (depth(p)> d) d=depth(p); break;
  case disp_node:  break;
  case vpack_node:
  case hpack_node:
  case hset_node:
  case vset_node:
    @<Incorporate box dimensions into the dimensions of the hbox...@>@;
    repack=true; break;
  case stream_node: repack=true; break; /* streams are for page templates only */
  case image_node:
    if (image_xheight(p)!=null)
    { pointer r=image_xheight(p);
      if (xdimen_hfactor(r)==0 && xdimen_vfactor(r)==0)
      { if (xdimen_width(r)> h) h= xdimen_width(r);}
      else { repack=true; break;}
    }
    if (image_xwidth(p)!=null)
    { pointer r=image_xwidth(p);
      if (xdimen_hfactor(r)==0 && xdimen_vfactor(r)==0)
        x = x+ xdimen_width(r);
      else { repack=true; break;}
    }
    break;
  default: break;
}

@ @<Hi\TeX\ routines@>=
static pointer vpackage(pointer p, scaled h, scaled hf, scaled vf, small_number m, scaled l)
{ pointer r; /*the box node that will be returned*/
  scaled w,d,x; /*width, depth, and natural height*/
  scaled s=0; /*shift amount*/
  pointer g; /*points to a glue specification*/
  glue_ord sho, sto; /*order of infinity*/
  last_badness= 0; r= get_node(box_node_size); type(r)= vlist_node;
  subtype(r)= min_quarterword; shift_amount(r)= 0;
  list_ptr(r)= p;
  w= 0;
  d= 0;x= 0;
  total_stretch[normal]= 0;total_shrink[normal]= 0;
  total_stretch[fil]= 0;total_shrink[fil]= 0;
  total_stretch[fill]= 0;total_shrink[fill]= 0;
  total_stretch[filll]= 0;total_shrink[filll]= 0;
  while(p!=null)
    { if (is_char_node(p))
	    confusion("vpack");
      else
	switch(type(p))
          { case hlist_node:case vlist_node:case rule_node:case unset_node:
              x= x+d+height(p);d= depth(p);
              if (type(p)>=rule_node) s= 0;
		      else s= shift_amount(p);
              if (width(p)+s> w) w= width(p)+s;
              break;
          case unset_set_node: case unset_pack_node:
              goto repack;
          case whatsit_node:
            if (subtype(p)==par_node)
                          { if (depth(p) > d) d=depth(p);
			    goto repack; }
			else if (subtype(p)==disp_node )
			  goto repack;
			else if (subtype(p)==vpack_node )
			  goto repack;
			else if (subtype(p)==hpack_node )
			  goto repack;
			else if (subtype(p)==hset_node )
			  goto repack;
			else if (subtype(p)==vset_node )
			  goto repack;
			else if (subtype(p)==stream_node )
			  goto repack;
			else if (subtype(p)==image_node)
			{ if (image_xwidth(p)!=null)
                          { pointer r=image_xwidth(p);
                            if (xdimen_hfactor(r)==0 && xdimen_vfactor(r)==0)
                            { if (xdimen_width(r)> w) w= xdimen_width(r); }
                            else goto repack;
                          }
                          if (image_xheight(p)!=null)
                          { pointer r=image_xheight(p);
                            if (xdimen_hfactor(r)==0 && xdimen_vfactor(r)==0)
			    {  x= x+d+xdimen_width(r);d=0;}
                            else goto repack;
                          }
			}
             break;
          case glue_node:
            { glue_ord o;
			  x= x+d;d= 0;
              g= glue_ptr(p);x= x+width(g);
              o= stretch_order(g); total_stretch[o]= total_stretch[o]+stretch(g);
              o= shrink_order(g); total_shrink[o]= total_shrink[o]+shrink(g);
              if (subtype(p)>=a_leaders)
                { g= leader_ptr(p);
                  if (width(g)> w) w= width(g);
                }
            }
            break;
          case kern_node:
            x= x+d+width(p);d= 0;
            break;
          default:do_nothing;
          }
      p= link(p);
    }
  width(r)= w;


    if (total_stretch[filll]!=0) sto= filll;
    else if (total_stretch[fill]!=0) sto= fill;
    else if (total_stretch[fil]!=0) sto= fil;
    else sto= normal;

    if (total_shrink[filll]!=0) sho= filll;
    else if (total_shrink[fill]!=0) sho= fill;
    else if (total_shrink[fil]!=0) sho= fil;
    else sho= normal;

    if (hf!=0 || vf!=0) /* convert to a vset node */
	{ pointer q;
	  q=new_set_node();
	  subtype(q)=vset_node;
	  width(q)=w;
      if (d> l)
      { x= x+d-l;depth(r)= l;
      }
      else depth(r)= d;
	  height(q)=x;
	  depth(q)=d;
	  shift_amount(q)=shift_amount(r);
	  list_ptr(q)=list_ptr(r);
	  list_ptr(r)=null;
      free_node(r, box_node_size);
      if (m==exactly)
	    set_extent(q)=new_xdimen(h,hf,vf);
	  else
	    set_extent(q)=new_xdimen(x+h,hf,vf);
      set_stretch_order(q)=sto;
      set_shrink_order(q)=sho;
      set_stretch(q)=total_stretch[sto];
      set_shrink(q)=total_shrink[sho];
	  return q;
	}

   if (d> l)
      { x= x+d-l;depth(r)= l;
      }
      else depth(r)= d;
      if (m==additional)
	    h= x+h;
      height(r)= h; x= h-x; /*now |x| is the excess to be made up*/
if (x==0)
    { glue_sign(r)= normal; glue_order(r)= normal;
      set_glue_ratio_zero(glue_set(r));
      goto end;
    }
 else if (x> 0)
	  { glue_order(r)= sto;glue_sign(r)= stretching;
        if (total_stretch[sto]!=0)glue_set(r)= fix(x/(double)total_stretch[sto]);
        else
	    { glue_sign(r)= normal;
	      set_glue_ratio_zero(glue_set(r));
	    }
        if (sto==normal)
		{ if (list_ptr(r)!=null)
		  { last_badness= badness(x,total_stretch[normal]);
			if (last_badness> vbadness)
			  { print_ln();
			    if (last_badness> 100)print_nl("Underfull");else print_nl("Loose");
			    print(" \\vbox (badness ");print_int(last_badness);
			    goto common_ending;
			  }
		  }
		}
        goto end;
	  }
  else /* if (x<0) */
    {
      glue_order(r)= sho;glue_sign(r)= shrinking;
      if (total_shrink[sho]!=0)glue_set(r)= fix((-x)/(double)total_shrink[sho]);
      else
	{ glue_sign(r)= normal;
	  set_glue_ratio_zero(glue_set(r));
	}
      if ((total_shrink[sho]<-x)&&(sho==normal)&&(list_ptr(r)!=null))
	{ last_badness= 1000000;
	  set_glue_ratio_one(glue_set(r));
	  if ((-x-total_shrink[normal]> vfuzz)||(vbadness<100))
	    { print_ln();print_nl("Overfull \\vbox (");
	      print_scaled(-x-total_shrink[normal]);print("pt too high");
	      goto common_ending;
	    }
	}
      else if (sho==normal)
	  { if (list_ptr(r)!=null)
			   { last_badness= badness(-x,total_shrink[normal]);
			     if (last_badness> vbadness)
			       { print_ln();print_nl("Tight \\vbox (badness ");print_int(last_badness);
				 goto common_ending;
			       }
			   }
	  }
      goto end;
    }


 common_ending:
   if (pack_begin_line!=0)
	  { print(") in alignment at lines ");
	    print_int(abs(pack_begin_line));
	    print("--");
	  }
   else
		print(") detected at line ");
   print_int(line);
   print_ln();

   begin_diagnostic();show_box(r);end_diagnostic(true);
 end:
   return r;


repack:
  {  /* convert the box to a |vpack_node| */
	  pointer q;
	  q=new_pack_node();
	  subtype(q)=vpack_node;
	  height(q)=x;
	  depth(q)=d;
	  width(q)=w;
      list_ptr(q)=list_ptr(r);
	  list_ptr(r)=null;
      free_node(r, box_node_size);
	  pack_limit(q)=l;
	  pack_m(q)=m;
      pack_extent(q)=new_xdimen(h,hf,vf);
	  return q;
  }
}

@*1 Streams.
\HINT\ stream numbers start at 0 for the main text and continue
upwards. \TeX, on the other hand, numbers insertions starting with
{\tt box255} for the main text and continues downwards. Some mapping is
needed, and we use the array |insert2stream| to map \TeX's insert
numbers to \HINT\ stream numbers.
The predefined stream for the main content has stream number 0.

@<Hi\TeX\ variables@>=
static int insert2stream[0x100]={0};
@ The following function returns the stream number for a given insert number $i$
with $255>|i|\ge 0$. A new stream number is allocated if necessary.
Note that no overflow test is necessary since \TeX\ allocates less
than 233 inserts.
The initial value of |max_ref[stream_kind]| is 0 and therefore
stream number 0, reserved for the main content,
is never allocated. Stream definitions might also be loaded
as part of a format file. Then the maximum stream number is stored in |max_stream|.
So if we do not find a stream number
in the |insert2stream| array, we scan the stream definitions
once and cache the associations found there.

@<Hi\TeX\ routines@>=
static int hget_stream_no(int i)
{ static bool init=false;
  int s;
  if (i==0) return 0;
  s=insert2stream[i];
  if (s!=0) return s;
  if (!init)
  { pointer t,s;
    for (t=link(setpage_head); t!=null; t=link(t))
      for(s=setpage_streams(t); s!=null; s=link(s))
        insert2stream[setstream_insertion(s)]=setstream_number(s);
    max_ref[stream_kind]=max_stream;
    init=true;
  }
  s=insert2stream[i];
  if (s==0)
    s=insert2stream[i]=max_ref[stream_kind]=++max_stream;
  return s;
}
@*1 Stream Definitions.

A stream definition is stored as a whatsit node with subtype |setstream_node|.
Given a pointer |p| to such a node, here are the macros used to access the data stored there:
\def\item{\par\noindent\hbox to 0pt{$\bullet$\hss}\quad\ignorespaces }
\item |setstream_number(p)| the \HINT\ stream number $n$.
\item |setstream_insertion(p)| the corresponding \TeX\ insertion number $i$.
\item |setstream_max(p)| the maximum height $x$:
          This extended dimension is the maximum size
          per page for this insertion.
\item |setstream_mag(p)| the magnification factor $f$:
          Inserting a box of height $h$ will contribute $h*f/1000$
          to the main page.
\item |setstream_preferred(p)| the preferred stream  $p$:
          If $p\ge0$ we move the insert to stream $p$ if possible.
\item |setstream_next(p)| the next stream $n$:
          If $n\ge0$ we move the insert to stream $n$ if it can not be
          accommodated otherwise.
\item |setstream_ratio(p)| the split ratio $r$:
          If $r>0$ split the final contribution of this stream between
          stream $p$ and $n$ in the ratio $r/1000$ for $p$ and $1-r/1000$ for $n$
          before contributing streams $p$ and $n$ to the page.
\item |setstream_before(p)|  the ``before'' list $b$:
          For a nonempty stream the material that is added before the stream content.
\item |setstream_after(p)| the ``after'' list  $a$:
          For a nonempty stream the material that is added after the stream content.
\item |setstream_topskip(p)| the top skip glue $t$: This glue is inserted between
          the $b$ list and the stream content and adjusted for the height for
          the first box of the stream content.
\item |setstream_width(p)| the width $w$:
          This extended dimension is the width used for example
          to break paragraphs in the stream content into lines.
\item |setstream_height(p)| a glue specification $h$ reflecting the total height,
          stretchability and shrinkability of the material in lists $a$ and $b$.


Currently Hi\TeX\ handles only normal streams. First or last streams will come later.

The stream definition nodes are created and initialized with the following function:
@<Hi\TeX\ routines@>=
static pointer new_setstream_node(uint8_t n)
{ pointer p=get_node(setstream_node_size);
  type(p)=whatsit_node;subtype(p)=setstream_node;
  setstream_insertion(p)=n;
  setstream_number(p)=hget_stream_no(n);
  setstream_mag(p)=1000;
  setstream_preferred(p)=255;
  setstream_next(p)=255;
  setstream_ratio(p)=0;
  setstream_max(p)=new_xdimen(0,0,ONE);
  setstream_width(p)=new_xdimen(0,ONE,0);
  setstream_topskip(p)=zero_glue; add_glue_ref(zero_glue);
  setstream_height(p)=zero_glue; add_glue_ref(zero_glue);
  setstream_before(p)=null;
  setstream_after(p)=null;

  return p;
}
@ The preferred stream, the next stream, and the split ratio are scanned as part of the
{\tt \BS setstream} primitive.
When \TeX\ finds the right brace that terminates the stream definition,
it calls |handle_right_brace|. Then it is time to obtain the remaining parts of the
stream definition.
For insertion class $i$,
we can extract the maximum height $x$ of the insertions from
the corresponding {\tt dimen$i$} register
the magnification factor $f$ from the {\tt count$i$} register,
and the total height $h$ from the {\tt skip$i$} register.
The width $w$ is taken from {\tt \BS hsize} and the
topskip $t$ from  {\tt \BS topskip}.

@<Hi\TeX\ routines@>=
static void hfinish_stream_group(void)
{  pointer s;
   end_graf();
   s=hget_current_stream();
   if (s!=null)
   { pointer t;
     uint8_t i;
     i= setstream_insertion(s);
     setstream_mag(s)=count(i);
     setstream_width(s)=new_xdimen(dimen_par(hsize_code),
     dimen_par_hfactor(hsize_code),dimen_par_vfactor(hsize_code));
     t=zero_glue;add_glue_ref(t);delete_glue_ref(setstream_topskip(s)); setstream_topskip(s)=t;
     t=skip(i);add_glue_ref(t);delete_glue_ref(setstream_height(s)); setstream_height(s)=t;
     setstream_max(s)=new_xdimen(dimen(i),
     dimen_hfactor(i),dimen_vfactor(i));
   }
   unsave();
   flush_node_list(link(head));
   pop_nest();
}
@ The before list $b$ and the after list $a$ are defined using the
{\tt \BS HINTbefore} and {\tt \BS HINTafter} primitives. When the corresponding list
has ended with a right brace, \TeX\ calls |handle_right_brace| and we can store
the lists.

@<Hi\TeX\ routines@>=
static void hfinish_stream_before_group(void)
{ pointer s;
  end_graf();
  s=hget_current_stream();
  if (s!=null)
    setstream_before(s)=link(head);
  unsave();
  pop_nest();
}

static void hfinish_stream_after_group(void)
{ pointer s;
  end_graf();
  s=hget_current_stream();
  if (s!=null)
    setstream_after(s)=link(head);
  unsave();
  pop_nest();
}
@*1 Page Template Definitions.

The data describing a page template is stored in a whatsit node with subtype
|setpage_node|.
Given a pointer |p| to such a node, here are the macros used to access the data stored there:

\item |setpage_name(p)|: The name of the page template
      can be used in the user interface of a \HINT\ viewer.
\item |setpage_number(p)|: The number of the page template that is used in the \HINT\
      file to reference this page template.
\item |setpage_id(p)|: The number of the page template that is used in \TeX\
      to reference this page template.
\item |setpage_priority(p)|: The priority helps in selecting a page template.
\item |setpage_topskip(p)|: The topskip glue is added at the top of a page and
      adjusted by the height of the first box on the page.
\item |setpage_height(p)|: The height of the full page including the margins.
\item |setpage_width(p)|:  The width of the full page including the margins.
\item |setpage_depth(p)|:  The maximum depth of the page content. If the last box is deeper
than this maximum, the difference is subtracted from the height of the page body.
\item |setpage_list(p)|: The list that defines the page template. After the page builder
has completed a page this list is scanned and page body and nonempty streams
are added at the corresponding insertion points.
\item |setpage_streams(p)|: The list of stream definitions that
belong to this page template.


To allow \TeX\ to use arbitrary numbers between 1 and 255 for the page templates
while in \HINT\ the numbers of page templates are best consecutive
from 1 to |max_ref[page_kind]==max_page|, we let \TeX\ assign an id and generate
the template number. Because templates might be in format files, the variable
|max_page| will hold the true number.

The function |new_setpage_node| is called with the page template id
$0<|i|<256$ and a string number for the name |n|.
It allocates and initializes a node if necessary and moves it to the front of the
list of templates.

@<Hi\TeX\ routines@>=
static pointer new_setpage_node(uint8_t i, str_number n)
{ pointer p, prev_p;
  prev_p=setpage_head;
  for (p=link(prev_p); p!=null; prev_p=p,p=link(p))
    if (setpage_id(p)==i) break;
  if (p==null)
    @<allocate a new |setpage_node| |p|@>@;
  else
    link(prev_p)=link(p);
  link(p)=link(setpage_head);
  link(setpage_head)=p;
  return p;
}
@
@<allocate a new |setpage_node| |p|@>=
{ p=get_node(setpage_node_size);type(p)=whatsit_node;subtype(p)=setpage_node;
  setpage_number(p)=max_ref[page_kind]=++max_page;
  setpage_id(p)=i;
  setpage_name(p)=n;
  setpage_priority(p)=1;
  setpage_topskip(p)=zero_glue; add_glue_ref(zero_glue);
  setpage_height(p)=new_xdimen(0,0,ONE);
  setpage_width(p)=new_xdimen(0,ONE,0);
  setpage_depth(p)=max_depth;
  setpage_list(p)=null;
  setpage_streams(p)=null;
}
@ The default values are replaced by parameters given to the {\tt\BS setpage}
primitive and by the current values of certain
\TeX\ registers when finishing the page template.

@<Hi\TeX\ routines@>=
static void hfinish_page_group(void)
{ uint8_t k;
  pointer p,q,r;
  end_graf();
  p=hget_current_page();
  if (p!=null)
  { delete_glue_ref(setpage_topskip(p));
    setpage_topskip(p)=top_skip;add_glue_ref(top_skip);
    setpage_depth(p)=max_depth;
    flush_node_list(setpage_list(p));
    setpage_list(p)=link(head);
  }
  unsave();
  pop_nest();
}
@ @<Hi\TeX\ auxiliary routines@>=

static pointer hget_current_page(void)
{ pointer p=link(setpage_head);
  if (p==null)
    print_err("end of output group without setpage node");
  return p;
}

static pointer hget_current_stream(void)
{ pointer p,s;
  p=hget_current_page();
  if (p==null) return null;
  s=setpage_streams(p);
  if (s==null)
    print_err("end of setstream group without setstream node");
  return s;
}

@* \HINT\ Output.
Here are the routines to initialize and terminate the output.
The initialization is done in three steps:
First we allocate the data structures to write nodes into buffers;
this requires a directory and buffers for sections 0, 1, and 2.

@ @<Hi\TeX\ routines@>=
static void hout_allocate(void)
{ new_directory(dir_entries);
  new_output_buffers();
  max_section_no=2;
  hdef_init();
  hput_content_start();
  @<insert an initial language node@>@;
}

@ Second we initialize the definitions and start the content section
before the first content node is written; this is done when the
|page_contents| is about to change from |empty| to not |empty|.
Finally, the actual output file |hout| needs to be opened; this
must be done before calling |hput_hint| which is already
part of the termination routines. It is placed, however, much earlier
because asking for the output file name---according to \TeX's
conventions---should come before the first item is put on the first
page by the page builder.

@<Hi\TeX\ routines@>=
static void hint_open(void)
{ if (job_name==0) open_log_file();
  pack_job_name(".hnt");
  while (!(hout=open_out((char *)name_of_file+1,"wb")))
    prompt_file_name("file name for output",".hnt");
  output_file_name=make_name_string();
  DBG(DBGBASIC,"Output file %s opened\n",(char *)name_of_file+1);
}

#define HITEX_VERSION "1.1"
static void  hput_definitions();
extern int option_global;
static void hout_terminate(void)
{ size_t s;
  if (hout==NULL) return;
  hput_content_end();
  hput_definitions();
  option_global=true; /* use global names in the directory */
  hput_directory();
  s = hput_hint("created by HiTeX Version " HITEX_VERSION);
  @<record the names of files in optional sections@>@;
  print_nl("Output written on "); slow_print(output_file_name);
@.Output written on x@>
  print(" (1 page, "); print_int(s); print(" bytes).");
}

static void hint_close(void)
{ hout_terminate();
  if (hout!=NULL)
    fclose(hout);
  hout=NULL;
}

@ The file name recording feature of Hi\TeX\ makes it necessary to
record the names of the files that are added as optional sections.
This feature is not part of the |hput_optional_sections| function
which is called from |hput_hint|. The following simple
loop will achieve this.

@<record the names of files in optional sections@>=
{ int i;
  for(i= 3;i<=max_section_no;i++)
    recorder_record_input(dir[i].file_name);
}

@* The \HINT\ Directory.
There is not much to do here: some code to find a new or existing directory entry,
a variable to hold the number of directory entries allocated,
a function to allocate a new file section, and an auxiliary function to
convert \TeX's file names to ordinary \CEE/ strings.

@<Find an existing directory entry@>=
for (i=3; i<= max_section_no;i++)
  if (dir[i].file_name!=NULL && strcmp(dir[i].file_name,file_name)==0)
    return i;

@ @<Allocate a new directory entry@>=
  i = max_section_no;
  i++;
  if (i>0xFFFF) QUIT("Too many file sections");
  if (i>=dir_entries)
    RESIZE(dir,dir_entries,Entry);
  max_section_no=i;
  if (max_section_no>0xFFFF) QUIT("Too many sections");
  dir[i].section_no=i;
@ @<Hi\TeX\ macros@>=
#define @[RESIZE(P,S,T)@]	      \
{ int _n = (S)*1.4142136 +0.5;        \
  if (_n<32) _n=32;                   \
  { REALLOCATE(P,_n,T);             \
    memset((P)+(S),0,(_n-(S))*sizeof(T));         \
    (S)=_n;                           \
  }                                   \
}


@ @<Hi\TeX\ variables@>=
static int dir_entries=4;

@ @<Hi\TeX\ auxiliary routines@>=
static uint16_t hnew_file_section(char *file_name)
{ uint16_t i;
  @<Find an existing directory entry@>@;
  @<Allocate a new directory entry@>@;
  dir[i].file_name=strdup(file_name);
  return i;
}

@ The following function uses \TeX's function |pack_file_name|
to create a new filename from a name |n|, a directory or ``area'' |a|,
and an extension |e|. \TeX\ will truncate the new filename
to |file_name_size| characters without warning. The new function
will take a |name_length| equal to | file_name_size| as an
indication that truncation has taken place and terminates the
program. The return value converts a {\mc Pascal} array, starting with index 1,
into a \CEE/ array starting with index 0.

@<Hi\TeX\ auxiliary routines@>=
static char *hfile_name(str_number n, str_number a, str_number e)
{ pack_file_name(n,a,e,NULL);
  if (name_length>=file_name_size)
   QUIT("File name too long %d >= %d",name_length,file_name_size);
  return (char *)name_of_file+1;
}

@* \HINT\ Definitions.
Definitions are used for two reasons: they provide default values for the parameters
that drive \TeX's algorithms running in the \HINT\ viewer, and they provide a compact notation
for \HINT\ content nodes.

To find the optimal coding for a \HINT\ file, a global knowledge of the \HINT\ file is necessary.
This would require a two pass process:
in the first pass Hi\TeX\ could gather statistics on the use of parameter values and content
nodes as a basis for making definitions and in the second pass it could encode the content using
these definitions. I consider it, however, more reasonable to write such a two pass optimizer
as a separate program which can be used on any \HINT\ file.
Hence Hi\TeX\ uses a much simpler one pass approach:

Hi\TeX\ generates definitions for \TeX-parameters using the
 values they have when the first non discardable item appears in
 |build_page|. This is usually the case after initial style files have
 been processed and we can expect that they set useful default values.

The procedure that generates these definitions is called |hfix_defaults|:

@<Hi\TeX\ auxiliary routines@>=
static void hfix_defaults(void)
{ @+int i;
  DBG(DBGDEF,"Freezing HINT file defaults\n");
  @<Compute the page size@>@;
  @<Fix definitions for integer parameters@>@;
  @<Fix definitions for dimension parameters@>@;
  @<Fix definitions for glue parameters@>@;
  @<Fix definitions of page templates@>@;
}

@ Further, Hi\TeX\ generates definitions to be used in content nodes on the fly:
Whenever a routine outputs an item for which a definition might be available,
it calls a {\it hget\_\,\dots\_no} function. This function returns, if possible,
the reference number of a suitable definition.
If no definition is available, the function will try to allocate a new one,
only if all reference numbers from 0 to |0xFF| are already in use, a $-1$ is
returned to indicate failure.

There are two possible problems with this approach: We might miss a
very common item because it occurs for the first time late in the
input when all reference numbers are already in use. For example an
extensive index might repeat a certain pattern for each entry.  And second, we
might make a definition for an item that occurs only once. Taken
together the definition plus the reference to it requires more space
than the same item without a definition.

We can hope that the first effect does not occur too often, especially if the
\TeX\ file is short, and we know that the second effect is limited by the
total number of definitions we can make plus four byte of overhead per instance.


Here we initialize the necessary data structures for definitions.
@<Hi\TeX\ auxiliary routines@>=
static void hdef_init(void)
{@+ int i;
  @<Switch |hsize| and |vsize| to extended dimensions@>@;
  @<Initialize definitions for extended dimensions@>@;
  @<Initialize definitions for baseline skips@>@;
  @<Initialize definitions for fonts@>@;
  @<Initialize definitions for labels@>@;
#if 0
  overfull_rule=0;    /* no overfull rules please */
#endif
}
@ After all definitions are ready, we write them using the function
|hput_definitions|.  When we output the definitions,
we have to make sure to define references before we use them.
This is achieved by using a specific ordering of the
definitions in the function |hput_definitions| and by preventing
the allocation of new definitions as soon as the output of the definition
section has started. The latter has the additional benefit that the
maximum values do no longer change.

@<Hi\TeX\ routines@>=
static void  hput_definitions()
/* write the definitions into the definitions buffer */
{  int i;
   uint32_t d, m, s;
   hput_definitions_start();
   hput_max_definitions();
   @<Output language definitions@>@;
   @<Output font definitions@>@;
   @<Output integer definitions@>@;
   @<Output dimension definitions@>@;
   @<Output extended dimension definitions@>@;
   @<Output glue definitions@>@;
   @<Output baseline skip definitions@>@;
   @<Output parameter list definitions@>@;
   @<Output discretionary break definitions@>@;
   @<Output page template definitions@>@;
   hput_definitions_end();
   hput_range_defs(); /* expects the definitions section to be ended */
   hput_label_defs();
}
@ In the following, we present for each node type the code to generate
the definitions, using a common schema: We define a data structure
called {\it\dots\_defined}, to hold the definitions; we define, if
applicable, the \TeX-parameters; we add an {\it hget\_\,\dots\_no}
function to allocate new definitions; and we finish with the code to
output the collected definitions.

Lets start with the most simple case: integers.

@*1 Integers.
The data structure to hold the integer definitions is a simple array with |0x100| entries.
A more complex data structure, for example a hash table, could speed up searching for
existing definitions but lets keep things simple for now.

@<Hi\TeX\ variables@>=
static int32_t int_defined[0x100]={0};
@ Before we can generate definitions for \TeX-parameters, we have to map \TeX's
parameter numbers to \HINT\ definition numbers. While it seems more convenient here
to have the reverse mapping, we need the mapping only once to record parameter definitions,
but we will need it repeatedly in the function |hdef_param_node| and the overhead here does
not warrant having the mapping in both directions.

@<Hi\TeX\ variables@>=
static const int hmap_int[] ={@/
pretolerance_no,  /* |pretolerance_code| 0 */
tolerance_no,  /* |tolerance_code| 1 */
line_penalty_no,  /* |line_penalty_code| 2 */
hyphen_penalty_no,  /* |hyphen_penalty_code| 3 */
ex_hyphen_penalty_no,  /* |ex_hyphen_penalty_code| 4 */
club_penalty_no,  /* |club_penalty_code| 5 */
widow_penalty_no,  /* |widow_penalty_code| 6 */
display_widow_penalty_no,  /* |display_widow_penalty_code| 7 */
broken_penalty_no,  /* |broken_penalty_code| 8 */
-1,  /* |bin_op_penalty_code| 9 */
-1,  /* |rel_penalty_code| 10 */
pre_display_penalty_no,  /* |pre_display_penalty_code| 11  */
post_display_penalty_no,  /* |post_display_penalty_code| 12  */
inter_line_penalty_no,  /* |inter_line_penalty_code| 13 */
double_hyphen_demerits_no,  /* |double_hyphen_demerits_code| 14 */
final_hyphen_demerits_no,  /* |final_hyphen_demerits_code| 15 */
adj_demerits_no,  /* |adj_demerits_code| 16 */
-1,  /* |mag_code| 17 */
-1,  /* |delimiter_factor_code| 18 */
looseness_no,  /* |looseness_code| 19 */
time_no,  /* |time_code| 20 */
day_no,  /* |day_code| 21 */
month_no,  /* |month_code| 22 */
year_no,  /* |year_code| 23 */
-1,  /* |show_box_breadth_code| 24 */
-1,  /* |show_box_depth_code| 25 */
-1,  /* |hbadness_code| 26 */
-1,  /* |vbadness_code| 27 */
-1,  /* |pausing_code| 28 */
-1,  /* |tracing_online_code| 29 */
-1,  /* |tracing_macros_code| 30 */
-1,  /* |tracing_stats_code| 31 */
-1,  /* |tracing_paragraphs_code| 32 */
-1,  /* |tracing_pages_code| 33 */
-1,  /* |tracing_output_code| 34 */
-1,  /* |tracing_lost_chars_code| 35 */
-1,  /* |tracing_commands_code| 36 */
-1,  /* |tracing_restores_code| 37 */
-1,  /* |uc_hyph_code| 38 */
-1,  /* |output_penalty_code| 39 */
-1,  /* |max_dead_cycles_code| 40 */
hang_after_no,  /* |hang_after_code| 41*/
floating_penalty_no  /* |floating_penalty_code|	42*/
};


@ Now we can generate the definitions for integer parameters:

@<Fix definitions for integer parameters@>=
  int_defined[zero_int_no]=0;
  for (i=pretolerance_code; i<=floating_penalty_code;i++)
    if ( hmap_int[i]>=0) int_defined[hmap_int[i]]=int_par(i);
  max_ref[int_kind]=MAX_INT_DEFAULT;
@ The function |hget_int_no| tries to allocate a predefined integer number;
if not successful, it returns $-1$.

@<Hi\TeX\ auxiliary routines@>=
static int hget_int_no(int32_t n)
{ int i;
  int m =max_ref[int_kind];
  for (i=0; i<=m; i++)
    if (n== int_defined[i]) return i;
  if (m<0xFF && section_no==2)
    { m=++max_ref[int_kind]; int_defined[m]=n; return m; }
  else
    return -1;
}
@ Before we give the code to output an integer definition, we declare a macro that
is useful for all the definitions. |HPUTDEF| takes a function |F| and a reference number |R|.
It is assumed that |F| writes a definition into the output and returns a tag. The macro
will then add the reference number and both tags to the output.
@<Hi\TeX\ macros@>=
#define HPUTDEF(F,R)            \
  { uint32_t _p;                \
    uint8_t _f;                 \
    HPUTNODE; /* allocate */    \
    _p=hpos-hstart;             \
    HPUT8(0);  /* tag */        \
    HPUT8(R); /* reference */   \
    _f=F;                       \
    hstart[_p]=_f; DBGTAG(_f,hstart+_p);      \
    DBGTAG(_f,hpos); HPUT8(_f); \
  }
@ Definitions are written to the output only if they differ from Hi\TeX's built in defaults.
@<Output integer definitions@>=
  DBG(DBGDEF,"Maximum int reference: %d\n",max_ref[int_kind]);
  for (i=max_fixed[int_kind]+1;i<=max_default[int_kind]; i++)
    { if (int_defined[i]!=int_defaults[i])@/
        HPUTDEF(hput_int(int_defined[i]),i);
    }
  for (;i<=max_ref[int_kind]; i++)@/
         HPUTDEF(hput_int(int_defined[i]),i);
@*1 Dimensions.
We proceed as we did for integers, starting with the array that holds the defined dimensions.
@<Hi\TeX\ variables@>=
static scaled dimen_defined[0x100]={0};
@ @<Hi\TeX\ variables@>=
static const int hmap_dimen[] ={@/
  -1, /* |par_indent_code| 0 */
  -1,  /* |math_surround_code| 1 */
  line_skip_limit_no,  /* |line_skip_limit_code| 2 */
  hsize_dimen_no,   /* |hsize_code| 3 */
  vsize_dimen_no,  /* |vsize_code| 4 */
  max_depth_no,  /* |max_depth_code| 5 */
  split_max_depth_no, /* |split_max_depth_code| 6 */
  -1, /* |box_max_depth_code| 7 */
  -1,  /* |hfuzz_code| 8 */
  -1, /* |vfuzz_code| 9 */
  -1, /* |delimiter_shortfall_code| 10 */
  -1, /* |null_delimiter_space_code| 11 */
  -1, /* |script_space_code| 12 */
  -1, /* |pre_display_size_code| 13 */
  -1, /* |display_width_code| 14 */
  -1, /* |display_indent_code| 15 */
  -1, /* |overfull_rule_code| 16 */
  hang_indent_no,  /* |hang_indent_code| 17 */
  -1, /* |h_offset_code| 18 */
  -1,  /* |v_offset_code| 19 */
  emergency_stretch_no /* |emergency_stretch_code| 20 */
};
@ @<Fix definitions for dimension parameters@>=
  dimen_defined[zero_dimen_no]=0;
  for (i=par_indent_code; i<=emergency_stretch_code;i++)
    if ( hmap_dimen[i]>=0) dimen_defined[hmap_dimen[i]]=dimen_par(i);
  dimen_defined[hsize_dimen_no]=page_h;
  dimen_defined[vsize_dimen_no]=page_v;
  dimen_defined[quad_no]=quad(cur_font);
  dimen_defined[math_quad_no]=math_quad(text_size);
  max_ref[dimen_kind]=MAX_DIMEN_DEFAULT;
@ @<Hi\TeX\ auxiliary routines@>=
static int hget_dimen_no(scaled s)
/* tries to allocate  a predefined dimension number in the range 0 to 0xFF
   if not successful return -1 */
{ int i;
  int m =max_ref[dimen_kind];
  for (i=0; i<=m; i++)
    if (s== dimen_defined[i]) return i;
  if (m<0xFF && section_no==2)
    { m=++max_ref[dimen_kind]; dimen_defined[m]=s; return m; }
  else
    return -1;
}
@ @<Output dimension definitions@>=
  DBG(DBGDEF,"Maximum dimen reference: %d\n",max_ref[dimen_kind]);
  for (i=max_fixed[dimen_kind]+1;i<=max_default[dimen_kind]; i++)
    { if (dimen_defined[i]!=dimen_defaults[i])
        HPUTDEF(hput_dimen(dimen_defined[i]),i);
    }
  for (;i<=max_ref[dimen_kind]; i++)
         HPUTDEF(hput_dimen(dimen_defined[i]),i);
@*1 Extended Dimensions.

@<Hi\TeX\ variables@>=
static struct {
scaled w,h,v; } xdimen_defined[0x100];
@ @<Initialize definitions for extended dimensions@>=
  for (i=0; i<=max_fixed[xdimen_kind]; i++)
  { xdimen_defined[i].w = xdimen_defaults[i].w;
    xdimen_defined[i].h = ONE*xdimen_defaults[i].h;
    xdimen_defined[i].v = ONE*xdimen_defaults[i].v;
  }

@ To obtain a reference number for an extended dimension, we search the
array and if no match was found, we allocate a new entry,
reallocating the array if needed.

@<Hi\TeX\ auxiliary routines@>=
static int hget_xdimen_no(pointer p)
{ int i;
  for (i=0;i<=max_ref[xdimen_kind];i++)
  { if (xdimen_defined[i].w== xdimen_width(p) &&
        xdimen_defined[i].h== xdimen_hfactor(p) &&
        xdimen_defined[i].v== xdimen_vfactor(p))
       return i;
  }
  if (section_no!=2) return -1;
  if (i>=0x100) return -1;
  max_ref[xdimen_kind]=i;
  xdimen_defined[i].w= xdimen_width(p);
  xdimen_defined[i].h= xdimen_hfactor(p);
  xdimen_defined[i].v= xdimen_vfactor(p);
  return i;
}
@ @<Hi\TeX\ routines@>=
static pointer new_xdimen(scaled w, scaled h, scaled v)
{ pointer p=get_node(xdimen_node_size);
  type(p)=whatsit_node;subtype(p)=xdimen_node;
  xdimen_width(p)=w;
  xdimen_hfactor(p)=h;
  xdimen_vfactor(p)=v;
  return p;
}
@ @<Output extended dimension definitions@>=
  DBG(DBGDEF,"Maximum xdimen reference: %d\n",max_ref[xdimen_kind]);
  for (i=max_fixed[xdimen_kind]+1;i<=max_default[xdimen_kind]; i++)
  { Xdimen x;
    x.w=xdimen_defined[i].w;
    x.h=xdimen_defined[i].h/(double)ONE;
    x.v=xdimen_defined[i].v/(double)ONE;

    if (x.w!=xdimen_defaults[i].w ||
        x.h!=xdimen_defaults[i].h ||
        x.v!=xdimen_defaults[i].v)
        HPUTDEF(hput_xdimen(&x),i);
  }
  for (;i<=max_ref[xdimen_kind]; i++)
  { Xdimen x;
    x.w=xdimen_defined[i].w;
    x.h=xdimen_defined[i].h/(double)ONE;
    x.v=xdimen_defined[i].v/(double)ONE;
    HPUTDEF(hput_xdimen(&x),i);
  }

@*1 Glues.
In general there are two choices on how to store a definition: We can use the data structures used by \TeX\
or we can use the data structures defined by \HINT. If we are lucky, both of them are the same
as we have seen for integers and dimensions. For extended dimensions, we had to use the \HINT\ data type
|Xdimen| because \TeX\ has no corresponding data type and uses only reference numbers.
In the case of glue, we definitely have a choice. We decide to use \TeX's pointers to glue specifications
in the hope to save some work when comparing glues for equality, because \TeX\ already reuses
glue specifications and often a simple comparison of pointers might suffice.
@<Hi\TeX\ variables@>=
static pointer glue_defined[0x100];
@ @<Hi\TeX\ variables@>=
static int hmap_glue[] ={

line_skip_no,  /* |line_skip_code| 0 */
baseline_skip_no,  /* |baseline_skip_code| 1 */
-1,  /* |par_skip_code| 2 */
above_display_skip_no,  /* |above_display_skip_code| 3 */
below_display_skip_no,  /* |below_display_skip_code| 4 */
above_display_short_skip_no,  /* |above_display_short_skip_code| 5 */
below_display_short_skip_no,  /* |below_display_short_skip_code| 6 */
left_skip_no,  /* |left_skip_code| 7 */
right_skip_no,  /* |right_skip_code| 8 */
top_skip_no,  /* |top_skip_code| 9 */
split_top_skip_no,  /* |split_top_skip_code| 10 */
tab_skip_no,  /* |tab_skip_code| 11 */
-1,  /* |space_skip_code| 12 */
-1,  /* |xspace_skip_code| 13 */
par_fill_skip_no  /* |par_fill_skip_code| 14 */
};
@ @<Fix definitions for glue parameters@>=
  glue_defined[zero_skip_no]=zero_glue; incr(glue_ref_count(zero_glue));
  for (i=line_skip_code; i<=par_fill_skip_code;i++)
    if ( hmap_glue[i]>=0)
    { glue_defined[hmap_glue[i]]=glue_par(i); incr(glue_ref_count(glue_par(i)));}
  max_ref[glue_kind]=MAX_GLUE_DEFAULT;
@ Next we define some auxiliary routines to compare glues for equality and to convert glues between the different representations.

@<Hi\TeX\ auxiliary routines@>=
static int glue_spec_equal(pointer p, pointer q)
{ return (width(q)==width(p) && stretch(q)==stretch(p) && shrink(q)==shrink(p) &&
        (stretch_order(q)==stretch_order(p) || stretch(q)==0) &&
		  (shrink_order(q)==shrink_order(p)|| shrink(q)==0));
}

static int glue_equal(pointer p, pointer q)
{ return p==q || glue_spec_equal(p,q);
}

static int Glue_equal(Glue *p, Glue *q)
{ return(p->w.w==q->w.w && p->w.h==q->w.h && p->w.v==q->w.v &&
          p->p.f== q->p.f && p->m.f==q->m.f &&
          (p->p.o==q->p.o || p->p.f==0.0) &&
	  (p->m.o==q->m.o || q->m.f==0.0));
}

@ To find a matching glue we make two passes over the defined glues:
on the first pass we just compare pointers and on the second pass
we also compare values. An alternative approach to speed up searching
is used for parameter lists as described below.

@<Hi\TeX\ auxiliary routines@>=
static int hget_glue_no(pointer p)
{ static int rover=0;
  int i;
  if (p==zero_glue) return zero_skip_no;
  for(i=0; i<= max_ref[glue_kind] ; i++)
  { if (p==glue_defined[rover]) return rover;
    else if (rover==0)
      rover=max_ref[glue_kind];
    else
      rover--;
  }
  for(i=0; i<= max_ref[glue_kind] ; i++)
  { pointer q=glue_defined[rover];
    if (glue_spec_equal(p,q))
      return rover;
    else if (rover==0)
      rover=max_ref[glue_kind];
    else
      rover--;
  }
  if (max_ref[glue_kind]<0xFF && section_no==2)
  { rover=++max_ref[glue_kind];
    glue_defined[rover]=p;
    incr(glue_ref_count(p));
    DBG(DBGDEF,"Defining new glue %d\n",rover);
    return rover;
  }
  else
    return -1;
}
@ @<Output glue definitions@>=
  DBG(DBGDEF,"Maximum glue reference: %d\n",max_ref[glue_kind]);
  for (i=max_fixed[glue_kind]+1;i<=max_default[glue_kind]; i++)
    { Glue g;
      to_Glue(glue_defined[i],&g);
     if (!Glue_equal(&g,&glue_defaults[i]))
        HPUTDEF(hput_glue(&g),i);
    }
  for (;i<=max_ref[glue_kind]; i++)
           HPUTDEF(hout_glue_spec(glue_defined[i]),i);
@ The above code uses the following conversion routine.
While \HINT\ supports glue that depends on {\tt hsize} and {\tt vsize},
this is currently not supported by Hi\TeX.
Future versions of Hi\TeX\ should extend glue spec nodes (and kern nodes)
by fields for |hfactor| and |vfactor| which are zero by default.
This would leave most parts of \TeX\ unchanged.
As a work-around one can combine a box with an extended dimension with
a regular glue or kern.
% Care should be taken for the statically allocated glue specs
% deallocation of glue specs is relatively simple
% extended glue and kern values can be restricted to non math mode
@<Hi\TeX\ auxiliary routines@>=
static void to_Glue(pointer p, Glue *g)
{ g->w.w=width(p);
  g->w.h=g->w.v=0.0;
  g->p.f=stretch(p)/(double)ONE; g->p.o= stretch_order(p);
  g->m.f=shrink(p)/(double)ONE; g->m.o= shrink_order(p);
}
@*1 Baseline Skips.
TeX's baseline nodes just store a baseline skip reference number.
We have seen this situation before when dealing with extended dimensions
and the solution here is the same: a dynamically allocated array.
@<Hi\TeX\ variables@>=
typedef struct {
	pointer ls, bs; /* line skip and baselineskip gluespecs */
	scaled lsl; /* lineskip limit */
} bl_definition;

static bl_definition *bl_defined=NULL;
static int bl_used=0,bl_allocated=0;

@ The zero baseline skip is predefined which prevents an ambiguous info value of zero
in a baseline node.

@<Initialize definitions for baseline skips@>=
  bl_allocated=8;
  ALLOCATE(bl_defined,bl_allocated,bl_definition);
  bl_defined[zero_baseline_no].bs=zero_glue; incr(glue_ref_count(zero_glue));
  bl_defined[zero_baseline_no].ls=zero_glue; incr(glue_ref_count(zero_glue));
  bl_defined[zero_baseline_no].lsl=0;
  bl_used= MAX_BASELINE_DEFAULT+1;
  max_ref[baseline_kind]= MAX_BASELINE_DEFAULT;
@ @<Hi\TeX\ auxiliary routines@>=
static int hget_baseline_no(pointer bs, pointer ls, scaled lsl)
{
  static int rover=0;
  int i;
  for(i=0; i< bl_used; i++) /* search for an existing spec */
    { bl_definition *q=&(bl_defined[rover]);
    if (glue_equal(bs,q->bs) &&  glue_equal(ls,q->ls) && lsl==q->lsl)
      return rover;
    else if (rover==0)
      rover=bl_used-1;
    else
      rover--;
  }
  if (bl_used>=bl_allocated)
    RESIZE(bl_defined,bl_allocated, bl_definition);
  rover=bl_used++;
  if (rover<0x100 && section_no==2) max_ref[baseline_kind]=rover;
  if (glue_equal(bs,zero_glue))
  {  bl_defined[rover].bs=zero_glue; incr(glue_ref_count(zero_glue)); }
  else
  {  bl_defined[rover].bs=bs; incr(glue_ref_count(bs));}
  if (glue_equal(ls,zero_glue))
  {  bl_defined[rover].ls=zero_glue; incr(glue_ref_count(zero_glue)); }
  else
  { bl_defined[rover].ls=ls; incr(glue_ref_count(ls));}
  bl_defined[rover].lsl=lsl;
  return rover;
}

@ The following routine does not allocate a new glue definition, because the
baseline definitions are output after the glue definitions. This is not perfect.
@<Hi\TeX\ auxiliary routines@>=
static uint8_t hout_glue_spec(pointer p);
static uint8_t hout_baselinespec(int n)
{ Info i=b000;
  pointer p;
  scaled s;
  s=bl_defined[n].lsl;
  if (s!=0) {HPUT32(s); i|=b001;}
  p=bl_defined[n].bs;
  if (p!=zero_glue)
{ uint8_t *pos;
  uint8_t tag;
  HPUTNODE; /* allocate */
  pos=hpos;
  hpos++;   /* tag */
  tag=hout_glue_spec(p);
  *pos=tag; DBGTAG(tag,pos);
  DBGTAG(tag,hpos); HPUT8(tag);
  i|=b100;
}
  p=bl_defined[n].ls;
  if (p!=zero_glue)
{ uint8_t *pos;
  uint8_t tag;
  HPUTNODE; /* allocate */
  pos=hpos;
  hpos++;   /* tag */
  tag=hout_glue_spec(p);
  *pos=tag; DBGTAG(tag,pos);
  DBGTAG(tag,hpos); HPUT8(tag);
  i|=b010;
}
  return TAG(baseline_kind,i);
}
@ @<Output baseline skip definitions@>=
  DBG(DBGDEF,"Defining %d baseline skips\n",max_ref[baseline_kind]);
  for (i=1;i<=max_ref[baseline_kind]; i++)
  { uint32_t   pos=hpos-hstart;
    uint8_t tag;
    hpos++; /* space for the tag */
    HPUT8(i); /* reference */
    tag=hout_baselinespec(i);
    hstart[pos]=tag;
    HPUT8(tag);
  }
@ The following function is needed in Hi\TeX\ to produce debugging output if needed.
@<Hi\TeX\ routines@>=
static void print_baseline_skip(int i)
{ if (0<=i && i < bl_used)
  { print_spec(bl_defined[i].bs,0); print_char(',');
    print_spec(bl_defined[i].ls,0); print_char(',');
    print_scaled(bl_defined[i].lsl);
  }
  else
    print("unknown");
}
@*1 Discretionary breaks.
For discretionary breaks, we use again the pointer representation.
@<Hi\TeX\ variables@>=
static pointer dc_defined[0x100];
@ There are no predefined discretionary breaks and so we start with
three auxiliary functions and the
function to get a ``disc'' number.

The first two routines are used to compare discretionary breaks
in order to reuse already defined disc numbers.
The pre and post break lists must consist entirely of character,
kern, box, rule, and ligature nodes.
Unfortunately a box node might contain all kinds of nodes
and its content might be huge and deeply nested.
The following routine will not make a complete comparison but will give
up if the box content is ``too complex''.

@<Hi\TeX\ auxiliary routines@>=
static bool list_equal(pointer p, pointer q);
static bool node_equal(pointer p, pointer q)
{ if (is_char_node(p) && is_char_node(q) &&
        font(p)==font(q) && character(p)==character(q))
    return true;
  if (!is_char_node(p) && !is_char_node(q))
  { if (type(p)!=type(q)) return false;
    if (type(p)==kern_node &&
        subtype(p)==subtype(q) && width(p)==width(q))
      return true;
    if (type(p)==ligature_node &&
        character(lig_char(p)) == character(lig_char(q)) &&
        font(lig_char(p)) == font(lig_char(q)))
      return true;
    if (type(p)==rule_node  &&
        width(p)==width(q) &&  height(p)==height(q) &&  depth(p)==depth(q))
      return true;
    if ((type(p)==hlist_node || type(p)==vlist_node) &&
        width(p)==width(q) &&  height(p)==height(q) &&  depth(p)==depth(q) &&
        shift_amount(p)==shift_amount(q) &&
        glue_sign(p) ==  glue_sign(q) &&
        glue_order(p) ==  glue_order(q) &&
        glue_set(p) == glue_set(q) &&
        list_equal(list_ptr(p),list_ptr(q)))
      return true;
  }
  return false;
}

static bool list_equal(pointer p, pointer q)
{@+while (true)
  { if (p==q) return true;
    if (p==null || q==null) return false;
    if (!node_equal(p,q)) return false;
    p=link(p);q=link(q);
  }
}

static pointer copy_disc_node(pointer p)
{ pointer q;
  q=get_node(small_node_size);
  pre_break(q)=copy_node_list(pre_break(p));
  post_break(q)=copy_node_list(post_break(p));
  type(q)=type(p);
  subtype(q)=subtype(p); /* replace count and explicit bit */
  return q;
}
@ @<Hi\TeX\ routines@>=
static int hget_disc_no(pointer p)
{
  static int rover=0;
  int i;
  for(i=0; i<= max_ref[disc_kind]; i++)
    { pointer q=dc_defined[rover];
  if ( is_auto_disc(p)==is_auto_disc(q) && replace_count(p)==replace_count(q) &&
       list_equal(pre_break(p),pre_break(q)) &&
       list_equal(post_break(p),post_break(q)))
      return rover;
    else if (rover==0)
      rover=max_ref[disc_kind];
    else
      rover--;
  }
  if (max_ref[disc_kind]>=0xFF || section_no!=2) return -1;

  rover=++max_ref[disc_kind];
  dc_defined[rover]=copy_disc_node(p);
  @<Allocate font numbers for glyphs in the pre- and post-break lists@>@;
  return rover;
}
@ When we allocate disc numbers we might have fonts inside the pre-
or post-break list, that never show up anywhere else in the content.
These fonts would then be undefined once we start the definition section.
So we have to make sure, all necessary fonts get defined.

@<Allocate font numbers for glyphs in the pre- and post-break lists@>=
ensure_font_no(pre_break(p));
ensure_font_no(post_break(p));
@ @<Output discretionary break definitions@>=
  DBG(DBGDEF,"Maximum disc reference: %d\n",max_ref[disc_kind]);
  for (i=0;i<=max_ref[disc_kind]; i++)
           HPUTDEF(hout_disc(dc_defined[i]),i);

@*1 Parameter Lists.
We store predefined parameter lists in a hash table in order to speed up
finding existing parameter lists. The parameter list itself is stored as
a byte sequence using the short \HINT\ file format.
We link the table entries in order of increasing reference numbers to be able
to output them in a more ``orderly'' fashion.

@<Hi\TeX\ variables@>=

#define PLH_SIZE 313 /* a prime number $\approx2^8\times 1.2$. */

static struct {int l; /* link */
  uint32_t h; /* hash */
  uint32_t n; /* number */
  uint32_t s; /* size */
  uint8_t *p; /* pointer */} pl_defined[PLH_SIZE]={{0}};
static int pl_head=0, *pl_tail=&pl_head;

@ Next we define three short auxiliary routines and the |hget_param_list_no| function.

@<Hi\TeX\ routines@>=

static uint32_t  hparam_list_hash(List *l)
{ uint32_t h=0;
  uint32_t i;
  for (i=0;i<l->s;i++)
    h=3*h+hstart[l->p+i];
  return h;
}

static bool pl_equal(List *l, uint8_t *p)
{ uint8_t *q=hstart+l->p;
  uint32_t i;
  for (i=0; i<l->s; i++)
    if (q[i]!=p[i]) return false;
  return true;
}

static void pl_copy(List *l, uint8_t *p)
{ uint8_t *q=hstart+l->p;
  memcpy(p,q,l->s);
}

static int hget_param_list_no(List *l)
{ uint32_t h;
  int i;
  if (l->s<=0) return 0;
  h= hparam_list_hash(l);
  i = h%PLH_SIZE;
  while (pl_defined[i].p!=NULL)
  { if (pl_defined[i].h==h && pl_equal(l,pl_defined[i].p))
      return pl_defined[i].n;
    i=i+199; /* some other prime */
    if (i>=PLH_SIZE) i=i-PLH_SIZE;
  }
  if (max_ref[param_kind]>=0xFF || section_no!=2) return -1;
  pl_defined[i].n=++max_ref[param_kind];
  *pl_tail=i; pl_tail=&(pl_defined[i].l);
  pl_defined[i].l=0;
  pl_defined[i].h=h;
  pl_defined[i].s=l->s;
  ALLOCATE(pl_defined[i].p,l->s,uint8_t);
  pl_copy(l,pl_defined[i].p);
  return pl_defined[i].n;
}
@ To output parameter lists, we need a function to output a parameter node:

@<Hi\TeX\ routines@>=
static void hdef_param_node(int ptype, int pnumber,int pvalue)
{
  if (ptype==int_type)
  { if (pvalue==int_defined[hmap_int[pnumber]]) return;
    else HPUTDEF(hput_int(pvalue),hmap_int[pnumber]);
  }
  else if (ptype==dimen_type)
  { if (pvalue==dimen_defined[hmap_dimen[pnumber]]) return;
    else HPUTDEF(hput_dimen(pvalue),hmap_dimen[pnumber]);
  }
  else if (ptype==glue_type)
    { if (glue_equal(pvalue,glue_defined[hmap_glue[pnumber]])) return;
    else HPUTDEF(hout_glue_spec((pointer)pvalue),hmap_glue[pnumber]);
  }
  else QUIT("Unexpected parameter type %d",ptype);
}
@ Now we use the linked list starting with |pl_head| to output the predefined
parameter lists sorted by their reference number.

 @<Output parameter list definitions@>=
  DBG(DBGDEF,"Defining %d parameter lists\n",max_ref[param_kind]);
  for (i=pl_head;i>0;i=pl_defined[i].l)
  { int j,k;
    DBG(DBGDEF,"Defining parameter list %d, size 0x%x\n",i,pl_defined[i].s);
    j=hsize_bytes(pl_defined[i].s);
    HPUTX(1+1+j+1+pl_defined[i].s+1+j+1);
    if (j==4) k=3; else k=j;
    HPUTTAG(param_kind,k);
    HPUT8(pl_defined[i].n);
    hput_list_size(pl_defined[i].s,j);
    HPUT8(0x100-k);
    memcpy(hpos,pl_defined[i].p,pl_defined[i].s);
    hpos=hpos+pl_defined[i].s;
    HPUT8(0x100-k);
    hput_list_size(pl_defined[i].s,j);
    HPUTTAG(param_kind,k);
  }
@*1 Fonts.
To store a font definition, we define the data type |Font|
and an array |hfonts| of pointers indexed by \HINT\ font numbers.
To map \HINT\ font numbers to \TeX\ font numbers, the |Font| contains
the |i| field; to map \TeX\ font numbers to \HINT\ font numbers,
we use the array |hmap_font|.

@<Hi\TeX\ variables@>=
#define MAX_FONTS 0x100

typedef struct {
  uint8_t i; /* the \TeX\  font number */
  pointer g; /* space glue */
  pointer h; /* default hyphen */
  pointer p[MAX_FONT_PARAMS]; /* font parameters */
  uint16_t m; /* section number of font metric file */
  uint16_t y; /* section number of font glyph file */
} Font;

static Font *hfonts[MAX_FONTS]={NULL};
static int hmap_font[MAX_FONTS];
@ @<Initialize definitions for fonts@>=
  for (i=0;i<0x100;i++) hmap_font[i]=-1;
  max_ref[font_kind]=-1;
@ Allocation of a |Font| record takes place when we translate a \TeX\ font
number to a \HINT\ font number using the function |hget_font_no|, and while
doing so discover that the corresponding \HINT\ font number does not yet exist.
Because the |Font| structure must be initialized after allocating it,
we start with some auxiliary routines for that purpose.

@<Hi\TeX\ auxiliary routines@>=
static pointer find_space_glue(internal_font_number f)
{@+font_index @!main_k;
   pointer main_p=font_glue[f];
if (main_p==null)
  {@+main_p=new_spec(zero_glue);main_k=param_base[f]+space_code;
  width(main_p)=font_info[main_k].sc; /*that's |space(f)|*/
  stretch(main_p)=font_info[main_k+1].sc; /*and |space_stretch(f)|*/
  shrink(main_p)=font_info[main_k+2].sc; /*and |space_shrink(f)|*/
  font_glue[f]=main_p;
  }
  return main_p;
}
static pointer hget_font_space(uint8_t f)
{ pointer p;
  if (space_skip==zero_glue)
	p = find_space_glue(f);
  else
    p=glue_par(space_skip_code);
  add_glue_ref(p);
  return p;
}


static pointer hget_font_hyphen(uint8_t f)
{ pointer p;
  int c;
  p=new_disc();
  c= hyphen_char[f];
  if (c >= 0 && c < 256) pre_break(p)=new_character(f, c);
  return p;
}


static void hdef_font_params(pointer p[MAX_FONT_PARAMS])
{ /* used only for texts */
}

@ In the following code, |f| is a \TeX\ internal font number
and |g| is the corresponding \HINT\ font number.
\TeX's null-font, a kind of undefined font containing no characters
is replaced by \HINT's font number zero. Actually the nullfont should
never appear in the output, but if it does so, either an error message
or a more sensible replacement font might be in order.

Finding the right font file based on the name of the name of the {\tt .tfm} file
might require finding a {\tt .map} file using |kpse_find_file(name,kpse_fontmap_format,false)|.
This is currently not implemented.

%It seems I need: (see email by Karl)
%|kpse_find_file(name,kpse_fontmap_format,false);|
%with name "ps2pk.map" or "psfonts.map" or "ttfonts.map" or cmfonts.map
%to get from the tfm name the postscript name.
%then I get the |psfont_name| usually its the same font name
%with .pfb appended
%so I can skip it
%#ifdef HAVE_KPSE_ENC_FORMATS
%  enc_file=kpse_find_file(encoding,kpse_enc_format,false);
%#else
%  enc_file=kpse_find_file(encoding,kpse_tex_ps_header_format,false);
%#endif
%reading the encoding is found in dvipng/dvipnd-src/enc.c

@<Hi\TeX\ auxiliary routines@>=
static char *hfind_glyphs(char *filename)
{ char *fname=NULL;
  kpse_glyph_file_type file_ret;
  fname=kpse_find_file(filename,kpse_type1_format,true);
  if (fname==NULL) fname=kpse_find_file(filename,kpse_truetype_format,true);
  if (fname==NULL) fname=kpse_find_file(filename,kpse_opentype_format,true);
  if (fname==NULL) fname = kpse_find_glyph(filename, option_dpi,kpse_pk_format, &file_ret);
  if (fname==NULL)
   fprintf(stderr,"Unable to find glyph data for font %s\n",filename),exit(1);
  return fname;
}

static uint8_t hget_font_no(uint8_t f)

{ int g;
  char *n,*fn;
  int l;
  if (f==0)
  { DBG(DBGFONT,"TeX nullfont -> 0\n");
    return 0;@+
  }
  g=hmap_font[f];
  DBG(DBGFONT,"Mapping TeX font %d->%d\n",f,g);
  if (g>=0) return g;
  DBG(DBGDEF,"New TeX font %d\n",f);
  if (max_ref[font_kind]>=0x100)
    QUIT("too many fonts in use");
  g = ++(max_ref[font_kind]);
  ALLOCATE(hfonts[g],1,Font);
  hfonts[g]->i=f;
  hmap_font[f]=g;
  hfonts[g]->g=hget_font_space(f);
  hfonts[g]->h=hget_font_hyphen(f);
  pack_file_name(font_name[f], empty_string,empty_string,".tfm");
  n = kpse_find_tfm((char*)name_of_file+1);
  if (n==NULL)
    QUIT("Unable to find .tfm file for font %s",(char*)name_of_file+1);
  hfonts[g]->m= hnew_file_section(n);
  free(n);
  pack_file_name(font_name[f], empty_string,empty_string,"");
  n= hfind_glyphs((char*)name_of_file+1);
  if (n==NULL)
    QUIT("Unable to find glyph file for font %s",(char*)name_of_file+1);
  hfonts[g]->y= hnew_file_section(n);
  free(n);
  return g;
}
@ Surprisingly, not all characters that occur in a \HINT\ file are inside the
content section; some characters might hide in the definition section
inside the pre- or post-break list of a predefined discretionary break.
To make sure that the fonts necessary for these characters are included
in the final \HINT\ file, we check these lists to make sure all \TeX\ font
numbers have a corresponding \HINT\ font number.

@<Hi\TeX\ auxiliary routines@>=
static void ensure_font_no(pointer p)
{ while (p!=null)
  { if (is_char_node(p))
      hget_font_no(font(p));
    else if (type(p)==hlist_node||type(p)==vlist_node)
      ensure_font_no(list_ptr(p));
    p=link(p);
  }
}
@ @<Output font definitions@>=
{ int f;
    DBG(DBGDEF,"Defining %d fonts\n",max_ref[font_kind]+1);
    for (f=0;f<=max_ref[font_kind];f++)
    { Font *hf=hfonts[f];
      internal_font_number g=hf->i;
      uint32_t pos=hpos-hstart;
      Info i= b000;
      DBG(DBGDEF,"Defining font %d size 0x%x\n",f,font_size[g]);
      hpos++; HPUTNODE;  /* space for the tag and the node */
      HPUT8(f); /* reference */
      hout_string(font_id_text(g));
      if(font_size[g]>0) HPUT32(font_size[g]);
      else  HPUT32(font_dsize[g]);
      HPUT16(hf->m);HPUT16(hf->y);
      DBG(DBGDEF,"Defining font space\n");
      HPUTCONTENT(hout_glue_spec,hf->g);
      DBG(DBGDEF,"Defining font hyphen\n");
      HPUTCONTENT(hout_disc,hf->h);
      hdef_font_params(hf->p);
      DBG(DBGDEF,"End of font %d\n",f);
      hput_tags(pos,TAG(font_kind,i));
    }
}
@ We used the following function to write a \TeX\ string to the \HINT\ file:
@<Hi\TeX\ auxiliary routines@>=
static void hout_string(int s)
{ pool_pointer j;
  uint8_t c;
  j= str_start[s];
  while(j<str_start[s+1])
  { c= so(str_pool[j++]);
    if (c=='%' || c < 0x20 ||c >= 0x7F)
    { char str[4];
      snprintf(str,4,"%%%02X",c);/* convert to printable ASCII */
      HPUTX(3);
      HPUT8(str[0]); HPUT8(str[1]); HPUT8(str[2]);
    }
    else
    { HPUTX(1);
      HPUT8(c);
    }
  }
  HPUT8(0);
}
@ We used the following macro to add tags around the font glue and the font hyphen:


@<Hi\TeX\ macros@>=

#define HPUTCONTENT(F,D)        \
  { uint32_t _p;                \
    uint8_t _f;                 \
    HPUTNODE; /* allocate */    \
    _p=hpos++-hstart; /* tag */ \
    _f=F(D);                    \
    *(hstart+_p)=_f; DBGTAG(_f,hstart+_p);      \
    DBGTAG(_f,hpos); HPUT8(_f); \
  }

@*1 Labels.
The only label that must always exist is the zero label. It is used
to mark the ``home'' position of a document.

We allocate the zero label with the first call to |next_label|
and initialize it with the value from |label_defaults|.
We then make sure it can be found under the name ``HINT.home''.

@<Initialize definitions for labels@>=
{ char nom[]="HINT.home";
  unsigned int h=name_hash(nom)%LABEL_HASH;
  int i=insert_hash(h,0,nom);
  if (i!=zero_label_no)
    QUIT("Trying to allocate the zero label, got %d",i);
  labels[zero_label_no]=label_defaults[zero_label_no];
  labels[zero_label_no].next=first_label;
  first_label=zero_label_no;
  DBG(DBGLABEL,"Defining zero label: pos=0x%x\n",labels[zero_label_no].pos);
}
@*1 Page Templates.

Once we start producing content nodes, we update the maximum numbers
of page templates and streams from |max_page| and |max_stream|.
These values might have changed because templates were loaded from a
format file.

@<Fix definitions of page templates@>=
max_ref[page_kind]=max_page;
max_ref[stream_kind]=max_stream;
@ As part of a page template, we will see stream insertion nodes.
When we encounter an |stream_node| inside a template definition,
we output a stream insertion point.

@<cases to output whatsit content nodes@>=
     case stream_node:
        HPUT8(setstream_number(p));
        tag=TAG(stream_kind,b100);
        break;
@ @<Output page template definitions@>=
 DBG(DBGDEF,"Maximum page template reference: %d\n",max_page);
 { pointer t;
   for (t=link(setpage_head);t!=null;t=link(t))
   { uint32_t pos=hpos-hstart;
     DBG(DBGDEF,"Defining page template %d\n",setpage_number(i));@/
     hpos++; HPUTNODE;  /* space for the tag and the node */
     HPUT8(setpage_number(t));
     hout_string(setpage_name(t));
     HPUT8(setpage_priority(t));
     hout_glue_node(setpage_topskip(t));
     hput_dimen(setpage_depth(t));
     hout_xdimen_node(setpage_height(t));
     hout_xdimen_node(setpage_width(t));
     hout_list_node2(setpage_list(t));
     @<output stream definitions@>@;
     hput_tags(pos,TAG(page_kind,0));
   }
}
@ As part of the output of page template definitions, we output
stream definitions:

@<output stream definitions@>=
{ pointer p,q;
  p =  setpage_streams(t);
  while (p!=null)
  { uint8_t n;
    n=setstream_number(p);
    DBG(DBGDEF,"Defining stream %d at " SIZE_F "\n",n,hpos-hstart);
    HPUTTAG(stream_kind,b100);
    HPUT8(n);
    hout_xdimen_node(setstream_max(p)); /* maximum height */
    HPUT16(setstream_mag(p)); /* factor */
    HPUT8(setstream_preferred(p)); /* preferred */
    HPUT8(setstream_next(p)); /* next */
    HPUT16(setstream_ratio(p)); /* ratio */
    q=setstream_before(p);setstream_before(p)=null;
    hout_list_node2(q);flush_node_list(q);
    hout_xdimen_node(setstream_width(p));
    q=setstream_topskip(p);
    hout_glue_node(q); delete_glue_ref(q);
    q=setstream_after(p);setstream_after(p)=null;
    hout_list_node2(q);flush_node_list(q);
    q=setstream_height(p);
    hout_glue_node(q); delete_glue_ref(q);
    HPUTTAG(stream_kind,b100);
    p=link(p);
  }
}
@* \HINT\ Content.
\TeX\ puts content nodes on the contribution list and once in a while calls |build_page| to
move nodes from the contribution list to the current page. Hi\TeX\ has a special version of
|build_page| that will simply remove nodes from the contribution list and passes them
to the function |hout_node|.
The actual output of \HINT\ nodes is accomplished with functions defined in {\tt put.c}
(see~Martin Ruckert, The \HINT\ file format).

@<Hi\TeX\ routines@>=
static void hout_node(pointer p)
{ uint32_t pos=hpos-hstart;
  uint8_t tag;
  HPUTNODE;
  hpos++;
  if(is_char_node(p))
    @<output a character node@>@;
  else switch(type(p)) @/
  { @<cases to output content nodes@>@t\1@>@;
    default:
        MESSAGE("\nOutput of node type=%d subtype=%d not implemented\n", type(p),subtype(p));
        hpos--;
        return;@t\2@>@;
  }
  hput_tags(pos,tag);
}

@*1 Characters.
The processing of a character node consist of three steps: checking for definitions, converting the
\TeX\ node pointed to by |p| to a \HINT\ data type, here a |Glyph|, and using the
corresponding {\tt hput\_\,\dots} function to output the node and return the |tag|.
In the following, we will see the same approach in many
small variations for all kinds of nodes.

@<output a character node@>=
{ Glyph g;
  g.f=hget_font_no(font(p));
  g.c = character(p);
  tag=hput_glyph(&g);
}
@*1 Penalties.
Integer nodes, which as content nodes are used for penalties, come next.
Except for the embedding between |case| and |break|, the
processing of penalty nodes follows the same pattern we have just seen.
 @<cases to output content nodes@>=
   case penalty_node:
     { int n,i;
       i = penalty(p);
       if (i>10000) i=10000;
       else if (i<-10000) i=-10000;
       n=hget_int_no(i);
       if (n<0) tag=hput_int(i);
       else  { HPUT8(n); tag=TAG(penalty_kind,0);}
     }
     break;
@*1 Kerns.
The kern nodes of \TeX\ contain a single dimension and a flag to mark ``explicit'' kerns.
 @<cases to output content nodes@>=
   case kern_node:
     { int n;
       n=hget_dimen_no(width(p));
       if (n<0)
       { Kern k;
         k.x=(subtype(p)==explicit);
         k.d.w=width(p);
         k.d.h=k.d.v=0.0;
         tag=hput_kern(&k);
       }
       else
       { HPUT8(n);
         if (subtype(p)==explicit) tag=TAG(kern_kind,b100); else tag=TAG(kern_kind,b000);
       }
     }
     break;
@*1 Extended Dimensions.
Extended dimensions do not constitute content on their own, but nodes
containing an extended dimension are part of other nodes. Here we
define an auxiliary function that checks for a predefined extended
dimension and if found outputs the reference number and returns false;
otherwise it outputs the extended dimension and returns true.


@<Hi\TeX\ auxiliary routines@>=
static void hout_xdimen_node(pointer p)
{ Xdimen x;
   x.w=xdimen_width(p);
   x.h=xdimen_hfactor(p)/(double)ONE;
   x.v=xdimen_vfactor(p)/(double)ONE;
   hput_xdimen_node(&x);
}

static bool hout_xdimen(pointer p)
{int n = hget_xdimen_no(p);
 if (n>=0) { HPUT8(n); return false; @+}
 else
 { hout_xdimen_node(p); return true;@+}
}

@*1 Languages.
The |hlanguage| array maps the language numbers of \TeX\ to \HINT\ language numbers.
@<Hi\TeX\ variables@>=
static struct {
  uint8_t n;
  str_number s;
} hlanguage[0x100];
@ For any language number of \TeX, the following function returns
the corresponding \HINT\ language number.
Since \TeX\ knows about a maximum of 255 languages, there is
no need for overflow checking. The next function writes a language
node to the output stream.

@<Hi\TeX\ auxiliary routines@>=
static uint8_t hget_language_no(uint8_t n)
{ int i;
  for (i=0;i<=max_ref[language_kind]; i++)
    if (hlanguage[i].n==n) return i;
  i=++max_ref[language_kind];
  hlanguage[i].n=n;
  hlanguage[i].s=0; /* language unknown*/
  return i;
}

static uint8_t hout_language(uint8_t n)
{ n=hget_language_no(n);
  if (n<7) return TAG(language_kind,n+1);
  else
  { HPUT8(n); return TAG(language_kind,0); }
}
@ After these preparations, the output of a language node is
simple:

@<cases to output whatsit content nodes@>=
case language_node:
  tag=hout_language(what_lang(p));
  break;

@ Normally \TeX\ does not produce an initial language node and
then the language in the \HINT\ file would not be known until
it changes for the first time.

@<insert an initial language node@>=
{ uint32_t pos = hpos-hstart;
  hpos++;
  hput_tags(pos,hout_language(language));
}
@ \TeX\ offers currently no simple way to obtain a standardized
language identifier for the current language. So if the
string number of the language is zero, we output the string |"unknown"|;
if somehow the language is known, we output the corresponding string
from \TeX's string pool.

@<Output language definitions@>=
  DBG(DBGDEF,"Maximum language reference: %d\n",max_ref[language_kind]);
  for (i=max_fixed[language_kind]+1;i<=max_ref[language_kind]; i++)
  {  HPUTNODE;
     HPUT8(TAG(language_kind,0));
     HPUT8(i);
     if (hlanguage[i].s==0)
       hput_string("unknown");
     else
       hout_string(hlanguage[i].s);
     HPUT8(TAG(language_kind,0));
  }
@*1 Mathematics.
\TeX's math nodes have an optional width---a copy of the mathsurround parameter---while
\HINT\ math nodes do not. Therefore we have to add an explicit kern node if
the width is nonzero. We add it before a ``math on'' node or after a ``math off''
to get the same behavior in respect to line breaking.

@<cases to output content nodes@>=
   case math_node:
     { Kern k;
       k.x=true;
       k.d.w=width(p);
       k.d.h=k.d.v=0.0;
       if (subtype(p)==before)
       { tag=TAG(math_kind,b111);
         if (width(p)!=0)
 	 { hput_tags(pos,hput_kern(&k));
           pos=hpos-hstart;
           HPUTNODE;
           hpos++;
         }
       }
       else
       { tag=TAG(math_kind,b011);
         if (width(p)!=0)
 	 { hput_tags(pos,tag);
           pos=hpos-hstart;
           HPUTNODE;
           hpos++;
           tag=hput_kern(&k);
         }
       }
     }
     break;
@*1 Glue and Leaders.
Because glue specifications and glue nodes are sometimes part of other
nodes, we start with three auxiliary functions: The first simply
converts a Hi\TeX\ glue node into a \HINT\ |Glue|, outputs it and
returns the tag; the second checks for predefined glues, and the third
outputs a complete glue node including tags.
@<Hi\TeX\ auxiliary routines@>=

static uint8_t hout_glue_spec(pointer p)
{ @+Glue g;
  to_Glue(p,&g);
  return hput_glue(&g);@+
}

static uint8_t hout_glue(pointer p)
{ int n;
  n = hget_glue_no(p);
  if (n<0)
    return hout_glue_spec(p);
  else
    {@+ HPUT8(n); return TAG(glue_kind,0);@+}
}

static void hout_glue_node(pointer p)
{ uint8_t *pos;
  uint8_t tag;
  HPUTNODE; /* allocate */
  pos=hpos;
  hpos++;   /* tag */
  tag=hout_glue(p);
  *pos=tag; DBGTAG(tag,pos);
  DBGTAG(tag,hpos); HPUT8(tag);
}
@ Since \TeX\ implements leaders as a kind of glue, we have one case statement covering glue and leaders.

@<cases to output content nodes@>=
  case glue_node:
     if (subtype(p)<= cond_math_glue) /* normal glue */
     tag= hout_glue(glue_ptr(p));
     else if (a_leaders<=subtype(p) && subtype(p)<=x_leaders) /*leaders */
     { hout_glue_node(glue_ptr(p));
       { bool outer_doing_leaders=doing_leaders;
         doing_leaders=true;
         hout_node(leader_ptr(p));
         doing_leaders=outer_doing_leaders;
       }
       tag=TAG(leaders_kind,b100|(subtype(p)-a_leaders+1));
     }
     else
       QUIT("glue subtype %d not implemented\n", subtype(p));
     break;
@*1 Discretionary breaks.
Discretionary breaks are needed in font descriptions.
Therefore we define a function that converts \TeX's |disc_node| pointers
to \HINT's |Disc|, outputs the discretionary break, and returns the tag.

@<Hi\TeX\ auxiliary routines@>=
static uint8_t hout_disc(pointer p)
{ Disc h;
  h.x=!is_auto_disc(p);
  h.r=replace_count(p);
  if (h.x) h.r|=0x80;
  if (h.r!=0) HPUT8(h.r);
  if (pre_break(p)==null && post_break(p)==null)
    h.p.s=h.q.s=0;
  else
  { uint32_t lpos;
    lpos=hpos-hstart;
    h.p.t=TAG(list_kind,b001);
    hout_list_node(pre_break(p),lpos,&(h.p));
    if (post_break(p)==null)
      h.q.s=0;
    else
    { uint32_t lpos;
      lpos=hpos-hstart;
      h.q.t=TAG(list_kind,b001);
      hout_list_node(post_break(p),lpos,&(h.q));
    }
  }
  return hput_disc(&h);
}

@ @<cases to output content nodes@>=
   case disc_node:
     { int n;
       n=hget_disc_no(p);
       if (n<0)
         tag=hout_disc(p);
        else  { HPUT8(n); tag=TAG(disc_kind,0);}
     }
     break;
@*1 Ligatures.
The subtype giving information on left and right boundary characters
is ignored since the \HINT\ viewer will not do ligature or kerning
programs and neither attempt hyphenation.

@<cases to output content nodes@>=
   case ligature_node:
     { Lig l;
       pointer q;
       l.f=hget_font_no(font(lig_char(p)));
       HPUT8(l.f);
       l.l.p=hpos-hstart;
       hput_utf8(qo(character(lig_char(p))));
       q=lig_ptr(p);
       while(q> null)
	 { hput_utf8(qo(character(q)));
         q=link(q);
       }
       l.l.s=(hpos-hstart)-l.l.p;
       tag=hput_ligature(&l);
     }
     break;
@*1 Rules.
@<cases to output content nodes@>=
   case rule_node:
     { Rule r;
	if (is_running(height(p))) r.h=RUNNING_DIMEN; else r.h=height(p);
	if (is_running(depth(p)))  r.d=RUNNING_DIMEN; else r.d=depth(p);
	if (is_running(width(p)))  r.w=RUNNING_DIMEN; else r.w=width(p);
        tag=hput_rule(&r);
     }
     break;
@*1 Boxes.
@<cases to output content nodes@>=
    case hlist_node:
    case vlist_node:
        if (type(p)==hlist_node) tag=TAG(hbox_kind,0);
	else tag=TAG(vbox_kind,0);
        tag |= hput_box_dimen(height(p),depth(p),width(p));
        tag |= hput_box_shift(shift_amount(p));
        tag |= hput_box_glue_set((glue_sign(p)==stretching)?+1:-1,glue_set(p),glue_order(p));
	hout_list_node2(list_ptr(p));
      break;
@*1 Adjustments.
@<cases to output content nodes@>=
   case adjust_node:
     hout_list_node2(adjust_ptr(p));
     tag=TAG(adjust_kind,1);
     break;
@*1 Insertions.
\TeX's insertions are mapped to \HINT\ streams.

@<cases to output content nodes@>=
case ins_node:
@<output stream content@>@;
break;
@ Here we consider stream content and come back to stream
definitions in a later section.
In a \HINT\ stream content node the stream
parameters |floating_penalty|, |split_max_depth|, and
|split_top_skip| are optional. If omitted, the defaults from the stream definition are
used. This is probably also for \TeX\ the most common situation.
It is, however, possible to supply more than one page template with different defaults
and while not very common, \TeX\ might change the parameters at any time.
Because we don't know which is the current page template,
it is not possible to compare the current parameter values against the defaults,
and we have to supply all the parameters always.
In a future version, we might have a \TeX\ primitive that allows us to
signal ``use the defaults''.

@<output stream content@>=
{ int k,n;
  uint32_t pos;
  List l;
  Info i=b000;
  k=subtype(p);
  n=hget_stream_no(k);
  HPUT8(n);
  link(temp_head)=null;
  new_param_node(int_type,floating_penalty_code,float_cost(p));
  new_param_node(dimen_type,split_max_depth_code,depth(p));
  new_param_node(glue_type,split_top_skip_code,split_top_ptr(p));
  pos=hpos-hstart;
  l.t=TAG(param_kind,b001);
  n=hout_param_list(link(temp_head),pos,&l);
  flush_node_list(link(temp_head));@+ link(temp_head)=null;
  if (n>=0) HPUT8(n); else i=b010;
  hout_list_node2(ins_ptr(p));
  tag=TAG(stream_kind,i);
}
@*1 Marks.
We currently ignore Marks.

@<cases to output content nodes@>=
    case mark_node: hpos--; return;
@*1 Whatsit Nodes.
We have added custom whatsit nodes and now we switch based on the subtype.

@<cases to output content nodes@>=
  case whatsit_node:
    switch(subtype(p))
    { @<cases to output whatsit content nodes@>@;
      default:
        if (subtype(p)>=hitex_ext)
        { MESSAGE("\nOutput of whatsit nodes subtype=%d not implemented\n", subtype(p));
        }
        hpos--; /* remove tag */
        return;
    }
    break;

@ For \TeX's whatsit nodes that handle output files, no code is generated;
hence, we call |out_what| and simply remove the tag byte that is already
in the output.
When the \.{\\write} node arrives here, it is normally handled
in |hlist_out| or |vlist_out| in an environment determined by
the output routine. For example \LaTeX\ redefines \.{\\protect}
as \.{\\noexpand} and these redefinitions need to be made
before calling |out_what| which expands the token list.
We should therefore add the definitions contained in the output routine
to mimic expanding inside an output routine.


@<cases to output whatsit content nodes@>=
     case open_node: case write_node: case close_node:
     case special_node: case latespecial_node: out_what(p);  hpos--; return;

@*1 Paragraphs.
When we output a paragraph node, we have to consider a special case:
The parameter list is given by a reference number but the extended dimension
needs an |xdimen| node. In this case the reference number for the parameter
list comes first, while otherwise the extended dimension would come first.
To determine whether there is a reference number for the parameter list,
the function |hout_param_list| is writing the parameter list to the output.
\noindent
@<cases to output whatsit content nodes@>=
case par_node:
      { uint32_t pos, xpos, xsize;
        List l;
        pointer q;
        int n,m;
        Info i=b000;
        q=par_extent(p);
        n=hget_xdimen_no(q);
        if (n>=0) HPUT8(n);
	else
        { xpos=hpos-hstart; hout_xdimen_node(p); xsize=(hpos-hstart)-xpos; i|=b100; }
        pos=hpos-hstart;
        l.t=TAG(param_kind,b001);
	m=hout_param_list(par_params(p),pos,&l);
        if (m>=0)
        { if (i&b100)
          { HPUTX(1);
            memmove(hstart+xpos+1,hstart+xpos,xsize);
	    hpos++;
            hstart[xpos]=m;
          }
          else
            HPUT8(m);
        }
        else i|=b010;
        hout_list_node2(par_list(p));
        tag=TAG(par_kind,i);
      }
    break;
@*1 Baseline Skips.
@<cases to output whatsit content nodes@>=
    case baseline_node:
      { int n;
        n= baseline_node_no(p);
        if (n>0xFF) tag=hout_baselinespec(n);
	else
        { HPUT8(n);
          tag=TAG(baseline_kind,b000);
        }
      }
      break;
@*1 Displayed Equations.
@<cases to output whatsit content nodes@>=
      case disp_node:
	{ uint32_t pos;
          List l;
          int n;
          Info i=b000;
          pos=hpos-hstart;
          l.t=TAG(param_kind,b001);
	  n=hout_param_list(display_params(p),pos,&l);
          if (n>=0) HPUT8(n); else i|=b100;
          if (display_eqno(p)!=null && display_left(p))
	  { hout_node(display_eqno(p)); i|=b010; }
          hout_list_node2(display_formula(p));
          if (display_eqno(p)!=null && !display_left(p))
	  { hout_node(display_eqno(p)); i|=b001; }
          tag=TAG(math_kind,i);
          /* the |display_no_bs(p)| tells whether the baseline skip is ignored */
	}
         break;
@*1 Extended Boxes.
When we output an extended box, we have to consider a special case: the page templates.
Page templates are boxes that contain insertion points. These insertion points look
like regular insertions but with an empty content list. As a result the |hpack| and
|vpackage| routines might believe that they can compute the dimensions of the box
content when in fact they can not.


@<cases to output whatsit content nodes@>=
   case hset_node:
   case vset_node:
        { Kind k= subtype(p)==hset_node?hset_kind:vset_kind;
          Info i=b000;
          Stretch s;
          int n=set_extent(p);
          i|=hput_box_dimen(height(p),depth(p),width(p));
          i|=hput_box_shift(shift_amount(p));
          s.f=set_stretch(p)/(double)ONE; s.o=set_stretch_order(p);
          hput_stretch(&s);
          s.f=set_shrink(p)/(double)ONE; s.o=set_shrink_order(p);
          hput_stretch(&s);
          if (hout_xdimen(n)) i|=b001;
	  hout_list_node2(list_ptr(p));
          tag=TAG(k,i);
        }
        break;
      case hpack_node:
      case vpack_node:
        { Kind k= (subtype(p)==hpack_node?hpack_kind:vpack_kind);
          Info i=b000;
          int n=pack_extent(p);
          if (pack_m(p)==additional) i|=b001;
          if (shift_amount(p)!=0) { HPUT32(shift_amount(p)); i|=b010; }
          if (k==vpack_kind) HPUT32(pack_limit(p));
          if (hout_xdimen(n)) i|=b100;
	  hout_list_node2(list_ptr(p));
          tag=TAG(k,i);
        }
        break;

@*1 Extended Alignments.
@<cases to output whatsit content nodes@>=
case align_node:
  { Info i=b000;
    if (align_m(p)==additional) i|=b001;
    if (align_v(p)) i|=b010;
    if (hout_xdimen(align_extent(p))) i|=b100;
    hout_preamble(align_preamble(p));
    hout_align_list(align_list(p),align_v(p));
    tag=TAG(table_kind,i);
    }
break;
@ In the preamble, we remove the unset nodes and retain only the list of tabskip glues.
@<Hi\TeX\ auxiliary routines@>=
static void hout_preamble(pointer p)
{ pointer q,r;
  DBG(DBGBASIC,"Writing Preamble\n");
  q=p;
  if (q!=null) r=link(q); else r=null;
  while (r!=null)
  { if (type(r)==unset_node)
      { link(q)=link(r);
        link(r)=null; flush_node_list(r);
      }
      else
        q=r;
      r=link(q);
  }
  hout_list_node2(p);
  DBG(DBGBASIC,"End Preamble\n");
}
@ In the |align_list| we have to convert the unset nodes back to box nodes or extended box nodes
packaged inside an item node.
When the viewer reads an item node, it will package the extended boxes to their natural size.
This is the size that is needed to compute the maximum width of a column.

@<Hi\TeX\ auxiliary routines@>=

static void hout_item(pointer p, uint8_t t, uint8_t s)
{ Info i=b000;
  uint8_t n;
   n=span_count(p)+1;
  DBG(DBGBASIC,"Writing Item %d/%d->%d/%d\n",type(p),n,t,s);
  if (n==0) QUIT("Span count of item must be positive");
  if (n<7) i=n; else i=7;
  HPUTTAG(item_kind,i);
  if (i==7) HPUT8(n);
  type(p)=t; subtype(p)=s;
  hout_node(p);
  HPUTTAG(item_kind,i);
  DBG(DBGBASIC,"End Item\n");
}


static void hout_item_list(pointer p, bool v)
{ List l;
  uint32_t pos;
  DBG(DBGBASIC,"Writing Item List\n");
  l.t=TAG(list_kind,b001);
  HPUTTAG(item_kind,b000);
  pos=hpos-hstart;
  HPUTX(2);
  HPUT8(0); /* space for the list tag */
  HPUT8(0); /* space for the list size */
  l.p=hpos-hstart;
  while(p> mem_min)
  { if (is_char_node(p))   hout_node(p);
    else if (type(p)==unset_node) hout_item(p,v?vlist_node:hlist_node,0);
    else if (type(p)==unset_set_node) hout_item(p,whatsit_node,v?vset_node:hset_node);
    else if (type(p)==unset_pack_node) hout_item(p,whatsit_node,v?vpack_node:hpack_node);
    else hout_node(p);
    p=link(p);
  }
  l.s=(hpos-hstart)-l.p;
  hput_tags(pos,hput_list(pos+1,&l));
  HPUTTAG(item_kind,b000);
  DBG(DBGBASIC,"End Item List\n");
}

static void hout_align_list(pointer p, bool v)
{ List l;
  uint32_t pos;
  DBG(DBGBASIC,"Writing Align List\n");
  l.t=TAG(list_kind,b001);
  pos=hpos-hstart;
  HPUTX(2);
  HPUT8(0); /* space for the tag */
  HPUT8(0); /* space for the list size */
  l.p=pos+2;
  while(p> mem_min)
  { if (!is_char_node(p) && (type(p)==unset_node||type(p)==unset_set_node||type(p)==unset_pack_node))
      hout_item_list(list_ptr(p),v);
    else
      hout_node(p);
    p=link(p);
  }
  l.s=(hpos-hstart)-l.p;
  hput_tags(pos,hput_list(pos+1,&l));
  DBG(DBGBASIC,"End Align List\n");
}

@ Inside the alignment list we will find various types of unset nodes, we convert them back
to regular nodes and put them inside an item node.

@<cases to output content nodes@>=
case unset_node:
case unset_set_node:
case unset_pack_node: /* not yet implemented, fall through to the default case */


@*1 Lists.
Two functions are provided here:
|hout_list| will write a list given by the pointer |p| to the
output at the current position |hpos|.
After the list has finished, the call to |hput_list| will move the list, if necessary,
adding tag, size information, and boundary bytes
so that the final list will be at position |pos|.

|hout_list_node| uses |hout_list| but reserves the space needed for the tag, size, and
boundary byte.

For convenience, there is also the function |hout_list_node2| which supplies a default
|pos| and |l| value to |hout_list_node|.

@<Hi\TeX\ routines@>=

static uint8_t hout_list(pointer p, uint32_t pos, List *l)
{ l->p=hpos-hstart;
  while(p> mem_min)
  { hout_node(p);
    p=link(p);
  }
  l->s=(hpos-hstart)-l->p;
  return hput_list(pos,l);
}

static void hout_list_node(pointer p, uint32_t pos, List *l)
{
  hpos=hstart+pos;
  HPUTX(3);
  HPUT8(0); /* space for the tag */
  HPUT8(0); /* space for the list size */
  HPUT8(0); /* space for the size boundary byte */
  hput_tags(pos,hout_list(p,pos+1,l));
}


static void hout_list_node2(pointer p)
{ List l;
  uint32_t pos;
  pos=hpos-hstart;
  l.t=TAG(list_kind,b001);
  hout_list_node(p,pos,&l);
}
@ @<Hi\TeX\ function declarations@>=
static void hout_list_node(pointer p, uint32_t pos, List *l);
static void hout_list_node2(pointer p);
static uint8_t hout_list(pointer p, uint32_t pos, List *l);

@*1 Parameter Lists.
The next function is like |hout_list_node| but restricted to parameter nodes.
The parameter |p| is a pointer to a param node list.
The function either finds a reference number to a predefined parameter list
   and returns the reference number,
or it outputs the node list at position pos (that's where the tag goes),
   sets |l->t|, |l->p| and |l->s|, and returns $-1$.

@<Hi\TeX\ routines@>=
static int hout_param_list(pointer p, uint32_t pos, List *l)
{ int n;
  hpos=hstart+pos;
  if (p==null) return 0;
  HPUTX(3);
  HPUT8(0); /* space for the tag */
  HPUT8(0); /* space for the list size */
  HPUT8(0); /* space for the size boundary byte*/
  l->p=hpos-hstart;
  while(p> mem_min)
  { hdef_param_node(param_type(p),param_no(p),param_value(p).i);
    p=link(p);
  }
  l->s=(hpos-hstart)-l->p;
  n=hget_param_list_no(l);
  if (n>=0)
    hpos=hstart+pos;
  else
    hput_tags(pos,hput_list(pos+1,l));
  return n;
}
@ @<Hi\TeX\ function declarations@>=
static int hout_param_list(pointer p, uint32_t pos, List *l);


@*1 Labels, Links, and Outlines.
Here we provide only the code for content nodes.
The routines to put labels and outlines into the definition section
are defined in {\tt put.c}.

@<cases to output whatsit content nodes@>=
case label_node:  hpos--; new_label(p); return;
case start_link_node:
{ Info i;
  int n=new_start_link(p);
  i=b010;
  if (n>0xFF) { i|=b001; HPUT16(n);@+} @+else HPUT8(n);
  tag= TAG(link_kind,i);
}
break;
case end_link_node:
{ Info i;
  int n=new_end_link();
  i=b000;
  if (n>0xFF) { i|=b001; HPUT16(n);@+} @+else HPUT8(n);
  tag= TAG(link_kind,i);
}
break;
case outline_node: hpos--; new_outline(p);  return;

@*1 Images.
\indent
@<cases to output whatsit content nodes@>=
     case image_node:
        { Xdimen w={0},h={0}; List d; uint32_t pos;
          if (image_xwidth(p)!=null)
          { pointer r=image_xwidth(p);
            w.w=xdimen_width(r);
            w.h=xdimen_hfactor(r)/(double)ONE;
            w.v=xdimen_vfactor(r)/(double)ONE;
          }
          if (image_xheight(p)!=null)
          { pointer r=image_xheight(p);
            h.w=xdimen_width(r);
            h.h=xdimen_hfactor(r)/(double)ONE;
            h.v=xdimen_vfactor(r)/(double)ONE;
          }
          tag=TAG(image_kind,hput_image_spec(image_no(p),image_aspect(p)/(double)ONE,0,&w,0,&h));
          hout_list_node2(image_alt(p)); /* should eventually become  a text */
	}
        break;
@*1 Text.
The routines in this section are not yet ready.

@<Hi\TeX\ routines@>=

#if 0
static void hchange_text_font(internal_font_number f)
{ uint8_t g;
  if (f!=hfont)
  { g=get_font_no(f);
    if (g<8)
	  hputcc(FONT0_CHAR+g);
	else
	{ hputcc(FONTN_CHAR);
	  hputcc(g);
	}
	hfont=f;
  }
}

static void hprint_text_char(pointer p)
{ uint8_t f,c;
  f = font(p);
  c = character(p);
  hchange_text_font(f);
  if (c<=SPACE_CHAR) hputcc(ESC_CHAR);
  hputcc(c);
}


static void hprint_text_node(pointer p)
{ switch(type(p))
  { case hlist_node:
      /* this used to be the |par_indent| case */
      goto nodex;
    case glue_node:
	  if (subtype(p)> cond_math_glue) goto nodex;
	  else
      { pointer q=glue_ptr(p);
		int i;
        if (glue_equal(f_space_glue[hfont],q))
	    { hputc(SPACE_CHAR); return; }
		if (glue_equal(f_xspace_glue[hfont],q))
	    { hputcc(XSPACE_CHAR); return; }
		if (f_1_glue[hfont]==0 && (subtype(p)-1==space_skip_code))
		{ pointer r=glue_par(subtype(p)-1);
          add_glue_ref(r);
          f_1_glue[hfont]=r;
		}
		if (f_1_glue[hfont]!=0 && glue_equal(f_1_glue[hfont],q))
	    { hputcc(GLUE1_CHAR); return; }
		if (f_2_glue[hfont]==0 && (subtype(p)-1==space_skip_code || subtype(p)-1==xspace_skip_code))
		{ pointer r=glue_par(subtype(p)-1);
          add_glue_ref(r);
          f_2_glue[hfont]=r;
		}
		if (f_2_glue[hfont]!=0 && glue_equal(f_2_glue[hfont],q))
	    { hputcc(GLUE2_CHAR); return; }
		if (f_3_glue[hfont]==0)
		{ f_3_glue[hfont]=q;
		  add_glue_ref(q);
		}
		if (f_3_glue[hfont]!=0 && glue_equal(f_3_glue[hfont],q))
	    { hputcc(GLUE3_CHAR); return; }
        i = hget_glue_no(q);
        if (i>=0)
		{ hputcc(GLUEN_CHAR); hputcc(i); return; }
      }
      break;
	case ligature_node:
	{ int n;
	  pointer q;
	  for (n=0,q=lig_ptr(p); n<5 && q!=null; n++,q=link(q)) continue;
	  if (n==2) hputcc(LIG2_CHAR);
	  else if (n==3) hputcc(LIG3_CHAR);
	  else if (n==0) hputcc(LIG0_CHAR);
	  else goto nodex;
      hprint_text_char(lig_char(p));
	  for (q=lig_ptr(p);q!=null; q=link(q)) hprint_text_char(q);
      return;
	}
    case disc_node:
      if (post_break(p)==null && pre_break(p)!=null && replace_count(p)==0)
	  { pointer q;
	    q=pre_break(p);
	    if (is_char_node(q) && link(q)==null && font(q)==hfont && character(q)== hyphen_char[hfont])
	    { if (is_auto_disc(p)) hputcc(DISC1_CHAR);
		  else hputcc(DISC2_CHAR);
		  return;
		}
	  }
	  else if (post_break(p)==null && pre_break(p)==null && replace_count(p)==0 && !is_auto_disc(p))
	  { hputcc(DISC3_CHAR); return; }
      break;
	case math_node:
      if(width(p)!=0) goto  nodex;
      if(subtype(p)==before) hputcc(MATHON_CHAR);
      else hputcc(MATHOFF_CHAR);
      return;
	default:
	  break;
  }
nodex:
  hout_node(p);
}

static void hprint_text(pointer p)
{ internal_font_number f=hfont;
  nesting++;
  hprint_nesting();
  hprintf("<text ");
  while(p> mem_min)
  { if (is_char_node(p))
      hprint_text_char(p);
	else
      hprint_text_node(p);
    p=link(p);
  }
  hchange_text_font(f);
  hprintf(">\n");
  nesting--;
}
#endif

@* Hi\TeX\ Limitations.

\item Kerns and glues using a width that depends on \.{\\hsize} or
      \.{\\vsize} are not yet supported.

\item Tables where the width of a column depends on \.{\\hsize} or
      \.{\\vsize} are not tested and probably not yet supported.

\item \.{\\vcenter} will not work if any dimension of the
      vertical list depends on \.{\\hsize} or \.{\\vsize}.

\item The encoding of horizontal lists as texts is not yet supported,
      but it would make the \HINT\ file shorter and much better to read
      when stretched into long \HINT\ format.




@* System-dependent changes.
This section should be replaced, if necessary, by any special
modifications of the program
that are necessary to make \TeX\ work at a particular installation.
It is usually best to design your change file so that all changes to
previous sections preserve the section numbering; then everybody's version
will be consistent with the published program. More extensive changes,
which introduce new sections, can be inserted here; then only the index
itself will get a new section number.
@^system dependencies@>

@* \TeX\ Live Integration.
A \TeX\ engine that aspires
to become a member of the \TeX\ Live family of programs
must

$-$ respect the \TeX\ Live  conventions for command line parameters,\par
$-$ find its input files using the \.{kpathsearch} library, and\par
$-$ implement \TeX\ primitives to support
\LaTeX.

\noindent Naturally, the functions that follow here are taken, with small
modifications, from the \TeX\ Live sources. What is
added here, or rather subtracted here, are the parts that are specific
to some of the \TeX\ engines included in \TeX\ Live. New is also
that the code is presented in literate programming style.

The code that follows is organized in three parts.
Some code for \TeX\ Live must come before
the definition of \TeX's macros because
it uses include files containing identifiers that are in conflict
with \TeX's macros or modify these macros. For example
\TeX's |banner| is modified by adding the \TeX\ Live version.

@<Header files and function declarations@>=
#ifdef WEB2CVERSION
#define TL_VERSION "(TeX Live "WEB2CVERSION")"
#else
#define TL_VERSION
#endif

@ The remaining two parts are first auxiliary functions and then
those functions that are called from the ``classic'' \TeX\ code.

@p @<\TeX\ Live auxiliary functions@>@;
   @<\TeX\ Live functions@>@;

@
Most of the code that we present next comes together in the
function |main_init|
which is the first function called in the main program of a \TeX\ engine
belonging to \TeX\ Live. Before doing so, we make copies of
argument count and argument vector putting them in global variables.
@<Global...@>=
static char **argv;
static int argc;

@ @<\TeX\ Live functions@>=
static void main_init(int ac, char *av[])
{@+
  char* main_input_file;
  argc = ac;
  argv = av;
  interaction = error_stop_mode;
  kpse_record_input = recorder_record_input;
  kpse_record_output = recorder_record_output;

  @<parse options@>@;
  @<set the program and engine name@>@;
  @<activate configuration lines@>@;
  @<set the input file name@>@;
  @<set defaults from the {\tt texmf.cfg} file@>@;
  @<set the format name@>@;
  @<enable the generation of input files@>@;
}

@ @<Forward declarations@>=
static void main_init(int ac, char *av[]);


@*1 Command Line.
 Let's begin with the beginning: the command line.
To see how a command line is structured, we first look at the
help text that is displayed if the user asks for it (or if \TeX\
decides that the user needs it). The help text is produced by the
function |usage_help|.
\def\SP{ }% disable visible spaces in strings.

@<\TeX\ Live auxiliary functions@>=
static void usage_help(void)
{@+@<explain the command line@>@;
  @<explain the options@>@;
  fprintf(stdout,"\nFor further information and reporting bugs see https://hint.userweb.mwn.de/\n");
  exit(0);
}

@ The command line comes in three slightly different versions:

@<explain the command line@>=
  fprintf(stdout,@/
    "Usage: %s [OPTION]... [TEXNAME[.tex]] [COMMANDS]\n"@/
    "   or: %s [OPTION]... \\FIRST-LINE\n"@/
    "   or: %s [OPTION]... &FMT ARGS\n\n",@/
    argv[0],argv[0],argv[0]);@/
  fprintf(stdout,@/
    "  Run HiTeX on TEXNAME, creating TEXNAME.hnt.\n"@/
    "  Any remaining COMMANDS are processed\n"@/
    "  as TeX input after TEXNAME is read.\n"@/
    "  If the first line of TEXNAME starts with %%&FMT, and FMT is\n"@/
    "  an existing .fmt file, use it. Else use `NAME.fmt', where\n"@/
    "  NAME is the program invocation name.\n"@/
    "\n"@/
    "  Alternatively, if the first non-option argument begins\n"@/
    "  with a backslash, interpret all non-option arguments as\n"@/
    "  a line of TeX input.\n"@/
    "\n"@/
    "  Alternatively, if the first non-option argument begins\n"@/
    "  with a &, the next word is taken as the FMT to read,\n"@/
    "  overriding all else.  Any remaining arguments are\n"@/
    "  processed as above.\n"@/
    "\n"@/
    "  If no arguments or options are specified, prompt for input.\n"@/
    "\n");


@*1 Options.
Here is the list of possible options and their explanation:

@<explain the options@>=
  fprintf(stdout,
  "Options:\n"@/
  " -help                 "@/
  @t\qquad@>"\t display this help and exit\n"@/
  " -version              "@/
  @t\qquad@>"\t output version information and exit\n"@/
  " -etex                 "@/
  @t\qquad@>"\t enable e-TeX extensions\n"@/
  " -ltx                 "@/
  @t\qquad@>"\t enable LaTeX extensions, implies -etex\n"@/
  " -ini                  "@/
  @t\qquad@>"\t be initex for dumping formats; this is\n"@/
  @t\qquad@>"\t\t\t also true if the program name is `hinitex'\n"@/
  " -progname=STRING      "@/
  @t\qquad@>"\t set program (and fmt) name to STRING\n"@/
  " -fmt=FMTNAME          "@/
  @t\qquad@>"\t use FMTNAME instead of program name or a %%& line\n"@/
  " -output-directory=DIR "@/
  @t\qquad@>"\t use existing DIR as the directory to write files to\n"@/
  " -jobname=STRING       "@/
  @t\qquad@>"\t set the TeX \\jobname to STRING\n"@/
   " [-no]-mktex=FMT       "@/
  @t\qquad@>"\t disable/enable mktexFMT generation (FMT=tex/tfm/fmt/pk)\n"@/
  " -interaction=STRING   "@/
  @t\qquad@>"\t set interaction mode (STRING=batchmode/\n"@/
  @t\qquad@>"\t\t\t nonstopmode/scrollmode/errorstopmode)\n"@/
  " -kpathsea-debug=NUMBER"@/
  @t\qquad@>"\t set path searching debugging flags according\n"@/
  @t\qquad@>"\t\t\t to the bits of NUMBER\n"@/
  " -recorder"@/
  @t\qquad@>"\t\t enable filename recorder\n"@/
  " [-no]-parse-first-line"@/
  @t\qquad@>"\t disable/enable parsing of the first line of\n"@/
  @t\qquad@>"\t\t\t the input file\n"@/
  " [-no]-file-line-error"@/
  @t\qquad@>"\t disable/enable file:line:error style\n"@/
  " -cnf-line=STRING"@/
  @t\qquad@>"\t process STRING like a line in texmf.cnf\n"@/
  " -compress             "@/
  @t\qquad@>"\t enable compression of section 1 and 2\n"@/
  " [-no]-empty-page      "@/
  @t\qquad@>"\t disable/enable empty pages\n"@/
  " [-no]-hyphenate-first-word "@/
  @t\qquad@>"\t disable/enable hyphenation of\n"@/
  @t\qquad@>"\t\t\t the first word of a paragraph\n"@/
  " -resolution=NUMBER    "@/
  @t\qquad@>"\t set the resolution to NUMBER dpi\n"@/
  " -mfmode=MODE          "@/
  @t\qquad@>"\t set the METAFONT mode to MODE\n"@/
#ifdef DEBUG
  " -hint-debug=FLAGS     "@/
  @t\qquad@>"\t set flags to control hint debug output\n"@/
  " -hint-debug-help      "@/
  @t\qquad@>"\t give help on hint debugging\n"@/
#endif
);

@ The processing of command line options is controlled by the |long_options|
\def\SP{{\tt\char`\ }}% restore the visible space in a string
array. Each entry in this array contains first the name of the option,
then a flag that tells whether the option takes an argument or not.
If next the (optional) address of a flag variable is given,
it is followed by  the value to store in the flag variable.
In this case, setting the flag variable is handled by
the |getopt_long_only| function.

Besides the flag variables that occur in the table,
a few string variables may be set using the options.
The following is a complete list of these variables.
Variables are initialized with |-1| to indicate an undefined value;
string variables are initialized with |NULL|.

@<Global...@>=
static int iniversion=false, etexp=false, ltxp=false, recorder_enabled=false;
static int parsefirstlinep=-1, filelineerrorstylep=-1, interaction_option=-1;
static const char *user_progname=NULL, *output_directory=NULL, *c_job_name=NULL,
  *dump_name=NULL;@#
static int option_no_empty_page=true, option_hyphen_first=true;
static int option_dpi=600;
static const char *option_mfmode="ljfour", *option_dpi_str="600";
extern int option_compress;
extern unsigned int debugflags;

static struct option long_options[] = {@/
      { "help",                      0, 0, 0 },@/
      { "version",                   0, 0, 0 },@/
      { "interaction",               1, 0, 0 },@/
      { "mktex",                     1, 0, 0 },@/
      { "no-mktex",                  1, 0, 0 },@/
      { "kpathsea-debug",            1, 0, 0 },@/
      { "progname",                  1, 0, 0 },@/
      { "fmt",                       1, 0, 0 },@/
      { "output-directory",          1, 0, 0 },@/
      { "jobname",                   1, 0, 0 },@/
      { "cnf-line",                  1, 0, 0 },@/
      { "ini",                       0, &iniversion, 1 },@/
      { "etex",                      0, &etexp, 1 },@/
      { "ltx",                       0, &ltxp, 1 },@/
      { "recorder",                  0, &recorder_enabled, 1 },@/
      { "parse-first-line",          0, &parsefirstlinep, 1 },@/
      { "no-parse-first-line",       0, &parsefirstlinep, 0 },@/
      { "file-line-error",           0, &filelineerrorstylep, 1 },@/
      { "no-file-line-error",        0, &filelineerrorstylep, 0 },@/
      { "compress",                  0, &option_compress, 1 },@/
      { "no-empty-page",             0, &option_no_empty_page, 1 },@/
      { "empty-page",                0, &option_no_empty_page, 0 },@/
      { "hyphenate-first-word",      0, &option_hyphen_first, 1 },@/
      { "no-hyphenate-first-word",   0, &option_hyphen_first, 0 },@/
      { "resolution",                1, 0, 0 },@/
      { "mfmode",                    1, 0, 0 },@/
#ifdef DEBUG
      { "hint-debug",                1, 0, 0 },@/
      { "hint-debug-help",           0, 0, 0 },@/
#endif
      { 0, 0, 0, 0 }@+}@+;


@ Parsing the command line options is accomplished with the
|parse_options| function which in turn uses the |getopt_long_only|
function from the \CEE/ library. This function returns 0 and sets the
|option_index| parameter to the option found, or it returns $-1$ if
the end of all options is reached.
@<\TeX\ Live  functions@>=
static void parse_options (int argc, char *argv[])
{@+ while (true) {
    int option_index;
    int g = getopt_long_only (argc, argv, "+", long_options, &option_index);
    if (g==0)
    { @<handle the options@>@;@+ }
    else if (g == '?')
    { fprintf(stderr,"Try '%s --help' for more information\n",argv[0]);
      exit(1);
    }
    else if (g == -1) break;
  }
  @<Check the environment for extra settings@>@;
}

@ @<Forward declarations@>=
static void parse_options (int argc, char *argv[]);

@ Before we can call the |parse_options| function,
we might need some special preparations for Windows.

@<parse options@>=
#if defined(WIN32)
{@+ char* enc;
  kpse_set_program_name (argv[0], NULL);
  enc = kpse_var_value("command_line_encoding");
  get_command_line_args_utf8(enc, &argc, &argv);@/
  parse_options (argc, argv);
  @<record {\tt texmf.cnf}@>@;
}
#else
  parse_options (ac, av);
#endif


@ To handle the options, we compare the name at the given |option_index| with
the different option names. This is not a very efficient method, but the
impact is low and it's simple to write.

Comparing the name of the argument with the |name| field in the |option|
structure is done in the auxiliary function |argument_is|.
Unfortunately the |name| field is in conflict with the |name| macro
defined by \TeX. To avoid the conflict, the |argument_is| function
goes just after the \.{kpathsea.h} header file that defines
the option structure.


@<Header files and function declarations@>=
#include <kpathsea/kpathsea.h>
static int argument_is(struct option *opt, char * s)
{@+ return STREQ(opt->name, s); @+}
#define ARGUMENT_IS(S) argument_is(long_options+option_index,S)

@ Now we can handle the first two options:

@<handle the options@>=
if (ARGUMENT_IS("help")) usage_help();
else if (ARGUMENT_IS("version")){@+
       printf(banner@, "\n"@/
              "HINT version "@,HINT_VERSION_STRING@,"\n"@/
              "Prote version "@, Prote_version_string@, "\n");
       exit(0);@+
}


@ The ``interaction'' option sets the |interaction_option| variable
based on its string argument contained in the |optarg| variable.
If defined, the |interaction_option| will be used to set \TeX's
|interaction| variable in the |initialize| and the |undump| functions.

@<handle the options@>=
else @+if (ARGUMENT_IS ("interaction"))@t\2@> {
      if (STREQ (optarg, "batchmode"))        interaction_option = batch_mode;
      else if (STREQ (optarg, "nonstopmode")) interaction_option = nonstop_mode;
      else if (STREQ (optarg, "scrollmode"))  interaction_option = scroll_mode;
      else if (STREQ (optarg, "errorstopmode")) interaction_option = error_stop_mode;
      else WARNING1 ("Ignoring unknown argument `%s' to --interaction", optarg);
    }

@ The next two options pass the string argument to the
\.{kpathsearch} library.

@<handle the options@>=
else @+if (ARGUMENT_IS ("mktex")) @t\2@> kpse_maketex_option (optarg, true);
else if (ARGUMENT_IS ("no-mktex")) kpse_maketex_option (optarg, false);


@ To debug the searching done by the \.{kpathsearch} library,
the following option can be used.
The argument value 3 is a good choice to start with.

@<handle the options@>=
else @+if (ARGUMENT_IS ("kpathsea-debug")) @t\2@>
      kpathsea_debug |= atoi (optarg);



@ The next set of options  take a string argument
and assign it to the corresponding string variable.

@<handle the options@>=
else @+if (ARGUMENT_IS ("progname"))@t\2@>
  user_progname = normalize_quotes(optarg,"program name");
else if (ARGUMENT_IS ("fmt"))
  dump_name = normalize_quotes(optarg,"format name");
else if (ARGUMENT_IS ("output-directory"))
  output_directory = normalize_quotes(optarg,"output directory");
else if (ARGUMENT_IS ("jobname"))
  c_job_name = normalize_quotes (optarg, "job name");

@ When string arguments specify files or directories,
special care is needed if arguments are quoted and/or contain spaces.
The function |normalize_quotes| makes sure that arguments containing
spaces get quotes around them and it checks for unbalanced quotes.


@<\TeX\ Live auxiliary functions@>=
static char *normalize_quotes (const char *nom, const char *mesg)
{@+ int quoted = false;
    int must_quote = (strchr(nom, ' ') != NULL);
    char *ret = xmalloc(strlen(nom)+3);/*room for two quotes and NUL*/
    char *p=ret;
    const char *q;

    if (must_quote)
        *p++ = '"';
    for (q = nom; *q; q++)
        if (*q == '"')
            quoted = !quoted;@+
        else
            *p++ = *q;

    if (must_quote)
        *p++ = '"';
    *p = '\0';
    if (quoted) {
        fprintf(stderr, "! Unbalanced quotes in %s %s\n", mesg, nom);
        exit(1);
    }
    return ret;
}

@ If the output directory was specified on the command line,
we save it in an environment variable so that subbrocesses can
get the value. If on the other hand the environment specifies
a directory and the command line does not, save the value from
the environment to the global variable so that it is used in the
rest of the code.

@<Check the environment for extra settings@>=
if (output_directory)
    xputenv ("TEXMF_OUTPUT_DIRECTORY", output_directory);
else if (getenv ("TEXMF_OUTPUT_DIRECTORY"))
    output_directory = getenv ("TEXMF_OUTPUT_DIRECTORY");

@*1 Passing a file name as a general text argument.

|scan_file_name| uses the following code to parse a file name given
as a general text argument. Such an argument can be any token list
starting with a left brace and ending with a right brace.
This token list is then expanded (without the leading and trailing braces)
and printed into the string pool without making it yet an official string.
After removing all double quotes, because this is current practice
for \TeX\ engines that are part of \TeX\ Live,
and setting the area and extension delimiters,
all temporary garbage used so far is freed.

Due to the expansion of the token list, this code and hence the
|scan_file_name| procedure is recursive.
One can provide the name of a file as the content of an other file.


% Thierry Laronde
@<Define a general text file name and |goto done|@>=
{@+back_input();name_in_progress=false; /*this version is recursive...*/
  cur_cs=input_loc; /*|scan_toks| will set |warning_index| from it*/
  scan_general_x_text();
  old_setting=selector;selector=new_string;
  token_show(link(garbage));selector=old_setting;
  @<Suppress double quotes in braced input file name@>@;
  j=pool_ptr-1;while ((j >= str_start[str_ptr])&&(area_delimiter==0))
    {@+
      if ((str_pool[j]=='/')) area_delimiter=j-str_start[str_ptr];
      if ((ext_delimiter==0)&&(str_pool[j]=='.'))
        ext_delimiter=j-str_start[str_ptr];
      decr(j);
    }
  flush_list(link(garbage));
  goto done;
}

@ A simple loop removes the double quotes and adjusts the |pool_ptr|.

@<Suppress double quotes in braced input file name@>=
for (k=j=str_start[str_ptr]; k < pool_ptr; k++) {@+
  if (str_pool[k]!='"') {@+str_pool[j]=str_pool[k];incr(j);}
}
pool_ptr=j;

@*1 The {\tt -recorder} Option.
The recorder option can be used to enable the file name recorder.
It is crucial for getting a reliable list of files used in a given run.
Many post-processors use it, and it is used in \TeX\ Live for
checking the format building infrastructure.

When we start the file name recorder,
we would like to use mkstemp, but it is not portable,
and doing the autoconfiscation (and providing fallbacks) is more
than we want to cope with.  So we have to be content with using a
default name.  We throw in the pid so at least parallel builds might
work. Windows, however, seems to have no |pid_t|, so instead of storing the
value returned by |getpid|, we immediately consume it.

@<\TeX\ Live auxiliary functions@>=
static char *recorder_name=NULL;
static FILE *recorder_file=NULL;
static void
recorder_start(void)
{ char *cwd;
  char pid_str[MAX_INT_LENGTH];
  sprintf (pid_str, "%ld", (long) getpid());
  recorder_name = concat3(kpse_program_name, pid_str, ".fls");
  if (output_directory) {
    char *temp = concat3(output_directory, DIR_SEP_STRING, recorder_name);
    free(recorder_name);
    recorder_name = temp;
  }
  recorder_file = xfopen(recorder_name, FOPEN_W_MODE);
  cwd = xgetcwd();
  fprintf(recorder_file, "PWD %s\n", cwd);
  free(cwd);
}

@ After we know the log file name, we have used |recorder_change_filename|
to change the name of the recorder file to the usual thing.
@<Forward declarations@>=
static void recorder_change_filename (const char *new_name);

@ Now its time to define this function.
Unfortunately, we have to explicitly take
the output directory into account, since the new name we are
called with does not; it is just the log file name with {\tt .log}
replaced by {\tt .fls}.

@ @<\TeX\ Live auxiliary functions@>=
static void
recorder_change_filename (const char *new_name)
{ char *temp = NULL;
  if (!recorder_file)
   return;
#if defined(_WIN32)
   fclose (recorder_file); /* An open file cannot be renamed. */
#endif /* |_WIN32| */
   if (output_directory) {
     temp = concat3(output_directory, DIR_SEP_STRING, new_name);
     new_name = temp;
   }

#if defined(_WIN32)
   remove (new_name); /* A file with the |new_name| must not exist. */
#endif /*  |_WIN32| */
   rename(recorder_name, new_name);
   free(recorder_name);
   recorder_name = xstrdup(new_name);
#if defined(_WIN32)
   recorder_file = xfopen (recorder_name, FOPEN_A_MODE); /* A closed file must be opened. */
#endif /* |_WIN32| */
   if (temp)
     free (temp);
}

@ Now we are ready to record file names. The prefix INPUT is added
to an input file and the prefix OUTPUT to an output file.
But both functions for recording a file name use the same
function otherwise, which on first use will start the recorder.

@<\TeX\ Live auxiliary functions@>=
static void
recorder_record_name (const char *pfx, const char *fname)
{ @+if (recorder_enabled) {
    if (!recorder_file)
      recorder_start();
    fprintf(recorder_file, "%s %s\n", pfx, fname);
    fflush(recorder_file);
  }
}


static void
recorder_record_input (const char *fname)
{ recorder_record_name ("INPUT", fname);
}

static void
recorder_record_output (const char * fname)
{ recorder_record_name ("OUTPUT", fname);
}

@ Because input files are also recorded when writing the optional sections,
we need the following declaration.

@<Forward declarations@>=
static void recorder_record_input (const char *fname);

@ In WIN32, texmf.cnf is not recorded in
the case of {\tt -recorder}, because |parse_options| is executed
after the start of kpathsea due to special initializations.
Therefore we record {\tt texmf.cnf} with the following code:

@<record {\tt texmf.cnf}@>=
if (recorder_enabled) {
  char **p = kpse_find_file_generic ("texmf.cnf", kpse_cnf_format, 0, 1);
  if (p && *p) {
    char **pp = p;
    while (*p) {
      recorder_record_input (*p);
      free (*p);
      p++;
    }
  free (pp);
  }
}




@*1 The {\tt -cnf-line} Option.
With the \.{-cnf-line} option it is possible to specify
a line of text as if this line were part of \TeX's configuration
file---even taking precedence over conflicting lines in the configuration
file. For example it is possible to change \TeX's
\.{TEXINPUTS} variable by saying \.{--cnf-line=TEXINPUTS=/foo}.
The configuration lines are temporarily stored in the variable
|cnf_lines| and counted in |cnf_count| because we can send them
to the \.{kpathsearch} library only after the library has been
initialized sufficiently.

@<Global...@>=
static char **cnf_lines=NULL;
static int cnf_count=0;

@ @<handle the options@>=
else @+if (ARGUMENT_IS ("cnf-line"))
  add_cnf_line(optarg);

@ The function  |add_cnf_line| stores the
given command line argument in the variable |cnf_lines|.

@<\TeX\ Live auxiliary functions@>=
static void  add_cnf_line(char *arg)
{@+ cnf_count++;
  cnf_lines=xrealloc(cnf_lines,sizeof(char*)*cnf_count);
  cnf_lines[cnf_count-1]=arg;
}

@ To activate the configuration lines they are passed to the
 \.{kpathsearch} library.

@<activate configuration lines@>=
#if 1 /* this function does not exists always */
{@+ int i;
  for (i=0;i<cnf_count;i++)
    kpathsea_cnf_line_env_progname (kpse_def, cnf_lines[i]);
  free(cnf_lines);
}
#endif


@*1 Hi\TeX\ specific command line options.
Hi\TeX\ provides options to set the \MF\ mode and the resolution if
{\tt .pk} fonts must be rendered and/or included in the {\tt .hnt}
output file. Further, a lot of debug output can be generated if
Hi\TeX\ was compiled with debugging enabled. The {\tt -hint-debug-help}
option gives a short summary of what to expect.
@<handle the options@>=
else @+if (ARGUMENT_IS("resolution")) @t\2@>
{ option_dpi_str=optarg;
  option_dpi=strtol(option_dpi_str,NULL,10);
}
else if (ARGUMENT_IS("mfmode"))
  option_mfmode=optarg;
#ifdef DEBUG@t\1@>
else @+if (ARGUMENT_IS("hint-debug"))@t\2@>
  debugflags=strtol(optarg,NULL,16);
else @+if (ARGUMENT_IS("hint-debug-help"))
{ fprintf(stderr,@/
     "To generate HINT format debug output use the option\n"
     " -hint-debug=XX"@/
@t\qquad@>"\t\t XX is a hexadecimal value. OR together these values:\n");@/
fprintf(stderr,"\t XX=%04X \t basic debugging\n", DBGBASIC);@/
fprintf(stderr,"\t XX=%04X \t tag debugging\n", DBGTAGS);@/
fprintf(stderr,"\t XX=%04X \t node debugging\n",DBGNODE);@/
fprintf(stderr,"\t XX=%04X \t definition debugging\n", DBGDEF);@/
fprintf(stderr,"\t XX=%04X \t directory debugging\n", DBGDIR);@/
fprintf(stderr,"\t XX=%04X \t range debugging\n",DBGRANGE);@/
fprintf(stderr,"\t XX=%04X \t float debugging\n", DBGFLOAT);@/
fprintf(stderr,"\t XX=%04X \t compression debugging\n", DBGCOMPRESS);@/
fprintf(stderr,"\t XX=%04X \t buffer debugging\n", DBGBUFFER);@/
fprintf(stderr,"\t XX=%04X \t TeX debugging\n", DBGTEX);@/
fprintf(stderr,"\t XX=%04X \t page debugging\n", DBGPAGE);@/
fprintf(stderr,"\t XX=%04X \t font debugging\n", DBGFONT);@/
exit(0);
}
#endif

@*1 The Input File.
After we are done with the options,
we inform the \.{kpathsearch} library about the program name.
This is an important piece of information for the library
because the library serves quite different programs
and its behavior can be customized for each program
using configuration files.
After the program and engine name is set,
the library is ready to use.
@<set the program and engine name@>=
if (!user_progname)
    user_progname = dump_name;
#if defined(WIN32)
  if (user_progname)
    kpse_reset_program_name (user_progname);
#else
  kpse_set_program_name (argv[0], user_progname);
#endif
  xputenv ("engine", "hitex");@/


@ After the options, the command line usually continues with the name of the input
file. Getting a hold of the input file name can be quite complicated,
but the \.{kpathsearch} library will help us to do the job.

We start by looking at the first argument after the options:
If it does not start with an
``\.{\AM}'' and neither with a ``\.{\BS}'', it's a simple file name.
Under Windows, however, filenames might start with a drive letter
followed by a colon and a ``\.{\BS}'' which is used to separate
directory names.  Finally, if the filename is a quoted string, we need
to remove the quotes before we use the \.{kpathsearch} library to find it
and reattach the quotes afterward.

@<\TeX\ Live auxiliary functions@>=
#ifdef WIN32
static void clean_windows_filename(char *filename)
{@+if (strlen (filename) > 2 && isalpha (filename[0]) &&
     filename[1] == ':' && filename[2] == '\\')
   { char *pp;
     for (pp = filename; *pp; pp++)
       if (*pp == '\\')
         *pp = '/';
   }
}
#endif

static char *find_file(char *fname, kpse_file_format_type t, int mx)
{@+char *filename;
  int  final_quote=(int)strlen(fname)-1;
  int quoted = final_quote>1 && fname[0] == '"' && fname[final_quote]=='"';
  if (quoted) {
        /* Overwrite last quote and skip first quote. */
        fname[final_quote] = '\0';
        fname++;
  }
  filename = kpse_find_file(fname, t, mx);
  if (full_name_of_file!=NULL)
  { free(full_name_of_file); full_name_of_file=NULL;}
  if (filename!=NULL)
    full_name_of_file=strdup(filename);
  if (quoted) {
        /* Undo modifications */
        fname--;
        fname[final_quote] = '"';
  }
  return filename;
}

static char *get_input_file_name (void)
{@+
  char *input_file_name = NULL;

  if (argv[optind] && argv[optind][0] != '&' && argv[optind][0] != '\\')
 {
#ifdef WIN32
    clean_windows_filename(argv[optind]);
#endif
    argv[optind] = normalize_quotes(argv[optind], "input file");
    input_file_name=find_file(argv[optind],kpse_tex_format, false);
  }
  return input_file_name;
}


@ After we called |get_input_file_name|, we might need to look at |argv[argc-1]|
in case we run under Windows.

@<set the input file name@>=
  main_input_file = get_input_file_name ();

#ifdef WIN32
  /* Were we given a simple filename? */
  if (main_input_file == NULL) {
    char *file_name=argv[argc-1];
    if (file_name && file_name[0] != '-' && file_name[0] != '&' && file_name[0] != '\\') {
    clean_windows_filename(file_name);
    file_name = normalize_quotes(file_name, "argument");
    main_input_file=find_file(file_name,kpse_tex_format, false);
    argv[argc-1] = file_name;
    }
  }
#endif


@ After we have an input file, we make an attempt at filling in options
from the {\tt texmf.cfg} file.

@<set defaults from the {\tt texmf.cfg} file@>=
  if (filelineerrorstylep < 0)
    filelineerrorstylep = texmf_yesno ("file_line_error_style");
  if (parsefirstlinep < 0)
    parsefirstlinep = texmf_yesno ("parse_first_line");@/@t~@>

@ We needed:
@<\TeX\ Live auxiliary functions@>=
static int texmf_yesno(const char *var)
{@+
  char *value = kpse_var_value (var);
  return value && (*value == 't' || *value == 'y' || *value == '1');
}

@ We need a stack, matching the |line_stack| that
contains the source file names. For the full source filenames we use
poiters to |char| because these names are just used for output.

@<Global...@>=
static char * @!source_filename_stack0[max_in_open]={NULL}, **const @!source_filename_stack = @!source_filename_stack0-1;
static char * @!full_source_filename_stack0[max_in_open]={NULL}, **const @!full_source_filename_stack = @!full_source_filename_stack0-1;
static char *full_name_of_file=NULL;

@ The function |print_file_line|
prints ``file:line:error'' style messages using
the |source_filename_stack|. If it fails to find the file name, it
falls back to the ``non-file:line:error'' style.

@<Basic printing...@>=
static void print_file_line(void)
{@+int level=in_open;
  while (level>0 && full_source_filename_stack[level]==NULL) level--;
  if (level==0) print_nl("! ");
  else
  { print_nl(""); print(full_source_filename_stack[level]); print_char(':');
    if (level==in_open) print_int(line);
    else print_int(line_stack[level]);
    print(": ");
  }
}

@*1 The Format File.
Most of the time \TeX\ is not running as \.{initex} or \.{virtex},
but it runs with a format file preloaded.
To set the format name, we first check if the format name was given on the
command line with an ``\.{\AM}'' prefix,
second we might check the first line of the input file,
and last, we check if the program is an initex or virtex program.

If we still don't have a format,
we use a plain format if running as a virtex, otherwise the program
name is our best guess.
There is no need to check for an extension, because the
\.{kpathsearch} library will take care of that.
We store the format file name in  |dump_name| which is
used in the function |w_open_in| below.

@<set the format name@>=
if (parsefirstlinep && !dump_name)
  parse_first_line (main_input_file);
if (!main_input_file && argv[1] && argv[1][0] == '&')
  dump_name = argv[1] + 1;
if (strcmp(kpse_program_name, "hinitex")==0) iniversion = true;
else if (strcmp(kpse_program_name, "hvirtex")==0 && !dump_name)
  dump_name = "hitex";
if (!dump_name)
  dump_name = kpse_program_name;
if (!dump_name)
{ fprintf(stderr,"Unable to determine format name\n");
  exit(1);
}
if (ltxp) etexp=1;
if (etexp && !iniversion)
{ fprintf(stderr,"-etex and -ltx require -ini\n");
  exit(1);
}

@ Here is the function |parse_first_line |. It searches the first line of
the file for a \TeX\ comment of the form ``\%\AM format''\footnote{${}^1$}{The idea of using this format came from Wlodzimierz Bzyl.}.
If found, we will use the format given there.

@<\TeX\ Live  auxiliary functions@>=
static void parse_first_line(char*filename)
{@+ FILE *f=NULL;
  if (filename==NULL) return;
  f = open_in(filename,kpse_tex_format,"r");
  if (f!=NULL)
  { char *r,*s,*t=read_line (f);
    xfclose (f, filename);
    if (t==NULL) return;
    s=t;
    if (s[0] == '%' && s[1] == '&') {
      s = s+2;
      while ( ISBLANK(*s)) ++s;
      r=s;
      while (*s!=0 && *s!=' ' && *s!='\r' && *s!='\n') s++;
      *s=0;
      if (dump_name==NULL) {
        char *f_name = concat (r, ".fmt");
        char *d_name = kpse_find_file (f_name,kpse_fmt_format, false);
        if (d_name && kpse_readable_file (d_name)) {
            dump_name = xstrdup (r);
            kpse_reset_program_name (dump_name);
          }
          free (f_name);
        }
    }
    free (t);
  }
}

@*1 Commands.
In the old days, \TeX\ was a \PASCAL\ program, and standard \PASCAL\
did say nothing about a command line. So \TeX\ would open the terminal
file for input and read all the information from the terminal.
If you don't give \TeX\ command line arguments, this is still true today.
In our present time, people got so much used to control the behavior
of a program using command line arguments---especially when writing
scripts---that \TeX\ Live allows the specification of commands on
the command line which \TeX\ would normally expect on
the first line of its terminal input.

So our next task is
writing a function to add the remainder of the
command line to \TeX's input buffer.
The main job is done by the |input_add_str| function
which duplicates part of the |input_ln| function.
Further it skips initial spaces and replaces trailing spaces
and line endings by a single space.

@<\TeX\ Live auxiliary functions@>=
static void input_add_char(unsigned int c)
{@+ if (last >= max_buf_stack)
  {@+max_buf_stack=last+1;
     if (max_buf_stack==buf_size)
       @<Report overflow of the input buffer, and abort@>;
  }
  buffer[last]=xord[c];incr(last);
}

static void input_add_str(const char *str)
{@+ int prev_last;
  while (*str==' ') str++;
  prev_last=last;
  while (*str!=0)

input_add_char(*str++);
  for (--last; last >= first ; --last)
  { char c =buffer[last];
    if ((c) != ' ' && (c) != '\r' && (c) != '\n') break;
  }
  last++;
  if (last>prev_last) input_add_char(' ');
}

static int input_command_line(void)
{@+
last=first;
while (optind < argc) input_add_str(argv[optind++]);
loc=first;
return (loc < last);
@+ }

@ @<Forward declarations@>=
static int input_command_line(void);


@*1 Opening Files.
When we open an output file, there is usually no searching necessary.
In the best case, we have an absolute path and can open it.
If the path is relative, we try in this order:
the |file_name| prefixed by the |output_directory|,
the |file_name| as is, and
the |file_name| prefixed with the environment variable |TEXMFOUTPUT|.

If we were successful with one of the modified names, we update
|name_of_file|.

@<\TeX\ Live functions@>=
static FILE *open_out(const char *file_name, const char *file_mode)
{@+ FILE *f=NULL;
  char *new_name=NULL;
  int absolute = kpse_absolute_p(file_name, false);
  if (absolute)
  { f=fopen(file_name,file_mode);
    if (f!=NULL) recorder_record_output (file_name);
    return f;
  }
  if (output_directory)
  { new_name = concat3(output_directory, DIR_SEP_STRING, file_name);
    f = fopen(new_name,file_mode);
    if (f==NULL) {@+ free(new_name); new_name=NULL;@+}
  }
  if (f==NULL)
    f = fopen(file_name,file_mode);
  if (f==NULL)
  { const char *texmfoutput = kpse_var_value("TEXMFOUTPUT");
    if (texmfoutput!=NULL && texmfoutput[0]!=0)
    { new_name = concat3(texmfoutput, DIR_SEP_STRING, file_name);@/
      f = fopen(new_name,file_mode);
      if (f==NULL) {@+ free(new_name); new_name=NULL; @+}
    }
  }
  if (f!=NULL && new_name!=NULL)
    update_name_of_file(new_name,(int)strlen(new_name));
  if (f!=NULL) recorder_record_output ((char*)name_of_file+1);
  if (new_name!=NULL) free(new_name);
  return f;
}

static bool a_open_out(alpha_file *f)  /*open a text file for output*/
{@+f->f=open_out((char*)name_of_file+1,"w");
  return f->f!=NULL && ferror(f->f)==0;@+
}

static bool b_open_out(byte_file *f)  /*open a binary file for output*/
{@+f->f=open_out((char *)name_of_file+1,"wb");
return f->f!=NULL && ferror(f->f)==0;@+
}

#ifdef @!INIT
static bool w_open_out(word_file *f)  /*open a word file for output*/
{@+f->f=open_out((char *)name_of_file+1,"wb");
   return f->f!=NULL && ferror(f->f)==0;@+
}
#endif


@ Format file names must be scanned
before \TeX's string mechanism has been initialized.
The function |update_name_of_file| will set |name_of_file| from
a \CEE/ string.

We dare not give error messages here, since \TeX\ calls this routine before
the |error| routine is ready to roll. Instead, we simply drop excess characters,
since the error will be detected in another way when a strange file name
isn't found.
@^system dependencies@>

@<\TeX\ Live auxiliary functions@>=
static void update_name_of_file(const char *@!s, int @!k)
{@+ int j;
  if (k <= file_name_size) name_length=k;@+
  else name_length=file_name_size;
  for (j=0; j<name_length;j++)  name_of_file[j+1]=xchr[(int)s[j]];
  name_of_file[name_length+1]=0;
}

@ In standard \TeX, the |reset| macro is used to open input files.
The \.{kpathsearch} library uses different search paths for
different types of files and therefore different functions are needed to
open these files. The common code is in the function |open_in|.

@<\TeX\ Live auxiliary functions@>=
static FILE*open_in(char*filename,kpse_file_format_type t,const char*rwb)
{@+ char *fname=NULL;
  FILE*f= NULL;
  fname= find_file(filename,t,true);
  if(fname!=NULL)
  {@+
    f= fopen(fname,rwb);
    if (f!=NULL) recorder_record_input(fname);
    if (full_name_of_file!=NULL) free(full_name_of_file);
    full_name_of_file=fname;@+
  }
  return f;
}

static bool a_open_in(alpha_file *f) /*open a text file for input*/
{@+f->f= open_in((char *)name_of_file+1,kpse_tex_format,"r");
   if (f->f!=NULL) get(*f);
   return f->f!=NULL && ferror(f->f)==0;
}

static bool b_open_in(byte_file *f)   /*open a binary file for input*/
{@+f->f= open_in((char *)name_of_file+1,kpse_tfm_format,"rb");
   if (f->f!=NULL) get(*f);
   return f->f!=NULL && ferror(f->f)==0;
}

static bool w_open_in(word_file *f)   /*open a word file for input*/
{@+
  f->f=NULL;
  if (name_of_file[1]!=0)
    f->f= open_in((char*)name_of_file+1,kpse_fmt_format,"rb");
  if (f->f!=NULL) get(*f);
  return f->f!=NULL && ferror(f->f)==0;
}

@ \TeX's |open_fmt_file| function will call the following function
either with the name of a format file as given with an ``\.{\AM}''
prefix in the input or with |NULL| if no such name was specified.
The function will try |dump_name| as a last resort before returning |NULL|.



@<\TeX\ Live functions@>=
static bool open_fmt_file(void)
{@+int j=loc;
  if (buffer[loc]=='&')
  {@+incr(loc);j=loc;buffer[last]=' ';
    while (buffer[j]!=' ') incr(j);
    update_name_of_file((char *)buffer+loc,j-loc);
    if (w_open_in(&fmt_file)) goto found;
  }
  update_name_of_file(dump_name,(int)strlen(dump_name));
  if (w_open_in(&fmt_file)) goto found;
  name_of_file[1]=0;
  wake_up_terminal;
  wterm_ln("I can't find a format file!");
  return false;
found: loc=j;return true;
}


@ The \TeX\ Live infrastructure is able to generate format files,
font metric files,
and even some tex files, if required.

@<enable the generation of input files@>=
  kpse_set_program_enabled (kpse_tfm_format, MAKE_TEX_TFM_BY_DEFAULT,
                            kpse_src_compile);@/
  kpse_set_program_enabled (kpse_tex_format, MAKE_TEX_TEX_BY_DEFAULT,
                            kpse_src_compile);@/
  kpse_set_program_enabled (kpse_fmt_format, MAKE_TEX_FMT_BY_DEFAULT,
                            kpse_src_compile);@/
  kpse_set_program_enabled (kpse_pk_format, MAKE_TEX_PK_BY_DEFAULT,
 			   kpse_src_compile);@/
  xputenv("MAKETEX_BASE_DPI", option_dpi_str);
  xputenv("MAKETEX_MODE", option_mfmode);



@*1 Date and Time.
We conclude this chapter using \.{time.h} to provide a function
that is used to initialize
\TeX's date and time information. Because |time| is one of \TeX's
macros, we add the function |tl_now| before including \TeX's macros
to wrap the call to the |time| function.
It sets the variable |start_time| and returns a pointer to a |tm| structure
to be used later in |fix_date_and_time|.

To support reproducible output, the environment variable |SOURCE_DATE_EPOCH|
needs to be checked. If it is set, it is an ASCII representation of
a UNIX timestamp, defined as the number
of seconds, excluding leap seconds, since 01 Jan 1970 00:00:00 UTC.
Its value is then used to initialize the |start_time| variable.

The \TeX\ Live conventions further require that setting the
|FORCE_SOURCE_DATE| environment variable to $1$ will cause also \TeX's primitives
\.{\\year}, \.{\\month}, \.{\\day}, and \.{\\time}  to use this value
as the current time. Looking at the \TeX\ Live code also reveals that
these primitives use the local time instead of the GMT if this variable is
not set to~1.

@<Header files and function declarations@>=
#include <time.h>
static time_t start_time = ((time_t)-1);
static char *source_date_epoch,*force_source_date;

#if defined(_MSC_VER) && _MSC_VER < 1800
#define strtoull _strtoui64
#endif

static struct tm *tl_now(void)
{@+struct tm *tp;
   time_t t;
   source_date_epoch= getenv("SOURCE_DATE_EPOCH");
   force_source_date= getenv("FORCE_SOURCE_DATE");
   if (force_source_date!=NULL &&
       (force_source_date[0]!='1' || force_source_date[1]!=0))
       force_source_date=NULL;

   if (source_date_epoch!=NULL)
   {  start_time= (time_t)strtoull(source_date_epoch, NULL, 10);
      if (force_source_date!=NULL)
         t=start_time;
      else
         t=time(NULL);
   }
   else
     t=start_time=time(NULL);
   if (force_source_date)
     tp=gmtime(&t);
   else
     tp=localtime(&t);
  return tp;
}

@*1 Retrieving File Properties.
To support \LaTeX, a few more time related functions are needed.
@<Header files and function declarations@>=
#define TIME_STR_SIZE 30
static char time_str[TIME_STR_SIZE];
static void get_creation_date(void);
static void get_file_mod_date(void);
static int get_file_size(void);

#include <md5.h>
#define DIGEST_SIZE 16
#define FILE_BUF_SIZE 1024
static md5_byte_t md5_digest[DIGEST_SIZE];

static int get_md5_sum(int s, int file);

@ The code that follows was taken from the \.{texmfmp.c} file of
the \TeX\ Live distribution and slightly modified.


@<\TeX\ Live auxiliary functions@>=

static void
make_time_str(time_t t, bool utc)
{
    struct tm lt, gmt;
    size_t size;
    int off, off_hours, off_mins;

    /* get the time */
    if (utc) {
        lt = *gmtime(&t);
    }
    else {
        lt = *localtime(&t);
    }
    size = strftime(time_str, TIME_STR_SIZE, "D:%Y%m%d%H%M%S", &lt);
    /* expected format: |"D:YYYYmmddHHMMSS"| */
    if (size == 0) {
        /* unexpected, contents of |time_str| is undefined */
        time_str[0] = '\0';
        return;
    }

    /* correction for seconds: S can be in range 00 to 61,
       the PDF reference expects 00 to59,
       therefore we map |"60"| and |"61"| to |"59"| */
    if (time_str[14] == '6') {
        time_str[14] = '5';
        time_str[15] = '9';
        time_str[16] = '\0';    /* for safety */
    }

    /* get the time zone offset */
    gmt = *gmtime(&t);

    /* this calculation method was found in exim's tod.c */
    off = 60 * (lt.tm_hour - gmt.tm_hour) + lt.tm_min - gmt.tm_min;
    if (lt.tm_year != gmt.tm_year) {
        off += (lt.tm_year > gmt.tm_year) ? 1440 : -1440;
    } else if (lt.tm_yday != gmt.tm_yday) {
        off += (lt.tm_yday > gmt.tm_yday) ? 1440 : -1440;
    }

    if (off == 0) {
        time_str[size++] = 'Z';
        time_str[size] = 0;
    } else {
        off_hours = off / 60;
        off_mins = abs(off - off_hours * 60);
        snprintf(&time_str[size], TIME_STR_SIZE-size, "%+03d'%02d'", off_hours, off_mins);
    }
}

static void get_creation_date(void)
{ make_time_str(start_time,source_date_epoch!=NULL);
}

/* static structure for file status set by |find_input_file| */
#ifdef WIN32
static    struct _stat file_stat;
#define GET_FILE_STAT _stat(fname,&file_stat)
#else
static     struct stat file_stat;
#define GET_FILE_STAT stat(fname,&file_stat)
#endif


static char* find_input_file(void)
{ char *fname;
  int r;
  if (output_directory&&!kpse_absolute_p((char*)name_of_file0, false))
  { int r=-1;
    fname = concat3(output_directory, DIR_SEP_STRING, (char*)name_of_file0);
    r=GET_FILE_STAT;
    if (r==0)
      return fname;
    free(fname);
  }
  fname = kpse_find_tex((char*)name_of_file0);
  if (fname!=NULL)
  { r=GET_FILE_STAT;
    if (r==0)
      return fname;
    free(fname);
  }
  fname=(char*)name_of_file0;
  r=GET_FILE_STAT;
  if (r==0)
      return strdup(fname);
  return NULL;
}


static void get_file_mod_date(void)
{ char *fname=NULL;
  fname= find_input_file();
  time_str[0]=0;
  if(fname!=NULL)
  { make_time_str(file_stat.st_mtime,source_date_epoch!=NULL && force_source_date!=NULL);
    free(fname);@+
  }
}

static int get_file_size(void)
{ int s=-1;
  char *fname=NULL;
  fname= find_input_file();
  if(fname!=NULL)
  {s=file_stat.st_size;
   free(fname);@+
  }
  return s;
}


static int get_md5_sum(int s, int file)
{ md5_state_t st;
  memset(md5_digest,0,DIGEST_SIZE);
  if (file)
  { char *fname;
    pack_file_name(s,empty_string,empty_string,NULL);
    fname= find_input_file();
    if(fname!=NULL)
    { FILE *f;
      f = fopen(fname, "rb");
      if (f != NULL)
      { int r;
        char file_buf[FILE_BUF_SIZE];
        recorder_record_input(fname);
        md5_init(&st);
        while ((r = fread(&file_buf, 1, FILE_BUF_SIZE, f)) > 0)
          md5_append(&st, (const md5_byte_t *) file_buf, r);
        md5_finish(&st, md5_digest);
        fclose(f);
      }
      free(fname);
    }
    else
      return 0;
  }
  else
  { md5_init(&st);
    md5_append(&st,(md5_byte_t *)&str_pool[str_start[s]],
     str_start[s + 1] - str_start[s]);
    md5_finish(&st, md5_digest);
  }
  return DIGEST_SIZE;
}


@* Index.
Here is where you can find all uses of each identifier in the program,
with underlined entries pointing to where the identifier was defined.
If the identifier is only one letter long, however, you get to see only
the underlined entries. {\sl All references are to section numbers instead of
page numbers.}

This index also lists error messages and other aspects of the program
that you might want to look up some day. For example, the entry
for ``system dependencies'' lists all sections that should receive
special attention from people who are installing \TeX\ in a new
operating environment. A list of various things that can't happen appears
under ``this can't happen''. Approximately 40 sections are listed under
``inner loop''; these account for about 60\pct! of \TeX's running time,
exclusive of input and output.