summaryrefslogtreecommitdiff
path: root/Build/source/texk/ps2pkm/arith.c
blob: eba1b5dcde70d9f6bfba4725dbe6aef66787ccd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/* $XConsortium: arith.c,v 1.2 91/10/10 11:14:06 rws Exp $ */
/* Copyright International Business Machines, Corp. 1991
 * All Rights Reserved
 * Copyright Lexmark International, Inc. 1991
 * All Rights Reserved
 *
 * License to use, copy, modify, and distribute this software and its
 * documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appear in all copies and that
 * both that copyright notice and this permission notice appear in
 * supporting documentation, and that the name of IBM or Lexmark not be
 * used in advertising or publicity pertaining to distribution of the
 * software without specific, written prior permission.
 *
 * IBM AND LEXMARK PROVIDE THIS SOFTWARE "AS IS", WITHOUT ANY WARRANTIES OF
 * ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY
 * IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
 * AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.  THE ENTIRE RISK AS TO THE
 * QUALITY AND PERFORMANCE OF THE SOFTWARE, INCLUDING ANY DUTY TO SUPPORT
 * OR MAINTAIN, BELONGS TO THE LICENSEE.  SHOULD ANY PORTION OF THE
 * SOFTWARE PROVE DEFECTIVE, THE LICENSEE (NOT IBM OR LEXMARK) ASSUMES THE
 * ENTIRE COST OF ALL SERVICING, REPAIR AND CORRECTION.  IN NO EVENT SHALL
 * IBM OR LEXMARK BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
 * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
 * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
 * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 * THIS SOFTWARE.
 */
 /* ARITH    CWEB         V0006 ********                             */
/*
:h1.ARITH Module - Portable Module for Multiple Precision Fixed Point Arithmetic
 
This module provides division and multiplication of 64-bit fixed point
numbers.  (To be more precise, the module works on numbers that take
two 'longs' to store.  That is almost always equivalent to saying 64-bit
numbers.)
 
Note: it is frequently easy and desirable to recode these functions in
assembly language for the particular processor being used, because
assembly language, unlike C, will have 64-bit multiply products and
64-bit dividends.  This module is offered as a portable version.
 
&author. Jeffrey B. Lotspiech (lotspiech@almaden.ibm.com) and Sten F. Andler
 
 
:h3.Include Files
 
The included files are:
*/
 
#include "types.h"
#include "objects.h"
#include "spaces.h"
#include "arith.h"
 
/*
:h3.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
Reference for all algorithms:  Donald E. Knuth, "The Art of Computer
Programming, Volume 2, Semi-Numerical Algorithms," Addison-Wesley Co.,
Massachusetts, 1969, pp. 229-279.
 
Knuth talks about a 'digit' being an arbitrary sized unit and a number
being a sequence of digits.  We'll take a digit to be a 'short'.
The following assumption must be valid for these algorithms to work:
:ol.
:li.A 'long' is two 'short's.
:eol.
The following code is INDEPENDENT of:
:ol.
:li.The actual size of a short.
:li.Whether shorts and longs are stored most significant byte
first or least significant byte first.
:eol.
 
SHORTSIZE is the number of bits in a short; INT32SIZE is the number of
bits in an int32_t; MAXSHORT is the maximum unsigned short:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
ASSEMBLE concatenates two shorts to form a long:
*/
#define     ASSEMBLE(hi,lo)   ((((uint32_t)hi)<<SHORTSIZE)+(lo))
/*
HIGHDIGIT extracts the most significant short from a long; LOWDIGIT
extracts the least significant short from a long:
*/
#define     HIGHDIGIT(u)      ((u)>>SHORTSIZE)
#define     LOWDIGIT(u)       ((u)&MAXSHORT)
 
/*
SIGNBITON tests the high order bit of a long 'w':
*/
#define    SIGNBITON(w)   (((int32_t)w)<0)
 
/*SHARED LINE(S) ORIGINATED HERE*/
 
/*
:h2.Double Long Arithmetic
 
:h3.DLmult() - Multiply Two Longs to Yield a Double Long
 
The two multiplicands must be positive.
*/
 
void DLmult(register doublelong *product, register uint32_t u, register uint32_t v)
{
  register uint32_t u1, u2; /* the digits of u */
  register uint32_t v1, v2; /* the digits of v */
  register unsigned int w1, w2, w3, w4; /* the digits of w */
  register uint32_t t; /* temporary variable */
/* printf("DLmult(? ?, %x, %x)\n", u, v); */
  u1 = HIGHDIGIT(u);
  u2 = LOWDIGIT(u);
  v1 = HIGHDIGIT(v);
  v2 = LOWDIGIT(v);
 
  if (v2 == 0) w4 = w3 = w2 = 0;
  else
    {
    t = u2 * v2;
    w4 = LOWDIGIT(t);
    t = u1 * v2 + HIGHDIGIT(t);
    w3 = LOWDIGIT(t);
    w2 = HIGHDIGIT(t);
    }
 
  if (v1 == 0) w1 = 0;
  else
    {
    t = u2 * v1 + w3;
    w3 = LOWDIGIT(t);
    t = u1 * v1 + w2 + HIGHDIGIT(t);
    w2 = LOWDIGIT(t);
    w1 = HIGHDIGIT(t);
    }
 
  product->high = ASSEMBLE(w1, w2);
  product->low  = ASSEMBLE(w3, w4);
}
 
/*
:h2.DLdiv() - Divide Two Longs by One Long, Yielding Two Longs
 
Both the dividend and the divisor must be positive.
*/
 
void DLdiv(
       doublelong *quotient,       /* also where dividend is, originally     */
       uint32_t divisor)
{
       register uint32_t u1u2 = quotient->high;
       register uint32_t u3u4 = quotient->low;
       register int32_t u3;  /* single digit of dividend                     */
       register int v1,v2;   /* divisor in registers                         */
       register int32_t t;   /* signed copy of u1u2                          */
       register int qhat;    /* guess at the quotient digit                  */
       register uint32_t q3q4;  /* low two digits of quotient           */
       register int shift;   /* holds the shift value for normalizing        */
       register int j;       /* loop variable                                */
 
/* printf("DLdiv(%x %x, %x)\n", quotient->high, quotient->low, divisor); */
       /*
       * Knuth's algorithm works if the dividend is smaller than the
       * divisor.  We can get to that state quickly:
       */
       if (u1u2 >= divisor) {
               quotient->high = u1u2 / divisor;
               u1u2 %= divisor;
       }
       else
               quotient->high = 0;
 
       if (divisor <= MAXSHORT) {
 
               /*
               * This is the case where the divisor is contained in one
               * 'short'.  It is worthwhile making this fast:
               */
               u1u2 = ASSEMBLE(u1u2, HIGHDIGIT(u3u4));
               q3q4 = u1u2 / divisor;
               u1u2 %= divisor;
               u1u2 = ASSEMBLE(u1u2, LOWDIGIT(u3u4));
               quotient->low = ASSEMBLE(q3q4, u1u2 / divisor);
               return;
       }
 
 
       /*
       * At this point the divisor is a true 'long' so we must use
       * Knuth's algorithm.
       *
       * Step D1: Normalize divisor and dividend (this makes our 'qhat'
       *        guesses more accurate):
       */
       for (shift=0; !SIGNBITON(divisor); shift++, divisor <<= 1) { ; }
       shift--;
       divisor >>= 1;
 
       if ((u1u2 >> (INT32SIZE - shift)) != 0 && shift != 0)
               t1_abort("DLdiv:  dividend too large");
       u1u2 = (u1u2 << shift) + ((shift == 0) ? 0 : u3u4 >> (INT32SIZE - shift));
       u3u4 <<= shift;
 
       /*
       * Step D2:  Begin Loop through digits, dividing u1,u2,u3 by v1,v2,
       *           then shifting U left by 1 digit:
       */
       v1 = HIGHDIGIT(divisor);
       v2 = LOWDIGIT(divisor);
       q3q4 = 0;
       u3 = HIGHDIGIT(u3u4);
 
       for (j=0; j < 2; j++) {
 
               /*
               * Step D3:  make a guess (qhat) at the next quotient denominator:
               */
               qhat = (HIGHDIGIT(u1u2) == v1) ? MAXSHORT : u1u2 / v1;
               /*
               * At this point Knuth would have us further refine our
               * guess, since we know qhat is too big if
               *
               *      v2 * qhat > ASSEMBLE(u1u2 % v, u3)
               *
               * That would make sense if u1u2 % v was easy to find, as it
               * would be in assembly language.  I ignore this step, and
               * repeat step D6 if qhat is too big.
               */
 
               /*
               * Step D4: Multiply v1,v2 times qhat and subtract it from
               * u1,u2,u3:
               */
               u3 -= qhat * v2;
               /*
               * The high digit of u3 now contains the "borrow" for the
               * rest of the substraction from u1,u2.
               * Sometimes we can lose the sign bit with the above.
               * If so, we have to force the high digit negative:
               */
               t = HIGHDIGIT(u3);
               if (t > 0)
                       t |= -1 << SHORTSIZE;
               t += u1u2 - qhat * v1;
/* printf("..>divide step qhat=%x t=%x u3=%x u1u2=%x v1=%x v2=%x\n",
                             qhat, t, u3, u1u2, v1, v2); */
               while (t < 0) {  /* Test is Step D5.                          */
 
                       /*
                       * D6: Oops, qhat was too big.  Add back in v1,v2 and
                       * decrease qhat by 1:
                       */
                       u3 = LOWDIGIT(u3) + v2;
                       t += HIGHDIGIT(u3) + v1;
                       qhat--;
/* printf("..>>qhat correction t=%x u3=%x qhat=%x\n", t, u3, qhat); */
               }
               /*
               * Step D7:  shift U left one digit and loop:
               */
               u1u2 = t;
               if (HIGHDIGIT(u1u2) != 0)
                       t1_abort("divide algorithm error");
               u1u2 = ASSEMBLE(u1u2, LOWDIGIT(u3));
               u3 = LOWDIGIT(u3u4);
               q3q4 = ASSEMBLE(q3q4, qhat);
       }
       quotient->low = q3q4;
/* printf("DLdiv returns %x %x\n", quotient->high, quotient->low); */
       return;
}
 
/*
:h3.DLadd() - Add Two Double Longs
 
In this case, the doublelongs may be signed.  The algorithm takes the
piecewise sum of the high and low longs, with the possibility that the
high should be incremented if there is a carry out of the low.  How to
tell if there is a carry?  Alex Harbury suggested that if the sum of
the lows is less than the max of the lows, there must have been a
carry.  Conversely, if there was a carry, the sum of the lows must be
less than the max of the lows.  So, the test is "if and only if".
*/
 
void DLadd(doublelong *u, doublelong *v)        /* u = u + v                 */
{
       register uint32_t lowmax = MAX(u->low, v->low);
 
/* printf("DLadd(%x %x, %x %x)\n", u->high, u->low, v->high, v->low); */
       u->high += v->high;
       u->low += v->low;
       if (lowmax > u->low)
               u->high++;
}
/*
:h3.DLsub() - Subtract Two Double Longs
 
Testing for a borrow is even easier.  If the v.low is greater than
u.low, there must be a borrow.
*/
 
void DLsub(doublelong *u, doublelong *v)        /* u = u - v                 */
{
/* printf("DLsub(%x %x, %x %x)\n", u->high, u->low, v->high, v->low);*/
       u->high -= v->high;
       if (v->low > u->low)
               u->high--;
       u->low -= v->low;
}
/*
:h3.DLrightshift() - Macro to Shift Double Long Right by N
*/
 
/*SHARED LINE(S) ORIGINATED HERE*/
 
/*
:h2.Fractional Pel Arithmetic
*/
/*
:h3.FPmult() - Multiply Two Fractional Pel Values
 
This funtion first calculates w = u * v to "doublelong" precision.
It then shifts w right by FRACTBITS bits, and checks that no
overflow will occur when the resulting value is passed back as
a fractpel.
*/
 
fractpel FPmult(register fractpel u, register fractpel v)
{
  doublelong w;
  register int negative = FALSE; /* sign flag */
 
  if ((u == 0) || (v == 0)) return (0);
 
 
  if (u < 0) {u = -u; negative = TRUE;}
  if (v < 0) {v = -v; negative = !negative;}
 
  if (u == TOFRACTPEL(1)) return ((negative) ? -v : v);
  if (v == TOFRACTPEL(1)) return ((negative) ? -u : u);
 
  DLmult(&w, u, v);
  DLrightshift(w, FRACTBITS);
  if (w.high != 0 || SIGNBITON(w.low)) {
        IfTrace2(TRUE,"FPmult: overflow, %dx%d\n", u, v);
        w.low = TOFRACTPEL(MAXSHORT);
  }
 
  return ((negative) ? -w.low : w.low);
}
 
/*
:h3.FPdiv() - Divide Two Fractional Pel Values
 
These values may be signed.  The function returns the quotient.
*/
 
fractpel FPdiv(register fractpel dividend, register fractpel divisor)
{
       doublelong w;         /* result will be built here                    */
       int negative = FALSE; /* flag for sign bit                            */
 
       if (dividend < 0) {
               dividend = -dividend;
               negative = TRUE;
       }
       if (divisor < 0) {
               divisor = -divisor;
               negative = !negative;
       }
       w.low = dividend << FRACTBITS;
       w.high = dividend >> (INT32SIZE - FRACTBITS);
       DLdiv(&w, divisor);
       if (w.high != 0 || SIGNBITON(w.low)) {
               IfTrace2(TRUE,"FPdiv: overflow, %d/%d\n", dividend, divisor);
               w.low = TOFRACTPEL(MAXSHORT);
       }
       return( (negative) ? -w.low : w.low);
}
 
/*
:h3.FPstarslash() - Multiply then Divide
 
Borrowing a chapter from the language Forth, it is useful to define
an operator that first multiplies by one constant then divides by
another, keeping the intermediate result in extended precision.
*/
 
fractpel FPstarslash(register fractpel a, register fractpel b,
                     register fractpel c)  /* result = a * b / c             */
{
       doublelong w;         /* result will be built here                    */
       int negative = FALSE;
 
       if (a < 0) { a = -a; negative = TRUE; }
       if (b < 0) { b = -b; negative = !negative; }
       if (c < 0) { c = -c; negative = !negative; }
 
       DLmult(&w, a, b);
       DLdiv(&w, c);
       if (w.high != 0 || SIGNBITON(w.low)) {
               IfTrace3(TRUE,"FPstarslash: overflow, %d*%d/%d\n", a, b, c);
               w.low = TOFRACTPEL(MAXSHORT);
       }
       return((negative) ? -w.low : w.low);
}