1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
/*************************************************************************
** Bezier.cpp **
** **
** This file is part of dvisvgm -- the DVI to SVG converter **
** Copyright (C) 2005-2015 Martin Gieseking <martin.gieseking@uos.de> **
** **
** This program is free software; you can redistribute it and/or **
** modify it under the terms of the GNU General Public License as **
** published by the Free Software Foundation; either version 3 of **
** the License, or (at your option) any later version. **
** **
** This program is distributed in the hope that it will be useful, but **
** WITHOUT ANY WARRANTY; without even the implied warranty of **
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the **
** GNU General Public License for more details. **
** **
** You should have received a copy of the GNU General Public License **
** along with this program; if not, see <http://www.gnu.org/licenses/>. **
*************************************************************************/
#include <algorithm>
#include <utility>
#include "Bezier.h"
using namespace std;
Bezier::Bezier () {
_points[0] = _points[1] = _points[2] = _points[3] = 0;
}
/** Creates a quadratic Bézier curve. internally, it's represented as a cubic one. */
Bezier::Bezier (const DPair &p0, const DPair &p1, const DPair &p2) {
setPoints(p0, p0+(p1-p0)*2.0/3.0, p2+(p1-p2)*2.0/3.0, p2);
}
Bezier::Bezier (const DPair &p0, const DPair &p1, const DPair &p2, const DPair &p3) {
setPoints(p0, p1, p2, p3);
}
/** Creates a subcurve of a given Bézier curve.
* @param[in] source original curve to be clipped
* @param[in] t0 'time' parameter \f$\in[0,1]\f$ of source curve where the subcurve starts
* @param[in] t1 'time' parameter \f$\in[0,1]\f$ of source curve where the subcurve ends */
Bezier::Bezier (const Bezier &source, double t0, double t1) {
if (t0 == t1)
_points[0] = _points[1] = _points[2] = _points[3] = source.valueAt(t0);
else {
if (t0 > t1)
swap(t0, t1);
if (t0 == 0)
source.subdivide(t1, this, 0);
else if (t1 == 1)
source.subdivide(t0, 0, this);
else {
Bezier subcurve;
source.subdivide(t0, 0, &subcurve);
subcurve.subdivide((t1-t0)/(1-t0), this, 0);
}
}
}
void Bezier::setPoints(const DPair &p0, const DPair &p1, const DPair &p2, const DPair &p3) {
_points[0] = p0;
_points[1] = p1;
_points[2] = p2;
_points[3] = p3;
}
void Bezier::reverse() {
swap(_points[0], _points[3]);
swap(_points[1], _points[2]);
}
DPair Bezier::valueAt (double t) const {
const double s = 1-t;
return _points[0]*s*s*s + _points[1]*3.0*s*s*t + _points[2]*3.0*s*t*t + _points[3]*t*t*t;
}
/** Returns a value of the Bézier curve's blossom representation. */
DPair Bezier::blossomValue (double u, double v, double w) const {
const double uv = u*v;
const double uw = u*w;
const double vw = v*w;
const double uvw = u*v*w;
return _points[0]*(1.0-u-v-w+uv+uw+vw-uvw)
+_points[1]*(u+v+w-2.0*(uv+uw+vw)+3.0*uvw)
+_points[2]*(uv+uw+vw-3.0*uvw)
+_points[3]*uvw;
}
/** Splits the curve at t into two sub-curves. */
void Bezier::subdivide (double t, Bezier *bezier1, Bezier *bezier2) const {
const double s = 1-t;
DPair p01 = _points[0]*s + _points[1]*t;
DPair p12 = _points[1]*s + _points[2]*t;
DPair p23 = _points[2]*s + _points[3]*t;
DPair p012 = p01*s + p12*t;
DPair p123 = p12*s + p23*t;
DPair p0123 = p012*s + p123*t;
if (bezier1)
bezier1->setPoints(_points[0], p01, p012, p0123);
if (bezier2)
bezier2->setPoints(p0123, p123, p23, _points[3]);
}
/** Approximates the current Bézier curve by a sequence of line segments.
* This is done by subdividing the curve several times using De Casteljau's algorithm.
* If a sub-curve is almost flat, i.e. \f$\sum\limits_{k=0}^2 |p_{k+1}-p_k| - |p_3-p_0| < \delta\f$,
* the curve is not further subdivided.
* @param[in] delta threshold where to stop further subdivisions (see description above)
* @param[out] p the resulting sequence of points defining the start/end points of the line segments
* @param[out] t corresponding curve parameters of the approximated points p: \f$ b(t_i)=p_i \f$
* @return number of points in vector p */
int Bezier::approximate (double delta, std::vector<DPair> &p, vector<double> *t) const {
p.push_back(_points[0]);
if (t)
t->push_back(0);
return approximate(delta, 0, 1, p, t);
}
int Bezier::approximate (double delta, double t0, double t1, vector<DPair> &p, vector<double> *t) const {
// compute distance of adjacent control points
const double l01 = (_points[1]-_points[0]).length();
const double l12 = (_points[2]-_points[1]).length();
const double l23 = (_points[3]-_points[2]).length();
const double l03 = (_points[3]-_points[0]).length();
if (l01+l12+l23-l03 < delta) { // is curve flat enough?
p.push_back(_points[3]); // => store endpoint
if (t)
t->push_back(t1);
}
else {
// subdivide curve at b(0.5) and approximate the resulting parts separately
Bezier b1, b2;
subdivide(0.5, &b1, &b2);
double tmid = (t0+t1)/2;
b1.approximate(delta, t0, tmid, p, t);
b2.approximate(delta, tmid, t1, p, t);
}
return p.size();
}
/** Returns the signed area of the triangle (p1, p2, p3). */
static inline double signed_area (const DPair &p1, const DPair &p2, const DPair &p3) {
return ((p2.x()-p1.x())*(p3.y()-p1.y()) - (p3.x()-p1.x())*(p2.y()-p1.y()))/2.0;
}
static inline double dot_prod (const DPair &p1, const DPair &p2) {
return p1.x()*p2.x() + p1.y()*p2.y();
}
/** Returns true if p3 is located between p1 and p2, i.e. p3 lays almost on the line
* between p1 and p2. */
static bool between (const DPair &p1, const DPair &p2, const DPair &p3, double delta) {
double sqr_dist = dot_prod(p2-p1, p2-p1);
double factor = sqr_dist == 0.0 ? 1.0 : sqr_dist;
double area2 = fabs(signed_area(p1, p2, p3));
return area2*area2/factor < delta // does p3 lay almost on the line through p1 and p2...
&& min(p1.x(), p2.x()) <= p3.x() // ...and on or inside the rectangle spanned by p1 and p2?
&& max(p1.x(), p2.x()) >= p3.x()
&& min(p1.y(), p2.y()) <= p3.y()
&& max(p1.y(), p2.y()) >= p3.y();
}
static inline bool near (const DPair &p1, const DPair &p2, double delta) {
DPair diff = p2-p1;
return fabs(diff.x()) < delta && fabs(diff.y()) < delta;
}
/** Tries to reduce the degree of the Bézier curve. This only works if the number of
* control points can be reduces without changing the shape of the curve significantly.
* @param[in] delta deviation tolerance
* @param[in] p control points of the reduced curve
* @return degree of the reduced curve */
int Bezier::reduceDegree (double delta, vector<DPair> &p) const {
p.clear();
if (near(_points[0], _points[1], delta) && near(_points[0], _points[2], delta) && near(_points[0], _points[3], delta))
p.push_back(_points[0]);
else if (between(_points[0], _points[3], _points[1], delta) && between(_points[0], _points[3], _points[2], delta)) {
p.push_back(_points[0]);
p.push_back(_points[3]);
}
else if (near((_points[1]-_points[0])*1.5+_points[0], (_points[2]-_points[3])*1.5+_points[3], delta)) {
p.push_back(_points[0]);
p.push_back((_points[1]-_points[0])*1.5 + _points[0]);
p.push_back(_points[3]);
}
else {
p.resize(4);
for (int i=0; i < 4; i++)
p[i] = _points[i];
}
return p.size()-1;
}
/** Try to solve the quadratic equation ax^2 + bx + c = 0. */
static bool solve_quadratic_equation (double a, double b, double c, double &x1, double &x2) {
if (a == 0) {
if (b == 0)
return false;
x1 = x2 = -c/b;
}
else {
double discr = b*b - 4*a*c;
if (discr < 0)
return false;
double p = -b/a/2;
double r = sqrt(discr)/a/2;
x1 = p+r;
x2 = p-r;
}
return true;
}
/** Returns a tight bounding box parallel to the x- and y-axis. */
void Bezier::getBBox (BoundingBox &bbox) const {
bbox.invalidate();
// coefficients of the derivative
DPair pa = _points[3] - _points[2]*3.0 + _points[1]*3.0 - _points[0];
DPair pb = (_points[2]-_points[1]*2.0+_points[0])*2.0;
DPair pc = _points[1]-_points[0];
// compute extrema for t > 0 and t < 1
double t1, t2;
if (solve_quadratic_equation(pa.x(), pb.x(), pc.x(), t1, t2)) {
if (t1 > 0.001 && t1 < 0.999)
bbox.embed(valueAt(t1));
if (t1 != t2 && t2 > 0.001 && t2 < 0.999)
bbox.embed(valueAt(t2));
}
if (solve_quadratic_equation(pa.y(), pb.y(), pc.y(), t1, t2)) {
if (t1 > 0.001 && t1 < 0.999)
bbox.embed(valueAt(t1));
if (t1 != t2 && t2 > 0.001 && t2 < 0.999)
bbox.embed(valueAt(t2));
}
bbox.embed(_points[0]);
bbox.embed(_points[3]);
}
|