1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
|
/* mpfr_zeta -- compute the Riemann Zeta function
Copyright 2003-2023 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <float.h> /* for DBL_MAX */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/*
Parameters:
s - the input floating-point number
n, p - parameters from the algorithm
tc - an array of p floating-point numbers tc[1]..tc[p]
Output:
b is the result, i.e.
sum(tc[i]*product((s+2j)*(s+2j-1)/n^2,j=1..i-1), i=1..p)*s*n^(-s-1)
*/
static void
mpfr_zeta_part_b (mpfr_ptr b, mpfr_srcptr s, int n, int p, mpfr_t *tc)
{
mpfr_t s1, d, u;
unsigned long n2;
int l, t;
MPFR_GROUP_DECL (group);
if (p == 0)
{
MPFR_SET_ZERO (b);
MPFR_SET_POS (b);
return;
}
n2 = n * n;
MPFR_GROUP_INIT_3 (group, MPFR_PREC (b), s1, d, u);
/* t equals 2p-2, 2p-3, ... ; s1 equals s+t */
t = 2 * p - 2;
mpfr_set (d, tc[p], MPFR_RNDN);
for (l = 1; l < p; l++)
{
mpfr_add_ui (s1, s, t, MPFR_RNDN); /* s + (2p-2l) */
mpfr_mul (d, d, s1, MPFR_RNDN);
t = t - 1;
mpfr_add_ui (s1, s, t, MPFR_RNDN); /* s + (2p-2l-1) */
mpfr_mul (d, d, s1, MPFR_RNDN);
t = t - 1;
mpfr_div_ui (d, d, n2, MPFR_RNDN);
mpfr_add (d, d, tc[p-l], MPFR_RNDN);
/* since s is positive and the tc[i] have alternate signs,
the following is unlikely */
if (MPFR_UNLIKELY (mpfr_cmpabs (d, tc[p-l]) > 0))
mpfr_set (d, tc[p-l], MPFR_RNDN);
}
mpfr_mul (d, d, s, MPFR_RNDN);
mpfr_add (s1, s, __gmpfr_one, MPFR_RNDN);
mpfr_neg (s1, s1, MPFR_RNDN);
mpfr_ui_pow (u, n, s1, MPFR_RNDN);
mpfr_mul (b, d, u, MPFR_RNDN);
MPFR_GROUP_CLEAR (group);
}
/* Input: p - an integer
Output: fills tc[1..p], tc[i] = bernoulli(2i)/(2i)!
tc[1]=1/12, tc[2]=-1/720, tc[3]=1/30240, ...
Assumes all the tc[i] have the same precision.
Uses the recurrence (4.60) from the book "Modern Computer Arithmetic"
by Brent and Zimmermann for C_k = bernoulli(2k)/(2k)!:
sum(C_k/(2k+1-2j)!/4^(k-j), j=0..k) = 1/(2k)!/4^k
If we put together the terms involving C_0 and C_1 we get:
sum(D_k/(2k+1-2j)!/4^(k-j), j=1..k) = 0
with D_1 = C_0/4/(2k+1)/(2k)+C_1-1/(2k)/4=(k-1)/(12k+6),
and D_k = C_k for k >= 2.
FIXME: we have C_k = (-1)^(k-1) 2/(2pi)^(2k) * zeta(2k),
see for example formula (4.65) from the above book,
thus since |zeta(2k)-1| < 2^(1-2k) for k >= 2, we have:
|C_k - E_k| < E_k * 2^(1-2k) for k >= 2 and E_k := (-1)^(k-1) 2/(2pi)^(2k).
Then if 2k-1 >= prec we can evaluate E_k instead, which only requires one
multiplication per term, instead of O(k) small divisions.
*/
static void
mpfr_zeta_c (int p, mpfr_t *tc)
{
if (p > 0)
{
mpfr_t d;
int k, l;
mpfr_prec_t prec = MPFR_PREC (tc[1]);
mpfr_init2 (d, prec);
mpfr_div_ui (tc[1], __gmpfr_one, 12, MPFR_RNDN);
for (k = 2; k <= p; k++)
{
mpfr_set_ui (d, k-1, MPFR_RNDN);
mpfr_div_ui (d, d, 12*k+6, MPFR_RNDN);
for (l=2; l < k; l++)
{
mpfr_div_ui (d, d, 4*(2*k-2*l+3)*(2*k-2*l+2), MPFR_RNDN);
mpfr_add (d, d, tc[l], MPFR_RNDN);
}
mpfr_div_ui (tc[k], d, 24, MPFR_RNDN);
MPFR_CHANGE_SIGN (tc[k]);
}
mpfr_clear (d);
}
}
/* Input: s - a floating-point number
n - an integer
Output: sum - a floating-point number approximating sum(1/i^s, i=1..n-1) */
static void
mpfr_zeta_part_a (mpfr_ptr sum, mpfr_srcptr s, int n)
{
mpfr_t u, s1;
int i;
MPFR_GROUP_DECL (group);
MPFR_GROUP_INIT_2 (group, MPFR_PREC (sum), u, s1);
mpfr_neg (s1, s, MPFR_RNDN);
mpfr_ui_pow (u, n, s1, MPFR_RNDN);
mpfr_div_2ui (u, u, 1, MPFR_RNDN);
mpfr_set (sum, u, MPFR_RNDN);
for (i=n-1; i>1; i--)
{
mpfr_ui_pow (u, i, s1, MPFR_RNDN);
mpfr_add (sum, sum, u, MPFR_RNDN);
}
mpfr_add (sum, sum, __gmpfr_one, MPFR_RNDN);
MPFR_GROUP_CLEAR (group);
}
/* Input: s - a floating-point number >= 1/2.
rnd_mode - a rounding mode.
Assumes s is neither NaN nor Infinite.
Output: z - Zeta(s) rounded to the precision of z with direction rnd_mode
*/
static int
mpfr_zeta_pos (mpfr_ptr z, mpfr_srcptr s, mpfr_rnd_t rnd_mode)
{
mpfr_t b, c, z_pre, f, s1;
double beta, sd, dnep;
mpfr_t *tc1;
mpfr_prec_t precz, precs, d, dint;
int p, n, l, add;
int inex;
MPFR_GROUP_DECL (group);
MPFR_ZIV_DECL (loop);
MPFR_ASSERTD (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0);
precz = MPFR_PREC (z);
precs = MPFR_PREC (s);
/* Zeta(x) = 1+1/2^x+1/3^x+1/4^x+1/5^x+O(1/6^x)
so with 2^(EXP(x)-1) <= x < 2^EXP(x)
So for x > 2^3, k^x > k^8, so 2/k^x < 2/k^8
Zeta(x) = 1 + 1/2^x*(1+(2/3)^x+(2/4)^x+...)
= 1 + 1/2^x*(1+sum((2/k)^x,k=3..infinity))
<= 1 + 1/2^x*(1+sum((2/k)^8,k=3..infinity))
And sum((2/k)^8,k=3..infinity) = -257+128*Pi^8/4725 ~= 0.0438035
So Zeta(x) <= 1 + 1/2^x*2 for x >= 8
The error is < 2^(-x+1) <= 2^(-2^(EXP(x)-1)+1) */
if (MPFR_GET_EXP (s) > 3)
{
mpfr_exp_t err;
err = MPFR_GET_EXP (s) - 1;
if (err > (mpfr_exp_t) (sizeof (mpfr_exp_t)*CHAR_BIT-2))
err = MPFR_EMAX_MAX;
else
err = ((mpfr_exp_t)1) << err;
err = 1 - (-err+1); /* GET_EXP(one) - (-err+1) = err :) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (z, __gmpfr_one, err, 0, 1,
rnd_mode, {});
}
d = precz + MPFR_INT_CEIL_LOG2(precz) + 10;
/* we want that s1 = s-1 is exact, i.e. we should have PREC(s1) >= EXP(s) */
dint = (mpfr_uexp_t) MPFR_GET_EXP (s);
mpfr_init2 (s1, MAX (precs, dint));
inex = mpfr_sub (s1, s, __gmpfr_one, MPFR_RNDN);
MPFR_ASSERTD (inex == 0);
/* case s=1 should have already been handled */
MPFR_ASSERTD (!MPFR_IS_ZERO (s1));
MPFR_GROUP_INIT_4 (group, MPFR_PREC_MIN, b, c, z_pre, f);
MPFR_ZIV_INIT (loop, d);
for (;;)
{
/* Principal loop: we compute, in z_pre,
an approximation of Zeta(s), that we send to can_round */
if (MPFR_GET_EXP (s1) <= -(mpfr_exp_t) ((mpfr_prec_t) (d-3)/2))
/* Branch 1: when s-1 is very small, one
uses the approximation Zeta(s)=1/(s-1)+gamma,
where gamma is Euler's constant */
{
dint = MAX (d + 3, precs);
/* branch 1, with internal precision dint */
MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f);
mpfr_div (z_pre, __gmpfr_one, s1, MPFR_RNDN);
mpfr_const_euler (f, MPFR_RNDN);
mpfr_add (z_pre, z_pre, f, MPFR_RNDN);
}
else /* Branch 2 */
{
size_t size;
/* branch 2 */
/* Computation of parameters n, p and working precision */
dnep = (double) d * LOG2;
sd = mpfr_get_d (s, MPFR_RNDN);
/* beta = dnep + 0.61 + sd * log (6.2832 / sd);
but a larger value is OK */
#define LOG6dot2832 1.83787940484160805532
beta = dnep + 0.61 + sd * (LOG6dot2832 - LOG2 *
__gmpfr_floor_log2 (sd));
if (beta <= 0.0)
{
p = 0;
/* n = 1 + (int) (exp ((dnep - LOG2) / sd)); */
n = 1 + (int) __gmpfr_ceil_exp2 ((d - 1.0) / sd);
}
else
{
p = 1 + (int) beta / 2;
n = 1 + (int) ((sd + 2.0 * (double) p - 1.0) / 6.2832);
}
/* add = 4 + floor(1.5 * log(d) / log (2)).
We should have add >= 10, which is always fulfilled since
d = precz + 11 >= 12, thus ceil(log2(d)) >= 4 */
add = 4 + (3 * MPFR_INT_CEIL_LOG2 (d)) / 2;
MPFR_ASSERTD(add >= 10);
dint = d + add;
if (dint < precs)
dint = precs;
/* internal precision is dint */
size = (p + 1) * sizeof(mpfr_t);
tc1 = (mpfr_t*) mpfr_allocate_func (size);
for (l=1; l<=p; l++)
mpfr_init2 (tc1[l], dint);
MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f);
/* precision of z is precz */
/* Computation of the coefficients c_k */
mpfr_zeta_c (p, tc1);
/* Computation of the 3 parts of the function Zeta. */
mpfr_zeta_part_a (z_pre, s, n);
mpfr_zeta_part_b (b, s, n, p, tc1);
/* s1 = s-1 is already computed above */
mpfr_div (c, __gmpfr_one, s1, MPFR_RNDN);
mpfr_ui_pow (f, n, s1, MPFR_RNDN);
mpfr_div (c, c, f, MPFR_RNDN);
mpfr_add (z_pre, z_pre, c, MPFR_RNDN);
mpfr_add (z_pre, z_pre, b, MPFR_RNDN);
for (l=1; l<=p; l++)
mpfr_clear (tc1[l]);
mpfr_free_func (tc1, size);
/* End branch 2 */
}
if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, d-3, precz, rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, d);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (z, z_pre, rnd_mode);
MPFR_GROUP_CLEAR (group);
mpfr_clear (s1);
return inex;
}
/* TODO: Check the error analysis. The following (undocumented?) one
does not take into account the replacement of sin(Pi*s/2) by sinpi(s/2)
in commit fd5d811d81f6d1839d4099cc1bb2cde705981648, which could have
reduced the error bound since the multiplication by Pi is now exact. */
/* return add = 1 + floor(log(c^3*(13+m1))/log(2))
where c = (1+eps)*(1+eps*max(8,m1)),
m1 = 1 + max(1/eps,2*sd)*(1+eps),
eps = 2^(-precz-14)
sd = abs(s-1)
*/
static long
compute_add (mpfr_srcptr s, mpfr_prec_t precz)
{
mpfr_t t, u, m1;
long add;
mpfr_inits2 (64, t, u, m1, (mpfr_ptr) 0);
if (mpfr_cmp_ui (s, 1) >= 0)
mpfr_sub_ui (t, s, 1, MPFR_RNDU);
else
mpfr_ui_sub (t, 1, s, MPFR_RNDU);
/* now t = sd = abs(s-1), rounded up */
mpfr_set_ui_2exp (u, 1, - precz - 14, MPFR_RNDU);
/* u = eps */
/* since 1/eps = 2^(precz+14), if EXP(sd) >= precz+14, then
sd >= 1/2*2^(precz+14) thus 2*sd >= 2^(precz+14) >= 1/eps */
if (mpfr_get_exp (t) >= precz + 14)
mpfr_mul_2ui (t, t, 1, MPFR_RNDU);
else
mpfr_set_ui_2exp (t, 1, precz + 14, MPFR_RNDU);
/* now t = max(1/eps,2*sd) */
mpfr_add_ui (u, u, 1, MPFR_RNDU); /* u = 1+eps, rounded up */
mpfr_mul (t, t, u, MPFR_RNDU); /* t = max(1/eps,2*sd)*(1+eps) */
mpfr_add_ui (m1, t, 1, MPFR_RNDU);
if (mpfr_get_exp (m1) <= 3)
mpfr_set_ui (t, 8, MPFR_RNDU);
else
mpfr_set (t, m1, MPFR_RNDU);
/* now t = max(8,m1) */
mpfr_div_2ui (t, t, precz + 14, MPFR_RNDU); /* eps*max(8,m1) */
mpfr_add_ui (t, t, 1, MPFR_RNDU); /* 1+eps*max(8,m1) */
mpfr_mul (t, t, u, MPFR_RNDU); /* t = c */
mpfr_add_ui (u, m1, 13, MPFR_RNDU); /* 13+m1 */
mpfr_mul (u, u, t, MPFR_RNDU); /* c*(13+m1) */
mpfr_sqr (t, t, MPFR_RNDU); /* c^2 */
mpfr_mul (u, u, t, MPFR_RNDU); /* c^3*(13+m1) */
add = mpfr_get_exp (u);
mpfr_clears (t, u, m1, (mpfr_ptr) 0);
return add;
}
/* return in z a lower bound (for rnd = RNDD) or upper bound (for rnd = RNDU)
of |zeta(s)|/2, using:
log(|zeta(s)|/2) = (s-1)*log(2*Pi) + lngamma(1-s)
+ log(|sin(Pi*s/2)| * zeta(1-s)).
Assumes s < 1/2 and s1 = 1-s exactly, thus s1 > 1/2.
y and p are temporary variables.
At input, p is Pi rounded down.
The comments in the code are for rnd = RNDD. */
static void
mpfr_reflection_overflow (mpfr_ptr z, mpfr_ptr s1, mpfr_srcptr s, mpfr_ptr y,
mpfr_ptr p, mpfr_rnd_t rnd)
{
mpz_t sint;
MPFR_ASSERTD (rnd == MPFR_RNDD || rnd == MPFR_RNDU);
/* Since log is increasing, we want lower bounds on |sin(Pi*s/2)| and
zeta(1-s). */
mpz_init (sint);
mpfr_get_z (sint, s, MPFR_RNDD); /* sint = floor(s) */
/* We first compute a lower bound of |sin(Pi*s/2)|, which is a periodic
function of period 2. Thus:
if 2k < s < 2k+1, then |sin(Pi*s/2)| is increasing;
if 2k-1 < s < 2k, then |sin(Pi*s/2)| is decreasing.
These cases are distinguished by testing bit 0 of floor(s) as if
represented in two's complement (or equivalently, as an unsigned
integer mod 2):
0: sint = 0 mod 2, thus 2k < s < 2k+1 and |sin(Pi*s/2)| is increasing;
1: sint = 1 mod 2, thus 2k-1 < s < 2k and |sin(Pi*s/2)| is decreasing.
Let's recall that the comments are for rnd = RNDD. */
if (mpz_tstbit (sint, 0) == 0) /* |sin(Pi*s/2)| is increasing: round down
Pi*s to get a lower bound. */
{
mpfr_mul (y, p, s, rnd);
if (rnd == MPFR_RNDD)
mpfr_nextabove (p); /* we will need p rounded above afterwards */
}
else /* |sin(Pi*s/2)| is decreasing: round up Pi*s to get a lower bound. */
{
if (rnd == MPFR_RNDD)
mpfr_nextabove (p);
mpfr_mul (y, p, s, MPFR_INVERT_RND(rnd));
}
mpfr_div_2ui (y, y, 1, MPFR_RNDN); /* exact, rounding mode doesn't matter */
/* The rounding direction of sin depends on its sign. We have:
if -4k-2 < s < -4k, then -2k-1 < s/2 < -2k, thus sin(Pi*s/2) < 0;
if -4k < s < -4k+2, then -2k < s/2 < -2k+1, thus sin(Pi*s/2) > 0.
These cases are distinguished by testing bit 1 of floor(s) as if
represented in two's complement (or equivalently, as an unsigned
integer mod 4):
0: sint = {0,1} mod 4, thus -2k < s/2 < -2k+1 and sin(Pi*s/2) > 0;
1: sint = {2,3} mod 4, thus -2k-1 < s/2 < -2k and sin(Pi*s/2) < 0.
Let's recall that the comments are for rnd = RNDD. */
if (mpz_tstbit (sint, 1) == 0) /* -2k < s/2 < -2k+1; sin(Pi*s/2) > 0 */
{
/* Round sin down to get a lower bound of |sin(Pi*s/2)|. */
mpfr_sin (y, y, rnd);
}
else /* -2k-1 < s/2 < -2k; sin(Pi*s/2) < 0 */
{
/* Round sin up to get a lower bound of |sin(Pi*s/2)|. */
mpfr_sin (y, y, MPFR_INVERT_RND(rnd));
mpfr_abs (y, y, MPFR_RNDN); /* exact, rounding mode doesn't matter */
}
mpz_clear (sint);
/* now y <= |sin(Pi*s/2)| when rnd=RNDD, y >= |sin(Pi*s/2)| when rnd=RNDU */
mpfr_zeta_pos (z, s1, rnd); /* zeta(1-s) */
mpfr_mul (z, z, y, rnd);
/* now z <= |sin(Pi*s/2)|*zeta(1-s) */
mpfr_log (z, z, rnd);
/* now z <= log(|sin(Pi*s/2)|*zeta(1-s)) */
mpfr_lngamma (y, s1, rnd);
mpfr_add (z, z, y, rnd);
/* z <= lngamma(1-s) + log(|sin(Pi*s/2)|*zeta(1-s)) */
/* since s-1 < 0, we want to round log(2*pi) upwards */
mpfr_mul_2ui (y, p, 1, MPFR_INVERT_RND(rnd));
mpfr_log (y, y, MPFR_INVERT_RND(rnd));
mpfr_mul (y, y, s1, MPFR_INVERT_RND(rnd));
mpfr_sub (z, z, y, rnd);
mpfr_exp (z, z, rnd);
if (rnd == MPFR_RNDD)
mpfr_nextbelow (p); /* restore original p */
}
int
mpfr_zeta (mpfr_ptr z, mpfr_srcptr s, mpfr_rnd_t rnd_mode)
{
mpfr_t z_pre, s1, y, p;
long add;
mpfr_prec_t precz, prec1, precs, precs1;
int inex;
MPFR_GROUP_DECL (group);
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (
("s[%Pd]=%.*Rg rnd=%d", mpfr_get_prec (s), mpfr_log_prec, s, rnd_mode),
("z[%Pd]=%.*Rg inexact=%d", mpfr_get_prec (z), mpfr_log_prec, z, inex));
/* Zero, Nan or Inf ? */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (s)))
{
if (MPFR_IS_NAN (s))
{
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (s))
{
if (MPFR_IS_POS (s))
return mpfr_set_ui (z, 1, MPFR_RNDN); /* Zeta(+Inf) = 1 */
MPFR_SET_NAN (z); /* Zeta(-Inf) = NaN */
MPFR_RET_NAN;
}
else /* s iz zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (s));
return mpfr_set_si_2exp (z, -1, -1, rnd_mode);
}
}
/* s is neither Nan, nor Inf, nor Zero */
/* check tiny s: we have zeta(s) = -1/2 - 1/2 log(2 Pi) s + ... around s=0,
and for |s| <= 2^(-4), we have |zeta(s) + 1/2| <= |s|.
EXP(s) + 1 < -PREC(z) is a sufficient condition to be able to round
correctly, for any PREC(z) >= 1 (see algorithms.tex for details). */
if (MPFR_GET_EXP (s) + 1 < - (mpfr_exp_t) MPFR_PREC(z))
{
int signs = MPFR_SIGN(s);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_set_si_2exp (z, -1, -1, rnd_mode); /* -1/2 */
if (rnd_mode == MPFR_RNDA)
rnd_mode = MPFR_RNDD; /* the result is around -1/2, thus negative */
if ((rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDZ) && signs < 0)
{
mpfr_nextabove (z); /* z = -1/2 + epsilon */
inex = 1;
}
else if (rnd_mode == MPFR_RNDD && signs > 0)
{
mpfr_nextbelow (z); /* z = -1/2 - epsilon */
inex = -1;
}
else
{
if (rnd_mode == MPFR_RNDU) /* s > 0: z = -1/2 */
inex = 1;
else if (rnd_mode == MPFR_RNDD)
inex = -1; /* s < 0: z = -1/2 */
else /* (MPFR_RNDZ and s > 0) or MPFR_RNDN: z = -1/2 */
inex = (signs > 0) ? 1 : -1;
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (z, inex, rnd_mode);
}
/* Check for case s= -2n */
if (MPFR_IS_NEG (s))
{
mpfr_t tmp;
tmp[0] = *s;
MPFR_EXP (tmp) = MPFR_GET_EXP (s) - 1;
if (mpfr_integer_p (tmp))
{
MPFR_SET_ZERO (z);
MPFR_SET_POS (z);
MPFR_RET (0);
}
}
/* Check for case s=1 before changing the exponent range */
if (mpfr_equal_p (s, __gmpfr_one))
{
MPFR_SET_INF (z);
MPFR_SET_POS (z);
MPFR_SET_DIVBY0 ();
MPFR_RET (0);
}
MPFR_SAVE_EXPO_MARK (expo);
/* Compute Zeta */
if (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0) /* Case s >= 1/2 */
inex = mpfr_zeta_pos (z, s, rnd_mode);
else /* use reflection formula
zeta(s) = 2^s*Pi^(s-1)*sin(Pi*s/2)*gamma(1-s)*zeta(1-s) */
{
int overflow = 0;
precz = MPFR_PREC (z);
precs = MPFR_PREC (s);
/* Precision precs1 needed to represent 1 - s, and s + 2,
without any truncation */
precs1 = precs + 2 + MAX (0, - MPFR_GET_EXP (s));
/* Precision prec1 is the precision on elementary computations;
it ensures a final precision prec1 - add for zeta(s) */
add = compute_add (s, precz);
prec1 = precz + add;
/* FIXME: To avoid that the working precision (prec1) depends on the
input precision, one would need to take into account the error made
when s1 is not exactly 1-s when computing zeta(s1) and gamma(s1)
below, and also in the case y=Inf (i.e. when gamma(s1) overflows).
Make sure that underflows do not occur in intermediate computations.
Due to the limited precision, they are probably not possible
in practice; add some MPFR_ASSERTN's to be sure that problems
do not remain undetected? */
prec1 = MAX (prec1, precs1) + 10;
MPFR_GROUP_INIT_4 (group, prec1, z_pre, s1, y, p);
MPFR_ZIV_INIT (loop, prec1);
for (;;)
{
mpfr_t z_up;
mpfr_const_pi (p, MPFR_RNDD); /* p is Pi */
mpfr_sub (s1, __gmpfr_one, s, MPFR_RNDN); /* s1 = 1-s */
mpfr_gamma (y, s1, MPFR_RNDN); /* gamma(1-s) */
if (MPFR_IS_INF (y)) /* zeta(s) < 0 for -4k-2 < s < -4k,
zeta(s) > 0 for -4k < s < -4k+2 */
{
/* FIXME: An overflow in gamma(s1) does not imply that
zeta(s) will overflow. A solution:
1. Compute
log(|zeta(s)|/2) = (s-1)*log(2*pi) + lngamma(1-s)
+ log(abs(sin(Pi*s/2)) * zeta(1-s))
(possibly sharing computations with the normal case)
with a rather good accuracy (see (2)).
Memorize the sign of sin(...) for the final sign.
2. Take the exponential, ~= |zeta(s)|/2. If there is an
overflow, then this means an overflow on the final result
(due to the multiplication by 2, which has not been done
yet).
3. Ziv test.
4. Correct the sign from the sign of sin(...).
5. Round then multiply by 2. Here, an overflow in either
operation means a real overflow. */
mpfr_reflection_overflow (z_pre, s1, s, y, p, MPFR_RNDD);
/* z_pre is a lower bound of |zeta(s)|/2, thus if it overflows,
or has exponent emax, then |zeta(s)| overflows too. */
if (MPFR_IS_INF (z_pre) || MPFR_GET_EXP(z_pre) == __gmpfr_emax)
{ /* determine the sign of overflow */
mpfr_div_2ui (s1, s, 2, MPFR_RNDN); /* s/4, exact */
mpfr_frac (s1, s1, MPFR_RNDN); /* exact, -1 < s1 < 0 */
overflow = (mpfr_cmp_si_2exp (s1, -1, -1) > 0) ? -1 : 1;
break;
}
else /* EXP(z_pre) < __gmpfr_emax */
{
int ok = 0;
mpfr_t z_down;
mpfr_init2 (z_up, mpfr_get_prec (z_pre));
mpfr_reflection_overflow (z_up, s1, s, y, p, MPFR_RNDU);
/* if the lower approximation z_pre does not overflow, but
z_up does, we need more precision */
if (MPFR_IS_INF (z_up) || MPFR_GET_EXP(z_up) == __gmpfr_emax)
goto next_loop;
/* check if z_pre and z_up round to the same number */
mpfr_init2 (z_down, precz);
mpfr_set (z_down, z_pre, rnd_mode);
/* Note: it might be that EXP(z_down) = emax here, in that
case we will have overflow below when we multiply by 2 */
mpfr_prec_round (z_up, precz, rnd_mode);
ok = mpfr_equal_p (z_down, z_up);
mpfr_clear (z_up);
mpfr_clear (z_down);
if (ok)
{
/* get correct sign and multiply by 2 */
mpfr_div_2ui (s1, s, 2, MPFR_RNDN); /* s/4, exact */
mpfr_frac (s1, s1, MPFR_RNDN); /* exact, -1 < s1 < 0 */
if (mpfr_cmp_si_2exp (s1, -1, -1) > 0)
mpfr_neg (z_pre, z_pre, rnd_mode);
mpfr_mul_2ui (z_pre, z_pre, 1, rnd_mode);
break;
}
else
goto next_loop;
}
}
mpfr_zeta_pos (z_pre, s1, MPFR_RNDN); /* zeta(1-s) */
mpfr_mul (z_pre, z_pre, y, MPFR_RNDN); /* gamma(1-s)*zeta(1-s) */
/* multiply z_pre by 2^s*Pi^(s-1) where p=Pi, s1=1-s */
mpfr_mul_2ui (y, p, 1, MPFR_RNDN); /* 2*Pi */
mpfr_neg (s1, s1, MPFR_RNDN); /* s-1 */
mpfr_pow (y, y, s1, MPFR_RNDN); /* (2*Pi)^(s-1) */
mpfr_mul (z_pre, z_pre, y, MPFR_RNDN);
mpfr_mul_2ui (z_pre, z_pre, 1, MPFR_RNDN);
/* multiply z_pre by sin(Pi*s/2) */
mpfr_div_2ui (p, s, 1, MPFR_RNDN); /* p = s/2 */
/* Can mpfr_sinpi underflow? While with mpfr_sin, we could not
answer in any precision without a theoretical study (though
an underflow would have been very unlikely as we have a
huge exponent range), with mpfr_sinpi, an underflow could
occur only in a huge, unsupported precision. Indeed, if
mpfr_sinpi underflows, this means that 0 < |sinpi(s/2)| < m,
where m is the minimum representable positive number, and in
this case, r being the reduced argument such that |r| <= 1/2,
one has |sinpi(r)| > |2r|, so that |2r| < m; this can be
possible only if |s/2| > 1/2 (otherwise |s| = |2r| < m and
s would not be representable as an MPFR number) and s has
non-zero bits of exponent less than the minimum exponent
(s/2 - r being an integer), i.e. the precision is at least
MPFR_EMAX_MAX + 2. With such a huge precision, there would
probably be failures before reaching this point. */
mpfr_sinpi (y, p, MPFR_RNDN); /* y = sin(Pi*s/2) */
mpfr_mul (z_pre, z_pre, y, MPFR_RNDN);
if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, prec1 - add, precz,
rnd_mode)))
break;
next_loop:
MPFR_ZIV_NEXT (loop, prec1);
MPFR_GROUP_REPREC_4 (group, prec1, z_pre, s1, y, p);
}
MPFR_ZIV_FREE (loop);
if (overflow != 0)
{
inex = mpfr_overflow (z, rnd_mode, overflow);
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
}
else
inex = mpfr_set (z, z_pre, rnd_mode);
MPFR_GROUP_CLEAR (group);
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (z, inex, rnd_mode);
}
|