1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
|
/* Sum -- efficiently sum a list of floating-point numbers
Copyright 2014-2020 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* Note: In the prototypes, one uses
*
* const mpfr_ptr *x i.e.: __mpfr_struct *const *x
*
* instead of
*
* const mpfr_srcptr *x i.e.: const __mpfr_struct *const *x
*
* because here one has a double indirection and the type matching rules
* from the C standard in such a case are stricter and they would yield
* annoying errors for the user in practice. See:
*
* Why can't I pass a char ** to a function which expects a const char **?
*
* in the comp.lang.c FAQ:
*
* http://c-faq.com/ansi/constmismatch.html
*/
/* See the doc/sum.txt file for the algorithm and a part of its proof
(this will later go into algorithms.tex).
TODO [VL, after a discussion with James Demmel]: Compared to
James Demmel and Yozo Hida, Fast and accurate floating-point summation
with application to computational geometry, Numerical Algorithms,
volume 37, number 1-4, pages 101--112, 2004.
sorting is not necessary here. It is not done because in the most common
cases (where big cancellations are rare), it would take time and be
useless. However the lack of sorting increases the worst case complexity.
For instance, consider many inputs that cancel one another (two by two).
One would need n/2 iterations, where each iteration reads the exponent
of each input, therefore n*n/2 read operations. Using a worst-case sort
in O(n log n) could give a O(n log n) worst-case complexity. As we don't
want to slow down the most common cases, this could be done at the 3rd
iteration. But are there practical applications which would be used as
tests?
Note: see the following paper and its references:
http://www.eecs.berkeley.edu/~hdnguyen/public/papers/ARITH21_Fast_Sum.pdf
VL: This is very different:
In MPFR In the paper & references
arbitrary precision fixed precision
correct rounding just reproducible rounding
integer operations floating-point operations
sequential parallel (& sequential)
*/
#ifdef MPFR_COV_CHECK
int __gmpfr_cov_sum_tmd[MPFR_RND_MAX][2][2][3][2][2] = { 0 };
#endif
/* Update minexp (V) after detecting a potential integer overflow in
extreme cases (only a 32-bit ABI may be concerned in practice).
Instead of an assertion failure below, we could
1. check that the ulp of each regular input has an exponent >= MPFR_EXP_MIN
(with an assertion failure if this is not the case);
2. set minexp to MPFR_EXP_MIN and shift the accumulator accordingly
(the sum will then be exact).
However, such cases, which involve huge precisions, will probably
never occur in practice (at least with a 64-bit ABI) and are not
easily testable due to these huge precisions. Moreover, switching
to a 64-bit ABI would be a better solution for such computations.
So, let's leave this unimplemented. */
#define SAFE_SUB(V,E,SH) \
do \
{ \
mpfr_prec_t sh = (SH); \
MPFR_ASSERTN ((E) >= MPFR_EXP_MIN + sh); \
V = (E) - sh; \
} \
while (0)
/* Function sum_raw
* ================
*
* Accumulate a new [minexp,maxexp[ block into (wp,ws). If e and err denote
* the exponents of the computed result and of the error bound respectively,
* while e - err is less than some given bound (due to cancellation), shift
* the accumulator and reiterate.
*
* Inputs:
* wp: pointer to the accumulator (least significant limb first).
* ws: size of the accumulator (in limbs).
* wq: precision of the accumulator (ws * GMP_NUMB_BITS).
* x: array of the input numbers.
* n: size of this array (number of inputs, regular or not).
* minexp: exponent of the least significant bit of the first block.
* maxexp: exponent of the first block (exponent of its MSB + 1).
* tp: pointer to a temporary area (pre-allocated).
* ts: size of this temporary area.
* logn: ceil(log2(rn)), where rn is the number of regular inputs.
* prec: lower bound for e - err (as described above).
* ep: pointer to mpfr_exp_t (see below), or a null pointer.
* minexpp: pointer to mpfr_exp_t (see below), or a null pointer.
* maxexpp: pointer to mpfr_exp_t (see below), or a null pointer.
*
* Preconditions:
* prec >= 1
* wq >= logn + prec + 2
*
* This function returns 0 if the accumulator is 0 (which implies that
* the exact sum for this sum_raw invocation is 0), otherwise the number
* of cancelled bits (>= 1), defined as the number of identical bits on
* the most significant part of the accumulator. In the latter case, it
* also returns the following data in variables passed by reference, if
* the pointers are not NULL:
* - in ep: the exponent e of the computed result;
* - in minexpp: the last value of minexp;
* - in maxexpp: the new value of maxexp (for the next iteration after
* the first invocation of sum_raw in the main code).
*
* Notes:
* - minexp is also the exponent of the least significant bit of the
* accumulator;
* - the temporary area must be large enough to hold a shifted input
* block, and the value of ts is used only when the full assertions
* are checked (i.e. with the --enable-assert configure option), to
* check that a buffer overflow doesn't occur;
* - contrary to the returned value of minexp (the value in the last
* iteration), the returned value of maxexp is the one for the next
* iteration (= maxexp2 of the last iteration).
*/
static mpfr_prec_t
sum_raw (mp_limb_t *wp, mp_size_t ws, mpfr_prec_t wq, const mpfr_ptr *x,
unsigned long n, mpfr_exp_t minexp, mpfr_exp_t maxexp,
mp_limb_t *tp, mp_size_t ts, int logn, mpfr_prec_t prec,
mpfr_exp_t *ep, mpfr_exp_t *minexpp, mpfr_exp_t *maxexpp)
{
MPFR_LOG_FUNC
(("ws=%Pd ts=%Pd prec=%Pd", (mpfr_prec_t) ws, (mpfr_prec_t) ts, prec),
("", 0));
/* The C code below requires prec >= 0 due to the use of unsigned
integer arithmetic on it. Actually the computation makes sense
only with prec >= 1 (otherwise one can't even know the sign of
the result), hence the following assertion. */
MPFR_ASSERTD (prec >= 1);
/* Consistency check. */
MPFR_ASSERTD (wq == (mpfr_prec_t) ws * GMP_NUMB_BITS);
/* The following precondition together with prec >= 1 will imply:
minexp - shiftq < maxexp2, as required by the algorithm. */
MPFR_ASSERTD (wq >= logn + prec + 2);
while (1)
{
mpfr_exp_t maxexp2 = MPFR_EXP_MIN;
unsigned long i;
MPFR_LOG_MSG (("sum_raw loop: "
"maxexp=%" MPFR_EXP_FSPEC "d "
"minexp=%" MPFR_EXP_FSPEC "d\n",
(mpfr_eexp_t) maxexp, (mpfr_eexp_t) minexp));
MPFR_ASSERTD (maxexp > minexp);
for (i = 0; i < n; i++)
if (! MPFR_IS_SINGULAR (x[i])) /* Step 1 (see sum_raw in sum.txt) */
{
mp_limb_t *dp, *vp;
mp_size_t ds, vs, vds;
mpfr_exp_t xe, vd;
mpfr_prec_t xq;
int tr;
xe = MPFR_GET_EXP (x[i]);
xq = MPFR_GET_PREC (x[i]);
vp = MPFR_MANT (x[i]);
vs = MPFR_PREC2LIMBS (xq);
vd = xe - vs * GMP_NUMB_BITS - minexp;
/* vd is the exponent of the least significant represented bit of
x[i] (including the trailing bits, whose value is 0) minus the
exponent of the least significant bit of the accumulator. To
make the code simpler, we won't try to filter out the trailing
bits of x[i]. */
/* Steps 2, 3, 4 (see sum_raw in sum.txt) */
if (vd < 0)
{
/* This covers the following cases:
* [-+- accumulator ---]
* [---|----- x[i] ------|--]
* | [----- x[i] --|--]
* | |[----- x[i] -----]
* | | [----- x[i] -----]
* maxexp minexp
*/
/* Step 2 for subcase vd < 0 */
if (xe <= minexp)
{
/* x[i] is entirely after the LSB of the accumulator,
so that it will be ignored at this iteration. */
if (xe > maxexp2)
{
maxexp2 = xe;
/* And since the exponent of x[i] is valid... */
MPFR_ASSERTD (maxexp2 >= MPFR_EMIN_MIN);
}
continue;
}
/* Step 3 for subcase vd < 0 */
/* If some significant bits of x[i] are after the LSB of the
accumulator, then maxexp2 will necessarily be minexp. */
if (MPFR_LIKELY (xe - xq < minexp))
maxexp2 = minexp;
/* Step 4 for subcase vd < 0 */
/* We need to ignore the least |vd| significant bits of x[i].
First, let's ignore the least vds = |vd| / GMP_NUMB_BITS
limbs. */
vd = - vd;
vds = vd / GMP_NUMB_BITS;
vs -= vds;
MPFR_ASSERTD (vs > 0); /* see xe <= minexp test above */
vp += vds;
vd -= vds * GMP_NUMB_BITS;
MPFR_ASSERTD (vd >= 0 && vd < GMP_NUMB_BITS);
if (xe > maxexp)
{
vs -= (xe - maxexp) / GMP_NUMB_BITS;
MPFR_ASSERTD (vs > 0);
tr = (xe - maxexp) % GMP_NUMB_BITS;
}
else
tr = 0;
if (vd != 0)
{
MPFR_ASSERTD (vs <= ts);
mpn_rshift (tp, vp, vs, vd);
vp = tp;
tr += vd;
if (tr >= GMP_NUMB_BITS)
{
vs--;
tr -= GMP_NUMB_BITS;
}
MPFR_ASSERTD (vs >= 1);
MPFR_ASSERTD (tr >= 0 && tr < GMP_NUMB_BITS);
if (tr != 0)
{
tp[vs-1] &= MPFR_LIMB_MASK (GMP_NUMB_BITS - tr);
tr = 0;
}
/* Truncation has now been taken into account. */
MPFR_ASSERTD (tr == 0);
}
dp = wp;
ds = ws;
}
else /* vd >= 0 */
{
/* This covers the following cases:
* [-+- accumulator ---]
* [- x[i] -] | |
* [---|-- x[i] ------] |
* [------|-- x[i] ---------]
* | [- x[i] -] |
* maxexp minexp
*/
/* Steps 2 and 3 for subcase vd >= 0 */
MPFR_ASSERTD (xe - xq >= minexp); /* see definition of vd */
/* Step 4 for subcase vd >= 0 */
/* We need to ignore the least vd significant bits
of the accumulator. First, let's ignore the least
vds = vd / GMP_NUMB_BITS limbs. -> (dp,ds) */
vds = vd / GMP_NUMB_BITS;
ds = ws - vds;
if (ds <= 0)
continue;
dp = wp + vds;
vd -= vds * GMP_NUMB_BITS;
MPFR_ASSERTD (vd >= 0 && vd < GMP_NUMB_BITS);
/* The low part of x[i] (to be determined) will have to be
shifted vd bits to the left if vd != 0. */
if (xe > maxexp)
{
vs -= (xe - maxexp) / GMP_NUMB_BITS;
if (vs <= 0)
continue;
tr = (xe - maxexp) % GMP_NUMB_BITS;
}
else
tr = 0;
MPFR_ASSERTD (tr >= 0 && tr < GMP_NUMB_BITS && vs > 0);
/* We need to consider the least significant vs limbs of x[i]
except the most significant tr bits. */
if (vd != 0)
{
mp_limb_t carry;
MPFR_ASSERTD (vs <= ts);
carry = mpn_lshift (tp, vp, vs, vd);
tr -= vd;
if (tr < 0)
{
tr += GMP_NUMB_BITS;
MPFR_ASSERTD (vs + 1 <= ts);
tp[vs++] = carry;
}
MPFR_ASSERTD (tr >= 0 && tr < GMP_NUMB_BITS);
vp = tp;
}
} /* vd >= 0 */
MPFR_ASSERTD (vs > 0 && vs <= ds);
/* We can't truncate the most significant limb of the input
(in case it hasn't been shifted to the temporary area).
So, let's ignore it now. It will be taken into account
via carry propagation after the addition. */
if (tr != 0)
vs--;
/* Step 5 (see sum_raw in sum.txt) */
if (MPFR_IS_POS (x[i]))
{
mp_limb_t carry;
carry = vs > 0 ? mpn_add_n (dp, dp, vp, vs) : 0;
MPFR_ASSERTD (carry <= 1);
if (tr != 0)
carry += vp[vs] & MPFR_LIMB_MASK (GMP_NUMB_BITS - tr);
if (ds > vs)
mpn_add_1 (dp + vs, dp + vs, ds - vs, carry);
}
else
{
mp_limb_t borrow;
borrow = vs > 0 ? mpn_sub_n (dp, dp, vp, vs) : 0;
MPFR_ASSERTD (borrow <= 1);
if (tr != 0)
borrow += vp[vs] & MPFR_LIMB_MASK (GMP_NUMB_BITS - tr);
if (ds > vs)
mpn_sub_1 (dp + vs, dp + vs, ds - vs, borrow);
}
}
{
mpfr_prec_t cancel; /* number of cancelled bits */
mp_size_t wi; /* index in the accumulator */
mp_limb_t a, b;
int cnt;
cancel = 0;
wi = ws - 1;
MPFR_ASSERTD (wi >= 0);
a = wp[wi] >> (GMP_NUMB_BITS - 1) ? MPFR_LIMB_MAX : MPFR_LIMB_ZERO;
while (wi >= 0)
if ((b = wp[wi]) == a)
{
cancel += GMP_NUMB_BITS;
wi--;
}
else
{
b ^= a;
MPFR_ASSERTD (b != 0);
count_leading_zeros (cnt, b);
cancel += cnt;
break;
}
if (wi >= 0 || a != MPFR_LIMB_ZERO) /* accumulator != 0 */
{
mpfr_exp_t e; /* exponent of the computed result */
mpfr_exp_t err; /* exponent of the error bound */
MPFR_LOG_MSG (("accumulator %s 0, cancel=%Pd\n",
a != MPFR_LIMB_ZERO ? "<" : ">", cancel));
MPFR_ASSERTD (cancel > 0);
e = minexp + wq - cancel;
MPFR_ASSERTD (e >= minexp);
err = maxexp2 + logn; /* OK even if maxexp2 == MPFR_EXP_MIN */
/* The absolute value of the truncated sum is in the binade
[2^(e-1),2^e] (closed on both ends due to two's complement).
The error is strictly less than 2^err (and is 0 if
maxexp2 == MPFR_EXP_MIN). */
/* This basically tests whether err <= e - prec without
potential integer overflow (since prec >= 0)...
Note that the maxexp2 == MPFR_EXP_MIN test is there just for
the potential corner case e - prec < MPFR_EXP_MIN + logn.
Such corner cases, involving specific huge-precision numbers,
are probably not supported in many places in MPFR, but this
test doesn't hurt... */
if (maxexp2 == MPFR_EXP_MIN ||
(err <= e && SAFE_DIFF (mpfr_uexp_t, e, err) >= prec))
{
MPFR_LOG_MSG (("(err=%" MPFR_EXP_FSPEC "d) <= (e=%"
MPFR_EXP_FSPEC "d) - (prec=%Pd)\n",
(mpfr_eexp_t) err, (mpfr_eexp_t) e, prec));
/* To avoid tests or copies, we consider the only two cases
that will occur in sum_aux. */
MPFR_ASSERTD ((ep != NULL &&
minexpp != NULL &&
maxexpp != NULL) ||
(ep == NULL &&
minexpp == NULL &&
maxexpp == NULL));
if (ep != NULL)
{
*ep = e;
*minexpp = minexp;
*maxexpp = maxexp2;
}
MPFR_LOG_MSG (("return with minexp=%" MPFR_EXP_FSPEC
"d maxexp2=%" MPFR_EXP_FSPEC "d%s\n",
(mpfr_eexp_t) minexp, (mpfr_eexp_t) maxexp2,
maxexp2 == MPFR_EXP_MIN ?
" (MPFR_EXP_MIN)" : ""));
return cancel;
}
else
{
mpfr_exp_t diffexp;
mpfr_prec_t shiftq;
mpfr_size_t shifts;
int shiftc;
MPFR_LOG_MSG (("e=%" MPFR_EXP_FSPEC "d err=%" MPFR_EXP_FSPEC
"d maxexp2=%" MPFR_EXP_FSPEC "d%s\n",
(mpfr_eexp_t) e, (mpfr_eexp_t) err,
(mpfr_eexp_t) maxexp2,
maxexp2 == MPFR_EXP_MIN ?
" (MPFR_EXP_MIN)" : ""));
diffexp = err - e;
if (diffexp < 0)
diffexp = 0;
/* diffexp = max(0, err - e) */
MPFR_LOG_MSG (("diffexp=%" MPFR_EXP_FSPEC "d\n",
(mpfr_eexp_t) diffexp));
MPFR_ASSERTD (diffexp < cancel - 2);
shiftq = cancel - 2 - (mpfr_prec_t) diffexp;
/* equivalent to: minexp + wq - 2 - max(e,err) */
MPFR_ASSERTD (shiftq > 0);
shifts = shiftq / GMP_NUMB_BITS;
shiftc = shiftq % GMP_NUMB_BITS;
MPFR_LOG_MSG (("shiftq = %Pd = %Pd * GMP_NUMB_BITS + %d\n",
shiftq, (mpfr_prec_t) shifts, shiftc));
if (MPFR_LIKELY (shiftc != 0))
mpn_lshift (wp + shifts, wp, ws - shifts, shiftc);
else
mpn_copyd (wp + shifts, wp, ws - shifts);
MPN_ZERO (wp, shifts);
/* Compute minexp = minexp - shiftq safely. */
SAFE_SUB (minexp, minexp, shiftq);
MPFR_ASSERTD (minexp < maxexp2);
}
}
else if (maxexp2 == MPFR_EXP_MIN)
{
MPFR_LOG_MSG (("accumulator = 0, maxexp2 = MPFR_EXP_MIN\n", 0));
return 0;
}
else
{
MPFR_LOG_MSG (("accumulator = 0, reiterate\n", 0));
/* Compute minexp = maxexp2 - (wq - (logn + 1)) safely. */
SAFE_SUB (minexp, maxexp2, wq - (logn + 1));
/* Note: the logn + 1 corresponds to cq in the main code. */
}
}
maxexp = maxexp2;
}
}
/**********************************************************************/
/* Generic case: all the inputs are finite numbers,
with at least 3 regular numbers. */
static int
sum_aux (mpfr_ptr sum, const mpfr_ptr *x, unsigned long n, mpfr_rnd_t rnd,
mpfr_exp_t maxexp, unsigned long rn)
{
mp_limb_t *sump;
mp_limb_t *tp; /* pointer to a temporary area */
mp_limb_t *wp; /* pointer to the accumulator */
mp_size_t ts; /* size of the temporary area, in limbs */
mp_size_t ws; /* size of the accumulator, in limbs */
mp_size_t zs; /* size of the TMD accumulator, in limbs */
mpfr_prec_t wq; /* size of the accumulator, in bits */
int logn; /* ceil(log2(rn)) */
int cq;
mpfr_prec_t sq;
int inex;
MPFR_TMP_DECL (marker);
MPFR_LOG_FUNC
(("n=%lu rnd=%d maxexp=%" MPFR_EXP_FSPEC "d rn=%lu",
n, rnd, (mpfr_eexp_t) maxexp, rn),
("sum[%Pu]=%.*Rg", mpfr_get_prec (sum), mpfr_log_prec, sum));
MPFR_ASSERTD (rn >= 3 && rn <= n);
/* In practice, no integer overflow on the exponent. */
MPFR_STAT_STATIC_ASSERT (MPFR_EXP_MAX - MPFR_EMAX_MAX >=
sizeof (unsigned long) * CHAR_BIT);
/* Set up some variables and the accumulator. */
sump = MPFR_MANT (sum);
/* rn is the number of regular inputs (the singular ones will be
ignored). Compute logn = ceil(log2(rn)). */
logn = MPFR_INT_CEIL_LOG2 (rn);
MPFR_ASSERTD (logn >= 2);
MPFR_LOG_MSG (("logn=%d maxexp=%" MPFR_EXP_FSPEC "d\n",
logn, (mpfr_eexp_t) maxexp));
sq = MPFR_GET_PREC (sum);
cq = logn + 1;
/* First determine the size of the accumulator.
* cq + sq + logn + 2 >= logn + sq + 5, which will be used later.
* The assertion wq - cq - sq >= 4 is another way to check that.
*/
ws = MPFR_PREC2LIMBS (cq + sq + logn + 2);
wq = (mpfr_prec_t) ws * GMP_NUMB_BITS;
MPFR_ASSERTD (wq - cq - sq >= 4);
/* TODO: timings, comparing with a larger zs. */
zs = MPFR_PREC2LIMBS (wq - sq);
MPFR_LOG_MSG (("cq=%d sq=%Pd logn=%d wq=%Pd\n", cq, sq, logn, wq));
/* An input block will have up to wq - cq bits, and its shifted value
(to be correctly aligned) may take GMP_NUMB_BITS - 1 additional bits. */
ts = MPFR_PREC2LIMBS (wq - cq + GMP_NUMB_BITS - 1);
MPFR_TMP_MARK (marker);
/* Note: If the TMD does not occur, which should be the case for most
sums, allocating zs limbs is not necessary. However, we choose to
do this now (thus in all cases) because zs is very small, so that
the difference on the memory footprint will not be noticeable.
More precisely, zs is at most 2 in practice with the current code;
we may want to increase it in order to avoid performance issues in
some unlikely corner cases, but even in this case, it will remain
small.
One will have:
[------ ts ------][------ ws ------][- zs -]
The following would probably be better:
[------ ts ------] [------ ws ------]
[- zs -]
i.e. where the TMD accumulator (partially or completely) takes
some unneeded part of the temporary area in order to improve
data locality. But
* in low precision, data locality is regarded as ensured even
with the actual choice;
* in high precision, data locality for TMD resolution may not
be that important.
*/
tp = MPFR_TMP_LIMBS_ALLOC (ts + ws + zs);
wp = tp + ts;
MPN_ZERO (wp, ws); /* zero the accumulator */
{
mpfr_exp_t minexp; /* exponent of the LSB of the block for sum_raw */
mpfr_prec_t cancel; /* number of cancelled bits */
mpfr_exp_t e; /* temporary exponent of the result */
mpfr_exp_t u; /* temporary exponent of the ulp (quantum) */
mp_limb_t lbit; /* last bit (useful if even rounding) */
mp_limb_t rbit; /* rounding bit (corrected in halfway case) */
int corr; /* correction term (from -1 to 2) */
int sd, sh; /* shift counts */
mp_size_t sn; /* size of the output number */
int tmd; /* 0: the TMD does not occur
1: the TMD occurs on a machine number
2: the TMD occurs on a midpoint */
int neg; /* 0 if positive sum, 1 if negative */
int sgn; /* +1 if positive sum, -1 if negative */
MPFR_LOG_MSG (("Compute an approximation with sum_raw...\n", 0));
/* Compute minexp = maxexp - (wq - cq) safely. */
SAFE_SUB (minexp, maxexp, wq - cq);
MPFR_ASSERTD (wq >= logn + sq + 5);
cancel = sum_raw (wp, ws, wq, x, n, minexp, maxexp, tp, ts,
logn, sq + 3, &e, &minexp, &maxexp);
if (MPFR_UNLIKELY (cancel == 0))
{
/* The exact sum is zero. Since not all inputs are 0, the sum
* is +0 except in MPFR_RNDD, as specified according to the
* IEEE 754 rules for the addition of two numbers.
*/
MPFR_SET_SIGN (sum, (rnd != MPFR_RNDD ?
MPFR_SIGN_POS : MPFR_SIGN_NEG));
MPFR_SET_ZERO (sum);
MPFR_TMP_FREE (marker);
MPFR_RET (0);
}
/* The absolute value of the truncated sum is in the binade
[2^(e-1),2^e] (closed on both ends due to two's complement).
The error is strictly less than 2^(maxexp + logn) (and is 0
if maxexp == MPFR_EXP_MIN). */
u = e - sq; /* e being the exponent, u is the ulp of the target */
/* neg = 1 if negative, 0 if positive. */
neg = wp[ws-1] >> (GMP_NUMB_BITS - 1);
MPFR_ASSERTD (neg == 0 || neg == 1);
sgn = neg ? -1 : 1;
MPFR_ASSERTN (sgn == (neg ? MPFR_SIGN_NEG : MPFR_SIGN_POS));
MPFR_LOG_MSG (("neg=%d sgn=%d cancel=%Pd"
" e=%" MPFR_EXP_FSPEC "d"
" u=%" MPFR_EXP_FSPEC "d"
" maxexp=%" MPFR_EXP_FSPEC "d%s\n",
neg, sgn, cancel, (mpfr_eexp_t) e, (mpfr_eexp_t) u,
(mpfr_eexp_t) maxexp,
maxexp == MPFR_EXP_MIN ? " (MPFR_EXP_MIN)" : ""));
if (rnd == MPFR_RNDF)
{
/* Rounding the approximate value to nearest (ties don't matter) is
sufficient. We need to get the rounding bit; the code is similar
to a part from the generic code (here, corr = rbit). */
if (MPFR_LIKELY (u > minexp))
{
mpfr_prec_t tq;
mp_size_t wi;
int td;
tq = u - minexp;
MPFR_ASSERTD (tq > 0); /* number of trailing bits */
MPFR_LOG_MSG (("tq=%Pd\n", tq));
wi = tq / GMP_NUMB_BITS;
td = tq % GMP_NUMB_BITS;
corr = td >= 1 ? ((wp[wi] >> (td - 1)) & MPFR_LIMB_ONE) :
(MPFR_ASSERTD (wi >= 1), wp[wi-1] >> (GMP_NUMB_BITS - 1));
}
else
corr = 0;
inex = 0; /* not meaningful, but needs to have a value */
}
else /* rnd != MPFR_RNDF */
{
if (MPFR_LIKELY (u > minexp))
{
mpfr_prec_t tq;
mp_size_t wi;
int td;
tq = u - minexp;
MPFR_ASSERTD (tq > 0); /* number of trailing bits */
MPFR_LOG_MSG (("tq=%Pd\n", tq));
wi = tq / GMP_NUMB_BITS;
/* Determine the rounding bit, which is represented. */
td = tq % GMP_NUMB_BITS;
lbit = (wp[wi] >> td) & MPFR_LIMB_ONE;
rbit = td >= 1 ? ((wp[wi] >> (td - 1)) & MPFR_LIMB_ONE) :
(MPFR_ASSERTD (wi >= 1), wp[wi-1] >> (GMP_NUMB_BITS - 1));
MPFR_ASSERTD (rbit == 0 || rbit == 1);
MPFR_LOG_MSG (("rbit=%d\n", (int) rbit));
if (maxexp == MPFR_EXP_MIN)
{
/* The sum in the accumulator is exact. Determine inex:
inex = 0 if the final sum is exact, else 1, i.e.
inex = rounding bit || sticky bit. In round to nearest,
also determine the rounding direction: obtained from
the rounding bit possibly except in halfway cases.
Halfway cases are rounded toward -inf iff the last bit
of the truncated significand in two's complement is 0
(in precision > 1, because the parity after rounding is
the same in two's complement and sign + magnitude; in
precision 1, one checks that the rule works for both
positive (lbit == 1) and negative (lbit == 0) numbers,
rounding halfway cases away from zero). */
if (MPFR_LIKELY (rbit == 0 || (rnd == MPFR_RNDN && lbit == 0)))
{
/* We need to determine the sticky bit, either to set inex
(if the rounding bit is 0) or to possibly "correct" rbit
(round to nearest, halfway case rounded downward) from
which the rounding direction will be determined. */
MPFR_LOG_MSG (("Determine the sticky bit...\n", 0));
inex = td >= 2 ? (wp[wi] & MPFR_LIMB_MASK (td - 1)) != 0
: td == 0 ?
(MPFR_ASSERTD (wi >= 1),
(wp[--wi] & MPFR_LIMB_MASK (GMP_NUMB_BITS - 1)) != 0)
: 0;
if (!inex)
{
while (!inex && wi > 0)
inex = wp[--wi] != 0;
if (!inex && rbit != 0)
{
/* sticky bit = 0, rounding bit = 1,
i.e. halfway case, which will be
rounded downward (see earlier if). */
MPFR_ASSERTD (rnd == MPFR_RNDN);
inex = 1;
rbit = 0; /* even rounding downward */
MPFR_LOG_MSG (("Halfway case rounded downward;"
" set inex=1 rbit=0\n", 0));
}
}
}
else
inex = 1;
tmd = 0; /* We can round correctly -> no TMD. */
}
else /* maxexp > MPFR_EXP_MIN */
{
mpfr_exp_t d;
mp_limb_t limb, mask;
int nbits;
/* Since maxexp was set to either the exponent of a x[i] or
to minexp... */
MPFR_ASSERTD (maxexp >= MPFR_EMIN_MIN || maxexp == minexp);
inex = 1; /* We do not know whether the sum is exact. */
MPFR_ASSERTD (u <= MPFR_EMAX_MAX && u <= minexp + wq);
d = u - (maxexp + logn); /* representable */
MPFR_ASSERTD (d >= 3); /* due to prec = sq + 3 in sum_raw */
/* Let's see whether the TMD occurs by looking at the d bits
following the ulp bit, or the d-1 bits after the rounding
bit. */
/* First chunk after the rounding bit... It starts at:
(wi,td-2) if td >= 2,
(wi-1,td-2+GMP_NUMB_BITS) if td < 2. */
if (td == 0)
{
MPFR_ASSERTD (wi >= 1);
limb = wp[--wi];
mask = MPFR_LIMB_MASK (GMP_NUMB_BITS - 1);
nbits = GMP_NUMB_BITS;
}
else if (td == 1)
{
limb = wi >= 1 ? wp[--wi] : MPFR_LIMB_ZERO;
mask = MPFR_LIMB_MAX;
nbits = GMP_NUMB_BITS + 1;
}
else /* td >= 2 */
{
MPFR_ASSERTD (td >= 2);
limb = wp[wi];
mask = MPFR_LIMB_MASK (td - 1);
nbits = td;
}
/* nbits: number of bits of the first chunk + 1
(the +1 is for the rounding bit). */
if (nbits > d)
{
/* Some low significant bits must be ignored. */
limb >>= nbits - d;
mask >>= nbits - d;
d = 0;
}
else
{
d -= nbits;
MPFR_ASSERTD (d >= 0);
}
limb &= mask;
tmd =
limb == MPFR_LIMB_ZERO ?
(rbit == 0 ? 1 : rnd == MPFR_RNDN ? 2 : 0) :
limb == mask ?
(limb = MPFR_LIMB_MAX,
rbit != 0 ? 1 : rnd == MPFR_RNDN ? 2 : 0) : 0;
while (tmd != 0 && d != 0)
{
mp_limb_t limb2;
MPFR_ASSERTD (d > 0);
if (wi == 0)
{
/* The non-represented bits are 0's. */
if (limb != MPFR_LIMB_ZERO)
tmd = 0;
break;
}
MPFR_ASSERTD (wi > 0);
limb2 = wp[--wi];
if (d < GMP_NUMB_BITS)
{
int c = GMP_NUMB_BITS - d;
MPFR_ASSERTD (c > 0 && c < GMP_NUMB_BITS);
if ((limb2 >> c) != (limb >> c))
tmd = 0;
break;
}
if (limb2 != limb)
tmd = 0;
d -= GMP_NUMB_BITS;
}
}
}
else /* u <= minexp */
{
/* The exact value of the accumulator will be copied.
* The TMD occurs if and only if there are bits still
* not taken into account, and if it occurs, this is
* necessarily on a machine number (-> tmd = 1).
*/
lbit = u == minexp ? wp[0] & MPFR_LIMB_ONE : 0;
rbit = 0;
inex = tmd = maxexp != MPFR_EXP_MIN;
}
MPFR_ASSERTD (rbit == 0 || rbit == 1);
MPFR_LOG_MSG (("tmd=%d lbit=%d rbit=%d inex=%d neg=%d\n",
tmd, (int) lbit, (int) rbit, inex, neg));
/* Here, if the final sum is known to be exact, inex = 0, otherwise
* inex = 1. We have a truncated significand, a trailing term t such
* that 0 <= t < 1 ulp, and an error on the trailing term bounded by
* t' in absolute value. Thus the error e on the truncated significand
* satisfies -t' <= e < 1 ulp + t'. Thus one has 4 correction cases
* denoted by a corr value between -1 and 2 depending on e, neg, rbit,
* and the rounding mode:
* -1: equivalent to nextbelow;
* 0: the truncated significand is not corrected;
* 1: add 1 ulp;
* 2: add 1 ulp, then nextabove.
* The nextbelow and nextabove are used here since there may be a
* change of the binade.
*/
if (tmd == 0) /* no TMD */
{
switch (rnd)
{
case MPFR_RNDD:
corr = 0;
break;
case MPFR_RNDU:
corr = inex;
break;
case MPFR_RNDZ:
corr = inex && neg;
break;
case MPFR_RNDA:
corr = inex && !neg;
break;
default:
MPFR_ASSERTN (rnd == MPFR_RNDN);
/* Note: for halfway cases (maxexp == MPFR_EXP_MIN) that are
rounded downward, rbit has been changed to 0 so that corr
is set correctly. */
corr = rbit;
}
MPFR_ASSERTD (corr == 0 || corr == 1);
if (inex &&
corr == 0) /* two's complement significand decreased */
inex = -1;
}
else /* tmd */
{
mpfr_exp_t minexp2;
mpfr_prec_t cancel2;
mpfr_exp_t err; /* exponent of the error bound */
mp_size_t zz; /* nb of limbs to zero in the TMD accumulator */
mp_limb_t *zp; /* pointer to the TMD accumulator */
mpfr_prec_t zq; /* size of the TMD accumulator, in bits */
int sst; /* sign of the secondary term */
/* TMD case. Here we use a new variable minexp2, with the same
meaning as minexp, as we want to keep the minexp value for
the copy to the destination. */
MPFR_ASSERTD (maxexp > MPFR_EXP_MIN);
MPFR_ASSERTD (tmd == 1 || tmd == 2);
/* TMD accumulator */
zp = wp + ws;
zq = (mpfr_prec_t) zs * GMP_NUMB_BITS;
err = maxexp + logn;
MPFR_LOG_MSG (("TMD with"
" maxexp=%" MPFR_EXP_FSPEC "d"
" err=%" MPFR_EXP_FSPEC "d"
" zs=%Pd"
" zq=%Pd\n",
(mpfr_eexp_t) maxexp, (mpfr_eexp_t) err,
(mpfr_prec_t) zs, zq));
/* The d-1 bits from u-2 to u-d (= err) are identical. */
if (err >= minexp)
{
mpfr_prec_t tq;
mp_size_t wi;
int td;
/* Let's keep the last 2 over the d-1 identical bits and the
following bits, i.e. the bits from err+1 to minexp. */
tq = err - minexp + 2; /* tq = number of such bits */
MPFR_LOG_MSG (("[TMD] tq=%Pd\n", tq));
MPFR_ASSERTD (tq >= 2);
wi = tq / GMP_NUMB_BITS;
td = tq % GMP_NUMB_BITS;
/* Note: The "else" (td == 0) branch below can be executed
only if tq >= GMP_NUMB_BITS, which is possible only when
logn is large enough. Indeed, if tq > logn + some constant,
this means that the TMD did not occur.
TODO: Find an upper bound on tq, and add a corresponding
MPFR_ASSERTD assertion / hint. On some platforms, this
branch might be dead code, and such information would
allow the compiler to remove it.
It seems that this branch is never tested (r12754). */
if (td != 0)
{
wi++; /* number of words with represented bits */
td = GMP_NUMB_BITS - td;
zz = zs - wi;
MPFR_ASSERTD (zz >= 0 && zz < zs);
mpn_lshift (zp + zz, wp, wi, td);
}
else
{
MPFR_ASSERTD (wi > 0);
zz = zs - wi;
MPFR_ASSERTD (zz >= 0 && zz < zs);
if (zz > 0)
MPN_COPY (zp + zz, wp, wi);
}
/* Compute minexp2 = minexp - (zs * GMP_NUMB_BITS + td)
safely. */
SAFE_SUB (minexp2, minexp, zz * GMP_NUMB_BITS + td);
MPFR_ASSERTD (minexp2 == err + 2 - zq);
}
else /* err < minexp */
{
/* At least one of the identical bits is not represented,
meaning that it is 0 and all these bits are 0's. Thus
the accumulator will be 0. The new minexp is determined
from maxexp, with cq bits reserved to avoid an overflow
(as in the early steps). */
MPFR_LOG_MSG (("[TMD] err < minexp\n", 0));
zz = zs;
/* Compute minexp2 = maxexp - (zq - cq) safely. */
SAFE_SUB (minexp2, maxexp, zq - cq);
MPFR_ASSERTD (minexp2 == err + 1 - zq);
}
MPN_ZERO (zp, zz);
/* We need to determine the sign sst of the secondary term.
In sum_raw, since the truncated sum corresponding to this
secondary term will be in [2^(e-1),2^e] and the error
strictly less than 2^err, we can stop the iterations when
e - err >= 1 (this bound is the 11th argument of sum_raw). */
cancel2 = sum_raw (zp, zs, zq, x, n, minexp2, maxexp, tp, ts,
logn, 1, NULL, NULL, NULL);
if (cancel2 != 0)
sst = MPFR_LIMB_MSB (zp[zs-1]) == 0 ? 1 : -1;
else if (tmd == 1)
sst = 0;
else
{
/* For halfway cases, let's virtually eliminate them
by setting a sst equivalent to a non-halfway case,
which depends on the last bit of the pre-rounded
result. */
MPFR_ASSERTD (rnd == MPFR_RNDN && tmd == 2);
sst = lbit != 0 ? 1 : -1;
}
MPFR_LOG_MSG (("[TMD] tmd=%d rbit=%d sst=%d\n",
tmd, (int) rbit, sst));
/* Do not consider the corrected sst for MPFR_COV_SET */
MPFR_COV_SET (sum_tmd[(int) rnd][tmd-1][rbit]
[cancel2 == 0 ? 1 : sst+1][neg][sq > MPFR_PREC_MIN]);
inex =
MPFR_IS_LIKE_RNDD (rnd, sgn) ? (sst ? -1 : 0) :
MPFR_IS_LIKE_RNDU (rnd, sgn) ? (sst ? 1 : 0) :
(MPFR_ASSERTD (rnd == MPFR_RNDN),
tmd == 1 ? - sst : sst);
if (tmd == 2 && sst == (rbit != 0 ? -1 : 1))
corr = 1 - (int) rbit;
else if (MPFR_IS_LIKE_RNDD (rnd, sgn) && sst == -1)
corr = (int) rbit - 1;
else if (MPFR_IS_LIKE_RNDU (rnd, sgn) && sst == +1)
corr = (int) rbit + 1;
else
corr = (int) rbit;
} /* tmd */
} /* rnd != MPFR_RNDF */
MPFR_LOG_MSG (("neg=%d corr=%d inex=%d\n", neg, corr, inex));
/* Sign handling (-> absolute value and sign), together with
rounding. The most common cases are corr = 0 and corr = 1
as this is necessarily the case when the TMD did not occur. */
MPFR_ASSERTD (corr >= -1 && corr <= 2);
MPFR_SIGN (sum) = sgn;
/* Let's copy/shift the bits [max(u,minexp),e) to the
most significant part of the destination, and zero
the least significant part (there can be one only if
u < minexp). The trailing bits of the destination may
contain garbage at this point. */
sn = MPFR_PREC2LIMBS (sq);
sd = (mpfr_prec_t) sn * GMP_NUMB_BITS - sq;
sh = cancel % GMP_NUMB_BITS;
MPFR_ASSERTD (sd >= 0 && sd < GMP_NUMB_BITS);
if (MPFR_LIKELY (u > minexp))
{
mp_size_t wi;
/* Recompute the initial value of wi. */
wi = (u - minexp) / GMP_NUMB_BITS;
if (MPFR_LIKELY (sh != 0))
{
mp_size_t fi;
fi = (e - minexp) / GMP_NUMB_BITS - (sn - 1);
MPFR_ASSERTD (fi == wi || fi == wi + 1);
mpn_lshift (sump, wp + fi, sn, sh);
if (fi != wi)
sump[0] |= wp[wi] >> (GMP_NUMB_BITS - sh);
}
else
{
MPFR_ASSERTD ((mpfr_prec_t) (ws - (wi + sn)) * GMP_NUMB_BITS
== cancel);
MPN_COPY (sump, wp + wi, sn);
}
}
else /* u <= minexp */
{
mp_size_t en;
en = (e - minexp + (GMP_NUMB_BITS - 1)) / GMP_NUMB_BITS;
if (MPFR_LIKELY (sh != 0))
mpn_lshift (sump + sn - en, wp, en, sh);
else if (MPFR_UNLIKELY (en > 0))
MPN_COPY (sump + sn - en, wp, en);
if (sn > en)
MPN_ZERO (sump, sn - en);
}
/* Let's take the complement if the result is negative, and at
the same time, do the rounding and zero the trailing bits.
As this is valid only for precisions >= 2, there is special
code for precision 1 first. */
if (MPFR_UNLIKELY (sq == 1)) /* precision 1 */
{
sump[0] = MPFR_LIMB_HIGHBIT;
e += neg ? 1 - corr : corr;
}
else if (neg) /* negative result with sq > 1 */
{
MPFR_ASSERTD (MPFR_LIMB_MSB (sump[sn-1]) == 0);
/* abs(x + corr) = - (x + corr) = com(x) + (1 - corr) */
/* We want to avoid separate mpn_com (or mpn_neg) and mpn_add_1
(or mpn_sub_1) operations, as they could yield two loops in
some particular cases involving a long sequence of 0's in
the low significant bits (except the least significant bit,
which doesn't matter). */
if (corr <= 1)
{
mp_limb_t corr2;
/* Here we can just do the correction operation on the
least significant limb, then do either a mpn_com or
a mpn_neg on the remaining limbs, depending on the
carry (BTW, mpn_neg is just a mpn_com with an initial
carry propagation: after some point, mpn_neg does a
complement). */
corr2 = (mp_limb_t) (1 - corr) << sd;
/* Note: If corr = -1, this can overflow to corr2 = 0.
This case is taken into account below. */
sump[0] = (~ (sump[0] | MPFR_LIMB_MASK (sd))) + corr2;
if (sump[0] < corr2 || (corr2 == 0 && corr < 0))
{
if (sn == 1 || ! mpn_neg (sump + 1, sump + 1, sn - 1))
{
/* Note: The | is important when sump[sn-1] is not 0
(this can occur with sn = 1 and corr = -1). TODO:
Add something to make sure that this is tested. */
sump[sn-1] |= MPFR_LIMB_HIGHBIT;
e++;
}
}
else if (sn > 1)
mpn_com (sump + 1, sump + 1, sn - 1);
}
else /* corr == 2 */
{
mp_limb_t corr2, c;
mp_size_t i = 1;
/* We want to compute com(x) - 1, but GMP doesn't have an
operation for that. The fact is that a sequence of low
significant bits 1 is invariant. Starting at the first
low significant bit 0, we can do the complement with
mpn_com. */
corr2 = MPFR_LIMB_ONE << sd;
c = ~ (sump[0] | MPFR_LIMB_MASK (sd));
sump[0] = c - corr2;
if (c == 0)
{
while (MPFR_ASSERTD (i < sn), sump[i] == MPFR_LIMB_MAX)
i++;
sump[i] = (~ sump[i]) - 1;
i++;
}
if (i < sn)
mpn_com (sump + i, sump + i, sn - i);
else if (MPFR_UNLIKELY (MPFR_LIMB_MSB (sump[sn-1]) == 0))
{
/* Happens on 01111...111, whose complement is
10000...000, and com(x) - 1 is 01111...111. */
sump[sn-1] |= MPFR_LIMB_HIGHBIT;
e--;
}
}
}
else /* positive result with sq > 1 */
{
MPFR_ASSERTD (MPFR_LIMB_MSB (sump[sn-1]) != 0);
sump[0] &= ~ MPFR_LIMB_MASK (sd);
if (corr > 0)
{
mp_limb_t corr2, carry_out;
corr2 = (mp_limb_t) corr << sd;
/* If corr == 2 && sd == GMP_NUMB_BITS - 1, this overflows
to corr2 = 0. This case is taken into account below. */
carry_out = corr2 != 0 ? mpn_add_1 (sump, sump, sn, corr2) :
(MPFR_ASSERTD (sn > 1),
mpn_add_1 (sump + 1, sump + 1, sn - 1, MPFR_LIMB_ONE));
MPFR_ASSERTD (sump[sn-1] >> (GMP_NUMB_BITS - 1) == !carry_out);
if (MPFR_UNLIKELY (carry_out))
{
/* Note: The | is important when sump[sn-1] is not 0
(this can occur with sn = 1 and corr = 2). TODO:
Add something to make sure that this is tested. */
sump[sn-1] |= MPFR_LIMB_HIGHBIT;
e++;
}
}
if (corr < 0)
{
mpn_sub_1 (sump, sump, sn, MPFR_LIMB_ONE << sd);
if (MPFR_UNLIKELY (MPFR_LIMB_MSB (sump[sn-1]) == 0))
{
sump[sn-1] |= MPFR_LIMB_HIGHBIT;
e--;
}
}
}
MPFR_ASSERTD (MPFR_LIMB_MSB (sump[sn-1]) != 0);
MPFR_LOG_MSG (("Set exponent e=%" MPFR_EXP_FSPEC "d\n", (mpfr_eexp_t) e));
/* e may be outside the current exponent range, but this will be checked
with mpfr_check_range below. */
MPFR_EXP (sum) = e;
} /* main block */
MPFR_TMP_FREE (marker);
return mpfr_check_range (sum, inex, rnd);
}
/**********************************************************************/
int
mpfr_sum (mpfr_ptr sum, const mpfr_ptr *x, unsigned long n, mpfr_rnd_t rnd)
{
MPFR_LOG_FUNC
(("n=%lu rnd=%d", n, rnd),
("sum[%Pu]=%.*Rg", mpfr_get_prec (sum), mpfr_log_prec, sum));
if (MPFR_UNLIKELY (n <= 2))
{
if (n == 0)
{
MPFR_SET_ZERO (sum);
MPFR_SET_POS (sum);
MPFR_RET (0);
}
else if (n == 1)
return mpfr_set (sum, x[0], rnd);
else
return mpfr_add (sum, x[0], x[1], rnd);
}
else
{
mpfr_exp_t maxexp = MPFR_EXP_MIN; /* max(Empty) */
unsigned long i;
unsigned long rn = 0; /* will be the number of regular inputs */
/* sign of infinities and zeros (0: currently unknown) */
int sign_inf = 0, sign_zero = 0;
MPFR_LOG_MSG (("Check for special inputs (n = %lu >= 3)\n", n));
for (i = 0; i < n; i++)
{
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x[i])))
{
if (MPFR_IS_NAN (x[i]))
{
/* The current value x[i] is NaN. Then the sum is NaN. */
nan:
MPFR_SET_NAN (sum);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x[i]))
{
/* The current value x[i] is an infinity.
There are two cases:
1. This is the first infinity value (sign_inf == 0).
Then set sign_inf to its sign, and go on.
2. All the infinities found until now have the same
sign sign_inf. If this new infinity has a different
sign, then return NaN immediately, else go on. */
if (sign_inf == 0)
sign_inf = MPFR_SIGN (x[i]);
else if (MPFR_SIGN (x[i]) != sign_inf)
goto nan;
}
else if (MPFR_UNLIKELY (rn == 0))
{
/* The current value x[i] is a zero. The code below matters
only when all values found until now are zeros, otherwise
it is harmless (the test rn == 0 above is just a minor
optimization).
Here we track the sign of the zero result when all inputs
are zeros: if all zeros have the same sign, the result
will have this sign, otherwise (i.e. if there is at least
a zero of each sign), the sign of the zero result depends
only on the rounding mode (note that this choice is
sticky when new zeros are considered). */
MPFR_ASSERTD (MPFR_IS_ZERO (x[i]));
if (sign_zero == 0)
sign_zero = MPFR_SIGN (x[i]);
else if (MPFR_SIGN (x[i]) != sign_zero)
sign_zero = rnd == MPFR_RNDD ? -1 : 1;
}
}
else
{
/* The current value x[i] is a regular number. */
mpfr_exp_t e = MPFR_GET_EXP (x[i]);
if (e > maxexp)
maxexp = e; /* maximum exponent found until now */
rn++; /* current number of regular inputs */
}
}
MPFR_LOG_MSG (("rn=%lu sign_inf=%d sign_zero=%d\n",
rn, sign_inf, sign_zero));
/* At this point the result cannot be NaN (this case has already
been filtered out). */
if (MPFR_UNLIKELY (sign_inf != 0))
{
/* At least one infinity, and all of them have the same sign
sign_inf. The sum is the infinity of this sign. */
MPFR_SET_INF (sum);
MPFR_SET_SIGN (sum, sign_inf);
MPFR_RET (0);
}
/* At this point, all the inputs are finite numbers. */
if (MPFR_UNLIKELY (rn == 0))
{
/* All the numbers were zeros (and there is at least one).
The sum is zero with sign sign_zero. */
MPFR_ASSERTD (sign_zero != 0);
MPFR_SET_ZERO (sum);
MPFR_SET_SIGN (sum, sign_zero);
MPFR_RET (0);
}
/* Optimize the case where there are only two regular numbers. */
if (MPFR_UNLIKELY (rn <= 2))
{
unsigned long h = ULONG_MAX;
for (i = 0; i < n; i++)
if (! MPFR_IS_SINGULAR (x[i]))
{
if (rn == 1)
return mpfr_set (sum, x[i], rnd);
if (h != ULONG_MAX)
return mpfr_add (sum, x[h], x[i], rnd);
h = i;
}
MPFR_RET_NEVER_GO_HERE();
}
return sum_aux (sum, x, n, rnd, maxexp, rn);
}
}
|