summaryrefslogtreecommitdiff
path: root/Build/source/libs/mpfr/mpfr-src/src/sqrt.c
blob: 4252122a0fc38d393d7bbf8a6e8cde060f993a81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/* mpfr_sqrt -- square root of a floating-point number

Copyright 1999-2023 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

#if !defined(MPFR_GENERIC_ABI) && GMP_NUMB_BITS == 64

#include "invsqrt_limb.h"

/* Put in rp[1]*2^64+rp[0] an approximation of floor(sqrt(2^128*n)),
   with 2^126 <= n := np[1]*2^64 + np[0] < 2^128. We have:
   {rp, 2} - 4 <= floor(sqrt(2^128*n)) <= {rp, 2} + 26. */
static void
mpfr_sqrt2_approx (mpfr_limb_ptr rp, mpfr_limb_srcptr np)
{
  mp_limb_t x, r1, r0, h, l;

  __gmpfr_sqrt_limb (r1, h, l, x, np[1]);

  /* now r1 = floor(sqrt(2^64*n1)) and h:l = 2^64*n1 - r1^2 with h:l <= 2*r1,
     thus h <= 1, and x is an approximation of 2^96/sqrt(np[1])-2^64 */

  l += np[0];
  h += (l < np[0]);

  /* now 2^64*n1 + n0 - r1^2 = 2^64*h + l with h <= 2 */

  /* divide by 2 */
  l = (h << 63) | (l >> 1);
  h = h >> 1;

  /* now h <= 1 */

  /* now add (2^64+x) * (h*2^64+l) / 2^64 to [r1*2^64, 0] */

  umul_hi (r0, x, l); /* x * l */
  r0 += l;
  r1 += h + (r0 < l); /* now we have added 2^64 * (h*2^64+l) */
  if (h)
    {
      r0 += x;
      r1 += (r0 < x); /* add x */
    }

  MPFR_ASSERTD(r1 & MPFR_LIMB_HIGHBIT);

  rp[0] = r0;
  rp[1] = r1;
}

/* Special code for prec(r) = prec(u) < GMP_NUMB_BITS. We cannot have
   prec(u) = GMP_NUMB_BITS here, since when the exponent of u is odd,
   we need to shift u by one bit to the right without losing any bit.
   Assumes GMP_NUMB_BITS = 64. */
static int
mpfr_sqrt1 (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  mpfr_prec_t p = MPFR_GET_PREC(r);
  mpfr_prec_t exp_u = MPFR_EXP(u), exp_r, sh = GMP_NUMB_BITS - p;
  mp_limb_t u0, r0, rb, sb, mask = MPFR_LIMB_MASK(sh);
  mpfr_limb_ptr rp = MPFR_MANT(r);

  MPFR_STAT_STATIC_ASSERT (GMP_NUMB_BITS == 64);

  /* first make the exponent even */
  u0 = MPFR_MANT(u)[0];
  if (((unsigned int) exp_u & 1) != 0)
    {
      u0 >>= 1;
      exp_u ++;
    }
  MPFR_ASSERTD (((unsigned int) exp_u & 1) == 0);
  exp_r = exp_u / 2;

  /* then compute an approximation of the integer square root of
     u0*2^GMP_NUMB_BITS */
  __gmpfr_sqrt_limb_approx (r0, u0);

  sb = 1; /* when we can round correctly with the approximation, the sticky bit
             is non-zero */

  /* the exact square root is in [r0, r0 + 7] */
  if (MPFR_UNLIKELY(((r0 + 7) & (mask >> 1)) <= 7))
    {
      /* We should ensure r0 has its most significant bit set.
         Since r0 <= sqrt(2^64*u0) <= r0 + 7, as soon as sqrt(2^64*u0)>=2^63+7,
         which happens for u0>=2^62+8, then r0 >= 2^63.
         It thus remains to check that for 2^62 <= u0 <= 2^62+7,
         __gmpfr_sqrt_limb_approx (r0, u0) gives r0 >= 2^63, which is indeed
         the case:
         u0=4611686018427387904 r0=9223372036854775808
         u0=4611686018427387905 r0=9223372036854775808
         u0=4611686018427387906 r0=9223372036854775809
         u0=4611686018427387907 r0=9223372036854775810
         u0=4611686018427387908 r0=9223372036854775811
         u0=4611686018427387909 r0=9223372036854775812
         u0=4611686018427387910 r0=9223372036854775813
         u0=4611686018427387911 r0=9223372036854775814 */
      MPFR_ASSERTD(r0 >= MPFR_LIMB_HIGHBIT);
      umul_ppmm (rb, sb, r0, r0);
      sub_ddmmss (rb, sb, u0, 0, rb, sb);
      /* for the exact square root, we should have 0 <= rb:sb <= 2*r0 */
      while (!(rb == 0 || (rb == 1 && sb <= 2 * r0)))
        {
          /* subtract 2*r0+1 from rb:sb: subtract r0 before incrementing r0,
             then r0 after (which is r0+1) */
          rb -= (sb < r0);
          sb -= r0;
          r0 ++;
          rb -= (sb < r0);
          sb -= r0;
        }
      /* now we should have rb*2^64 + sb <= 2*r0 */
      MPFR_ASSERTD(rb == 0 || (rb == 1 && sb <= 2 * r0));
      sb = rb | sb;
    }

  rb = r0 & (MPFR_LIMB_ONE << (sh - 1));
  sb |= (r0 & mask) ^ rb;
  rp[0] = r0 & ~mask;

  /* rounding: sb = 0 implies rb = 0, since (rb,sb)=(1,0) is not possible */
  MPFR_ASSERTD (rb == 0 || sb != 0);

  /* Note: if 1 and 2 are in [emin,emax], no overflow nor underflow
     is possible */
  if (MPFR_UNLIKELY (exp_r > __gmpfr_emax))
    return mpfr_overflow (r, rnd_mode, 1);

  /* See comments in mpfr_div_1 */
  if (MPFR_UNLIKELY (exp_r < __gmpfr_emin))
    {
      if (rnd_mode == MPFR_RNDN)
        {
          /* If (1-2^(-p-1))*2^(emin-1) <= sqrt(u) < 2^(emin-1),
             then sqrt(u) would be rounded to 2^(emin-1) with unbounded
             exponent range, and there would be no underflow.
             But this case cannot happen if u has precision p.
             Indeed, we would have:
             (1-2^(-p-1))^2*2^(2*emin-2) <= u < 2^(2*emin-2), i.e.,
             (1-2^(-p)+2^(-2p-2))*2^(2*emin-2) <= u < 2^(2*emin-2),
             and there is no p-bit number in that interval. */
          /* If the result is <= 0.5^2^(emin-1), we should round to 0. */
          if (exp_r < __gmpfr_emin - 1 ||
              (rp[0] == MPFR_LIMB_HIGHBIT && sb == 0))
            rnd_mode = MPFR_RNDZ;
        }
      else if (MPFR_IS_LIKE_RNDA(rnd_mode, 0))
        {
          if (exp_r == __gmpfr_emin - 1 &&
              rp[0] == ~mask &&
              (rb | sb) != 0)
            goto rounding; /* no underflow */
        }
      return mpfr_underflow (r, rnd_mode, 1);
    }

 rounding:
  MPFR_EXP (r) = exp_r;
  if (sb == 0 /* implies rb = 0 */ || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD (rb == 0 || rnd_mode == MPFR_RNDF);
      MPFR_ASSERTD(exp_r >= __gmpfr_emin);
      MPFR_ASSERTD(exp_r <= __gmpfr_emax);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      /* since sb <> 0, only rb is needed to decide how to round, and the exact
         middle is not possible */
      if (rb == 0)
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, 0))
    {
    truncate:
      MPFR_ASSERTD(exp_r >= __gmpfr_emin);
      MPFR_ASSERTD(exp_r <= __gmpfr_emax);
      MPFR_RET(-1);
    }
  else /* round away from zero */
    {
    add_one_ulp:
      rp[0] += MPFR_LIMB_ONE << sh;
      if (rp[0] == 0)
        {
          rp[0] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(exp_r + 1 > __gmpfr_emax))
            return mpfr_overflow (r, rnd_mode, 1);
          MPFR_ASSERTD(exp_r + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(exp_r + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (r, exp_r + 1);
        }
      MPFR_RET(1);
    }
}

/* Special code for prec(r) = prec(u) = GMP_NUMB_BITS. */
static int
mpfr_sqrt1n (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  mpfr_prec_t exp_u = MPFR_EXP(u), exp_r;
  mp_limb_t u0, r0, rb, sb, low;
  mpfr_limb_ptr rp = MPFR_MANT(r);

  MPFR_STAT_STATIC_ASSERT (GMP_NUMB_BITS == 64);
  MPFR_ASSERTD(MPFR_PREC(r) == GMP_NUMB_BITS);
  MPFR_ASSERTD(MPFR_PREC(u) <= GMP_NUMB_BITS);

  /* first make the exponent even */
  u0 = MPFR_MANT(u)[0];
  if (((unsigned int) exp_u & 1) != 0)
    {
      low = u0 << (GMP_NUMB_BITS - 1);
      u0 >>= 1;
      exp_u ++;
    }
  else
    low = 0; /* low part of u0 */
  MPFR_ASSERTD (((unsigned int) exp_u & 1) == 0);
  exp_r = exp_u / 2;

  /* then compute an approximation of the integer square root of
     u0*2^GMP_NUMB_BITS */
  __gmpfr_sqrt_limb_approx (r0, u0);

  /* the exact square root is in [r0, r0 + 7] */

  /* As shown in mpfr_sqrt1 above, r0 has its most significant bit set */
  MPFR_ASSERTD(r0 >= MPFR_LIMB_HIGHBIT);

  umul_ppmm (rb, sb, r0, r0);
  sub_ddmmss (rb, sb, u0, low, rb, sb);
  /* for the exact square root, we should have 0 <= rb:sb <= 2*r0 */
  while (!(rb == 0 || (rb == 1 && sb <= 2 * r0)))
    {
      /* subtract 2*r0+1 from rb:sb: subtract r0 before incrementing r0,
         then r0 after (which is r0+1) */
      rb -= (sb < r0);
      sb -= r0;
      r0 ++;
      rb -= (sb < r0);
      sb -= r0;
    }
  /* now we have u0*2^64+low = r0^2 + rb*2^64+sb, with rb*2^64+sb <= 2*r0 */
  MPFR_ASSERTD(rb == 0 || (rb == 1 && sb <= 2 * r0));

  /* We can't have the middle case u0*2^64 = (r0 + 1/2)^2 since
     (r0 + 1/2)^2 is not an integer.
     We thus rb = 1 whenever u0*2^64 > (r0 + 1/2)^2, thus rb*2^64 + sb > r0
     and the sticky bit is always 1, unless we had rb = sb = 0. */

  rb = rb || (sb > r0);
  sb = rb | sb;
  rp[0] = r0;

  /* rounding */

  /* Note: if 1 and 2 are in [emin,emax], no overflow nor underflow
     is possible */
  if (MPFR_UNLIKELY (exp_r > __gmpfr_emax))
    return mpfr_overflow (r, rnd_mode, 1);

  /* See comments in mpfr_div_1 */
  if (MPFR_UNLIKELY (exp_r < __gmpfr_emin))
    {
      if (rnd_mode == MPFR_RNDN)
        {
          /* the case rp[0] = 111...111 and rb = 1 cannot happen, since it
             would imply u0 >= (2^64-1/2)^2/2^64 thus u0 >= 2^64 */
          if (exp_r < __gmpfr_emin - 1 ||
              (rp[0] == MPFR_LIMB_HIGHBIT && sb == 0))
            rnd_mode = MPFR_RNDZ;
        }
      else if (MPFR_IS_LIKE_RNDA(rnd_mode, 0))
        {
          if (exp_r == __gmpfr_emin - 1 &&
              rp[0] == MPFR_LIMB_MAX &&
              (rb | sb) != 0)
            goto rounding; /* no underflow */
        }
      return mpfr_underflow (r, rnd_mode, 1);
    }

  /* sb = 0 can only occur when the square root is exact, i.e., rb = 0 */

 rounding:
  MPFR_EXP (r) = exp_r;
  if (sb == 0 /* implies rb = 0 */ || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(exp_r >= __gmpfr_emin);
      MPFR_ASSERTD(exp_r <= __gmpfr_emax);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      /* we can't have sb = 0, thus rb is enough */
      if (rb == 0)
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, 0))
    {
    truncate:
      MPFR_ASSERTD(exp_r >= __gmpfr_emin);
      MPFR_ASSERTD(exp_r <= __gmpfr_emax);
      MPFR_RET(-1);
    }
  else /* round away from zero */
    {
    add_one_ulp:
      rp[0] += MPFR_LIMB_ONE;
      if (rp[0] == 0)
        {
          rp[0] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(exp_r + 1 > __gmpfr_emax))
            return mpfr_overflow (r, rnd_mode, 1);
          MPFR_ASSERTD(exp_r + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(exp_r + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (r, exp_r + 1);
        }
      MPFR_RET(1);
    }
}

/* Special code for GMP_NUMB_BITS < prec(r) = prec(u) < 2*GMP_NUMB_BITS.
   Assumes GMP_NUMB_BITS=64. */
static int
mpfr_sqrt2 (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  mpfr_prec_t p = MPFR_GET_PREC(r);
  mpfr_limb_ptr up = MPFR_MANT(u), rp = MPFR_MANT(r);
  mp_limb_t np[4], rb, sb, mask;
  mpfr_prec_t exp_u = MPFR_EXP(u), exp_r, sh = 2 * GMP_NUMB_BITS - p;

  MPFR_STAT_STATIC_ASSERT (GMP_NUMB_BITS == 64);

  if (((unsigned int) exp_u & 1) != 0)
    {
      np[3] = up[1] >> 1;
      np[2] = (up[1] << (GMP_NUMB_BITS - 1)) | (up[0] >> 1);
      np[1] = up[0] << (GMP_NUMB_BITS - 1);
      exp_u ++;
    }
  else
    {
      np[3] = up[1];
      np[2] = up[0];
      np[1] = 0;
    }
  exp_r = exp_u / 2;

  mask = MPFR_LIMB_MASK(sh);

  mpfr_sqrt2_approx (rp, np + 2);
  /* with n = np[3]*2^64+np[2], we have:
     {rp, 2} - 4 <= floor(sqrt(2^128*n)) <= {rp, 2} + 26, thus we can round
     correctly except when the number formed by the last sh-1 bits
     of rp[0] is in the range [-26, 4]. */
  if (MPFR_LIKELY(((rp[0] + 26) & (mask >> 1)) > 30))
    sb = 1;
  else
    {
      mp_limb_t tp[4], h, l;

      np[0] = 0;
      mpn_sqr (tp, rp, 2);
      /* since we know s - 26 <= r <= s + 4 and 0 <= n^2 - s <= 2*s, we have
         -8*s-16 <= n - r^2 <= 54*s - 676, thus it suffices to compute
         n - r^2 modulo 2^192 */
      mpn_sub_n (tp, np, tp, 3);
      /* invariant: h:l = 2 * {rp, 2}, with upper bit implicit */
      h = (rp[1] << 1) | (rp[0] >> (GMP_NUMB_BITS - 1));
      l = rp[0] << 1;
      while ((mp_limb_signed_t) tp[2] < 0) /* approximation was too large */
        {
          /* subtract 1 to {rp, 2}, thus 2 to h:l */
          h -= (l <= MPFR_LIMB_ONE);
          l -= 2;
          /* add (1:h:l)+1 to {tp,3} */
          tp[0] += l + 1;
          tp[1] += h + (tp[0] < l);
          /* necessarily rp[1] has its most significant bit set */
          tp[2] += MPFR_LIMB_ONE + (tp[1] < h || (tp[1] == h && tp[0] < l));
        }
      /* now tp[2] >= 0 */
      /* now we want {tp, 4} <= 2 * {rp, 2}, which implies tp[2] <= 1 */
      while (tp[2] > 1 || (tp[2] == 1 && tp[1] > h) ||
             (tp[2] == 1 && tp[1] == h && tp[0] > l))
        {
          /* subtract (1:h:l)+1 from {tp,3} */
          tp[2] -= MPFR_LIMB_ONE + (tp[1] < h || (tp[1] == h && tp[0] <= l));
          tp[1] -= h + (tp[0] <= l);
          tp[0] -= l + 1;
          /* add 2 to  h:l */
          l += 2;
          h += (l <= MPFR_LIMB_ONE);
        }
      /* restore {rp, 2} from h:l */
      rp[1] = MPFR_LIMB_HIGHBIT | (h >> 1);
      rp[0] = (h << (GMP_NUMB_BITS - 1)) | (l >> 1);
      sb = tp[2] | tp[0] | tp[1];
    }

  rb = rp[0] & (MPFR_LIMB_ONE << (sh - 1));
  sb |= (rp[0] & mask) ^ rb;
  rp[0] = rp[0] & ~mask;

  /* rounding */
  if (MPFR_UNLIKELY (exp_r > __gmpfr_emax))
    return mpfr_overflow (r, rnd_mode, 1);

  /* See comments in mpfr_div_1 */
  if (MPFR_UNLIKELY (exp_r < __gmpfr_emin))
    {
      if (rnd_mode == MPFR_RNDN)
        {
          if (exp_r < __gmpfr_emin - 1 || (rp[1] == MPFR_LIMB_HIGHBIT &&
                                           rp[0] == MPFR_LIMB_ZERO && sb == 0))
            rnd_mode = MPFR_RNDZ;
        }
      else if (MPFR_IS_LIKE_RNDA(rnd_mode, 0))
        {
          if (exp_r == __gmpfr_emin - 1 && (rp[1] == MPFR_LIMB_MAX &&
                                            rp[0] == ~mask) && (rb | sb))
            goto rounding; /* no underflow */
        }
      return mpfr_underflow (r, rnd_mode, 1);
    }

 rounding:
  MPFR_EXP (r) = exp_r;
  if (sb == 0 /* implies rb = 0 */ || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(exp_r >= __gmpfr_emin);
      MPFR_ASSERTD(exp_r <= __gmpfr_emax);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      /* since sb <> 0 now, only rb is needed */
      if (rb == 0)
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, 0))
    {
    truncate:
      MPFR_ASSERTD(exp_r >= __gmpfr_emin);
      MPFR_ASSERTD(exp_r <= __gmpfr_emax);
      MPFR_RET(-1);
    }
  else /* round away from zero */
    {
    add_one_ulp:
      rp[0] += MPFR_LIMB_ONE << sh;
      rp[1] += rp[0] == 0;
      if (rp[1] == 0)
        {
          rp[1] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(exp_r + 1 > __gmpfr_emax))
            return mpfr_overflow (r, rnd_mode, 1);
          MPFR_ASSERTD(exp_r + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(exp_r + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (r, exp_r + 1);
        }
      MPFR_RET(1);
    }
}

#endif /* !defined(MPFR_GENERIC_ABI) && GMP_NUMB_BITS == 64 */

int
mpfr_sqrt (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  mp_size_t rsize; /* number of limbs of r (plus 1 if exact limb multiple) */
  mp_size_t rrsize;
  mp_size_t usize; /* number of limbs of u */
  mp_size_t tsize; /* number of limbs of the sqrtrem remainder */
  mp_size_t k;
  mp_size_t l;
  mpfr_limb_ptr rp, rp0;
  mpfr_limb_ptr up;
  mpfr_limb_ptr sp;
  mp_limb_t sticky0; /* truncated part of input */
  mp_limb_t sticky1; /* truncated part of rp[0] */
  mp_limb_t sticky;
  int odd_exp;
  int sh; /* number of extra bits in rp[0] */
  int inexact; /* return ternary flag */
  mpfr_exp_t expr;
  mpfr_prec_t rq = MPFR_GET_PREC (r);
  MPFR_TMP_DECL(marker);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (u), mpfr_log_prec, u, rnd_mode),
     ("y[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (r), mpfr_log_prec, r, inexact));

  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(u)))
    {
      if (MPFR_IS_NAN(u))
        {
          MPFR_SET_NAN(r);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_ZERO(u))
        {
          /* 0+ or 0- */
          MPFR_SET_SAME_SIGN(r, u);
          MPFR_SET_ZERO(r);
          MPFR_RET(0); /* zero is exact */
        }
      else
        {
          MPFR_ASSERTD(MPFR_IS_INF(u));
          /* sqrt(-Inf) = NAN */
          if (MPFR_IS_NEG(u))
            {
              MPFR_SET_NAN(r);
              MPFR_RET_NAN;
            }
          MPFR_SET_POS(r);
          MPFR_SET_INF(r);
          MPFR_RET(0);
        }
    }
  if (MPFR_UNLIKELY(MPFR_IS_NEG(u)))
    {
      MPFR_SET_NAN(r);
      MPFR_RET_NAN;
    }
  MPFR_SET_POS(r);

#if !defined(MPFR_GENERIC_ABI) && GMP_NUMB_BITS == 64
  {
    mpfr_prec_t uq = MPFR_GET_PREC (u);

    if (rq == uq)
      {
        if (rq < GMP_NUMB_BITS)
          return mpfr_sqrt1 (r, u, rnd_mode);

        if (GMP_NUMB_BITS < rq && rq < 2*GMP_NUMB_BITS)
          return mpfr_sqrt2 (r, u, rnd_mode);

        if (rq == GMP_NUMB_BITS)
          return mpfr_sqrt1n (r, u, rnd_mode);
      }
  }
#endif

  MPFR_TMP_MARK (marker);
  MPFR_UNSIGNED_MINUS_MODULO (sh, rq);
  if (sh == 0 && rnd_mode == MPFR_RNDN)
    sh = GMP_NUMB_BITS; /* ugly case */
  rsize = MPFR_LIMB_SIZE(r) + (sh == GMP_NUMB_BITS);
  /* rsize is the number of limbs of r + 1 if exact limb multiple and rounding
     to nearest, this is the number of wanted limbs for the square root */
  rrsize = rsize + rsize;
  usize = MPFR_LIMB_SIZE(u); /* number of limbs of u */
  rp0 = MPFR_MANT(r);
  rp = (sh < GMP_NUMB_BITS) ? rp0 : MPFR_TMP_LIMBS_ALLOC (rsize);
  up = MPFR_MANT(u);
  sticky0 = MPFR_LIMB_ZERO; /* truncated part of input */
  sticky1 = MPFR_LIMB_ZERO; /* truncated part of rp[0] */
  odd_exp = (unsigned int) MPFR_GET_EXP (u) & 1;
  inexact = -1; /* return ternary flag */

  sp = MPFR_TMP_LIMBS_ALLOC (rrsize);

  /* copy the most significant limbs of u to {sp, rrsize} */
  if (MPFR_LIKELY(usize <= rrsize)) /* in case r and u have the same precision,
                                       we have indeed rrsize = 2 * usize */
    {
      k = rrsize - usize;
      if (MPFR_LIKELY(k))
        MPN_ZERO (sp, k);
      if (odd_exp)
        {
          if (MPFR_LIKELY(k))
            sp[k - 1] = mpn_rshift (sp + k, up, usize, 1);
          else
            sticky0 = mpn_rshift (sp, up, usize, 1);
        }
      else
        MPN_COPY (sp + rrsize - usize, up, usize);
    }
  else /* usize > rrsize: truncate the input */
    {
      k = usize - rrsize;
      if (odd_exp)
        sticky0 = mpn_rshift (sp, up + k, rrsize, 1);
      else
        MPN_COPY (sp, up + k, rrsize);
      l = k;
      while (sticky0 == MPFR_LIMB_ZERO && l != 0)
        sticky0 = up[--l];
    }

  /* sticky0 is non-zero iff the truncated part of the input is non-zero */

  tsize = mpn_sqrtrem (rp, NULL, sp, rrsize);

  /* a return value of zero in mpn_sqrtrem indicates a perfect square */
  sticky = sticky0 || tsize != 0;

  /* truncate low bits of rp[0] */
  sticky1 = rp[0] & ((sh < GMP_NUMB_BITS) ? MPFR_LIMB_MASK(sh)
                     : MPFR_LIMB_MAX);
  rp[0] -= sticky1;

  sticky = sticky || sticky1;

  expr = (MPFR_GET_EXP(u) + odd_exp) / 2;  /* exact */

  if (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDD ||
      sticky == MPFR_LIMB_ZERO)
    {
      inexact = (sticky == MPFR_LIMB_ZERO) ? 0 : -1;
      goto truncate;
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      /* if sh < GMP_NUMB_BITS, the round bit is bit (sh-1) of sticky1
                  and the sticky bit is formed by the low sh-1 bits from
                  sticky1, together with the sqrtrem remainder and sticky0. */
      if (sh < GMP_NUMB_BITS)
        {
          if (sticky1 & (MPFR_LIMB_ONE << (sh - 1)))
            { /* round bit is set */
              if (sticky1 == (MPFR_LIMB_ONE << (sh - 1)) && tsize == 0
                  && sticky0 == 0)
                goto even_rule;
              else
                goto add_one_ulp;
            }
          else /* round bit is zero */
            goto truncate; /* with the default inexact=-1 */
        }
      else /* sh = GMP_NUMB_BITS: the round bit is the most significant bit
              of rp[0], and the remaining GMP_NUMB_BITS-1 bits contribute to
              the sticky bit */
        {
          if (sticky1 & MPFR_LIMB_HIGHBIT)
            { /* round bit is set */
              if (sticky1 == MPFR_LIMB_HIGHBIT && tsize == 0 && sticky0 == 0)
                goto even_rule;
              else
                goto add_one_ulp;
            }
          else /* round bit is zero */
            goto truncate; /* with the default inexact=-1 */
        }
    }
  else /* rnd_mode=GMP_RDNU, necessarily sticky <> 0, thus add 1 ulp */
    goto add_one_ulp;

 even_rule: /* has to set inexact */
  if (sh < GMP_NUMB_BITS)
    inexact = (rp[0] & (MPFR_LIMB_ONE << sh)) ? 1 : -1;
  else
    inexact = (rp[1] & MPFR_LIMB_ONE) ? 1 : -1;
  if (inexact == -1)
    goto truncate;
  /* else go through add_one_ulp */

 add_one_ulp:
  inexact = 1; /* always here */
  if (sh == GMP_NUMB_BITS)
    {
      rp ++;
      rsize --;
      sh = 0;
    }
  /* now rsize = MPFR_LIMB_SIZE(r) */
  if (mpn_add_1 (rp0, rp, rsize, MPFR_LIMB_ONE << sh))
    {
      expr ++;
      rp0[rsize - 1] = MPFR_LIMB_HIGHBIT;
    }
  goto end;

 truncate: /* inexact = 0 or -1 */
  if (sh == GMP_NUMB_BITS)
    MPN_COPY (rp0, rp + 1, rsize - 1);

 end:
  /* Do not use MPFR_SET_EXP because the range has not been checked yet. */
  MPFR_ASSERTN (expr >= MPFR_EMIN_MIN && expr <= MPFR_EMAX_MAX);
  MPFR_EXP (r) = expr;
  MPFR_TMP_FREE(marker);

  return mpfr_check_range (r, inexact, rnd_mode);
}