summaryrefslogtreecommitdiff
path: root/Build/source/libs/mpfr/mpfr-src/src/round_prec.c
blob: c99d63e55ef4aa4603fd52ef55d699c939e1c001 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/* mpfr_round_raw_generic, mpfr_round_raw2, mpfr_round_raw, mpfr_prec_round,
   mpfr_can_round, mpfr_can_round_raw -- various rounding functions

Copyright 1999-2016 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#include "mpfr-impl.h"

#define mpfr_round_raw_generic mpfr_round_raw
#define flag 0
#define use_inexp 1
#include "round_raw_generic.c"

#define mpfr_round_raw_generic mpfr_round_raw_2
#define flag 1
#define use_inexp 0
#include "round_raw_generic.c"

/* Seems to be unused. Remove comment to implement it.
#define mpfr_round_raw_generic mpfr_round_raw_3
#define flag 1
#define use_inexp 1
#include "round_raw_generic.c"
*/

#define mpfr_round_raw_generic mpfr_round_raw_4
#define flag 0
#define use_inexp 0
#include "round_raw_generic.c"

int
mpfr_prec_round (mpfr_ptr x, mpfr_prec_t prec, mpfr_rnd_t rnd_mode)
{
  mp_limb_t *tmp, *xp;
  int carry, inexact;
  mpfr_prec_t nw, ow;
  MPFR_TMP_DECL(marker);

  MPFR_ASSERTN(prec >= MPFR_PREC_MIN && prec <= MPFR_PREC_MAX);

  nw = MPFR_PREC2LIMBS (prec); /* needed allocated limbs */

  /* check if x has enough allocated space for the significand */
  /* Get the number of limbs from the precision.
     (Compatible with all allocation methods) */
  ow = MPFR_LIMB_SIZE (x);
  if (nw > ow)
    {
      /* FIXME: Variable can't be created using custom allocation,
         MPFR_DECL_INIT or GROUP_ALLOC: How to detect? */
      ow = MPFR_GET_ALLOC_SIZE(x);
      if (nw > ow)
       {
         /* Realloc significand */
         mpfr_limb_ptr tmpx = (mpfr_limb_ptr) (*__gmp_reallocate_func)
           (MPFR_GET_REAL_PTR(x), MPFR_MALLOC_SIZE(ow), MPFR_MALLOC_SIZE(nw));
         MPFR_SET_MANT_PTR(x, tmpx); /* mant ptr must be set
                                        before alloc size */
         MPFR_SET_ALLOC_SIZE(x, nw); /* new number of allocated limbs */
       }
    }

  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ))
    {
      MPFR_PREC(x) = prec; /* Special value: need to set prec */
      if (MPFR_IS_NAN(x))
        MPFR_RET_NAN;
      MPFR_ASSERTD(MPFR_IS_INF(x) || MPFR_IS_ZERO(x));
      return 0; /* infinity and zero are exact */
    }

  /* x is a non-zero real number */

  MPFR_TMP_MARK(marker);
  tmp = MPFR_TMP_LIMBS_ALLOC (nw);
  xp = MPFR_MANT(x);
  carry = mpfr_round_raw (tmp, xp, MPFR_PREC(x), MPFR_IS_NEG(x),
                          prec, rnd_mode, &inexact);
  MPFR_PREC(x) = prec;

  if (MPFR_UNLIKELY(carry))
    {
      mpfr_exp_t exp = MPFR_EXP (x);

      if (MPFR_UNLIKELY(exp == __gmpfr_emax))
        (void) mpfr_overflow(x, rnd_mode, MPFR_SIGN(x));
      else
        {
          MPFR_ASSERTD (exp < __gmpfr_emax);
          MPFR_SET_EXP (x, exp + 1);
          xp[nw - 1] = MPFR_LIMB_HIGHBIT;
          if (nw - 1 > 0)
            MPN_ZERO(xp, nw - 1);
        }
    }
  else
    MPN_COPY(xp, tmp, nw);

  MPFR_TMP_FREE(marker);
  return inexact;
}

/* assumption: GMP_NUMB_BITS is a power of 2 */

/* assuming b is an approximation to x in direction rnd1 with error at
   most 2^(MPFR_EXP(b)-err), returns 1 if one is able to round exactly
   x to precision prec with direction rnd2, and 0 otherwise.

   Side effects: none.
*/

int
mpfr_can_round (mpfr_srcptr b, mpfr_exp_t err, mpfr_rnd_t rnd1,
                mpfr_rnd_t rnd2, mpfr_prec_t prec)
{
  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(b)))
    return 0; /* We cannot round if Zero, Nan or Inf */
  else
    return mpfr_can_round_raw (MPFR_MANT(b), MPFR_LIMB_SIZE(b),
                               MPFR_SIGN(b), err, rnd1, rnd2, prec);
}

int
mpfr_can_round_raw (const mp_limb_t *bp, mp_size_t bn, int neg, mpfr_exp_t err0,
                    mpfr_rnd_t rnd1, mpfr_rnd_t rnd2, mpfr_prec_t prec)
{
  mpfr_prec_t err, prec0 = prec;
  mp_size_t k, k1, tn;
  int s, s1;
  mp_limb_t cc, cc2;
  mp_limb_t *tmp;
  MPFR_TMP_DECL(marker);

  MPFR_ASSERTD(bp[bn - 1] & MPFR_LIMB_HIGHBIT);

  if (MPFR_UNLIKELY(err0 < 0 || (mpfr_uexp_t) err0 <= prec))
    return 0;  /* can't round */

  MPFR_ASSERT_SIGN(neg);
  neg = MPFR_IS_NEG_SIGN(neg);

  /* Transform RNDD and RNDU to Zero / Away */
  MPFR_ASSERTD((neg == 0) || (neg == 1));
  if (rnd1 != MPFR_RNDN)
    rnd1 = MPFR_IS_LIKE_RNDZ(rnd1, neg) ? MPFR_RNDZ : MPFR_RNDA;
  if (rnd2 != MPFR_RNDN)
    rnd2 = MPFR_IS_LIKE_RNDZ(rnd2, neg) ? MPFR_RNDZ : MPFR_RNDA;

  if (MPFR_UNLIKELY (prec > (mpfr_prec_t) bn * GMP_NUMB_BITS))
    { /* Then prec < PREC(b): we can round:
         (i) in rounding to the nearest iff err0 >= prec + 2
         (ii) in directed rounding mode iff rnd1 is compatible with rnd2
              and err0 >= prec + 1, unless b = 2^k and rnd1=rnd2=RNDA in
              which case we need err0 >= prec + 2. */
      if (rnd2 == MPFR_RNDN)
        return (mpfr_uexp_t) err0 - 2 >= prec;
      else
        return (rnd1 == rnd2) && (mpfr_uexp_t) err0 - 2 >= prec;
    }

  /* if the error is smaller than ulp(b), then anyway it will propagate
     up to ulp(b) */
  err = ((mpfr_uexp_t) err0 > (mpfr_prec_t) bn * GMP_NUMB_BITS) ?
    (mpfr_prec_t) bn * GMP_NUMB_BITS : (mpfr_prec_t) err0;

  /* warning: if k = m*GMP_NUMB_BITS, consider limb m-1 and not m */
  k = (err - 1) / GMP_NUMB_BITS;
  MPFR_UNSIGNED_MINUS_MODULO(s, err);
  /* the error corresponds to bit s in limb k, the most significant limb
     being limb 0; in memory, limb k is bp[bn-1-k]. */

  k1 = (prec - 1) / GMP_NUMB_BITS;
  MPFR_UNSIGNED_MINUS_MODULO(s1, prec);
  /* the least significant bit is bit s1 in limb k1 */

  /* We don't need to consider the k1 most significant limbs.
     They will be considered later only to detect when subtracting
     the error bound yields a change of binade.
     Warning! The number with updated bn may no longer be normalized. */
  k -= k1;
  bn -= k1;
  prec -= (mpfr_prec_t) k1 * GMP_NUMB_BITS;

  /* We can decide of the correct rounding if rnd2(b-eps) and rnd2(b+eps)
     give the same result to the target precision 'prec', i.e., if when
     adding or subtracting (1 << s) in bp[bn-1-k], it does not change the
     rounding in direction 'rnd2' at ulp-position bp[bn-1] >> s1, taking also
     into account the possible change of binade. */
  MPFR_TMP_MARK(marker);
  tn = bn;
  k++; /* since we work with k+1 everywhere */
  tmp = MPFR_TMP_LIMBS_ALLOC (tn);
  if (bn > k)
    MPN_COPY (tmp, bp, bn - k);

  MPFR_ASSERTD (k > 0);

  switch (rnd1)
    {
    case MPFR_RNDZ:
      /* Round to Zero */
      cc = (bp[bn - 1] >> s1) & 1;
      /* mpfr_round_raw2 returns 1 if one should add 1 at ulp(b,prec),
         and 0 otherwise */
      cc ^= mpfr_round_raw2 (bp, bn, neg, rnd2, prec);
      /* cc is the new value of bit s1 in bp[bn-1] after rounding 'rnd2' */

      /* now round b + 2^(MPFR_EXP(b)-err) */
      mpn_add_1 (tmp + bn - k, bp + bn - k, k, MPFR_LIMB_ONE << s);
      /* if there was a carry here, then necessarily bit s1 of bp[bn-1]
         changed, thus we surely cannot round for directed rounding, but this
         will be detected below, with cc2 != cc */
      break;
    case MPFR_RNDN:
      /* Round to nearest */

      /* first round b+2^(MPFR_EXP(b)-err) */
      mpn_add_1 (tmp + bn - k, bp + bn - k, k, MPFR_LIMB_ONE << s);
      /* same remark as above in case a carry occurs in mpn_add_1() */
      cc = (tmp[bn - 1] >> s1) & 1; /* gives 0 when cc=1 */
      cc ^= mpfr_round_raw2 (tmp, bn, neg, rnd2, prec);
      /* cc is the new value of bit s1 in bp[bn-1]+eps after rounding 'rnd2' */

    subtract_eps:
      /* now round b-2^(MPFR_EXP(b)-err) */
      cc2 = mpn_sub_1 (tmp + bn - k, bp + bn - k, k, MPFR_LIMB_ONE << s);
      /* propagate the potential borrow up to the most significant limb
         (it cannot propagate further since the most significant limb is
         at least MPFR_LIMB_HIGHBIT) */
      for (tn = 0; tn + 1 < k1 && (cc2 != 0); tn ++)
        cc2 = bp[bn + tn] == 0;
      /* We have an exponent decrease when either:
           (i) k1 = 0 and tmp[bn-1] < MPFR_LIMB_HIGHBIT
           (ii) k1 > 0 and cc <> 0 and bp[bn + tn] = MPFR_LIMB_HIGHBIT
                (then necessarily tn = k1-1).
         Then for directed rounding we cannot round,
         and for rounding to nearest we cannot round when err = prec + 1.
      */
      if (((k1 == 0 && tmp[bn - 1] < MPFR_LIMB_HIGHBIT) ||
           (k1 != 0 && cc2 != 0 && bp[bn + tn] == MPFR_LIMB_HIGHBIT)) &&
          (rnd2 != MPFR_RNDN || err0 == prec0 + 1))
        {
          MPFR_TMP_FREE(marker);
          return 0;
        }
      break;
    default:
      /* Round away */
      cc = (bp[bn - 1] >> s1) & 1;
      cc ^= mpfr_round_raw2 (bp, bn, neg, rnd2, prec);
      /* cc is the new value of bit s1 in bp[bn-1]+eps after rounding 'rnd2' */

      goto subtract_eps;
    }

  cc2 = (tmp[bn - 1] >> s1) & 1;
  cc2 ^= mpfr_round_raw2 (tmp, bn, neg, rnd2, prec);

  MPFR_TMP_FREE(marker);
  return cc == cc2;
}