1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
/* random_deviate routines for mpfr_erandom and mpfr_nrandom.
Copyright 2013-2019 Free Software Foundation, Inc.
Contributed by Charles Karney <charles@karney.com>, SRI International.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
/*
* A mpfr_random_deviate represents the initial portion e bits of a random
* deviate uniformly distributed in (0,1) as
*
* typedef struct {
* unsigned long e; // bits in the fraction
* unsigned long h; // the high W bits of the fraction
* mpz_t f; // the rest of the fraction
* } mpfr_random_deviate_t[1];
*
* e is always a multiple of RANDOM_CHUNK. The first RANDOM_CHUNK bits, the
* high fraction, are held in an unsigned long, h, and the rest are held in an
* mpz_t, f. The data in h is undefined if e == 0 and, similarly the data in f
* is undefined if e <= RANDOM_CHUNK.
*/
#define MPFR_NEED_LONGLONG_H
#include "random_deviate.h"
/*
* RANDOM_CHUNK can be picked in the range 1 <= RANDOM_CHUNK <= 64. Low values
* of RANDOM_CHUNK are good for testing, since they are more likely to make
* bugs obvious. For portability, pick RANDOM_CHUNK <= 32 (since an unsigned
* long may only hold 32 bits). For reproducibility across platforms,
* standardize on RANDOM_CHUNK = 32.
*
* When RANDOM_CHUNK = 32, this representation largely avoids manipulating
* mpz's (until the final cast to an mpfr is done). In addition
* mpfr_random_deviate_less usually entails just a single comparison of
* unsigned longs. In this way, we can stick with the published interface for
* extracting portions of an mpz (namely through mpz_tstbit) without hurting
* efficiency.
*/
#if !defined(RANDOM_CHUNK)
/* note: for MPFR, we could use RANDOM_CHUNK = 32 or 64 according to the
number of bits per limb, but we use 32 everywhere to get reproducible
results on 32-bit and 64-bit computers */
#define RANDOM_CHUNK 32 /* Require 1 <= RANDOM_CHUNK <= 32; recommend 32 */
#endif
#define W RANDOM_CHUNK /* W is just an shorter name for RANDOM_CHUNK */
/* allocate and set to (0,1) */
void
mpfr_random_deviate_init (mpfr_random_deviate_t x)
{
mpz_init (x->f);
x->e = 0;
}
/* reset to (0,1) */
void
mpfr_random_deviate_reset (mpfr_random_deviate_t x)
{
x->e = 0;
}
/* deallocate */
void
mpfr_random_deviate_clear (mpfr_random_deviate_t x)
{
mpz_clear (x->f);
}
/* swap two random deviates */
void
mpfr_random_deviate_swap (mpfr_random_deviate_t x, mpfr_random_deviate_t y)
{
mpfr_random_size_t s;
unsigned long t;
/* swap x->e and y->e */
s = x->e;
x->e = y->e;
y->e = s;
/* swap x->h and y->h */
t = x->h;
x->h = y->h;
y->h = t;
/* swap x->f and y->f */
mpz_swap (x->f, y->f);
}
/* ensure x has at least k bits */
static void
random_deviate_generate (mpfr_random_deviate_t x, mpfr_random_size_t k,
gmp_randstate_t r, mpz_t t)
{
/* Various compile time checks on mprf_random_deviate_t */
/* Check that the h field of a mpfr_random_deviate_t can hold W bits */
MPFR_STAT_STATIC_ASSERT (W > 0 && W <= sizeof (unsigned long) * CHAR_BIT);
/* Check mpfr_random_size_t can hold 32 bits and a mpfr_uprec_t. This
* ensures that max(mpfr_random_size_t) exceeds MPFR_PREC_MAX by at least
* 2^31 because mpfr_prec_t is a signed version of mpfr_uprec_t. This allows
* random deviates with many leading zeros in the fraction to be handled
* correctly. */
MPFR_STAT_STATIC_ASSERT (sizeof (mpfr_random_size_t) * CHAR_BIT >= 32 &&
sizeof (mpfr_random_size_t) >=
sizeof (mpfr_uprec_t));
/* Finally, at runtime, check that k is not too big. e is set to ceil(k/W)*W
* and we require that this allows x->e + 1 in random_deviate_leading_bit to
* be computed without overflow. */
MPFR_ASSERTN (k <= (mpfr_random_size_t)(-((int) W + 1)));
/* if t is non-null, it is used as a temporary */
if (x->e >= k)
return;
if (x->e == 0)
{
x->h = gmp_urandomb_ui (r, W); /* Generate the high fraction */
x->e = W;
if (x->e >= k)
return; /* Maybe that's it? */
}
if (t)
{
/* passed a mpz_t so compute needed bits in one call to mpz_urandomb */
k = ((k + (W-1)) / W) * W; /* Round up to multiple of W */
k -= x->e; /* The number of new bits */
mpz_urandomb (x->e == W ? x->f : t, r, k); /* Copy directly to x->f? */
if (x->e > W)
{
mpz_mul_2exp (x->f, x->f, k);
mpz_add (x->f, x->f, t);
}
x->e += k;
}
else
{
/* no mpz_t so compute the bits W at a time via gmp_urandomb_ui */
while (x->e < k)
{
unsigned long w = gmp_urandomb_ui (r, W);
if (x->e == W)
mpz_set_ui (x->f, w);
else
{
mpz_mul_2exp (x->f, x->f, W);
mpz_add_ui (x->f, x->f, w);
}
x->e += W;
}
}
}
/*
* return index [-1..127] of highest bit set. Return -1 if x = 0, 2 if x = 4,
* etc. (From Algorithms for programmers by Joerg Arndt.)
*/
static int
highest_bit_idx_alt (unsigned long x)
{
int r = 0;
if (x == 0)
return -1;
MPFR_ASSERTN (sizeof (unsigned long) * CHAR_BIT <= 128);
if (sizeof (unsigned long) * CHAR_BIT > 64)
{
/* handle 128-bit unsigned longs avoiding compiler warnings */
unsigned long y = x >> 16; y >>= 24; y >>= 24;
if (y) { x = y; r += 64;}
}
if (x & ~0xffffffffUL) { x >>= 16; x >>= 16; r +=32; }
if (x & 0xffff0000UL) { x >>= 16; r += 16; }
if (x & 0x0000ff00UL) { x >>= 8; r += 8; }
if (x & 0x000000f0UL) { x >>= 4; r += 4; }
if (x & 0x0000000cUL) { x >>= 2; r += 2; }
if (x & 0x00000002UL) { r += 1; }
return r;
}
/*
* return index [-1..63] of highest bit set.
* Return -1 if x = 0, 63 is if x = ~0 (for 64-bit unsigned long).
* See highest_bit_idx_alt too.
*/
static int
highest_bit_idx (unsigned long x)
{
/* this test should be evaluated at compile time */
if (sizeof (mp_limb_t) >= sizeof (unsigned long))
{
int cnt;
if (x == 0)
return -1;
count_leading_zeros (cnt, (mp_limb_t) x);
MPFR_ASSERTD (cnt <= GMP_NUMB_BITS - 1);
return GMP_NUMB_BITS - 1 - cnt;
}
else
return highest_bit_idx_alt (x);
}
/* return position of leading bit, counting from 1 */
static mpfr_random_size_t
random_deviate_leading_bit (mpfr_random_deviate_t x, gmp_randstate_t r)
{
mpfr_random_size_t l;
random_deviate_generate (x, W, r, 0);
if (x->h)
return W - highest_bit_idx (x->h);
random_deviate_generate (x, 2 * W, r, 0);
while (mpz_sgn (x->f) == 0)
random_deviate_generate (x, x->e + 1, r, 0);
l = x->e + 1 - mpz_sizeinbase (x->f, 2);
/* Guard against a ridiculously long string of leading zeros in the fraction;
* probability of this happening is 2^(-2^31). In particular ensure that
* p + 1 + l in mpfr_random_deviate_value doesn't overflow with p =
* MPFR_PREC_MAX. */
MPFR_ASSERTN (l + 1 < (mpfr_random_size_t)(-MPFR_PREC_MAX));
return l;
}
/* return kth bit of fraction, representing 2^-k */
int
mpfr_random_deviate_tstbit (mpfr_random_deviate_t x, mpfr_random_size_t k,
gmp_randstate_t r)
{
if (k == 0)
return 0;
random_deviate_generate (x, k, r, 0);
if (k <= W)
return (x->h >> (W - k)) & 1UL;
return mpz_tstbit (x->f, x->e - k);
}
/* compare two random deviates, x < y */
int
mpfr_random_deviate_less (mpfr_random_deviate_t x, mpfr_random_deviate_t y,
gmp_randstate_t r)
{
mpfr_random_size_t k = 1;
if (x == y)
return 0;
random_deviate_generate (x, W, r, 0);
random_deviate_generate (y, W, r, 0);
if (x->h != y->h)
return x->h < y->h; /* Compare the high fractions */
k += W;
for (; ; ++k)
{ /* Compare the rest of the fraction bit by bit */
int a = mpfr_random_deviate_tstbit (x, k, r);
int b = mpfr_random_deviate_tstbit (y, k, r);
if (a != b)
return a < b;
}
}
/* set mpfr_t z = (neg ? -1 : 1) * (n + x) */
int
mpfr_random_deviate_value (int neg, unsigned long n,
mpfr_random_deviate_t x, mpfr_t z,
gmp_randstate_t r, mpfr_rnd_t rnd)
{
/* r is used to add as many bits as necessary to match the precision of z */
int s;
mpfr_random_size_t l; /* The leading bit is 2^(s*l) */
mpfr_random_size_t p = mpfr_get_prec (z); /* Number of bits in result */
mpz_t t;
int inex;
if (n == 0)
{
s = -1;
l = random_deviate_leading_bit (x, r); /* l > 0 */
}
else
{
s = 1;
l = highest_bit_idx (n); /* l >= 0 */
}
/*
* Leading bit is 2^(s*l); thus the trailing bit in result is 2^(s*l-p+1) =
* 2^-(p-1-s*l). For the sake of illustration, take l = 0 and p = 4, thus
* bits through the 1/8 position need to be generated; assume that these bits
* are 1.010 = 10/8 which represents a deviate in the range (10,11)/8.
*
* If the rounding mode is one of RNDZ, RNDU, RNDD, RNDA, we add a 1 bit to
* the result to give 1.0101 = (10+1/2)/8. When this is converted to a MPFR
* the result is rounded to 10/8, 11/8, 10/8, 11/8, respectively, and the
* inexact flag is set to -1, 1, -1, 1.
*
* If the rounding mode is RNDN, an additional random bit must be generated
* to determine if the result is in (10,10+1/2)/8 or (10+1/2,11)/8. Assume
* that this random bit is 0, so the result is 1.0100 = (10+0/2)/8. Then an
* additional 1 bit is added to give 1.010101 = (10+1/4)/8. This last bit
* avoids the "round ties to even rule" (because there are no ties) and sets
* the inexact flag so that the result is 10/8 with the inexact flag = 1.
*
* Here we always generate at least 2 additional random bits, so that bit
* position 2^-(p+1-s*l) is generated. (The result often contains more
* random bits than this because random bits are added in batches of W and
* because additional bits may have been required in the process of
* generating the random deviate.) The integer and all the bits in the
* fraction are then copied into an mpz, the least significant bit is
* unconditionally set to 1, the sign is set, and the result together with
* the exponent -x->e is used to generate an mpfr using mpfr_set_z_2exp.
*
* If random bits were very expensive, we would only need to generate to the
* 2^-(p-1-s*l) bit (no extra bits) for the RNDZ, RNDU, RNDD, RNDA modes and
* to the 2^-(p-s*l) bit (1 extra bit) for RNDN. By always generating 2 bits
* we save on some bit shuffling when formed the mpz to be converted to an
* mpfr. The implementation of the RandomNumber class in RandomLib
* illustrates the more parsimonious approach (which was taken to allow
* accurate counts of the number of random digits to be made).
*/
mpz_init (t);
/*
* This is the only call to random_deviate_generate where a mpz_t is passed
* (because an arbitrarily large number of bits may need to be generated).
*/
if ((s > 0 && p + 1 > l) ||
(s < 0 && p + 1 + l > 0))
random_deviate_generate (x, s > 0 ? p + 1 - l : p + 1 + l, r, t);
if (n == 0)
{
/* Since the minimum prec is 2 we know that x->h has been generated. */
mpz_set_ui (t, x->h); /* Set high fraction */
}
else
{
mpz_set_ui (t, n); /* The integer part */
if (x->e > 0)
{
mpz_mul_2exp (t, t, W); /* Shift to allow for high fraction */
mpz_add_ui (t, t, x->h); /* Add high fraction */
}
}
if (x->e > W)
{
mpz_mul_2exp (t, t, x->e - W); /* Shift to allow for low fraction */
mpz_add (t, t, x->f); /* Add low fraction */
}
/*
* We could trim off any excess bits here by shifting rightward. This is an
* unnecessary complication.
*/
mpz_setbit (t, 0); /* Set the trailing bit so result is always inexact */
if (neg)
mpz_neg (t, t);
/* Is -x->e representable as a mpfr_exp_t? */
MPFR_ASSERTN (x->e <= (mpfr_uexp_t)(-1) >> 1);
/*
* Let mpfr_set_z_2exp do all the work of rounding to the requested
* precision, setting overflow/underflow flags, and returning the right
* inexact value.
*/
inex = mpfr_set_z_2exp (z, t, -x->e, rnd);
mpz_clear (t);
return inex;
}
|