1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
|
/* mpfr_mul -- multiply two floating-point numbers
Copyright 1999-2018 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/********* BEGINNING CHECK *************/
/* Check if we have to check the result of mpfr_mul.
TODO: Find a better (and faster?) check than using old implementation */
#if MPFR_WANT_ASSERT >= 2
int mpfr_mul2 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode);
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
/* Old implementation */
int sign_product, cc, inexact;
mpfr_exp_t ax;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
MPFR_TMP_DECL(marker);
/* deal with special cases */
if (MPFR_ARE_SINGULAR(b,c))
{
if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
if (MPFR_IS_INF(b))
{
if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
{
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF(c))
{
if (MPFR_NOTZERO(b))
{
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_ZERO(a);
MPFR_RET(0); /* 0 * 0 is exact */
}
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
bq = MPFR_PREC (b);
cq = MPFR_PREC (c);
MPFR_ASSERTN ((mpfr_uprec_t) bq + cq <= MPFR_PREC_MAX);
bn = MPFR_PREC2LIMBS (bq); /* number of limbs of b */
cn = MPFR_PREC2LIMBS (cq); /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = MPFR_PREC2LIMBS (bq + cq);
/* <= k, thus no int overflow */
MPFR_ASSERTD(tn <= k);
/* Check for no size_t overflow*/
MPFR_ASSERTD((size_t) k <= ((size_t) -1) / MPFR_BYTES_PER_MP_LIMB);
MPFR_TMP_MARK(marker);
tmp = MPFR_TMP_LIMBS_ALLOC (k);
/* multiplies two mantissa in temporary allocated space */
b1 = (MPFR_LIKELY(bn >= cn)) ?
mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
: mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY(b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
MPFR_IS_NEG_SIGN(sign_product),
MPFR_PREC (a), rnd_mode, &inexact);
/* cc = 1 ==> result is a power of two */
if (MPFR_UNLIKELY(cc))
MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;
MPFR_TMP_FREE(marker);
{
mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign_product);
if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2) in absolute value, then round to
zero. */
if (rnd_mode == MPFR_RNDN &&
(ax + (mpfr_exp_t) b1 < __gmpfr_emin ||
(mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, sign_product);
}
MPFR_SET_EXP (a, ax2);
MPFR_SET_SIGN(a, sign_product);
}
MPFR_RET (inexact);
}
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
mpfr_t ta, tb, tc;
int inexact1, inexact2;
if (rnd_mode == MPFR_RNDF)
return mpfr_mul2 (a, b, c, rnd_mode);
mpfr_init2 (ta, MPFR_PREC (a));
mpfr_init2 (tb, MPFR_PREC (b));
mpfr_init2 (tc, MPFR_PREC (c));
MPFR_ASSERTN (mpfr_set (tb, b, MPFR_RNDN) == 0);
MPFR_ASSERTN (mpfr_set (tc, c, MPFR_RNDN) == 0);
inexact2 = mpfr_mul3 (ta, tb, tc, rnd_mode);
inexact1 = mpfr_mul2 (a, b, c, rnd_mode);
if (MPFR_IS_NAN (ta) && MPFR_IS_NAN (a))
{
/* Getting both NaN is OK. */
}
else if (! mpfr_equal_p (ta, a) || ! SAME_SIGN (inexact1, inexact2))
{
fprintf (stderr, "mpfr_mul return different values for %s\n"
"Prec_a = %lu, Prec_b = %lu, Prec_c = %lu\nb = ",
mpfr_print_rnd_mode (rnd_mode),
MPFR_PREC (a), MPFR_PREC (b), MPFR_PREC (c));
mpfr_fdump (stderr, b);
fprintf (stderr, "c = ");
mpfr_fdump (stderr, c);
fprintf (stderr, "OldMul: ");
mpfr_fdump (stderr, ta);
fprintf (stderr, "NewMul: ");
mpfr_fdump (stderr, a);
fprintf (stderr, "NewInexact = %d | OldInexact = %d\n",
inexact1, inexact2);
MPFR_ASSERTN(0);
}
mpfr_clears (ta, tb, tc, (mpfr_ptr) 0);
return inexact1;
}
# define mpfr_mul mpfr_mul2
#endif /* MPFR_WANT_ASSERT >= 2 */
/****** END OF CHECK *******/
/* Multiply 2 mpfr_t */
#if !defined(MPFR_GENERIC_ABI)
/* Special code for prec(a) < GMP_NUMB_BITS and
prec(b), prec(c) <= GMP_NUMB_BITS.
Note: this code was copied in sqr.c, function mpfr_sqr_1 (this saves a few cycles
with respect to have this function exported). As a consequence, any change here
should be reported in mpfr_sqr_1. */
static int
mpfr_mul_1 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode,
mpfr_prec_t p)
{
mp_limb_t a0;
mpfr_limb_ptr ap = MPFR_MANT(a);
mp_limb_t b0 = MPFR_MANT(b)[0];
mp_limb_t c0 = MPFR_MANT(c)[0];
mpfr_exp_t ax;
mpfr_prec_t sh = GMP_NUMB_BITS - p;
mp_limb_t rb, sb, mask = MPFR_LIMB_MASK(sh);
/* When prec(b), prec(c) <= GMP_NUMB_BITS / 2, we could replace umul_ppmm
by a limb multiplication as follows, but we assume umul_ppmm is as fast
as a limb multiplication on modern processors:
a0 = (b0 >> (GMP_NUMB_BITS / 2)) * (c0 >> (GMP_NUMB_BITS / 2));
sb = 0;
*/
ax = MPFR_GET_EXP(b) + MPFR_GET_EXP(c);
umul_ppmm (a0, sb, b0, c0);
if (a0 < MPFR_LIMB_HIGHBIT)
{
ax --;
/* TODO: This is actually an addition with carry (no shifts and no OR
needed in asm). Make sure that GCC generates optimized code once
it supports carry-in. */
a0 = (a0 << 1) | (sb >> (GMP_NUMB_BITS - 1));
sb <<= 1;
}
rb = a0 & (MPFR_LIMB_ONE << (sh - 1));
sb |= (a0 & mask) ^ rb;
ap[0] = a0 & ~mask;
MPFR_SIGN(a) = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
/* rounding */
if (MPFR_UNLIKELY(ax > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
/* Warning: underflow should be checked *after* rounding, thus when rounding
away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
if (MPFR_UNLIKELY(ax < __gmpfr_emin))
{
if (ax == __gmpfr_emin - 1 && ap[0] == ~mask &&
((rnd_mode == MPFR_RNDN && rb) ||
(MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
goto rounding; /* no underflow */
/* For RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
we have to change to RNDZ. This corresponds to:
(a) either ax < emin - 1
(b) or ax = emin - 1 and ap[0] = 1000....000 and rb = sb = 0 */
if (rnd_mode == MPFR_RNDN &&
(ax < __gmpfr_emin - 1 ||
(ap[0] == MPFR_LIMB_HIGHBIT && (rb | sb) == 0)))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
}
rounding:
MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
in the cases "goto rounding" above. */
if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
{
MPFR_ASSERTD(ax >= __gmpfr_emin);
MPFR_RET (0);
}
else if (rnd_mode == MPFR_RNDN)
{
if (rb == 0 || (sb == 0 && (ap[0] & (MPFR_LIMB_ONE << sh)) == 0))
goto truncate;
else
goto add_one_ulp;
}
else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
{
truncate:
MPFR_ASSERTD(ax >= __gmpfr_emin);
MPFR_RET(-MPFR_SIGN(a));
}
else /* round away from zero */
{
add_one_ulp:
ap[0] += MPFR_LIMB_ONE << sh;
if (ap[0] == 0)
{
ap[0] = MPFR_LIMB_HIGHBIT;
if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
MPFR_SET_EXP (a, ax + 1);
}
MPFR_RET(MPFR_SIGN(a));
}
}
/* Special code for prec(a) = GMP_NUMB_BITS and
prec(b), prec(c) <= GMP_NUMB_BITS. */
static int
mpfr_mul_1n (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
mp_limb_t a0;
mpfr_limb_ptr ap = MPFR_MANT(a);
mp_limb_t b0 = MPFR_MANT(b)[0];
mp_limb_t c0 = MPFR_MANT(c)[0];
mpfr_exp_t ax;
mp_limb_t rb, sb;
ax = MPFR_GET_EXP(b) + MPFR_GET_EXP(c);
umul_ppmm (a0, sb, b0, c0);
if (a0 < MPFR_LIMB_HIGHBIT)
{
ax --;
/* TODO: This is actually an addition with carry (no shifts and no OR
needed in asm). Make sure that GCC generates optimized code once
it supports carry-in. */
a0 = (a0 << 1) | (sb >> (GMP_NUMB_BITS - 1));
sb <<= 1;
}
rb = sb & MPFR_LIMB_HIGHBIT;
sb = sb & ~MPFR_LIMB_HIGHBIT;
ap[0] = a0;
MPFR_SIGN(a) = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
/* rounding */
if (MPFR_UNLIKELY(ax > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
/* Warning: underflow should be checked *after* rounding, thus when rounding
away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
a >= 0.111...111[1]*2^(emin-1), there is no underflow.
Note: this case can only occur when the initial a0 (after the umul_ppmm
call above) had its most significant bit 0, since the largest a0 is
obtained for b0 = c0 = B-1 where B=2^GMP_NUMB_BITS, thus b0*c0 <= (B-1)^2
thus a0 <= B-2. */
if (MPFR_UNLIKELY(ax < __gmpfr_emin))
{
if (ax == __gmpfr_emin - 1 && ap[0] == ~MPFR_LIMB_ZERO &&
((rnd_mode == MPFR_RNDN && rb) ||
(MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
goto rounding; /* no underflow */
/* For RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
we have to change to RNDZ. This corresponds to:
(a) either ax < emin - 1
(b) or ax = emin - 1 and ap[0] = 1000....000 and rb = sb = 0 */
if (rnd_mode == MPFR_RNDN &&
(ax < __gmpfr_emin - 1 ||
(ap[0] == MPFR_LIMB_HIGHBIT && (rb | sb) == 0)))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
}
rounding:
MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
in the cases "goto rounding" above. */
if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
{
MPFR_ASSERTD(ax >= __gmpfr_emin);
MPFR_RET (0);
}
else if (rnd_mode == MPFR_RNDN)
{
if (rb == 0 || (sb == 0 && (ap[0] & MPFR_LIMB_ONE) == 0))
goto truncate;
else
goto add_one_ulp;
}
else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
{
truncate:
MPFR_ASSERTD(ax >= __gmpfr_emin);
MPFR_RET(-MPFR_SIGN(a));
}
else /* round away from zero */
{
add_one_ulp:
ap[0] += MPFR_LIMB_ONE;
if (ap[0] == 0)
{
ap[0] = MPFR_LIMB_HIGHBIT;
if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
MPFR_SET_EXP (a, ax + 1);
}
MPFR_RET(MPFR_SIGN(a));
}
}
/* Special code for GMP_NUMB_BITS < prec(a) < 2*GMP_NUMB_BITS and
GMP_NUMB_BITS < prec(b), prec(c) <= 2*GMP_NUMB_BITS.
Note: this code was copied in sqr.c, function mpfr_sqr_2 (this saves a few cycles
with respect to have this function exported). As a consequence, any change here
should be reported in mpfr_sqr_2. */
static int
mpfr_mul_2 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode,
mpfr_prec_t p)
{
mp_limb_t h, l, u, v, w;
mpfr_limb_ptr ap = MPFR_MANT(a);
mpfr_exp_t ax = MPFR_GET_EXP(b) + MPFR_GET_EXP(c);
mpfr_prec_t sh = 2 * GMP_NUMB_BITS - p;
mp_limb_t rb, sb, sb2, mask = MPFR_LIMB_MASK(sh);
mp_limb_t *bp = MPFR_MANT(b), *cp = MPFR_MANT(c);
/* we store the 4-limb product in h=ap[1], l=ap[0], sb=ap[-1], sb2=ap[-2] */
umul_ppmm (h, l, bp[1], cp[1]);
umul_ppmm (u, v, bp[1], cp[0]);
l += u;
h += (l < u);
umul_ppmm (u, w, bp[0], cp[1]);
l += u;
h += (l < u);
/* now the full product is {h, l, v + w + high(b0*c0), low(b0*c0)},
where the lower part contributes to less than 3 ulps to {h, l} */
/* If h has its most significant bit set and the low sh-1 bits of l are not
000...000 nor 111...111 nor 111...110, then we can round correctly;
if h has zero as most significant bit, we have to shift left h and l,
thus if the low sh-2 bits are not 000...000 nor 111...111 nor 111...110,
then we can round correctly. To avoid an extra test we consider the latter
case (if we can round, we can also round in the former case).
For sh <= 3, we have mask <= 7, thus (mask>>2) <= 1, and the approximation
cannot be enough. */
if (MPFR_LIKELY(((l + 2) & (mask >> 2)) > 2))
sb = sb2 = 1; /* result cannot be exact in that case */
else
{
umul_ppmm (sb, sb2, bp[0], cp[0]);
/* the full product is {h, l, sb + v + w, sb2} */
sb += v;
l += (sb < v);
h += (l == 0) && (sb < v);
sb += w;
l += (sb < w);
h += (l == 0) && (sb < w);
}
if (h < MPFR_LIMB_HIGHBIT)
{
ax --;
h = (h << 1) | (l >> (GMP_NUMB_BITS - 1));
l = (l << 1) | (sb >> (GMP_NUMB_BITS - 1));
sb <<= 1;
/* no need to shift sb2 since we only want to know if it is zero or not */
}
ap[1] = h;
rb = l & (MPFR_LIMB_ONE << (sh - 1));
sb |= ((l & mask) ^ rb) | sb2;
ap[0] = l & ~mask;
MPFR_SIGN(a) = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
/* rounding */
if (MPFR_UNLIKELY(ax > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
/* Warning: underflow should be checked *after* rounding, thus when rounding
away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
if (MPFR_UNLIKELY(ax < __gmpfr_emin))
{
if (ax == __gmpfr_emin - 1 &&
ap[1] == MPFR_LIMB_MAX &&
ap[0] == ~mask &&
((rnd_mode == MPFR_RNDN && rb) ||
(MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
goto rounding; /* no underflow */
/* for RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
we have to change to RNDZ */
if (rnd_mode == MPFR_RNDN &&
(ax < __gmpfr_emin - 1 ||
(ap[1] == MPFR_LIMB_HIGHBIT && ap[0] == 0 && (rb | sb) == 0)))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
}
rounding:
MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
in the cases "goto rounding" above. */
if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
{
MPFR_ASSERTD(ax >= __gmpfr_emin);
MPFR_RET (0);
}
else if (rnd_mode == MPFR_RNDN)
{
if (rb == 0 || (sb == 0 && (ap[0] & (MPFR_LIMB_ONE << sh)) == 0))
goto truncate;
else
goto add_one_ulp;
}
else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
{
truncate:
MPFR_ASSERTD(ax >= __gmpfr_emin);
MPFR_RET(-MPFR_SIGN(a));
}
else /* round away from zero */
{
add_one_ulp:
ap[0] += MPFR_LIMB_ONE << sh;
ap[1] += (ap[0] == 0);
if (ap[1] == 0)
{
ap[1] = MPFR_LIMB_HIGHBIT;
if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
MPFR_SET_EXP (a, ax + 1);
}
MPFR_RET(MPFR_SIGN(a));
}
}
/* Special code for 2*GMP_NUMB_BITS < prec(a) < 3*GMP_NUMB_BITS and
2*GMP_NUMB_BITS < prec(b), prec(c) <= 3*GMP_NUMB_BITS. */
static int
mpfr_mul_3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode,
mpfr_prec_t p)
{
mp_limb_t a0, a1, a2, h, l, cy;
mpfr_limb_ptr ap = MPFR_MANT(a);
mpfr_exp_t ax = MPFR_GET_EXP(b) + MPFR_GET_EXP(c);
mpfr_prec_t sh = 3 * GMP_NUMB_BITS - p;
mp_limb_t rb, sb, sb2, mask = MPFR_LIMB_MASK(sh);
mp_limb_t *bp = MPFR_MANT(b), *cp = MPFR_MANT(c);
/* we store the upper 3-limb product in a2, a1, a0:
b2*c2, b2*c1+b1*c2, b2*c0+b1*c1+b0*c2 */
umul_ppmm (a2, a1, bp[2], cp[2]);
umul_ppmm (h, a0, bp[2], cp[1]);
a1 += h;
a2 += (a1 < h);
umul_ppmm (h, l, bp[1], cp[2]);
a1 += h;
a2 += (a1 < h);
a0 += l;
cy = a0 < l; /* carry in a1 */
umul_ppmm (h, l, bp[2], cp[0]);
a0 += h;
cy += (a0 < h);
umul_ppmm (h, l, bp[1], cp[1]);
a0 += h;
cy += (a0 < h);
umul_ppmm (h, l, bp[0], cp[2]);
a0 += h;
cy += (a0 < h);
/* now propagate cy */
a1 += cy;
a2 += (a1 < cy);
/* Now the approximate product {a2, a1, a0} has an error of less than
5 ulps (3 ulps for the ignored low limbs of b2*c0+b1*c1+b0*c2,
plus 2 ulps for the ignored b1*c0+b0*c1 (plus b0*c0)).
Since we might shift by 1 bit, we make sure the low sh-2 bits of a0
are not 0, -1, -2, -3 or -4. */
if (MPFR_LIKELY(((a0 + 4) & (mask >> 2)) > 4))
sb = sb2 = 1; /* result cannot be exact in that case */
else
{
mp_limb_t p[6];
mpn_mul_n (p, bp, cp, 3);
a2 = p[5];
a1 = p[4];
a0 = p[3];
sb = p[2];
sb2 = p[1] | p[0];
}
if (a2 < MPFR_LIMB_HIGHBIT)
{
ax --;
a2 = (a2 << 1) | (a1 >> (GMP_NUMB_BITS - 1));
a1 = (a1 << 1) | (a0 >> (GMP_NUMB_BITS - 1));
a0 = (a0 << 1) | (sb >> (GMP_NUMB_BITS - 1));
sb <<= 1;
/* no need to shift sb2: we only need to know if it is zero or not */
}
ap[2] = a2;
ap[1] = a1;
rb = a0 & (MPFR_LIMB_ONE << (sh - 1));
sb |= ((a0 & mask) ^ rb) | sb2;
ap[0] = a0 & ~mask;
MPFR_SIGN(a) = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
/* rounding */
if (MPFR_UNLIKELY(ax > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
/* Warning: underflow should be checked *after* rounding, thus when rounding
away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
if (MPFR_UNLIKELY(ax < __gmpfr_emin))
{
if (ax == __gmpfr_emin - 1 &&
ap[2] == MPFR_LIMB_MAX &&
ap[1] == MPFR_LIMB_MAX &&
ap[0] == ~mask &&
((rnd_mode == MPFR_RNDN && rb) ||
(MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
goto rounding; /* no underflow */
/* for RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
we have to change to RNDZ */
if (rnd_mode == MPFR_RNDN &&
(ax < __gmpfr_emin - 1 ||
(ap[2] == MPFR_LIMB_HIGHBIT && ap[1] == 0 && ap[0] == 0
&& (rb | sb) == 0)))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
}
rounding:
MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
in the cases "goto rounding" above. */
if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
{
MPFR_ASSERTD(ax >= __gmpfr_emin);
MPFR_RET (0);
}
else if (rnd_mode == MPFR_RNDN)
{
if (rb == 0 || (sb == 0 && (ap[0] & (MPFR_LIMB_ONE << sh)) == 0))
goto truncate;
else
goto add_one_ulp;
}
else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
{
truncate:
MPFR_ASSERTD(ax >= __gmpfr_emin);
MPFR_RET(-MPFR_SIGN(a));
}
else /* round away from zero */
{
add_one_ulp:
ap[0] += MPFR_LIMB_ONE << sh;
ap[1] += (ap[0] == 0);
ap[2] += (ap[1] == 0) && (ap[0] == 0);
if (ap[2] == 0)
{
ap[2] = MPFR_LIMB_HIGHBIT;
if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
MPFR_SET_EXP (a, ax + 1);
}
MPFR_RET(MPFR_SIGN(a));
}
}
#endif /* !defined(MPFR_GENERIC_ABI) */
/* Note: mpfr_sqr will call mpfr_mul if bn > MPFR_SQR_THRESHOLD,
in order to use Mulders' mulhigh, which is handled only here
to avoid partial code duplication. There is some overhead due
to the additional tests, but slowdown should not be noticeable
as this code is not executed in very small precisions. */
MPFR_HOT_FUNCTION_ATTR int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
int sign, inexact;
mpfr_exp_t ax, ax2;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t aq, bq, cq;
mp_size_t bn, cn, tn, k, threshold;
MPFR_TMP_DECL (marker);
MPFR_LOG_FUNC
(("b[%Pu]=%.*Rg c[%Pu]=%.*Rg rnd=%d",
mpfr_get_prec (b), mpfr_log_prec, b,
mpfr_get_prec (c), mpfr_log_prec, c, rnd_mode),
("a[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (a), mpfr_log_prec, a, inexact));
/* deal with special cases */
if (MPFR_ARE_SINGULAR (b, c))
{
if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c))
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
if (MPFR_IS_INF (b))
{
if (!MPFR_IS_ZERO (c))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET (0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF (c))
{
if (!MPFR_IS_ZERO (b))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET(0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN (a, sign);
MPFR_SET_ZERO (a);
MPFR_RET (0);
}
}
aq = MPFR_GET_PREC (a);
bq = MPFR_GET_PREC (b);
cq = MPFR_GET_PREC (c);
#if !defined(MPFR_GENERIC_ABI)
if (aq == bq && aq == cq)
{
if (aq < GMP_NUMB_BITS)
return mpfr_mul_1 (a, b, c, rnd_mode, aq);
if (GMP_NUMB_BITS < aq && aq < 2 * GMP_NUMB_BITS)
return mpfr_mul_2 (a, b, c, rnd_mode, aq);
if (aq == GMP_NUMB_BITS)
return mpfr_mul_1n (a, b, c, rnd_mode);
if (2 * GMP_NUMB_BITS < aq && aq < 3 * GMP_NUMB_BITS)
return mpfr_mul_3 (a, b, c, rnd_mode, aq);
}
#endif
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
/* Note: the exponent of the exact result will be e = bx + cx + ec with
ec in {-1,0,1} and the following assumes that e is representable. */
/* FIXME: Useful since we do an exponent check after?
* It is useful iff the precision is big, there is an overflow
* and we are doing further mults...*/
#ifdef HUGE
if (MPFR_UNLIKELY (ax > __gmpfr_emax + 1))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax < __gmpfr_emin - 2))
return mpfr_underflow (a, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
sign);
#endif
MPFR_ASSERTN ((mpfr_uprec_t) bq + cq <= MPFR_PREC_MAX);
bn = MPFR_PREC2LIMBS (bq); /* number of limbs of b */
cn = MPFR_PREC2LIMBS (cq); /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = MPFR_PREC2LIMBS (bq + cq);
MPFR_ASSERTD (tn <= k); /* tn <= k, thus no int overflow */
/* Check for no size_t overflow. */
MPFR_ASSERTD ((size_t) k <= ((size_t) -1) / MPFR_BYTES_PER_MP_LIMB);
MPFR_TMP_MARK (marker);
tmp = MPFR_TMP_LIMBS_ALLOC (k);
/* multiplies two mantissa in temporary allocated space */
if (MPFR_UNLIKELY (bn < cn))
{
mpfr_srcptr z = b;
mp_size_t zn = bn;
b = c;
bn = cn;
c = z;
cn = zn;
}
MPFR_ASSERTD (bn >= cn);
if (bn <= 2)
{
/* The 3 cases perform the same first operation. */
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
if (bn == 1)
{
/* 1 limb * 1 limb */
b1 = tmp[1];
}
else if (MPFR_UNLIKELY (cn == 1))
{
/* 2 limbs * 1 limb */
mp_limb_t t;
umul_ppmm (tmp[2], t, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t);
b1 = tmp[2];
}
else
{
/* 2 limbs * 2 limbs */
mp_limb_t t1, t2, t3;
/* First 2 limbs * 1 limb */
umul_ppmm (tmp[2], t1, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t1);
/* Second, the other 2 limbs * 1 limb product */
umul_ppmm (t1, t2, MPFR_MANT (b)[0], MPFR_MANT (c)[1]);
umul_ppmm (tmp[3], t3, MPFR_MANT (b)[1], MPFR_MANT (c)[1]);
add_ssaaaa (tmp[3], t1, tmp[3], t1, 0, t3);
/* Sum those two partial products */
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], t1, t2);
tmp[3] += (tmp[2] < t1);
b1 = tmp[3];
}
b1 >>= (GMP_NUMB_BITS - 1);
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
}
else
/* Mulders' mulhigh. This code can also be used via mpfr_sqr,
hence the tests b != c. */
if (MPFR_UNLIKELY (cn > (threshold = b != c ?
MPFR_MUL_THRESHOLD : MPFR_SQR_THRESHOLD)))
{
mp_limb_t *bp, *cp;
mp_size_t n;
mpfr_prec_t p;
/* First check if we can reduce the precision of b or c:
exact values are a nightmare for the short product trick */
bp = MPFR_MANT (b);
cp = MPFR_MANT (c);
MPFR_STAT_STATIC_ASSERT (MPFR_MUL_THRESHOLD >= 1 &&
MPFR_SQR_THRESHOLD >= 1);
if (MPFR_UNLIKELY ((bp[0] == 0 && bp[1] == 0) ||
(cp[0] == 0 && cp[1] == 0)))
{
mpfr_t b_tmp, c_tmp;
MPFR_TMP_FREE (marker);
/* Check for b */
while (*bp == 0)
{
bp++;
bn--;
MPFR_ASSERTD (bn > 0);
} /* This must end since the most significant limb is != 0 */
/* Check for c too: if b == c, this will do nothing */
while (*cp == 0)
{
cp++;
cn--;
MPFR_ASSERTD (cn > 0);
} /* This must end since the most significant limb is != 0 */
/* It is not the fastest way, but it is safer. */
MPFR_SET_SAME_SIGN (b_tmp, b);
MPFR_SET_EXP (b_tmp, MPFR_GET_EXP (b));
MPFR_PREC (b_tmp) = bn * GMP_NUMB_BITS;
MPFR_MANT (b_tmp) = bp;
if (b != c)
{
MPFR_SET_SAME_SIGN (c_tmp, c);
MPFR_SET_EXP (c_tmp, MPFR_GET_EXP (c));
MPFR_PREC (c_tmp) = cn * GMP_NUMB_BITS;
MPFR_MANT (c_tmp) = cp;
/* Call again mpfr_mul with the fixed arguments */
return mpfr_mul (a, b_tmp, c_tmp, rnd_mode);
}
else
/* Call mpfr_mul instead of mpfr_sqr as the precision
is probably still high enough. */
return mpfr_mul (a, b_tmp, b_tmp, rnd_mode);
}
/* Compute estimated precision of mulhigh.
We could use `+ (n < cn) + (n < bn)' instead of `+ 2',
but does it worth it? */
n = MPFR_LIMB_SIZE (a) + 1;
n = MIN (n, cn);
MPFR_ASSERTD (n >= 1 && 2*n <= k && n <= cn && n <= bn);
p = n * GMP_NUMB_BITS - MPFR_INT_CEIL_LOG2 (n + 2);
bp += bn - n;
cp += cn - n;
/* Check if MulHigh can produce a roundable result.
We may lose 1 bit due to RNDN, 1 due to final shift. */
if (MPFR_UNLIKELY (aq > p - 5))
{
if (MPFR_UNLIKELY (aq > p - 5 + GMP_NUMB_BITS
|| bn <= threshold + 1))
{
/* MulHigh can't produce a roundable result. */
MPFR_LOG_MSG (("mpfr_mulhigh can't be used (%lu VS %lu)\n",
aq, p));
goto full_multiply;
}
/* Add one extra limb to mantissa of b and c. */
if (bn > n)
bp --;
else
{
bp = MPFR_TMP_LIMBS_ALLOC (n + 1);
bp[0] = 0;
MPN_COPY (bp + 1, MPFR_MANT (b) + bn - n, n);
}
if (b != c)
{
if (cn > n)
cp --; /* FIXME: Could this happen? */
else
{
cp = MPFR_TMP_LIMBS_ALLOC (n + 1);
cp[0] = 0;
MPN_COPY (cp + 1, MPFR_MANT (c) + cn - n, n);
}
}
/* We will compute with one extra limb */
n++;
/* ceil(log2(n+2)) takes into account the lost bits due to
Mulders' short product */
p = n * GMP_NUMB_BITS - MPFR_INT_CEIL_LOG2 (n + 2);
/* Due to some nasty reasons we can have only 4 bits */
MPFR_ASSERTD (aq <= p - 4);
if (MPFR_LIKELY (k < 2*n))
{
tmp = MPFR_TMP_LIMBS_ALLOC (2 * n);
tmp += 2*n-k; /* `tmp' still points to an area of `k' limbs */
}
}
MPFR_LOG_MSG (("Use mpfr_mulhigh (%lu VS %lu)\n", aq, p));
/* Compute an approximation of the product of b and c */
if (b != c)
mpfr_mulhigh_n (tmp + k - 2 * n, bp, cp, n);
else
mpfr_sqrhigh_n (tmp + k - 2 * n, bp, n);
/* now tmp[k-n]..tmp[k-1] contains an approximation of the n upper
limbs of the product, with tmp[k-1] >= 2^(GMP_NUMB_BITS-2) */
b1 = tmp[k-1] >> (GMP_NUMB_BITS - 1); /* msb from the product */
/* If the mantissas of b and c are uniformly distributed in (1/2, 1],
then their product is in (1/4, 1/2] with probability 2*ln(2)-1
~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
if (MPFR_UNLIKELY (b1 == 0))
/* Warning: the mpfr_mulhigh_n call above only surely affects
tmp[k-n-1..k-1], thus we shift only those limbs */
mpn_lshift (tmp + k - n - 1, tmp + k - n - 1, n + 1, 1);
tmp += k - tn;
/* now the approximation is in tmp[tn-n]...tmp[tn-1] */
MPFR_ASSERTD (MPFR_LIMB_MSB (tmp[tn-1]) != 0);
/* for RNDF, we simply use RNDZ, since anyway here we multiply numbers
with large precisions, thus the overhead of RNDZ is small */
if (rnd_mode == MPFR_RNDF)
rnd_mode = MPFR_RNDZ;
/* if the most significant bit b1 is zero, we have only p-1 correct
bits */
if (MPFR_UNLIKELY (!mpfr_round_p (tmp, tn, p + b1 - 1,
aq + (rnd_mode == MPFR_RNDN))))
{
tmp -= k - tn; /* tmp may have changed, FIX IT!!!!! */
goto full_multiply;
}
}
else
{
full_multiply:
MPFR_LOG_MSG (("Use mpn_mul\n", 0));
b1 = mpn_mul (tmp, MPFR_MANT (b), bn, MPFR_MANT (c), cn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in (1/2, 1],
then their product is in (1/4, 1/2] with probability 2*ln(2)-1
~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
}
ax2 = ax + (mpfr_exp_t) (b1 - 1);
MPFR_RNDRAW (inexact, a, tmp, bq + cq, rnd_mode, sign, ax2++);
MPFR_TMP_FREE (marker);
MPFR_EXP (a) = ax2; /* Can't use MPFR_SET_EXP: Expo may be out of range */
MPFR_SET_SIGN (a, sign);
if (MPFR_UNLIKELY (ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == MPFR_RNDN
&& (ax + (mpfr_exp_t) b1 < __gmpfr_emin
|| (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, sign);
}
MPFR_RET (inexact);
}
|