1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
/* mpfr_agm -- arithmetic-geometric mean of two floating-point numbers
Copyright 1999-2023 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* agm(x,y) is between x and y, so we don't need to save exponent range */
int
mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mpfr_rnd_t rnd_mode)
{
int compare, inexact;
mp_size_t s;
mpfr_prec_t p, q;
mp_limb_t *up, *vp, *ufp, *vfp;
mpfr_t u, v, uf, vf, sc1, sc2;
mpfr_exp_t scaleop = 0, scaleit;
unsigned long n; /* number of iterations */
MPFR_ZIV_DECL (loop);
MPFR_TMP_DECL(marker);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC
(("op2[%Pu]=%.*Rg op1[%Pu]=%.*Rg rnd=%d",
mpfr_get_prec (op2), mpfr_log_prec, op2,
mpfr_get_prec (op1), mpfr_log_prec, op1, rnd_mode),
("r[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (r), mpfr_log_prec, r, inexact));
/* Deal with special values */
if (MPFR_ARE_SINGULAR (op1, op2))
{
/* If a or b is NaN, the result is NaN */
if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
/* now one of a or b is Inf or 0 */
/* If a and b is +Inf, the result is +Inf.
Otherwise if a or b is -Inf or 0, the result is NaN */
else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2))
{
if (MPFR_IS_STRICTPOS(op1) && MPFR_IS_STRICTPOS(op2))
{
MPFR_SET_INF(r);
MPFR_SET_SAME_SIGN(r, op1);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
}
else /* a and b are neither NaN nor Inf, and one is zero */
{ /* If a or b is 0, the result is +0, in particular because the
result is always >= 0 with our definition (Maple sometimes
chooses a different sign for GaussAGM, but it uses another
definition, with possible negative results). */
MPFR_ASSERTD (MPFR_IS_ZERO (op1) || MPFR_IS_ZERO (op2));
MPFR_SET_POS (r);
MPFR_SET_ZERO (r);
MPFR_RET (0); /* exact */
}
}
/* If a or b is negative (excluding -Infinity), the result is NaN */
if (MPFR_UNLIKELY(MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2)))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
/* Precision of the following calculus */
q = MPFR_PREC(r);
p = q + MPFR_INT_CEIL_LOG2(q) + 15;
MPFR_ASSERTD (p >= 7); /* see algorithms.tex */
s = MPFR_PREC2LIMBS (p);
/* b (op2) and a (op1) are the 2 operands but we want b >= a */
compare = mpfr_cmp (op1, op2);
if (MPFR_UNLIKELY( compare == 0 ))
return mpfr_set (r, op1, rnd_mode);
else if (compare > 0)
{
mpfr_srcptr t = op1;
op1 = op2;
op2 = t;
}
/* Now b (=op2) > a (=op1) */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_TMP_MARK(marker);
/* Main loop */
MPFR_ZIV_INIT (loop, p);
for (;;)
{
mpfr_prec_t eq;
unsigned long err = 0; /* must be set to 0 at each Ziv iteration */
MPFR_BLOCK_DECL (flags);
/* Init temporary vars */
MPFR_TMP_INIT (up, u, p, s);
MPFR_TMP_INIT (vp, v, p, s);
MPFR_TMP_INIT (ufp, uf, p, s);
MPFR_TMP_INIT (vfp, vf, p, s);
/* Calculus of un and vn */
retry:
MPFR_BLOCK (flags,
mpfr_mul (u, op1, op2, MPFR_RNDN);
/* mpfr_mul(...): faster since PREC(op) < PREC(u) */
mpfr_add (v, op1, op2, MPFR_RNDN);
/* mpfr_add with !=prec is still good */);
if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags)))
{
mpfr_exp_t e1, e2;
MPFR_ASSERTN (scaleop == 0);
e1 = MPFR_GET_EXP (op1);
e2 = MPFR_GET_EXP (op2);
/* Let's determine scaleop to avoid an overflow/underflow. */
if (MPFR_OVERFLOW (flags))
{
/* Let's recall that emin <= e1 <= e2 <= emax.
There has been an overflow. Thus e2 >= emax/2.
If the mpfr_mul overflowed, then e1 + e2 > emax.
If the mpfr_add overflowed, then e2 = emax.
We want: (e1 + scale) + (e2 + scale) <= emax,
i.e. scale <= (emax - e1 - e2) / 2. Let's take
scale = min(floor((emax - e1 - e2) / 2), -1).
This is OK, as:
1. emin <= scale <= -1.
2. e1 + scale >= emin. Indeed:
* If e1 + e2 > emax, then
e1 + scale >= e1 + (emax - e1 - e2) / 2 - 1
>= (emax + e1 - emax) / 2 - 1
>= e1 / 2 - 1 >= emin.
* Otherwise, mpfr_mul didn't overflow, therefore
mpfr_add overflowed and e2 = emax, so that
e1 > emin (see restriction below).
e1 + scale > emin - 1, thus e1 + scale >= emin.
3. e2 + scale <= emax, since scale < 0. */
if (e1 + e2 > MPFR_EMAX_MAX)
{
scaleop = - (((e1 + e2) - MPFR_EMAX_MAX + 1) / 2);
MPFR_ASSERTN (scaleop < 0);
}
else
{
/* The addition necessarily overflowed. */
MPFR_ASSERTN (e2 == MPFR_EMAX_MAX);
/* The case where e1 = emin and e2 = emax is not supported
here. This would mean that the precision of e2 would be
huge (and possibly not supported in practice anyway). */
MPFR_ASSERTN (e1 > MPFR_EMIN_MIN);
/* Note: this case is probably impossible to have in practice
since we need e2 = emax, and no overflow in the product.
Since the product is >= 2^(e1+e2-2), it implies
e1 + e2 - 2 <= emax, thus e1 <= 2. Now to get an overflow
we need op1 >= 1/2 ulp(op2), which implies that the
precision of op2 should be at least emax-2. On a 64-bit
computer this is impossible to have, and would require
a huge amount of memory on a 32-bit computer. */
scaleop = -1;
}
}
else /* underflow only (in the multiplication) */
{
/* We have e1 + e2 <= emin (so, e1 <= e2 <= 0).
We want: (e1 + scale) + (e2 + scale) >= emin + 1,
i.e. scale >= (emin + 1 - e1 - e2) / 2. let's take
scale = ceil((emin + 1 - e1 - e2) / 2). This is OK, as:
1. 1 <= scale <= emax.
2. e1 + scale >= emin + 1 >= emin.
3. e2 + scale <= scale <= emax. */
MPFR_ASSERTN (e1 <= e2 && e2 <= 0);
scaleop = (MPFR_EMIN_MIN + 2 - e1 - e2) / 2;
MPFR_ASSERTN (scaleop > 0);
}
MPFR_ALIAS (sc1, op1, MPFR_SIGN (op1), e1 + scaleop);
MPFR_ALIAS (sc2, op2, MPFR_SIGN (op2), e2 + scaleop);
op1 = sc1;
op2 = sc2;
MPFR_LOG_MSG (("Exception in pre-iteration, scale = %"
MPFR_EXP_FSPEC "d\n", scaleop));
goto retry;
}
MPFR_CLEAR_FLAGS ();
mpfr_sqrt (u, u, MPFR_RNDN);
mpfr_div_2ui (v, v, 1, MPFR_RNDN);
scaleit = 0;
n = 1;
while (mpfr_cmp2 (u, v, &eq) != 0 && eq <= p - 2)
{
MPFR_BLOCK_DECL (flags2);
MPFR_LOG_MSG (("Iteration n = %lu\n", n));
retry2:
mpfr_add (vf, u, v, MPFR_RNDN); /* No overflow? */
mpfr_div_2ui (vf, vf, 1, MPFR_RNDN);
/* See proof in algorithms.tex */
if (eq > p / 4)
{
mpfr_t w;
MPFR_BLOCK_DECL (flags3);
MPFR_LOG_MSG (("4*eq > p\n", 0));
/* vf = V(k) */
mpfr_init2 (w, (p + 1) / 2);
MPFR_BLOCK
(flags3,
mpfr_sub (w, v, u, MPFR_RNDN); /* e = V(k-1)-U(k-1) */
mpfr_sqr (w, w, MPFR_RNDN); /* e = e^2 */
mpfr_div_2ui (w, w, 4, MPFR_RNDN); /* e*= (1/2)^2*1/4 */
mpfr_div (w, w, vf, MPFR_RNDN); /* 1/4*e^2/V(k) */
);
if (MPFR_LIKELY (! MPFR_UNDERFLOW (flags3)))
{
mpfr_sub (v, vf, w, MPFR_RNDN);
err = MPFR_GET_EXP (vf) - MPFR_GET_EXP (v); /* 0 or 1 */
mpfr_clear (w);
break;
}
/* There has been an underflow because of the cancellation
between V(k-1) and U(k-1). Let's use the conventional
method. */
MPFR_LOG_MSG (("4*eq > p -> underflow\n", 0));
mpfr_clear (w);
MPFR_CLEAR_UNDERFLOW ();
}
/* U(k) increases, so that U.V can overflow (but not underflow). */
MPFR_BLOCK (flags2, mpfr_mul (uf, u, v, MPFR_RNDN););
if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags2)))
{
mpfr_exp_t scale2;
scale2 = - (((MPFR_GET_EXP (u) + MPFR_GET_EXP (v))
- MPFR_EMAX_MAX + 1) / 2);
MPFR_EXP (u) += scale2;
MPFR_EXP (v) += scale2;
scaleit += scale2;
MPFR_LOG_MSG (("Overflow in iteration n = %lu, scaleit = %"
MPFR_EXP_FSPEC "d (%" MPFR_EXP_FSPEC "d)\n",
n, scaleit, scale2));
MPFR_CLEAR_OVERFLOW ();
goto retry2;
}
mpfr_sqrt (u, uf, MPFR_RNDN);
mpfr_swap (v, vf);
n ++;
}
MPFR_LOG_MSG (("End of iterations (n = %lu)\n", n));
/* the error on v is bounded by (18n+51) ulps, or twice if there
was an exponent loss in the final subtraction */
err += MPFR_INT_CEIL_LOG2(18 * n + 51); /* 18n+51 should not overflow
since n is about log(p) */
/* we should have n+2 <= 2^(p/4) [see algorithms.tex] */
if (MPFR_LIKELY (MPFR_INT_CEIL_LOG2(n + 2) <= p / 4 &&
MPFR_CAN_ROUND (v, p - err, q, rnd_mode)))
break; /* Stop the loop */
/* Next iteration */
MPFR_ZIV_NEXT (loop, p);
s = MPFR_PREC2LIMBS (p);
}
MPFR_ZIV_FREE (loop);
if (MPFR_UNLIKELY ((__gmpfr_flags & (MPFR_FLAGS_ALL ^ MPFR_FLAGS_INEXACT))
!= 0))
{
MPFR_ASSERTN (! mpfr_overflow_p ()); /* since mpfr_clear_flags */
MPFR_ASSERTN (! mpfr_underflow_p ()); /* since mpfr_clear_flags */
MPFR_ASSERTN (! mpfr_divby0_p ()); /* since mpfr_clear_flags */
MPFR_ASSERTN (! mpfr_nanflag_p ()); /* since mpfr_clear_flags */
}
/* Setting of the result */
inexact = mpfr_set (r, v, rnd_mode);
MPFR_EXP (r) -= scaleop + scaleit;
/* Let's clean */
MPFR_TMP_FREE(marker);
MPFR_SAVE_EXPO_FREE (expo);
/* From the definition of the AGM, underflow and overflow
are not possible. */
return mpfr_check_range (r, inexact, rnd_mode);
/* agm(u,v) can be exact for u, v rational only for u=v.
Proof (due to Nicolas Brisebarre): it suffices to consider
u=1 and v<1. Then 1/AGM(1,v) = 2F1(1/2,1/2,1;1-v^2),
and a theorem due to G.V. Chudnovsky states that for x a
non-zero algebraic number with |x|<1, then
2F1(1/2,1/2,1;x) and 2F1(-1/2,1/2,1;x) are algebraically
independent over Q. */
}
|