summaryrefslogtreecommitdiff
path: root/Build/source/libs/harfbuzz/harfbuzz-src/src/OT/glyf/CompositeGlyph.hh
blob: c145beaa49adb53d3f1167bdd399e5119b061845 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#ifndef OT_GLYF_COMPOSITEGLYPH_HH
#define OT_GLYF_COMPOSITEGLYPH_HH


#include "../../hb-open-type.hh"


namespace OT {
namespace glyf_impl {


struct CompositeGlyphRecord
{
  protected:
  enum composite_glyph_flag_t
  {
    ARG_1_AND_2_ARE_WORDS	= 0x0001,
    ARGS_ARE_XY_VALUES		= 0x0002,
    ROUND_XY_TO_GRID		= 0x0004,
    WE_HAVE_A_SCALE		= 0x0008,
    MORE_COMPONENTS		= 0x0020,
    WE_HAVE_AN_X_AND_Y_SCALE	= 0x0040,
    WE_HAVE_A_TWO_BY_TWO	= 0x0080,
    WE_HAVE_INSTRUCTIONS	= 0x0100,
    USE_MY_METRICS		= 0x0200,
    OVERLAP_COMPOUND		= 0x0400,
    SCALED_COMPONENT_OFFSET	= 0x0800,
    UNSCALED_COMPONENT_OFFSET	= 0x1000
  };

  public:
  unsigned int get_size () const
  {
    unsigned int size = min_size;
    /* arg1 and 2 are int16 */
    if (flags & ARG_1_AND_2_ARE_WORDS) size += 4;
    /* arg1 and 2 are int8 */
    else size += 2;

    /* One x 16 bit (scale) */
    if (flags & WE_HAVE_A_SCALE) size += 2;
    /* Two x 16 bit (xscale, yscale) */
    else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) size += 4;
    /* Four x 16 bit (xscale, scale01, scale10, yscale) */
    else if (flags & WE_HAVE_A_TWO_BY_TWO) size += 8;

    return size;
  }

  void drop_instructions_flag ()  { flags = (uint16_t) flags & ~WE_HAVE_INSTRUCTIONS; }
  void set_overlaps_flag ()
  {
    flags = (uint16_t) flags | OVERLAP_COMPOUND;
  }

  bool has_instructions ()  const { return   flags & WE_HAVE_INSTRUCTIONS; }

  bool has_more ()          const { return   flags & MORE_COMPONENTS; }
  bool is_use_my_metrics () const { return   flags & USE_MY_METRICS; }
  bool is_anchored ()       const { return !(flags & ARGS_ARE_XY_VALUES); }
  void get_anchor_points (unsigned int &point1, unsigned int &point2) const
  {
    const HBUINT8 *p = &StructAfter<const HBUINT8> (glyphIndex);
    if (flags & ARG_1_AND_2_ARE_WORDS)
    {
      point1 = ((const HBUINT16 *) p)[0];
      point2 = ((const HBUINT16 *) p)[1];
    }
    else
    {
      point1 = p[0];
      point2 = p[1];
    }
  }

  void transform_points (contour_point_vector_t &points) const
  {
    float matrix[4];
    contour_point_t trans;
    if (get_transformation (matrix, trans))
    {
      if (scaled_offsets ())
      {
	points.translate (trans);
	points.transform (matrix);
      }
      else
      {
	points.transform (matrix);
	points.translate (trans);
      }
    }
  }

  protected:
  bool scaled_offsets () const
  { return (flags & (SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET)) == SCALED_COMPONENT_OFFSET; }

  bool get_transformation (float (&matrix)[4], contour_point_t &trans) const
  {
    matrix[0] = matrix[3] = 1.f;
    matrix[1] = matrix[2] = 0.f;

    int tx, ty;
    const HBINT8 *p = &StructAfter<const HBINT8> (glyphIndex);
    if (flags & ARG_1_AND_2_ARE_WORDS)
    {
      tx = *(const HBINT16 *) p;
      p += HBINT16::static_size;
      ty = *(const HBINT16 *) p;
      p += HBINT16::static_size;
    }
    else
    {
      tx = *p++;
      ty = *p++;
    }
    if (is_anchored ()) tx = ty = 0;

    trans.init ((float) tx, (float) ty);

    {
      const F2DOT14 *points = (const F2DOT14 *) p;
      if (flags & WE_HAVE_A_SCALE)
      {
	matrix[0] = matrix[3] = points[0].to_float ();
	return true;
      }
      else if (flags & WE_HAVE_AN_X_AND_Y_SCALE)
      {
	matrix[0] = points[0].to_float ();
	matrix[3] = points[1].to_float ();
	return true;
      }
      else if (flags & WE_HAVE_A_TWO_BY_TWO)
      {
	matrix[0] = points[0].to_float ();
	matrix[1] = points[1].to_float ();
	matrix[2] = points[2].to_float ();
	matrix[3] = points[3].to_float ();
	return true;
      }
    }
    return tx || ty;
  }

  public:
  HBUINT16	flags;
  HBGlyphID16	glyphIndex;
  public:
  DEFINE_SIZE_MIN (4);
};

struct composite_iter_t : hb_iter_with_fallback_t<composite_iter_t, const CompositeGlyphRecord &>
{
  typedef const CompositeGlyphRecord *__item_t__;
  composite_iter_t (hb_bytes_t glyph_, __item_t__ current_) :
      glyph (glyph_), current (nullptr), current_size (0)
  {
    set_current (current_);
  }

  composite_iter_t () : glyph (hb_bytes_t ()), current (nullptr), current_size (0) {}

  item_t __item__ () const { return *current; }
  bool __more__ () const { return current; }
  void __next__ ()
  {
    if (!current->has_more ()) { current = nullptr; return; }

    set_current (&StructAtOffset<CompositeGlyphRecord> (current, current_size));
  }
  composite_iter_t __end__ () const { return composite_iter_t (); }
  bool operator != (const composite_iter_t& o) const
  { return current != o.current; }


  void set_current (__item_t__ current_)
  {
    if (!glyph.check_range (current_, CompositeGlyphRecord::min_size))
    {
      current = nullptr;
      current_size = 0;
      return;
    }
    unsigned size = current_->get_size ();
    if (!glyph.check_range (current_, size))
    {
      current = nullptr;
      current_size = 0;
      return;
    }

    current = current_;
    current_size = size;
  }

  private:
  hb_bytes_t glyph;
  __item_t__ current;
  unsigned current_size;
};

struct CompositeGlyph
{
  const GlyphHeader &header;
  hb_bytes_t bytes;
  CompositeGlyph (const GlyphHeader &header_, hb_bytes_t bytes_) :
    header (header_), bytes (bytes_) {}

  composite_iter_t iter () const
  { return composite_iter_t (bytes, &StructAfter<CompositeGlyphRecord, GlyphHeader> (header)); }

  unsigned int instructions_length (hb_bytes_t bytes) const
  {
    unsigned int start = bytes.length;
    unsigned int end = bytes.length;
    const CompositeGlyphRecord *last = nullptr;
    for (auto &item : iter ())
      last = &item;
    if (unlikely (!last)) return 0;

    if (last->has_instructions ())
      start = (char *) last - &bytes + last->get_size ();
    if (unlikely (start > end)) return 0;
    return end - start;
  }

  /* Trimming for composites not implemented.
   * If removing hints it falls out of that. */
  const hb_bytes_t trim_padding () const { return bytes; }

  void drop_hints ()
  {
    for (const auto &_ : iter ())
      const_cast<CompositeGlyphRecord &> (_).drop_instructions_flag ();
  }

  /* Chop instructions off the end */
  void drop_hints_bytes (hb_bytes_t &dest_start) const
  { dest_start = bytes.sub_array (0, bytes.length - instructions_length (bytes)); }

  void set_overlaps_flag ()
  {
    CompositeGlyphRecord& glyph_chain = const_cast<CompositeGlyphRecord &> (
	StructAfter<CompositeGlyphRecord, GlyphHeader> (header));
    if (!bytes.check_range(&glyph_chain, CompositeGlyphRecord::min_size))
      return;
    glyph_chain.set_overlaps_flag ();
  }
};


} /* namespace glyf_impl */
} /* namespace OT */


#endif /* OT_GLYF_COMPOSITEGLYPH_HH */