summaryrefslogtreecommitdiff
path: root/Build/source/libs/cairo/cairo-1.14.0/src/cairo-path-stroke-tristrip.c
blob: 6ce4131cc0fb881f4aab5999925bd71547ba3aca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2002 University of Southern California
 * Copyright © 2011 Intel Corporation
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is University of Southern
 * California.
 *
 * Contributor(s):
 *	Carl D. Worth <cworth@cworth.org>
 *	Chris Wilson <chris@chris-wilson.co.uk>
 */

#define _BSD_SOURCE /* for hypot() */
#include "cairoint.h"

#include "cairo-box-inline.h"
#include "cairo-boxes-private.h"
#include "cairo-error-private.h"
#include "cairo-path-fixed-private.h"
#include "cairo-slope-private.h"
#include "cairo-tristrip-private.h"

struct stroker {
    cairo_stroke_style_t style;

    cairo_tristrip_t *strip;

    const cairo_matrix_t *ctm;
    const cairo_matrix_t *ctm_inverse;
    double tolerance;
    cairo_bool_t ctm_det_positive;

    cairo_pen_t pen;

    cairo_bool_t has_sub_path;

    cairo_point_t first_point;

    cairo_bool_t has_current_face;
    cairo_stroke_face_t current_face;

    cairo_bool_t has_first_face;
    cairo_stroke_face_t first_face;

    cairo_box_t limit;
    cairo_bool_t has_limits;
};

static inline double
normalize_slope (double *dx, double *dy);

static void
compute_face (const cairo_point_t *point,
	      const cairo_slope_t *dev_slope,
	      struct stroker *stroker,
	      cairo_stroke_face_t *face);

static void
translate_point (cairo_point_t *point, const cairo_point_t *offset)
{
    point->x += offset->x;
    point->y += offset->y;
}

static int
slope_compare_sgn (double dx1, double dy1, double dx2, double dy2)
{
    double  c = (dx1 * dy2 - dx2 * dy1);

    if (c > 0) return 1;
    if (c < 0) return -1;
    return 0;
}

static inline int
range_step (int i, int step, int max)
{
    i += step;
    if (i < 0)
	i = max - 1;
    if (i >= max)
	i = 0;
    return i;
}

/*
 * Construct a fan around the midpoint using the vertices from pen between
 * inpt and outpt.
 */
static void
add_fan (struct stroker *stroker,
	 const cairo_slope_t *in_vector,
	 const cairo_slope_t *out_vector,
	 const cairo_point_t *midpt,
	 const cairo_point_t *inpt,
	 const cairo_point_t *outpt,
	 cairo_bool_t clockwise)
{
    int start, stop, step, i, npoints;

    if (clockwise) {
	step  = 1;

	start = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
							in_vector);
	if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_cw,
				  in_vector) < 0)
	    start = range_step (start, 1, stroker->pen.num_vertices);

	stop  = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
							out_vector);
	if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
				  out_vector) > 0)
	{
	    stop = range_step (stop, -1, stroker->pen.num_vertices);
	    if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
				      in_vector) < 0)
		return;
	}

	npoints = stop - start;
    } else {
	step  = -1;

	start = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
							 in_vector);
	if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_ccw,
				  in_vector) < 0)
	    start = range_step (start, -1, stroker->pen.num_vertices);

	stop  = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
							 out_vector);
	if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
				  out_vector) > 0)
	{
	    stop = range_step (stop, 1, stroker->pen.num_vertices);
	    if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
				      in_vector) < 0)
		return;
	}

	npoints = start - stop;
    }
    stop = range_step (stop, step, stroker->pen.num_vertices);
    if (npoints < 0)
	npoints += stroker->pen.num_vertices;
    if (npoints <= 1)
	return;

    for (i = start;
	 i != stop;
	i = range_step (i, step, stroker->pen.num_vertices))
    {
	cairo_point_t p = *midpt;
	translate_point (&p, &stroker->pen.vertices[i].point);
	//contour_add_point (stroker, c, &p);
    }
}

static int
join_is_clockwise (const cairo_stroke_face_t *in,
		   const cairo_stroke_face_t *out)
{
    return _cairo_slope_compare (&in->dev_vector, &out->dev_vector) < 0;
}

static void
inner_join (struct stroker *stroker,
	    const cairo_stroke_face_t *in,
	    const cairo_stroke_face_t *out,
	    int clockwise)
{
    const cairo_point_t *outpt;

    if (clockwise) {
	outpt = &out->ccw;
    } else {
	outpt = &out->cw;
    }
    //contour_add_point (stroker, inner, &in->point);
    //contour_add_point (stroker, inner, outpt);
}

static void
inner_close (struct stroker *stroker,
	     const cairo_stroke_face_t *in,
	     cairo_stroke_face_t *out)
{
    const cairo_point_t *inpt;

    if (join_is_clockwise (in, out)) {
	inpt = &out->ccw;
    } else {
	inpt = &out->cw;
    }

    //contour_add_point (stroker, inner, &in->point);
    //contour_add_point (stroker, inner, inpt);
    //*_cairo_contour_first_point (&inner->contour) =
	//*_cairo_contour_last_point (&inner->contour);
}

static void
outer_close (struct stroker *stroker,
	     const cairo_stroke_face_t *in,
	     const cairo_stroke_face_t *out)
{
    const cairo_point_t	*inpt, *outpt;
    int	clockwise;

    if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
	in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
    {
	return;
    }
    clockwise = join_is_clockwise (in, out);
    if (clockwise) {
	inpt = &in->cw;
	outpt = &out->cw;
    } else {
	inpt = &in->ccw;
	outpt = &out->ccw;
    }

    switch (stroker->style.line_join) {
    case CAIRO_LINE_JOIN_ROUND:
	/* construct a fan around the common midpoint */
	add_fan (stroker,
		 &in->dev_vector,
		 &out->dev_vector,
		 &in->point, inpt, outpt,
		 clockwise);
	break;

    case CAIRO_LINE_JOIN_MITER:
    default: {
	/* dot product of incoming slope vector with outgoing slope vector */
	double	in_dot_out = -in->usr_vector.x * out->usr_vector.x +
			     -in->usr_vector.y * out->usr_vector.y;
	double	ml = stroker->style.miter_limit;

	/* Check the miter limit -- lines meeting at an acute angle
	 * can generate long miters, the limit converts them to bevel
	 *
	 * Consider the miter join formed when two line segments
	 * meet at an angle psi:
	 *
	 *	   /.\
	 *	  /. .\
	 *	 /./ \.\
	 *	/./psi\.\
	 *
	 * We can zoom in on the right half of that to see:
	 *
	 *	    |\
	 *	    | \ psi/2
	 *	    |  \
	 *	    |   \
	 *	    |    \
	 *	    |     \
	 *	  miter    \
	 *	 length     \
	 *	    |        \
	 *	    |        .\
	 *	    |    .     \
	 *	    |.   line   \
	 *	     \    width  \
	 *	      \           \
	 *
	 *
	 * The right triangle in that figure, (the line-width side is
	 * shown faintly with three '.' characters), gives us the
	 * following expression relating miter length, angle and line
	 * width:
	 *
	 *	1 /sin (psi/2) = miter_length / line_width
	 *
	 * The right-hand side of this relationship is the same ratio
	 * in which the miter limit (ml) is expressed. We want to know
	 * when the miter length is within the miter limit. That is
	 * when the following condition holds:
	 *
	 *	1/sin(psi/2) <= ml
	 *	1 <= ml sin(psi/2)
	 *	1 <= ml² sin²(psi/2)
	 *	2 <= ml² 2 sin²(psi/2)
	 *				2·sin²(psi/2) = 1-cos(psi)
	 *	2 <= ml² (1-cos(psi))
	 *
	 *				in · out = |in| |out| cos (psi)
	 *
	 * in and out are both unit vectors, so:
	 *
	 *				in · out = cos (psi)
	 *
	 *	2 <= ml² (1 - in · out)
	 *
	 */
	if (2 <= ml * ml * (1 - in_dot_out)) {
	    double		x1, y1, x2, y2;
	    double		mx, my;
	    double		dx1, dx2, dy1, dy2;
	    double		ix, iy;
	    double		fdx1, fdy1, fdx2, fdy2;
	    double		mdx, mdy;

	    /*
	     * we've got the points already transformed to device
	     * space, but need to do some computation with them and
	     * also need to transform the slope from user space to
	     * device space
	     */
	    /* outer point of incoming line face */
	    x1 = _cairo_fixed_to_double (inpt->x);
	    y1 = _cairo_fixed_to_double (inpt->y);
	    dx1 = in->usr_vector.x;
	    dy1 = in->usr_vector.y;
	    cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);

	    /* outer point of outgoing line face */
	    x2 = _cairo_fixed_to_double (outpt->x);
	    y2 = _cairo_fixed_to_double (outpt->y);
	    dx2 = out->usr_vector.x;
	    dy2 = out->usr_vector.y;
	    cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);

	    /*
	     * Compute the location of the outer corner of the miter.
	     * That's pretty easy -- just the intersection of the two
	     * outer edges.  We've got slopes and points on each
	     * of those edges.  Compute my directly, then compute
	     * mx by using the edge with the larger dy; that avoids
	     * dividing by values close to zero.
	     */
	    my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
		  (dx1 * dy2 - dx2 * dy1));
	    if (fabs (dy1) >= fabs (dy2))
		mx = (my - y1) * dx1 / dy1 + x1;
	    else
		mx = (my - y2) * dx2 / dy2 + x2;

	    /*
	     * When the two outer edges are nearly parallel, slight
	     * perturbations in the position of the outer points of the lines
	     * caused by representing them in fixed point form can cause the
	     * intersection point of the miter to move a large amount. If
	     * that moves the miter intersection from between the two faces,
	     * then draw a bevel instead.
	     */

	    ix = _cairo_fixed_to_double (in->point.x);
	    iy = _cairo_fixed_to_double (in->point.y);

	    /* slope of one face */
	    fdx1 = x1 - ix; fdy1 = y1 - iy;

	    /* slope of the other face */
	    fdx2 = x2 - ix; fdy2 = y2 - iy;

	    /* slope from the intersection to the miter point */
	    mdx = mx - ix; mdy = my - iy;

	    /*
	     * Make sure the miter point line lies between the two
	     * faces by comparing the slopes
	     */
	    if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
		slope_compare_sgn (fdx2, fdy2, mdx, mdy))
	    {
		cairo_point_t p;

		p.x = _cairo_fixed_from_double (mx);
		p.y = _cairo_fixed_from_double (my);

		//*_cairo_contour_last_point (&outer->contour) = p;
		//*_cairo_contour_first_point (&outer->contour) = p;
		return;
	    }
	}
	break;
    }

    case CAIRO_LINE_JOIN_BEVEL:
	break;
    }
    //contour_add_point (stroker, outer, outpt);
}

static void
outer_join (struct stroker *stroker,
	    const cairo_stroke_face_t *in,
	    const cairo_stroke_face_t *out,
	    int clockwise)
{
    const cairo_point_t	*inpt, *outpt;

    if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
	in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
    {
	return;
    }
    if (clockwise) {
	inpt = &in->cw;
	outpt = &out->cw;
    } else {
	inpt = &in->ccw;
	outpt = &out->ccw;
    }

    switch (stroker->style.line_join) {
    case CAIRO_LINE_JOIN_ROUND:
	/* construct a fan around the common midpoint */
	add_fan (stroker,
		 &in->dev_vector,
		 &out->dev_vector,
		 &in->point, inpt, outpt,
		 clockwise);
	break;

    case CAIRO_LINE_JOIN_MITER:
    default: {
	/* dot product of incoming slope vector with outgoing slope vector */
	double	in_dot_out = -in->usr_vector.x * out->usr_vector.x +
			     -in->usr_vector.y * out->usr_vector.y;
	double	ml = stroker->style.miter_limit;

	/* Check the miter limit -- lines meeting at an acute angle
	 * can generate long miters, the limit converts them to bevel
	 *
	 * Consider the miter join formed when two line segments
	 * meet at an angle psi:
	 *
	 *	   /.\
	 *	  /. .\
	 *	 /./ \.\
	 *	/./psi\.\
	 *
	 * We can zoom in on the right half of that to see:
	 *
	 *	    |\
	 *	    | \ psi/2
	 *	    |  \
	 *	    |   \
	 *	    |    \
	 *	    |     \
	 *	  miter    \
	 *	 length     \
	 *	    |        \
	 *	    |        .\
	 *	    |    .     \
	 *	    |.   line   \
	 *	     \    width  \
	 *	      \           \
	 *
	 *
	 * The right triangle in that figure, (the line-width side is
	 * shown faintly with three '.' characters), gives us the
	 * following expression relating miter length, angle and line
	 * width:
	 *
	 *	1 /sin (psi/2) = miter_length / line_width
	 *
	 * The right-hand side of this relationship is the same ratio
	 * in which the miter limit (ml) is expressed. We want to know
	 * when the miter length is within the miter limit. That is
	 * when the following condition holds:
	 *
	 *	1/sin(psi/2) <= ml
	 *	1 <= ml sin(psi/2)
	 *	1 <= ml² sin²(psi/2)
	 *	2 <= ml² 2 sin²(psi/2)
	 *				2·sin²(psi/2) = 1-cos(psi)
	 *	2 <= ml² (1-cos(psi))
	 *
	 *				in · out = |in| |out| cos (psi)
	 *
	 * in and out are both unit vectors, so:
	 *
	 *				in · out = cos (psi)
	 *
	 *	2 <= ml² (1 - in · out)
	 *
	 */
	if (2 <= ml * ml * (1 - in_dot_out)) {
	    double		x1, y1, x2, y2;
	    double		mx, my;
	    double		dx1, dx2, dy1, dy2;
	    double		ix, iy;
	    double		fdx1, fdy1, fdx2, fdy2;
	    double		mdx, mdy;

	    /*
	     * we've got the points already transformed to device
	     * space, but need to do some computation with them and
	     * also need to transform the slope from user space to
	     * device space
	     */
	    /* outer point of incoming line face */
	    x1 = _cairo_fixed_to_double (inpt->x);
	    y1 = _cairo_fixed_to_double (inpt->y);
	    dx1 = in->usr_vector.x;
	    dy1 = in->usr_vector.y;
	    cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);

	    /* outer point of outgoing line face */
	    x2 = _cairo_fixed_to_double (outpt->x);
	    y2 = _cairo_fixed_to_double (outpt->y);
	    dx2 = out->usr_vector.x;
	    dy2 = out->usr_vector.y;
	    cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);

	    /*
	     * Compute the location of the outer corner of the miter.
	     * That's pretty easy -- just the intersection of the two
	     * outer edges.  We've got slopes and points on each
	     * of those edges.  Compute my directly, then compute
	     * mx by using the edge with the larger dy; that avoids
	     * dividing by values close to zero.
	     */
	    my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
		  (dx1 * dy2 - dx2 * dy1));
	    if (fabs (dy1) >= fabs (dy2))
		mx = (my - y1) * dx1 / dy1 + x1;
	    else
		mx = (my - y2) * dx2 / dy2 + x2;

	    /*
	     * When the two outer edges are nearly parallel, slight
	     * perturbations in the position of the outer points of the lines
	     * caused by representing them in fixed point form can cause the
	     * intersection point of the miter to move a large amount. If
	     * that moves the miter intersection from between the two faces,
	     * then draw a bevel instead.
	     */

	    ix = _cairo_fixed_to_double (in->point.x);
	    iy = _cairo_fixed_to_double (in->point.y);

	    /* slope of one face */
	    fdx1 = x1 - ix; fdy1 = y1 - iy;

	    /* slope of the other face */
	    fdx2 = x2 - ix; fdy2 = y2 - iy;

	    /* slope from the intersection to the miter point */
	    mdx = mx - ix; mdy = my - iy;

	    /*
	     * Make sure the miter point line lies between the two
	     * faces by comparing the slopes
	     */
	    if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
		slope_compare_sgn (fdx2, fdy2, mdx, mdy))
	    {
		cairo_point_t p;

		p.x = _cairo_fixed_from_double (mx);
		p.y = _cairo_fixed_from_double (my);

		//*_cairo_contour_last_point (&outer->contour) = p;
		return;
	    }
	}
	break;
    }

    case CAIRO_LINE_JOIN_BEVEL:
	break;
    }
    //contour_add_point (stroker,outer, outpt);
}

static void
add_cap (struct stroker *stroker,
	 const cairo_stroke_face_t *f)
{
    switch (stroker->style.line_cap) {
    case CAIRO_LINE_CAP_ROUND: {
	cairo_slope_t slope;

	slope.dx = -f->dev_vector.dx;
	slope.dy = -f->dev_vector.dy;

	add_fan (stroker, &f->dev_vector, &slope,
		 &f->point, &f->ccw, &f->cw,
		 FALSE);
	break;
    }

    case CAIRO_LINE_CAP_SQUARE: {
	double dx, dy;
	cairo_slope_t	fvector;
	cairo_point_t	quad[4];

	dx = f->usr_vector.x;
	dy = f->usr_vector.y;
	dx *= stroker->style.line_width / 2.0;
	dy *= stroker->style.line_width / 2.0;
	cairo_matrix_transform_distance (stroker->ctm, &dx, &dy);
	fvector.dx = _cairo_fixed_from_double (dx);
	fvector.dy = _cairo_fixed_from_double (dy);

	quad[0] = f->ccw;
	quad[1].x = f->ccw.x + fvector.dx;
	quad[1].y = f->ccw.y + fvector.dy;
	quad[2].x = f->cw.x + fvector.dx;
	quad[2].y = f->cw.y + fvector.dy;
	quad[3] = f->cw;

	//contour_add_point (stroker, c, &quad[1]);
	//contour_add_point (stroker, c, &quad[2]);
    }

    case CAIRO_LINE_CAP_BUTT:
    default:
	break;
    }
    //contour_add_point (stroker, c, &f->cw);
}

static void
add_leading_cap (struct stroker *stroker,
		 const cairo_stroke_face_t *face)
{
    cairo_stroke_face_t reversed;
    cairo_point_t t;

    reversed = *face;

    /* The initial cap needs an outward facing vector. Reverse everything */
    reversed.usr_vector.x = -reversed.usr_vector.x;
    reversed.usr_vector.y = -reversed.usr_vector.y;
    reversed.dev_vector.dx = -reversed.dev_vector.dx;
    reversed.dev_vector.dy = -reversed.dev_vector.dy;

    t = reversed.cw;
    reversed.cw = reversed.ccw;
    reversed.ccw = t;

    add_cap (stroker, &reversed);
}

static void
add_trailing_cap (struct stroker *stroker,
		  const cairo_stroke_face_t *face)
{
    add_cap (stroker, face);
}

static inline double
normalize_slope (double *dx, double *dy)
{
    double dx0 = *dx, dy0 = *dy;
    double mag;

    assert (dx0 != 0.0 || dy0 != 0.0);

    if (dx0 == 0.0) {
	*dx = 0.0;
	if (dy0 > 0.0) {
	    mag = dy0;
	    *dy = 1.0;
	} else {
	    mag = -dy0;
	    *dy = -1.0;
	}
    } else if (dy0 == 0.0) {
	*dy = 0.0;
	if (dx0 > 0.0) {
	    mag = dx0;
	    *dx = 1.0;
	} else {
	    mag = -dx0;
	    *dx = -1.0;
	}
    } else {
	mag = hypot (dx0, dy0);
	*dx = dx0 / mag;
	*dy = dy0 / mag;
    }

    return mag;
}

static void
compute_face (const cairo_point_t *point,
	      const cairo_slope_t *dev_slope,
	      struct stroker *stroker,
	      cairo_stroke_face_t *face)
{
    double face_dx, face_dy;
    cairo_point_t offset_ccw, offset_cw;
    double slope_dx, slope_dy;

    slope_dx = _cairo_fixed_to_double (dev_slope->dx);
    slope_dy = _cairo_fixed_to_double (dev_slope->dy);
    face->length = normalize_slope (&slope_dx, &slope_dy);
    face->dev_slope.x = slope_dx;
    face->dev_slope.y = slope_dy;

    /*
     * rotate to get a line_width/2 vector along the face, note that
     * the vector must be rotated the right direction in device space,
     * but by 90° in user space. So, the rotation depends on
     * whether the ctm reflects or not, and that can be determined
     * by looking at the determinant of the matrix.
     */
    if (! _cairo_matrix_is_identity (stroker->ctm_inverse)) {
	/* Normalize the matrix! */
	cairo_matrix_transform_distance (stroker->ctm_inverse,
					 &slope_dx, &slope_dy);
	normalize_slope (&slope_dx, &slope_dy);

	if (stroker->ctm_det_positive) {
	    face_dx = - slope_dy * (stroker->style.line_width / 2.0);
	    face_dy = slope_dx * (stroker->style.line_width / 2.0);
	} else {
	    face_dx = slope_dy * (stroker->style.line_width / 2.0);
	    face_dy = - slope_dx * (stroker->style.line_width / 2.0);
	}

	/* back to device space */
	cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy);
    } else {
	face_dx = - slope_dy * (stroker->style.line_width / 2.0);
	face_dy = slope_dx * (stroker->style.line_width / 2.0);
    }

    offset_ccw.x = _cairo_fixed_from_double (face_dx);
    offset_ccw.y = _cairo_fixed_from_double (face_dy);
    offset_cw.x = -offset_ccw.x;
    offset_cw.y = -offset_ccw.y;

    face->ccw = *point;
    translate_point (&face->ccw, &offset_ccw);

    face->point = *point;

    face->cw = *point;
    translate_point (&face->cw, &offset_cw);

    face->usr_vector.x = slope_dx;
    face->usr_vector.y = slope_dy;

    face->dev_vector = *dev_slope;
}

static void
add_caps (struct stroker *stroker)
{
    /* check for a degenerative sub_path */
    if (stroker->has_sub_path &&
	! stroker->has_first_face &&
	! stroker->has_current_face &&
	stroker->style.line_cap == CAIRO_LINE_CAP_ROUND)
    {
	/* pick an arbitrary slope to use */
	cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 };
	cairo_stroke_face_t face;

	/* arbitrarily choose first_point */
	compute_face (&stroker->first_point, &slope, stroker, &face);

	add_leading_cap (stroker, &face);
	add_trailing_cap (stroker, &face);

	/* ensure the circle is complete */
	//_cairo_contour_add_point (&stroker->ccw.contour,
				  //_cairo_contour_first_point (&stroker->ccw.contour));
    } else {
	if (stroker->has_current_face)
	    add_trailing_cap (stroker, &stroker->current_face);

	//_cairo_polygon_add_contour (stroker->polygon, &stroker->ccw.contour);
	//_cairo_contour_reset (&stroker->ccw.contour);

	if (stroker->has_first_face) {
	    //_cairo_contour_add_point (&stroker->ccw.contour,
				      //&stroker->first_face.cw);
	    add_leading_cap (stroker, &stroker->first_face);
	    //_cairo_polygon_add_contour (stroker->polygon,
					//&stroker->ccw.contour);
	    //_cairo_contour_reset (&stroker->ccw.contour);
	}
    }
}

static cairo_status_t
move_to (void *closure,
	 const cairo_point_t *point)
{
    struct stroker *stroker = closure;

    /* Cap the start and end of the previous sub path as needed */
    add_caps (stroker);

    stroker->has_first_face = FALSE;
    stroker->has_current_face = FALSE;
    stroker->has_sub_path = FALSE;

    stroker->first_point = *point;

    stroker->current_face.point = *point;

    return CAIRO_STATUS_SUCCESS;
}

static cairo_status_t
line_to (void *closure,
	 const cairo_point_t *point)
{
    struct stroker *stroker = closure;
    cairo_stroke_face_t start;
    cairo_point_t *p1 = &stroker->current_face.point;
    cairo_slope_t dev_slope;

    stroker->has_sub_path = TRUE;

    if (p1->x == point->x && p1->y == point->y)
	return CAIRO_STATUS_SUCCESS;

    _cairo_slope_init (&dev_slope, p1, point);
    compute_face (p1, &dev_slope, stroker, &start);

    if (stroker->has_current_face) {
	int clockwise = join_is_clockwise (&stroker->current_face, &start);
	/* Join with final face from previous segment */
	outer_join (stroker, &stroker->current_face, &start, clockwise);
	inner_join (stroker, &stroker->current_face, &start, clockwise);
    } else {
	if (! stroker->has_first_face) {
	    /* Save sub path's first face in case needed for closing join */
	    stroker->first_face = start;
	    _cairo_tristrip_move_to (stroker->strip, &start.cw);
	    stroker->has_first_face = TRUE;
	}
	stroker->has_current_face = TRUE;

	_cairo_tristrip_add_point (stroker->strip, &start.cw);
	_cairo_tristrip_add_point (stroker->strip, &start.ccw);
    }

    stroker->current_face = start;
    stroker->current_face.point = *point;
    stroker->current_face.ccw.x += dev_slope.dx;
    stroker->current_face.ccw.y += dev_slope.dy;
    stroker->current_face.cw.x += dev_slope.dx;
    stroker->current_face.cw.y += dev_slope.dy;

    _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.cw);
    _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.ccw);

    return CAIRO_STATUS_SUCCESS;
}

static cairo_status_t
spline_to (void *closure,
	   const cairo_point_t *point,
	   const cairo_slope_t *tangent)
{
    struct stroker *stroker = closure;
    cairo_stroke_face_t face;

    if (tangent->dx == 0 && tangent->dy == 0) {
	const cairo_point_t *inpt, *outpt;
	cairo_point_t t;
	int clockwise;

	face = stroker->current_face;

	face.usr_vector.x = -face.usr_vector.x;
	face.usr_vector.y = -face.usr_vector.y;
	face.dev_vector.dx = -face.dev_vector.dx;
	face.dev_vector.dy = -face.dev_vector.dy;

	t = face.cw;
	face.cw = face.ccw;
	face.ccw = t;

	clockwise = join_is_clockwise (&stroker->current_face, &face);
	if (clockwise) {
	    inpt = &stroker->current_face.cw;
	    outpt = &face.cw;
	} else {
	    inpt = &stroker->current_face.ccw;
	    outpt = &face.ccw;
	}

	add_fan (stroker,
		 &stroker->current_face.dev_vector,
		 &face.dev_vector,
		 &stroker->current_face.point, inpt, outpt,
		 clockwise);
    } else {
	compute_face (point, tangent, stroker, &face);

	if (face.dev_slope.x * stroker->current_face.dev_slope.x +
	    face.dev_slope.y * stroker->current_face.dev_slope.y < 0)
	{
	    const cairo_point_t *inpt, *outpt;
	    int clockwise = join_is_clockwise (&stroker->current_face, &face);

	    stroker->current_face.cw.x += face.point.x - stroker->current_face.point.x;
	    stroker->current_face.cw.y += face.point.y - stroker->current_face.point.y;
	    //contour_add_point (stroker, &stroker->cw, &stroker->current_face.cw);

	    stroker->current_face.ccw.x += face.point.x - stroker->current_face.point.x;
	    stroker->current_face.ccw.y += face.point.y - stroker->current_face.point.y;
	    //contour_add_point (stroker, &stroker->ccw, &stroker->current_face.ccw);

	    if (clockwise) {
		inpt = &stroker->current_face.cw;
		outpt = &face.cw;
	    } else {
		inpt = &stroker->current_face.ccw;
		outpt = &face.ccw;
	    }
	    add_fan (stroker,
		     &stroker->current_face.dev_vector,
		     &face.dev_vector,
		     &stroker->current_face.point, inpt, outpt,
		     clockwise);
	}

	_cairo_tristrip_add_point (stroker->strip, &face.cw);
	_cairo_tristrip_add_point (stroker->strip, &face.ccw);
    }

    stroker->current_face = face;

    return CAIRO_STATUS_SUCCESS;
}

static cairo_status_t
curve_to (void *closure,
	  const cairo_point_t *b,
	  const cairo_point_t *c,
	  const cairo_point_t *d)
{
    struct stroker *stroker = closure;
    cairo_spline_t spline;
    cairo_stroke_face_t face;

    if (stroker->has_limits) {
	if (! _cairo_spline_intersects (&stroker->current_face.point, b, c, d,
					&stroker->limit))
	    return line_to (closure, d);
    }

    if (! _cairo_spline_init (&spline, spline_to, stroker,
			      &stroker->current_face.point, b, c, d))
	return line_to (closure, d);

    compute_face (&stroker->current_face.point, &spline.initial_slope,
		  stroker, &face);

    if (stroker->has_current_face) {
	int clockwise = join_is_clockwise (&stroker->current_face, &face);
	/* Join with final face from previous segment */
	outer_join (stroker, &stroker->current_face, &face, clockwise);
	inner_join (stroker, &stroker->current_face, &face, clockwise);
    } else {
	if (! stroker->has_first_face) {
	    /* Save sub path's first face in case needed for closing join */
	    stroker->first_face = face;
	    _cairo_tristrip_move_to (stroker->strip, &face.cw);
	    stroker->has_first_face = TRUE;
	}
	stroker->has_current_face = TRUE;

	_cairo_tristrip_add_point (stroker->strip, &face.cw);
	_cairo_tristrip_add_point (stroker->strip, &face.ccw);
    }
    stroker->current_face = face;

    return _cairo_spline_decompose (&spline, stroker->tolerance);
}

static cairo_status_t
close_path (void *closure)
{
    struct stroker *stroker = closure;
    cairo_status_t status;

    status = line_to (stroker, &stroker->first_point);
    if (unlikely (status))
	return status;

    if (stroker->has_first_face && stroker->has_current_face) {
	/* Join first and final faces of sub path */
	outer_close (stroker, &stroker->current_face, &stroker->first_face);
	inner_close (stroker, &stroker->current_face, &stroker->first_face);
    } else {
	/* Cap the start and end of the sub path as needed */
	add_caps (stroker);
    }

    stroker->has_sub_path = FALSE;
    stroker->has_first_face = FALSE;
    stroker->has_current_face = FALSE;

    return CAIRO_STATUS_SUCCESS;
}

cairo_int_status_t
_cairo_path_fixed_stroke_to_tristrip (const cairo_path_fixed_t	*path,
				      const cairo_stroke_style_t*style,
				      const cairo_matrix_t	*ctm,
				      const cairo_matrix_t	*ctm_inverse,
				      double			 tolerance,
				      cairo_tristrip_t		 *strip)
{
    struct stroker stroker;
    cairo_int_status_t status;
    int i;

    if (style->num_dashes)
	return CAIRO_INT_STATUS_UNSUPPORTED;

    stroker.style = *style;
    stroker.ctm = ctm;
    stroker.ctm_inverse = ctm_inverse;
    stroker.tolerance = tolerance;

    stroker.ctm_det_positive =
	_cairo_matrix_compute_determinant (ctm) >= 0.0;

    status = _cairo_pen_init (&stroker.pen,
		              style->line_width / 2.0,
			      tolerance, ctm);
    if (unlikely (status))
	return status;

    if (stroker.pen.num_vertices <= 1)
	return CAIRO_INT_STATUS_NOTHING_TO_DO;

    stroker.has_current_face = FALSE;
    stroker.has_first_face = FALSE;
    stroker.has_sub_path = FALSE;

    stroker.has_limits = strip->num_limits > 0;
    stroker.limit = strip->limits[0];
    for (i = 1; i < strip->num_limits; i++)
	_cairo_box_add_box (&stroker.limit, &strip->limits[i]);

    stroker.strip = strip;

    status = _cairo_path_fixed_interpret (path,
					  move_to,
					  line_to,
					  curve_to,
					  close_path,
					  &stroker);
    /* Cap the start and end of the final sub path as needed */
    if (likely (status == CAIRO_INT_STATUS_SUCCESS))
	add_caps (&stroker);

    _cairo_pen_fini (&stroker.pen);

    return status;
}