summaryrefslogtreecommitdiff
path: root/Build/source/libs/cairo/cairo-1.14.0/src/cairo-image-source.c
blob: 950053db2c1ebf594c911804380ba0c6c78fadb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2003 University of Southern California
 * Copyright © 2009,2010,2011 Intel Corporation
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is University of Southern
 * California.
 *
 * Contributor(s):
 *	Carl D. Worth <cworth@cworth.org>
 *	Chris Wilson <chris@chris-wilson.co.uk>
 */

/* The purpose of this file/surface is to simply translate a pattern
 * to a pixman_image_t and thence to feed it back to the general
 * compositor interface.
 */

#include "cairoint.h"

#include "cairo-image-surface-private.h"

#include "cairo-compositor-private.h"
#include "cairo-error-private.h"
#include "cairo-pattern-inline.h"
#include "cairo-paginated-private.h"
#include "cairo-recording-surface-private.h"
#include "cairo-surface-observer-private.h"
#include "cairo-surface-snapshot-inline.h"
#include "cairo-surface-subsurface-private.h"

#define PIXMAN_MAX_INT ((pixman_fixed_1 >> 1) - pixman_fixed_e) /* need to ensure deltas also fit */

#if CAIRO_NO_MUTEX
#define PIXMAN_HAS_ATOMIC_OPS 1
#endif

#if PIXMAN_HAS_ATOMIC_OPS
static pixman_image_t *__pixman_transparent_image;
static pixman_image_t *__pixman_black_image;
static pixman_image_t *__pixman_white_image;

static pixman_image_t *
_pixman_transparent_image (void)
{
    pixman_image_t *image;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    image = __pixman_transparent_image;
    if (unlikely (image == NULL)) {
	pixman_color_t color;

	color.red   = 0x00;
	color.green = 0x00;
	color.blue  = 0x00;
	color.alpha = 0x00;

	image = pixman_image_create_solid_fill (&color);
	if (unlikely (image == NULL))
	    return NULL;

	if (_cairo_atomic_ptr_cmpxchg (&__pixman_transparent_image,
				       NULL, image))
	{
	    pixman_image_ref (image);
	}
    } else {
	pixman_image_ref (image);
    }

    return image;
}

static pixman_image_t *
_pixman_black_image (void)
{
    pixman_image_t *image;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    image = __pixman_black_image;
    if (unlikely (image == NULL)) {
	pixman_color_t color;

	color.red   = 0x00;
	color.green = 0x00;
	color.blue  = 0x00;
	color.alpha = 0xffff;

	image = pixman_image_create_solid_fill (&color);
	if (unlikely (image == NULL))
	    return NULL;

	if (_cairo_atomic_ptr_cmpxchg (&__pixman_black_image,
				       NULL, image))
	{
	    pixman_image_ref (image);
	}
    } else {
	pixman_image_ref (image);
    }

    return image;
}

static pixman_image_t *
_pixman_white_image (void)
{
    pixman_image_t *image;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    image = __pixman_white_image;
    if (unlikely (image == NULL)) {
	pixman_color_t color;

	color.red   = 0xffff;
	color.green = 0xffff;
	color.blue  = 0xffff;
	color.alpha = 0xffff;

	image = pixman_image_create_solid_fill (&color);
	if (unlikely (image == NULL))
	    return NULL;

	if (_cairo_atomic_ptr_cmpxchg (&__pixman_white_image,
				       NULL, image))
	{
	    pixman_image_ref (image);
	}
    } else {
	pixman_image_ref (image);
    }

    return image;
}

static uint32_t
hars_petruska_f54_1_random (void)
{
#define rol(x,k) ((x << k) | (x >> (32-k)))
    static uint32_t x;
    return x = (x ^ rol (x, 5) ^ rol (x, 24)) + 0x37798849;
#undef rol
}

static struct {
    cairo_color_t color;
    pixman_image_t *image;
} cache[16];
static int n_cached;

#else  /* !PIXMAN_HAS_ATOMIC_OPS */
static pixman_image_t *
_pixman_transparent_image (void)
{
    TRACE ((stderr, "%s\n", __FUNCTION__));
    return _pixman_image_for_color (CAIRO_COLOR_TRANSPARENT);
}

static pixman_image_t *
_pixman_black_image (void)
{
    TRACE ((stderr, "%s\n", __FUNCTION__));
    return _pixman_image_for_color (CAIRO_COLOR_BLACK);
}

static pixman_image_t *
_pixman_white_image (void)
{
    TRACE ((stderr, "%s\n", __FUNCTION__));
    return _pixman_image_for_color (CAIRO_COLOR_WHITE);
}
#endif /* !PIXMAN_HAS_ATOMIC_OPS */


pixman_image_t *
_pixman_image_for_color (const cairo_color_t *cairo_color)
{
    pixman_color_t color;
    pixman_image_t *image;

#if PIXMAN_HAS_ATOMIC_OPS
    int i;

    if (CAIRO_COLOR_IS_CLEAR (cairo_color))
	return _pixman_transparent_image ();

    if (CAIRO_COLOR_IS_OPAQUE (cairo_color)) {
	if (cairo_color->red_short <= 0x00ff &&
	    cairo_color->green_short <= 0x00ff &&
	    cairo_color->blue_short <= 0x00ff)
	{
	    return _pixman_black_image ();
	}

	if (cairo_color->red_short >= 0xff00 &&
	    cairo_color->green_short >= 0xff00 &&
	    cairo_color->blue_short >= 0xff00)
	{
	    return _pixman_white_image ();
	}
    }

    CAIRO_MUTEX_LOCK (_cairo_image_solid_cache_mutex);
    for (i = 0; i < n_cached; i++) {
	if (_cairo_color_equal (&cache[i].color, cairo_color)) {
	    image = pixman_image_ref (cache[i].image);
	    goto UNLOCK;
	}
    }
#endif

    color.red   = cairo_color->red_short;
    color.green = cairo_color->green_short;
    color.blue  = cairo_color->blue_short;
    color.alpha = cairo_color->alpha_short;

    image = pixman_image_create_solid_fill (&color);
#if PIXMAN_HAS_ATOMIC_OPS
    if (image == NULL)
	goto UNLOCK;

    if (n_cached < ARRAY_LENGTH (cache)) {
	i = n_cached++;
    } else {
	i = hars_petruska_f54_1_random () % ARRAY_LENGTH (cache);
	pixman_image_unref (cache[i].image);
    }
    cache[i].image = pixman_image_ref (image);
    cache[i].color = *cairo_color;

UNLOCK:
    CAIRO_MUTEX_UNLOCK (_cairo_image_solid_cache_mutex);
#endif
    return image;
}


void
_cairo_image_reset_static_data (void)
{
#if PIXMAN_HAS_ATOMIC_OPS
    while (n_cached)
	pixman_image_unref (cache[--n_cached].image);

    if (__pixman_transparent_image) {
	pixman_image_unref (__pixman_transparent_image);
	__pixman_transparent_image = NULL;
    }

    if (__pixman_black_image) {
	pixman_image_unref (__pixman_black_image);
	__pixman_black_image = NULL;
    }

    if (__pixman_white_image) {
	pixman_image_unref (__pixman_white_image);
	__pixman_white_image = NULL;
    }
#endif
}

static pixman_image_t *
_pixman_image_for_gradient (const cairo_gradient_pattern_t *pattern,
			    const cairo_rectangle_int_t *extents,
			    int *ix, int *iy)
{
    pixman_image_t	  *pixman_image;
    pixman_gradient_stop_t pixman_stops_static[2];
    pixman_gradient_stop_t *pixman_stops = pixman_stops_static;
    pixman_transform_t      pixman_transform;
    cairo_matrix_t matrix;
    cairo_circle_double_t extremes[2];
    pixman_point_fixed_t p1, p2;
    unsigned int i;
    cairo_int_status_t status;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    if (pattern->n_stops > ARRAY_LENGTH(pixman_stops_static)) {
	pixman_stops = _cairo_malloc_ab (pattern->n_stops,
					 sizeof(pixman_gradient_stop_t));
	if (unlikely (pixman_stops == NULL))
	    return NULL;
    }

    for (i = 0; i < pattern->n_stops; i++) {
	pixman_stops[i].x = _cairo_fixed_16_16_from_double (pattern->stops[i].offset);
	pixman_stops[i].color.red   = pattern->stops[i].color.red_short;
	pixman_stops[i].color.green = pattern->stops[i].color.green_short;
	pixman_stops[i].color.blue  = pattern->stops[i].color.blue_short;
	pixman_stops[i].color.alpha = pattern->stops[i].color.alpha_short;
    }

    _cairo_gradient_pattern_fit_to_range (pattern, PIXMAN_MAX_INT >> 1, &matrix, extremes);

    p1.x = _cairo_fixed_16_16_from_double (extremes[0].center.x);
    p1.y = _cairo_fixed_16_16_from_double (extremes[0].center.y);
    p2.x = _cairo_fixed_16_16_from_double (extremes[1].center.x);
    p2.y = _cairo_fixed_16_16_from_double (extremes[1].center.y);

    if (pattern->base.type == CAIRO_PATTERN_TYPE_LINEAR) {
	pixman_image = pixman_image_create_linear_gradient (&p1, &p2,
							    pixman_stops,
							    pattern->n_stops);
    } else {
	pixman_fixed_t r1, r2;

	r1   = _cairo_fixed_16_16_from_double (extremes[0].radius);
	r2   = _cairo_fixed_16_16_from_double (extremes[1].radius);

	pixman_image = pixman_image_create_radial_gradient (&p1, &p2, r1, r2,
							    pixman_stops,
							    pattern->n_stops);
    }

    if (pixman_stops != pixman_stops_static)
	free (pixman_stops);

    if (unlikely (pixman_image == NULL))
	return NULL;

    *ix = *iy = 0;
    status = _cairo_matrix_to_pixman_matrix_offset (&matrix, pattern->base.filter,
						    extents->x + extents->width/2.,
						    extents->y + extents->height/2.,
						    &pixman_transform, ix, iy);
    if (status != CAIRO_INT_STATUS_NOTHING_TO_DO) {
	if (unlikely (status != CAIRO_INT_STATUS_SUCCESS) ||
	    ! pixman_image_set_transform (pixman_image, &pixman_transform))
	{
	    pixman_image_unref (pixman_image);
	    return NULL;
	}
    }

    {
	pixman_repeat_t pixman_repeat;

	switch (pattern->base.extend) {
	default:
	case CAIRO_EXTEND_NONE:
	    pixman_repeat = PIXMAN_REPEAT_NONE;
	    break;
	case CAIRO_EXTEND_REPEAT:
	    pixman_repeat = PIXMAN_REPEAT_NORMAL;
	    break;
	case CAIRO_EXTEND_REFLECT:
	    pixman_repeat = PIXMAN_REPEAT_REFLECT;
	    break;
	case CAIRO_EXTEND_PAD:
	    pixman_repeat = PIXMAN_REPEAT_PAD;
	    break;
	}

	pixman_image_set_repeat (pixman_image, pixman_repeat);
    }

    return pixman_image;
}

static pixman_image_t *
_pixman_image_for_mesh (const cairo_mesh_pattern_t *pattern,
			const cairo_rectangle_int_t *extents,
			int *tx, int *ty)
{
    pixman_image_t *image;
    int width, height;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    *tx = -extents->x;
    *ty = -extents->y;
    width = extents->width;
    height = extents->height;

    image = pixman_image_create_bits (PIXMAN_a8r8g8b8, width, height, NULL, 0);
    if (unlikely (image == NULL))
	return NULL;

    _cairo_mesh_pattern_rasterize (pattern,
				   pixman_image_get_data (image),
				   width, height,
				   pixman_image_get_stride (image),
				   *tx, *ty);
    return image;
}

struct acquire_source_cleanup {
    cairo_surface_t *surface;
    cairo_image_surface_t *image;
    void *image_extra;
};

static void
_acquire_source_cleanup (pixman_image_t *pixman_image,
			 void *closure)
{
    struct acquire_source_cleanup *data = closure;

    _cairo_surface_release_source_image (data->surface,
					 data->image,
					 data->image_extra);
    free (data);
}

static void
_defer_free_cleanup (pixman_image_t *pixman_image,
		     void *closure)
{
    cairo_surface_destroy (closure);
}

static uint16_t
expand_channel (uint16_t v, uint32_t bits)
{
    int offset = 16 - bits;
    while (offset > 0) {
	v |= v >> bits;
	offset -= bits;
	bits += bits;
    }
    return v;
}

static pixman_image_t *
_pixel_to_solid (cairo_image_surface_t *image, int x, int y)
{
    uint32_t pixel;
    pixman_color_t color;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    switch (image->format) {
    default:
    case CAIRO_FORMAT_INVALID:
	ASSERT_NOT_REACHED;
	return NULL;

    case CAIRO_FORMAT_A1:
	pixel = *(uint8_t *) (image->data + y * image->stride + x/8);
	return pixel & (1 << (x&7)) ? _pixman_black_image () : _pixman_transparent_image ();

    case CAIRO_FORMAT_A8:
	color.alpha = *(uint8_t *) (image->data + y * image->stride + x);
	color.alpha |= color.alpha << 8;
	if (color.alpha == 0)
	    return _pixman_transparent_image ();
	if (color.alpha == 0xffff)
	    return _pixman_black_image ();

	color.red = color.green = color.blue = 0;
	return pixman_image_create_solid_fill (&color);

    case CAIRO_FORMAT_RGB16_565:
	pixel = *(uint16_t *) (image->data + y * image->stride + 2 * x);
	if (pixel == 0)
	    return _pixman_black_image ();
	if (pixel == 0xffff)
	    return _pixman_white_image ();

	color.alpha = 0xffff;
	color.red = expand_channel ((pixel >> 11 & 0x1f) << 11, 5);
	color.green = expand_channel ((pixel >> 5 & 0x3f) << 10, 6);
	color.blue = expand_channel ((pixel & 0x1f) << 11, 5);
	return pixman_image_create_solid_fill (&color);

    case CAIRO_FORMAT_RGB30:
	pixel = *(uint32_t *) (image->data + y * image->stride + 4 * x);
	pixel &= 0x3fffffff; /* ignore alpha bits */
	if (pixel == 0)
	    return _pixman_black_image ();
	if (pixel == 0x3fffffff)
	    return _pixman_white_image ();

	/* convert 10bpc to 16bpc */
	color.alpha = 0xffff;
	color.red = expand_channel((pixel >> 20) & 0x3fff, 10);
	color.green = expand_channel((pixel >> 10) & 0x3fff, 10);
	color.blue = expand_channel(pixel & 0x3fff, 10);
	return pixman_image_create_solid_fill (&color);

    case CAIRO_FORMAT_ARGB32:
    case CAIRO_FORMAT_RGB24:
	pixel = *(uint32_t *) (image->data + y * image->stride + 4 * x);
	color.alpha = image->format == CAIRO_FORMAT_ARGB32 ? (pixel >> 24) | (pixel >> 16 & 0xff00) : 0xffff;
	if (color.alpha == 0)
	    return _pixman_transparent_image ();
	if (pixel == 0xffffffff)
	    return _pixman_white_image ();
	if (color.alpha == 0xffff && (pixel & 0xffffff) == 0)
	    return _pixman_black_image ();

	color.red = (pixel >> 16 & 0xff) | (pixel >> 8 & 0xff00);
	color.green = (pixel >> 8 & 0xff) | (pixel & 0xff00);
	color.blue = (pixel & 0xff) | (pixel << 8 & 0xff00);
	return pixman_image_create_solid_fill (&color);
    }
}

/* ========================================================================== */

/* Index into filter table */
typedef enum
{
    KERNEL_IMPULSE,
    KERNEL_BOX,
    KERNEL_LINEAR,
    KERNEL_MITCHELL,
    KERNEL_NOTCH,
    KERNEL_CATMULL_ROM,
    KERNEL_LANCZOS3,
    KERNEL_LANCZOS3_STRETCHED,
    KERNEL_TENT
} kernel_t;

/* Produce contribution of a filter of size r for pixel centered on x.
   For a typical low-pass function this evaluates the function at x/r.
   If the frequency is higher than 1/2, such as when r is less than 1,
   this may need to integrate several samples, see cubic for examples.
*/
typedef double (* kernel_func_t) (double x, double r);

/* Return maximum number of pixels that will be non-zero. Except for
   impluse this is the maximum of 2 and the width of the non-zero part
   of the filter rounded up to the next integer.
*/
typedef int (* kernel_width_func_t) (double r);

/* Table of filters */
typedef struct
{
    kernel_t		kernel;
    kernel_func_t	func;
    kernel_width_func_t	width;
} filter_info_t;

/* PIXMAN_KERNEL_IMPULSE: Returns pixel nearest the center.  This
   matches PIXMAN_FILTER_NEAREST. This is useful if you wish to
   combine the result of nearest in one direction with another filter
   in the other.
*/

static double
impulse_kernel (double x, double r)
{
    return 1;
}

static int
impulse_width (double r)
{
    return 1;
}

/* PIXMAN_KERNEL_BOX: Intersection of a box of width r with square
   pixels. This is the smallest possible filter such that the output
   image contains an equal contribution from all the input
   pixels. Lots of software uses this. The function is a trapazoid of
   width r+1, not a box.

   When r == 1.0, PIXMAN_KERNEL_BOX, PIXMAN_KERNEL_LINEAR, and
   PIXMAN_KERNEL_TENT all produce the same filter, allowing
   them to be exchanged at this point.
*/

static double
box_kernel (double x, double r)
{
    return MAX (0.0, MIN (MIN (r, 1.0),
			  MIN ((r + 1) / 2 - x, (r + 1) / 2 + x)));
}

static int
box_width (double r)
{
    return r < 1.0 ? 2 : ceil(r + 1);
}

/* PIXMAN_KERNEL_LINEAR: Weighted sum of the two pixels nearest the
   center, or a triangle of width 2. This matches
   PIXMAN_FILTER_BILINEAR. This is useful if you wish to combine the
   result of bilinear in one direction with another filter in the
   other.  This is not a good filter if r > 1. You may actually want
   PIXMAN_FILTER_TENT.

   When r == 1.0, PIXMAN_KERNEL_BOX, PIXMAN_KERNEL_LINEAR, and
   PIXMAN_KERNEL_TENT all produce the same filter, allowing
   them to be exchanged at this point.
*/

static double
linear_kernel (double x, double r)
{
    return MAX (1.0 - fabs(x), 0.0);
}

static int
linear_width (double r)
{
    return 2;
}

/* Cubic functions described in the Mitchell-Netravali paper.
   http://mentallandscape.com/Papers_siggraph88.pdf. This describes
   all possible cubic functions that can be used for sampling.
*/

static double
general_cubic (double x, double r, double B, double C)
{
    double ax;
    if (r < 1.0)
	return
	    general_cubic(x * 2 - .5, r * 2, B, C) +
	    general_cubic(x * 2 + .5, r * 2, B, C);

    ax = fabs (x / r);

    if (ax < 1)
    {
	return (((12 - 9 * B - 6 * C) * ax +
		 (-18 + 12 * B + 6 * C)) * ax * ax +
		(6 - 2 * B)) / 6;
    }
    else if (ax < 2)
    {
	return ((((-B - 6 * C) * ax +
		 (6 * B + 30 * C)) * ax +
		(-12 * B - 48 * C)) * ax +
		(8 * B + 24 * C)) / 6;
    }
    else
    {
	return 0.0;
    }
}

static int
cubic_width (double r)
{
    return MAX (2, ceil (r * 4));
}

/* PIXMAN_KERNEL_CATMULL_ROM: Catmull-Rom interpolation. Often called
   "cubic interpolation", "b-spline", or just "cubic" by other
   software. This filter has negative values so it can produce ringing
   and output pixels outside the range of input pixels. This is very
   close to lanczos2 so there is no reason to supply that as well.
*/

static double
cubic_kernel (double x, double r)
{
    return general_cubic (x, r, 0.0, 0.5);
}

/* PIXMAN_KERNEL_MITCHELL: Cubic recommended by the Mitchell-Netravali
   paper.  This has negative values and because the values at +/-1 are
   not zero it does not interpolate the pixels, meaning it will change
   an image even if there is no translation.
*/

static double
mitchell_kernel (double x, double r)
{
    return general_cubic (x, r, 1/3.0, 1/3.0);
}

/* PIXMAN_KERNEL_NOTCH: Cubic recommended by the Mitchell-Netravali
   paper to remove postaliasing artifacts. This does not remove
   aliasing already present in the source image, though it may appear
   to due to it's excessive blurriness. In any case this is more
   useful than gaussian for image reconstruction.
*/

static double
notch_kernel (double x, double r)
{
    return general_cubic (x, r, 1.5, -0.25);
}

/* PIXMAN_KERNEL_LANCZOS3: lanczos windowed sinc function from -3 to
   +3. Very popular with high-end software though I think any
   advantage over cubics is hidden by quantization and programming
   mistakes. You will see LANCZOS5 or even 7 sometimes.
*/

static double
sinc (double x)
{
    return x ? sin (M_PI * x) / (M_PI * x) : 1.0;
}

static double
lanczos (double x, double n)
{
    return fabs (x) < n ? sinc (x) * sinc (x * (1.0 / n)) : 0.0;
}

static double
lanczos3_kernel (double x, double r)
{
    if (r < 1.0)
	return
	    lanczos3_kernel (x * 2 - .5, r * 2) +
	    lanczos3_kernel (x * 2 + .5, r * 2);
    else
	return lanczos (x / r, 3.0);
}

static int
lanczos3_width (double r)
{
    return MAX (2, ceil (r * 6));
}

/* PIXMAN_KERNEL_LANCZOS3_STRETCHED - The LANCZOS3 kernel widened by
   4/3.  Recommended by Jim Blinn
   http://graphics.cs.cmu.edu/nsp/course/15-462/Fall07/462/papers/jaggy.pdf
*/

static double
nice_kernel (double x, double r)
{
    return lanczos3_kernel (x, r * (4.0/3));
}

static int
nice_width (double r)
{
    return MAX (2.0, ceil (r * 8));
}

/* PIXMAN_KERNEL_TENT: Triangle of width 2r. Lots of software uses
   this as a "better" filter, twice the size of a box but smaller than
   a cubic.

   When r == 1.0, PIXMAN_KERNEL_BOX, PIXMAN_KERNEL_LINEAR, and
   PIXMAN_KERNEL_TENT all produce the same filter, allowing
   them to be exchanged at this point.
*/

static double
tent_kernel (double x, double r)
{
    if (r < 1.0)
	return box_kernel(x, r);
    else
	return MAX (1.0 - fabs(x / r), 0.0);
}

static int
tent_width (double r)
{
    return r < 1.0 ? 2 : ceil(2 * r);
}


static const filter_info_t filters[] =
{
    { KERNEL_IMPULSE,		impulse_kernel,   impulse_width },
    { KERNEL_BOX,		box_kernel,       box_width },
    { KERNEL_LINEAR,		linear_kernel,    linear_width },
    { KERNEL_MITCHELL,		mitchell_kernel,  cubic_width },
    { KERNEL_NOTCH,		notch_kernel,     cubic_width },
    { KERNEL_CATMULL_ROM,	cubic_kernel,     cubic_width },
    { KERNEL_LANCZOS3,		lanczos3_kernel,  lanczos3_width },
    { KERNEL_LANCZOS3_STRETCHED,nice_kernel,      nice_width },
    { KERNEL_TENT,		tent_kernel,	  tent_width }
};

/* Fills in one dimension of the filter array */
static void get_filter(kernel_t filter, double r,
		       int width, int subsample,
		       pixman_fixed_t* out)
{
    int i;
    pixman_fixed_t *p = out;
    int n_phases = 1 << subsample;
    double step = 1.0 / n_phases;
    kernel_func_t func = filters[filter].func;

    /* special-case the impulse filter: */
    if (width <= 1)
    {
	for (i = 0; i < n_phases; ++i)
	    *p++ = pixman_fixed_1;
	return;
    }

    for (i = 0; i < n_phases; ++i)
    {
	double frac = (i + .5) * step;
	/* Center of left-most pixel: */
	double x1 = ceil (frac - width / 2.0 - 0.5) - frac + 0.5;
	double total = 0;
	pixman_fixed_t new_total = 0;
	int j;

	for (j = 0; j < width; ++j)
	{
	    double v = func(x1 + j, r);
	    total += v;
	    p[j] = pixman_double_to_fixed (v);
	}

	/* Normalize */
        total = 1 / total;
	for (j = 0; j < width; ++j)
	    new_total += (p[j] *= total);

	/* Put any error on center pixel */
	p[width / 2] += (pixman_fixed_1 - new_total);

	p += width;
    }
}


/* Create the parameter list for a SEPARABLE_CONVOLUTION filter
 * with the given kernels and scale parameters. 
 */
static pixman_fixed_t *
create_separable_convolution (int *n_values,
			      kernel_t xfilter,
			      double sx,
			      kernel_t yfilter,
			      double sy)
{
    int xwidth, xsubsample, ywidth, ysubsample, size_x, size_y;
    pixman_fixed_t *params;

    xwidth = filters[xfilter].width(sx);
    xsubsample = 0;
    if (xwidth > 1)
	while (sx * (1 << xsubsample) <= 128.0) xsubsample++;
    size_x = (1 << xsubsample) * xwidth;

    ywidth = filters[yfilter].width(sy);
    ysubsample = 0;
    if (ywidth > 1)
	while (sy * (1 << ysubsample) <= 128.0) ysubsample++;
    size_y = (1 << ysubsample) * ywidth;

    *n_values = 4 + size_x + size_y;
    params = malloc (*n_values * sizeof (pixman_fixed_t));
    if (!params) return 0;

    params[0] = pixman_int_to_fixed (xwidth);
    params[1] = pixman_int_to_fixed (ywidth);
    params[2] = pixman_int_to_fixed (xsubsample);
    params[3] = pixman_int_to_fixed (ysubsample);

    get_filter(xfilter, sx, xwidth, xsubsample, params + 4);
    get_filter(yfilter, sy, ywidth, ysubsample, params + 4 + size_x);

    return params;
}

/* ========================================================================== */

static cairo_bool_t
_pixman_image_set_properties (pixman_image_t *pixman_image,
			      const cairo_pattern_t *pattern,
			      const cairo_rectangle_int_t *extents,
			      int *ix,int *iy)
{
    pixman_transform_t pixman_transform;
    cairo_int_status_t status;

    status = _cairo_matrix_to_pixman_matrix_offset (&pattern->matrix,
						    pattern->filter,
						    extents->x + extents->width/2.,
						    extents->y + extents->height/2.,
						    &pixman_transform, ix, iy);
    if (status == CAIRO_INT_STATUS_NOTHING_TO_DO)
    {
	/* If the transform is an identity, we don't need to set it
	 * and we can use any filtering, so choose the fastest one. */
	pixman_image_set_filter (pixman_image, PIXMAN_FILTER_NEAREST, NULL, 0);
    }
    else if (unlikely (status != CAIRO_INT_STATUS_SUCCESS ||
		       ! pixman_image_set_transform (pixman_image,
						     &pixman_transform)))
    {
	return FALSE;
    }
    else
    {
	pixman_filter_t pixman_filter;
	kernel_t kernel;
	double dx, dy;

	/* Compute scale factors from the pattern matrix. These scale
	 * factors are from user to pattern space, and as such they
	 * are greater than 1.0 for downscaling and less than 1.0 for
	 * upscaling. The factors are the size of an axis-aligned
	 * rectangle with the same area as the parallelgram a 1x1
	 * square transforms to.
	 */
	dx = hypot (pattern->matrix.xx, pattern->matrix.xy);
	dy = hypot (pattern->matrix.yx, pattern->matrix.yy);

	/* Clip at maximum pixman_fixed number. Besides making it
	 * passable to pixman, this avoids errors from inf and nan.
	 */
	if (! (dx < 0x7FFF)) dx = 0x7FFF;
	if (! (dy < 0x7FFF)) dy = 0x7FFF;

	switch (pattern->filter) {
	case CAIRO_FILTER_FAST:
	    pixman_filter = PIXMAN_FILTER_FAST;
	    break;
	case CAIRO_FILTER_GOOD:
	    pixman_filter = PIXMAN_FILTER_SEPARABLE_CONVOLUTION;
	    kernel = KERNEL_BOX;
	    /* Clip the filter size to prevent extreme slowness. This
	       value could be raised if 2-pass filtering is done */
	    if (dx > 16.0) dx = 16.0;
	    if (dy > 16.0) dy = 16.0;
	    /* Match the bilinear filter for scales > .75: */
	    if (dx < 1.0/0.75) dx = 1.0;
	    if (dy < 1.0/0.75) dy = 1.0;
	    break;
	case CAIRO_FILTER_BEST:
	    pixman_filter = PIXMAN_FILTER_SEPARABLE_CONVOLUTION;
	    kernel = KERNEL_CATMULL_ROM; /* LANCZOS3 is better but not much */
	    /* Clip the filter size to prevent extreme slowness. This
	       value could be raised if 2-pass filtering is done */
	    if (dx > 16.0) { dx = 16.0; kernel = KERNEL_BOX; }
	    /* blur up to 2x scale, then blend to square pixels for larger: */
	    else if (dx < 1.0) {
		if (dx < 1.0/128) dx = 1.0/127;
		else if (dx < 0.5) dx = 1.0 / (1.0 / dx - 1.0);
		else dx = 1.0;
	    }
	    if (dy > 16.0) { dy = 16.0; kernel = KERNEL_BOX; }
	    else if (dy < 1.0) {
		if (dy < 1.0/128) dy = 1.0/127;
		else if (dy < 0.5) dy = 1.0 / (1.0 / dy - 1.0);
		else dy = 1.0;
	    }
	    break;
	case CAIRO_FILTER_NEAREST:
	    pixman_filter = PIXMAN_FILTER_NEAREST;
	    break;
	case CAIRO_FILTER_BILINEAR:
	    pixman_filter = PIXMAN_FILTER_BILINEAR;
	    break;
	case CAIRO_FILTER_GAUSSIAN:
	    /* XXX: The GAUSSIAN value has no implementation in cairo
	     * whatsoever, so it was really a mistake to have it in the
	     * API. We could fix this by officially deprecating it, or
	     * else inventing semantics and providing an actual
	     * implementation for it. */
	default:
	    pixman_filter = PIXMAN_FILTER_BEST;
	}

	if (pixman_filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION) {
	    int n_params;
	    pixman_fixed_t *params;
	    params = create_separable_convolution
		(&n_params, kernel, dx, kernel, dy);
	    pixman_image_set_filter (pixman_image, pixman_filter,
				     params, n_params);
	    free (params);
	} else {
	    pixman_image_set_filter (pixman_image, pixman_filter, NULL, 0);
	}
    }

    {
	pixman_repeat_t pixman_repeat;

	switch (pattern->extend) {
	default:
	case CAIRO_EXTEND_NONE:
	    pixman_repeat = PIXMAN_REPEAT_NONE;
	    break;
	case CAIRO_EXTEND_REPEAT:
	    pixman_repeat = PIXMAN_REPEAT_NORMAL;
	    break;
	case CAIRO_EXTEND_REFLECT:
	    pixman_repeat = PIXMAN_REPEAT_REFLECT;
	    break;
	case CAIRO_EXTEND_PAD:
	    pixman_repeat = PIXMAN_REPEAT_PAD;
	    break;
	}

	pixman_image_set_repeat (pixman_image, pixman_repeat);
    }

    if (pattern->has_component_alpha)
	pixman_image_set_component_alpha (pixman_image, TRUE);

    return TRUE;
}

struct proxy {
    cairo_surface_t base;
    cairo_surface_t *image;
};

static cairo_status_t
proxy_acquire_source_image (void			 *abstract_surface,
			    cairo_image_surface_t	**image_out,
			    void			**image_extra)
{
    struct proxy *proxy = abstract_surface;
    return _cairo_surface_acquire_source_image (proxy->image, image_out, image_extra);
}

static void
proxy_release_source_image (void			*abstract_surface,
			    cairo_image_surface_t	*image,
			    void			*image_extra)
{
    struct proxy *proxy = abstract_surface;
    _cairo_surface_release_source_image (proxy->image, image, image_extra);
}

static cairo_status_t
proxy_finish (void *abstract_surface)
{
    return CAIRO_STATUS_SUCCESS;
}

static const cairo_surface_backend_t proxy_backend  = {
    CAIRO_INTERNAL_SURFACE_TYPE_NULL,
    proxy_finish,
    NULL,

    NULL, /* create similar */
    NULL, /* create similar image */
    NULL, /* map to image */
    NULL, /* unmap image */

    _cairo_surface_default_source,
    proxy_acquire_source_image,
    proxy_release_source_image,
};

static cairo_surface_t *
attach_proxy (cairo_surface_t *source,
	      cairo_surface_t *image)
{
    struct proxy *proxy;

    proxy = malloc (sizeof (*proxy));
    if (unlikely (proxy == NULL))
	return _cairo_surface_create_in_error (CAIRO_STATUS_NO_MEMORY);

    _cairo_surface_init (&proxy->base, &proxy_backend, NULL, image->content);

    proxy->image = image;
    _cairo_surface_attach_snapshot (source, &proxy->base, NULL);

    return &proxy->base;
}

static void
detach_proxy (cairo_surface_t *source,
	      cairo_surface_t *proxy)
{
    cairo_surface_finish (proxy);
    cairo_surface_destroy (proxy);
}

static cairo_surface_t *
get_proxy (cairo_surface_t *proxy)
{
    return ((struct proxy *)proxy)->image;
}

static pixman_image_t *
_pixman_image_for_recording (cairo_image_surface_t *dst,
			     const cairo_surface_pattern_t *pattern,
			     cairo_bool_t is_mask,
			     const cairo_rectangle_int_t *extents,
			     const cairo_rectangle_int_t *sample,
			     int *ix, int *iy)
{
    cairo_surface_t *source, *clone, *proxy;
    cairo_rectangle_int_t limit;
    pixman_image_t *pixman_image;
    cairo_status_t status;
    cairo_extend_t extend;
    cairo_matrix_t *m, matrix;
    int tx = 0, ty = 0;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    *ix = *iy = 0;

    source = _cairo_pattern_get_source (pattern, &limit);

    extend = pattern->base.extend;
    if (_cairo_rectangle_contains_rectangle (&limit, sample))
	extend = CAIRO_EXTEND_NONE;
    if (extend == CAIRO_EXTEND_NONE) {
	if (! _cairo_rectangle_intersect (&limit, sample))
	    return _pixman_transparent_image ();

	if (! _cairo_matrix_is_identity (&pattern->base.matrix)) {
	    double x1, y1, x2, y2;

	    matrix = pattern->base.matrix;
	    status = cairo_matrix_invert (&matrix);
	    assert (status == CAIRO_STATUS_SUCCESS);

	    x1 = limit.x;
	    y1 = limit.y;
	    x2 = limit.x + limit.width;
	    y2 = limit.y + limit.height;

	    _cairo_matrix_transform_bounding_box (&matrix,
						  &x1, &y1, &x2, &y2, NULL);

	    limit.x = floor (x1);
	    limit.y = floor (y1);
	    limit.width  = ceil (x2) - limit.x;
	    limit.height = ceil (y2) - limit.y;
	}
    }
    tx = limit.x;
    ty = limit.y;

    /* XXX transformations! */
    proxy = _cairo_surface_has_snapshot (source, &proxy_backend);
    if (proxy != NULL) {
	clone = cairo_surface_reference (get_proxy (proxy));
	goto done;
    }

    if (is_mask) {
	    clone = cairo_image_surface_create (CAIRO_FORMAT_A8,
						limit.width, limit.height);
    } else {
	if (dst->base.content == source->content)
	    clone = cairo_image_surface_create (dst->format,
						limit.width, limit.height);
	else
	    clone = _cairo_image_surface_create_with_content (source->content,
							      limit.width,
							      limit.height);
    }

    m = NULL;
    if (extend == CAIRO_EXTEND_NONE) {
	matrix = pattern->base.matrix;
	if (tx | ty)
	    cairo_matrix_translate (&matrix, tx, ty);
	m = &matrix;
    } else {
	/* XXX extract scale factor for repeating patterns */
    }

    /* Handle recursion by returning future reads from the current image */
    proxy = attach_proxy (source, clone);
    status = _cairo_recording_surface_replay_with_clip (source, m, clone, NULL);
    detach_proxy (source, proxy);
    if (unlikely (status)) {
	cairo_surface_destroy (clone);
	return NULL;
    }

done:
    pixman_image = pixman_image_ref (((cairo_image_surface_t *)clone)->pixman_image);
    cairo_surface_destroy (clone);

    *ix = -limit.x;
    *iy = -limit.y;
    if (extend != CAIRO_EXTEND_NONE) {
	if (! _pixman_image_set_properties (pixman_image,
					    &pattern->base, extents,
					    ix, iy)) {
	    pixman_image_unref (pixman_image);
	    pixman_image= NULL;
	}
    }

    return pixman_image;
}

static pixman_image_t *
_pixman_image_for_surface (cairo_image_surface_t *dst,
			   const cairo_surface_pattern_t *pattern,
			   cairo_bool_t is_mask,
			   const cairo_rectangle_int_t *extents,
			   const cairo_rectangle_int_t *sample,
			   int *ix, int *iy)
{
    cairo_extend_t extend = pattern->base.extend;
    pixman_image_t *pixman_image;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    *ix = *iy = 0;
    pixman_image = NULL;
    if (pattern->surface->type == CAIRO_SURFACE_TYPE_RECORDING)
	return _pixman_image_for_recording(dst, pattern,
					   is_mask, extents, sample,
					   ix, iy);

    if (pattern->surface->type == CAIRO_SURFACE_TYPE_IMAGE &&
	(! is_mask || ! pattern->base.has_component_alpha ||
	 (pattern->surface->content & CAIRO_CONTENT_COLOR) == 0))
    {
	cairo_surface_t *defer_free = NULL;
	cairo_image_surface_t *source = (cairo_image_surface_t *) pattern->surface;
	cairo_surface_type_t type;

	if (_cairo_surface_is_snapshot (&source->base)) {
	    defer_free = _cairo_surface_snapshot_get_target (&source->base);
	    source = (cairo_image_surface_t *) defer_free;
	}

	type = source->base.backend->type;
	if (type == CAIRO_SURFACE_TYPE_IMAGE) {
	    if (extend != CAIRO_EXTEND_NONE &&
		sample->x >= 0 &&
		sample->y >= 0 &&
		sample->x + sample->width  <= source->width &&
		sample->y + sample->height <= source->height)
	    {
		extend = CAIRO_EXTEND_NONE;
	    }

	    if (sample->width == 1 && sample->height == 1) {
		if (sample->x < 0 ||
		    sample->y < 0 ||
		    sample->x >= source->width ||
		    sample->y >= source->height)
		{
		    if (extend == CAIRO_EXTEND_NONE) {
			cairo_surface_destroy (defer_free);
			return _pixman_transparent_image ();
		    }
		}
		else
		{
		    pixman_image = _pixel_to_solid (source,
						    sample->x, sample->y);
                    if (pixman_image) {
			cairo_surface_destroy (defer_free);
                        return pixman_image;
		    }
		}
	    }

#if PIXMAN_HAS_ATOMIC_OPS
	    /* avoid allocating a 'pattern' image if we can reuse the original */
	    if (extend == CAIRO_EXTEND_NONE &&
		_cairo_matrix_is_pixman_translation (&pattern->base.matrix,
						     pattern->base.filter,
						     ix, iy))
	    {
		cairo_surface_destroy (defer_free);
		return pixman_image_ref (source->pixman_image);
	    }
#endif

	    pixman_image = pixman_image_create_bits (source->pixman_format,
						     source->width,
						     source->height,
						     (uint32_t *) source->data,
						     source->stride);
	    if (unlikely (pixman_image == NULL)) {
		cairo_surface_destroy (defer_free);
		return NULL;
	    }

	    if (defer_free) {
		pixman_image_set_destroy_function (pixman_image,
						   _defer_free_cleanup,
						   defer_free);
	    }
	} else if (type == CAIRO_SURFACE_TYPE_SUBSURFACE) {
	    cairo_surface_subsurface_t *sub;
	    cairo_bool_t is_contained = FALSE;

	    sub = (cairo_surface_subsurface_t *) source;
	    source = (cairo_image_surface_t *) sub->target;

	    if (sample->x >= 0 &&
		sample->y >= 0 &&
		sample->x + sample->width  <= sub->extents.width &&
		sample->y + sample->height <= sub->extents.height)
	    {
		is_contained = TRUE;
	    }

	    if (sample->width == 1 && sample->height == 1) {
		if (is_contained) {
		    pixman_image = _pixel_to_solid (source,
                                                    sub->extents.x + sample->x,
                                                    sub->extents.y + sample->y);
                    if (pixman_image)
                        return pixman_image;
		} else {
		    if (extend == CAIRO_EXTEND_NONE)
			return _pixman_transparent_image ();
		}
	    }

#if PIXMAN_HAS_ATOMIC_OPS
	    *ix = sub->extents.x;
	    *iy = sub->extents.y;
	    if (is_contained &&
		_cairo_matrix_is_pixman_translation (&pattern->base.matrix,
						     pattern->base.filter,
						     ix, iy))
	    {
		return pixman_image_ref (source->pixman_image);
	    }
#endif

	    /* Avoid sub-byte offsets, force a copy in that case. */
	    if (PIXMAN_FORMAT_BPP (source->pixman_format) >= 8) {
		if (is_contained) {
		    void *data = source->data
			+ sub->extents.x * PIXMAN_FORMAT_BPP(source->pixman_format)/8
			+ sub->extents.y * source->stride;
		    pixman_image = pixman_image_create_bits (source->pixman_format,
							     sub->extents.width,
							     sub->extents.height,
							     data,
							     source->stride);
		    if (unlikely (pixman_image == NULL))
			return NULL;
		} else {
		    /* XXX for a simple translation and EXTEND_NONE we can
		     * fix up the pattern matrix instead.
		     */
		}
	    }
	}
    }

    if (pixman_image == NULL) {
	struct acquire_source_cleanup *cleanup;
	cairo_image_surface_t *image;
	void *extra;
	cairo_status_t status;

	status = _cairo_surface_acquire_source_image (pattern->surface, &image, &extra);
	if (unlikely (status))
	    return NULL;

	pixman_image = pixman_image_create_bits (image->pixman_format,
						 image->width,
						 image->height,
						 (uint32_t *) image->data,
						 image->stride);
	if (unlikely (pixman_image == NULL)) {
	    _cairo_surface_release_source_image (pattern->surface, image, extra);
	    return NULL;
	}

	cleanup = malloc (sizeof (*cleanup));
	if (unlikely (cleanup == NULL)) {
	    _cairo_surface_release_source_image (pattern->surface, image, extra);
	    pixman_image_unref (pixman_image);
	    return NULL;
	}

	cleanup->surface = pattern->surface;
	cleanup->image = image;
	cleanup->image_extra = extra;
	pixman_image_set_destroy_function (pixman_image,
					   _acquire_source_cleanup, cleanup);
    }

    if (! _pixman_image_set_properties (pixman_image,
					&pattern->base, extents,
					ix, iy)) {
	pixman_image_unref (pixman_image);
	pixman_image= NULL;
    }

    return pixman_image;
}

struct raster_source_cleanup {
    const cairo_pattern_t *pattern;
    cairo_surface_t *surface;
    cairo_image_surface_t *image;
    void *image_extra;
};

static void
_raster_source_cleanup (pixman_image_t *pixman_image,
			void *closure)
{
    struct raster_source_cleanup *data = closure;

    _cairo_surface_release_source_image (data->surface,
					 data->image,
					 data->image_extra);

    _cairo_raster_source_pattern_release (data->pattern,
					  data->surface);

    free (data);
}

static pixman_image_t *
_pixman_image_for_raster (cairo_image_surface_t *dst,
			  const cairo_raster_source_pattern_t *pattern,
			  cairo_bool_t is_mask,
			  const cairo_rectangle_int_t *extents,
			  const cairo_rectangle_int_t *sample,
			  int *ix, int *iy)
{
    pixman_image_t *pixman_image;
    struct raster_source_cleanup *cleanup;
    cairo_image_surface_t *image;
    void *extra;
    cairo_status_t status;
    cairo_surface_t *surface;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    *ix = *iy = 0;

    surface = _cairo_raster_source_pattern_acquire (&pattern->base,
						    &dst->base, NULL);
    if (unlikely (surface == NULL || surface->status))
	return NULL;

    status = _cairo_surface_acquire_source_image (surface, &image, &extra);
    if (unlikely (status)) {
	_cairo_raster_source_pattern_release (&pattern->base, surface);
	return NULL;
    }

    assert (image->width == pattern->extents.width);
    assert (image->height == pattern->extents.height);

    pixman_image = pixman_image_create_bits (image->pixman_format,
					     image->width,
					     image->height,
					     (uint32_t *) image->data,
					     image->stride);
    if (unlikely (pixman_image == NULL)) {
	_cairo_surface_release_source_image (surface, image, extra);
	_cairo_raster_source_pattern_release (&pattern->base, surface);
	return NULL;
    }

    cleanup = malloc (sizeof (*cleanup));
    if (unlikely (cleanup == NULL)) {
	pixman_image_unref (pixman_image);
	_cairo_surface_release_source_image (surface, image, extra);
	_cairo_raster_source_pattern_release (&pattern->base, surface);
	return NULL;
    }

    cleanup->pattern = &pattern->base;
    cleanup->surface = surface;
    cleanup->image = image;
    cleanup->image_extra = extra;
    pixman_image_set_destroy_function (pixman_image,
				       _raster_source_cleanup, cleanup);

    if (! _pixman_image_set_properties (pixman_image,
					&pattern->base, extents,
					ix, iy)) {
	pixman_image_unref (pixman_image);
	pixman_image= NULL;
    }

    return pixman_image;
}

pixman_image_t *
_pixman_image_for_pattern (cairo_image_surface_t *dst,
			   const cairo_pattern_t *pattern,
			   cairo_bool_t is_mask,
			   const cairo_rectangle_int_t *extents,
			   const cairo_rectangle_int_t *sample,
			   int *tx, int *ty)
{
    *tx = *ty = 0;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    if (pattern == NULL)
	return _pixman_white_image ();

    switch (pattern->type) {
    default:
	ASSERT_NOT_REACHED;
    case CAIRO_PATTERN_TYPE_SOLID:
	return _pixman_image_for_color (&((const cairo_solid_pattern_t *) pattern)->color);

    case CAIRO_PATTERN_TYPE_RADIAL:
    case CAIRO_PATTERN_TYPE_LINEAR:
	return _pixman_image_for_gradient ((const cairo_gradient_pattern_t *) pattern,
					   extents, tx, ty);

    case CAIRO_PATTERN_TYPE_MESH:
	return _pixman_image_for_mesh ((const cairo_mesh_pattern_t *) pattern,
					   extents, tx, ty);

    case CAIRO_PATTERN_TYPE_SURFACE:
	return _pixman_image_for_surface (dst,
					  (const cairo_surface_pattern_t *) pattern,
					  is_mask, extents, sample,
					  tx, ty);

    case CAIRO_PATTERN_TYPE_RASTER_SOURCE:
	return _pixman_image_for_raster (dst,
					 (const cairo_raster_source_pattern_t *) pattern,
					 is_mask, extents, sample,
					 tx, ty);
    }
}

static cairo_status_t
_cairo_image_source_finish (void *abstract_surface)
{
    cairo_image_source_t *source = abstract_surface;

    pixman_image_unref (source->pixman_image);
    return CAIRO_STATUS_SUCCESS;
}

const cairo_surface_backend_t _cairo_image_source_backend = {
    CAIRO_SURFACE_TYPE_IMAGE,
    _cairo_image_source_finish,
    NULL, /* read-only wrapper */
};

cairo_surface_t *
_cairo_image_source_create_for_pattern (cairo_surface_t *dst,
					 const cairo_pattern_t *pattern,
					 cairo_bool_t is_mask,
					 const cairo_rectangle_int_t *extents,
					 const cairo_rectangle_int_t *sample,
					 int *src_x, int *src_y)
{
    cairo_image_source_t *source;

    TRACE ((stderr, "%s\n", __FUNCTION__));

    source = malloc (sizeof (cairo_image_source_t));
    if (unlikely (source == NULL))
	return _cairo_surface_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY));

    source->pixman_image =
	_pixman_image_for_pattern ((cairo_image_surface_t *)dst,
				   pattern, is_mask,
				   extents, sample,
				   src_x, src_y);
    if (unlikely (source->pixman_image == NULL)) {
	free (source);
	return _cairo_surface_create_in_error (CAIRO_STATUS_NO_MEMORY);
    }

    _cairo_surface_init (&source->base,
			 &_cairo_image_source_backend,
			 NULL, /* device */
			 CAIRO_CONTENT_COLOR_ALPHA);

    source->is_opaque_solid =
	pattern == NULL || _cairo_pattern_is_opaque_solid (pattern);

    return &source->base;
}