summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-lua-points-with.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-lua-points-with.tex')
-rw-r--r--Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-lua-points-with.tex269
1 files changed, 269 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-lua-points-with.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-lua-points-with.tex
new file mode 100644
index 00000000000..73a3d9799ff
--- /dev/null
+++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-lua-points-with.tex
@@ -0,0 +1,269 @@
+% tkz-obj-lua-points-with.tex
+% Copyright 2023 Alain Matthes
+% This work may be distributed and/or modified under the
+% conditions of the LaTeX Project Public License, either version 1.3
+% of this license or (at your option) any later version.
+% The latest version of this license is in
+% http://www.latex-project.org/lppl.txt
+% and version 1.3 or later is part of all distributions of LaTeX
+% version 2005/12/01 or later.
+% This work has the LPPL maintenance status “maintained”.
+% The Current Maintainer of this work is Alain Matthes.
+
+\def\fileversion{5.00c}
+\def\filedate{2023/01/23}
+\typeout{2023/01/23 5.00c tkz-obj-lua-points-with.tex}
+\makeatletter
+%<--------------------------------------------------------------------------–>
+% Vectors
+%<--------------------------------------------------------------------------–>
+% Objet : outils mathématiques pour la géométrie euclideienne avec pgf/tikz
+% utilisable de préférence avec un repère orthonormé et le cm comme unité
+% utile pour la compatibilité avec pgf 2
+%<--------------------------------------------------------------------------–>
+% Duplicate Length à revoir pas de pt pas de global
+% ||v(CN)||= ||v(AB)|| et v(CN) colineaire à v(CD)
+% A-->#1 B-->#2 C-->#3 D-->#4 N-->#5 ?????
+%<--------------------------------------------------------------------------–>
+%<--------------------------------------------------------------------------–>
+% Outils pour les vecteurs
+%<--------------------------------------------------------------------------–>
+% ce sont des outils élémentaires qui à partir de deux points en définissent
+% un troisième
+% #1 si c'est une option alors c'est un nombre réel
+% #2 et #3 sont deux points
+% #4 est le nom du point qui résulte de la transformation
+% exemple : \tkzVecKNorm (A,B){C} définit un point C tel que AC = 1 et C est % % un point de la droite (AC). #1 peut être négatif
+
+\def\tkzDuplicateSegment(#1,#2)(#3,#4){%
+\begingroup
+ \tkz@@CalcLength(#1,#2){tkz@firstlen}%
+ \tkz@@CalcLength(#3,#4){tkz@secondlen}%
+ \edef\tkz@ratio{\tkz@Dec{\tkz@firstlen/\tkz@secondlen}}
+ \tkz@VecKCoLinear[\tkz@ratio](#3,#4,#3)%
+\endgroup
+}
+\let\tkzDuplicateLength\tkzDuplicateSegment
+%<--------------------------------------------------------------------------–>
+% Coordonnées d'un vecteur (couple de points)
+% Deux points A et B donc un vecteur on récupère les coordonnées de v(AB)
+% en cm
+% tkzGetVecCoord en cm ou en pt ???
+%<--------------------------------------------------------------------------–>
+%result in #3x et #3y #1 et #2 sont les points
+% passage en cm avec fp ?
+% 28.45274 =1 cm
+\def\tkzGetVectxy(#1,#2)#3{%
+\begingroup
+\pgfpointdiff{\pgfpointanchor{#1}{center}}%
+ {\pgfpointanchor{#2}{center}}%
+\pgfmathparse{\pgf@sys@tonumber{\pgf@x}/1cm}%
+\let\tkzresultx\pgfmathresult
+\pgfmathparse{\pgf@sys@tonumber{\pgf@y}/1cm}%
+\let\tkzresulty\pgfmathresult
+\global\expandafter\edef\csname #3x\endcsname{\tkzresultx}%
+\global\expandafter\edef\csname #3y\endcsname{\tkzresulty}%
+\endgroup
+}
+%<--------------------------------------------------------------------------–>
+% options #1 two points #2,#3 result in #4
+%
+%<--------------------------------------------------------------------------–>
+%<--------------------------------------------------------------------------–>
+% tkzDefPointWith
+%<--------------------------------------------------------------------------–>
+\def\tkz@numv{0}
+\pgfkeys{/@pointwith/.cd,
+ colinear/.code args = {at #1}{\def\tkz@numv{0}\def\tkz@frompoint{#1}},
+ orthogonal/.code = {\def\tkz@numv{1}},
+ linear/.code = {\def\tkz@numv{2}},
+ orthogonal normed/.code = {\def\tkz@numv{3}},
+ linear normed/.code = {\def\tkz@numv{4}},
+ colinear normed/.code args = {at #1}{\def\tkz@numv{5}\def\tkz@frompoint{#1}},
+ K/.code = {\edef\tkz@coeff{\fpeval{#1}}},
+ K = 1,
+ normed/.is if = tkz@line@normed,
+ normed/.default = true,
+ normed = false,
+ orthogonal
+}
+\def\tkzDefPointWith{\pgfutil@ifnextchar[{\tkz@DefPointWith}{\tkz@DefPointWith[]}}
+
+\def\tkz@DefPointWith[#1](#2,#3){%
+\begingroup
+\pgfkeys{/@pointwith/.cd,K=1}
+\pgfqkeys{/@pointwith}{#1}
+\ifcase\tkz@numv%
+ % first case 0
+ \tkz@DefVectorColinearat[\tkz@coeff](#2,#3)
+ \or% 1
+ \tkz@VecKOrth[\tkz@coeff](#2,#3)
+ \or% 2
+ \tkz@VecK[\tkz@coeff](#2,#3)
+ \or% 3
+ \tkz@VecKOrthNorm[\tkz@coeff](#2,#3)
+ \or% 4
+ \tkz@VecKNorm[\tkz@coeff](#2,#3)
+ \or% 5
+ \tkz@VecKColinearNorm[\tkz@coeff](#2,#3)
+ \fi
+\endgroup
+}
+%<--------------------------------------------------------------------------–>
+% tkzDefVectorfrom
+%<--------------------------------------------------------------------------–>
+% tkz@numv 0
+\def\tkz@DefVectorColinearat[#1](#2,#3){%
+\iftkz@line@normed
+ \tkz@VecKColinearNorm[#1](#2,#3)
+\else
+\begingroup
+ \pgfpointdiff{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}%
+ \pgf@xa=\pgf@x\relax%
+ \pgf@ya=\pgf@y\relax%
+ \pgfinterruptboundingbox
+ \path (\tkz@frompoint)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya) coordinate (tkzPointResult);
+ \endpgfinterruptboundingbox
+\endgroup
+\fi
+}
+%<--------------------------------------------------------------------------–>
+% tkzVector K Orth coeff dans #1
+% v(AN) perp v(AB) (v(AB) , v(AN) ) sens direct cercle trigo
+% ||v(AN)||=||v(AB)||
+%<--------------------------------------------------------------------------–>
+% tkz@numv 1
+\def\tkzVecKOrth{\pgfutil@ifnextchar[{\tkz@VecKOrth}{\tkz@VecKOrth[1]}}
+\def\tkz@VecKOrth[#1](#2,#3){%
+\iftkz@line@normed
+ \tkz@VecKOrthNorm[#1](#2,#3)
+\else
+\begingroup
+ \pgfpointdiff{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}%
+ \pgf@xa=-\pgf@y%
+ \pgf@ya=\pgf@x%
+ \pgfinterruptboundingbox
+ \path (#2)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya) coordinate (tkzPointResult);
+ \endpgfinterruptboundingbox
+\endgroup
+\fi
+}%
+
+%<--------------------------------------------------------------------------–>
+% v(AN)=#1 x v(AB)
+% #1 le coeff; #2--> A #3--> B #4-->N tq #4-#2 = #1*(#3-#2)
+%<--------------------------------------------------------------------------–>
+% tkz@numv 2
+\def\tkzVecK{\pgfutil@ifnextchar[{\tkz@VecK}{\tkz@VecK[1]}}
+\def\tkz@VecK[#1](#2,#3){%
+\iftkz@line@normed
+ \tkz@VecKNorm[#1](#2,#3)
+\else
+\begingroup
+ \pgfpointdiff{\pgfpointanchor{#2}{center}}%
+ {\pgfpointanchor{#3}{center}}%
+ \pgf@xa=\pgf@x\relax%
+ \pgf@ya=\pgf@y\relax%
+ \pgfmathparse{#1}
+ \let\tkz@coeff\pgfmathresult
+ \pgfinterruptboundingbox
+ \path (#2)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya) coordinate (tkzPointResult);
+ \endpgfinterruptboundingbox
+\endgroup
+\fi
+}%
+%<--------------------------------------------------------------------------–>
+% tkzVecKOrthNorm coeff dans #1
+% v(AN) perp v(AB) v(AB) v(AN) sens direct cercle trigo
+% ||v(AN||=1 si #1 est vide ou =1 sinon ||v(AN||=K
+%<--------------------------------------------------------------------------–>
+% tkz@numv 3
+\def\tkzVecKOrthNorm{\pgfutil@ifnextchar[{\tkz@VecKOrthNorm}%
+ {\tkz@VecKOrthNorm[1]}}
+\def\tkz@VecKOrthNorm[#1](#2,#3){%
+\begingroup
+ \tkzpointnormalised{\pgfpointdiff{\pgfpointanchor{#2}{center}}%
+ {\pgfpointanchor{#3}{center}}}
+ \pgf@xa=-\pgf@y\relax%
+ \pgf@ya=\pgf@x\relax%
+ \pgfmathparse{#1}
+ \let\tkz@tmp\pgfmathresult
+ \edef\tkz@x{\tkz@Dec{28.45274*\tkz@tmp*\strip@pt\pgf@xa}}
+ \edef\tkz@y{\tkz@Dec{28.45274*\tkz@tmp*\strip@pt\pgf@ya}}
+ \pgfinterruptboundingbox
+ \path (#2)--++(\tkz@x pt,\tkz@y pt) coordinate (tkzPointResult);
+ \endpgfinterruptboundingbox
+\endgroup
+}%
+%<--------------------------------------------------------------------------–>
+% VectorNormalised ou K*VectorNormalised
+% A-->#2 B-->#3 N-->#4 v(AB) devient v(AN) tq ||v(AN)||=1 si #1=1
+% sinon ||v(AN)||=#1
+%<--------------------------------------------------------------------------–>
+% tkz@numv 4
+\def\tkzVecKNorm{\pgfutil@ifnextchar[{\tkz@VecKNorm}{\tkz@VecKNorm[1]}}
+\def\tkz@VecKNorm[#1](#2,#3){%
+\begingroup
+ \tkzpointnormalised{%
+ \pgfpointdiff{\pgfpointanchor{#2}{center}}
+ {\pgfpointanchor{#3}{center}}}
+ \pgf@xa=\pgf@x\relax%
+ \pgf@ya=\pgf@y\relax%
+ \pgfmathparse{#1}
+ \let\tkz@tmp\pgfmathresult
+ \edef\tkz@x{\tkz@Dec{28.45274*\tkz@tmp*\strip@pt\pgf@xa}}
+ \edef\tkz@y{\tkz@Dec{28.45274*\tkz@tmp*\strip@pt\pgf@ya}}
+ \pgfinterruptboundingbox
+ \path (#2)--++(\tkz@x pt,\tkz@y pt) coordinate (tkzPointResult);
+ \endpgfinterruptboundingbox
+\endgroup
+}%
+%<--------------------------------------------------------------------------–>
+% \tkz@VecKColinearNorm
+%<--------------------------------------------------------------------------–>
+%% tkz@numv 5
+\def\tkz@VecKColinearNorm[#1](#2,#3){%
+\begingroup
+ \tkzpointnormalised{%
+ \pgfpointdiff{\pgfpointanchor{#2}{center}}
+ {\pgfpointanchor{#3}{center}}}
+ \pgf@xa=\pgf@x\relax%
+ \pgf@ya=\pgf@y\relax%
+ \edef\tkz@x{\tkz@Dec{28.45274*(\tkz@coeff)*\strip@pt\pgf@xa}}
+ \edef\tkz@y{\tkz@Dec{28.45274*(\tkz@coeff)*\strip@pt\pgf@ya}}
+ \pgfinterruptboundingbox
+ \path (\tkz@frompoint)--++(\tkz@x pt,\tkz@y pt) coordinate (tkzPointResult);
+ \endpgfinterruptboundingbox
+\endgroup
+}%
+%<--------------------------------------------------------------------------–>
+% VecKCoLinear CN = K x AB #1 pt #2 pt #3 pt #4 nb #5 pt result
+% il faut modifier cette macro : on supprime #3 pour la colinéarité
+% Il suffit d'utiliser Replicate ou Duplicate coeff dans #1
+% v(CD)=#1 x v(AB) #1 le coeff; #2-->A #3-->B #4-->C
+%<--------------------------------------------------------------------------–>
+\def\tkz@VecKCoLinear[#1](#2,#3,#4){%
+\begingroup
+ \pgfpointdiff{\pgfpointanchor{#2}{center}}%
+ {\pgfpointanchor{#3}{center}}%
+ \pgf@xa=\pgf@x\relax%
+ \pgf@ya=\pgf@y\relax%
+ \edef\tkz@coeff{\fpeval{#1}}
+ \pgfinterruptboundingbox
+ \path (#4)--+(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya) coordinate (tkzPointResult);
+ \endpgfinterruptboundingbox
+\endgroup
+}%
+\def\tkz@VecCoLinear(#1,#2,#3){%
+\begingroup
+ \pgfpointdiff{\pgfpointanchor{#1}{center}}%
+ {\pgfpointanchor{#2}{center}}%
+ \pgf@xa=\pgf@x\relax%
+ \pgf@ya=\pgf@y\relax%
+ \pgfinterruptboundingbox
+ \path (#3)--+(\pgf@xa,\pgf@ya) coordinate (tkzPointResult);
+ \endpgfinterruptboundingbox
+\endgroup
+}%
+\makeatother
+\endinput \ No newline at end of file