summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty')
-rw-r--r--Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty317
1 files changed, 314 insertions, 3 deletions
diff --git a/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty b/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty
index 508315fb27a..482b6f7a360 100644
--- a/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty
+++ b/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty
@@ -1,5 +1,5 @@
\NeedsTeXFormat{LaTeX2e}[1995/12/01]
-\ProvidesPackage{tablor-xetex}[07/02/2009 v4.03 la machine a creer des
+\ProvidesPackage{tablor-xetex}[07/03/2009 v4.04 la machine a creer des
tableaux de signes et variations compatible xetex]
% \copyleft Connan le Barbare (aka Guillaume Connan) \copyright
@@ -50,6 +50,14 @@ tableaux de signes et variations compatible xetex]
%TVI([-1,+infinity],[-1],"f","x",x2/sqrt(x+1)-1,1,2,n,\tv)
%\end{TVI}
%%%
+%%%
+% tableau avec valeurs intermediares et racines exactes
+%\begin{TVIex}
+%TVIex([-1,+infinity],[-1],"f","x",x2/sqrt(x+1)-1,1,2,n,\tv)
+%\end{TVIex}
+%%%
+%
+%
% tableau de variations avec f' sans zero formel
%\begin{TVapp}
% TVapp([0,+infinity],[0],"g","x",ln(x)-x*exp(2-x),1,\tv)
@@ -1149,7 +1157,11 @@ LI:=limit(f(x),x,Z[0],1);
LF:=limit(f(x),x,Z[nz-1],-1);
LP:=NULL;
PB:=1;
-if(nz>2){ for(r:=1; r<=nz-2;r++){LP:=LP,if(member(Z[r],F)){limit(f(x),x,Z[r],-1),limit(f(x),x,Z[r],1)}else{f(Z[r])};if(member(Z[r],F)){PB:=PB,0,1}}};
+if(nz>2){ for(r:=1;
+ r<=nz-2;r++){LP:=LP,if(member(Z[r],F)){limit(f(x),x,Z[r],-1),limit(f(x),x,Z[r],1)}else{f(Z[r])};
+if(member(Z[r],F)){PB:=PB,0,1}else{PB:=PB,1};
+}
+};
if(nz>2){ LL:=[LI,LP,LF]; PB:=[PB,1]}else{LL:=[LI,LF];PB:=[1,1]};
NL:=size(LL);
@@ -1342,6 +1354,280 @@ fclose(sortie);
+%%
+%
+%
+%
+% Pour avoir les racines sous forme exacte.... quand c'est possible !
+%
+%
+%
+%%%%%%%%%
+
+
+\begin{VerbatimOut}{XcasTVIex.cxx}
+
+
+
+TVIex(L,F,nom,nomv,f,ftt,ao,trigo,nmr):={
+nl:=size(L);
+f:=unapply(f,x);
+fp:=function_diff(f);
+Z:=concat(L,F);
+S:=[];
+
+Sex:=NULL;
+Zex:=solve(f(x)=ao);
+Zex:=sort(Zex);
+for(j:=0;j<size(Zex);j++){
+if((evalf(Zex[j])>=evalf(L[0])) and (evalf(Zex[j])<=evalf(L[nl-1]))){Sex:=Sex,Zex[j]};
+};
+Sex:=[Sex];
+
+
+
+
+
+
+
+
+if(trigo==t){
+all_trig_solutions:=1;
+reset_solve_counter(-1,-1);
+SS:=solve(factor(simplify(fp(x))),x);
+ns:=size(SS);
+for(k:=0;k<ns;k++){
+m:=0;
+while(evalf(simplify(subst(SS[k],n_1=m)))<=evalf(L[nl-1])){
+S:=concat(S,simplify(subst(SS[k],n_1=m)));m:=m+1;
+};m:=-1;
+while(evalf(subst(SS[k],n_1=m))>=L[0]){
+S:=concat(S,simplify(subst(SS[k],n_1=m)));m:=m-1;
+}
+}
+}else{
+S:=solve(fp(x),x);
+}
+
+ si size(S)>0 alors pour j de 0 jusque size(S)-1 faire
+ kk:=(evalf(S[j])>=evalf(L[0])) and (evalf(S[j])<=evalf(L[nl-1]));
+ if(kk==1){Z:=append(Z,simplify(S[j]))};
+ fpour
+ fsi;
+
+Z:=sort(Z);
+nz:=size(Z);
+ si Z[0]==Z[1] alors Z:=augment(Z[0],Z[2..nz-1]);nz:=nz-1;
+ fsi;
+pour u de 1 jusque nz-2 faire
+ si Z[u]==Z[u+1] alors Z:=augment(Z[0..u-1],Z[u+1..nz-1]);nz:=nz-1;
+ fsi;
+fpour;
+nz:=size(Z);
+l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" ";
+
+
+
+LI:=limit(f(x),x,Z[0],1);
+LF:=limit(f(x),x,Z[nz-1],-1);
+LP:=NULL;
+PB:=1;
+if(nz>2){ for(r:=1;
+ r<=nz-2;r++){LP:=LP,if(member(Z[r],F)){limit(f(x),x,Z[r],-1),limit(f(x),x,Z[r],1)}else{f(Z[r])};
+if(member(Z[r],F)){PB:=PB,0,1}else{PB:=PB,1};
+}
+};
+if(nz>2){ LL:=[LI,LP,LF]; PB:=[PB,1]}else{LL:=[LI,LF];PB:=[1,1]};
+
+NL:=size(LL);
+A:=NULL;aa:=0;
+kk:=0;
+
+
+
+if(NL==nz){for(k:=0;k<nz-1;k++){TestS:=(evalf(sign(LL[k]-ao))==evalf(sign(LL[k+1]-ao))) or (evalf(sign(LL[k]-ao))==0.0)or (evalf(sign(LL[k+1]-ao))==0.0);
+if(TestS==0){A:=A,aa;l0:=l0+"val(btex $"+latex(Z[k])+"$ etex);"+"val(btex $"+latex(simplify(Sex[aa]))+"$ etex);";aa:=aa+1;}else{l0:=l0+"val(btex $"+latex(Z[k])+"$ etex);"}}
+l0:=l0+"val(btex $"+latex(Z[nz-1])+"$ etex);"};
+//chgmt NL->nz
+if(NL>nz){for(k:=0;k<NL-1;k++){TestS:=(evalf(sign(LL[k]-ao))==evalf(sign(LL[k+1]-ao))) or (evalf(sign(LL[k]-ao))==0.0)or (evalf(sign(LL[k+1]-ao))==0.0);
+
+if(PB[k]==1){if(TestS==0){
+ A:=A,aa;l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);"+"val(btex $"+latex(simplify(Sex[aa]))+"$ etex);";aa:=aa+1;kk:=kk+1}
+else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}};
+}
+
+ l0:=l0+"val(btex $"+latex(Z[nz-1])+"$ etex);"
+
+ };
+
+
+TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
+ k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
+ kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+
+lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
+ if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
+ if(fp(Z[0])==0){"valBarre(btex 0 etex);"}else{" "}+
+ if(sign(fp((Z[0]+10^(-3))))==1){"plus;"}else{"moins;"}}else{"nonDefBarre;"+
+ if(sign(fp(10^(-3)+Z[0]))==1){"plus;"}else{"moins;"} }}+if(TestS==0){"valBarre(btex$ $ etex);"+ if(sign(fp(10^(-3)+Z[0]))==1){"plus;"}else{"moins;"}}else{" "};
+
+
+
+
+if(nz>2){rr:=1; if(nz==NL){for(r:=1; r<=NL-2;r++){ TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
+ ksp:=evalf(fp(Z[r]+0.01))>0;
+ TestL:=(abs(LL[r])==abs(LL[r+1]));
+ lsp:=lsp+if(member(Z[r],F)==0){"valBarre(btex 0 etex);"}else{"nonDefBarre;"}+
+ if(ksp==1){"plus;"}else{"moins;"}+if(TestS==0){"valBarre(btex $ $ etex);"}else{" "}+if(TestS==0){if(ksp==1){"plus;"}else{"moins;"}}else{" "};
+ }}
+else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
+
+ if(PB[r]==1){if(TestS==0){lsp:=lsp+if(member(Z[rr],F)==0){"valBarre(btex 0 etex);"}else{"nonDefBarre;"}+
+ if(kspp==1){"plus;"}else{"moins;"}+"valBarre(btex $ $ etex);"+if(kspp==1){"plus;"}else{"moins;"};rr:=rr+1;}
+ else{lsp:=lsp+if(member(Z[rr],F)==0){"valBarre(btex 0 etex);"}else{"nonDefBarre;"}+
+ if(kspp==1){"plus;"}else{"moins;"};rr:=rr+1;}
+}}}};
+
+
+
+
+ lsf:=if(member(Z[nz-1],F)==0){" "}else{"nonDefBarre;"}
+
+
+
+lm0:=limit(f(x),x=Z[0],1)==-infinity;
+
+
+
+
+TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
+
+ li:=lvic+nom+"}$ etex);
+"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+ if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "};
+
+
+ if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
+ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
+ krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ lp:=lp+if(member(Z[r],F)) {
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
+ etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex
+ $ "+ao+" $ etex,0.5);"
+ }else{" "};
+};//for
+}else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
+ krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1));
+ krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ;
+ lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
+
+if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
+ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex
+ $ "+ao+" $ etex,0.5);
+ ";rr:=rr+1;
+}// testS==0
+else{lp:=lp+if(member(Z[rr],F)){
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
+ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
+ "}}};rr:=rr+1;
+}//else testS==0
+}//PB[r]==1
+}//for nz<NL
+}// else nz<NL
+//if nz=NL
+};//if nz>2
+
+
+
+lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+
+
+lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(kz==1){"1);"}else{"0);"}}
+ else{"limGauche(btex $"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
+
+
+
+
+
+
+
+MetaLfc:= if(ftt==2){if(nz>2){"beginTableau("+nmr+")"+
+ l0+lsi+lsp+lsf+"
+endTableau;
+
+";}else{
+"beginTableau("+nmr+")"+
+ l0+
+lsi+lsf+"
+endTableau;
+
+";
+}
+}else{
+if(ftt==0){if(nz>2){"beginTableau("+nmr+")"+
+ l0+
+li+
+lp+
+lf
++"
+endTableau;
+
+";}else{"beginTableau("+nmr+")"+
+ l0+
+li+
+lf
++"
+endTableau;
+";}}else{
+if(nz>2){"beginTableau("+nmr+")"+
+ l0+
+lsi+lsp+lsf+
+li+
+lp+
+lf
++"
+endTableau;
+
+";}else{"beginTableau("+nmr+")"+
+ l0+
+lsi+lsf+
+li+
+lf
++"
+endTableau;
+
+";}
+}};
+
+
+
+
+
+
+sortie:=fopen("XCasmpfc.mp");
+fprint(sortie,Unquoted,MetaLfc);
+fclose(sortie);
+
+
+ }:;
+
+
+\end{VerbatimOut}
+
+
+
+
+
@@ -1420,7 +1706,11 @@ LI:=limit(f(x),x,Z[0],1);
LF:=limit(f(x),x,Z[nz-1],-1);
LP:=NULL;
PB:=1;
-if(nz>2){ for(r:=1; r<=nz-2;r++){LP:=LP,if(member(Z[r],F)){limit(f(x),x,Z[r],-1),limit(f(x),x,Z[r],1)}else{f(Z[r])};if(member(Z[r],F)){PB:=PB,0,1}}};
+if(nz>2){ for(r:=1;
+ r<=nz-2;r++){LP:=LP,if(member(Z[r],F)){limit(f(x),x,Z[r],-1),limit(f(x),x,Z[r],1)}else{f(Z[r])};
+if(member(Z[r],F)){PB:=PB,0,1}else{PB:=PB,1};
+}
+};
if(nz>2){ LL:=[LI,LP,LF]; PB:=[PB,1]}else{LL:=[LI,LF];PB:=[1,1]};
NL:=size(LL);
@@ -2818,6 +3108,27 @@ read("XCasTVI.user");
+\begin{VerbatimOut}{XCasTVIex.giac}
+maple_mode(0);
+read("config.cxx");
+read("XcasTVIex.cxx");
+read("XCasTVIex.user");
+\end{VerbatimOut}
+
+\newenvironment{TVIex}%
+{\VerbatimEnvironment\begin{VerbatimOut}[commandchars=\\??]{XCasTVIex.user}}%
+{\end{VerbatimOut}\dresse{TVIex}}
+
+
+\newenvironment{TVIex*}[1]%
+{\setcounter{TVnbis}{\theTVn}
+\setcounter{TVn}{#1}
+\VerbatimEnvironment\begin{VerbatimOut}[commandchars=\\??]{XCasTVIex.user}}%
+{\end{VerbatimOut}\dressetoile{TVIex}}
+
+
+
+
\begin{VerbatimOut}{XCasTVIapp.giac}
maple_mode(0);