summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org')
-rw-r--r--Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org182
1 files changed, 182 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org
new file mode 100644
index 00000000000..50b55b4275a
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org
@@ -0,0 +1,182 @@
+#+date: \today
+
+#+latex_class: tiet-question-paper
+#+latex_class_options: [11pt]
+#+options: num:nil toc:nil author:nil email:nil
+
+#+latex_header_extra: \hypersetup{%
+#+latex_header_extra: colorlinks,%
+#+latex_header_extra: breaklinks,%
+#+latex_header_extra: urlcolor=[rgb]{0,0.35,0.65},%
+#+latex_header_extra: linkcolor=[rgb]{0,0.35,0.65}%
+#+latex_header_extra: }
+
+#+latex_header_extra: \usepackage{libertinus}
+
+#+latex_header_extra: \instlogo{images/tiet-logo.pdf}
+#+latex_header_extra: \schoolordepartment{%
+#+latex_header_extra: Computer Science \& Engineering Department}
+#+latex_header_extra: \examname{End Semester Examination}
+#+latex_header_extra: \coursecode{UCS505}
+#+latex_header_extra: \coursename{Computer Graphics}
+#+latex_header_extra: \timeduration{3 hours}
+#+latex_header_extra: \maxmarks{45}
+#+latex_header_extra: \faculty{ANG,AMK,HPS,YDS,RGB}
+
+#+latex: \maketitle
+
+*Instructions:*
+1. Attempt any 5 questions;
+2. Attempt all the subparts of a question at one place.
+
+#+latex: \bvrhrule\bvrskipline
+
+1.
+ 1. Given the control polygon $\textbf{b}_0,
+ \textbf{b}_1, \textbf{b}_2, \textbf{b}_3$ of a
+ Cubic Bezier curve; determine the vertex
+ coordinates for parameter values $\forall t\in
+ T$. \hfill [7 marks]
+ \begin{align*}
+ T \equiv
+ & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\
+ \begin{bmatrix}
+ \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3
+ \end{bmatrix} \equiv& \begin{bmatrix}
+ 1&2&4&3\\ 1&3&3&1
+ \end{bmatrix}
+ \end{align*}
+
+ 2. Explain the role of convex hull in curves.
+ \hfill[2 marks]
+
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Describe the continuity conditions for
+ curvilinear geometry. \hfill[5 marks]
+ 2. Define formally, a B-Spline curve. \hfill [2
+ marks]
+ 3. How is a Bezier curve different from a B-Spline
+ curve? \hfill [2 marks]
+
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Given a triangle, with vertices defined by column
+ vectors of $P$; find its vertices after
+ reflection across XZ plane. \hfill [3 marks]
+ \begin{align*}
+ P\equiv
+ &\begin{bmatrix}
+ 3&6&5 \\ 4&4&6 \\ 1&2&3
+ \end{bmatrix}
+ \end{align*}
+ 2. Given a pyramid with vertices defined by the
+ column vectors of $P$, and an axis of rotation
+ $A$ with direction $\textbf{v}$ and passing
+ through $\textbf{p}$. Find the coordinates of
+ the vertices after rotation about $A$ by an angle
+ of $\theta=\pi/4$.\hfill [6 marks]
+ \begin{align*}
+ P\equiv
+ &\begin{bmatrix}
+ 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1
+ \end{bmatrix} \\
+ \begin{bmatrix}
+ \mathbf{v} & \mathbf{p}
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 0&0 \\1&1\\1&0
+ \end{bmatrix}
+ \end{align*}
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Explain the two winding number rules for inside
+ outside tests. \hfill [4 marks]
+ 2. Explain the working principle of a CRT. \hfill [5
+ marks]
+
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Given a projection plane $P$ defined by normal
+ $\textbf{n}$ and a reference point $\textbf{a}$;
+ and the centre of projection as $\mathbf{p}_0$;
+ find the perspective projection of the point
+ $\textbf{x}$ on $P$. \hfill [5 marks]
+ \begin{align*}
+ \begin{bmatrix}
+ \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x}
+ \end{bmatrix}\equiv
+ &
+ \begin{bmatrix}
+ 3&-1&1&8\\4&2&1&10\\5&-1&3&6
+ \end{bmatrix}
+ \end{align*}
+ 2. Given a geometry $G$, which is a standard unit
+ cube scaled uniformly by half and viewed through
+ a Cavelier projection bearing $\theta=\pi/4$
+ wrt. $X$ axis. \hfill [2 marks]
+ 3. Given a view coordinate system (VCS) with origin
+ at $\textbf{p}_v$ and euler angles ZYX as
+ $\boldsymbol{\theta}$ wrt. the world coordinate
+ system (WCS); find the location $\mathbf{x}_v$ in
+ VCS, corresponding to $\textbf{x}_w$ in
+ WCS. \hfill [2 marks]
+ \begin{align*}
+ \begin{bmatrix}
+ \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 5&\pi/3&10\\5&0&10\\0&0&0
+ \end{bmatrix}
+ \end{align*}
+
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Describe the visible surface detection problem in
+ about 25 words. \hfill [1 mark]
+ 2. To render a scene with $N$ polygons into a
+ display with height $H$; what are the space and
+ time complexities respectively of a typical
+ image-space method. \hfill [2 marks]
+ 3. Given a 3D space bounded within $[0\quad0\quad0]$
+ and $[7\quad7\quad-7]$, containing two infinite
+ planes each defined by 3 incident points
+ $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ and
+ $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$
+ respectively bearing colours (RGB) as
+ $\mathbf{c}_a$ and $\textbf{c}_b$ respectively.
+ \begin{align*}
+ \begin{bmatrix}
+ \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2
+ &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2
+ &\mathbf{c}_a&\mathbf{c}_b
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 1&6&1&6&1&6&1&0 \\
+ 1&3&6&6&3&1&0&0 \\
+ -1&-6&-1&-1&-6&-1&0&1
+ \end{bmatrix}
+ \end{align*}
+ Compute and/ or determine using the depth-buffer
+ method, the colour at pixel $\mathbf{x}=(2,4)$ on
+ a display resolved into $7\times7$ pixels. The
+ projection plane is at $Z=0$, looking at
+ $-Z$. \hfill [6 marks]
+
+#+latex: \bvrhrule
+
+
+# Local Variables:
+# org-latex-default-packages-alist: nil
+# org-latex-packages-alist: nil
+# End: