summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/thuthesis/data/appendix-survey.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/thuthesis/data/appendix-survey.tex')
-rw-r--r--Master/texmf-dist/doc/latex/thuthesis/data/appendix-survey.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/Master/texmf-dist/doc/latex/thuthesis/data/appendix-survey.tex b/Master/texmf-dist/doc/latex/thuthesis/data/appendix-survey.tex
index a3c5ef6205a..5c09088a383 100644
--- a/Master/texmf-dist/doc/latex/thuthesis/data/appendix-survey.tex
+++ b/Master/texmf-dist/doc/latex/thuthesis/data/appendix-survey.tex
@@ -119,7 +119,7 @@ extreme point is the optimal solution.
\subsection{Nonlinear Programming}
-If at least one of the functions $f(x),g_j(x),j=1,2,\cdots,p$ is nonlinear, then
+If at least one of the functions $f(x),g_j(x),j=1,2,\dots,p$ is nonlinear, then
SOP is called a \emph{nonlinear programming}.
A large number of classical optimization methods have been developed to treat
@@ -167,7 +167,7 @@ the \emph{branch-and-bound enumeration} developed by Balas (1965) and Dakin
\hfill\textit{Uncertain Programming\/}\quad(\textsl{BaoDing Liu, 2006.2})
-\bibliographystyle{plainnat}
+\bibliographystyle{unsrtnat}
\bibliography{ref/refs,ref/appendix}
\end{survey}