diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/euclide/euclide.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/euclide/euclide.tex | 1322 |
1 files changed, 0 insertions, 1322 deletions
diff --git a/Master/texmf-dist/doc/latex/euclide/euclide.tex b/Master/texmf-dist/doc/latex/euclide/euclide.tex deleted file mode 100644 index 3f579558465..00000000000 --- a/Master/texmf-dist/doc/latex/euclide/euclide.tex +++ /dev/null @@ -1,1322 +0,0 @@ -%% This doc can be redistributed and/or modified under the terms -%% of the LaTeX Project Public License Distributed from CTAN -%% archives in directory macros/latex/base/lppl.txt. -\documentclass[12pt, draft]{report} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\usepackage[T1]{fontenc} -\usepackage[latin1]{inputenc} -\usepackage[a4paper]{geometry} -\usepackage[frenchb]{babel} -\usepackage[usenames]{pstcol} -\usepackage{pst-eucl} -\usepackage{pst-plot} -\usepackage{ifthen} -\usepackage{calc} -\usepackage{array} -\usepackage{moreverb} -\usepackage{multicol} -\usepackage{mathrsfs} -\usepackage[dvips]{changebar} -\usepackage{xspace} -\usepackage{fancyhdr} -\expandafter\ifx\csname PDF\endcsname\relax\else -\usepackage{pslatex}%for generating a pdf-file with ps2pdf -\fi -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%% QQ DEFINITIONS -\newcommand{\Vecteur}[1]{\ensuremath{\overrightarrow{#1\hspace{.3em}}}}% -\newcommand{\Angle}[1]{\ensuremath{\widehat{#1}}}% -\makeatletter -\newcommand{\Arg}[1]{{\normalfont$\{$\@Arg{#1}$\}$}}% -\newcommand{\Argsans}[1]{\@Arg{#1}}% -\newcommand{\OptArg}[1]{{\normalfont[{\@Arg{#1}}]}}% -\newcommand{\@Arg}[1]% - {$\protect\langle${\itshape\mdseries\rmfamily#1}$\protect\rangle$}% -\makeatother -%% le backslash \ -\newcommand{\bs}{\symbol{'134}}% -\newcommand{\defcom}[2]% - {\begin{trivlist}\item\fbox{\texttt{\upshape\bs#1}#2}\end{trivlist}}% -\newcommand{\defcomdeux}[4]% - {% - \begin{center}% - \begin{minipage}[t]{.45\linewidth}% - \begin{trivlist}\item\fbox{\texttt{\upshape\bs#1}#2}\end{trivlist}% - \end{minipage}% - \hfill% - \begin{minipage}[t]{.45\linewidth}% - \begin{trivlist}\item\fbox{\texttt{\upshape\bs#3}#4}\end{trivlist}% - \end{minipage} - \end{center}}%end defcomdeux -\newenvironment{tabexemple}[1]% - [@{}m{.3\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.677\linewidth}@{}]% - {\vspace{1em}\noindent\small\begin{center}% - \noindent\begin{tabular}{#1}}% - {\mbox{}\vspace{-1.5em}\end{tabular}\end{center}}% -\newcommand{\tabex}[2]% - [@{}m{.3\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.677\linewidth}@{}]% -{% - \begin{tabexemple}[#1]% - \input{Exemples/#2}&\verbatiminput{Exemples/#2_in}% - \end{tabexemple}% -}% -\newcommand{\param}[1]{\texttt{#1}} -\newcommand{\com}[1]{\texttt{\bs #1}} -\newcommand{\DefaultVal}[1]{(\texttt{#1} par défaut)} -\newcommand{\PStricks}{\texttt{PSTricks}\xspace} -\newcommand{\Postcript}{\textsf{PostScript}\xspace} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\title{Extension \texttt{pst-eucl}\\ - Géométrie euclidienne avec \PStricks} -\author{Version $0.\beta.5$\\Dominique \textsc{Rodriguez}} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\geometry{bottom=1cm, left=1cm, headheight=15.5pt}%, verbose} -\psset{subgriddiv=0,griddots=5} -\setlength{\changebarsep}{10pt} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%% entête et pied de page -\pagestyle{fancy} -\renewcommand{\headrulewidth}{0.4pt} -\renewcommand{\footrulewidth}{0.4pt} -%\lhead{version $\beta.5$ -- Mars 2002} -%\chead{} -%\rhead{Extension \texttt{pst-eucl} -- D. \textsc{Rodriguez}} -%\cfoot{\thepage} -\lfoot{version $\beta.5$ -- Mars 2002} -\rfoot{Extension \texttt{pst-eucl} -- D. \textsc{Rodriguez}} -%%%%%%%%%%%%%%%%%%%% -\newcounter{i} -%%%%%%%%%%%%%%%%%%%% -\makeatletter -\newcommand{\twocoltoc}{% - \chapter*{\contentsname - \@mkboth{% - \MakeUppercase\contentsname}{\MakeUppercase\contentsname}}% - \begin{multicols}{2} - \@starttoc{toc}% - \end{multicols}} -\makeatother -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{document} -%%%%%%%%%%%%%%%%%%%% -\maketitle -%%%%%%%%%%%%%%%%%%%% -\cbstart -\begin{abstract} - L'extension \texttt{pst-eucl} permet de dessiner des figures - géométriques en spécifiant des contraintes mathématiques. Il est - ainsi possible de définir des points au moyen de transformations ou - d'intersection. L'emploi des coordonnées est donc limité aux points - de départ qui paramètrent en quelque sorte le dessin. - - \vfill - - \begin{center}\bfseries - Remerciements - \end{center} - - Je tiens à remercier tout particulièrement les personnes suivantes - pour leur aide dans l'élaboration de ce paquetage : - - \begin{itemize} - \item Denis \textsc{girou} pour ses critiques pertinentes et ses - encouragement lors de la découverte de l'embryon initial et pour - sa relecture du présent manuel ; - \item Manuel \textsc{Luque} et Olivier \textsc{Reboux} pour leurs - remarques et leurs exemples. - \end{itemize} -\end{abstract} -%%%%%%%%%%%%%%%%%%%% -\renewcommand{\abstractname}{Avertissement} -\begin{abstract} - Ceci est une version $\beta$, elle est encore en cours de - développement, le nom des fonctions peut et va changer sans - maintient de la compatibilité ascendante. -\end{abstract} -\cbend -\twocoltoc{} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\chapter{Manuel de l'utilisateur} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Spécifications particulières} - -\cbstart - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Options de \PStricks} - -L'extension active le mode \com{SpecialCoor}. Ce mode permet d'étendre -la manière dont les coordonnées sont spécifiées en plus des classiques -coordonnées cartésiennes. D'autre part le mode de tracé est mis à -\texttt{dimen=middle}, c'est-à-dire que le positionnement des tracés -est fait par rapport à leur milieu. Pour ces deux modes, je vous -renvoie au manuel de l'utilisateur. - -Enfin, il est supposé que le repère de travail est (ortho)normé. - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Conventions} - -Pour la rédaction de ce manuel, j'ai utilisé les conventions -géométriques de nommage des points classiques en France : - -\begin{itemize} -\item $O$ est un centre (cercle, repère, symétrie, homotéthie, rotation) ; -\item $I$ est l'unité de l'axe des abscisses, ou un milieu ; -\item $J$ est l'unité de l'axe des ordonnées ; -\item $A$, $B$, $C$, $D$ sont des points ; -\item $M$ est un point \emph{paramètre} ; -\item $M'$ l'image de $M$ par une transformation ; -\end{itemize} - -Enfin, bien que s'agissant de n\oe uds au sens de \PStricks, -je les ai résolument confondus avec des points dans le texte. -\cbend - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Objets de base} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Les points} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsubsection{Repère par défaut} - -\defcom{pstGeonode}{\OptArg{par}$(x,y)$\Arg{$A$}} - -Cette commande définit un point géométrique associé avec un n\oe ud. -Le point possède un nom de n\oe ud \Argsans{$A$}, qui définit par -défaut l'étiquette placée sur le dessin. D'autre part, celle-ci est -par défaut traitée en mode mathématique, le paramètre booléen -\param{PtNameMath} permet de modifier ce traitement et de traiter -l'étiquette en mode normal. Elle est positionnée à une distance de -\texttt{1em} du n\oe ud, avec un angle de -\param{PosAngle}\DefaultVal{0}. Il est également possible de proposer -une étiquette différente du nom de n\oe ud avec le paramètre -\param{PointName}, et une étiquette vide se spécifie en positionnant -ce paramètre à \texttt{none} ; dans ce cas le point n'aura pas de nom -sur le dessin. - -Le symbole du point est donné par le paramètre \param{PointSymbol} -\DefaultVal{*}. -\cbstart -Le symbole est celui utilisé pour la commande \com{psdot}. -\cbend Il peut être également positionné à \texttt{none}, auquel cas -le point n'est pas affiché sur la figure y compris son étiquette. - -\cbstart -Voici en rappel les valeurs possibles du symbole : - -\begin{multicols}{3} - \begin{itemize}\psset{dotscale=2} - \item \param{*} : \psdots(.5ex,.5ex) - \item \param{o} : \psdots[dotstyle=o](.5ex,.5ex) - \item \param{+} : \psdots[dotstyle=+](.5ex,.5ex) - \item \param{x} : \psdots[dotstyle=x](.5ex,.5ex) - \item \param{asterisk} : \psdots[dotstyle=asterisk](.5ex,.5ex) - \item \param{oplus} : \psdots[dotstyle=oplus](.5ex,.5ex) - \item \param{otimes} : \psdots[dotstyle=otimes](.5ex,.5ex) - \item \param{triangle} : \psdots[dotstyle=triangle](.5ex,.5ex) - \item \param{triangle*} : \psdots[dotstyle=triangle*](.5ex,.5ex) - \item \param{square} : \psdots[dotstyle=square](.5ex,.5ex) - \item \param{square*} : \psdots[dotstyle=square*](.5ex,.5ex) - \item \param{diamond} : \psdots[dotstyle=diamond](.5ex,.5ex) - \item \param{diamond*} : \psdots[dotstyle=diamond*](.5ex,.5ex) - \item \param{pentagon} : \psdots[dotstyle=pentagon](.5ex,.5ex) - \item \param{pentagon*} : \psdots[dotstyle=pentagon*](.5ex,.5ex) - \item \param{|} : \psdots[dotstyle=|](.5ex,.5ex) - \end{itemize} -\end{multicols} -\cbend - -% EXEMPLE GEONODE -\tabex{geonode} - -Il est évident que les n\oe uds ainsi définis sont utilisables par -toutes les commandes utilisant les n\oe uds de \PStricks. Ainsi, il est -possible de les réferencer \rnode{ici}{d'ici}. -\nccurve[arrowscale=2]{->}{ici}{B_1} - -%l existe un bug lié à la définition de point, il faut impérativement -%aire suivre la commande par un \verb$%$, sinon il se crée un décalage -%es points sur le graphiques, comme le montre le dessin suivant : -% -% \begin{center} -% \begin{pspicture}(-2,-2)(2,2)\psgrid -% \pstGeonode(0,0){A} -% \pstGeonode[PosAngle=-90, PointName=B_1](1,2){B1} -% \pstGeonode[PointSymbol=pstSmallCircle, PointName=B_2, -% linecolor=red](-2,1){B2}% -% \end{pspicture} -% \end{center} -\cbstart - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsubsection{Repère personnalisé} - -\defcom{pstOIJGeonode}{\OptArg{par}$(x,y)$\Arg{$A$}\Arg{$O$}\Arg{$I$}\Arg{$J$}} - -Cette commande permet de placer des points dans un repère quelconque -non forcément normé ni orthogonal, défini par le triplet $(O;I;J)$. - -%% EXEMPLE -\tabex{oij} -\cbend - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Marquage des segments} - -Il est possible de tracer des segments en utilisant la commande -\texttt{\bs ncline}. Pour en plus marquer les segments afin d'associer -ceux ayant la même longueur, il existe la commande : - -\defcom{pstSegmentMark}{\OptArg{par}\Arg{$A$}\Arg{$B$}} - -Le symbole placé sur le segment est donné par le paramètre -\param{SegmentSymbol}. Il prend comme valeur une commande utilisable en -mode mathématique. Par défaut, sa valeur est \texttt{pstslashslash}, -et produit deux barres sur le segment. Le segment est également tracé. - -%% EXEMPLE -\tabex{segmentmark} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Triangles} - -Figures étudiées par excellence, elles possèdent leur macro pour les tracer -rapidement : - -\defcom{pstTriangle}{% - \OptArg{par} - $(x_A;y_A)$\Arg{$A$}$(x_B;y_B)$\Arg{$B$}$(x_C;y_C)$\Arg{$C$}} - -Afin de pouvoir placer avec précision les noms des points, il existe -trois paramètres \param{PosAngleA}, \param{PosAngleB} et -\param{PosAngleC}, qui s'associent respectivement aux n\oe uds \Argsans{$A$}, -\Argsans{$B$} et \Argsans{$C$}. Ils ont le même rôle que le paramètre -\param{PosAngle} vu précédemment. Si un ou plusieurs de ces paramètres -ne sont pas spécifiés la valeur de \param{PosAngle} est prise. - -Il existe également des paramètres pour contrôler le symbole utilisé -pour représenter les points : \param{PointSymbolA}, -\param{PointSymbolB} et \param{PointSymbolC}, et des paramètres pour -le nom de chacun des points : \param{PointNameA}, \param{PointNameB} -et \param{PointNameC}. Ces deux ensembles de paramètres sont liés à -\param{PointSymbol} et \param{PointName}. La gestion de la valeur par -défaut suit les mêmes règles que celles vues précédemment. - -\tabex{triangle} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Angles} - -Chaque angle est déterminé par trois points. Le sommet de l'angle est -le second. L'ordre a de l'importance en sachant que le sens direct ou -trigonométrique est le sens inverse des aiguilles d'une -montre. Tout d'abord, il est possible de marquer un angle droit avec -le symbole standard : - -\defcom{pstRightAngle}% - {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}} - -L'unique paramètre auquel est sensible cette commande, hormis bien -entendu ceux de contrôle du trait, est \param{RightAngleSize} qui -permet de contrôler la longueur du carré utilisé \DefaultVal{0.28 unit}. -Le symbole est placé sur l'angle de sommet \Argsans{$B$}. - -Pour les autres angles, il y a la commande : - -\defcom{pstMarkAngle}% - {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}\Arg{label}} - -L'étiquette définie par le paramètre \param{label} peut être tout -texte \TeX. Elle est placée à \param{LabelSep} \DefaultVal{1~unit} -du point \cbstart dans la direction angulaire de la bissectrice -intérieure modifié par \param{LabelAngleOffset} \DefaultVal{0} et -positionnée par rapport à \param{LabelRefPt} \DefaultVal{c}. \cbend -D'autre part l'arc de cercle utilisé pour le marquage a pour rayon -\param{MarkAngleRadius} \DefaultVal{.4~unit}. Enfin, il est posible -de placer une flèche en début ou fin d'arc en utilisant le paramètre -\param{arrows}. - -\tabex{angle} - -\cbstart - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Droites, demi-droites et segments} -\cbend - -Rien de plus utile qu'une droite ! - -\defcom{pstLineAB}{\OptArg{par}\Arg{$A$}\Arg{$B$}} - -Afin de contrôler sa longueur\footnote{Ce qui est le comble pour une - droite !}, les deux paramètres \param{nodesepA} et -\param{nodesepB} indiquent l'abscisse des extrémités de la droite. Une -abscisse négative spécifie un dépassement au-delà des points, tandis -qu'une abscisse positive indique le contraire. Si les deux valeurs -sont identiques, on peut utiliser alors le paramètre -\param{nodesep}. La valeur par défaut de ces paramètres est nulle. - -\tabex{droite} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Cercles} - -Un cercle peut être défini soit par son centre et un point de sa -circonférence, soit par deux points diamètralement opposés. Il existe -donc deux fonctions : - -\defcomdeux{pstCircleOA}{\OptArg{par}\Arg{$O$}\Arg{$A$}}% - {pstCircleAB}{\OptArg{par}\Arg{$A$}\Arg{$B$}} - -Pour la première fonction, il est également possible d'omettre le -second point, et de spécifier un rayon ou un diamètre avec les -paramètres \param{Radius} et \param{Diameter} au moyen des deux fonctions -suivantes : - -\defcomdeux{pstDistAB}{\OptArg{par}\Arg{$A$}\Arg{$B$}}% - {pstDistVal}{\OptArg{par}\Arg{x}} - -La première permet de spécifier une distance entre deux points. Le -paramètre \param{DistCoef} permet de donner un coefficient -multiplicatif à appliquer sur cette distance. Afin d'être pris en -considération, ce paramètre doit être spécifié avant la distance. La -seconde fonction permet de spécifier directement une valeur -numérique qui peut être un calcul en code \Postcript. - -Nous verrons plus loin comment tracer le cercle passant par trois -points. - -\vspace{1.1\baselineskip} -\begin{minipage}[m]{.4\linewidth} - Avec cette extension, il devient possible de tracer : - - \begin{itemize} - \item {\color{red} le cercle de centre $A$ passant par $B$ ;} - \item \cbstart{\color{green} le cercle de centre $A$ de rayon les deux tiers de $AC$ ;}\cbend - \item {\color{blue} le cercle de centre $A$ de rayon $BC$ ;} - \item {\color{Sepia} le cercle de centre $B$ de rayon $AC$ ;} - \item {\color{Aquamarine} le cercle de centre $B$ de diamètre $AC$ ;} - \item {\color{RoyalBlue} le cercle de diamètre $BC$ ;} - \end{itemize} -\end{minipage} -\hfill% -\input{Exemples/cercle} - -\verbatiminput{Exemples/cercle_in} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Arcs de cercles} - -\defcomdeux{pstArcOAB}{\OptArg{par}\Arg{$O$}\Arg{$A$}\Arg{$B$}}% - {pstArcnOAB}{\OptArg{par}\Arg{$O$}\Arg{$A$}\Arg{$B$}} - -Ces deux fonctions tracent des arcs de cercle, le centre étant donné -par $O$, le rayon par $OA$, l'angle de départ par $A$ et celui -d'arrivée par $B$. Enfin la première trace l'arc dans le sens direct et la -seconde dans le sens indirect. Il n'est pas nécessaire que les deux points -soient à égales distances de $O$. - -\tabex{arc} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Abscisse curviligne} - -Un point peut être positionné sur un cercle au moyen d'une abscisse -curviligne. - -\defcom{pstCurvAbsNode}{\OptArg{par}\Arg{$O$}\Arg{$A$}\Arg{$B$}\Arg{Abs}} - -Le point \Argsans{$B$} est placé sur le cercle de centre \Argsans{$O$} -passant par \Argsans{$A$}, avec l'abscisse curviligne \Argsans{Abs}. -L'origine est en \Argsans{$A$}, et le sens est par défaut le -sens trigonométrique (inverse des aiguilles d'une montre). Le -paramètre \param{CurvAbsNeg} \DefaultVal{false} permet de -modifier le sens de parcours du cercle. - -\tabex{abscur} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Courbe générique} - -Il est tout à fait possible de générer des points au moyen d'une boucle -et de leur donner à chacun un nom générique composé d'un radical et -d'un nombre. La commande suivante permet de relier ces points au moyen -d'une courbe interpolée. - -\defcom{pstGenericCurve}{\OptArg{par}\Arg{Radical}\Arg{$n_1$}\Arg{$n_2$}} - -La courbe est tracée sur les points dont le nom comporte le radical -\Argsans{Radical}, et comme suffixe un nombre allant de -\Argsans{$n_1$} à \Argsans{$n_2$}. Pour gérer les effets de bords, les -paramètres \param{GenCurvFirst} et \param{GenCurvLast} permettent de -désigner explicitement le premier et le dernier point. Le paramètre -\param{GenCurvInc} permet de spécifier l'incrément de boucle pour -passer d'un point à un autre \DefaultVal{1}. - -\tabex{gencur} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Transformations} - -Les transformations du plan permettent de coder facilement des -propriétés géométriques. Il est donc possible de construire les images -de points par toutes les transformations classiques du plan. - -Toutes ces commandes partagent le paramètre \param{CodeFig} qui permet -de faire apparaître les propriétés caractéristiques liées à la -tranformation et à la construction de l'image. Par défaut, ce -paramètre a pour valeur \param{false}, il doit être mis à \param{true} -pour activer ce tracé optionnel. - -Ce tracé se fait en utilisant le style \param{CodeFigStyle} -\DefaultVal{dashed} et suivant la couleur \param{CodeFigColor} -\DefaultVal{cyan}. - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Symétrie centrale} - -\defcom{pstSymO}% - {\OptArg{par}\Arg{$O$}\Arg{$M$}\Arg{$M'$}} - -Construit le point symétrique par rapport au point\Argsans{$O$}. Les -paramètres classiques de la création de point sont utilisables comme -dans toutes les fonctions suivantes. - -Elle peut servir à la construction d'un parallélogramme de centre -connu. - -\tabex{symcentrale} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Symétrie orthogonale} - -\defcom{pstOrtSym}% - {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$M$}\Arg{$M'$}} - -Construit le point symétrique de $M$ par rapport à la droite $(AB)$. - -\tabex{symorthogonale} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Rotation} - -\defcom{pstRotation}% - {\OptArg{par}\Arg{centre}\Arg{M}\Arg{M'}} - -Construit l'image d'un point par rotation. L'angle de rotation est -donné par le paramètre \param{RotAngle} \DefaultVal{60}. Celui-ci -peut-être un angle orienté défini par trois points. Il faut alors -utiliser la fonction : - -\defcom{pstAngleABC}{\Arg{$A$}\Arg{$B$}\Arg{$C$}} - -Pensez à l'utiliser pour construire un carré ou un triangle équilatéral. - -\tabex{rotation} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Translation} - -\defcom{pstTranslation}% - {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$M$}\Arg{$M'$}} - -Construit le translaté de vecteur \Vecteur{AB} du point -\Argsans{$M$}. À utiliser pour construire la parallèle passant -par un point. - -\tabex{translation} - -Il est également possible d'utiliser le paramètre \param{DistCoef} -pour modifier le vecteur de translation avec un coefficient -multiplicatif. - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Homothétie} - -\defcom{pstHomO}% - {\OptArg{par}\Arg{$O$}\Arg{$M$}\Arg{$M'$}} - -Construit l'image d'un point par homothétie. -Le coefficient se spécifie avec le paramètre -\param{HomCoef}. Incontournable pour les situations de -\textsc{Thalès}. - -\tabex{homothetie} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Projection orthogonale} - -\defcom{pstProjection}% - {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$M$}\Arg{$M'$}} - -Projette orthogonalement le point $M$ sur la droite -$(AB)$. Très important pour tracer les hauteurs d'un triangle. - -\tabex{projection} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Objets particuliers} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Milieu} - -\defcom{pstMiddleAB}% - {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$I$}} - -Construit le milieu d'un segment. - -\tabex{milieu} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Centre de gravité d'un triangle} - -\defcom{pstCGravABC}% - {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}\Arg{$G$}} - -Construit le centre de gravité d'un triangle. - -\tabex{grav} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Cercle circonscrit d'un triangle et son centre} - -\defcom{pstCircleABC}{\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}\Arg{$O$}} - -Cette commande permet de tracer le cercle passant par trois points et -de positionner le centre. Le tracé du cercle est contrôlé par le -paramètre booléen \param{DrawCirABC} \DefaultVal{true}. -La création du point est sensible à tous les paramètres classiques -déjà vus. - -\tabex% - [@{}m{.35\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.627\linewidth}@{}]% - {ccirc} - -\cbstart - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Médiatrice d'un segment} - -\defcom{pstMediatorAB}{\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$I$}\Arg{$M$}} - -La médiatrice d'un segment est la droite perpendiculaire au milieu de -ce segement. Le segment est $[AB]$, le milieu est $I$, et $M$ est un -point de la médiatrice, construit par une rotation de $90$\degres\ du -point point $B$ par rapport à $I$. L'ordre des deux points est -important, il permet de contrôler la position de la médiatrice. La -commande crée les points $M$ et $I$. La construction est sensible aux -paramètres suivant : - -\begin{itemize} -\item \param{CodeFig}, \param{CodeFigColor} et \param{SegmentSymbol} - pour marquer l'angle droit et le milieu ; -\item \param{PointSymbol} et \param{PointName} pour contrôler - l'apparence des deux nouveaux points, chacun pouvant être spécifiés - séparément au moyen des paramètres \param{...A} et \param{...B} ; -\item les paramètres de tracés des droites. -\end{itemize} - -\tabex% - [@{}m{.35\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.627\linewidth}@{}]% - {mediator} -\cbend - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Bissectrices d'un angle} - -\defcom{pstBissectBAC}{\OptArg{par}\Arg{$B$}\Arg{$A$}\Arg{$C$}\Arg{$M$}} - -\defcom{pstOutBissectBAC}{\OptArg{par}\Arg{$B$}\Arg{$A$}\Arg{$C$}\Arg{$M$}} - -Il existe deux bissectrices pour un angle géométrique donné : -l'intérieure et l'extérieure ; donc il y a deux commandes. L'angle est -spécifié dans le sens trigonométrique. Les résultats de ces deux -commandes sont la bissectrice et un point de celle-ci qui est -positionné par une rotation du point $B$. - -\tabex% - [@{}m{.35\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.627\linewidth}@{}]% - {bissec} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Intersections} - -Un autre moyen de définir un point est de spécifier une intersection. -Trois types d'intersections sont gérées : - -\begin{itemize} -\item l'intersection droite-droite ; -\item l'intersection droite-cercle ; -\item l'intersection cercle-cercle. -\end{itemize} - -Une intersection peut ne pas exister : cas des droites parallèles par -exemple. Dans ce cas, le ou les points concernés se retrouvent placés -à l'origine. En fait, il est supposé que l'utilisation de ces -commandes implique l'existence de l'intersection. - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Droite-droite} -\cbstart -\defcom{pstInterLL}% - {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}\Arg{$D$}\Arg{$M$}} -\cbend - -Construit le point d'intersection de la droite $(AB)$ avec la droite -$(CD)$. Option essentielle de la construction de figures du triangle, -elle permet de positionner les points remarquables. Les paragraphes -suivants proposent différents exemples : - -\begin{description} -\item[basique] - - \tabex{interDD} - -\item[orthocentre] - - \tabex% - [@{}m{.35\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.627\linewidth}@{}] - {orthocentre} - -\end{description} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Cercle--droite} - -\defcom{pstInterLC}% - {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$O$}\Arg{$C$}% - \Arg{$M_1$}\Arg{$M_2$}} - -Construit le ou les points d'intersection de la droite $(AB)$ avec -le cercle de centre $O$ et de rayon $OC$. L'intersection entre un -cercle et une droite donne en cas d'existence un ou deux points. En -fait le cas tangent représente un point double au sens des racines -d'un polynôme. - -Le cercle est spécifié avec son centre et soit un point de sa -circonférence, soit son rayon ou diamètre spécifié au moyen des -paramètres \param{Radius} et \param{Diameter} et modulé par le -paramètre coefficient multiplicatif \param{DistCoef}. - -\tabex - [@{}m{.4\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.5777\linewidth}@{}] - {interDC} - -La position des points n'étant pas spécifiée, il faudra bien regarder si -cela correspond à votre choix. Il arrive aussi, qu'après la -modification de la position d'un point, un dessin ne représente plus -la même figure à cause de l'échange entre les deux points d'une -intersection droite-cercle comme le montre l'exemple suivant sur le -léger déplacement du point $C$ : - -\hfill\rule[-\baselineskip]{0pt}{5cm+2\baselineskip} -\begin{pspicture}(5,5)\psgrid - \pstGeonode(2,2){O}\pstGeonode(3,1){A}% - \pstGeonode(1,2){B}\pstGeonode(1.1,4){C}% - \pstCircleOA{O}{A}% - \pstInterLC{B}{C}{O}{A}{D}{E} -\end{pspicture} -\hfill -\begin{pspicture}(5,5)\psgrid - \pstGeonode(2,2){O}\pstGeonode(3,1){A}% - \pstGeonode(1,2){B}\pstGeonode(.9,4){C}% - \pstCircleOA{O}{A}% - \pstInterLC{C}{B}{O}{A}{D}{E} -\end{pspicture} -\hspace*{\fill} - -Ce traitement se retrouve pour les points d'intersections entre deux -cercles. - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Cercle--cercle} - -\defcom{pstInterCC}% - {\OptArg{par}\Arg{$O_1$}\Arg{$B$}\Arg{$O_2$}\Arg{$C$}% - \Arg{$M_1$}\Arg{$M_2$}} - -Fonction au comportement identique à la précédente. Les paramètres -booléens \param{CodeFigA} et \param{CodeFigB} permettent de faire -apparaître les arcs au niveau des intersections. Par cohérence -\param{CodeFig} permet de faire apparaître les deux arcs. Afin de -contrôler dans quel sens vont-être ces arcs, les paramètres booléens -\param{CodeFigAarc} et \param{CodeFigBarc} permettent de choisir dans -le sens direct ou indirect. - -\tabex{interCC} - -Et un deuxième exemple plus complet, intégrant les spécifications de -cercle avec des rayons et des diamètres. Il existe dans ce cas des -paramètres \param{RadiusA}, \param{RadiusB}, \param{DiameterA} et -\param{DiameterB}. -\cbstart -Toutefois, même dans le cas où le diamètre est -spécifié, il faut donner un centre. On ne peut pas spécifier un cercle -avec deux points diamétralement opposé. -\cbend - -\begin{center} - \rule[-.5cm]{0pt}{8cm} - \begin{pspicture}(-3,-4)(7,3)\psgrid - \input{Exemples/interCC_bis_in} - \end{pspicture} -\end{center} - -\verbatiminput{Exemples/interCC_bis_in} -\pagebreak[4] - -%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\chapter{Galerie d'exemples} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \section{Géométrie élémentaire} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Tracé de la bissectrice} - \nopagebreak[4] - -\tabex{gal_biss} - -\cbstart - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Angle droit allemand} - -En Allemagne, on utilise une autre convention pour les angles -droits (remarque de U. \textsc{Dirr}). -\nopagebreak[4] - -\tabex{german_ra} - -\cbend - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Droites remarquables du triangle}\nopagebreak[4] - -\begin{center} -\psset{unit=2cm} -\input{Exemples/remarq} -\end{center}\nopagebreak[4] - -\verbatiminput{Exemples/remarq_in} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Cercle d'\textsc{Euler}} - -\begin{center} -\psset{unit=2cm} -\input{Exemples/euler} -\end{center}\nopagebreak[4] - -\verbatiminput{Exemples/euler_in} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Orthocentre et hyperbole} - -L'orthocentre d'un triangle dont les points sont situés sur les -branches de l'hyperbole ${\mathscr H} : y=a/x$ appartient à cette hyperbole. -\nopagebreak[4] - -\begin{center} -\psset{unit=.5cm} -\input{Exemples/orthoethyper} -\end{center}\nopagebreak[4] - -\verbatiminput{Exemples/orthoethyper_in} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Polygone régulier à 17 côtés} - -Remarquable construction due à K. F. \textsc{Gauss}. -Il a démontré qu'il était possible de construire les polygones à -$2^{2^p}+1$ côtés, le suivant est donc à 257 côtés ! -\nopagebreak[4] - -%% Polygone à 17 côtés -\begin{center} -\psset{unit=1.5cm, CodeFig=true, RightAngleSize=.14, CodeFigColor=red, - CodeFigB=true, linestyle=dashed, dash=2mm 2mm} -\begin{pspicture}(-5.5,-5.5)(5.5,6)%\psgrid - \pstGeonode[PosAngle=-90](0,0){O} - %% picture correct for x>0 and y<=0 for P_1!! - \pstGeonode[PosAngle=0](5,0){P_1} - \pstCircleOA{O}{P_1} - \pstSymO[PointSymbol=none, CodeFig=false]{O}{P_1}{PP_1} - \ncline[linestyle=solid]{PP_1}{P_1} - \pstRotation[RotAngle=90, PosAngle=90]{O}{P_1}{B} - \pstRightAngle[linestyle=solid]{B}{O}{PP_1}\ncline[linestyle=solid]{O}{B} - \pstHomO[HomCoef=.25]{O}{B}{J} - \ncline{J}{P_1} - \pstBissectBAC[PointSymbol=none]{O}{J}{P_1}{PE1} - \pstBissectBAC[PointSymbol=none]{O}{J}{PE1}{PE2} - \pstInterLL[PosAngle=-90]{O}{P_1}{J}{PE2}{E} - \pstRotation[PosAngle=-90, RotAngle=-45, PointSymbol=none]{J}{E}{PF1} - \pstInterLL[PosAngle=-90]{O}{P_1}{J}{PF1}{F} - \pstMiddleAB[PointSymbol=none]{F}{P_1}{MFP1} - \pstCircleOA{MFP1}{P_1} - \pstInterLC[PointSymbolB=none]{O}{B}{MFP1}{P_1}{K}{H} - \pstCircleOA{E}{K} - \pstInterLC{O}{P_1}{E}{K}{N_4}{N_6} - \pstRotation[RotAngle=90, PointSymbol=none]{N_6}{E}{PP_6}{} - \pstInterLC[PosAngleA=90, PosAngleB=-90, PointNameB=P_{13}] - {N_6}{PP_6}{O}{P_1}{P_6}{P_13} - \pstSegmentMark[SegmentSymbol=wedge]{N_6}{P_6} - \pstSegmentMark[SegmentSymbol=wedge]{P_13}{N_6} - \pstRotation[RotAngle=90, PointSymbol=none]{N_4}{E}{PP_4}{} - \pstInterLC[PosAngleA=90, PosAngleB=-90, PointNameB=P_{15}] - {N_4}{PP_4}{O}{P_1}{P_4}{P_15} - \pstSegmentMark[SegmentSymbol=cup]{N_4}{P_4} - \pstSegmentMark[SegmentSymbol=cup]{P_15}{N_4} - \pstRightAngle[linestyle=solid]{P_1}{N_6}{P_6} - \pstRightAngle[linestyle=solid]{P_1}{N_4}{P_4} - \pstBissectBAC[PosAngle=90, linestyle=none]{P_4}{O}{P_6}{P_5} - \pstOrtSym[PosAngle=-90, PointName=P_{14}]{O}{P_1}{P_5}{P_14} - \pstInterCC[PosAngleB=90, PointSymbolA=none, - PointNameA=none]{O}{P_1}{P_4}{P_5}{H}{P_3} - \pstOrtSym[PosAngle=-90, SegmentSymbol=pstslash, PointName=P_{16}] - {O}{P_1}{P_3}{P_16} - \pstInterCC[PosAngleB=90, PointSymbolA=none]{O}{P_1}{P_3}{P_4}{H}{P_2} - \pstOrtSym[PosAngle=-90, SegmentSymbol=pstslashslashslash, - PointName=P_{17}]{O}{P_1}{P_2}{P_17} - \pstInterCC[PosAngleA=90, PointSymbolB=none]{O}{P_1}{P_6}{P_5}{P_7}{H} - \pstOrtSym[PosAngle=-90, SegmentSymbol=circ, - PointName=P_{12}]{O}{P_1}{P_7}{P_12} - \pstInterCC[PosAngleA=100, PointSymbolB=none]{O}{P_1}{P_7}{P_6}{P_8}{H} - \pstOrtSym[PosAngle=-100, SegmentSymbol=times, - PointName=P_{11}]{O}{P_1}{P_8}{P_11} - \pstInterCC[PosAngleA=135, PointSymbolB=none]{O}{P_1}{P_8}{P_7}{P_9}{H} - \pstOrtSym[PosAngle=-135, SegmentSymbol=equiv, - PointName=P_{10}]{O}{P_1}{P_9}{P_10} - \pspolygon[linecolor=green, linestyle=solid, linewidth=2\pslinewidth] - (P_1)(P_2)(P_3)(P_4)(P_5)(P_6)(P_7)(P_8)(P_9) - (P_10)(P_11)(P_12)(P_13)(P_14)(P_15)(P_16)(P_17) -\end{pspicture} -\end{center} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Tangentes de cercles} - -Construction des tangentes à un cercle passant par un point donné. -\nopagebreak[4] - -\begin{center} -\begin{pspicture}(15,10)%\psgrid - \pstGeonode(5, 5){O} - \pstCircleOA[Radius=\pstDistVal{4}]{O}{} - \pstGeonode(14,2){M} - \pstMiddleAB[PointSymbol=none]{O}{M}{O'} - \pstInterCC[RadiusA=\pstDistVal{4}, DiameterB=\pstDistAB{O}{M}, - CodeFigB=true, CodeFigColor=magenta, PosAngleB=45] - {O}{}{O'}{}{A}{B} - \psset{linecolor=red, linewidth=1.3\pslinewidth, nodesep=-2} - \pstLineAB{M}{A}\pstLineAB{M}{B} -\end{pspicture} -\end{center} - -Construction des tangentes à deux cercles. -\nopagebreak[4] - -\begin{center} -\begin{pspicture}(-2,0)(13,9)%\psgrid - %% tangente à deux cercles - \pstGeonode(9,3){O}\pstGeonode(3,6){O'}\psset{PointSymbol=none} - \pstCircleOA[Radius=\pstDistVal{3}] - {O}{}\pstCircleOA[Radius=\pstDistVal{1}]{O'}{} - \pstInterLC[Radius=\pstDistVal{3}]{O}{O'}{O}{}{M}{toto} - \pstInterLC[Radius=\pstDistVal{1}]{O}{O'}{O'}{}{M'}{toto} - \pstRotation[RotAngle=30]{O}{M}{N} - \pstRotation[RotAngle=30]{O'}{M'}{N'} - \pstInterLL[PointName=\Omega]{O}{O'}{N}{N'}{Omega} - \pstMiddleAB{O}{Omega}{I} - \pstInterCC{I}{O}{O}{M}{A}{B} - \psset{nodesepA=-1, nodesepB=-3, linecolor=blue, linewidth=1.3\pslinewidth} - \pstLineAB[nodesep=-2]{A}{Omega}\pstLineAB[nodesep=-2]{B}{Omega} - \pstRotation[RotAngle=-150]{O'}{M'}{N''} - \pstInterLL[PointName=\Omega']{O}{O'}{N}{N''}{Omega'} - \pstMiddleAB{O}{Omega'}{J} - \pstInterCC{J}{O}{O}{M}{A'}{B'} - \psset{nodesepA=-1, nodesepB=-3, linecolor=red} - \pstLineAB{A'}{Omega'}\pstLineAB{B'}{Omega'} -\end{pspicture} -\end{center} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Point de \textsc{Fermat} d'un triangle} - -Figure de Manuel \textsc{Luque}.\nopagebreak[4] - -\begin{pspicture}(-7,-6)(5,5)%\psgrid - \psset{PointSymbol=none} - \pstTriangle[PosAngleA=-160, PosAngleB=90, PosAngleC=-25]% - (-3,-2){B}(0,3){A}(2,-1){C}% - \psset{RotAngle=-60} - \pstRotation[PosAngle=-90]{B}{C}{A'} - \pstRotation{C}{A}{B'} - \pstRotation[PosAngle=160]{A}{B}{C'} - \pstLineAB{A}{B'} - \pstLineAB{C}{B'} - \pstLineAB{B}{A'} - \pstLineAB{C}{A'} - \pstLineAB{B}{C'} - \pstLineAB{A}{C'} - \pstCircleABC[linecolor=red]{A}{B}{C'}{O_1} - \pstCircleABC[linecolor=blue]{A}{C}{B'}{O_2} - \pstCircleABC[linecolor=Aquamarine]{A'}{C}{B}{O_3} - \pstInterCC[PointSymbolA=none]{O_1}{A}{O_2}{A}{E}{F} -\end{pspicture} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Cercles ex-insrits et inscrit d'un triangle} - -Les centres de ces cercles sont les intersections des bissectrices -intérieures et extérieures. - -%% cercles inscrit et exinscrits d'un triangle -\bgroup\centering -\psset{unit=1cm, dash=5mm 4mm}%, PointSymbolA=none, PointSymbolB=none} -\begin{pspicture}(-6,-5)(11,15)%\psgrid - \psframe(-6,-5)(11,15) - \pstTriangle[linewidth=2\pslinewidth, PosAngleA=-75, PosAngleB=180, - PosAngleC=45, linecolor=red] - (4,1){A}(0,3){B}(5,5){C} - \psset{linecolor=blue} - \pstBissectBAC[PointSymbol=none]{C}{A}{B}{AB} - \pstBissectBAC[PointSymbol=none]{A}{B}{C}{BB} - \pstBissectBAC[PointSymbol=none]{B}{C}{A}{CB} - \pstInterLL{A}{AB}{B}{BB}{I} - \psset{linecolor=magenta, linestyle=dashed} - \pstProjection[PosAngle=-90]{A}{B}{I}{I_C} - \pstLineAB{I}{I_C}\pstRightAngle[linestyle=solid]{A}{I_C}{I} - \pstProjection{A}{C}{I}{I_B} - \pstLineAB{I}{I_B}\pstRightAngle[linestyle=solid]{C}{I_B}{I} - \pstProjection[PosAngle=80]{C}{B}{I}{I_A} - \pstLineAB{I}{IA}\pstRightAngle[linestyle=solid]{B}{I_A}{I} - \pstCircleOA[linecolor=yellow, linestyle=solid]{I}{I_A} - %% BISSECTRICES EXTÉRIEURES - \psset{linecolor=magenta, linestyle=none} - \pstOutBissectBAC[PointSymbol=none]{C}{A}{B}{AOB} - \pstOutBissectBAC[PointSymbol=none]{A}{B}{C}{BOB} - \pstOutBissectBAC[PointSymbol=none]{B}{C}{A}{COB} - \pstInterLL[PosAngle=-90]{A}{AOB}{B}{BOB}{I_1} - \pstInterLL{A}{AOB}{C}{COB}{I_2} - \pstInterLL[PosAngle=90]{C}{COB}{B}{BOB}{I_3} - \psset{linecolor=magenta, linestyle=dashed} - \pstProjection[PosAngle=50, PointName=I_{1C}]{A}{B}{I_1}{I1C} - \pstLineAB{I_1}{I1C}\pstRightAngle[linestyle=solid]{I_1}{I1C}{A} - \pstProjection[PointName=I_{1B}]{A}{C}{I_1}{I1B} - \pstLineAB{I_1}{I1B}\pstRightAngle[linestyle=solid]{A}{I1B}{I_1} - \pstProjection[PosAngle=110, PointName=I_{1A}]{C}{B}{I_1}{I1A} - \pstLineAB{I_1}{I1A}\pstRightAngle[linestyle=solid]{I_1}{I1A}{C} - \pstProjection[PointName=I_{2B}]{A}{C}{I_2}{I2B} - \pstLineAB{I_2}{I2B}\pstRightAngle[linestyle=solid]{A}{I2B}{I_2} - \pstProjection[PosAngle=-90, PointName=I_{2C}]{A}{B}{I_2}{I2C} - \pstLineAB{I_2}{I2C}\pstRightAngle[linestyle=solid]{I_2}{I2C}{A} - \pstProjection[PosAngle=90, PointName=I_{2A}]{B}{C}{I_2}{I2A} - \pstLineAB{I_2}{I2A}\pstRightAngle[linestyle=solid]{C}{I2A}{I_2} - \pstProjection[PosAngle=130, PointName=I_{3A}]{C}{B}{I_3}{I3A} - \pstLineAB{I_3}{I3A}\pstRightAngle[linestyle=solid]{C}{I3A}{I_3} - \pstProjection[PosAngle=-90, PointName=I_{3C}]{A}{B}{I_3}{I3C} - \pstLineAB{I_3}{I3C}\pstRightAngle[linestyle=solid]{A}{I3C}{I_3} - \pstProjection[PointName=I_{3B}]{C}{A}{I_3}{I3B} - \pstLineAB{I_3}{I3B}\pstRightAngle[linestyle=solid]{I_3}{I3B}{A} - \psset{linecolor=yellow, linestyle=solid} - \pstCircleOA{I_1}{I1C} - \pstCircleOA{I_2}{I2B} - \pstCircleOA{I_3}{I3A} - \psset{linecolor=red, linestyle=solid, nodesepA=-1, nodesepB=-1} - \pstLineAB{I1B}{I3B}\pstLineAB{I1A}{I2A}\pstLineAB{I2C}{I3C} -\end{pspicture} -\egroup - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \section{Quelques lieux de points} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Parabole} - -\begin{minipage}[m]{.33\linewidth} -La parabole est l'ensemble des points situés à égale distance d'un -point : le foyer, et d'une droite : la directrice. -\end{minipage} -\newcommand{\NbPt}{11} -\input{Exemples/parabole}\nopagebreak[4] - -\verbatiminput{Exemples/parabole_in} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Hyperbole} - -\begin{minipage}[m]{.33\linewidth} -L'hyperbole est composée des points dont la différence des distances -avec les foyers est constant. -\end{minipage} -%% QQ DEFINITIONS -%% RAPPELS : a=\Sommet, c=\PosFoyer, b^2=c^2-a^2, e=c/a -%% pour une hyperbole -> e>1, donc c>a -%% a=\sqrt{2}, c=2, e=\sqrt{2} -%% M est sur H <=> MF-MF'=2a ou MF'-MF=2a -\newcommand{\Sommet}{1.4142135623730951}\newcommand{\PosFoyer}{2} -\newcommand{\HypAngle}{0} -\setcounter{i}{1}\newcounter{CoefDiv}\setcounter{CoefDiv}{20} -\newcounter{Inc}\setcounter{Inc}{2}\newcounter{n}\setcounter{n}{2} -%% rayon des cercles successifs utilisés pour trouver les points de H -%% on choisi \Rii=\Ri+2\Sommet (définition de l'hyperbole) -\newcommand{\Ri}{% - \PosFoyer\space\Sommet\space% - sub \arabic{i}\space\arabic{CoefDiv}\space% - div add} -\newcommand{\Rii}{\Ri\space\Sommet\space 2 mul add}% .001 add} -\begin{pspicture}[.5](-4,-4)(4,4)%\psgrid - \pstGeonode[PosAngle=90](0,0){O} - \pstGeonode(\PosFoyer;\HypAngle){F} - \pstSymO[PosAngle=180]{O}{F}{F'} - \pstLineAB{F}{F'} - %% TRACÉ DES ASYMPTOTES - %\psset{PointSymbol=none} - \pstCircleOA{O}{F} - %% positionnement des deux sommets de H - \pstGeonode[PosAngle=-135](\Sommet;\HypAngle){S} - \pstGeonode[PosAngle=-45](-\Sommet;\HypAngle){S'} - %% l'intersection de la droite perpendiculaire à (FF') - %% passant par S, coupe les asymptotes sur le cercle - %% de diamètre [FF'] (cette droite est une tangente) - \pstRotation[RotAngle=90, PointSymbol=none]{S}{O}{B} - \pstInterLC[PosAngleA=90, PosAngleB=-90]{S}{B}{O}{F}{A_1}{A_2} - \pstLineAB[nodesepA=-3,nodesepB=-5]{A_1}{O} - \pstLineAB[nodesepA=-3,nodesepB=-5]{A_2}{O} - %% cos(\Psi)=OS/OF (c-a-d \Sommet/\PosFoyer) - %% ici \sqrt(2)/2, donc \Psi=45 => hyperbole équilatère - \pstMarkAngle[LabelSep=.8, MarkAngleRadius=.7, - arrows=->, LabelSep=1.1]{F}{O}{A_1}{$\Psi$} - \ncline[linecolor=red]{A_1}{A_2} - \pstRightAngle[RightAngleSize=.15]{A_1}{S}{O} - \psset{PointName=none} - \whiledo{\value{n}<8}{% - \psset{RadiusA=\pstDistVal{\Ri},RadiusB=\pstDistVal{\Rii},PointSymbol=none} - \pstInterCC{F}{}{F'}{}{M\arabic{n}}{P\arabic{n}} - \pstInterCC{F'}{}{F}{}{M'\arabic{n}}{P'\arabic{n}} - %% bcp de points au début, moins ensuite - %% n -> numéro du point, i -> taille des cercles - %% Inc -> incrément variable de i (2^n) - \stepcounter{n}\addtocounter{i}{\value{Inc}} - \addtocounter{Inc}{\value{Inc}}}%% fin de whiledo - \psset{linecolor=blue} - %% tracé de l'hyperbole - \pstGenericCurve[GenCurvFirst=S]{M}{2}{7} - \pstGenericCurve[GenCurvFirst=S]{P}{2}{7} - \pstGenericCurve[GenCurvFirst=S']{M'}{2}{7} - \pstGenericCurve[GenCurvFirst=S']{P'}{2}{7} - %% pour vérif le trace paramètrique - %\parametricplot[linecolor=black, linewidth=.25pt]{-1}{1} - % {t dup tx@EcldDict begin sh exch ch end \Sommet\space mul exch - % \PosFoyer\space dup mul \Sommet\space dup mul sub sqrt mul} - %\parametricplot[linecolor=black, linewidth=.25pt]{-1}{1} - % {t dup tx@EcldDict begin sh exch ch end neg \Sommet\space mul exch - % \PosFoyer\space dup mul \Sommet\space dup mul sub sqrt mul} -\end{pspicture} -\pagebreak - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Cycloïde} - -La roue roule de $M$ à $A$. Les points du cercle parcourent -des cycloïdes. L'intérêt de cet exemple est de faire coïncider les -points de rebroussement avec des points calculés. -\nopagebreak[4] - -\begin{center} -\input{Exemples/cyclo} -\end{center}\nopagebreak[4] - -\verbatiminput{Exemples/cyclo_in} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Hypocycloïdes (astroïde et deltoïde)} - -Une roue roule à l'intérieure d'un cercle et selon le rapport -des rayons, on obtient une astroïde, une deltoïde et dans le cas -générale des hypocycloïdes.\nopagebreak[4] - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%% ASTROÏDE -\input{Exemples/hypocyclo} -%%%%%%%%%%%%%%%%%%%% -\begin{center} -\input{Exemples/astro}\input{Exemples/delto} -\end{center} - -\verbatiminput{Exemples/hypocyclo} -\verbatiminput{Exemples/astro_in} - -\cbstart - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \section{Enveloppes de droites et de cercles} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Coniques} - -On considère un cercle et un point $A$ extérieur à ce cercle. -L'ensemble des médiatrices des segments formés par $A$ et les points -du cercle forme les deux coniques selon la place de $A$ : s'il est à -l'intérieur du cercle l'ellipse, à l'extérieur l'hyperbole. $A$ et le -centre du cercle en sont les foyers (figure d'O. \textsc{Reboux}). - -\begin{center}\input{Exemples/envellipse}\end{center} - -\verbatiminput{Exemples/envellipse_in} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \subsection{Cardioïde} - -La cardioïde est l'enveloppe des cercles centrés sur un cercle et -passant par un point fixé de ce cercle. - -\begin{center}\input{Exemples/envcardi}\end{center} - -\verbatiminput{Exemples/envcardi_in} - -\cbend - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \section{Homothéties et fractales}\nopagebreak[4] - -\tabex{fracthom} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \section{Géométrie hyperbolique : triangle et ses hauteurs} - -Le comble pour de la géométrie euclidienne ! - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%% Tracé de géodésique en géométrie hyperbolique -%% Attention ne fonctionne que si les points ne sont pas alignés avec O -%% Ceci est un cas particulier, je ne crois pas que les hauteurs -%% soient concourantes pour tous les triangles hyperboliques. -\begin{pspicture}(-5,-5)(5,5) - \psclip{\pscircle(0,0){4}}%\psgrid - %\newlength{\radius}\setlength{\radius}{0cm} - %\newcounter{rapport}\setcounter{i}{1} - %\whiledo{\value{i}<100}{ - % \setlength{\radius}{4cm*\value{i}} - % \setcounter{rapport}{\value{i}+1} - % \divide\radius by \arabic{rapport} - % \pscircle[linestyle=dotted, linecolor=gray]% - % (0, 0){\radius} - % \setcounter{i}{\value{i}*2} - % } - \pstGeonode(1, 2){M}\pstGeonode(-2,2){N}\pstGeonode(0,-2){P}% - \psset{DrawCirABC=false, PointSymbol=none}% - \pstGeonode(0,0){O}\pstGeonode(4,0){A}\pstCircleOA{O}{A}% - \pstHomO[HomCoef=\pstDistAB{O}{A} 2 mul \pstDistAB{O}{M} sub - \pstDistAB{O}{M} div]{O}{M}{M'}% - \pstHomO[HomCoef=\pstDistAB{O}{A} 2 mul \pstDistAB{O}{P} sub - \pstDistAB{O}{P} div]{O}{P}{P'}% - \pstHomO[HomCoef=\pstDistAB{O}{A} 2 mul \pstDistAB{O}{N} sub - \pstDistAB{O}{N} div]{O}{N}{N'}% - \psset{linecolor=green, linewidth=1.5\pslinewidth}% - \pstCircleABC{M}{N}{M'}{OmegaMN}\pstArcOAB{OmegaMN}{N}{M}% - \pstCircleABC{M}{P}{M'}{OmegaMP}\pstArcOAB{OmegaMP}{M}{P}% - \pstCircleABC{N}{P}{P'}{OmegaNP}\pstArcOAB{OmegaNP}{P}{N}% - \psset{linecolor=blue} - %% la hauteur issue de M - \pstHomO[HomCoef=\pstDistAB{OmegaNP}{N} 2 mul \pstDistAB{OmegaNP}{M} sub - \pstDistAB{OmegaNP}{M} div]{OmegaNP}{M}{MH'} - \pstCircleABC{M}{M'}{MH'}{OmegaMH}\pstArcOAB{OmegaMH}{MH'}{M} - %% la hauteur issue de N - \pstHomO[HomCoef=\pstDistAB{OmegaMP}{M} 2 mul \pstDistAB{OmegaMP}{N} sub - \pstDistAB{OmegaMP}{N} div]{OmegaMP}{N}{NH'} - \pstCircleABC{N}{N'}{NH'}{OmegaNH}\pstArcOAB{OmegaNH}{N}{NH'} - %% la hauteur issue de P - \pstHomO[HomCoef=\pstDistAB{OmegaMN}{M} 2 mul \pstDistAB{OmegaMN}{P} sub - \pstDistAB{OmegaMN}{P} div]{OmegaMN}{P}{PH'} - \pstCircleABC{P}{P'}{PH'}{OmegaPH}\pstArcOAB{OmegaPH}{P}{PH'} - \endpsclip -\end{pspicture} -\end{document} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \section{Une figure fractale : le flocon de \textsc{von Koch}} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%% TENTATIVE DE FLOCON DE VON KOCH -\newcounter{nbvk}% -%%%%%%%%%%%%% -%% PILE LIFO% -\newcounter{lifon}\setcounter{lifon}{1}%% -\newcommand{\Push}[1]{%% - \expandafter\edef\csname lifocmd\roman{lifon}\endcsname{#1}%% - \addtocounter{lifon}{1}%% - }% -\newcommand{\Pop}{\csname lifocmd\roman{lifon}\endcsname}% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\newcounter{nombre}\setcounter{nombre}{0}% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\newcommand{\vonkoch}[3]{%% - \setcounter{nbvk}{#1}%% - \edef\Pointi{#2}\edef\Pointii{#3}%% - \ifnum\value{nbvk}=1% - \ncline{\Pointi}{\Pointii}% - \else % ELSE% - \addtocounter{nombre}{1}% - %% position des nouveauX points% - \pstHomO[HomCoef=1 3 div]{\Pointi}{\Pointii}{P\arabic{nombre}1}% - \pstHomO[HomCoef=2 3 div]{\Pointi}{\Pointii}{P\arabic{nombre}2}% - \pstRotation[RotAngle=60]{P\arabic{nombre}1}{P\arabic{nombre}2}{P\arabic{nombre}3}% - \addtocounter{nbvk}{-1}%% - \Push{\Pointi}\Push{\Pointii}\Push{\arabic{nombre}}\Push{\arabic{nbvk}}% - \vonkoch{\value{nbvk}}{\Pointi}{P\arabic{nombre}1}% - \addtocounter{lifon}{-1}\edef\nbvklocal{\Pop}% - \addtocounter{lifon}{-1}\edef\nombrelocal{\Pop}% - \addtocounter{lifon}{-1}\edef\Pointii{\Pop}% - \addtocounter{lifon}{-1}\edef\Pointi{\Pop}% - \addtocounter{lifon}{4}% - \vonkoch{\nbvklocal}{P\nombrelocal1}{P\nombrelocal3}% - \addtocounter{lifon}{-1}\edef\nbvklocal{\Pop}% - \addtocounter{lifon}{-1}\edef\nombrelocal{\Pop}% - \addtocounter{lifon}{-1}\edef\Pointii{\Pop}% - \addtocounter{lifon}{-1}\edef\Pointi{\Pop}% - \addtocounter{lifon}{4}% - \vonkoch{\nbvklocal}{P\nombrelocal3}{P\nombrelocal2}% - \addtocounter{lifon}{-1}\edef\nbvklocal{\Pop}% - \addtocounter{lifon}{-1}\edef\nombrelocal{\Pop}% - \addtocounter{lifon}{-1}\edef\Pointii{\Pop}% - \addtocounter{lifon}{-1}\edef\Pointi{\Pop}% - \addtocounter{lifon}{4}% - \vonkoch{\nbvklocal}{P\nombrelocal2}{\Pointii}% - \addtocounter{lifon}{-4}% - \fi% -}% -\psset{unit=2.5cm}% -\begin{pspicture}(-2,-2)(2,2)% - \psset{PointSymbol=none} - \pstGeonode(-2,-2){A}\pstGeonode(2,2){B}% - \pstRotation[RotAngle=60]{B}{A}{C}% - \vonkoch{5}{A}{B}\setcounter{nombre}{0}%%% - \vonkoch{4}{B}{C}\setcounter{nombre}{0}%%% - \vonkoch{4}{C}{A}%% -\end{pspicture}% -% -\end{document}% - -\begin{pspicture*}(-4,-5)(4,5)%\psgrid - \pstGeonode[PosAngle=-135](0,0){O} - \pstGeonode[PosAngle=-90](1,0.5){I} - \pstGeonode[PosAngle=-180](0.5,2){J} - \pstLineAB[nodesep=100]{O}{I} - \pstLineAB[nodesep=100]{O}{J} - \multips(-5,-2.5)(1,0.5){11}{\psline(0,-.15)(0,.15)}% - \multips(-5,-2.5)(1,0.5){11}{\psline[linestyle=dotted](-10,-40)(10,40)}% - \multips(-2,-8)(0.5,2){9}{\psline(-.15,0)(.15,0)}% - \multips(-2,-8)(0.5,2){9}{\psline[linestyle=dotted](-10,-5)(10,5)}% - %% huit points - \psset{PointSymbol=x} - \pstOIJGeonode(1,2){A}{O}{I}{J} - \pstOIJGeonode(-2,1){B}{O}{I}{J} - \pstOIJGeonode(-1,-1.5){C}{O}{I}{J} - \pstOIJGeonode(2,-1){D}{O}{I}{J} -\end{pspicture*} -% |