diff options
Diffstat (limited to 'Master/texmf-dist/doc/fonts/newcomputermodern/testmath-newcm-sans.tex')
-rw-r--r-- | Master/texmf-dist/doc/fonts/newcomputermodern/testmath-newcm-sans.tex | 2321 |
1 files changed, 2321 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/testmath-newcm-sans.tex b/Master/texmf-dist/doc/fonts/newcomputermodern/testmath-newcm-sans.tex new file mode 100644 index 00000000000..44ee168372c --- /dev/null +++ b/Master/texmf-dist/doc/fonts/newcomputermodern/testmath-newcm-sans.tex @@ -0,0 +1,2321 @@ +%%% ==================================================================== +%%% filename = testmath.tex +%%% version = 2.0a +%%% date = 2023/08/24 +%%% author = American Mathematical Society +%%% copyright = Copyright 1995, 1999 American Mathematical Society +%%% 2023 LaTeX Project. +%%% License = https://www.latex-project.org/lppl/lppl-1-3c +%%% keywords = latex, amsmath, examples, documentation +%%% abstract = This is a test file containing extensive examples of +%%% mathematical constructs supported by the amsmath +%%% package." +%%% ==================================================================== +\NeedsTeXFormat{LaTeX2e}% LaTeX 2.09 can't be used (nor non-LaTeX) +[1994/12/01]% LaTeX date must December 1994 or later +\documentclass[draft]{article} +\synctex=1 +\pagestyle{headings} + +\title{Sample Paper for the \pkg{amsmath} Package\\ +File name: \fn{testmath.tex}} +\author{American Mathematical Society} +\date{Version 2.0a, 2023/08/24} + +\usepackage{amsmath,amsthm} +\usepackage[sansdefault]{fontsetup} +\newfontfamily{\sansAmSfont}{NewCMSansMath-Regular.otf} +\renewcommand{\AmS}{{\sansAmSfont $\symcal A$\kern-.1667em\lower.5ex\hbox{$\symcal M$}\kern-.125em$\symcal S$}} +% \input fspdefault.tex + +% Some definitions useful in producing this sort of documentation: +\chardef\bslash=`\\ % p. 424, TeXbook +% Normalized (nonbold, nonitalic) tt font, to avoid font +% substitution warning messages if tt is used inside section +% headings and other places where odd font combinations might +% result. +\newcommand{\ntt}{\normalfont\ttfamily} +% command name +\newcommand{\cn}[1]{{\protect\ntt\bslash#1}} +% LaTeX package name +\newcommand{\pkg}[1]{{\protect\ntt#1}} +% File name +\newcommand{\fn}[1]{{\protect\ntt#1}} +% environment name +\newcommand{\env}[1]{{\protect\ntt#1}} +\hfuzz1pc % Don't bother to report overfull boxes if overage is < 1pc + +% Theorem environments + +%% \theoremstyle{plain} %% This is the default +\newtheorem{thm}{Theorem}[section] +\newtheorem{cor}[thm]{Corollary} +\newtheorem{lem}[thm]{Lemma} +\newtheorem{prop}[thm]{Proposition} +\newtheorem{ax}{Axiom} + +\theoremstyle{definition} +\newtheorem{defn}{Definition}[section] + +\theoremstyle{remark} +\newtheorem{rem}{Remark}[section] +\newtheorem*{notation}{Notation} + +%\numberwithin{equation}{section} + +\newcommand{\thmref}[1]{Theorem~\ref{#1}} +\newcommand{\secref}[1]{\S\ref{#1}} +\newcommand{\lemref}[1]{Lemma~\ref{#1}} + +\newcommand{\bysame}{\mbox{\rule{3em}{.4pt}}\,} + +% Math definitions + +\newcommand{\A}{{\symcal A}} +\newcommand{\B}{{\symcal B}} +\newcommand{\st}{\sigma} +\newcommand{\XcY}{{(X,Y)}} +\newcommand{\SX}{{S_X}} +\newcommand{\SY}{{S_Y}} +\newcommand{\SXY}{{S_{X,Y}}} +\newcommand{\SXgYy}{{S_{X|Y}(y)}} +\newcommand{\Cw}[1]{{\hat C_#1(X|Y)}} +\newcommand{\G}{{G(X|Y)}} +\newcommand{\PY}{{P_{\symcal Y}}} +\newcommand{\X}{{\symcal X}} +\newcommand{\wt}{\widetilde} +\newcommand{\wh}{\widehat} + +\DeclareMathOperator{\per}{per} +\DeclareMathOperator{\cov}{cov} +\DeclareMathOperator{\non}{non} +\DeclareMathOperator{\cf}{cf} +\DeclareMathOperator{\add}{add} +\DeclareMathOperator{\Cham}{Cham} +\DeclareMathOperator{\IM}{Im} +\DeclareMathOperator{\esssup}{ess\,sup} +\DeclareMathOperator{\meas}{meas} +\DeclareMathOperator{\seg}{seg} + +% \interval is used to provide better spacing after a [ that +% is used as a closing delimiter. +\newcommand{\interval}[1]{\mathinner{#1}} + +% Notation for an expression evaluated at a particular condition. The +% optional argument can be used to override automatic sizing of the +% right vert bar, e.g. \eval[\biggr]{...}_{...} +\newcommand{\eval}[2][\right]{\relax + \ifx#1\right\relax \left.\fi#2#1\rvert} + +% Enclose the argument in vert-bar delimiters: +\newcommand{\envert}[1]{\left\lvert#1\right\rvert} +\let\abs=\envert + +% Enclose the argument in double-vert-bar delimiters: +\newcommand{\enVert}[1]{\left\lVert#1\right\rVert} +\let\norm=\enVert + +\begin{document} +\maketitle +\markboth{Sample paper for the {\protect\ntt\lowercase{amsmath}} package} +{Sample paper for the {\protect\ntt\lowercase{amsmath}} package} +\renewcommand{\sectionmark}[1]{} + +\section{Introduction} + +This paper contains examples of various features from \AmS-\LaTeX{}. + + +\section{Enumeration of Hamiltonian paths in a graph} + +Let $\symbf{A}=(a_{ij})$ be the adjacency matrix of graph $G$. The +corresponding Kirchhoff matrix $\symbf{K}=(k_{ij})$ is obtained from +$\symbf{A}$ by replacing in $-\symbf{A}$ each diagonal entry by the +degree of its corresponding vertex; i.e., the $i$th diagonal entry is +identified with the degree of the $i$th vertex. It is well known that +\begin{equation} +\det\symbf{K}(i|i)=\text{ the number of spanning trees of $G$}, +\quad i=1,\dots,n +\end{equation} +where $\symbf{K}(i|i)$ is the $i$th principal submatrix of +$\symbf{K}$. +\begin{verbatim} +\det\symbf{K}(i|i)=\text{ the number of spanning trees of $G$}, +\end{verbatim} + +Let $C_{i(j)}$ be the set of graphs obtained from $G$ by attaching edge +$(v_iv_j)$ to each spanning tree of $G$. Denote by $C_i=\bigcup_j +C_{i(j)}$. It is obvious that the collection of Hamiltonian cycles is a +subset of $C_i$. Note that the cardinality of $C_i$ is $k_{ii}\det +\symbf{K}(i|i)$. Let $\wh X=\{\hat x_1,\dots,\hat x_n\}$. +\begin{verbatim} +$\wh X=\{\hat x_1,\dots,\hat x_n\}$ +\end{verbatim} +Define multiplication for the elements of $\wh X$ by +\begin{equation}\label{multdef} +\hat x_i\hat x_j=\hat x_j\hat x_i,\quad \hat x^2_i=0,\quad +i,j=1,\dots,n. +\end{equation} +Let $\hat{k}_{ij}=k_{ij}\hat x_j$ and $\hat k_{ij}=-\sum_{j\not=i} \hat +k_{ij}$. Then the number of Hamiltonian cycles $H_c$ is given by the +relation \cite{liuchow:formalsum} +\begin{equation}\label{H-cycles} +\biggl(\prod^n_{\,j=1}\hat x_j\biggr)H_c=\frac{1}{2}\hat k_{ij}\det +\wh{\symbf{K}}(i|i),\qquad i=1,\dots,n. +\end{equation} +The task here is to express \eqref{H-cycles} +in a form free of any $\hat x_i$, +$i=1,\dots,n$. The result also leads to the resolution of enumeration of +Hamiltonian paths in a graph. + +It is well known that the enumeration of Hamiltonian cycles and paths in +a complete graph $K_n$ and in a complete bipartite graph $K_{n_1n_2}$ +can only be found from \textit{first combinatorial principles} +\cite{hapa:graphenum}. One wonders if there exists a formula which can +be used very efficiently to produce $K_n$ and $K_{n_1n_2}$. Recently, +using Lagrangian methods, Goulden and Jackson have shown that $H_c$ can +be expressed in terms of the determinant and permanent of the adjacency +matrix \cite{gouja:lagrmeth}. However, the formula of Goulden and +Jackson determines neither $K_n$ nor $K_{n_1n_2}$ effectively. In this +paper, using an algebraic method, we parametrize the adjacency matrix. +The resulting formula also involves the determinant and permanent, but +it can easily be applied to $K_n$ and $K_{n_1n_2}$. In addition, we +eliminate the permanent from $H_c$ and show that $H_c$ can be +represented by a determinantal function of multivariables, each variable +with domain $\{0,1\}$. Furthermore, we show that $H_c$ can be written by +number of spanning trees of subgraphs. Finally, we apply the formulas to +a complete multigraph $K_{n_1\dots n_p}$. + +The conditions $a_{ij}=a_{ji}$, $i,j=1,\dots,n$, are not required in +this paper. All formulas can be extended to a digraph simply by +multiplying $H_c$ by 2. + +\section{Main Theorem} +\label{s:mt} + +\begin{notation} For $p,q\in P$ and $n\in\omega$ we write +$(q,n)\le(p,n)$ if $q\le p$ and $A_{q,n}=A_{p,n}$. +\begin{verbatim} +\begin{notation} For $p,q\in P$ and $n\in\omega$ +... +\end{notation} +\end{verbatim} +\end{notation} + +Let $\symbf{B}=(b_{ij})$ be an $n\times n$ matrix. Let $\symbf{n}=\{1, +\dots,n\}$. Using the properties of \eqref{multdef}, it is readily seen +that + +\begin{lem}\label{lem-per} +\begin{equation} +\prod_{i\in\symbf{n}} +\biggl(\sum_{\,j\in\symbf{n}}b_{ij}\hat x_i\biggr) +=\biggl(\prod_{\,i\in\symbf{n}}\hat x_i\biggr)\per \symbf{B} +\end{equation} +where $\per \symbf{B}$ is the permanent of $\symbf{B}$. +\end{lem} + +Let $\wh Y=\{\hat y_1,\dots,\hat y_n\}$. Define multiplication +for the elements of $\wh Y$ by +\begin{equation} +\hat y_i\hat y_j+\hat y_j\hat y_i=0,\quad i,j=1,\dots,n. +\end{equation} +Then, it follows that +\begin{lem}\label{lem-det} +\begin{equation}\label{detprod} +\prod_{i\in\symbf{n}} +\biggl(\sum_{\,j\in\symbf{n}}b_{ij}\hat y_j\biggr) +=\biggl(\prod_{\,i\in\symbf{n}}\hat y_i\biggr)\det\symbf{B}. +\end{equation} +\end{lem} + +Note that all basic properties of determinants are direct consequences +of Lemma~\ref{lem-det}. Write +\begin{equation}\label{sum-bij} +\sum_{j\in\symbf{n}}b_{ij}\hat y_j=\sum_{j\in\symbf{n}}b^{(\lambda)} +_{ij}\hat y_j+(b_{ii}-\lambda_i)\hat y_i\hat y +\end{equation} +where +\begin{equation} +b^{(\lambda)}_{ii}=\lambda_i,\quad b^{(\lambda)}_{ij}=b_{ij}, +\quad i\not=j. +\end{equation} +Let $\symbf{B}^{(\lambda)}=(b^{(\lambda)}_{ij})$. By \eqref{detprod} +and \eqref{sum-bij}, it is +straightforward to show the following +result: +\begin{thm}\label{thm-main} +\begin{equation}\label{detB} +\det\symbf{B}= +\sum^n_{l =0}\sum_{I_l \subseteq n} +\prod_{i\in I_l}(b_{ii}-\lambda_i) +\det\symbf{B}^{(\lambda)}(I_l |I_l ), +\end{equation} +where $I_l =\{i_1,\dots,i_l \}$ and $\symbf{B}^{(\lambda)}(I_l |I_l )$ +is the principal submatrix obtained from $\symbf{B}^{(\lambda)}$ +by deleting its $i_1,\dots,i_l $ rows and columns. +\end{thm} + +\begin{rem} +Let $\symbf{M}$ be an $n\times n$ matrix. The convention +$\symbf{M}(\symbf{n}|\symbf{n})=1$ has been used in \eqref{detB} and +hereafter. +\end{rem} + +Before proceeding with our discussion, we pause to note that +\thmref{thm-main} yields immediately a fundamental formula which can be +used to compute the coefficients of a characteristic polynomial +\cite{mami:matrixth}: +\begin{cor}\label{BI} +Write $\det(\symbf{B}-x\symbf{I})=\sum^n_{l =0}(-1) +^l b_l x^l $. Then +\begin{equation}\label{bl-sum} +b_l =\sum_{I_l \subseteq\symbf{n}}\det\symbf{B}(I_l |I_l ). +\end{equation} +\end{cor} +Let +\begin{equation} +\symbf{K}(t,t_1,\dots,t_n) +=\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\ +-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\ +\hdotsfor[2]{4}\\ +-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix}, +\end{equation} +\begin{verbatim} +\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\ +-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\ +\hdotsfor[2]{4}\\ +-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix} +\end{verbatim} +where +\begin{equation} +D_i=\sum_{j\in\symbf{n}}a_{ij}t_j,\quad i=1,\dots,n. +\end{equation} + +Set +\begin{equation*} +D(t_1,\dots,t_n)=\frac{\delta}{\delta t}\eval{\det\symbf{K}(t,t_1,\dots,t_n) +}_{t=1}. +\end{equation*} +Then +\begin{equation}\label{sum-Di} +D(t_1,\dots,t_n) +=\sum_{i\in\symbf{n}}D_i\det\symbf{K}(t=1,t_1,\dots,t_n; i|i), +\end{equation} +where $\symbf{K}(t=1,t_1,\dots,t_n; i|i)$ is the $i$th principal +submatrix of $\symbf{K}(t=1,t_1,\dots,t_n)$. + +Theorem~\ref{thm-main} leads to +\begin{equation}\label{detK1} +\det\symbf{K}(t_1,t_1,\dots,t_n) +=\sum_{I\in\symbf{n}}(-1)^{\envert{I}}t^{n-\envert{I}} +\prod_{i\in I}t_i\prod_{j\in I}(D_j+\lambda_jt_j)\det\symbf{A} +^{(\lambda t)}(\overline{I}|\overline I). +\end{equation} +Note that +\begin{equation}\label{detK2} +\det\symbf{K}(t=1,t_1,\dots,t_n)=\sum_{I\in\symbf{n}}(-1)^{\envert{I}} +\prod_{i\in I}t_i\prod_{j\in I}(D_j+\lambda_jt_j)\det\symbf{A} +^{(\lambda)}(\overline{I}|\overline{I})=0. +\end{equation} + +Let $t_i=\hat x_i,i=1,\dots,n$. Lemma~\ref{lem-per} yields +\begin{multline} +\biggl(\sum_{\,i\in\symbf{n}}a_{l _i}x_i\biggr) +\det\symbf{K}(t=1,x_1,\dots,x_n;l |l )\\ +=\biggl(\prod_{\,i\in\symbf{n}}\hat x_i\biggr) +\sum_{I\subseteq\symbf{n}-\{l \}} +(-1)^{\envert{I}}\per\symbf{A}^{(\lambda)}(I|I) +\det\symbf{A}^{(\lambda)} +(\overline I\cup\{l \}|\overline I\cup\{l \}). +\label{sum-ali} +\end{multline} +\begin{verbatim} +\begin{multline} +\biggl(\sum_{\,i\in\symbf{n}}a_{l _i}x_i\biggr) +\det\symbf{K}(t=1,x_1,\dots,x_n;l |l )\\ +=\biggl(\prod_{\,i\in\symbf{n}}\hat x_i\biggr) +\sum_{I\subseteq\symbf{n}-\{l \}} +(-1)^{\envert{I}}\per\symbf{A}^{(\lambda)}(I|I) +\det\symbf{A}^{(\lambda)} +(\overline I\cup\{l \}|\overline I\cup\{l \}). +\label{sum-ali} +\end{multline} +\end{verbatim} + +By \eqref{H-cycles}, \eqref{detprod}, and \eqref{sum-bij}, we have +\begin{prop}\label{prop:eg} +\begin{equation} +H_c=\frac1{2n}\sum^n_{l =0}(-1)^{l} +D_{l}, +\end{equation} +where +\begin{equation}\label{delta-l} +D_{l}=\eval[2]{\sum_{I_{l}\subseteq \symbf{n}} +D(t_1,\dots,t_n)}_{t_i=\left\{\begin{smallmatrix} +0,& \text{if }i\in I_{l}\quad\\% \quad added for centering +1,& \text{otherwise}\end{smallmatrix}\right.\;,\;\; i=1,\dots,n}. +\end{equation} +\end{prop} + +\section{Application} +\label{lincomp} + +We consider here the applications of Theorems~\ref{th-info-ow-ow} +and~\ref{th-weak-ske-owf} to a complete +multipartite graph $K_{n_1\dots n_p}$. It can be shown that the +number of spanning trees of $K_{n_1\dots n_p}$ +may be written +\begin{equation}\label{e:st} +T=n^{p-2}\prod^p_{i=1} +(n-n_i)^{n_i-1} +\end{equation} +where +\begin{equation} +n=n_1+\dots+n_p. +\end{equation} + +It follows from Theorems~\ref{th-info-ow-ow} and~\ref{th-weak-ske-owf} that +\begin{equation}\label{e:barwq} +\begin{split} +H_c&=\frac1{2n} +\sum^n_{{l}=0}(-1)^{l}(n-{l})^{p-2} +\sum_{l _1+\dots+l _p=l}\prod^p_{i=1} +\binom{n_i}{l _i}\\ +&\quad\cdot[(n-l )-(n_i-l _i)]^{n_i-l _i}\cdot +\biggl[(n-l )^2-\sum^p_{j=1}(n_i-l _i)^2\biggr].\end{split} +\end{equation} +\begin{verbatim} +... \binom{n_i}{l _i}\\ +\end{verbatim} +and +\begin{equation}\label{joe} +\begin{split} +H_c&=\frac12\sum^{n-1}_{l =0} +(-1)^{l}(n-l )^{p-2} +\sum_{l _1+\dots+l _p=l} +\prod^p_{i=1}\binom{n_i}{l _i}\\ +&\quad\cdot[(n-l )-(n_i-l _i)]^{n_i-l _i} +\left(1-\frac{l _p}{n_p}\right) +[(n-l )-(n_p-l _p)]. +\end{split} +\end{equation} + +The enumeration of $H_c$ in a $K_{n_1\dotsm n_p}$ graph can also be +carried out by Theorem~\ref{thm-H-param} or~\ref{thm-asym} +together with the algebraic method of \eqref{multdef}. +Some elegant representations may be obtained. For example, $H_c$ in +a $K_{n_1n_2n_3}$ graph may be written +\begin{equation}\label{j:mark} +\begin{split} +H_c=& +\frac{n_1!\,n_2!\,n_3!} +{n_1+n_2+n_3}\sum_i\left[\binom{n_1}{i} +\binom{n_2}{n_3-n_1+i}\binom{n_3}{n_3-n_2+i}\right.\\ +&+\left.\binom{n_1-1}{i} +\binom{n_2-1}{n_3-n_1+i} +\binom{n_3-1}{n_3-n_2+i}\right].\end{split} +\end{equation} + +\section{Secret Key Exchanges} +\label{SKE} + +Modern cryptography is fundamentally concerned with the problem of +secure private communication. A Secret Key Exchange is a protocol +where Alice and Bob, having no secret information in common to start, +are able to agree on a common secret key, conversing over a public +channel. The notion of a Secret Key Exchange protocol was first +introduced in the seminal paper of Diffie and Hellman +\cite{dihe:newdir}. \cite{dihe:newdir} presented a concrete +implementation of a Secret Key Exchange protocol, dependent on a +specific assumption (a variant on the discrete log), specially +tailored to yield Secret Key Exchange. Secret Key Exchange is of +course trivial if trapdoor permutations exist. However, there is no +known implementation based on a weaker general assumption. + +The concept of an informationally one-way function was introduced +in \cite{imlelu:oneway}. We give only an informal definition here: + +\begin{defn} A polynomial time +computable function $f = \{f_k\}$ is informationally +one-way if there is no probabilistic polynomial time algorithm which +(with probability of the form $1 - k^{-e}$ for some $e > 0$) +returns on input $y \in \{0,1\}^{k}$ a random element of $f^{-1}(y)$. +\end{defn} +In the non-uniform setting \cite{imlelu:oneway} show that these are not +weaker than one-way functions: +\begin{thm}[\cite{imlelu:oneway} (non-uniform)] +\label{th-info-ow-ow} +The existence of informationally one-way functions +implies the existence of one-way functions. +\end{thm} +We will stick to the convention introduced above of saying +``non-uniform'' before the theorem statement when the theorem +makes use of non-uniformity. It should be understood that +if nothing is said then the result holds for both the uniform and +the non-uniform models. + +It now follows from \thmref{th-info-ow-ow} that + +\begin{thm}[non-uniform]\label{th-weak-ske-owf} Weak SKE +implies the existence of a one-way function. +\end{thm} + +More recently, the polynomial-time, interior point algorithms for linear +programming have been extended to the case of convex quadratic programs +\cite{moad:quadpro,ye:intalg}, certain linear complementarity problems +\cite{komiyo:lincomp,miyoki:lincomp}, and the nonlinear complementarity +problem \cite{komiyo:unipfunc}. The connection between these algorithms +and the classical Newton method for nonlinear equations is well +explained in \cite{komiyo:lincomp}. + +\section{Review} +\label{computation} + +We begin our discussion with the following definition: + +\begin{defn} + +A function $H\colon \Re^n \to \Re^n$ is said to be +\emph{B-differentiable} at the point $z$ if (i)~$H$ is Lipschitz +continuous in a neighborhood of $z$, and (ii)~there exists a positive +homogeneous function $BH(z)\colon \Re^n \to \Re^n$, called the +\emph{B-derivative} of $H$ at $z$, such that +\[ \lim_{v \to 0} \frac{H(z+v) - H(z) - BH(z)v}{\enVert{v}} = 0. \] +The function $H$ is \textit{B-differentiable in set $S$} if it is +B-differentiable at every point in $S$. The B-derivative $BH(z)$ is said +to be \textit{strong} if +\[ \lim_{(v,v') \to (0,0)} \frac{H(z+v) - H(z+v') - BH(z)(v + -v')}{\enVert{v - v'}} = 0. \] +\end{defn} + + +\begin{lem}\label{limbog} There exists a smooth function $\psi_0(z)$ +defined for $\abs{z}>1-2a$ satisfying the following properties\textup{:} +\begin{enumerate} +\renewcommand{\labelenumi}{(\roman{enumi})} +\item $\psi_0(z)$ is bounded above and below by positive constants +$c_1\leq \psi_0(z)\leq c_2$. +\item If $\abs{z}>1$, then $\psi_0(z)=1$. +\item For all $z$ in the domain of $\psi_0$, $\Delta_0\ln \psi_0\geq 0$. +\item If $1-2a<\abs{z}<1-a$, then $\Delta_0\ln \psi_0\geq +c_3>0$. +\end{enumerate} +\end{lem} + +\begin{proof} +We choose $\psi_0(z)$ to be a radial function depending only on $r=\abs{z}$. +Let $h(r)\geq 0$ be a suitable smooth function satisfying $h(r)\geq c_3$ +for $1-2a<\abs{z}<1-a$, and $h(r)=0$ for $\abs{z}>1-\tfrac a2$. The radial +Laplacian +\[\Delta_0\ln\psi_0(r)=\left(\frac {d^2}{dr^2}+\frac +1r\frac d{dr}\right)\ln\psi_0(r)\] +has smooth coefficients for $r>1-2a$. Therefore, we may +apply the existence and uniqueness theory for ordinary differential +equations. Simply let $\ln \psi_0(r)$ be the solution of the differential +equation +\[\left(\frac{d^2}{dr^2}+\frac 1r\frac d{dr}\right)\ln \psi_0(r)=h(r)\] +with initial conditions given by $\ln \psi_0(1)=0$ and +$\ln\psi_0'(1)=0$. + +Next, let $D_\nu$ be a finite collection of pairwise disjoint disks, +all of which are contained in the unit disk centered at the origin in +$C$. We assume that $D_\nu=\{z\mid \abs{z-z_\nu}<\delta\}$. Suppose that +$D_\nu(a)$ denotes the smaller concentric disk $D_\nu(a)=\{z\mid +\abs{z-z_\nu}\leq (1-2a)\delta\}$. We define a smooth weight function +$\Phi_0(z)$ for $z\in C-\bigcup_\nu D_\nu(a)$ by setting $\Phi_ +0(z)=1$ when $z\notin \bigcup_\nu D_\nu$ and $\Phi_ +0(z)=\psi_0((z-z_\nu)/\delta)$ when $z$ is an element of $D_\nu$. It +follows from \lemref{limbog} that $\Phi_ 0$ satisfies the properties: +\begin{enumerate} +\renewcommand{\labelenumi}{(\roman{enumi})} +\item \label{boundab}$\Phi_ 0(z)$ is bounded above and below by +positive constants $c_1\leq \Phi_ 0(z)\leq c_2$. +\item \label{d:over}$\Delta_0\ln\Phi_ 0\geq 0$ for all +$z\in C-\bigcup_\nu D_\nu(a)$, +the domain where the function $\Phi_ 0$ is defined. +\item \label{d:ad}$\Delta_0\ln\Phi_ 0\geq c_3\delta^{-2}$ +when $(1-2a)\delta<\abs{z-z_\nu}<(1-a)\delta$. +\end{enumerate} +Let $A_\nu$ denote the annulus $A_\nu=\{(1-2a)\delta<\abs{z-z_\nu}<(1-a) +\delta \}$, and set $A=\bigcup_\nu A_\nu$. The +properties (\ref{d:over}) and (\ref{d:ad}) of $\Phi_ 0$ +may be summarized as $\Delta_0\ln \Phi_ 0\geq c_3\delta^{-2}\chi_A$, +where $\chi _A$ is the characteristic function of $A$. +\end{proof} + +Suppose that $\alpha$ is a nonnegative real constant. We apply +Proposition~\ref{prop:eg} with $\Phi(z)=\Phi_ 0(z) e^{\alpha\abs{z}^2}$. If +$u\in C^\infty_0(R^2-\bigcup_\nu D_\nu(a))$, assume that $\symcal{D}$ +is a bounded domain containing the support of $u$ and $A\subset +\symcal{D}\subset R^2-\bigcup_\nu D_\nu(a)$. A calculation gives +\[\int_{\symcal{D}}\abs{\overline\partial u}^2\Phi_ 0(z) e^{\alpha\abs{z}^2} +\geq c_4\alpha\int_{\symcal{D}}\abs{u}^2\Phi_ 0e^{\alpha\abs{z}^2} ++c_5\delta^{-2}\int_ A\abs{u}^2\Phi_ 0e^{\alpha\abs{z}^2}.\] + +The boundedness, property (\ref{boundab}) of $\Phi_ 0$, then yields +\[\int_{\symcal{D}}\abs{\overline\partial u}^2e^{\alpha\abs{z}^2}\geq c_6\alpha +\int_{\symcal{D}}\abs{u}^2e^{\alpha\abs{z}^2} ++c_7\delta^{-2}\int_ A\abs{u}^2e^{\alpha\abs{z}^2}.\] + +Let $B(X)$ be the set of blocks of $\Lambda_{X}$ +and let $b(X) = \abs{B(X)}$. If $\phi \in Q_{X}$ then +$\phi$ is constant on the blocks of $\Lambda_{X}$. +\begin{equation}\label{far-d} + P_{X} = \{ \phi \in M \mid \Lambda_{\phi} = \Lambda_{X} \}, +\qquad +Q_{X} = \{\phi \in M \mid \Lambda_{\phi} \geq \Lambda_{X} \}. +\end{equation} +If $\Lambda_{\phi} \geq \Lambda_{X}$ then +$\Lambda_{\phi} = \Lambda_{Y}$ for some $Y \geq X$ so that +\[ Q_{X} = \bigcup_{Y \geq X} P_{Y}. \] +Thus by M\"obius inversion +\[ \abs{P_{Y}}= \sum_{X\geq Y} \mu (Y,X)\abs{Q_{X}}.\] +Thus there is a bijection from $Q_{X}$ to $W^{B(X)}$. +In particular $\abs{Q_{X}} = w^{b(X)}$. + +Next note that $b(X)=\dim X$. We see this by choosing a +basis for $X$ consisting of vectors $v^{k}$ defined by +\[v^{k}_{i}= +\begin{cases} 1 & \text{if $i \in \Lambda_{k}$},\\ +0 &\text{otherwise.} \end{cases} +\] +\begin{verbatim} +\[v^{k}_{i}= +\begin{cases} 1 & \text{if $i \in \Lambda_{k}$},\\ +0 &\text{otherwise.} \end{cases} +\] +\end{verbatim} + +\begin{lem}\label{p0201} +Let $\A$ be an arrangement. Then +\[ \chi (\A,t) = \sum_{\B \subseteq \A} +(-1)^{\abs{\B}} t^{\dim T(\B)}. \] +\end{lem} + +In order to compute $R''$ recall the definition +of $S(X,Y)$ from \lemref{lem-per}. Since $H \in \B$, +$\A_{H} \subseteq \B$. Thus if $T(\B) = Y$ then +$\B \in S(H,Y)$. Let $L'' = L(\A'')$. Then +\begin{equation}\label{E_SXgYy} +\begin{split} +R''&= \sum_{H\in \B \subseteq \A} (-1)^{\abs{\B}} +t^{\dim T(\B)}\\ +&= \sum_{Y \in L''} \sum_{\B \in S(H,Y)} +(-1)^{\abs{\B}}t^{\dim Y} \\ +&= -\sum_{Y \in L''} \sum_{\B \in S(H,Y)} (-1)^ +{\abs{\B - \A_{H}}} t^{\dim Y} \\ +&= -\sum_{Y \in L''} \mu (H,Y)t^{\dim Y} \\ +&= -\chi (\A '',t). +\end{split} +\end{equation} + +\begin{cor}\label{tripleA} +Let $(\A,\A',\A'')$ be a triple of arrangements. Then +\[ \pi (\A,t) = \pi (\A',t) + t \pi (\A'',t). \] +\end{cor} + +\begin{defn} +Let $(\A,\A',\A'')$ be a triple with respect to +the hyperplane $H \in \A$. Call $H$ a \textit{separator} +if $T(\A) \not\in L(\A')$. +\end{defn} + +\begin{cor}\label{nsep} +Let $(\A,\A',\A'')$ be a triple with respect to $H \in \A$. +\begin{enumerate} +\renewcommand{\labelenumi}{(\roman{enumi})} +\item +If $H$ is a separator then +\[ \mu (\A) = - \mu (\A'') \] +and hence +\[ \abs{\mu (\A)} = \abs{ \mu (\A'')}. \] + +\item If $H$ is not a separator then +\[\mu (\A) = \mu (\A') - \mu (\A'') \] +and +\[ \abs{\mu (\A)} = \abs{\mu (\A')} + \abs{\mu (\A'')}. \] +\end{enumerate} +\end{cor} + +\begin{proof} +It follows from \thmref{th-info-ow-ow} that $\pi(\A,t)$ +has leading term +\[(-1)^{r(\A)}\mu (\A)t^{r(\A)}.\] +The conclusion +follows by comparing coefficients of the leading +terms on both sides of the equation in +Corollary~\ref{tripleA}. If $H$ is a separator then +$r(\A') < r(\A)$ and there is no contribution +from $\pi (\A',t)$. +\end{proof} + +The Poincar\'e polynomial of an arrangement +will appear repeatedly +in these notes. It will be shown to equal the +Poincar\'e polynomial +of the graded algebras which we are going to +associate with $\A$. It is also the Poincar\'e +polynomial of the complement $M(\A)$ for a +complex arrangement. Here we prove +that the Poincar\'e polynomial is the chamber +counting function for a real arrangement. The +complement $M(\A)$ is a disjoint union of chambers +\[M(\A) = \bigcup_{C \in \Cham(\A)} C.\] +The number +of chambers is determined by the Poincar\'e +polynomial as follows. + +\begin{thm}\label{th-realarr} +Let $\A_{\symbf{R}}$ be a real arrangement. Then +\[ \abs{\Cham(\A_{\symbf{R}})} = \pi (\A_{\symbf{R}},1). \] +\end{thm} + +\begin{proof} +We check the properties required in Corollary~\ref{nsep}: +(i) follows from $\pi (\Phi_{ l},t) = 1$, and (ii) is a +consequence of Corollary~\ref{BI}. +\end{proof} + +\begin{figure} +\vspace{5cm} +\caption[]{$Q(\A_{1}) = xyz(x-z)(x+z)(y-z)(y+z)$} +\end{figure} + +\begin{figure} +\vspace{5cm} +\caption[]{$Q(\A_{2})= xyz(x+y+z)(x+y-z)(x-y+z)(x-y-z)$} +\end{figure} + + +\begin{thm} +\label{T_first_the_int} +Let $\phi$ be a protocol for a random pair $\XcY$. +If one of $\st_\phi(x',y)$ and $\st_\phi(x,y')$ is a prefix of the other +and $(x,y)\in\SXY$, then +\[ +\langle \st_j(x',y)\rangle_{j=1}^\infty +=\langle \st_j(x,y)\rangle_{j=1}^\infty +=\langle \st_j(x,y')\rangle_{j=1}^\infty . +\] +\end{thm} +\begin{proof} +We show by induction on $i$ that +\[ +\langle \st_j(x',y)\rangle_{j=1}^i +=\langle \st_j(x,y)\rangle_{j=1}^i +=\langle \st_j(x,y')\rangle_{j=1}^i. +\] +The induction hypothesis holds vacuously for $i=0$. Assume it holds for +$i-1$, in particular +$[\st_j(x',y)]_{j=1}^{i-1}=[\st_j(x,y')]_{j=1}^{i-1}$. Then one of +$[\st_j(x',y)]_{j=i}^{\infty}$ and $[\st_j(x,y')]_{j=i}^{\infty}$ is a +prefix of the other which implies that one of $\st_i(x',y)$ and +$\st_i(x,y')$ is a prefix of the other. If the $i$th message is +transmitted by $P_\X$ then, by the separate-transmissions property and +the induction hypothesis, $\st_i(x,y)=\st_i(x,y')$, hence one of +$\st_i(x,y)$ and $\st_i(x',y)$ is a prefix of the other. By the +implicit-termination property, neither $\st_i(x,y)$ nor $\st_i(x',y)$ +can be a proper prefix of the other, hence they must be the same and +$\st_i(x',y)=\st_i(x,y)=\st_i(x,y')$. If the $i$th message is +transmitted by $\PY$ then, symmetrically, $\st_i(x,y)=\st_i(x',y)$ by +the induction hypothesis and the separate-transmissions property, and, +then, $\st_i(x,y)=\st_i(x,y')$ by the implicit-termination property, +proving the induction step. +\end{proof} + +If $\phi$ is a protocol for $(X,Y)$, and $(x,y)$, $(x',y)$ are distinct +inputs in $\SXY$, then, by the correct-decision property, +$\langle\st_j(x,y)\rangle_{j=1}^\infty\ne\langle +\st_j(x',y)\rangle_{j=1}^\infty$. + +Equation~(\ref{E_SXgYy}) defined $\PY$'s ambiguity set $\SXgYy$ +to be the set of possible $X$ values when $Y=y$. +The last corollary implies that for all $y\in\SY$, +the multiset% +\footnote{A multiset allows multiplicity of elements. +Hence, $\{0,01,01\}$ is prefix free as a set, but not as a multiset.} +of codewords $\{\st_\phi(x,y):x\in\SXgYy\}$ is prefix free. + +\section{One-Way Complexity} +\label{S_Cp1} + +$\Cw1$, the one-way complexity of a random pair $\XcY$, +is the number of bits $P_\X$ must transmit in the worst case +when $\PY$ is not permitted to transmit any feedback messages. +Starting with $\SXY$, the support set of $\XcY$, we define $\G$, +the \textit{characteristic hypergraph} of $\XcY$, and show that +\[ +\Cw1=\lceil\,\log\chi(\G)\rceil\ . +\] + +Let $\XcY$ be a random pair. For each $y$ in $\SY$, the support set of +$Y$, Equation~(\ref{E_SXgYy}) defined $\SXgYy$ to be the set of possible +$x$ values when $Y=y$. The \textit{characteristic hypergraph} $\G$ of +$\XcY$ has $\SX$ as its vertex set and the hyperedge $\SXgYy$ for each +$y\in\SY$. + + +We can now prove a continuity theorem. +\begin{thm}\label{t:conl} +Let $\Omega \subset\symbf{R}^n$ be an open set, let +$u\in BV(\Omega ;\symbf{R}^m)$, and let +\begin{equation}\label{quts} +T^u_x=\left\{y\in\symbf{R}^m: + y=\tilde u(x)+\left\langle \frac{Du}{\abs{Du}}(x),z +\right\rangle \text{ for some }z\in\symbf{R}^n\right\} +\end{equation} +for every $x\in\Omega \backslash S_u$. Let $f\colon \symbf{R}^m\to +\symbf{R}^k$ be a Lipschitz continuous function such that $f(0)=0$, and +let $v=f(u)\colon \Omega \to \symbf{R}^k$. Then $v\in BV(\Omega +;\symbf{R}^k)$ and +\begin{equation} +Jv=\eval{(f(u^+)-f(u^-))\otimes \nu_u\cdot\, +\symcal{H}_{n-1}}_{S_u}. +\end{equation} +In addition, for $\abs{\wt{D}u}$-almost every $x\in\Omega $ the +restriction of the function $f$ to $T^u_x$ is differentiable at $\tilde +u(x)$ and +\begin{equation} +\wt{D}v=\nabla (\eval{f}_{T^u_x})(\tilde u) +\frac{\wt{D}u}{\abs{\wt{D}u}}\cdot\abs{\wt{D}u}.\end{equation} +\end{thm} + +Before proving the theorem, we state without proof three elementary +remarks which will be useful in the sequel. +\begin{rem}\label{r:omb} +Let $\omega\colon \left]0,+\infty\right[\to \left]0,+\infty\right[$ +be a continuous function such that $\omega (t)\to 0$ as $t\to +0$. Then +\[\lim_{h\to 0^+}g(\omega(h))=L\Leftrightarrow\lim_{h\to +0^+}g(h)=L\] +for any function $g\colon \left]0,+\infty\right[\to \symbf{R}$. +\end{rem} +\begin{rem}\label{r:dif} +Let $g \colon \symbf{R}^n\to \symbf{R}$ be a Lipschitz +continuous function and assume that +\[L(z)=\lim_{h\to 0^+}\frac{g(hz)-g(0)}h\] +exists for every $z\in\symbf{Q}^n$ and that $L$ is a linear function of +$z$. Then $g$ is differentiable at 0. +\end{rem} +\begin{rem}\label{r:dif0} +Let $A \colon \symbf{R}^n\to \symbf{R}^m$ be a linear function, and +let $f \colon \symbf{R}^m\to \symbf{R}$ be a function. Then the +restriction of $f$ to the range of $A$ is differentiable at 0 if and +only if $f(A)\colon \symbf{R}^n\to \symbf{R}$ is differentiable at 0 +and +\[\nabla(\eval{f}_{\IM(A)})(0)A=\nabla (f(A))(0).\] +\end{rem} + +\begin{proof} + We begin by showing that $v\in BV(\Omega;\symbf{R}^k)$ and +\begin{equation}\label{e:bomb} +\abs{Dv}(B)\le K\abs{Du}(B)\qquad\forall B\in\symbf{B}(\Omega ), +\end{equation} +where $K>0$ is the Lipschitz constant of $f$. By \eqref{sum-Di} and by +the approximation result quoted in \secref{s:mt}, it is possible to find +a sequence $(u_h)\subset C^1(\Omega ;\symbf{R}^m)$ converging to $u$ in +$L^1(\Omega ;\symbf{R}^m)$ and such that +\[\lim_{h\to +\infty}\int_\Omega \abs{\nabla u_h}\,dx=\abs{Du}(\Omega ).\] +The functions $v_h=f(u_h)$ are locally Lipschitz continuous in $\Omega +$, and the definition of differential implies that $\abs{\nabla v_h}\le +K\abs{\nabla u_h}$ almost everywhere in $\Omega $. The lower semicontinuity +of the total variation and \eqref{sum-Di} yield +\begin{equation} +\begin{split} +\abs{Dv}(\Omega )\le\liminf_{h\to +\infty}\abs{Dv_h}(\Omega) & +=\liminf_{h\to +\infty}\int_\Omega \abs{\nabla v_h}\,dx\\ +&\le K\liminf_{h\to +\infty}\int_\Omega +\abs{\nabla u_h}\,dx=K\abs{Du}(\Omega). +\end{split}\end{equation} +Since $f(0)=0$, we have also +\[\int_\Omega \abs{v}\,dx\le K\int_\Omega \abs{u}\,dx;\] +therefore $u\in BV(\Omega ;\symbf{R}^k)$. Repeating the same argument +for every open set $A\subset\Omega $, we get \eqref{e:bomb} for every +$B\in\symbf{B}(\Omega)$, because $\abs{Dv}$, $\abs{Du}$ are Radon measures. To +prove \lemref{limbog}, first we observe that +\begin{equation}\label{e:SS} +S_v\subset S_u,\qquad\tilde v(x)=f(\tilde u(x))\qquad \forall x\in\Omega +\backslash S_u.\end{equation} +In fact, for every $\varepsilon >0$ we have +\[\{y\in B_\rho(x): \abs{v(y)-f(\tilde u(x))}>\varepsilon \}\subset \{y\in +B_\rho(x): \abs{u(y)-\tilde u(x)}>\varepsilon /K\},\] +hence +\[\lim_{\rho\to 0^+}\frac{\abs{\{y\in B_\rho(x): \abs{v(y)-f(\tilde u(x))}> +\varepsilon \}}}{\rho^n}=0\] +whenever $x\in\Omega \backslash S_u$. By a similar argument, if $x\in +S_u$ is a point such that there exists a triplet $(u^+,u^-,\nu_u)$ +satisfying \eqref{detK1}, \eqref{detK2}, then +\[ +(v^+(x)-v^-(x))\otimes \nu_v=(f(u^+(x))-f(u^-(x)))\otimes\nu_u\quad +\text{if }x\in S_v +\] +and $f(u^-(x))=f(u^+(x))$ if $x\in S_u\backslash S_v$. Hence, by (1.8) +we get +\begin{equation*}\begin{split} +Jv(B)=\int_{B\cap S_v}(v^+-v^-)\otimes \nu_v\,d\symcal{H}_{n-1}&= +\int_{B\cap S_v}(f(u^+)-f(u^-))\otimes \nu_u\,d\symcal{H}_{n-1}\\ +&=\int_{B\cap S_u}(f(u^+)-f(u^-))\otimes \nu_u\,d\symcal{H}_{n-1} +\end{split}\end{equation*} +and \lemref{limbog} is proved. +\end{proof} + +To prove \eqref{e:SS}, it is not restrictive to assume that $k=1$. +Moreover, to simplify our notation, from now on we shall assume that +$\Omega = \symbf{R}^n$. The proof of \eqref{e:SS} is divided into two +steps. In the first step we prove the statement in the one-dimensional +case $(n=1)$, using \thmref{th-weak-ske-owf}. In the second step we +achieve the general result using \thmref{t:conl}. + +\subsection*{Step 1} +Assume that $n=1$. Since $S_u$ is at most countable, \eqref{sum-bij} +yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that +\eqref{e:st} and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is +the Radon-Nikod\'ym decomposition of $Dv$ in absolutely continuous and +singular part with respect to $\abs{\wt{D} u}$. By +\thmref{th-weak-ske-owf}, we have +\begin{equation*} +\frac{\wt{D}v}{\abs{\wt{D}u}}(t)=\lim_{s\to t^+} +\frac{Dv(\interval{\left[t,s\right[})} +{\abs{\wt{D}u}(\interval{\left[t,s\right[})},\qquad +\frac{\wt{D}u}{\abs{\wt{D}u}}(t)=\lim_{s\to t^+} +\frac{Du(\interval{\left[t,s\right[})} +{\abs{\wt{D}u}(\interval{\left[t,s\right[})} +\end{equation*} +$\abs{\wt{D}u}$-almost everywhere in $\symbf{R}$. It is well known +(see, for instance, \cite[2.5.16]{ste:sint}) that every one-dimensional +function of bounded variation $w$ has a unique left continuous +representative, i.e., a function $\hat w$ such that $\hat w=w$ almost +everywhere and $\lim_{s\to t^-}\hat w(s)=\hat w(t)$ for every $t\in +\symbf{R}$. These conditions imply +\begin{equation} +\hat u(t)=Du(\interval{\left]-\infty,t\right[}), +\qquad \hat v(t)=Dv(\interval{\left]-\infty,t\right[})\qquad +\forall t\in\symbf{R} +\end{equation} +and +\begin{equation}\label{alimo} +\hat v(t)=f(\hat u(t))\qquad\forall t\in\symbf{R}.\end{equation} +Let $t\in\symbf{R}$ be such that +$\abs{\wt{D}u}(\interval{\left[t,s\right[})>0$ for every $s>t$ and +assume that the limits in \eqref{joe} exist. By \eqref{j:mark} and +\eqref{far-d} we get +\begin{equation*}\begin{split} +\frac{\hat v(s)-\hat +v(t)}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}&=\frac {f(\hat +u(s))-f(\hat u(t))}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}\\ +&=\frac{f(\hat u(s))-f(\hat +u(t)+\dfrac{\wt{D}u}{\abs{\wt{D}u}}(t)\abs{\wt{D}u +}(\interval{\left[t,s\right[}))}% +{\abs{\wt{D}u}(\interval{\left[t,s\right[})}\\ +&+\frac +{f(\hat u(t)+\dfrac{\wt{D}u}{\abs{\wt{D}u}}(t)\abs{\wt{D} +u}(\interval{\left[t,s\right[}))-f(\hat +u(t))}{\abs{\wt{D}u}(\interval{\left[t,s\right[})} +\end{split}\end{equation*} +for every $s>t$. Using the Lipschitz condition on $f$ we find +{\setlength{\multlinegap}{0pt} +\begin{multline*} +\left\lvert\frac{\hat v(s)-\hat +v(t)}{\abs{\wt{D}u}(\interval{\left[t,s\right[})} -\frac{f(\hat +u(t)+\dfrac{\wt{D}u}{\abs{\wt{D}u}}(t) +\abs{\wt{D}u}(\interval{\left[t,s\right[}))-f(\hat +u(t))}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}\right\rvert\\ +\le K\left\lvert +\frac{\hat u(s)-\hat u(t)} + {\abs{\wt{D}u}(\interval{\left[t,s\right[})} +-\frac{\wt{D}u}{\abs{ +\wt{D}u}}(t)\right\rvert.\end{multline*} +}% end of group with \multlinegap=0pt +By \eqref{e:bomb}, the function $s\to +\abs{\wt{D}u}(\interval{\left[t,s\right[})$ is continuous and +converges to 0 as $s\downarrow t$. Therefore Remark~\ref{r:omb} and the +previous inequality imply +\[\frac{\wt{D}v}{\abs{\wt{D}u}}(t)=\lim_{h\to 0^+} +\frac{f(\hat u(t)+h\dfrac{\wt{D}u}{\abs{\wt{D}u}} +(t))-f(\hat u(t))}h\quad\abs{\wt{D}u}\text{-a.e. in }\symbf{R}.\] +By \eqref{joe}, $\hat u(x)=\tilde u(x)$ for every +$x\in\symbf{R}\backslash S_u$; moreover, applying the same argument to +the functions $u'(t)=u(-t)$, $v'(t)=f(u'(t))=v(-t)$, we get +\[\frac{\wt{D}v}{\abs{\wt{D}u}}(t)=\lim_{h\to 0} +\frac{f(\tilde u(t) ++h\dfrac{\wt{D}u}{\abs{\wt{D}u}}(t))-f(\tilde u(t))}{h} +\qquad\abs{\wt{D}u}\text{-a.e. in }\symbf{R}\] +and our statement is proved. + +\subsection*{Step 2} + +Let us consider now the general case $n>1$. Let $\nu\in \symbf{R}^n$ be +such that $\abs{\nu}=1$, and let $\pi_\nu=\{y\in\symbf{R}^n: \langle +y,\nu\rangle =0\}$. In the following, we shall identify $\symbf{R}^n$ +with $\pi_\nu\times\symbf{R}$, and we shall denote by $y$ the variable +ranging in $\pi_\nu$ and by $t$ the variable ranging in $\symbf{R}$. By +the just proven one-dimensional result, and by \thmref{thm-main}, we get +\[\lim_{h\to 0}\frac{f(\tilde u(y+t\nu)+h\dfrac{\wt{D}u_y}{\abs{ +\wt{D}u_y}}(t))-f(\tilde u(y+t\nu))}h=\frac{\wt{D}v_y}{\abs{ +\wt{D}u_y}}(t)\qquad\abs{\wt{D}u_y}\text{-a.e. in }\symbf{R}\] +for $\symcal{H}_{n-1}$-almost every $y\in \pi_\nu$. We claim that +\begin{equation} +\frac{\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle +}}(y+t\nu)=\frac{\wt{D}u_y} +{\abs{\wt{D}u_y}}(t)\qquad\abs{\wt{D}u_y}\text{-a.e. in }\symbf{R} +\end{equation} +for $\symcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact, by +\eqref{sum-ali} and \eqref{delta-l} we get +\begin{multline*} +\int_{\pi_\nu}\frac{\wt{D}u_y}{\abs{\wt{D}u_y}}\cdot\abs{\wt{D}u_y +}\,d\symcal{H}_{n-1}(y)=\int_{\pi_\nu}\wt{D}u_y\,d\symcal{H}_{n-1}(y)\\ +=\langle \wt{D}u,\nu\rangle =\frac +{\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle}}\cdot +\abs{\langle \wt{D}u,\nu\rangle }=\int_{\pi_\nu}\frac{ +\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }} +(y+\cdot \nu)\cdot\abs{\wt{D}u_y}\,d\symcal{H}_{n-1}(y) +\end{multline*} +and \eqref{far-d} follows from \eqref{sum-Di}. By the same argument it +is possible to prove that +\begin{equation} +\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle +}}(y+t\nu)=\frac{\wt{D}v_y}{\abs{\wt{D}u_y}}(t)\qquad\abs{ +\wt{D}u_y}\text{-a.e. in }\symbf{R}\end{equation} +for $\symcal{H}_{n-1}$-almost every $y\in \pi_\nu$. By \eqref{far-d} +and \eqref{E_SXgYy} we get +\[ +\lim_{h\to 0}\frac{f(\tilde u(y+t\nu)+h\dfrac{\langle \wt{D} +u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(y+t\nu))-f(\tilde +u(y+t\nu))}{h} +=\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle +\wt{D}u,\nu\rangle }}(y+t\nu)\] +for $\symcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again +\eqref{detK1}, \eqref{detK2} we get +\[ +\lim_{h\to 0}\frac{f(\tilde u(x)+h\dfrac{\langle +\wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(x))-f(\tilde +u(x))}{h}=\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle \wt{D}u,\nu +\rangle }}(x) +\] +$\abs{\langle \wt{D}u,\nu\rangle}$-a.e. in $\symbf{R}^n$. + +Since the function $\abs{\langle \wt{D}u,\nu\rangle }/\abs{\wt{D}u}$ +is strictly positive $\abs{\langle \wt{D}u,\nu\rangle }$-almost everywhere, +we obtain also +\begin{multline*} +\lim_{h\to 0}\frac{f(\tilde u(x)+h\dfrac{\abs{\langle +\wt{D}u,\nu\rangle }}{\abs{\wt{D}u}}(x)\dfrac{\langle \wt{D} +u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(x))-f(\tilde u(x))}{h}\\ +=\frac{\abs{\langle \wt{D}u,\nu\rangle }}{\abs{\wt{D}u}}(x)\frac +{\langle \wt{D}v,\nu\rangle }{\abs{\langle +\wt{D}u,\nu\rangle }}(x) +\end{multline*} +$\abs{\langle \wt{D}u,\nu\rangle }$-almost everywhere in $\symbf{R}^n$. + +Finally, since +\begin{align*} +&\frac{\abs{\langle \wt{D}u,\nu\rangle }}{\abs{\wt{D}u}} +\frac{\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle}} +=\frac{\langle \wt{D}u,\nu\rangle }{\abs{\wt{D}u}} +=\left\langle \frac{\wt{D}u}{\abs{\wt{D}u}},\nu\right\rangle + \qquad\abs{\wt{D}u}\text{-a.e. in }\symbf{R}^n\\ +&\frac{\abs{\langle \wt{D}u,\nu\rangle }}{\abs{\wt{D}u}} +\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle}} +=\frac{\langle \wt{D}v,\nu\rangle }{\abs{\wt{D}u}} +=\left\langle \frac{\wt{D}v}{\abs{\wt{D}u}},\nu\right\rangle + \qquad\abs{\wt{D}u}\text{-a.e. in }\symbf{R}^n +\end{align*} +and since both sides of \eqref{alimo} +are zero $\abs{\wt{D}u}$-almost everywhere +on $\abs{\langle \wt{D}u,\nu\rangle }$-negligible sets, we conclude that +\[ +\lim_{h\to 0}\frac{f\left( +\tilde u(x)+h\left\langle \dfrac{\wt{D} +u}{\abs{\wt{D}u}}(x),\nu\right\rangle \right)-f(\tilde u(x))}h +=\left\langle \frac{\wt{D}v}{\abs{\wt{D}u}}(x),\nu\right\rangle, +\] +$\abs{\wt{D}u}$-a.e. in $\symbf{R}^n$. +Since $\nu$ is arbitrary, by Remarks \ref{r:dif} and~\ref{r:dif0} +the restriction of $f$ to +the affine space $T^u_x$ is differentiable at $\tilde u(x)$ for $\abs{\wt{D} +u}$-almost every $x\in \symbf{R}^n$ and \eqref{quts} holds.\qed + +It follows from \eqref{sum-Di}, \eqref{detK1}, and \eqref{detK2} that +\begin{equation}\label{Dt} +D(t_1,\dots,t_n)=\sum_{I\in\symbf{n}}(-1)^{\abs{I}-1}\abs{I} +\prod_{i\in I}t_i\prod_{j\in I}(D_j+\lambda_jt_j)\det\symbf{A}^{(\lambda)} +(\overline I|\overline I). +\end{equation} +Let $t_i=\hat x_i$, $i=1,\dots,n$. Lemma 1 leads to +\begin{equation}\label{Dx} +D(\hat x_1,\dots,\hat x_n)=\prod_{i\in\symbf{n}}\hat x_i +\sum_{I\in\symbf{n}}(-1)^{\abs{I}-1}\abs{I}\per \symbf{A} +^{(\lambda)}(I|I)\det\symbf{A}^{(\lambda)}(\overline I|\overline I). +\end{equation} +By \eqref{H-cycles}, \eqref{sum-Di}, and \eqref{Dx}, +we have the following result: +\begin{thm}\label{thm-H-param} +\begin{equation}\label{H-param} +H_c=\frac{1}{2n}\sum^n_{l =1}l (-1)^{l -1}A_{l} +^{(\lambda)}, +\end{equation} +where +\begin{equation}\label{A-l-lambda} +A^{(\lambda)}_l =\sum_{I_l \subseteq\symbf{n}}\per \symbf{A} +^{(\lambda)}(I_l |I_l )\det\symbf{A}^{(\lambda)} +(\overline I_{l}|\overline I_l ),\abs{I_{l}}=l . +\end{equation} +\end{thm} + +It is worth noting that $A_l ^{(\lambda)}$ of \eqref{A-l-lambda} is +similar to the coefficients $b_l $ of the characteristic polynomial of +\eqref{bl-sum}. It is well known in graph theory that the coefficients +$b_l $ can be expressed as a sum over certain subgraphs. It is +interesting to see whether $A_l $, $\lambda=0$, structural properties +of a graph. + +We may call \eqref{H-param} a parametric representation of $H_c$. In +computation, the parameter $\lambda_i$ plays very important roles. The +choice of the parameter usually depends on the properties of the given +graph. For a complete graph $K_n$, let $\lambda_i=1$, $i=1,\dots,n$. +It follows from \eqref{A-l-lambda} that +\begin{equation}\label{compl-gr} +A^{(1)}_l =\begin{cases} n!,&\text{if }l =1\\ +0,&\text{otherwise}.\end{cases} +\end{equation} +By \eqref{H-param} +\begin{equation} +H_c=\frac 12(n-1)!. +\end{equation} +For a complete bipartite graph $K_{n_1n_2}$, let $\lambda_i=0$, $i=1,\dots,n$. +By \eqref{A-l-lambda}, +\begin{equation} +A_l = +\begin{cases} -n_1!n_2!\delta_{n_1n_2},&\text{if }l =2\\ +0,&\text{otherwise }.\end{cases} +\label{compl-bip-gr} +\end{equation} +Theorem~\ref{thm-H-param} +leads to +\begin{equation} +H_c=\frac1{n_1+n_2}n_1!n_2!\delta_{n_1n_2}. +\end{equation} + +Now, we consider an asymmetrical approach. Theorem \ref{thm-main} leads to +\begin{multline} +\det\symbf{K}(t=1,t_1,\dots,t_n;l |l )\\ +=\sum_{I\subseteq\symbf{n}-\{l \}} +(-1)^{\abs{I}}\prod_{i\in I}t_i\prod_{j\in I} +(D_j+\lambda_jt_j)\det\symbf{A}^{(\lambda)} +(\overline I\cup\{l \}|\overline I\cup\{l \}). +\end{multline} + +By \eqref{H-cycles} and \eqref{sum-ali} we have the following asymmetrical +result: +\begin{thm}\label{thm-asym} +\begin{equation} +H_c=\frac12\sum_{I\subseteq\symbf{n}-\{l \}} +(-1)^{\abs{I}}\per\symbf{A}^{(\lambda)}(I|I)\det +\symbf{A}^{(\lambda)} +(\overline I\cup\{l \}|\overline I\cup\{l \}) +\end{equation} +which reduces to Goulden--Jackson's formula when $\lambda_i=0,i=1,\dots,n$ +\cite{mami:matrixth}. +\end{thm} + +\section{Various font features of the \pkg{amsmath} package} +\label{s:font} +\subsection{Bold versions of special symbols} + +In the \pkg{amsmath} package \cn{boldsymbol} is used for getting +individual bold math symbols and bold Greek letters---everything in +math except for letters of the Latin alphabet, +where you'd use \cn{symbf}. For example, +\begin{verbatim} +A_\infty + \pi A_0 \sim +\symbf{A}_{\boldsymbol{\infty}} \boldsymbol{+} +\boldsymbol{\pi} \symbf{A}_{\boldsymbol{0}} +\end{verbatim} +looks like this: +\[A_\infty + \pi A_0 \sim \symbf{A}_{\boldsymbol{\infty}} +\boldsymbol{+} \boldsymbol{\pi} \symbf{A}_{\boldsymbol{0}}\] + +\subsection{``Poor man's bold''} +If a bold version of a particular symbol doesn't exist in the +available fonts, +then \cn{boldsymbol} can't be used to make that symbol bold. +At the present time, this means that +\cn{boldsymbol} can't be used with symbols from +the \fn{msam} and \fn{msbm} fonts, among others. +In some cases, poor man's bold (\cn{pmb}) can be used instead +of \cn{boldsymbol}: +% Can't show example from msam or msbm because this document is +% supposed to be TeXable even if the user doesn't have +% AMSFonts. MJD 5-JUL-1990 +\[\frac{\partial x}{\partial y} +\pmb{\bigg\vert} +\frac{\partial y}{\partial z}\] +\begin{verbatim} +\[\frac{\partial x}{\partial y} +\pmb{\bigg\vert} +\frac{\partial y}{\partial z}\] +\end{verbatim} +So-called ``large operator'' symbols such as $\sum$ and $\prod$ +require an additional command, \cn{mathop}, +to produce proper spacing and limits when \cn{pmb} is used. +For further details see \textit{The \TeX book}. +\[\sum_{\substack{i<B\\\text{$i$ odd}}} +\prod_\kappa \kappa F(r_i)\qquad +\mathop{\pmb{\sum}}_{\substack{i<B\\\text{$i$ odd}}} +\mathop{\pmb{\prod}}_\kappa \kappa(r_i) +\] +\begin{verbatim} +\[\sum_{\substack{i<B\\\text{$i$ odd}}} +\prod_\kappa \kappa F(r_i)\qquad +\mathop{\pmb{\sum}}_{\substack{i<B\\\text{$i$ odd}}} +\mathop{\pmb{\prod}}_\kappa \kappa(r_i) +\] +\end{verbatim} + +\section{Compound symbols and other features} +\label{s:comp} +\subsection{Multiple integral signs} + +\cn{iint}, \cn{iiint}, and \cn{iiiint} give multiple integral signs +with the spacing between them nicely adjusted, in both text and +display style. \cn{idotsint} gives two integral signs with dots +between them. +\begin{gather} +\iint\limits_A f(x,y)\,dx\,dy\qquad\iiint\limits_A +f(x,y,z)\,dx\,dy\,dz\\ +\iiiint\limits_A +f(w,x,y,z)\,dw\,dx\,dy\,dz\qquad\idotsint\limits_A f(x_1,\dots,x_k) +\end{gather} + +\subsection{Over and under arrows} + +Some extra over and under arrow operations are provided in +the \pkg{amsmath} package. (Basic \LaTeX\ provides +\cn{overrightarrow} and \cn{overleftarrow}). +\begin{align*} +\overrightarrow{\psi_\delta(t) E_t h}& +=\underrightarrow{\psi_\delta(t) E_t h}\\ +\overleftarrow{\psi_\delta(t) E_t h}& +=\underleftarrow{\psi_\delta(t) E_t h}\\ +\overleftrightarrow{\psi_\delta(t) E_t h}& +=\underleftrightarrow{\psi_\delta(t) E_t h} +\end{align*} +\begin{verbatim} +\begin{align*} +\overrightarrow{\psi_\delta(t) E_t h}& +=\underrightarrow{\psi_\delta(t) E_t h}\\ +\overleftarrow{\psi_\delta(t) E_t h}& +=\underleftarrow{\psi_\delta(t) E_t h}\\ +\overleftrightarrow{\psi_\delta(t) E_t h}& +=\underleftrightarrow{\psi_\delta(t) E_t h} +\end{align*} +\end{verbatim} +These all scale properly in subscript sizes: +\[\int_{\overrightarrow{AB}} ax\,dx\] +\begin{verbatim} +\[\int_{\overrightarrow{AB}} ax\,dx\] +\end{verbatim} + +\subsection{Dots} + +Normally you need only type \cn{dots} for ellipsis dots in a +math formula. The main exception is when the dots +fall at the end of the formula; then you need to +specify one of \cn{dotsc} (series dots, after a comma), +\cn{dotsb} (binary dots, for binary relations or operators), +\cn{dotsm} (multiplication dots), or \cn{dotsi} (dots after +an integral). For example, the input +\begin{verbatim} +Then we have the series $A_1,A_2,\dotsc$, +the regional sum $A_1+A_2+\dotsb$, +the orthogonal product $A_1A_2\dotsm$, +and the infinite integral +\[\int_{A_1}\int_{A_2}\dotsi\]. +\end{verbatim} +produces +\begin{quotation} +Then we have the series $A_1,A_2,\dotsc$, +the regional sum $A_1+A_2+\dotsb$, +the orthogonal product $A_1A_2\dotsm$, +and the infinite integral +\[\int_{A_1}\int_{A_2}\dotsi\] +\end{quotation} + +\subsection{Accents in math} + +Double accents: +\[\Hat{\Hat{H}}\quad\Check{\Check{C}}\quad +\Tilde{\Tilde{T}}\quad\Acute{\Acute{A}}\quad +\Grave{\Grave{G}}\quad\Dot{\Dot{D}}\quad +\Ddot{\Ddot{D}}\quad\Breve{\Breve{B}}\quad +\Bar{\Bar{B}}\quad\Vec{\Vec{V}}\] +\begin{verbatim} +\[\Hat{\Hat{H}}\quad\Check{\Check{C}}\quad +\Tilde{\Tilde{T}}\quad\Acute{\Acute{A}}\quad +\Grave{\Grave{G}}\quad\Dot{\Dot{D}}\quad +\Ddot{\Ddot{D}}\quad\Breve{\Breve{B}}\quad +\Bar{\Bar{B}}\quad\Vec{\Vec{V}}\] +\end{verbatim} +This double accent operation is complicated +and tends to slow down the processing of a \LaTeX\ file. + + +\subsection{Dot accents} +\cn{dddot} and \cn{ddddot} are available to +produce triple and quadruple dot accents +in addition to the \cn{dot} and \cn{ddot} accents already available +in \LaTeX: +\[\dddot{Q}\qquad\ddddot{R}\] +\begin{verbatim} +\[\dddot{Q}\qquad\ddddot{R}\] +\end{verbatim} + +\subsection{Roots} + +In the \pkg{amsmath} package \cn{leftroot} and \cn{uproot} allow you to adjust +the position of the root index of a radical: +\begin{verbatim} +\sqrt[\leftroot{-2}\uproot{2}\beta]{k} +\end{verbatim} +gives good positioning of the $\beta$: +\[\sqrt[\leftroot{0}\uproot{2}\beta]{k}\] + +\subsection{Boxed formulas} The command \cn{boxed} puts a box around its +argument, like \cn{fbox} except that the contents are in math mode: +\begin{verbatim} +\boxed{W_t-F\subseteq V(P_i)\subseteq W_t} +\end{verbatim} +\[\boxed{W_t-F\subseteq V(P_i)\subseteq W_t}.\] + +\subsection{Extensible arrows} +\cn{xleftarrow} and \cn{xrightarrow} produce +arrows that extend automatically to accommodate unusually wide +subscripts or superscripts. The text of the subscript or superscript +are given as an optional resp.\@ mandatory argument: +Example: +\[0 \xleftarrow[\zeta]{\alpha} F\times\triangle[n-1] + \xrightarrow{\partial_0\alpha(b)} E^{\partial_0b}\] +\begin{verbatim} +\[0 \xleftarrow[\zeta]{\alpha} F\times\triangle[n-1] + \xrightarrow{\partial_0\alpha(b)} E^{\partial_0b}\] +\end{verbatim} + +\subsection{\cn{overset}, \cn{underset}, and \cn{sideset}} +Examples: +\[\overset{*}{X}\qquad\underset{*}{X}\qquad +\overset{a}{\underset{b}{X}}\] +\begin{verbatim} +\[\overset{*}{X}\qquad\underset{*}{X}\qquad +\overset{a}{\underset{b}{X}}\] +\end{verbatim} + +The command \cn{sideset} is for a rather special +purpose: putting symbols at the subscript and superscript +corners of a large operator symbol such as $\sum$ or $\prod$, +without affecting the placement of limits. +Examples: +\[\sideset{_*^*}{_*^*}\prod_k\qquad +\sideset{}{'}\sum_{0\le i\le m} E_i\beta x +\] +\begin{verbatim} +\[\sideset{_*^*}{_*^*}\prod_k\qquad +\sideset{}{'}\sum_{0\le i\le m} E_i\beta x +\] +\end{verbatim} + +\subsection{The \cn{text} command} +The main use of the command \cn{text} is for words or phrases in a +display: +\[\symbf{y}=\symbf{y}'\quad\text{if and only if}\quad +y'_k=\delta_k y_{\tau(k)}\] +\begin{verbatim} +\[\symbf{y}=\symbf{y}'\quad\text{if and only if}\quad +y'_k=\delta_k y_{\tau(k)}\] +\end{verbatim} + +\subsection{Operator names} +The more common math functions such as $\log$, $\sin$, and $\lim$ +have predefined control sequences: \verb=\log=, \verb=\sin=, +\verb=\lim=. +The \pkg{amsmath} package provides \cn{DeclareMathOperator} and +\cn{DeclareMathOperator*} +for producing new function names that will have the +same typographical treatment. +Examples: +\[\norm{f}_\infty= +\esssup_{x\in R^n}\abs{f(x)}\] +\begin{verbatim} +\[\norm{f}_\infty= +\esssup_{x\in R^n}\abs{f(x)}\] +\end{verbatim} +\[\meas_1\{u\in R_+^1\colon f^*(u)>\alpha\} +=\meas_n\{x\in R^n\colon \abs{f(x)}\geq\alpha\} +\quad \forall\alpha>0.\] +\begin{verbatim} +\[\meas_1\{u\in R_+^1\colon f^*(u)>\alpha\} +=\meas_n\{x\in R^n\colon \abs{f(x)}\geq\alpha\} +\quad \forall\alpha>0.\] +\end{verbatim} +\cn{esssup} and \cn{meas} would be defined in the document preamble as +\begin{verbatim} +\DeclareMathOperator*{\esssup}{ess\,sup} +\DeclareMathOperator{\meas}{meas} +\end{verbatim} + +The following special operator names are predefined in the \pkg{amsmath} +package: \cn{varlimsup}, \cn{varliminf}, \cn{varinjlim}, and +\cn{varprojlim}. Here's what they look like in use: +\begin{align} +&\varlimsup_{n\rightarrow\infty} + \symcal{Q}(u_n,u_n-u^{\#})\le0\\ +&\varliminf_{n\rightarrow\infty} + \left\lvert a_{n+1}\right\rvert/\left\lvert a_n\right\rvert=0\\ +&\varinjlim (m_i^\lambda\cdot)^*\le0\\ +&\varprojlim_{p\in S(A)}A_p\le0 +\end{align} +\begin{verbatim} +\begin{align} +&\varlimsup_{n\rightarrow\infty} + \symcal{Q}(u_n,u_n-u^{\#})\le0\\ +&\varliminf_{n\rightarrow\infty} + \left\lvert a_{n+1}\right\rvert/\left\lvert a_n\right\rvert=0\\ +&\varinjlim (m_i^\lambda\cdot)^*\le0\\ +&\varprojlim_{p\in S(A)}A_p\le0 +\end{align} +\end{verbatim} + +\subsection{\cn{mod} and its relatives} +The commands \cn{mod} and \cn{pod} are variants of +\cn{pmod} preferred by some authors; \cn{mod} omits the parentheses, +whereas \cn{pod} omits the `mod' and retains the parentheses. +Examples: +\begin{align} +x&\equiv y+1\pmod{m^2}\\ +x&\equiv y+1\mod{m^2}\\ +x&\equiv y+1\pod{m^2} +\end{align} +\begin{verbatim} +\begin{align} +x&\equiv y+1\pmod{m^2}\\ +x&\equiv y+1\mod{m^2}\\ +x&\equiv y+1\pod{m^2} +\end{align} +\end{verbatim} + +\subsection{Fractions and related constructions} +\label{fracs} + +The usual notation for binomials is similar to the fraction concept, +so it has a similar command \cn{binom} with two arguments. Example: +\begin{equation} +\begin{split} +\sum_{\gamma\in\Gamma_C} I_\gamma& +=2^k-\binom{k}{1}2^{k-1}+\binom{k}{2}2^{k-2}\\ +&\quad+\dots+(-1)^l\binom{k}{l}2^{k-l} ++\dots+(-1)^k\\ +&=(2-1)^k=1 +\end{split} +\end{equation} +\begin{verbatim} +\begin{equation} +\begin{split} +[\sum_{\gamma\in\Gamma_C} I_\gamma& +=2^k-\binom{k}{1}2^{k-1}+\binom{k}{2}2^{k-2}\\ +&\quad+\dots+(-1)^l\binom{k}{l}2^{k-l} ++\dots+(-1)^k\\ +&=(2-1)^k=1 +\end{split} +\end{equation} +\end{verbatim} +There are also abbreviations +\begin{verbatim} +\dfrac \dbinom +\tfrac \tbinom +\end{verbatim} +for the commonly needed constructions +\begin{verbatim} +{\displaystyle\frac ... } {\displaystyle\binom ... } +{\textstyle\frac ... } {\textstyle\binom ... } +\end{verbatim} + +The generalized fraction command \cn{genfrac} provides full access to +the six \TeX{} fraction primitives: +\begin{align} +\text{\cn{over}: }&\genfrac{}{}{}{}{n+1}{2}& +\text{\cn{overwithdelims}: }& + \genfrac{\langle}{\rangle}{}{}{n+1}{2}\\ +\text{\cn{atop}: }&\genfrac{}{}{0pt}{}{n+1}{2}& +\text{\cn{atopwithdelims}: }& + \genfrac{(}{)}{0pt}{}{n+1}{2}\\ +\text{\cn{above}: }&\genfrac{}{}{1pt}{}{n+1}{2}& +\text{\cn{abovewithdelims}: }& + \genfrac{[}{]}{1pt}{}{n+1}{2} +\end{align} +\begin{verbatim} +\text{\cn{over}: }&\genfrac{}{}{}{}{n+1}{2}& +\text{\cn{overwithdelims}: }& + \genfrac{\langle}{\rangle}{}{}{n+1}{2}\\ +\text{\cn{atop}: }&\genfrac{}{}{0pt}{}{n+1}{2}& +\text{\cn{atopwithdelims}: }& + \genfrac{(}{)}{0pt}{}{n+1}{2}\\ +\text{\cn{above}: }&\genfrac{}{}{1pt}{}{n+1}{2}& +\text{\cn{abovewithdelims}: }& + \genfrac{[}{]}{1pt}{}{n+1}{2} +\end{verbatim} + +\subsection{Continued fractions} +The continued fraction +\begin{equation} +\cfrac{1}{\sqrt{2}+ + \cfrac{1}{\sqrt{2}+ + \cfrac{1}{\sqrt{2}+ + \cfrac{1}{\sqrt{2}+ + \cfrac{1}{\sqrt{2}+\dotsb +}}}}} +\end{equation} +can be obtained by typing +\begin{verbatim} +\cfrac{1}{\sqrt{2}+ + \cfrac{1}{\sqrt{2}+ + \cfrac{1}{\sqrt{2}+ + \cfrac{1}{\sqrt{2}+ + \cfrac{1}{\sqrt{2}+\dotsb +}}}}} +\end{verbatim} +Left or right placement of any of the numerators is accomplished by using +\cn{cfrac[l]} or \cn{cfrac[r]} instead of \cn{cfrac}. + +\subsection{Smash} + +In \pkg{amsmath} there are optional arguments \verb"t" and \verb"b" for +the plain \TeX\ command \cn{smash}, because sometimes it is advantageous +to be able to `smash' only the top or only the bottom of something while +retaining the natural depth or height. In the formula +$X_j=(1/\sqrt{\smash[b]{\lambda_j}})X_j'$ \cn{smash}\verb=[b]= has been +used to limit the size of the radical symbol. +\begin{verbatim} +$X_j=(1/\sqrt{\smash[b]{\lambda_j}})X_j'$ +\end{verbatim} +Without the use of \cn{smash}\verb=[b]= the formula would have appeared +thus: $X_j=(1/\sqrt{\lambda_j})X_j'$, with the radical extending to +encompass the depth of the subscript $j$. + +\subsection{The `cases' environment} +`Cases' constructions like the following can be produced using +the \env{cases} environment. +\begin{equation} +P_{r-j}= + \begin{cases} + 0& \text{if $r-j$ is odd},\\ + r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}. + \end{cases} +\end{equation} +\begin{verbatim} +\begin{equation} P_{r-j}= + \begin{cases} + 0& \text{if $r-j$ is odd},\\ + r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}. + \end{cases} +\end{equation} +\end{verbatim} +Notice the use of \cn{text} and the embedded math. + +\subsection{Matrix} + +Here are samples of the matrix environments, +\cn{matrix}, \cn{pmatrix}, \cn{bmatrix}, \cn{Bmatrix}, \cn{vmatrix} +and \cn{Vmatrix}: +\begin{equation} +\begin{matrix} +\vartheta& \varrho\\\varphi& \varpi +\end{matrix}\quad +\begin{pmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{pmatrix}\quad +\begin{bmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{bmatrix}\quad +\begin{Bmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{Bmatrix}\quad +\begin{vmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{vmatrix}\quad +\begin{Vmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{Vmatrix} +\end{equation} +% +\begin{verbatim} +\begin{matrix} +\vartheta& \varrho\\\varphi& \varpi +\end{matrix}\quad +\begin{pmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{pmatrix}\quad +\begin{bmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{bmatrix}\quad +\begin{Bmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{Bmatrix}\quad +\begin{vmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{vmatrix}\quad +\begin{Vmatrix} +\vartheta& \varrho\\\varphi& \varpi +\end{Vmatrix} +\end{verbatim} + +To produce a small matrix suitable for use in text, use the +\env{smallmatrix} environment. +\begin{verbatim} +\begin{math} + \bigl( \begin{smallmatrix} + a&b\\ c&d + \end{smallmatrix} \bigr) +\end{math} +\end{verbatim} +To show +the effect of the matrix on the surrounding lines of +a paragraph, we put it here: \begin{math} + \bigl( \begin{smallmatrix} + a&b\\ c&d + \end{smallmatrix} \bigr) +\end{math} +and follow it with enough text to ensure that there will +be at least one full line below the matrix. + +\cn{hdotsfor}\verb"{"\textit{number}\verb"}" produces a row of dots in a matrix +spanning the given number of columns: +\[W(\Phi)= \begin{Vmatrix} +\dfrac\varphi{(\varphi_1,\varepsilon_1)}&0&\dots&0\\ +\dfrac{\varphi k_{n2}}{(\varphi_2,\varepsilon_1)}& +\dfrac\varphi{(\varphi_2,\varepsilon_2)}&\dots&0\\ +\hdotsfor{5}\\ +\dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)}& +\dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)}&\dots& +\dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})}& +\dfrac{\varphi}{(\varphi_n,\varepsilon_n)} +\end{Vmatrix}\] +\begin{verbatim} +\[W(\Phi)= \begin{Vmatrix} +\dfrac\varphi{(\varphi_1,\varepsilon_1)}&0&\dots&0\\ +\dfrac{\varphi k_{n2}}{(\varphi_2,\varepsilon_1)}& +\dfrac\varphi{(\varphi_2,\varepsilon_2)}&\dots&0\\ +\hdotsfor{5}\\ +\dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)}& +\dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)}&\dots& +\dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})}& +\dfrac{\varphi}{(\varphi_n,\varepsilon_n)} +\end{Vmatrix}\] +\end{verbatim} +The spacing of the dots can be varied through use of a square-bracket +option, for example, \verb"\hdotsfor[1.5]{3}". The number in square brackets +will be used as a multiplier; the normal value is 1. + +\subsection{The \cn{substack} command} + +The \cn{substack} command can be used to produce a multiline +subscript or superscript: +for example +\begin{verbatim} +\sum_{\substack{0\le i\le m\\ 0<j<n}} P(i,j) +\end{verbatim} +produces a two-line subscript underneath the sum: +\begin{equation} +\sum_{\substack{0\le i\le m\\ 0<j<n}} P(i,j) +\end{equation} +A slightly more generalized form is the \env{subarray} environment which +allows you to specify that each line should be left-aligned instead of +centered, as here: +\begin{equation} +\sum_{\begin{subarray}{l} + 0\le i\le m\\ 0<j<n + \end{subarray}} + P(i,j) +\end{equation} +\begin{verbatim} +\sum_{\begin{subarray}{l} + 0\le i\le m\\ 0<j<n + \end{subarray}} + P(i,j) +\end{verbatim} + + +\subsection{Big-g-g delimiters} +Here are some big delimiters, first in \cn{normalsize}: +\[\biggl(\symbf{E}_{y} + \int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds + \biggr) +\] +\begin{verbatim} +\[\biggl(\symbf{E}_{y} + \int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds + \biggr) +\] +\end{verbatim} +and now in \cn{Large} size: +{\Large +\[\biggl(\symbf{E}_{y} + \int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds + \biggr) +\]} +\begin{verbatim} +{\Large +\[\biggl(\symbf{E}_{y} + \int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds + \biggr) +\]} +\end{verbatim} + +\newpage +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\makeatletter + +%% This turns on vertical rules at the right and left margins, to +%% better illustrate the spacing for certain multiple-line equation +%% structures. +\def\@makecol{\ifvoid\footins \setbox\@outputbox\box\@cclv + \else\setbox\@outputbox + \vbox{\boxmaxdepth \maxdepth + \unvbox\@cclv\vskip\skip\footins\footnoterule\unvbox\footins}\fi + \xdef\@freelist{\@freelist\@midlist}\gdef\@midlist{}\@combinefloats + \setbox\@outputbox\hbox{\vrule width\marginrulewidth + \vbox to\@colht{\boxmaxdepth\maxdepth + \@texttop\dimen128=\dp\@outputbox\unvbox\@outputbox + \vskip-\dimen128\@textbottom}% + \vrule width\marginrulewidth}% + \global\maxdepth\@maxdepth} +\newdimen\marginrulewidth +\setlength{\marginrulewidth}{.1pt} +\makeatother + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\appendix +\section{Examples of multiple-line equation structures} +\label{s:eq} + +\textbf{\large Note: Starting on this page, vertical rules are +added at the margins so that the positioning of various display elements +with respect to the margins can be seen more clearly.} + +\subsection{Split} +The \env{split} environment is not an independent environment +but should be used inside something else such as \env{equation} +or \env{align}. + +If there is not enough room for it, the equation number for a +\env{split} will be shifted to the previous line, when equation numbers are +on the left; the number shifts down to the next line when numbers are on +the right. +\begin{equation} +\begin{split} +f_{h,\varepsilon}(x,y) +&=\varepsilon\symbf{E}_{x,y}\int_0^{t_\varepsilon} +L_{x,y_\varepsilon(\varepsilon u)}\varphi(x)\,du\\ +&= h\int L_{x,z}\varphi(x)\rho_x(dz)\\ +&\quad+h\biggl[\frac{1}{t_\varepsilon}\biggl(\symbf{E}_{y} + \int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds + -t_\varepsilon\int L_{x,z}\varphi(x)\rho_x(dz)\biggr)\\ +&\phantom{{=}+h\biggl[}+\frac{1}{t_\varepsilon} + \biggl(\symbf{E}_{y}\int_0^{t_\varepsilon}L_{x,y^x(s)} + \varphi(x)\,ds -\symbf{E}_{x,y}\int_0^{t_\varepsilon} + L_{x,y_\varepsilon(\varepsilon s)} + \varphi(x)\,ds\biggr)\biggr]\\ +&=h\wh{L}_x\varphi(x)+h\theta_\varepsilon(x,y), +\end{split} +\end{equation} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{equation} +\begin{split} +f_{h,\varepsilon}(x,y) +&=\varepsilon\symbf{E}_{x,y}\int_0^{t_\varepsilon} +L_{x,y_\varepsilon(\varepsilon u)}\varphi(x)\,du\\ +&= h\int L_{x,z}\varphi(x)\rho_x(dz)\\ +&\quad+h\biggl[\frac{1}{t_\varepsilon}\biggl(\symbf{E}_{y} + \int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds + -t_\varepsilon\int L_{x,z}\varphi(x)\rho_x(dz)\biggr)\\ +&\phantom{{=}+h\biggl[}+\frac{1}{t_\varepsilon} + \biggl(\symbf{E}_{y}\int_0^{t_\varepsilon}L_{x,y^x(s)} + \varphi(x)\,ds -\symbf{E}_{x,y}\int_0^{t_\varepsilon} + L_{x,y_\varepsilon(\varepsilon s)} + \varphi(x)\,ds\biggr)\biggr]\\ +&=h\wh{L}_x\varphi(x)+h\theta_\varepsilon(x,y), +\end{split} +\end{equation} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +Unnumbered version: +\begin{equation*} +\begin{split} +f_{h,\varepsilon}(x,y) +&=\varepsilon\symbf{E}_{x,y}\int_0^{t_\varepsilon} +L_{x,y_\varepsilon(\varepsilon u)}\varphi(x)\,du\\ +&= h\int L_{x,z}\varphi(x)\rho_x(dz)\\ +&\quad+h\biggl[\frac{1}{t_\varepsilon}\biggl(\symbf{E}_{y} + \int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds + -t_\varepsilon\int L_{x,z}\varphi(x)\rho_x(dz)\biggr)\\ +&\phantom{{=}+h\biggl[}+\frac{1}{t_\varepsilon} + \biggl(\symbf{E}_{y}\int_0^{t_\varepsilon}L_{x,y^x(s)} + \varphi(x)\,ds -\symbf{E}_{x,y}\int_0^{t_\varepsilon} + L_{x,y_\varepsilon(\varepsilon s)} + \varphi(x)\,ds\biggr)\biggr]\\ +&=h\wh{L}_x\varphi(x)+h\theta_\varepsilon(x,y), +\end{split} +\end{equation*} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{equation*} +\begin{split} +f_{h,\varepsilon}(x,y) +&=\varepsilon\symbf{E}_{x,y}\int_0^{t_\varepsilon} +L_{x,y_\varepsilon(\varepsilon u)}\varphi(x)\,du\\ +&= h\int L_{x,z}\varphi(x)\rho_x(dz)\\ +&\quad+h\biggl[\frac{1}{t_\varepsilon}\biggl(\symbf{E}_{y} + \int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds + -t_\varepsilon\int L_{x,z}\varphi(x)\rho_x(dz)\biggr)\\ +&\phantom{{=}+h\biggl[}+\frac{1}{t_\varepsilon} + \biggl(\symbf{E}_{y}\int_0^{t_\varepsilon}L_{x,y^x(s)} + \varphi(x)\,ds -\symbf{E}_{x,y}\int_0^{t_\varepsilon} + L_{x,y_\varepsilon(\varepsilon s)} + \varphi(x)\,ds\biggr)\biggr]\\ +&=h\wh{L}_x\varphi(x)+h\theta_\varepsilon(x,y), +\end{split} +\end{equation*} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +If the option \env{centertags} is included in the options +list of the \pkg{amsmath} package, +the equation numbers for \env{split} environments will be +centered vertically on the height +of the \env{split}: +{\makeatletter\ctagsplit@true +\begin{equation} +\begin{split} + \abs{I_2}&=\left\lvert \int_{0}^T \psi(t)\left\{u(a,t)-\int_{\gamma(t)}^a + \frac{d\theta}{k(\theta,t)} + \int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi\right\}dt\right\rvert\\ +&\le C_6\left\lvert \left\lvert f\int_\Omega\left\lvert \wt{S}^{-1,0}_{a,-} + W_2(\Omega,\Gamma_l)\right\rvert\right\rvert + \left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}} + (\Omega;\Gamma_r,T)\right\rvert\right\rvert. +\end{split} +\end{equation}}% +Some text after to test the below-display spacing. + +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +Use of \env{split} within \env{align}: +{\delimiterfactor750 +\begin{align} +\begin{split}\abs{I_1} + &=\left\lvert \int_\Omega gRu\,d\Omega\right\rvert\\ +&\le C_3\left[\int_\Omega\left(\int_{a}^x + g(\xi,t)\,d\xi\right)^2d\Omega\right]^{1/2}\\ +&\quad\times \left[\int_\Omega\left\{u^2_x+\frac{1}{k} + \left(\int_{a}^x cu_t\,d\xi\right)^2\right\} + c\Omega\right]^{1/2}\\ +&\le C_4\left\lvert \left\lvert f\left\lvert \wt{S}^{-1,0}_{a,-} + W_2(\Omega,\Gamma_l)\right\rvert\right\rvert + \left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}} + (\Omega;\Gamma_r,T)\right\rvert\right\rvert. +\end{split}\label{eq:A}\\ +\begin{split}\abs{I_2}&=\left\lvert \int_{0}^T \psi(t)\left\{u(a,t) + -\int_{\gamma(t)}^a\frac{d\theta}{k(\theta,t)} + \int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi\right\}dt\right\rvert\\ +&\le C_6\left\lvert \left\lvert f\int_\Omega + \left\lvert \wt{S}^{-1,0}_{a,-} + W_2(\Omega,\Gamma_l)\right\rvert\right\rvert + \left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}} + (\Omega;\Gamma_r,T)\right\rvert\right\rvert. +\end{split} +\end{align}}% +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{align} +\begin{split}\abs{I_1} + &=\left\lvert \int_\Omega gRu\,d\Omega\right\rvert\\ +&\le C_3\left[\int_\Omega\left(\int_{a}^x + g(\xi,t)\,d\xi\right)^2d\Omega\right]^{1/2}\\ +&\quad\times \left[\int_\Omega\left\{u^2_x+\frac{1}{k} + \left(\int_{a}^x cu_t\,d\xi\right)^2\right\} + c\Omega\right]^{1/2}\\ +&\le C_4\left\lvert \left\lvert f\left\lvert \wt{S}^{-1,0}_{a,-} + W_2(\Omega,\Gamma_l)\right\rvert\right\rvert + \left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}} + (\Omega;\Gamma_r,T)\right\rvert\right\rvert. +\end{split}\label{eq:A}\\ +\begin{split}\abs{I_2}&=\left\lvert \int_{0}^T \psi(t)\left\{u(a,t) + -\int_{\gamma(t)}^a\frac{d\theta}{k(\theta,t)} + \int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi\right\}dt\right\rvert\\ +&\le C_6\left\lvert \left\lvert f\int_\Omega + \left\lvert \wt{S}^{-1,0}_{a,-} + W_2(\Omega,\Gamma_l)\right\rvert\right\rvert + \left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}} + (\Omega;\Gamma_r,T)\right\rvert\right\rvert. +\end{split} +\end{align} +\end{verbatim} + +%%%%%%%%%%%%%%%%%% + +\newpage +Unnumbered \env{align}, with a number on the second \env{split}: +\begin{align*} +\begin{split}\abs{I_1}&=\left\lvert \int_\Omega gRu\,d\Omega\right\rvert\\ + &\le C_3\left[\int_\Omega\left(\int_{a}^x + g(\xi,t)\,d\xi\right)^2d\Omega\right]^{1/2}\\ +&\phantom{=}\times \left[\int_\Omega\left\{u^2_x+\frac{1}{k} + \left(\int_{a}^x cu_t\,d\xi\right)^2\right\} + c\Omega\right]^{1/2}\\ +&\le C_4\left\lvert \left\lvert f\left\lvert \wt{S}^{-1,0}_{a,-} + W_2(\Omega,\Gamma_l)\right\rvert\right\rvert + \left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}} + (\Omega;\Gamma_r,T)\right\rvert\right\rvert. +\end{split}\\ +\begin{split}\abs{I_2}&=\left\lvert \int_{0}^T \psi(t)\left\{u(a,t) + -\int_{\gamma(t)}^a\frac{d\theta}{k(\theta,t)} + \int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi\right\}dt\right\rvert\\ +&\le C_6\left\lvert \left\lvert f\int_\Omega + \left\lvert \wt{S}^{-1,0}_{a,-} + W_2(\Omega,\Gamma_l)\right\rvert\right\rvert + \left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}} + (\Omega;\Gamma_r,T)\right\rvert\right\rvert. +\end{split}\tag{\theequation$'$} +\end{align*} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{align*} +\begin{split}\abs{I_1}&=\left\lvert \int_\Omega gRu\,d\Omega\right\rvert\\ + &\le C_3\left[\int_\Omega\left(\int_{a}^x + g(\xi,t)\,d\xi\right)^2d\Omega\right]^{1/2}\\ +&\phantom{=}\times \left[\int_\Omega\left\{u^2_x+\frac{1}{k} + \left(\int_{a}^x cu_t\,d\xi\right)^2\right\} + c\Omega\right]^{1/2}\\ +&\le C_4\left\lvert \left\lvert f\left\lvert \wt{S}^{-1,0}_{a,-} + W_2(\Omega,\Gamma_l)\right\rvert\right\rvert + \left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}} + (\Omega;\Gamma_r,T)\right\rvert\right\rvert. +\end{split}\\ +\begin{split}\abs{I_2}&=\left\lvert \int_{0}^T \psi(t)\left\{u(a,t) + -\int_{\gamma(t)}^a\frac{d\theta}{k(\theta,t)} + \int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi\right\}dt\right\rvert\\ +&\le C_6\left\lvert \left\lvert f\int_\Omega + \left\lvert \wt{S}^{-1,0}_{a,-} + W_2(\Omega,\Gamma_l)\right\rvert\right\rvert + \left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}} + (\Omega;\Gamma_r,T)\right\rvert\right\rvert. +\end{split}\tag{\theequation$'$} +\end{align*} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +\subsection{Multline} +Numbered version: +\begin{multline}\label{eq:E} +\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] + -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\ + =\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 + \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy +\end{multline} +To test the use of \verb=\label= and +\verb=\ref=, we refer to the number of this +equation here: (\ref{eq:E}). + +\begin{verbatim} +\begin{multline}\label{eq:E} +\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] + -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\ + =\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 + \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy +\end{multline} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +Unnumbered version: +\begin{multline*} +\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] + -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\ + =\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 + \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy +\end{multline*} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{multline*} +\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] + -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\ + =\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 + \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy +\end{multline*} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\iffalse % bugfix needed, error message "Multiple \tag" + % [mjd,24-Jan-1995] +\newpage +And now an ``unnumbered'' version numbered with a literal tag: +\begin{multline*}\tag*{[a]} +\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] + -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\ + =\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 + \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy +\end{multline*} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{multline*}\tag*{[a]} +\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] + -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\ + =\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 + \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy +\end{multline*} +\end{verbatim} + +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +The same display with \verb=\multlinegap= set to zero. +Notice that the space on the left in +the first line does not change, because of the equation number, while +the second line is pushed over to the right margin. +{\setlength{\multlinegap}{0pt} +\begin{multline*}\tag*{[a]} +\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] + -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\ + =\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 + \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy +\end{multline*}}% +Some text after to test the below-display spacing. + +\begin{verbatim} +{\setlength{\multlinegap}{0pt} +\begin{multline*}\tag*{[a]} +\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] + -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\ + =\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 + \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy +\end{multline*}} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% +\fi % matches \iffalse above [mjd,24-Jan-1995] + +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +\subsection{Gather} +Numbered version with \verb;\notag; on the second line: +\begin{gather} +D(a,r)\equiv\{z\in\symbf{C}\colon \abs{z-a}<r\},\\ +\seg(a,r)\equiv\{z\in\symbf{C}\colon +\Im z= \Im a,\ \abs{z-a}<r\},\notag\\ +c(e,\theta,r)\equiv\{(x,y)\in\symbf{C} +\colon \abs{x-e}<y\tan\theta,\ 0<y<r\},\\ +C(E,\theta,r)\equiv\bigcup_{e\in E}c(e,\theta,r). +\end{gather} +\begin{verbatim} +\begin{gather} +D(a,r)\equiv\{z\in\symbf{C}\colon \abs{z-a}<r\},\\ +\seg(a,r)\equiv\{z\in\symbf{C}\colon +\Im z= \Im a,\ \abs{z-a}<r\},\notag\\ +c(e,\theta,r)\equiv\{(x,y)\in\symbf{C} +\colon \abs{x-e}<y\tan\theta,\ 0<y<r\},\\ +C(E,\theta,r)\equiv\bigcup_{e\in E}c(e,\theta,r). +\end{gather} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +Unnumbered version. +\begin{gather*} +D(a,r)\equiv\{z\in\symbf{C}\colon \abs{z-a}<r\},\\ +\seg (a,r)\equiv\{z\in\symbf{C}\colon +\Im z= \Im a,\ \abs{z-a}<r\},\\ +c(e,\theta,r)\equiv\{(x,y)\in\symbf{C} + \colon \abs{x-e}<y\tan\theta,\ 0<y<r\},\\ +C(E,\theta,r)\equiv\bigcup_{e\in E}c(e,\theta,r). +\end{gather*} +Some text after to test the below-display spacing. +\begin{verbatim} +\begin{gather*} +D(a,r)\equiv\{z\in\symbf{C}\colon \abs{z-a}<r\},\\ +\seg (a,r)\equiv\{z\in\symbf{C}\colon +\Im z= \Im a,\ \abs{z-a}<r\},\\ +c(e,\theta,r)\equiv\{(x,y)\in\symbf{C} + \colon \abs{x-e}<y\tan\theta,\ 0<y<r\},\\ +C(E,\theta,r)\equiv\bigcup_{e\in E}c(e,\theta,r). +\end{gather*} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +\subsection{Align} +Numbered version: +\begin{align} +\gamma_x(t)&=(\cos tu+\sin tx,v),\\ +\gamma_y(t)&=(u,\cos tv+\sin ty),\\ +\gamma_z(t)&=\left(\cos tu+\frac\alpha\beta\sin tv, + -\frac\beta\alpha\sin tu+\cos tv\right). +\end{align} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{align} +\gamma_x(t)&=(\cos tu+\sin tx,v),\\ +\gamma_y(t)&=(u,\cos tv+\sin ty),\\ +\gamma_z(t)&=\left(\cos tu+\frac\alpha\beta\sin tv, + -\frac\beta\alpha\sin tu+\cos tv\right). +\end{align} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +Unnumbered version: +\begin{align*} +\gamma_x(t)&=(\cos tu+\sin tx,v),\\ +\gamma_y(t)&=(u,\cos tv+\sin ty),\\ +\gamma_z(t)&=\left(\cos tu+\frac\alpha\beta\sin tv, + -\frac\beta\alpha\sin tu+\cos tv\right). +\end{align*} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{align*} +\gamma_x(t)&=(\cos tu+\sin tx,v),\\ +\gamma_y(t)&=(u,\cos tv+\sin ty),\\ +\gamma_z(t)&=\left(\cos tu+\frac\alpha\beta\sin tv, + -\frac\beta\alpha\sin tu+\cos tv\right). +\end{align*} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +A variation: +\begin{align} +x& =y && \text {by (\ref{eq:C})}\\ +x'& = y' && \text {by (\ref{eq:D})}\\ +x+x' & = y+y' && \text {by Axiom 1.} +\end{align} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{align} +x& =y && \text {by (\ref{eq:C})}\\ +x'& = y' && \text {by (\ref{eq:D})}\\ +x+x' & = y+y' && \text {by Axiom 1.} +\end{align} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +\subsection{Align and split within gather} +When using the \env{align} environment within the \env{gather} +environment, one or the other, or both, should be unnumbered (using the +\verb"*" form); numbering both the outer and inner environment would +cause a conflict. + +Automatically numbered \env{gather} with \env{split} and \env{align*}: +\begin{gather} +\begin{split} \varphi(x,z) +&=z-\gamma_{10}x-\gamma_{mn}x^mz^n\\ +&=z-Mr^{-1}x-Mr^{-(m+n)}x^mz^n +\end{split}\\[6pt] +\begin{align*} +\zeta^0 &=(\xi^0)^2,\\ +\zeta^1 &=\xi^0\xi^1,\\ +\zeta^2 &=(\xi^1)^2, +\end{align*} +\end{gather} +Here the \env{split} environment gets a number from the outer +\env{gather} environment; numbers for individual lines of the +\env{align*} are suppressed because of the star. + +\begin{verbatim} +\begin{gather} +\begin{split} \varphi(x,z) +&=z-\gamma_{10}x-\gamma_{mn}x^mz^n\\ +&=z-Mr^{-1}x-Mr^{-(m+n)}x^mz^n +\end{split}\\[6pt] +\begin{align*} +\zeta^0 &=(\xi^0)^2,\\ +\zeta^1 &=\xi^0\xi^1,\\ +\zeta^2 &=(\xi^1)^2, +\end{align*} +\end{gather} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +The \verb"*"-ed form of \env{gather} with the non-\verb"*"-ed form of +\env{align}. +\begin{gather*} +\begin{split} \varphi(x,z) +&=z-\gamma_{10}x-\gamma_{mn}x^mz^n\\ +&=z-Mr^{-1}x-Mr^{-(m+n)}x^mz^n +\end{split}\\[6pt] +\begin{align} \zeta^0&=(\xi^0)^2,\\ +\zeta^1 &=\xi^0\xi^1,\\ +\zeta^2 &=(\xi^1)^2, +\end{align} +\end{gather*} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{gather*} +\begin{split} \varphi(x,z) +&=z-\gamma_{10}x-\gamma_{mn}x^mz^n\\ +&=z-Mr^{-1}x-Mr^{-(m+n)}x^mz^n +\end{split}\\[6pt] +\begin{align} \zeta^0&=(\xi^0)^2,\\ +\zeta^1 &=\xi^0\xi^1,\\ +\zeta^2 &=(\xi^1)^2, +\end{align} +\end{gather*} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +\subsection{Alignat} +Numbered version: +\begin{alignat}{3} +V_i & =v_i - q_i v_j, & \qquad X_i & = x_i - q_i x_j, + & \qquad U_i & = u_i, + \qquad \text{for $i\ne j$;}\label{eq:B}\\ +V_j & = v_j, & \qquad X_j & = x_j, + & \qquad U_j & u_j + \sum_{i\ne j} q_i u_i. +\end{alignat} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{alignat}{3} +V_i & =v_i - q_i v_j, & \qquad X_i & = x_i - q_i x_j, + & \qquad U_i & = u_i, + \qquad \text{for $i\ne j$;}\label{eq:B}\\ +V_j & = v_j, & \qquad X_j & = x_j, + & \qquad U_j & u_j + \sum_{i\ne j} q_i u_i. +\end{alignat} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +Unnumbered version: +\begin{alignat*}3 +V_i & =v_i - q_i v_j, & \qquad X_i & = x_i - q_i x_j, + & \qquad U_i & = u_i, + \qquad \text{for $i\ne j$;} \\ +V_j & = v_j, & \qquad X_j & = x_j, + & \qquad U_j & u_j + \sum_{i\ne j} q_i u_i. +\end{alignat*} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{alignat*}3 +V_i & =v_i - q_i v_j, & \qquad X_i & = x_i - q_i x_j, + & \qquad U_i & = u_i, + \qquad \text{for $i\ne j$;} \\ +V_j & = v_j, & \qquad X_j & = x_j, + & \qquad U_j & u_j + \sum_{i\ne j} q_i u_i. +\end{alignat*} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +The most common use for \env{alignat} is for things like +\begin{alignat}{2} +x& =y && \qquad \text {by (\ref{eq:A})}\label{eq:C}\\ +x'& = y' && \qquad \text {by (\ref{eq:B})}\label{eq:D}\\ +x+x' & = y+y' && \qquad \text {by Axiom 1.} +\end{alignat} +Some text after to test the below-display spacing. + +\begin{verbatim} +\begin{alignat}{2} +x& =y && \qquad \text {by (\ref{eq:A})}\label{eq:C}\\ +x'& = y' && \qquad \text {by (\ref{eq:B})}\label{eq:D}\\ +x+x' & = y+y' && \qquad \text {by Axiom 1.} +\end{alignat} +\end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newpage +\setlength{\marginrulewidth}{0pt} + +\begin{thebibliography}{10} + +\bibitem{dihe:newdir} +W.~Diffie and E.~Hellman, \emph{New directions in cryptography}, IEEE +Transactions on Information Theory \textbf{22} (1976), no.~5, 644--654. + +\bibitem{fre:cichon} +D.~H. Fremlin, \emph{Cichon's diagram}, 1983/1984, presented at the +S{\'e}minaire Initiation {\`a} l'Analyse, G. Choquet, M. Rogalski, J. +Saint Raymond, at the Universit{\'e} Pierre et Marie Curie, Paris, 23e +ann{\'e}e. + +\bibitem{gouja:lagrmeth} +I.~P. Goulden and D.~M. Jackson, \emph{The enumeration of directed +closed {E}uler trails and directed {H}amiltonian circuits by +{L}angrangian methods}, European J. Combin. \textbf{2} (1981), 131--212. + +\bibitem{hapa:graphenum} +F.~Harary and E.~M. Palmer, \emph{Graphical enumeration}, Academic +Press, 1973. + +\bibitem{imlelu:oneway} +R.~Impagliazzo, L.~Levin, and M.~Luby, \emph{Pseudo-random generation +from one-way functions}, Proc. 21st STOC (1989), ACM, New York, +pp.~12--24. + +\bibitem{komiyo:unipfunc} +M.~Kojima, S.~Mizuno, and A.~Yoshise, \emph{A new continuation method +for complementarity problems with uniform p-functions}, Tech. Report +B-194, Tokyo Inst. of Technology, Tokyo, 1987, Dept. of Information +Sciences. + +\bibitem{komiyo:lincomp} +\bysame, \emph{A polynomial-time algorithm for a class of linear +complementarity problems}, Tech. Report B-193, Tokyo Inst. of +Technology, Tokyo, 1987, Dept. of Information Sciences. + +\bibitem{liuchow:formalsum} +C.~J. Liu and Yutze Chow, \emph{On operator and formal sum methods for +graph enumeration problems}, SIAM J. Algorithms Discrete Methods +\textbf{5} (1984), 384--438. + +\bibitem{mami:matrixth} +M.~Marcus and H.~Minc, \emph{A survey of matrix theory and matrix +inequalities}, Complementary Series in Math. \textbf{14} (1964), 21--48. + +\bibitem{miyoki:lincomp} +S.~Mizuno, A.~Yoshise, and T.~Kikuchi, \emph{Practical polynomial time +algorithms for linear complementarity problems}, Tech. Report~13, Tokyo +Inst. of Technology, Tokyo, April 1988, Dept. of Industrial Engineering +and Management. + +\bibitem{moad:quadpro} +R.~D. Monteiro and I.~Adler, \emph{Interior path following primal-dual +algorithms, part {II}: Quadratic programming}, August 1987, Working +paper, Dept. of Industrial Engineering and Operations Research. + +\bibitem{ste:sint} +E.~M. Stein, \emph{Singular integrals and differentiability properties +of functions}, Princeton Univ. Press, Princeton, N.J., 1970. + +\bibitem{ye:intalg} +Y.~Ye, \emph{Interior algorithms for linear, quadratic and linearly +constrained convex programming}, Ph.D. thesis, Stanford Univ., Palo +Alto, Calif., July 1987, Dept. of Engineering--Economic Systems, +unpublished. + +\end{thebibliography} + +\end{document} +\endinput |