diff options
Diffstat (limited to 'Master/texmf-dist/doc/asymptote/examples/intro.asy')
-rw-r--r-- | Master/texmf-dist/doc/asymptote/examples/intro.asy | 958 |
1 files changed, 958 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/asymptote/examples/intro.asy b/Master/texmf-dist/doc/asymptote/examples/intro.asy new file mode 100644 index 00000000000..fcafefb32a6 --- /dev/null +++ b/Master/texmf-dist/doc/asymptote/examples/intro.asy @@ -0,0 +1,958 @@ +orientation=Landscape; + +settings.tex="pdflatex"; + +import slide; +import three; +import animate; + +bool long=true; + +usepackage("mflogo"); + +usersetting(); + +viewportsize=pagewidth-2pagemargin; + +// To generate bibliographic references: +// asy -k goysr +// bibtex goysr_ +bibliographystyle("alpha"); + +itempen=fontsize(22pt); +defaultpen(itempen); +viewportmargin=(2,2); + +titlepage(long ? "Asymptote: The Vector Graphics Language" : + "Interactive TeX-Aware 3D Vector Graphics", + "John Bowman and Andy Hammerlindl", +"Department of Mathematical and Statistical Sciences\\ + University of Alberta\\ +%and Instituto Nacional de Matem\'atica Pura e Aplicada (IMPA) +\medskip\Green{Collaborators: Orest Shardt, Michail Vidiassov}", +"June 30, 2010", +"http://asymptote.sf.net/intro.pdf"); + +title("History"); +item("1979: \TeX\ and \MF\ (Knuth)"); +item("1986: 2D B\'ezier control point selection (Hobby)"); +item("1989: MetaPost (Hobby)"); +item("2004: Asymptote"); +subitem("2004: initial public release (Hammerlindl, Bowman, \& Prince)"); +subitem("2005: 3D B\'ezier control point selection (Bowman)"); +subitem("2008: 3D interactive \TeX\ within PDF files (Shardt \& Bowman)"); +subitem("2009: 3D billboard labels that always face camera (Bowman)"); +subitem("2010: 3D PDF enhancements (Vidiassov \& Bowman)"); + +title("Statistics (as of June, 2010)"); +item("Runs under Linux/UNIX, Mac OS X, Microsoft Windows."); +item("4000 downloads/month from primary\hfill\\ + {\tt asymptote.sourceforge.net} site alone."); +item("80\ 000 lines of low-level C++ code."); +item("36\ 000 lines of high-level Asymptote code."); + +if(long) { +title("Vector Graphics"); +item("Raster graphics assign colors to a grid of pixels."); +figure("pixel.pdf"); +item("Vector graphics are graphics which still maintain their look when + inspected at arbitrarily small scales."); +asyfigure(asywrite(" +picture pic; + +path zoombox(real h) { + return box((-h,-h/2),(min(10,h),min(10,h)/2)); +} + +frame zoom(real h, real next=0) { + frame f; + draw(f, (0,-100){W}..{E}(0,0), Arrow); + clip(f, zoombox(h)); + if(next > 0) + draw(f, zoombox(next)); + + return scale(100/h)*f; +} + +add(zoom(100), (0,0)); +add(zoom(10), (200,0)); +add(zoom(1), (400,0)); +")); +} + +title("Cartesian Coordinates"); + +item("Asymptote's graphical capabilities are based on four primitive + commands: {\tt draw}, {\tt label}, {\tt fill}, {\tt clip} \cite{Bowman08}"); + +asyfilecode("diagonal"); +item("units are {\tt PostScript} {\it big points\/} (1 {\tt bp} = +1/72 {\tt inch})"); +item("{\tt --} means join the points with a linear segment to create +a {\it path}"); + +item("{\it cyclic\/} path:"); + +asycode(" +draw((0,0)--(100,0)--(100,100)--(0,100)--cycle); +"); + +title("Scaling to a Given Size"); + +item("{\tt PostScript} units are often inconvenient."); + +item("Instead, scale user coordinates to a specified final size:"); + +asyfilecode("square"); + +item("One can also specify the size in {\tt cm}:"); + +asycode(" +size(3cm,3cm); +draw(unitsquare); +"); + +title("Labels"); + +item("Adding and aligning \LaTeX\ labels is easy:"); + +asycode(preamble="defaultpen(fontsize("+string(fontsize(itempen))+"));", +"size(6cm); +draw(unitsquare); +label(\"$A$\",(0,0),SW); +label(\"$B$\",(1,0),SE); +label(\"$C$\",(1,1),NE); +label(\"$D$\",(0,1),NW); +"); + +title("2D B\'ezier Splines"); + +item("Using {\tt ..} instead of {\tt --} specifies a {\it B\'ezier cubic +spline}:"); + +code(" +draw(z0 .. controls c0 and c1 .. z1,blue); +"); +asyfigure(asywrite("defaultpen(fontsize("+string(fontsize(itempen))+")); +size(0,7cm); +pair z0=(0,0); +pair c0=(1,1); +pair c1=(2,1); +pair z1=(3,0); +draw(z0..controls c0 and c1 .. z1,blue); +draw(z0--c0--c1--z1,dashed); +dot(\"$z_0$\",z0,W,red); +dot(\"$c_0$\",c0,NW,red); +dot(\"$c_1$\",c1,NE,red); +dot(\"$z_1$\",z1,red); +")); + +equation("(1-t)^3 z_0+3t(1-t)^2 c_0+3t^2(1-t) c_1+t^3 z_1, \qquad t\in [0,1]."); + +title("Smooth Paths"); + +item("Asymptote can choose control points for you, using the algorithms of +Hobby and Knuth \cite{Hobby86,Knuth86b}:"); + +string bean=" +pair[] z={(0,0), (0,1), (2,1), (2,0), (1,0)}; +"; + +asycode(preamble="size(130,0);",bean+" +draw(z[0]..z[1]..z[2]..z[3]..z[4]..cycle, + grey+linewidth(5)); +dot(z,linewidth(7)); +"); + +item("First, linear equations involving the curvature are solved to find the + direction through each knot. Then, control points along those directions + are chosen:"); + +asyfigure(asywrite(preamble="size(130,0);",bean+" +path p=z[0]..z[1]..z[2]..z[3]..z[4]..cycle; + +dot(z); +draw(p,lightgrey+linewidth(5)); +dot(z); + +picture output; +save(); +for(int i=0; i<length(p); ++i) { + pair z=point(p,i), dir=dir(p,i); + draw((z-0.3dir)--(z+0.3dir), Arrow); +} +add(output, currentpicture.fit(), (-0.5inch, 0), W); +restore(); + +save(); +guide g; +for(int i=0; i<length(p); ++i) { + dot(precontrol(p,i)); + dot(postcontrol(p,i)); + g=g--precontrol(p,i)--point(p,i)--postcontrol(p,i); +} +draw(g--cycle,dashed); +add(output, currentpicture.fit(), (+0.5inch, 0), E); +restore(); + +shipout(output); +")); + +title("Filling"); +item("The {\tt fill} primitive to fill the inside of a path:"); +asycode(preamble="size(0,200);"," +path star; +for(int i=0; i < 5; ++i) + star=star--dir(90+144i); +star=star--cycle; + +fill(star,orange+zerowinding); +draw(star,linewidth(3)); + +fill(shift(2,0)*star,blue+evenodd); +draw(shift(2,0)*star,linewidth(3)); +"); + +title("Filling"); +item("Use a list of paths to fill a region with holes:"); +asycode(preamble="size(0,300);"," +path[] p={scale(2)*unitcircle, reverse(unitcircle)}; +fill(p,green+zerowinding); +"); + +title("Clipping"); +item("Pictures can be clipped to a path:"); +asycode(preamble=" +size(0,200); +guide star; +for(int i=0; i<5; ++i) + star=star--dir(90+144i); +star=star--cycle;"," +fill(star,orange+zerowinding); +clip(scale(0.7)*unitcircle); +draw(scale(0.7)*unitcircle); +"); + +title("Affine Transforms"); + +item("Affine transformations: shifts, rotations, reflections, and scalings + can be applied to pairs, paths, pens, strings, and even whole pictures:"); + +code(" +fill(P,blue); +fill(shift(2,0)*reflect((0,0),(0,1))*P, red); +fill(shift(4,0)*rotate(30)*P, yellow); +fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green); +"); +asyfigure(asywrite(" +size(500,0); +real bw=0.15; +real sw=0.2; +real r=0.15; + +path outside=(0,0)--(0,1)-- + (bw+sw,1)..(bw+sw+r+bw,1-(r+bw))..(bw+sw,1-2(r+bw))-- + (bw,1-2(r+bw))--(bw,0)--cycle; +path inside=(bw,1-bw-2r)--(bw,1-bw)-- + (bw+sw,1-bw)..(bw+sw+r,1-bw-r)..(bw+sw,1-bw-2r)--cycle; +//fill(new path[] {outside, reverse(inside)},yellow); + +path[] P={outside, reverse(inside)}; + +fill(P,blue); +fill(shift(2,0)*reflect((0,0),(0,1))*P, red); +fill(shift(4,0)*rotate(30)*P, yellow); +fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green); +")); + +if(long) { +title("C++/Java-like Programming Syntax"); + +code("// Declaration: Declare x to be real: +real x; + +// Assignment: Assign x the value 1. +x=1.0; + +// Conditional: Test if x equals 1 or not. +if(x == 1.0) { + write(\"x equals 1.0\"); +} else { + write(\"x is not equal to 1.0\"); +} + +// Loop: iterate 10 times +for(int i=0; i < 10; ++i) { + write(i); +}"); +} + +title("Modules"); + +item("There are modules for Feynman diagrams,"); +asyfigure("eetomumu","height=6cm"); +remark("data structures,"); +asyfigure(asywrite(" +import binarytree; + +binarytree bt=binarytree(1,2,4,nil,5,nil,nil,0,nil,nil,3,6,nil,nil,7); +draw(bt); +"),"height=6cm"); +newslide(); +remark("algebraic knot theory:"); +asyfigure("knots"); +equations("\Phi\Phi(x_1,x_2,x_3,x_4,x_5) + = &\rho_{4b}(x_1+x_4,x_2,x_3,x_5) + \rho_{4b}(x_1,x_2,x_3,x_4) \\ + + &\rho_{4a}(x_1,x_2+x_3,x_4,x_5) - \rho_{4b}(x_1,x_2,x_3,x_4+x_5) \\ + - &\rho_{4a}(x_1+x_2,x_3,x_4,x_5) - \rho_{4a}(x_1,x_2,x_4,x_5)."); + +if(long) { +title("Textbook Graph"); +asy(nativeformat(),"exp"); +filecode("exp.asy"); +label(graphic("exp."+nativeformat(),"height=10cm"),(0.5,0), + Fill(figureborder,figuremattpen)); + +title("Scientific Graph"); +asyfilecode("lineargraph","height=13cm",newslide=true); + +title("Data Graph"); +asyfilecode("datagraph","height=13cm",newslide=true); + +title("Imported Data Graph"); +asyfilecode("filegraph","height=15cm",newslide=true); + +title("Logarithmic Graph"); +asyfilecode("loggraph","height=15cm",newslide=true); +title("Secondary Axis"); +} else +title("Scientific Graph"); + +asyfigure("secondaryaxis","height=15cm"); + +title("Images and Contours"); +asyfigure("imagecontour","height=17cm"); + +title("Multiple Graphs"); +asyfigure("diatom","height=17cm"); + +title("Hobby's 2D Direction Algorithm"); +item("A tridiagonal system of linear equations is solved to determine any unspecified directions $\phi_k$ and $\theta_k$ through each knot $z_k$:"); + +equation("\frac{\theta_{k-1}-2\phi_k}{\ell_k}= +\frac{\phi_{k+1}-2\theta_k}{\ell_{k+1}}."); + +asyfigure("Hobbydir","height=9cm"); + +item("The resulting shape may be adjusted by modifying optional {\it tension\/} parameters and {\it curl\/} boundary conditions."); + +title("Hobby's 2D Control Point Algorithm"); +item("Having prescribed outgoing and incoming path directions $e^{i\theta}$ +at node~$z_0$ and $e^{i\phi}$ at node $z_1$ relative to the +vector $z_1-z_0$, the control points are determined as:"); + +equations("u&=&z_0+e^{i\theta}(z_1-z_0)f(\theta,-\phi),\nonumber\\ +v&=&z_1-e^{i\phi}(z_1-z_0)f(-\phi,\theta),"); + +remark("where the relative distance function $f(\theta,\phi)$ is given by Hobby [1986]."); + +asyfigure("Hobbycontrol","height=9cm"); + +if(long) { +title("B\'ezier Curves in 3D"); + +item("Apply an affine transformation"); + +equation("x'_i=A_{ij} x_j+C_i"); + +remark("to a B\'ezier curve:"); + +equation("\displaystyle x(t)=\sum_{k=0}^3 B_k(t) P_k, \qquad t\in [0,1]."); + +item("The resulting curve is also a B\'ezier curve:"); + +skip(-2); + +equations("x'_i(t)&=&\sum_{k=0}^3 B_k(t) A_{ij}(P_k)_j+C_i\nonumber\\ +&=&\sum_{k=0}^3 B_k(t) P'_k,"); + +skip(-2); + +remark("where $P'_k$ is the transformed $k^{\rm th}$ control point, noting +$\displaystyle\sum_{k=0}^3 B_k(t)=1.$"); +} + +title("3D Generalization of Direction Algorithm"); + +item("Must reduce to 2D algorithm in planar case."); + +item("Determine directions by applying Hobby's algorithm in the plane containing $z_{k-1}$, $z_k$, $z_{k+1}$."); + +// Reformulate Hobby's equations in terms of the angle $\psi_k=$ +item("The only ambiguity that can arise is the overall sign of the angles, which relates to viewing each 2D plane from opposing normal directions."); + +item("A reference vector based on the mean unit normal of successive segments can be used to resolve such ambiguities \cite{Bowman07,Bowman09}"); + +title("3D Control Point Algorithm"); + +item("Express Hobby's algorithm in terms of the absolute directions $\omega_0$ and~$\omega_1$:"); +skip(-1); +equation("u=z_0+\omega_0\left|z_1-z_0\right|f(\theta,-\phi),"); +equation("v=z_1-\omega_1\left|z_1-z_0\right|f(-\phi,\theta),"); + +asyfigure("Hobbycontrol"); + +remark("interpreting $\theta$ and $\phi$ as the angle between the corresponding path direction vector and $z_1-z_0$."); + +item("Here there is an unambiguous reference vector for determining the relative sign of the angles $\phi$ and $\theta$."); + +viewportmargin=(2,0.5cm); +//defaultpen(1.0); +title("Interactive 3D Saddle"); +item("A unit circle in the $X$--$Y$ plane may be constructed with: +{\tt (1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle}:"); +asyinclude("unitcircle3",8cm); +remark("and then distorted into the saddle\\ +{\tt (1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle}:"); +asyinclude("saddle",8cm); +//defaultpen(0.5); + +title("Lifting TeX to 3D"); +item("Glyphs are first split into simply connected regions and then decomposed into planar B\'ezier surface patches \cite{Bowman09,Shardt10}:"); +asyfigure("../examples/partitionExample"); + +viewportmargin=(2,1cm); +title("Label Manipulation"); +item("They can then be extruded and/or arbitrarily transformed:"); +asyinclude("../examples/label3solid"); + +title("Billboard Labels"); +defaultpen(fontsize(36pt)); +asyinclude("../examples/billboard",15cm); +defaultpen(itempen); + +title("Smooth 3D surfaces"); +asyinclude("../examples/sinc",25cm); + +title("Curved 3D Arrows"); +asyinclude("../examples/arrows3",20cm); + +title("Slide Presentations"); +item("Asymptote has a module for preparing slides."); +item("It even supports embedded high-resolution PDF movies."); + +code(' +title("Slide Presentations"); +item("Asymptote has a module for preparing slides."); +item("It even supports embedded high-resolution PDF movies."); +'); +remark("\quad\ldots"); + +import graph; + +pen p=linewidth(1); +pen dotpen=linewidth(5); + +pair wheelpoint(real t) {return (t+cos(t),-sin(t));} + +guide wheel(guide g=nullpath, real a, real b, int n) +{ + real width=(b-a)/n; + for(int i=0; i <= n; ++i) { + real t=a+width*i; + g=g--wheelpoint(t); + } + return g; +} + +real t1=0; +real t2=t1+2*pi; + +picture base; +draw(base,circle((0,0),1),p); +draw(base,wheel(t1,t2,100),p+linetype("0 2")); +yequals(base,Label("$y=-1$",1.0),-1,extend=true,p+linetype("4 4")); +xaxis(base,Label("$x$",align=3SW),0,p); +yaxis(base,"$y$",0,1.3,p); +pair z1=wheelpoint(t1); +pair z2=wheelpoint(t2); +dot(base,z1,dotpen); +dot(base,z2,dotpen); + +animation a; + +int n=25; +real dt=(t2-t1)/n; +for(int i=0; i <= n; ++i) { + picture pic; + size(pic,24cm); + real t=t1+dt*i; + add(pic,base); + draw(pic,circle((t,0),1),p+red); + dot(pic,wheelpoint(t),dotpen); + a.add(pic); +} + +display(a.pdf(delay=150,"controls")); + +title("Automatic Sizing"); +item("Figures can be specified in user coordinates, then + automatically scaled to the desired final size."); +asyfigure(asywrite(" +import graph; + +size(0,100); + +frame cardsize(real w=0, real h=0, bool keepAspect=Aspect) { + picture pic; + pic.size(w,h,keepAspect); + + real f(real t) {return 1+cos(t);} + + guide g=polargraph(f,0,2pi,operator ..)--cycle; + filldraw(pic,g,pink); + + xaxis(pic,\"$x$\",above=true); + yaxis(pic,\"$y$\",above=true); + + dot(pic,\"$(a,0)$\",(1,0),N); + dot(pic,\"$(2a,0)$\",(2,0),N+E); + + frame f=pic.fit(); + label(f,\"{\tt size(\"+string(w)+\",\"+string(h)+\");}\",point(f,S),align=S); + return f; +} + +add(cardsize(0,50), (0,0)); +add(cardsize(0,100), (230,0)); +add(cardsize(0,200), (540,0)); +")); + +title("Deferred Drawing"); +item("We can't draw a graphical object until we know the scaling + factors for the user coordinates."); +item("Instead, store a function that, given the scaling information, draws + the scaled object."); +code(" +void draw(picture pic=currentpicture, path g, pen p=currentpen) { + pic.add(new void(frame f, transform t) { + draw(f,t*g,p); + }); + pic.addPoint(min(g),min(p)); + pic.addPoint(max(g),max(p)); +} +"); + +title("Coordinates"); +item("Store bounding box information as the sum of user and true-size + coordinates:"); +asyfigure(asywrite(" +size(0,150); + +path q=(0,0){dir(70)}..{dir(70)}(100,50); +pen p=rotate(30)*yscale(0.7)*(lightblue+linewidth(20)); +draw(q,p); +draw((90,10),p); + +currentpicture.add(new void(frame f, transform t) { + draw(f,box(min(t*q)+min(p),max(t*q)+max(p)), dashed); + }); + +draw(box(min(q),max(q))); + +frame f; +draw(f,box(min(p),max(p))); + +add(f,min(q)); +add(f,max(q)); + +draw(q); +")); + +code("pic.addPoint(min(g),min(p)); +pic.addPoint(max(g),max(p));"); +item("Filling ignores the pen width:"); +code("pic.addPoint(min(g),(0,0)); +pic.addPoint(max(g),(0,0));"); +item("Communicate with \LaTeX\ {\it via\/} a pipe to determine label sizes:"); + +asyfigure(asywrite(" +size(0,100); + +pen p=fontsize(30pt); +frame f; +label(f, \"$E=mc^2$\", p); +draw(f, box(min(f),max(f))); +shipout(f); +")); + +title("Sizing"); + +item("When scaling the final figure to a given size $S$, we first need to + determine a scaling factor $a>0$ and a shift $b$ so that all of the + coordinates when transformed will lie in the interval $[0,S]$."); + +item("That is, if $u$ and $t$ are the user and truesize components:"); +equation("0\le au+t+b \le S."); + +item("Maximize the variable $a$ subject to a number of inequalities."); + +item("Use the simplex method to solve the resulting linear programming problem."); + +if(long) { +title("Sizing"); +item("Every addition of a coordinate $(t,u)$ adds two restrictions"); +equation("au+t+b\ge 0,"); +equation("au+t+b\le S,"); +remark("and each drawing component adds two coordinates."); +item("A figure could easily produce thousands of restrictions, making the + simplex method impractical."); + +item("Most of these restrictions are redundant, however. For instance, with + concentric circles, only the largest circle needs to be accounted for."); +asyfigure(asywrite(" +import palette; +size(160,0); +pen[] p=Rainbow(NColors=11); +for(int i=1; i<10; ++i) { + draw(scale(i)*unitcircle, p[i]+linewidth(2)); +} +")); + +title("Redundant Restrictions"); +item("In general, if $u\le u'$ and $t\le t'$ then"); +equation("au+t+b\le au'+t'+b"); +remark("for all choices of $a>0$ and $b$, so"); +equation("0\le au+t+b\le au'+t'+b\le S."); +item("This defines a partial ordering on coordinates. When sizing a picture, + the program first computes which coordinates are maximal (or minimal) and + only sends effective constraints to the simplex algorithm."); +item("In practice, the linear programming problem will have less than a dozen + restraints."); +item("All picture sizing is implemented in Asymptote code."); +} + +title("Infinite Lines"); +item("Deferred drawing allows us to draw infinite lines."); +code("drawline(P, Q);"); + +asyfigure("elliptic","height=12cm"); + +title("Helpful Math Notation"); + +item("Integer division returns a {\tt real}. Use {\tt quotient} for an integer + result:"); +code("3/4 == 0.75 quotient(3,4) == 0"); + +item("Caret for real and integer exponentiation:"); +code("2^3 2.7^3 2.7^3.2"); + +item("Many expressions can be implicitly scaled by a numeric constant:"); +code("2pi 10cm 2x^2 3sin(x) 2(a+b)"); + +item("Pairs are complex numbers:"); +code("(0,1)*(0,1) == (-1,0)"); + +title("Function Calls"); + +item("Functions can take default arguments in any position. Arguments are + matched to the first possible location:"); +string unitsize="unitsize(0.65cm);"; +string preamble="void drawEllipse(real xsize=1, real ysize=xsize, pen p=blue) { + draw(xscale(xsize)*yscale(ysize)*unitcircle, p); +} +"; + +asycode(preamble=unitsize,preamble+" +drawEllipse(2); +drawEllipse(red); +"); + +item("Arguments can be given by name:"); +asycode(preamble=unitsize+preamble," +drawEllipse(xsize=2, ysize=1); +drawEllipse(ysize=2, xsize=3, green); +"); + +if(long) { +title("Rest Arguments"); +item("Rest arguments allow one to write a function that takes an arbitrary + number of arguments:"); +code(" +int sum(... int[] nums) { + int total=0; + for(int i=0; i < nums.length; ++i) + total += nums[i]; + return total; +} + +sum(1,2,3,4); // returns 10 +sum(); // returns 0 +sum(1,2,3 ... new int[] {4,5,6}); // returns 21 + +int subtract(int start ... int[] subs) { + return start - sum(... subs); +} +"); +} + +title("High-Order Functions"); + +item("Functions are first-class values. They can be passed to other + functions:"); +code("import graph; +real f(real x) { + return x*sin(10x); +} +draw(graph(f,-3,3,300),red);"); +asyfigure(asywrite(" +import graph; +size(300,0); +real f(real x) { + return x*sin(10x); +} +draw(graph(f,-3,3,300),red); +")); + +if(long) { +title("Higher-Order Functions"); +item("Functions can return functions:"); +equation("f_n(x)=n\sin\left(\frac{x}{n}\right)."); +skip(); +string preamble=" +import graph; +size(300,0); +"; +string graphfunc2=" +typedef real func(real); +func f(int n) { + real fn(real x) { + return n*sin(x/n); + } + return fn; +} + +func f1=f(1); +real y=f1(pi); + +for(int i=1; i<=5; ++i) + draw(graph(f(i),-10,10),red); +"; +code(graphfunc2); +string name=asywrite(graphfunc2,preamble=preamble); +asy(nativeformat(),name+".asy"); +label(graphic(name+"."+nativeformat()),(0.5,0), + Fill(figureborder,figuremattpen)); + +title("Anonymous Functions"); + +item("Create new functions with {\tt new}:"); +code(" +path p=graph(new real (real x) { return x*sin(10x); },-3,3,red); + +func f(int n) { + return new real (real x) { return n*sin(x/n); }; +}"); + +item("Function definitions are just syntactic sugar for assigning function +objects to variables."); +code(" +real square(real x) { + return x^2; +} +"); + +remark("is equivalent to"); +code(" +real square(real x); +square=new real (real x) { + return x^2; +}; +"); + +title("Structures"); + +item("As in other languages, structures group together data."); +code(" +struct Person { + string firstname, lastname; + int age; +} +Person bob=new Person; +bob.firstname=\"Bob\"; +bob.lastname=\"Chesterton\"; +bob.age=24; +"); + +item("Any code in the structure body will be executed every time a new structure + is allocated..."); +code(" +struct Person { + write(\"Making a person.\"); + string firstname, lastname; + int age=18; +} +Person eve=new Person; // Writes \"Making a person.\" +write(eve.age); // Writes 18. +"); + +title("Modules"); + +item("Function and structure definitions can be grouped into modules:"); +code(" +// powers.asy +real square(real x) { return x^2; } +real cube(real x) { return x^3; } +"); +remark("and imported:"); +code(" +import powers; +real eight=cube(2.0); +draw(graph(powers.square, -1, 1)); +"); +} + +title("Object-Oriented Programming"); +item("Functions are defined for each instance of a structure."); +code(" +struct Quadratic { + real a,b,c; + real discriminant() { + return b^2-4*a*c; + } + real eval(real x) { + return a*x^2 + b*x + c; + } +} +"); + +item("This allows us to construct ``methods'' which are just normal functions + declared in the environment of a particular object:"); +code(" +Quadratic poly=new Quadratic; +poly.a=-1; poly.b=1; poly.c=2; + +real f(real x)=poly.eval; +real y=f(2); +draw(graph(poly.eval, -5, 5)); +"); + +title("Specialization"); + +item("Can create specialized objects just by redefining methods:"); +code(" +struct Shape { + void draw(); + real area(); +} + +Shape rectangle(real w, real h) { + Shape s=new Shape; + s.draw = new void () { + fill((0,0)--(w,0)--(w,h)--(0,h)--cycle); }; + s.area = new real () { return w*h; }; + return s; +} + +Shape circle(real radius) { + Shape s=new Shape; + s.draw = new void () { fill(scale(radius)*unitcircle); }; + s.area = new real () { return pi*radius^2; } + return s; +} +"); + +title("Overloading"); +item("Consider the code:"); +code(" +int x1=2; +int x2() { + return 7; +} +int x3(int y) { + return 2y; +} + +write(x1+x2()); // Writes 9. +write(x3(x1)+x2()); // Writes 11. +"); + +title("Overloading"); +item("{\tt x1}, {\tt x2}, and {\tt x3} are never used in the same context, so + they can all be renamed {\tt x} without ambiguity:"); +code(" +int x=2; +int x() { + return 7; +} +int x(int y) { + return 2y; +} + +write(x+x()); // Writes 9. +write(x(x)+x()); // Writes 11. +"); + +item("Function definitions are just variable definitions, but variables are + distinguished by their signatures to allow overloading."); + +title("Operators"); +item("Operators are just syntactic sugar for functions, and can be addressed or + defined as functions with the {\tt operator} keyword."); +code(" +int add(int x, int y)=operator +; +write(add(2,3)); // Writes 5. + +// Don't try this at home. +int operator +(int x, int y) { + return add(2x,y); +} +write(2+3); // Writes 7. +"); +item("This allows operators to be defined for new types."); + +title("Operators"); +item("Operators for constructing paths are also functions:"); +code("a.. controls b and c .. d--e"); +remark("is equivalent to"); +code( + "operator --(operator ..(a, operator controls(b,c), d), e)"); +item("This allowed us to redefine all of the path operators for 3D paths."); + +title("Summary"); + +item("Asymptote:"); +subitem("uses IEEE floating point numerics;"); +subitem("uses C++/Java-like syntax;"); +subitem("supports deferred drawing for automatic picture sizing;"); +subitem("supports Grayscale, RGB, CMYK, and HSV colour spaces;"); +subitem("supports PostScript shading, pattern fills, and function shading;"); +subitem("can fill nonsimply connected regions;"); +subitem("generalizes MetaPost path construction algorithms to 3D;"); +subitem("lifts \TeX\ to 3D;"); +subitem("supports 3D billboard labels and PDF grouping."); + +bibliography("refs"); + +viewportmargin=(2,2); +viewportsize=0; +defaultpen(0.5); +title("\mbox{Asymptote: 2D \& 3D Vector Graphics Language}"); +asyinclude("../examples/logo3"); +skip(); +center("\tt http://asymptote.sf.net"); +center("(freely available under the LGPL license)"); + +// LocalWords: pdflatex mflogo viewportsize pagewidth pagemargin goysr bibtex +// LocalWords: itempen defaultrender medskip Orest Shardt Vidiassov MF ezier +// LocalWords: Hammerlindl MetaPost PDF hfill LGPL pdf asywrite zoombox LaTeX +// LocalWords: asyfilecode PostScript asycode unitsquare beziercurve grey bw +// LocalWords: lightgrey zerowinding evenodd sw unitsize drawEllipse nums fn +// LocalWords: frac graphfunc func nativeformat figureborder figuremattpen bt +// LocalWords: firstname lastname eval eetomumu binarytree filecode datagraph +// LocalWords: lineargraph filegraph loggraph secondaryaxis imagecontour ij +// LocalWords: tridiagonal Hobbydir nonumber Hobbycontrol th viewportmargin +// LocalWords: asyinclude dotpen wheelpoint yequals xaxis yaxis cardsize mc +// LocalWords: polargraph filldraw addPoint lightblue truesize le au NColors +// LocalWords: drawline unityroot mult oct intang IEEE numerics HSV colour +// LocalWords: nonsimply |