summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/base/syzygy.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/utils/asymptote/base/syzygy.asy')
-rw-r--r--Build/source/utils/asymptote/base/syzygy.asy936
1 files changed, 936 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/base/syzygy.asy b/Build/source/utils/asymptote/base/syzygy.asy
new file mode 100644
index 00000000000..dce87805c9d
--- /dev/null
+++ b/Build/source/utils/asymptote/base/syzygy.asy
@@ -0,0 +1,936 @@
+/***** syzygy.asy {{{1
+ * Andy Hammerlindl 2006/12/02
+ *
+ * Automates the drawing of braids, relations, and syzygies, along with the
+ * corresponding equations.
+ *
+ * See
+ * http://katlas.math.toronto.edu/drorbn/index.php?title=06-1350/Syzygies_in_Asymptote
+ * For more information.
+ *****/
+struct Component { // {{{1
+ // The number of strings coming in or out of the component.
+ int in;
+ int out;
+
+ // Which 'out' string each 'in' string is connected to. For deriving
+ // equations.
+ int[] connections;
+
+ string symbol; // For pullback notation.
+ string lsym; // For linear equations.
+ string codename; // For Mathematica code.
+
+ guide[] draw(picture pic, guide[] ins);
+}
+
+// Utility functions {{{1
+pair[] endpoints(guide[] a) {
+ pair[] z;
+ for (int i=0; i<a.length; ++i)
+ z.push(endpoint(a[i]));
+ return z;
+}
+
+pair min(pair[] z) {
+ pair m=(infinity, infinity);
+ for (int i=0; i<z.length; ++i) {
+ if (z[i].x < m.x)
+ m=(z[i].x,m.y);
+ if (z[i].y < m.y)
+ m=(m.x,z[i].y);
+ }
+ return m;
+}
+
+pair max(pair[] z) {
+ pair M=(-infinity, -infinity);
+ for (int i=0; i<z.length; ++i) {
+ if (z[i].x > M.x)
+ M=(z[i].x,M.y);
+ if (z[i].y > M.y)
+ M=(M.x,z[i].y);
+ }
+ return M;
+}
+
+// Component Definitions {{{1
+real hwratio=1.4;
+real gapfactor=6;
+
+Component bp=new Component;
+bp.in=2; bp.out=2;
+bp.connections=new int[] {1,0};
+bp.symbol="B^+"; bp.lsym="b^+"; bp.codename="bp";
+bp.draw=new guide[] (picture pic, guide[] ins) {
+ pair[] z=endpoints(ins);
+ pair m=min(z), M=max(z);
+ real w=M.x-m.x, h=hwratio*w;
+ pair centre=(0.5(m.x+M.x),M.y+h/2);
+
+ /*
+ return new guide[] {ins[1]..centre{NW}..z[0]+h*N,
+ ins[0]..centre{NE}..z[1]+h*N};
+ */
+
+ real offset=gapfactor*linewidth(currentpen);
+ draw(pic, ins[1]..(centre-offset*NW){NW});
+ return new guide[] {(centre+offset*NW){NW}..z[0]+h*N,
+ ins[0]..centre{NE}..z[1]+h*N};
+};
+
+Component bm=new Component;
+bm.in=2; bm.out=2;
+bm.connections=new int[] {1,0};
+bm.symbol="B^-"; bm.lsym="b^-"; bm.codename="bm";
+bm.draw=new guide[] (picture pic, guide[] ins) {
+ pair[] z=endpoints(ins);
+ pair m=min(z), M=max(z);
+ real w=M.x-m.x, h=hwratio*w;
+ pair centre=(0.5(m.x+M.x),M.y+h/2);
+
+ /*
+ return new guide[] {ins[1]..centre{NW}..z[0]+h*N,
+ ins[0]..centre{NE}..z[1]+h*N};
+ */
+
+ real offset=gapfactor*linewidth(currentpen);
+ draw(pic, ins[0]..(centre-offset*NE){NE});
+ return new guide[] {ins[1]..centre{NW}..z[0]+h*N,
+ (centre+offset*NE){NE}..z[1]+h*N};
+};
+
+Component phi=new Component;
+phi.in=2; phi.out=1;
+phi.connections=new int[] {0,0};
+phi.symbol="\Phi"; phi.lsym="\phi"; phi.codename="phi";
+phi.draw=new guide[] (picture pic, guide[] ins) {
+ pair[] z=endpoints(ins);
+ pair m=min(z), M=max(z);
+ real w=M.x-m.x, h=hwratio*w;
+ pair centre=(0.5(m.x+M.x),M.y+h/2);
+
+
+ //real offset=4*linewidth(currentpen);
+ draw(pic, ins[0]..centre{NE});
+ draw(pic, ins[1]..centre{NW});
+ draw(pic, centre,linewidth(5*linewidth(currentpen)));
+ dot(pic, centre);
+ return new guide[] {centre..centre+0.5h*N};
+};
+
+Component wye=new Component;
+wye.in=1; wye.out=2;
+wye.connections=null; // TODO: Fix this!
+wye.symbol="Y"; wye.lsym="y"; wye.codename="wye";
+wye.draw=new guide[] (picture pic, guide[] ins) {
+ pair z=endpoint(ins[0]);
+ real w=10, h=hwratio*w; // The 10 is a guess here, and may produce badness.
+ pair centre=(z.x,z.y+h/2);
+
+
+ draw(pic, ins[0]..centre);
+ draw(pic, centre,linewidth(5*linewidth(currentpen)));
+ return new guide[] {centre{NW}..centre+(-0.5w,0.5h),
+ centre{NE}..centre+(0.5w,0.5h)};
+};
+
+
+struct Braid { // {{{1
+ // Members {{{2
+ // Number of lines initially.
+ int n;
+
+ struct Placement {
+ Component c;
+ int place;
+
+ Placement copy() {
+ Placement p=new Placement;
+ p.c=this.c; p.place=this.place;
+ return p;
+ }
+ }
+ Placement[] places;
+
+ void add(Component c, int place) {
+ Placement p=new Placement;
+ p.c=c; p.place=place;
+ places.push(p);
+ }
+
+ void add(Braid sub, int place) {
+ for (int i=0; i<sub.places.length; ++i)
+ add(sub.places[i].c,sub.places[i].place+place);
+ }
+
+ // Drawing {{{2
+ guide[] drawStep(picture pic, Placement p, guide[] ins) {
+ int i=0,j=0;
+
+ // Draw the component.
+ Component c=p.c;
+ //write("drawing "+c.symbol+" at place "+(string)p.place);
+ guide[] couts=c.draw(pic, ins[sequence(c.in)+p.place]);
+
+ pair M=max(endpoints(couts));
+
+ // Extend lines not in the component.
+ guide[] outs;
+ pair[] z=endpoints(ins);
+ while (i<p.place) {
+ outs.push(ins[i]..(z[i].x,M.y));
+ ++i;
+ }
+
+ outs.append(couts);
+ i+=c.in;
+
+ while (i<ins.length) {
+ outs.push(ins[i]..(z[i].x,M.y));
+ ++i;
+ }
+
+ return outs;
+ }
+
+ void drawEnd(picture pic, guide[] ins, real minheight=0) {
+ pair[] z=endpoints(ins);
+ for (int i=0; i<ins.length; ++i) {
+ draw(pic, z[i].y >= minheight ? ins[i] : ins[i]..(z[i].x,minheight));
+ }
+ }
+
+ void draw(picture pic, guide[] ins, real minheight=0) {
+ int steps=places.length;
+
+ guide[] nodes=ins;
+ for (int i=0; i<steps; ++i) {
+ Placement p=places[i];
+ nodes=drawStep(pic, places[i], nodes);
+ }
+
+ drawEnd(pic, nodes, minheight);
+ }
+
+ void draw(picture pic=currentpicture, real spacing=15,
+ real minheight=2hwratio*spacing) {
+ pair[] ins;
+ for (int i=0; i<n; ++i)
+ ins.push((spacing*i,0));
+
+ draw(pic, ins, minheight);
+ }
+
+ // Utilities {{{2
+ int in() {
+ return n;
+ }
+ int out() {
+ int steps=places.length;
+ int num=n; // The number of nodes at this step.
+
+ for (int i=0; i<steps; ++i) {
+ Placement p=places[i];
+ int nextNum=num-p.c.in+p.c.out;
+ num=nextNum;
+ }
+ return num;
+ }
+
+ // Deep copy of a braid.
+ Braid copy() {
+ Braid b=new Braid;
+ b.n=this.n;
+ for (int i=0; i<this.places.length; ++i)
+ b.add(this.places[i].c,this.places[i].place);
+ return b;
+ }
+
+ // Matching {{{2
+ // Tests if a component p can be swapped with a component q which is assumed
+ // to be directly above it.
+ static bool swapable(Placement p, Placement q) {
+ return p.place + p.c.out <= q.place || // p is left of q or
+ q.place + q.c.in <= p.place; // q is left of p
+ }
+
+ // Creates a new braid with a transposition of two components.
+ Braid swap(int i, int j) {
+ if (i>j)
+ return swap(j,i);
+ else {
+ assert(j==i+1); assert(swapable(places[i],places[j]));
+
+ Placement p=places[i].copy();
+ Placement q=places[j].copy();
+ /*write("swap:");
+ write("p originally at " + (string)p.place);
+ write("q originally at " + (string)q.place);
+ write("p.c.in: " + (string)p.c.in + " p.c.out: " + (string)p.c.out);
+ write("q.c.in: " + (string)q.c.in + " q.c.out: " + (string)q.c.out);*/
+ if (q.place + q.c.in <= p.place)
+ // q is left of p - adjust for q renumbering strings.
+ p.place+=q.c.out-q.c.in;
+ else if (p.place + p.c.out <= q.place)
+ // q is right of p - adjust for p renumbering strings.
+ q.place+=p.c.in-p.c.out;
+ else
+ // q is directly on top of p
+ assert(false, "swapable");
+
+ /*write("q now at " + (string)q.place);
+ write("p now at " + (string)p.place);*/
+
+ Braid b=this.copy();
+ b.places[i]=q;
+ b.places[j]=p;
+ return b;
+ }
+ }
+
+ // Tests if the component at index 'start' can be moved to index 'end'
+ // without interfering with other components.
+ bool moveable(int start, int end) {
+ assert(start<places.length); assert(end<places.length);
+ if (start==end)
+ return true;
+ else if (end<start)
+ return moveable(end,start);
+ else {
+ assert(start<end);
+ Placement p=places[start].copy();
+ for (int step=start; step<end; ++step) {
+ Placement q=places[step+1];
+ if (q.place + q.c.in <= p.place)
+ // q is left of p - adjust for q renumbering strings.
+ p.place+=q.c.out-q.c.in;
+ else if (p.place + p.c.out <= q.place)
+ // q is right of p - nothing to do.
+ continue;
+ else
+ // q is directly on top of p
+ return false;
+ }
+ return true;
+ }
+ }
+
+ bool matchComponent(Braid sub, int subindex, int place, int step) {
+ int i=subindex;
+ return sub.places[i].c == this.places[step].c &&
+ sub.places[i].place + place == this.places[step].place;
+ }
+
+ // Returns true if a sub-braid occurs within the one at the specified
+ // coordinates with no component occuring anywhere inbetween.
+ bool exactMatch(Braid sub, int place, int step) {
+ for (int i=0; i<sub.places.length; ++i) {
+ if (!matchComponent(sub, i, place, i+step)) {
+ write("match failed at iteration: ", i);
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /*
+ bool findSubsequence(Braid sub, int place, int size, int[] acc) {
+ // If we've matched all the components, we've won.
+ if (acc.length >= sub.places.length)
+ return true;
+
+ // The next component to match.
+ Placement p=sub.places[acc.length];
+
+ // Start looking immediately after the last match.
+ for (int step=acc[acc.length-1]+1; step<this.places.length; ++step) {
+ Placement q=this.places[step];
+ */
+
+ bool tryMatch(Braid sub, int place, int size, int[] acc) {
+ // If we've matched all the components, we've won.
+ if (acc.length >= sub.places.length)
+ return true;
+
+ // The next component to match.
+ Placement p=sub.places[acc.length];
+
+ // Start looking immediately after the last match.
+ for (int step=acc[acc.length-1]+1; step<this.places.length; ++step) {
+ Placement q=this.places[step];
+ // Check if the next component is in the set of strings used by the
+ // subbraid.
+ if (q.place + q.c.in > place && q.place < place + size) {
+ // It's in the window, so it must match the next component in the
+ // subbraid.
+ if (p.c==q.c && p.place+place==q.place) {
+ // A match - go on to the next component.
+ acc.push(step);
+ return tryMatch(sub, place, size, acc); // TODO: Adjust place/size.
+ }
+ else
+ return false;
+ }
+
+ // TODO: Adjust place and size.
+ }
+
+ // We've run out of components to match.
+ return false;
+ }
+
+
+ // This attempts to find a subbraid within the braid. It allows other
+ // components to be interspersed with the components of the subbraid so long
+ // as they don't occur on the same string as the ones the subbraid lies on.
+ // Returns null on failure.
+ int[] match(Braid sub, int place) {
+ for (int i=0; i<=this.places.length-sub.places.length; ++i) {
+ // Find where the first component of the subbraid matches and try to
+ // match the rest of the braid starting from there.
+ if (matchComponent(sub, 0, place, i)) {
+ int[] result;
+ result.push(i);
+ if (tryMatch(sub,place,sub.n,result))
+ return result;
+ }
+ }
+ return null;
+ }
+
+ // Equations {{{2
+ // Returns the string that 'place' moves to when going through the section
+ // with Placement p.
+ static int advancePast(Placement p, int place) {
+ // If it's to the left of the component, it is unaffected.
+ return place<p.place ? place :
+ // If it's to the right of the component, adjust the numbering due
+ // to the change of the number of strings in the component.
+ p.place+p.c.in <= place ? place - p.c.in + p.c.out :
+ // If it's in the component, ask the component to do the work.
+ p.place + p.c.connections[place-p.place];
+ }
+
+ // Adjust the place (at step 0) to the step given, to find which string it is
+ // on in that part of the diagram.
+ int advanceToStep(int step, int place) {
+ assert(place>=0 && place<n);
+ assert(step>=0 && step<places.length);
+
+ for (int i=0; i<step; ++i)
+ place=advancePast(places[i], place);
+
+ return place;
+ }
+
+ int pullbackWindowPlace(int step, int place,
+ int w_place, int w_size) {
+ place=advanceToStep(step,place);
+ return place < w_place ? 1 : // The shielding.
+ w_place + w_size <= place ? 0 : // The string doesn't touch it.
+ place-w_place+2;
+ }
+
+ int pullbackPlace(int step, int place) {
+ // Move to the right step.
+ //write("advance: ", step, place, advanceToStep(step,place));
+ //place=advanceToStep(step,place);
+ Placement p=places[step];
+ return pullbackWindowPlace(step,place, p.place, p.c.in);
+ /*return place < p.place ? 1 : // The shielding.
+ p.place + p.c.in <= place ? 0 : // The string doesn't touch it.
+ place-p.place+2;*/
+ }
+
+ int[] pullbackWindow(int step, int w_place, int w_size) {
+ int[] a={1};
+ for (int place=0; place<n; ++place)
+ a.push(pullbackWindowPlace(step, place, w_place, w_size));
+ return a;
+ }
+
+ int[] pullback(int step) {
+ Placement p=places[step];
+ return pullbackWindow(step, p.place, p.c.in);
+ /*int[] a={1};
+ for (int place=0; place<n; ++place)
+ a.push(pullbackPlace(step, place));
+ return a;*/
+ }
+
+ string stepToFormula(int step) {
+ // Determine the pullbacks.
+ string s="(1";
+ for (int place=0; place<n; ++place)
+ //write("pullback: ", step, place, pullbackString(step,place));
+ s+=(string)pullbackPlace(step, place);
+ s+=")^\star "+places[step].c.symbol;
+ return s;
+ }
+
+ // Write it as a formula with pullback notation.
+ string toFormula() {
+ if (places.length==0)
+ return "1";
+ else {
+ string s;
+ for (int step=0; step<places.length; ++step) {
+ if (step>0)
+ s+=" ";
+ s+=stepToFormula(step);
+ }
+ return s;
+ }
+ }
+
+ string windowToLinear(int step, int w_place, int w_size) {
+ int[] a=pullbackWindow(step, w_place, w_size);
+ string s="(";
+ for (int arg=1; arg<=w_size+1; ++arg) {
+ if (arg>1)
+ s+=",";
+ bool first=true;
+ for (int var=0; var<a.length; ++var) {
+ if (a[var]==arg) {
+ if (first)
+ first=false;
+ else
+ s+="+";
+ s+="x_"+(string)(var+1);
+ }
+ }
+ }
+ return s+")";
+ }
+
+ string windowToCode(int step, int w_place, int w_size) {
+ int[] a=pullbackWindow(step, w_place, w_size);
+ string s="[";
+ for (int arg=1; arg<=w_size+1; ++arg) {
+ if (arg>1)
+ s+=", ";
+ bool first=true;
+ for (int var=0; var<a.length; ++var) {
+ if (a[var]==arg) {
+ if (first)
+ first=false;
+ else
+ s+=" + ";
+ s+="x"+(string)(var+1);
+ }
+ }
+ }
+ return s+"]";
+ }
+
+ string stepToLinear(int step) {
+ //int[] a=pullback(step);
+ Placement p=places[step];
+ return p.c.lsym+windowToLinear(step, p.place, p.c.in);
+
+ /*string s=p.c.lsym+"(";
+ for (int arg=1; arg<=p.c.in+1; ++arg) {
+ if (arg>1)
+ s+=",";
+ bool first=true;
+ for (int var=0; var<a.length; ++var) {
+ if (a[var]==arg) {
+ if (first)
+ first=false;
+ else
+ s+="+";
+ s+="x_"+(string)(var+1);
+ }
+ }
+ }
+ return s+")";*/
+ }
+
+ string stepToCode(int step) {
+ Placement p=places[step];
+ return p.c.codename+windowToCode(step, p.place, p.c.in);
+ }
+
+ string toLinear(bool subtract=false) {
+ if (places.length==0)
+ return subtract ? "0" : ""; // or "1" ?
+ else {
+ string s = subtract ? " - " : "";
+ for (int step=0; step<places.length; ++step) {
+ if (step>0)
+ s+= subtract ? " - " : " + ";
+ s+=stepToLinear(step);
+ }
+ return s;
+ }
+ }
+
+ string toCode(bool subtract=false) {
+ if (places.length==0)
+ return subtract ? "0" : ""; // or "1" ?
+ else {
+ string s = subtract ? " - " : "";
+ for (int step=0; step<places.length; ++step) {
+ if (step>0)
+ s+= subtract ? " - " : " + ";
+ s+=stepToCode(step);
+ }
+ return s;
+ }
+ }
+}
+
+struct Relation { // {{{1
+ Braid lhs, rhs;
+
+ string lsym, codename;
+ bool inverted=false;
+
+ string toFormula() {
+ return lhs.toFormula() + " = " + rhs.toFormula();
+ }
+
+ string linearName() {
+ assert(lhs.n==rhs.n);
+ assert(lsym!="");
+
+ string s=(inverted ? "-" : "") + lsym+"(";
+ for (int i=1; i<=lhs.n+1; ++i) {
+ if (i>1)
+ s+=",";
+ s+="x_"+(string)i;
+ }
+ return s+")";
+ }
+
+ string fullCodeName() {
+ assert(lhs.n==rhs.n);
+ assert(codename!="");
+
+ string s=(inverted ? "minus" : "") + codename+"[";
+ for (int i=1; i<=lhs.n+1; ++i) {
+ if (i>1)
+ s+=", ";
+ s+="x"+(string)i+"_";
+ }
+ return s+"]";
+ }
+
+ string toLinear() {
+ return linearName() + " = " + lhs.toLinear() + rhs.toLinear(true);
+ }
+
+ string toCode() {
+ return fullCodeName() + " :> " + lhs.toCode() + rhs.toCode(true);
+ }
+
+ void draw(picture pic=currentpicture) {
+ picture left; lhs.draw(left);
+ frame l=left.fit();
+ picture right; rhs.draw(right);
+ frame r=right.fit();
+
+ real xpad=30;
+
+ add(pic, l);
+ label(pic, "=", (max(l).x + 0.5xpad, 0.25(max(l).y+max(r).y)));
+ add(pic, r, (max(l).x+xpad,0));
+ }
+}
+
+Relation operator- (Relation r) {
+ Relation opposite;
+ opposite.lhs=r.rhs;
+ opposite.rhs=r.lhs;
+ opposite.lsym=r.lsym;
+ opposite.codename=r.codename;
+ opposite.inverted=!r.inverted;
+ return opposite;
+}
+
+
+Braid apply(Relation r, Braid b, int step, int place) {
+ bool valid=b.exactMatch(r.lhs,place,step);
+ if (valid) {
+ Braid result=new Braid;
+ result.n=b.n;
+ for (int i=0; i<step; ++i)
+ result.places.push(b.places[i]);
+ result.add(r.rhs,place);
+ for (int i=step+r.lhs.places.length; i<b.places.length; ++i)
+ result.places.push(b.places[i]);
+ return result;
+ }
+ else {
+ write("Invalid match!");
+ return null;
+ }
+}
+
+// Tableau {{{1
+frame[] fit(picture[] pics) {
+ frame[] f;
+ for (int i=0; i<pics.length; ++i) {
+ frame ff=pics[i].fit();
+ //label(ff, (string)i, (10,10));
+ //f.push(pics[i].fit());
+ f.push(ff);
+ }
+ return f;
+}
+
+// Draw a number of frames in a nice circular arrangement.
+picture tableau(frame[] cards, bool number=false) {
+ int n=cards.length;
+
+ // Calculate the max height and width of the frames (assuming min(f)=(0,0)).
+ pair M=(0,0);
+ for (int i=0; i<n; ++i) {
+ pair z=max(cards[i]);
+ if (z.x > M.x)
+ M=(z.x,M.y);
+ if (z.y > M.y)
+ M=(M.x,z.y);
+ }
+
+ picture pic;
+ real xpad=2.0, ypad=1.3;
+ void place(int index, real row, real column) {
+ pair z=((M.x*xpad)*column,(M.y*ypad)*row);
+ add(pic, cards[index], z);
+ if (number) {
+ label(pic,(string)index, z+(0.5M.x,0), S);
+ }
+ }
+
+ // Handle small collections.
+ if (n<=4) {
+ for (int i=0; i<n; ++i)
+ place(i,0,i);
+ }
+ else {
+ int rows=quotient(n-1,2), columns=3;
+
+ // Add the top middle card.
+ place(0,rows-1,1);
+
+ // place cards down the right side.
+ for (int i=1; i<rows; ++i)
+ place(i, rows-i,2);
+
+ // place cards at the bottom.
+ if (n%2==0) {
+ place(rows,0,2);
+ place(rows+1,0,1);
+ place(rows+2,0,0);
+ }
+ else {
+ place(rows,0,1.5);
+ place(rows+1,0,0.5);
+ }
+
+ // place cards up the left side.
+ for (int i=1; i<rows; ++i)
+ place(i+n-rows,i,0);
+ }
+
+ return pic;
+}
+
+struct Syzygy { // {{{1
+ // Setup {{{2
+ Braid initial=null;
+ bool cyclic=true;
+ bool showall=false;
+ bool number=false; // Number the diagrams when drawn.
+
+ string lsym, codename;
+
+ bool watched=false;
+ bool uptodate=true;
+
+ struct Move {
+ Braid action(Braid);
+ Relation rel;
+ int place, step;
+ }
+
+ Move[] moves;
+
+ void apply(Relation r, int step, int place) {
+ Move m=new Move;
+ m.rel=r;
+ m.place=place; m.step=step;
+ m.action=new Braid (Braid b) {
+ return apply(r, b, step, place);
+ };
+ moves.push(m);
+
+ uptodate = false;
+ }
+
+ void swap(int i, int j) {
+ Move m=new Move;
+ m.rel=null;
+ m.action=new Braid (Braid b) {
+ return b.swap(i, j);
+ };
+ moves.push(m);
+
+ uptodate = false;
+ }
+
+ // Drawing {{{2
+ picture[] drawMoves() {
+ picture[] pics;
+
+ assert(initial!=null, "must set initial braid");
+ Braid b=initial;
+
+ picture pic;
+ b.draw(pic);
+ pics.push(pic);
+
+ for (int i=0; i<moves.length; ++i) {
+ b=moves[i].action(b);
+ if (showall || moves[i].rel != null) {
+ picture pic;
+ b.draw(pic);
+ pics.push(pic);
+ }
+ }
+
+ // Remove the last picture.
+ if (this.cyclic)
+ pics.pop();
+
+ return pics;
+ }
+
+ void draw(picture pic=currentpicture) {
+ pic.add(tableau(fit(drawMoves()), this.number));
+ }
+
+ void updatefunction() {
+ if (!uptodate) {
+ picture pic; this.draw(pic);
+ shipout(pic);
+ uptodate = true;
+ }
+ }
+
+ void oldupdatefunction() = null;
+
+ void watch() {
+ if (!watched) {
+ watched = true;
+ oldupdatefunction = atupdate();
+ atupdate(this.updatefunction);
+ uptodate = false;
+ }
+ }
+
+ void unwatch() {
+ assert(watched == true);
+ atupdate(oldupdatefunction);
+ uptodate = false;
+ }
+
+ // Writing {{{2
+ string linearName() {
+ assert(lsym!="");
+
+ string s=lsym+"(";
+ for (int i=1; i<=initial.n+1; ++i) {
+ if (i>1)
+ s+=",";
+ s+="x_"+(string)i;
+ }
+ return s+")";
+ }
+
+ string fullCodeName() {
+ assert(codename!="");
+
+ string s=codename+"[";
+ for (int i=1; i<=initial.n+1; ++i) {
+ if (i>1)
+ s+=", ";
+ s+="x"+(string)i+"_";
+ }
+ return s+"]";
+ }
+
+ string toLinear() {
+ string s=linearName()+" = ";
+
+ Braid b=initial;
+ bool first=true;
+ for (int i=0; i<moves.length; ++i) {
+ Move m=moves[i];
+ if (m.rel != null) {
+ if (first) {
+ first=false;
+ if (m.rel.inverted)
+ s+=" - ";
+ }
+ else
+ s+=m.rel.inverted ? " - " : " + ";
+ s+=m.rel.lsym+b.windowToLinear(m.step, m.place, m.rel.lhs.n);
+ }
+ b=m.action(b);
+ }
+
+ return s;
+ }
+
+ string toCode() {
+ string s=fullCodeName()+" :> ";
+
+ Braid b=initial;
+ bool first=true;
+ for (int i=0; i<moves.length; ++i) {
+ Move m=moves[i];
+ if (m.rel != null) {
+ if (first) {
+ first=false;
+ if (m.rel.inverted)
+ s+=" - ";
+ }
+ else
+ s+=m.rel.inverted ? " - " : " + ";
+ s+=m.rel.codename+b.windowToCode(m.step, m.place, m.rel.lhs.n);
+ }
+ b=m.action(b);
+ }
+
+ return s;
+ }
+
+}
+
+// Relation definitions {{{1
+// If you define more relations that you think would be useful, please email
+// them to me, and I'll add them to the script. --Andy.
+Relation r3;
+r3.lhs.n=3;
+r3.lsym="\rho_3"; r3.codename="rho3";
+r3.lhs.add(bp,0); r3.lhs.add(bp,1); r3.lhs.add(bp,0);
+r3.rhs.n=3;
+r3.rhs.add(bp,1); r3.rhs.add(bp,0); r3.rhs.add(bp,1);
+
+Relation r4a;
+r4a.lhs.n=3;
+r4a.lsym="\rho_{4a}"; r4a.codename="rho4a";
+r4a.lhs.add(bp,0); r4a.lhs.add(bp,1); r4a.lhs.add(phi,0);
+r4a.rhs.n=3;
+r4a.rhs.add(phi,1); r4a.rhs.add(bp,0);
+
+Relation r4b;
+r4b.lhs.n=3;
+r4b.lsym="\rho_{4b}"; r4b.codename="rho4b";
+r4b.lhs.add(bp,1); r4b.lhs.add(bp,0); r4b.lhs.add(phi,1);
+r4b.rhs.n=3;
+r4b.rhs.add(phi,0); r4b.rhs.add(bp,0);
+