summaryrefslogtreecommitdiff
path: root/Build/source/texk/ps2pkm/arith.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/texk/ps2pkm/arith.c')
-rw-r--r--Build/source/texk/ps2pkm/arith.c419
1 files changed, 419 insertions, 0 deletions
diff --git a/Build/source/texk/ps2pkm/arith.c b/Build/source/texk/ps2pkm/arith.c
new file mode 100644
index 00000000000..ef74f42b770
--- /dev/null
+++ b/Build/source/texk/ps2pkm/arith.c
@@ -0,0 +1,419 @@
+/* $XConsortium: arith.c,v 1.2 91/10/10 11:14:06 rws Exp $ */
+/* Copyright International Business Machines, Corp. 1991
+ * All Rights Reserved
+ * Copyright Lexmark International, Inc. 1991
+ * All Rights Reserved
+ *
+ * License to use, copy, modify, and distribute this software and its
+ * documentation for any purpose and without fee is hereby granted,
+ * provided that the above copyright notice appear in all copies and that
+ * both that copyright notice and this permission notice appear in
+ * supporting documentation, and that the name of IBM or Lexmark not be
+ * used in advertising or publicity pertaining to distribution of the
+ * software without specific, written prior permission.
+ *
+ * IBM AND LEXMARK PROVIDE THIS SOFTWARE "AS IS", WITHOUT ANY WARRANTIES OF
+ * ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY
+ * IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
+ * AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE ENTIRE RISK AS TO THE
+ * QUALITY AND PERFORMANCE OF THE SOFTWARE, INCLUDING ANY DUTY TO SUPPORT
+ * OR MAINTAIN, BELONGS TO THE LICENSEE. SHOULD ANY PORTION OF THE
+ * SOFTWARE PROVE DEFECTIVE, THE LICENSEE (NOT IBM OR LEXMARK) ASSUMES THE
+ * ENTIRE COST OF ALL SERVICING, REPAIR AND CORRECTION. IN NO EVENT SHALL
+ * IBM OR LEXMARK BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
+ * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
+ * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
+ * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
+ * THIS SOFTWARE.
+ */
+ /* ARITH CWEB V0006 ******** */
+/*
+:h1.ARITH Module - Portable Module for Multiple Precision Fixed Point Arithmetic
+
+This module provides division and multiplication of 64-bit fixed point
+numbers. (To be more precise, the module works on numbers that take
+two 'longs' to store. That is almost always equivalent to saying 64-bit
+numbers.)
+
+Note: it is frequently easy and desirable to recode these functions in
+assembly language for the particular processor being used, because
+assembly language, unlike C, will have 64-bit multiply products and
+64-bit dividends. This module is offered as a portable version.
+
+&author. Jeffrey B. Lotspiech (lotspiech@almaden.ibm.com) and Sten F. Andler
+
+
+:h3.Include Files
+
+The included files are:
+*/
+
+#include "types.h"
+#include "objects.h"
+#include "spaces.h"
+#include "arith.h"
+
+/*
+:h3.
+*/
+/*SHARED LINE(S) ORIGINATED HERE*/
+/*
+Reference for all algorithms: Donald E. Knuth, "The Art of Computer
+Programming, Volume 2, Semi-Numerical Algorithms," Addison-Wesley Co.,
+Massachusetts, 1969, pp. 229-279.
+
+Knuth talks about a 'digit' being an arbitrary sized unit and a number
+being a sequence of digits. We'll take a digit to be a 'short'.
+The following assumption must be valid for these algorithms to work:
+:ol.
+:li.A 'long' is two 'short's.
+:eol.
+The following code is INDEPENDENT of:
+:ol.
+:li.The actual size of a short.
+:li.Whether shorts and longs are stored most significant byte
+first or least significant byte first.
+:eol.
+
+SHORTSIZE is the number of bits in a short; LONGSIZE is the number of
+bits in a long; MAXSHORT is the maximum unsigned short:
+*/
+/*SHARED LINE(S) ORIGINATED HERE*/
+/*
+ASSEMBLE concatenates two shorts to form a long:
+*/
+#define ASSEMBLE(hi,lo) ((((ULONG)hi)<<SHORTSIZE)+(lo))
+/*
+HIGHDIGIT extracts the most significant short from a long; LOWDIGIT
+extracts the least significant short from a long:
+*/
+#define HIGHDIGIT(u) ((u)>>SHORTSIZE)
+#define LOWDIGIT(u) ((u)&MAXSHORT)
+
+/*
+SIGNBITON tests the high order bit of a long 'w':
+*/
+#define SIGNBITON(w) (((LONG)w)<0)
+
+/*SHARED LINE(S) ORIGINATED HERE*/
+
+/*
+:h2.Double Long Arithmetic
+
+:h3.DLmult() - Multiply Two Longs to Yield a Double Long
+
+The two multiplicands must be positive.
+*/
+
+void DLmult(product, u, v)
+ register doublelong *product;
+ register ULONG u;
+ register ULONG v;
+{
+ register ULONG u1, u2; /* the digits of u */
+ register ULONG v1, v2; /* the digits of v */
+ register unsigned int w1, w2, w3, w4; /* the digits of w */
+ register ULONG t; /* temporary variable */
+/* printf("DLmult(? ?, %x, %x)\n", u, v); */
+ u1 = HIGHDIGIT(u);
+ u2 = LOWDIGIT(u);
+ v1 = HIGHDIGIT(v);
+ v2 = LOWDIGIT(v);
+
+ if (v2 == 0) w4 = w3 = w2 = 0;
+ else
+ {
+ t = u2 * v2;
+ w4 = LOWDIGIT(t);
+ t = u1 * v2 + HIGHDIGIT(t);
+ w3 = LOWDIGIT(t);
+ w2 = HIGHDIGIT(t);
+ }
+
+ if (v1 == 0) w1 = 0;
+ else
+ {
+ t = u2 * v1 + w3;
+ w3 = LOWDIGIT(t);
+ t = u1 * v1 + w2 + HIGHDIGIT(t);
+ w2 = LOWDIGIT(t);
+ w1 = HIGHDIGIT(t);
+ }
+
+ product->high = ASSEMBLE(w1, w2);
+ product->low = ASSEMBLE(w3, w4);
+}
+
+/*
+:h2.DLdiv() - Divide Two Longs by One Long, Yielding Two Longs
+
+Both the dividend and the divisor must be positive.
+*/
+
+void DLdiv(quotient, divisor)
+ doublelong *quotient; /* also where dividend is, originally */
+ ULONG divisor;
+{
+ register ULONG u1u2 = quotient->high;
+ register ULONG u3u4 = quotient->low;
+ register LONG u3; /* single digit of dividend */
+ register int v1,v2; /* divisor in registers */
+ register LONG t; /* signed copy of u1u2 */
+ register int qhat; /* guess at the quotient digit */
+ register ULONG q3q4; /* low two digits of quotient */
+ register int shift; /* holds the shift value for normalizing */
+ register int j; /* loop variable */
+
+/* printf("DLdiv(%x %x, %x)\n", quotient->high, quotient->low, divisor); */
+ /*
+ * Knuth's algorithm works if the dividend is smaller than the
+ * divisor. We can get to that state quickly:
+ */
+ if (u1u2 >= divisor) {
+ quotient->high = u1u2 / divisor;
+ u1u2 %= divisor;
+ }
+ else
+ quotient->high = 0;
+
+ if (divisor <= MAXSHORT) {
+
+ /*
+ * This is the case where the divisor is contained in one
+ * 'short'. It is worthwhile making this fast:
+ */
+ u1u2 = ASSEMBLE(u1u2, HIGHDIGIT(u3u4));
+ q3q4 = u1u2 / divisor;
+ u1u2 %= divisor;
+ u1u2 = ASSEMBLE(u1u2, LOWDIGIT(u3u4));
+ quotient->low = ASSEMBLE(q3q4, u1u2 / divisor);
+ return;
+ }
+
+
+ /*
+ * At this point the divisor is a true 'long' so we must use
+ * Knuth's algorithm.
+ *
+ * Step D1: Normalize divisor and dividend (this makes our 'qhat'
+ * guesses more accurate):
+ */
+ for (shift=0; !SIGNBITON(divisor); shift++, divisor <<= 1) { ; }
+ shift--;
+ divisor >>= 1;
+
+ if ((u1u2 >> (LONGSIZE - shift)) != 0 && shift != 0)
+ t1_abort("DLdiv: dividend too large");
+ u1u2 = (u1u2 << shift) + ((shift == 0) ? 0 : u3u4 >> (LONGSIZE - shift));
+ u3u4 <<= shift;
+
+ /*
+ * Step D2: Begin Loop through digits, dividing u1,u2,u3 by v1,v2,
+ * then shifting U left by 1 digit:
+ */
+ v1 = HIGHDIGIT(divisor);
+ v2 = LOWDIGIT(divisor);
+ q3q4 = 0;
+ u3 = HIGHDIGIT(u3u4);
+
+ for (j=0; j < 2; j++) {
+
+ /*
+ * Step D3: make a guess (qhat) at the next quotient denominator:
+ */
+ qhat = (HIGHDIGIT(u1u2) == v1) ? MAXSHORT : u1u2 / v1;
+ /*
+ * At this point Knuth would have us further refine our
+ * guess, since we know qhat is too big if
+ *
+ * v2 * qhat > ASSEMBLE(u1u2 % v, u3)
+ *
+ * That would make sense if u1u2 % v was easy to find, as it
+ * would be in assembly language. I ignore this step, and
+ * repeat step D6 if qhat is too big.
+ */
+
+ /*
+ * Step D4: Multiply v1,v2 times qhat and subtract it from
+ * u1,u2,u3:
+ */
+ u3 -= qhat * v2;
+ /*
+ * The high digit of u3 now contains the "borrow" for the
+ * rest of the substraction from u1,u2.
+ * Sometimes we can lose the sign bit with the above.
+ * If so, we have to force the high digit negative:
+ */
+ t = HIGHDIGIT(u3);
+ if (t > 0)
+ t |= -1 << SHORTSIZE;
+ t += u1u2 - qhat * v1;
+/* printf("..>divide step qhat=%x t=%x u3=%x u1u2=%x v1=%x v2=%x\n",
+ qhat, t, u3, u1u2, v1, v2); */
+ while (t < 0) { /* Test is Step D5. */
+
+ /*
+ * D6: Oops, qhat was too big. Add back in v1,v2 and
+ * decrease qhat by 1:
+ */
+ u3 = LOWDIGIT(u3) + v2;
+ t += HIGHDIGIT(u3) + v1;
+ qhat--;
+/* printf("..>>qhat correction t=%x u3=%x qhat=%x\n", t, u3, qhat); */
+ }
+ /*
+ * Step D7: shift U left one digit and loop:
+ */
+ u1u2 = t;
+ if (HIGHDIGIT(u1u2) != 0)
+ t1_abort("divide algorithm error");
+ u1u2 = ASSEMBLE(u1u2, LOWDIGIT(u3));
+ u3 = LOWDIGIT(u3u4);
+ q3q4 = ASSEMBLE(q3q4, qhat);
+ }
+ quotient->low = q3q4;
+/* printf("DLdiv returns %x %x\n", quotient->high, quotient->low); */
+ return;
+}
+
+/*
+:h3.DLadd() - Add Two Double Longs
+
+In this case, the doublelongs may be signed. The algorithm takes the
+piecewise sum of the high and low longs, with the possibility that the
+high should be incremented if there is a carry out of the low. How to
+tell if there is a carry? Alex Harbury suggested that if the sum of
+the lows is less than the max of the lows, there must have been a
+carry. Conversely, if there was a carry, the sum of the lows must be
+less than the max of the lows. So, the test is "if and only if".
+*/
+
+void DLadd(u, v)
+ doublelong *u; /* u = u + v */
+ doublelong *v;
+{
+ register ULONG lowmax = MAX(u->low, v->low);
+
+/* printf("DLadd(%x %x, %x %x)\n", u->high, u->low, v->high, v->low); */
+ u->high += v->high;
+ u->low += v->low;
+ if (lowmax > u->low)
+ u->high++;
+}
+/*
+:h3.DLsub() - Subtract Two Double Longs
+
+Testing for a borrow is even easier. If the v.low is greater than
+u.low, there must be a borrow.
+*/
+
+void DLsub(u, v)
+ doublelong *u; /* u = u - v */
+ doublelong *v;
+{
+/* printf("DLsub(%x %x, %x %x)\n", u->high, u->low, v->high, v->low);*/
+ u->high -= v->high;
+ if (v->low > u->low)
+ u->high--;
+ u->low -= v->low;
+}
+/*
+:h3.DLrightshift() - Macro to Shift Double Long Right by N
+*/
+
+/*SHARED LINE(S) ORIGINATED HERE*/
+
+/*
+:h2.Fractional Pel Arithmetic
+*/
+/*
+:h3.FPmult() - Multiply Two Fractional Pel Values
+
+This funtion first calculates w = u * v to "doublelong" precision.
+It then shifts w right by FRACTBITS bits, and checks that no
+overflow will occur when the resulting value is passed back as
+a fractpel.
+*/
+
+fractpel FPmult(u, v)
+ register fractpel u,v;
+{
+ doublelong w;
+ register int negative = FALSE; /* sign flag */
+
+ if ((u == 0) || (v == 0)) return (0);
+
+
+ if (u < 0) {u = -u; negative = TRUE;}
+ if (v < 0) {v = -v; negative = !negative;}
+
+ if (u == TOFRACTPEL(1)) return ((negative) ? -v : v);
+ if (v == TOFRACTPEL(1)) return ((negative) ? -u : u);
+
+ DLmult(&w, u, v);
+ DLrightshift(w, FRACTBITS);
+ if (w.high != 0 || SIGNBITON(w.low)) {
+ IfTrace2(TRUE,"FPmult: overflow, %dlx%dl\n", u, v);
+ w.low = TOFRACTPEL(MAXSHORT);
+ }
+
+ return ((negative) ? -w.low : w.low);
+}
+
+/*
+:h3.FPdiv() - Divide Two Fractional Pel Values
+
+These values may be signed. The function returns the quotient.
+*/
+
+fractpel FPdiv(dividend, divisor)
+ register fractpel dividend;
+ register fractpel divisor;
+{
+ doublelong w; /* result will be built here */
+ int negative = FALSE; /* flag for sign bit */
+
+ if (dividend < 0) {
+ dividend = -dividend;
+ negative = TRUE;
+ }
+ if (divisor < 0) {
+ divisor = -divisor;
+ negative = !negative;
+ }
+ w.low = dividend << FRACTBITS;
+ w.high = dividend >> (LONGSIZE - FRACTBITS);
+ DLdiv(&w, divisor);
+ if (w.high != 0 || SIGNBITON(w.low)) {
+ IfTrace2(TRUE,"FPdiv: overflow, %dl/%dl\n", dividend, divisor);
+ w.low = TOFRACTPEL(MAXSHORT);
+ }
+ return( (negative) ? -w.low : w.low);
+}
+
+/*
+:h3.FPstarslash() - Multiply then Divide
+
+Borrowing a chapter from the language Forth, it is useful to define
+an operator that first multiplies by one constant then divides by
+another, keeping the intermediate result in extended precision.
+*/
+
+fractpel FPstarslash(a, b, c)
+ register fractpel a,b,c; /* result = a * b / c */
+{
+ doublelong w; /* result will be built here */
+ int negative = FALSE;
+
+ if (a < 0) { a = -a; negative = TRUE; }
+ if (b < 0) { b = -b; negative = !negative; }
+ if (c < 0) { c = -c; negative = !negative; }
+
+ DLmult(&w, a, b);
+ DLdiv(&w, c);
+ if (w.high != 0 || SIGNBITON(w.low)) {
+ IfTrace3(TRUE,"FPstarslash: overflow, %dl*%dl/%dl\n", a, b, c);
+ w.low = TOFRACTPEL(MAXSHORT);
+ }
+ return((negative) ? -w.low : w.low);
+}