diff options
-rw-r--r-- | Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf | bin | 1817939 -> 1648513 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex | 54 |
2 files changed, 29 insertions, 25 deletions
diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf Binary files differindex beeda452e89..5abe63eb719 100644 --- a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf +++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex index 862ce41c362..d5233e322d4 100644 --- a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex +++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex @@ -3137,7 +3137,7 @@ This mode is in math also called double logarithm. It is a combination of the tw \begin{LTXexample}[width=7cm] \begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psplot[linewidth=2pt,linecolor=red]{0.001}{3}{x log} - \psaxes[xylogBase=10,Oy=-3]{<->}(-3,-3)(3.5,3.5) + \psaxes[xylogBase=10,Oy=-3,Ox=-3]{->}(-3,-3)(3.5,3.5) \uput[-90](3.5,-3){x} \uput[180](-3,3.5){y} \rput(2.5,1){$y=\log x$} @@ -3149,7 +3149,11 @@ This mode is in math also called double logarithm. It is a combination of the tw %-------------------------------------------------------------------------------------------- \subsubsection{\texttt{ylogBase}} %-------------------------------------------------------------------------------------------- -The values for the \texttt{psaxes} y-coordinate are now the exponents to the base $10$ and for the right function to the base $e$: $10^{-3} \ldots 10^1$ which corresponds to the given y-intervall $-3\ldots 1.5$, where only integers as exponents are possible. These logarithm labels have no effect to the internal used units. To draw the logarithm function we have to use the math function +The values for the \texttt{psaxes} y-coordinate are now the exponents to the base $10$ and for +the right function to the base $e$: $10^{-3} \ldots 10^1$ which corresponds to the given +y-intervall $-3\ldots 1.5$, where only integers as exponents are possible. These logarithm +labels have no effect to the internal used units. To draw the logarithm function we have +to use the math function \[y=\log\{\log x\}\] \[y=\ln\{\ln x\}\] with an drawing intervall of $1.001\ldots 6$. @@ -3157,12 +3161,12 @@ with an drawing intervall of $1.001\ldots 6$. \medskip \begin{LTXexample}[width=7cm] \begin{pspicture}(-0.5,-3.5)(6.5,1.5) - \psaxes[ylogBase=10]{<->}(0,-3)(6.5,1.5) + \psaxes[ylogBase=10,Oy=-3]{->}(0,-3)(6.5,1.5) \uput[-90](6.5,-3){x} \uput[0](0,1.4){y} \rput(5,1){$y=\log x$} \psplot[linewidth=2pt,% - plotpoints=100,linecolor=red]{1.001}{6}{x log log} % log(x) + plotpoints=100,linecolor=red]{1.001}{6}{x log log} % log(log(x)) \end{pspicture} \end{LTXexample} @@ -3171,7 +3175,7 @@ with an drawing intervall of $1.001\ldots 6$. \begin{pspicture}(-0.5,-3.5)(6.5,1.5) \psplot[linewidth=2pt,plotpoints=100,linecolor=red]% {1.04}{6}{/ln {log 0.4343 div} def x ln ln} % log(x) - \psaxes[ylogBase=e]{<->}(0,-3)(6.5,1.5) + \psaxes[ylogBase=e,Oy=-3]{->}(0,-3)(6.5,1.5) \uput[-90](6.5,-3){x} \uput[0](0,1.5){y} \rput(5,1){$y=\ln x$} @@ -3183,7 +3187,7 @@ with an drawing intervall of $1.001\ldots 6$. \medskip \begin{LTXexample}[width=7cm] \begin{pspicture}(-0.5,1.75)(6.5,4.5) - \psaxes[ylogBase=10,Oy=2]{<->}(0,2)(0,2)(6.5,4.5) + \psaxes[ylogBase=10,Oy=2]{->}(0,2)(0,2)(6.5,4.5) \end{pspicture} \end{LTXexample} @@ -3195,7 +3199,7 @@ with an drawing intervall of $1.001\ldots 6$. \psplot{0}{6}{x x cos add log} % x + cox(x) \psplot[linecolor=red]{0}{6}{x 3 exp x cos add log} % x^3 + cos(x) \psplot[linecolor=cyan]{0}{6}{x 5 exp x cos add log} % x^5 + cos(x) - \psaxes[ylogBase=10]{<->}(6.5,4.5) + \psaxes[ylogBase=10]{->}(6.5,4.5) \end{pspicture} \end{LTXexample} @@ -3207,7 +3211,7 @@ with an drawing intervall of $1.001\ldots 6$. \psplot{0}{6}{x x cos add log} % x + cox(x) \psplot[linecolor=red]{0}{6}{x 3 exp x cos add log} % x^3 + cos(x) \psplot[linecolor=cyan]{0}{6}{x 5 exp x cos add log} % x^5 + cos(x) - \psaxes[ylogBase=10]{<->}(0,-1)(0,-1)(6.5,4.5) + \psaxes[ylogBase=10]{->}(0,-1)(0,-1)(6.5,4.5) \end{pspicture} \end{LTXexample} @@ -3235,7 +3239,7 @@ Now we have to use the easy math function $y=x$ because the x axis is still $\lo \begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psplot[linewidth=2pt,linecolor=red]{-3}{3}{x} % log(x) \psplot[linewidth=2pt,linecolor=blue]{-1.3}{1.5}{x 0.4343 div} % ln(x) - \psaxes[ylogBase=10,Oy=-3,Ox=-3]{->}(-3,-3)(3.5,3.5) + \psaxes[xlogBase=10,Oy=-3,Ox=-3]{->}(-3,-3)(3.5,3.5) \uput[-90](3.5,-3){x} \uput[180](-3,3.5){y} \rput(2.5,1){$y=\log x$} @@ -3261,7 +3265,7 @@ Now we have to use the easy math function $y=x$ because the x axis is still $\lo \uput[0](-1,1){y} \rput(0,1){$y=\sin x$} \psplot[linewidth=2pt,plotpoints=5000,linecolor=red]{-1}{3.5}{10 x exp sin } - \psaxes[xlogBase=10,Oy=-1]{->}(-1,-1)(4.25,1.25) + \psaxes[xlogBase=10,Oy=-1,Ox=-1]{->}(-1,-1)(4.25,1.25) \end{pspicture} \end{lstlisting} @@ -3452,14 +3456,14 @@ This is only a demonstration that the default option \verb|logBase={}| still wor %-------------------------------------------------------------------------------------- When having big numbers as data records then it makes sense to write the values as ${<number>\cdot 10^{<exp>}}$. These new options allow to define the additional part -of the value. +of the value, but it must be set in math mode when using math operators! \resetOptions \begin{LTXexample} \readdata{\data}{demo1.dat} \pstScalePoints(1,0.000001){}{}% (x,y){additional x operator}{y op} \psset{llx=-1cm,lly=-1cm} -\psgraph[ylabelFactor={\cdot 10^6},Dx=5,Dy=100](0,0)(25,750){8cm}{5cm} +\psgraph[ylabelFactor={$\cdot 10^6$},Dx=5,Dy=100](0,0)(25,750){8cm}{5cm} \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data} \endpsgraph \pstScalePoints(1,1){}{}% reset @@ -4451,7 +4455,7 @@ The y-length maybe given as !, then the macro uses the same unit as for the x-ax \pstScalePoints(1,0.000001){}{}% (x,y){additional x operator}{y op} \psset{llx=-1cm,lly=-1cm} \begin{psgraph}[axesstyle=frame,xticksize=0 759,yticksize=0 25,% - subticks=0,ylabelFactor={\cdot 10^6},% + subticks=0,ylabelFactor={$\cdot 10^6$},% Dx=5,dy=100\psyunit,Dy=100](0,0)(25,750){10cm}{6cm} % parameters \listplot[linecolor=red,linewidth=2pt,showpoints=true]{\data} \end{psgraph} @@ -4462,7 +4466,7 @@ The y-length maybe given as !, then the macro uses the same unit as for the x-ax \pstScalePoints(1,0.000001){}{}% (x,y){additional x operator}{y op} \psset{llx=-1cm,lly=-1cm} §\ON§\begin{psgraph}§\OFF§[axesstyle=frame,xticksize=0 759,yticksize=0 25,% - subticks=0,ylabelFactor={\cdot 10^6},% + subticks=0,ylabelFactor={$\cdot 10^6$},% Dx=5,dy=100\psyunit,Dy=100](0,0)(25,750){10cm}{6cm} % parameters \listplot[linecolor=red,linewidth=2pt,showpoints=true]{\data} §\ON§\end{psgraph}§\OFF§ @@ -4493,7 +4497,7 @@ In the following example, the y unit gets the same value as the one for the x-ax xAxisLabelPos={3cm,-1cm},yAxisLabelPos={-1.5cm,2.5cm}} \pstScalePoints(1,0.00000001){}{} \begin{psgraph}[axesstyle=frame,xticksize=0 7.5,yticksize=0 25,subticksize=1, - ylabelFactor={\cdot 10^8},Dx=5,Dy=1,xsubticks=2](0,0)(25,7.5){5.5cm}{5cm} + ylabelFactor={$\cdot 10^8$},Dx=5,Dy=1,xsubticks=2](0,0)(25,7.5){5.5cm}{5cm} \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data} \end{psgraph} \end{center} @@ -4504,7 +4508,7 @@ In the following example, the y unit gets the same value as the one for the x-ax §\ON§xAxisLabelPos§\OFF§={3cm,-1cm},§\ON§yAxisLabelPos§\OFF§={-1.5cm,2.5cm}} \pstScalePoints(1,0.00000001){}{} \begin{psgraph}[axesstyle=frame,xticksize=0 7.5,yticksize=0 25,subticksize=1, - §\ON§ylabelFactor§\OFF§={\cdot 10^8},Dx=5,Dy=1,xsubticks=2](0,0)(25,7.5){5.5cm}{5cm} + §\ON§ylabelFactor§\OFF§={$\cdot 10^8$},Dx=5,Dy=1,xsubticks=2](0,0)(25,7.5){5.5cm}{5cm} \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data} \end{psgraph} \end{lstlisting} @@ -5367,12 +5371,12 @@ Just appreciate the difference between the normal behavior and the plotting with \psset{xunit=.5} \begin{pspicture}[showgrid=true](0,0)(12.566,2) \parametricplot[algebraic,linecolor=red,VarStep, showpoints=true, - VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-PI/2)|1+sin(-t-PI/2)} + VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)} \end{pspicture} % \begin{pspicture}[showgrid=true](0,0)(12.566,2) \parametricplot[algebraic,linecolor=blue,VarStep, showpoints=false, - VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-PI/2)|1+sin(-t-PI/2)} + VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)} \end{pspicture} \egroup \end{center} @@ -5381,12 +5385,12 @@ Just appreciate the difference between the normal behavior and the plotting with \psset{xunit=.5} \begin{pspicture}[showgrid=true](0,0)(12.566,2) \parametricplot[algebraic,linecolor=red,VarStep, showpoints=true, - VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-PI/2)|1+sin(-t-PI/2)} + VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)} \end{pspicture} % \begin{pspicture}[showgrid=true](0,0)(12.566,2) \parametricplot[algebraic,linecolor=blue,VarStep, showpoints=false, - VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-PI/2)|1+sin(-t-PI/2)} + VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)} \end{pspicture} \end{lstlisting} @@ -5768,7 +5772,7 @@ the algortihm. \rput*(3.3,.5){\psline[linecolor=green](-.75cm,0)} \rput*[l](3.3,.5){\small solution exacte} \end{pspicture} -\captionof{figure}{Equation $y'=-y$ with $y_0=1$.} \label{fig:minusexpvarstep} +{\captionof{figure}{Equation $y'=-y$ with $y_0=1$.}\label{fig:minusexpvarstep}} \egroup \end{center} @@ -5825,7 +5829,7 @@ the algortihm. \rput*(2.3,.4){\psline[linecolor=green](-.75cm,0)} \rput*[l](2.3,.4){\small solution exacte} \end{pspicture} -\captionof{figure}{Equation $y''=-y$}\label{fig:trigfunc} +{\captionof{figure}{Equation $y''=-y$}\label{fig:trigfunc}} \egroup \end{center} @@ -6031,7 +6035,7 @@ equation. In the following example the masses of the stars are 1 and 20. \end{pspicture} \end{LTXexample} \vspace{-2ex} -\captionof{figure}{Gravitational interaction : fixed landmark, trajectory of the stars}\label{fig:InterGravRepFix} +{\captionof{figure}{Gravitational interaction: fixed landmark, trajectory of the stars}\label{fig:InterGravRepFix}} @@ -6045,7 +6049,7 @@ equation. In the following example the masses of the stars are 1 and 20. \end{pspicture} \end{LTXexample} \vspace{-2ex} -\captionof{figure}{Gravitational interaction : landmark defined by one star}\label{fig:IGnewrep} +{\captionof{figure}{Gravitational interaction : landmark defined by one star}\label{fig:IGnewrep}} \begin{center} @@ -6059,8 +6063,8 @@ equation. In the following example the masses of the stars are 1 and 20. \psplotDiffEqn[linecolor=blue, method=varrkiv, plotpoints=2, varsteptol=.0001, plotfuncy=dup 2 get dup mul exch 3 get dup mul add sqrt]{0}{8}{\InitCond}{\Grav} \end{pspicture} -\egroup \captionof{figure}{Gravitational interaction : vitessesspeed of the stars} +\egroup \end{center} \begin{lstlisting} |