diff options
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3d/Changes | 8 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3d/README | 31 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.bib | 118 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.pdf | bin | 0 -> 139593 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.tex | 783 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3d/pst-3d.pdf | bin | 241664 -> 0 bytes | |||
-rw-r--r-- | Master/texmf-dist/dvips/pst-3d/pst-3d.pro | 87 | ||||
-rw-r--r-- | Master/texmf-dist/source/generic/pst-3d/Makefile | 69 | ||||
-rw-r--r-- | Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx | 1608 | ||||
-rw-r--r-- | Master/texmf-dist/source/generic/pst-3d/pst-3d.ins | 38 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex | 186 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty | 49 |
12 files changed, 1140 insertions, 1837 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-3d/Changes b/Master/texmf-dist/doc/generic/pst-3d/Changes index a2c24e3fd3e..8c550140a25 100644 --- a/Master/texmf-dist/doc/generic/pst-3d/Changes +++ b/Master/texmf-dist/doc/generic/pst-3d/Changes @@ -1,5 +1,11 @@ pst-3d.tex -------- +1.10 2010/02/13 - created a pro file + - add macro \pstAffinTransform 1.00 2005/09/08 - using the extended pst-xkey instead of the old pst-key package; - creating a dtx file - - new LaTeX wrapper file to load pstricks.sty first (hv) + - new \LaTeX\ wrapper file to load pstricks.sty first (hv) 0.90 2001/02/16 - First public release. (tvz) + + +pst-3d.pro -------- +0.01 2010/02/13 - first public version
\ No newline at end of file diff --git a/Master/texmf-dist/doc/generic/pst-3d/README b/Master/texmf-dist/doc/generic/pst-3d/README index 83be46e3043..5d8fbf534e9 100644 --- a/Master/texmf-dist/doc/generic/pst-3d/README +++ b/Master/texmf-dist/doc/generic/pst-3d/README @@ -1,26 +1,9 @@ -%% Package `pst-3d.tex' -%% -%% Timothy Van Zandt <tvz@nwu.edu> (tvz) -%% Herbert Voss <voss@pstricks.de> (hv) -%% -%% September 08, 2005 -%% -%% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks -%% It is a basic macro for all other 3D related packages -%% -%% -%% +Save the files pst-3d.sty|tex|pro in a directory, which is part of your +local TeX tree. +Then do not forget to run texhash to update this tree. +For more information see the documentation of your LATEX distribution +on installing packages into your LATEX distribution or the +TeX Frequently Asked Questions: +(http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages). -To install the package run -latex pst-3d.ins - -and install the generated packages in a directory, which is in -the search path of TeX - -This version of pst-3d uses the extended version of the keyval -package. So be sure that you -- have installed xkeyval with the special pst-xkey.tex - (CTAN: tex-archive/macros/latex/contrib/xkeyval/) -- do not load another package after pst-3d, which loads - the old keyval.sty or pst-key.tex diff --git a/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.bib b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.bib new file mode 100644 index 00000000000..721cd671185 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.bib @@ -0,0 +1,118 @@ +@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} } + +@Book{PostScript, + Author = {Kollock, Nikolai G.}, + Title = {PostScript richtig eingesetzt: vom Konzept zum + praktischen Einsatz}, + Publisher = {IWT}, + Address = {Vaterstetten}, + year = 1989, +} + +@Manual{pstricks, + Title = {PSTricks - {\PS} macros for Generic TeX}, + Author = {Timothy Van Zandt}, + Organization = {}, + Address = {\url{http://www.tug.org/application/PSTricks}}, + Note = {}, + year = 1993, +} + + +@Manual{pdftricks, + Title = {PSTricks Support for pdf}, + Author = {Herbert Voss}, + Organization = {}, + Address = {\url{http://PSTricks.de/pdf/pdfoutput.phtml}}, + Note = {}, + year = 2002, +} + +@Manual{miwi, + Title = {References for \TeX{} and Friends}, + Author = {Michael Wiedmann and Peter Karp}, + Organization = {}, + Address = {\url{http://www.miwie.org/tex-refs/}}, + Note = {}, + year = 2003, +} + + +@Manual{vue3d:2002, + Title = {Vue en 3D}, + Author = {Manuel Luque}, + Organization = {}, + Address = {\url{http://members.aol.com/Mluque5130/vue3d16112002.zip}}, + Note = {}, + year = 2002, +} + +@Article{dtk02.2:jackson.voss:plot-funktionen, + author = {Laura E. Jackson and Herbert Vo{\ss}}, + title = {Die {P}lot-{F}unktionen von {\texttt{pst-plot}}}, + journal = dtk, + year = 2002, + volume = {2/02}, + altvolume = 2, + altnumber = 14, + month = jun, + pages = {27--34}, + annote = bretter, + keywords = {}, + abstract = { Im letzten Heft wurden die mathematischen Funktionen von + \PS~im Zusammenhang mit dem {\LaTeX}-Paket + \texttt{pst-plot} zum Zeichnen von Funktionen beschrieben + und durch Beispiele erl{\"a}utert. In diesem Teil werden + die bislang nur erw{\"a}hnten Plot-Funktionen f{\"u}r + externe Daten behandelt. } +} + +@Article{dtk02.1:voss:mathematischen, + author = {Herbert Vo{\ss}}, + title = {Die mathematischen {F}unktionen von {P}ostscript}, + journal = dtk, + year = 2002, + volume = {1/02}, + altvolume = 1, + altnumber = 14, + month = mar, + pages = {40-47}, + annote = bretter, + keywords = {}, + abstract = { \PS, faktisch genauso alt wie {\TeX}, ist im + Verh{\"a}ltnis dazu allgemein noch weniger bekannt, wenn es + darum geht zu beurteilen, was es denn nun im eigentlichen + Sinne ist. Au{\ss}erdem wird h{\"a}ufig vergessen, dass + sich mit den \PS-Funktionen viele Dinge erledigen lassen, + bei denen sonst auf externe Programme zur{\"u}ckgegriffen + wird. Dies wird im Folgenden f{\"u}r die mathematischen + Funktionen im Zusammenhang mit dem Paket \texttt{pst-plot} + gezeigt. } +} + +@Book{companion, + author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Denis Roegel and Herbert Vo{\ss}}, + title = {The {\LaTeX} {G}raphics {C}ompanion}, + publisher = {{Addison-Wesley Publishing Company}}, + edition = second, + year = {2007}, + address = {Reading, Mass.} +} + +@Book{PSTricks2, + author = {Herbert Vo\ss}, + title = {\texttt{PSTricks} -- {G}rafik f\"ur \TeX{} und \LaTeX}, + edition = {4.}, + publisher = {DANTE -- Lehmanns}, + year = {2007}, + address = {Heidelberg/Hamburg} +} + +@Book{LaTeXRef, + author = {Herbert Vo\ss}, + title = {\LaTeX\ Referenz}, + edition = {1.}, + publisher = {DANTE -- Lehmanns}, + year = {2007}, + address = {Heidelberg/Hamburg} +} diff --git a/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.pdf b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.pdf Binary files differnew file mode 100644 index 00000000000..2ac82497d40 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.pdf diff --git a/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.tex b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.tex new file mode 100644 index 00000000000..0211848e590 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.tex @@ -0,0 +1,783 @@ +%% $Id: pst-3d-doc.tex 289 2010-02-13 14:35:35Z herbert $ +\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings + headexclude,footexclude,oneside,dvipsnames,svgnames]{pst-doc} +\listfiles + +\usepackage[utf8]{inputenc} +\usepackage{pst-3d} +\SpecialCoor +\let\pstFV\fileversion +\let\belowcaptionskip\abovecaptionskip +% +\makeatletter +\renewcommand*\l@subsection{\bprot@dottedtocline{2}{1.5em}{3.6em}} +\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4.5em}} +\makeatother +\def\bgImage{} +\lstset{explpreset={pos=l,width=-99pt,overhang=0pt,hsep=\columnsep,vsep=\bigskipamount,rframe={}}, + escapechar=?} +\def\textat{\char064}% +\usepackage{shortvrb} +\MakeShortVerb{|} +\def\la{<} +\def\ra{>} +\def\arc{\mathrm{arc}} +\def\sign{\mathrm{sign}} +\def\PiCTeX{\texttt{PiCTeX}} +\def\endmacro{} + +\begin{document} +\title{\texttt{pst-3d}\\basic three dimension functions \\\small v.\pstFV} +\docauthor{Herbert Vo\ss} +\author{Timothy Van Zandt\\Herbert Vo\ss} +\date{\today} + +\maketitle + +\begin{abstract} +This version of \LPack{pst-3d} uses the extended keyval handling +of \LPack{pst-xkey}. + +\vfill +\noindent +Thanks to: +\end{abstract} + +\clearpage +\tableofcontents + +\clearpage + +\section[PostScript]{PostScript functions \nxLps{SetMatrixThreeD},\nxLps{ProjThreeD}, and \nxLps{SetMatrixEmbed}} + \xLps{SetMatrixThreeD}\xLps{ProjThreeD}\xLps{SetMatrixEmbed} +The \Index{viewpoint} for 3D coordinates is given by three angles: $\alpha$, $\beta$ and + $\gamma$. $\alpha$ and $\beta$ determine the direction from which one is + looking. $\gamma$ then determines the orientation of the observing. + + When $\alpha$, $\beta$ and $\gamma$ are all zero, the observer is looking + from the negative part of the $y$-axis, and sees the $xz$-plane the way in + 2D one sees the $xy$ plan. Hence, to convert the 3D coordinates to their 2D + project, $\la x, y, z\ra$ map to $\la x, z\ra$. + + When the orientation is different, we rotate the coordinates, and then + perform the same projection. + + We move up to latitude $\beta$, over to longitude $\alpha$, and then rotate + by $\gamma$. This means that we first rotate around $y$-axis by $\gamma$, + then around $x$-axis by $\beta$, and the around $z$-axis by $\alpha$. + + Here are the matrices: + \begin{eqnarray*} + R_z(\alpha) & = & \left[ + \begin{array}{ccc} + \cos \alpha & -\sin \alpha & 0 \\ + \sin \alpha & cos \alpha & 0 \\ + 0 & 0 & 1 + \end{array} \right] \\ + R_x(\beta) & = & \left[ + \begin{array}{ccc} + 1 & 0 & 0 \\ + 0 & \cos \beta & \sin \beta \\ + 0 & -\sin \beta & \cos \beta + \end{array} \right] \\ + R_y(\gamma) & = & \left[ + \begin{array}{ccc} + \cos \gamma & 0 & -\sin \gamma \\ + 0 & 1 & 0 \\ + \sin \gamma & 0 & \cos \gamma + \end{array} \right] + \end{eqnarray*} + + The rotation of a coordinate is then performed by the matrix $R_z(\alpha) + R_x(\beta) R_y(\gamma)$. The first and third columns of the matrix are the + basis vectors of the plan upon which the 3D coordinates are project (the old + basis vectors were $\la 1, 0, 0\ra$ and $\la 0, 0, 1$\ra; rotating these + gives the first and third columns of the matrix). + + These new basis vectors are: + \begin{eqnarray*} + \tilde{x} & = & \left[ + \begin{array}{c} + \cos\alpha \cos\gamma - \sin\beta \sin\alpha \sin\gamma \\ + \sin\alpha \cos\gamma + \sin\beta \cos\alpha \sin\gamma \\ + \cos\beta \sin\gamma + \end{array} \right] \\ + \tilde{z} & = & \left[ + \begin{array}{c} + -\cos\alpha \sin\gamma - \sin\beta \sin\alpha \cos\gamma \\ + -\sin\alpha \sin\gamma + \sin\beta \cos\alpha \cos\gamma \\ + \cos\beta \cos\gamma + \end{array} \right] + \end{eqnarray*} + + Rather than specifying the angles $\alpha$ and $\beta$, the user gives a + vector indicating where the viewpoint is. This new viewpoint is the rotation + o the old viewpoint. The old viewpoint is $\la 0, -1, 0\ra$, and so the new + viewpoint is + \[ + R_z(\alpha) R_x(\beta) \left[ \begin{array}{c} 0\\-1\\0 \end{array} \right] + \, = \, + \left[ \begin{array}{c} + \cos\beta \sin\alpha \\ + -\cos\beta \cos\alpha \\ + \sin\beta + \end{array} \right] + \, = \, + \left[ \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right] + \] + Therefore, + \begin{eqnarray*} + \alpha & = & \arc\tan (v_1 / -v_2) \\ + \beta & = & \arc\tan (v_3 \sin\alpha / v_1) + \end{eqnarray*} + Unless $p_1=p_2=0$, in which case $\alpha=0$ and $\beta=\sign(p_3)90$, or + $p_1=p_3=0$, in which case $\beta=0$. + + + +The syntax of \Lps{SetMatrixThreeD} is + $v_1$ $v_2$ $v_3$ $\gamma$ SetMatrixThreeD + +\Lps{SetMatrixThreeD} first computes + \[ + \begin{array}{ll} + a=\sin\alpha & b=\cos\alpha\\ + c=\sin\beta & d=\cos\beta\\ + e=\sin\gamma & f=\cos\gamma + \end{array} + \] + and then sets \Lps{Matrix3D} to |[|$\tilde{x}$ $\tilde{z}$|]|. + + +\begin{lstlisting} +/SetMatrixThreeD { + dup sin /e ED cos /f ED + /p3 ED /p2 ED /p1 ED + p1 0 eq + { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def + p3 p2 abs + } + { p2 0 eq + { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def + p3 p1 abs + } + { p1 dup mul p2 dup mul add sqrt dup + p1 exch div /a ED + p2 exch div neg /b ED + p3 p1 a div + } + ifelse + } + ifelse + atan dup sin /c ED cos /d ED + /Matrix3D + [ + b f mul c a mul e mul sub + a f mul c b mul e mul add + d e mul + b e mul neg c a mul f mul sub + a e mul neg c b mul f mul add + d f mul + ] def +} def +\end{lstlisting} + +The syntax of \Lps{ProjThreeD} is $x$ $y$ $z$ \Lps{ProjThreeD} $x'$ $y'$ +where $x'=\la x, y, z\ra \cdot \tilde{x}$ and $y'=\la x, y, z\ra \cdot +\tilde{z}$. + +\begin{lstlisting} +/ProjThreeD { + /z ED /y ED /x ED + Matrix3D aload pop + z mul exch y mul add exch x mul add + 4 1 roll + z mul exch y mul add exch x mul add + exch +} def +\end{lstlisting} + + To embed 2D $\la x, y\ra$ coordinates in 3D, the user specifies the normal + vector and an angle. If we decompose this normal vector into an angle, as + when converting 3D coordinates to 2D coordinates, and let $\hat\alpha$, + $\hat\beta$ and $\hat\gamma$ be the three angles, then when these angles are + all zero the coordinate $\la x, y\ra$ gets mapped to $\la x, 0, y\ra$, and + otherwise $\la x, y\ra$ gets mapped to + \[ + R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma) + \left[ \begin{array}{c} x \\ 0 \\ y \end{array} \right] + \, = \, + \left[ \begin{array}{c} + \hat{x}_1 x + \hat{z}_1 y\\ + \hat{x}_2 x + \hat{z}_2 y\\ + \hat{x}_3 x + \hat{z}_3 y + \end{array} \right] + \] + where $\hat{x}$ and $\hat{z}$ are the first and third columns of + $R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma)$. + + Now add on a 3D-origin: + \[ + \left[ \begin{array}{c} + \hat{x}_1 x + \hat{z}_1 y + x_0\\ + \hat{x}_2 x + \hat{z}_2 y + y_0\\ + \hat{x}_3 x + \hat{z}_3 y + z_0 + \end{array} \right] + \] + + Now when we project back onto 2D coordinates, we get + \begin{eqnarray*} + x' & = & \tilde{x}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) + + \tilde{x}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) + + \tilde{x}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\ + & = & + (\tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) x\\ + + (\tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) y\\ + + \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0 + y' & = & \tilde{z}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) + + \tilde{z}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) + + \tilde{z}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\ + & = & + (\tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) x\\ + + (\tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) y\\ + + \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0 + \end{eqnarray*} + Hence, the transformation matrix is: + \[ + \left[ \begin{array}{c} + \tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) \\ + \tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) \\ + \tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) \\ + \tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) \\ + \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0 \\ + \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0 + \end{array} \right] + \] + +The syntax of \Lps{SetMatrixEmbed} is + $x_0$ $y_0$ $z_0$ $\hat{v_1}$ $\hat{v_2}$ $\hat{v_3}$ $\hat{\gamma}$ + $v_1$ $v_2$ $v_3$ $\gamma$ \Lps{SetMatrixEmbed} + +\Lps{SetMatrixEmbed} first sets |<x1 x2 x3 y1 y2 y3>| to the basis vectors for + the viewpoint projection (the tilde stuff above). Then it sets |Matrix3D| to + the basis vectors for the embedded plane. Finally, it sets the + transformation matrix to the matrix given above. + +\begin{lstlisting} +/SetMatrixEmbed { + SetMatrixThreeD + Matrix3D aload pop + /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED + SetMatrixThreeD + [ + Matrix3D aload pop + z3 mul exch z2 mul add exch z1 mul add 4 1 roll + z3 mul exch z2 mul add exch z1 mul add + Matrix3D aload pop + x3 mul exch x2 mul add exch x1 mul add 4 1 roll + x3 mul exch x2 mul add exch x1 mul add + 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy + x3 mul exch x2 mul add exch x1 mul add 4 1 roll + z3 mul exch z2 mul add exch z1 mul add + ] + concat +} def +\end{lstlisting} + + +\section{Keywords} +\subsection{\nxLkeyword{viewpoint}} + +\begin{lstlisting} +\let\pssetzlength\pssetylength +\define@key[psset]{pst-3d}{viewpoint}{% + \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil + \let\psk@viewpoint\pst@tempg} +\def\psset@@viewpoint#1 #2 #3 #4\@nil{% + \begingroup + \pssetxlength\pst@dima{#1}% + \pssetylength\pst@dimb{#2}% + \pssetzlength\pst@dimc{#3}% + \xdef\pst@tempg{% + \pst@number\pst@dima \pst@number\pst@dimb \pst@number\pst@dimc}% + \endgroup} +\psset[pst-3d]{viewpoint=1 -1 1} +\end{lstlisting} + +\subsection{\nxLkeyword{viewangle}} + +\begin{lstlisting} +\define@key[psset]{pst-3d}{viewangle}{\pst@getangle{#1}\psk@viewangle} +\psset[pst-3d]{viewangle=0} +\end{lstlisting} + +\subsection{\nxLkeyword{normal}} + +\begin{lstlisting} +\define@key[psset]{pst-3d}{normal}{% + \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil + \let\psk@normal\pst@tempg} +\psset[pst-3d]{normal=0 0 1} +\end{lstlisting} + + +\subsection{\nxLkeyword{embedangle}} +\begin{lstlisting} +\define@key[psset]{pst-3d}{embedangle}{\pst@getangle{#1}\psk@embedangle} +\psset[pst-3d]{embedangle=0} +\end{lstlisting} + + +\section{Transformation matrix} + +\begin{lstlisting} +/TMSave { + tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if end + /TMatrix [ TMatrix CM ] cvx def +} def +/TMRestore { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def +/TMChange { + TMSave + /cp [ currentpoint ] cvx def % ??? Check this later. + CM +} def +\end{lstlisting} + Set standard coor. system , with |pt| units and origin at \Index{currentpoint}. + This let's us rotate, or whatever, around \TeX's current point, without + having to worry about strange coordinate systems that the dvi-to-ps + driver might be using. +\begin{lstlisting} +CP T STV +\end{lstlisting} + + Let M = old matrix (on stack), and M' equal current matrix. Then + go from M' to M by applying M Inv(M'). +\begin{lstlisting} +CM matrix invertmatrix % Inv(M') +matrix concatmatrix % M Inv(M') +\end{lstlisting} + Now modify transformation matrix: +\begin{lstlisting} +exch exec +\end{lstlisting} +Now apply M Inv(M') +\begin{lstlisting} +concat cp moveto +\end{lstlisting} + + +\section{Macros} +\subsection{\nxLcs{ThreeDput}} + +\begin{lstlisting} +\def\ThreeDput{\pst@object{ThreeDput}} +\def\ThreeDput@i{\@ifnextchar({\ThreeDput@ii}{\ThreeDput@ii(\z@,\z@,\z@)}} +\def\ThreeDput@ii(#1,#2,#3){% + \pst@killglue\pst@makebox{\ThreeDput@iii(#1,#2,#3)}} +\def\ThreeDput@iii(#1,#2,#3){% + \begingroup + \use@par + \if@star\pst@starbox\fi + \pst@makesmall\pst@hbox + \pssetxlength\pst@dima{#1}% + \pssetylength\pst@dimb{#2}% + \pssetzlength\pst@dimc{#3}% + \leavevmode + \hbox{% + \pst@Verb{% + { \pst@number\pst@dima + \pst@number\pst@dimb + \pst@number\pst@dimc + \psk@normal + \psk@embedangle + \psk@viewpoint + \psk@viewangle + \tx@SetMatrixEmbed + } \tx@TMChange}% + \box\pst@hbox + \pst@Verb{\tx@TMRestore}}% + \endgroup + \ignorespaces} +\end{lstlisting} + +\section{Arithmetic}\label{Arithmetic} + + {\verb+\pst@divide+} + This is adapted from Donald Arseneau's |shapepar.sty|. + Syntax: + \begin{verbatim} + \pst@divide{<numerator>}{<denominator>}{<command>} + \pst@@divide{<numerator>}{<denominator>} + \end{verbatim} + <numerator> and <denominator> should be dimensions. |\pst@divide| sets + <command> to <num>/<den> (in points). |\pst@@divide| sets |\pst@dimg| to + <num>/<den>. + \begin{lstlisting} + \def\pst@divide#1#2#3{% + \pst@@divide{#1}{#2}% + \pst@dimtonum\pst@dimg{#3}} + \def\pst@@divide#1#2{% + \pst@dimg=#1\relax + \pst@dimh=#2\relax + \pst@cntg=\pst@dimh + \pst@cnth=67108863 + \pst@@@divide\pst@@@divide\pst@@@divide\pst@@@divide + \divide\pst@dimg\pst@cntg} + \end{lstlisting} + The number 16 is the level of uncertainty. Use a lower power of 2 for more + accuracy (2 is most precise). But if you change it, you must change the + repetions of |\pst@@@divide| in |\pst@@divide| above: + \[ + \mbox{precision}^{\mbox{repetitions}} = 65536 + \] + (E.g., $16^4 = 65536$). +\begin{lstlisting} + \def\pst@@@divide{% + \ifnum + \ifnum\pst@dimg<\z@-\fi\pst@dimg<\pst@cnth + \multiply\pst@dimg\sixt@@n + \else + \divide\pst@cntg\sixt@@n + \fi} +\end{lstlisting} + + {\verb+\pst@pyth+} + Syntax: + \begin{verbatim} + \pst@pyth{<dim1>}{<dim2>}{<dimen register>} + \end{verbatim} + <dimen register> is set to $((dim1)^2+(dim2)^2)^{1/2}$. + + The algorithm is copied from \PiCTeX, by Michael Wichura (with permission). + Here is his description: + \begin{quote} + Suppose $x>0$, $y>0$. Put $s = x+y$. Let $z = (x^2+y^2)^{1/2}$. Then $z = + s\times f$, where + \[ + f = (t^2 + (1-t)^2)^{1/2} = ((1+\tau^2)/2)^{1/2} + \] + and $t = x/s$ and $\tau = 2(t-1/2)$. + \end{quote} + \begin{lstlisting} +\def\pst@pyth#1#2#3{% + \begingroup + \pst@dima=#1\relax + \ifnum\pst@dima<\z@\pst@dima=-\pst@dima\fi % dima=abs(x) + \pst@dimb=#2\relax + \ifnum\pst@dimb<\z@\pst@dimb=-\pst@dimb\fi % dimb=abs(y) + \advance\pst@dimb\pst@dima % dimb=s=abs(x)+abs(y) + \ifnum\pst@dimb=\z@ + \global\pst@dimg=\z@ % dimg=z=sqrt(x^2+y^2) + \else + \multiply\pst@dima 8\relax % dima= 8abs(x) + \pst@@divide\pst@dima\pst@dimb % dimg =8t=8abs(x)/s + \advance\pst@dimg -4pt % dimg = 4tau = (8t-4) + \multiply\pst@dimg 2 + \pst@dimtonum\pst@dimg\pst@tempa + \pst@dima=\pst@tempa\pst@dimg % dima=(8tau)^2 + \advance\pst@dima 64pt % dima=u=[64+(8tau)^2]/2 + \divide\pst@dima 2\relax % =(8f)^2 + \pst@dimd=7pt % initial guess at sqrt(u) + \pst@@pyth\pst@@pyth\pst@@pyth % dimd=sqrt(u) + \pst@dimtonum\pst@dimd\pst@tempa + \pst@dimg=\pst@tempa\pst@dimb + \global\divide\pst@dimg 8 % dimg=z=(8f)*s/8 + \fi + \endgroup + #3=\pst@dimg} +\def\pst@@pyth{% dimd = g <-- (g + u/g)/2 + \pst@@divide\pst@dima\pst@dimd + \advance\pst@dimd\pst@dimg + \divide\pst@dimd 2\relax} + \end{lstlisting} + + + {\verb+\pst@sinandcos+} + Syntax: + \begin{verbatim} + \pst@sinandcos{<dim>}{<int>} + \end{verbatim} + <dim>, in |sp| units, should equal 100,000 times the angle, in degrees + between 0 and 90. <int> should equal the angle's quadrant (0, 1, 2 or 3). + |\pst@dimg| is set to $\sin(\theta)$ and |\pst@dimh| is set to + $\cos(\theta)$ (in pt's). + + The algorithms uses the usual McLaurin expansion. + \begin{lstlisting} +\def\pst@sinandcos#1{% + \begingroup + \pst@dima=#1\relax + \pst@dima=.366022\pst@dima %Now 1pt=1/32rad + \pst@dimb=\pst@dima % dimb->32sin(angle) in pts + \pst@dimc=32\p@ % dimc->32cos(angle) in pts + \pst@dimtonum\pst@dima\pst@tempa + \pst@cntb=\tw@ + \pst@cntc=-\@ne + \pst@cntg=32 + \loop + \ifnum\pst@dima>\@cclvi % 256 + \pst@dima=\pst@tempa\pst@dima + \divide\pst@dima\pst@cntg + \divide\pst@dima\pst@cntb + \ifodd\pst@cntb + \advance\pst@dimb \pst@cntc\pst@dima + \pst@cntc=-\pst@cntc + \else + \advance\pst@dimc by \pst@cntc\pst@dima + \fi + \advance\pst@cntb\@ne + \repeat + \divide\pst@dimb\pst@cntg + \divide\pst@dimc\pst@cntg + \global\pst@dimg\pst@dimb + \global\pst@dimh\pst@dimc + \endgroup} + \end{lstlisting} + + + {\verb+\pst@getsinandcos+} + |\pst@getsinandcos| normalizes the angle to be in the first quadrant, sets + |\pst@quadrant| to 0 for the first quadrant, 1 for the second, 2 for the + third, and 3 for the fourth, invokes |\pst@sinandcos|, and sets |\pst@sin| + to the sine and |\pst@cos| to the cosine. + \begin{lstlisting} +\def\pst@getsinandcos#1{% + \pst@dimg=100000sp + \pst@dimg=#1\pst@dimg + \pst@dimh=36000000sp + \pst@cntg=0 + \loop + \ifnum\pst@dimg<\z@ + \advance\pst@dimg\pst@dimh + \repeat + \loop + \ifnum\pst@dimg>\pst@dimh + \advance\pst@dimg-\pst@dimh + \repeat + \pst@dimh=9000000sp + \def\pst@tempg{% + \ifnum\pst@dimg<\pst@dimh\else + \advance\pst@dimg-\pst@dimh + \advance\pst@cntg\@ne + \ifnum\pst@cntg>\thr@@ \advance\pst@cntg-4 \fi + \expandafter\pst@tempg + \fi}% + \pst@tempg + \chardef\pst@quadrant\pst@cntg + \ifdim\pst@dimg=\z@ + \def\pst@sin{0}% + \def\pst@cos{1}% + \else + \pst@sinandcos\pst@dimg + \pst@dimtonum\pst@dimg\pst@sin + \pst@dimtonum\pst@dimh\pst@cos + \fi} + \end{lstlisting} + + + \section{Tilting} + + {\verb+\pstilt+} + \begin{lstlisting} +\def\pstilt#1{\pst@makebox{\pstilt@{#1}}} +\def\pstilt@#1{% + \begingroup + \leavevmode + \pst@getsinandcos{#1}% + \hbox{% + \ifcase\pst@quadrant + \kern\pst@cos\dp\pst@hbox + \pst@dima=\pst@cos\ht\pst@hbox + \ht\pst@hbox=\pst@sin\ht\pst@hbox + \dp\pst@hbox=\pst@sin\dp\pst@hbox + \or + \kern\pst@sin\ht\pst@hbox + \pst@dima=\pst@sin\dp\pst@hbox + \ht\pst@hbox=\pst@cos\ht\pst@hbox + \dp\pst@hbox=\pst@cos\dp\pst@hbox + \or + \kern\pst@cos\ht\pst@hbox + \pst@dima=\pst@sin\dp\pst@hbox + \pst@dimg=\pst@sin\ht\pst@hbox + \ht\pst@hbox=\pst@sin\dp\pst@hbox + \dp\pst@hbox=\pst@dimg + \or + \kern\pst@sin\dp\pst@hbox + \pst@dima=\pst@sin\ht\pst@hbox + \pst@dimg=\pst@cos\ht\pst@hbox + \ht\pst@hbox=\pst@cos\dp\pst@hbox + \dp\pst@hbox=\pst@dimg + \fi + \pst@Verb{% + { [ 1 0 + \pst@cos\space \ifnum\pst@quadrant>\@ne neg \fi + \pst@sin\space + \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi + \ifodd\pst@quadrant exch \fi + 0 0 + ] concat + } \tx@TMChange}% + \box\pst@hbox + \pst@Verb{\tx@TMRestore}% + \kern\pst@dima}% + \endgroup} + \end{lstlisting} + + + {\verb+\psTilt+} + \begin{lstlisting} +\def\psTilt#1{\pst@makebox{\psTilt@{#1}}} +\def\psTilt@#1{% + \begingroup + \leavevmode + \pst@getsinandcos{#1}% + \hbox{% + \ifodd\pst@quadrant + \pst@@divide{\dp\pst@hbox}{\pst@cos\p@}% + \ifnum\pst@quadrant=\thr@@\kern\else\pst@dima=\fi\pst@sin\pst@dimg + \pst@@divide{\ht\pst@hbox}{\pst@cos\p@}% + \ifnum\pst@quadrant=\@ne\kern\else\pst@dima=\fi\pst@sin\pst@dimg + \else + \ifdim\pst@sin\p@=\z@ + \@pstrickserr{\string\psTilt\space angle cannot be 0 or 180}\@ehpa + \def\pst@sin{.7071}% + \def\pst@cos{.7071}% + \fi + \pst@@divide{\dp\pst@hbox}{\pst@sin\p@}% + \ifnum\pst@quadrant=\z@\kern\else\pst@dima=\fi\pst@cos\pst@dimg + \pst@@divide{\ht\pst@hbox}{\pst@sin\p@}% + \ifnum\pst@quadrant=\tw@\kern\else\pst@dima=\fi\pst@cos\pst@dimg + \fi + \ifnum\pst@quadrant>\@ne + \pst@dimg=\ht\pst@hbox + \ht\pst@hbox=\dp\pst@hbox + \dp\pst@hbox=\pst@dimg + \fi + \pst@Verb{% + { [ 1 0 + \pst@cos\space \pst@sin\space + \ifodd\pst@quadrant exch \fi + \tx@Div + \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi + \ifnum\pst@quadrant>\@ne -1 \else 1 \fi + 0 0 + ] concat + } \tx@TMChange}% + \box\pst@hbox + \pst@Verb{\tx@TMRestore}% + \kern\pst@dima}% + \endgroup} + \end{lstlisting} + + + {\verb+\psset@Tshadowsize,\psTshadowsize+} +\begin{lstlisting} +\define@key[psset]{pst-3d}{Tshadowsize}{% + \pst@checknum{#1}\psTshadowsize} +\psset[pst-3d]{Tshadowsize=1} +\end{lstlisting} + + +{\verb+\psset@Tshadowangle,\psk@Tshadowangle+} +\begin{lstlisting} +\define@key[psset]{pst-3d}{Tshadowangle}{% + \pst@getangle{#1}\psk@Tshadowangle} +\psset[pst-3d]{Tshadowangle=60} +\end{lstlisting} + + + {\verb+\psset@Tshadowcolor,\psTshadowcolor+} +\begin{lstlisting} +\define@key[psset]{pst-3d}{Tshadowcolor}{% + \pst@getcolor{#1}\psTshadowcolor} +\psset[pst-3d]{Tshadowcolor=lightgray} +\end{lstlisting} + + + {\verb+\psshadow+} +\begin{lstlisting} +\def\psshadow{\def\pst@par{}\pst@object{psshadow}} +\def\psshadow@i{\pst@makebox{\psshadow@ii}} +\def\psshadow@ii{% + \begingroup + \use@par + \leavevmode + \pst@getsinandcos{\psk@Tshadowangle}% + \hbox{% + \lower\dp\pst@hbox\hbox{% + \pst@Verb{% + { [ 1 0 + \pst@cos\space \psTshadowsize mul + \ifnum\pst@quadrant>\@ne neg \fi + \pst@sin\space \psTshadowsize mul + \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi + \ifodd\pst@quadrant exch \fi + 0 0 + ] concat + } \tx@TMChange}}% + \hbox to\z@{{\@nameuse{\psTshadowcolor}\copy\pst@hbox\hss}}% + \pst@Verb{\tx@TMRestore}% + \box\pst@hbox}% + \endgroup} + \end{lstlisting} + +\section{Affin Transformations} + +\begin{BDef} +\Lcs{psAffinTransform}\OptArgs\Largb{transformation matrix}\Largb{object} +\end{BDef} + +\begin{LTXexample}[width=3cm] +\pspicture(3,6)\psset{linewidth=4pt,arrows=->} +\psline(0,0)(1.5,0)(3,3)\rput*(2.25,1.5){foo} +\psAffinTransform{0.5 0 0 2 0 0}{\color{red}% + \psline[linecolor=red](0,0)(1.5,0)(3,3)\rput*(2.25,1.5){foo}}% +\endpspicture +\end{LTXexample} + +The transformation matrix must be a list of 6 values divided by a space. +For a translation modify the last two values of $1 0 0 1 dx dy$. The values for +$dx$ and $dy$ must be of the unit pt! For a rotation +we have the transformation matrix + +\begin{align} +\left[\begin{aligned} \cos(\alpha) & \sin(\alpha) & 0 \\ +-\sin(\alpha) & \cos(\alpha) & 0 \\ +0 & 0 & 1\end{aligned}\right] +\end{align} + +For \Lcs{psAffinTransform} the four values have to be modifies \texttt{a cos a sin a sin neg a cos 0 0}. +Tilting can be done with $sx 0 0 sy 0 0$. All effects can be combined. + +\begin{LTXexample}[width=3cm] +\pspicture(3,6)\psset{linewidth=4pt,arrows=->} +\psline(0,0)(1.5,0)(3,3)\rput*(2.25,1.5){foo} +\psAffinTransform{0.5 0.8 0.3 2 20 -20}{\color{red}% + \psline[linecolor=red](0,0)(1.5,0)(3,3)\rput*(2.25,1.5){foo}}% +\endpspicture +\end{LTXexample} + + +\clearpage +\section{List of all optional arguments for \texttt{pst-3d}} + +\xkvview{family=pst-3d,columns={key,type,default}} + + + + + +\nocite{*} +\bgroup +\RaggedRight +\bibliographystyle{plain} +\bibliography{pst-3d-doc} +\egroup + +\printindex + + + + + +\end{document} diff --git a/Master/texmf-dist/doc/generic/pst-3d/pst-3d.pdf b/Master/texmf-dist/doc/generic/pst-3d/pst-3d.pdf Binary files differdeleted file mode 100644 index c7d3ba8d7e8..00000000000 --- a/Master/texmf-dist/doc/generic/pst-3d/pst-3d.pdf +++ /dev/null diff --git a/Master/texmf-dist/dvips/pst-3d/pst-3d.pro b/Master/texmf-dist/dvips/pst-3d/pst-3d.pro new file mode 100644 index 00000000000..de7afcf7e42 --- /dev/null +++ b/Master/texmf-dist/dvips/pst-3d/pst-3d.pro @@ -0,0 +1,87 @@ +%% $Id: pst-3d.pro 247 2010-01-04 22:45:42Z herbert $ +% PostScript prologue for pst-3d.tex. +% Version 0.01, 2010/01/01 +% +/tx@3Ddict 300 dict def +tx@3Ddict begin +% +/SetMatrixThreeD { + dup sin /e ED cos /f ED + /p3 ED /p2 ED /p1 ED + p1 0 eq + { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def + p3 p2 abs + } + { p2 0 eq + { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def + p3 p1 abs + } + { p1 dup mul p2 dup mul add sqrt dup + p1 exch div /a ED + p2 exch div neg /b ED + p3 p1 a div + } + ifelse + } + ifelse + atan dup sin /c ED cos /d ED + /Matrix3D + [ + b f mul c a mul e mul sub + a f mul c b mul e mul add + d e mul + b e mul neg c a mul f mul sub + a e mul neg c b mul f mul add + d f mul + ] def +} def +% +/ProjThreeD { + /z ED /y ED /x ED + Matrix3D aload pop + z mul exch y mul add exch x mul add + 4 1 roll + z mul exch y mul add exch x mul add + exch +} def +% +/SetMatrixEmbed { + SetMatrixThreeD + Matrix3D aload pop + /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED + SetMatrixThreeD + [ + Matrix3D aload pop + z3 mul exch z2 mul add exch z1 mul add 4 1 roll + z3 mul exch z2 mul add exch z1 mul add + Matrix3D aload pop + x3 mul exch x2 mul add exch x1 mul add 4 1 roll + x3 mul exch x2 mul add exch x1 mul add + 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy + x3 mul exch x2 mul add exch x1 mul add 4 1 roll + z3 mul exch z2 mul add exch z1 mul add + ] + concat +} def +% +/TMSave { + tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if + /TMatrix [ TMatrix CM ] cvx def +} def +% +/TMRestore { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def +% +/TMChange { + TMSave + /cp [ currentpoint ] cvx def % ??? Check this later. + CM + CP T STV + CM matrix invertmatrix % Inv(M') + matrix concatmatrix % M Inv(M') + exch exec + concat cp moveto +} def +% +end % of tx@3Ddict +%% +%% End of file `pst-3d.pro'. diff --git a/Master/texmf-dist/source/generic/pst-3d/Makefile b/Master/texmf-dist/source/generic/pst-3d/Makefile new file mode 100644 index 00000000000..0c3e4ce9a8c --- /dev/null +++ b/Master/texmf-dist/source/generic/pst-3d/Makefile @@ -0,0 +1,69 @@ +# `Makefile' for `pst-3d.pdf', hv, 2007/03/17 + +.SUFFIXES : .tex .ltx .dvi .ps .pdf .eps + +PACKAGE = pst-3d + +MAIN = $(PACKAGE)-doc + +LATEX = latex + +TDS = ~/PSTricks/PSTricks-TDS + +ARCHNAME = $(MAIN)-$(shell date +%y%m%d) + +ARCHFILES = $(PACKAGE).sty $(PACKAGE).tex $(PACKAGE).pro $(MAIN).tex README Changes Makefile + +all : doc clean +doc: $(MAIN).pdf + +$(MAIN).pdf : $(MAIN).ps + GS_OPTIONS=-dAutoRotatePages=/None ps2pdf $< + +$(MAIN).ps : $(MAIN).dvi + dvips $< + +$(MAIN).dvi : $(MAIN).tex + $(LATEX) $< + $(LATEX) $< + if ! test -f $(basename $<).glo ; then touch $(basename $<).glo; fi + if ! test -f $(basename $<).idx ; then touch $(basename $<).idx; fi + makeindex -s gglo.ist -t $(basename $<).glg -o $(basename $<).gls \ + $(basename $<).glo + makeindex -t $(basename $<).ilg -o $(basename $<).ind \ + $(basename $<).idx + bibtex $(basename $<) + $(LATEX) $< + $(LATEX) $< + +clean : + $(RM) $(addprefix $(MAIN), .log .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .Roessler .bbl ) + $(RM) $(addprefix $(MAIN), .dvi .ps) + +veryclean : clean + $(RM) $(addprefix $(MAIN), .pdf .bbl .blg) + +arch : + zip $(ARCHNAME).zip $(ARCHFILES) + +tds: + cp -u Changes $(TDS)/doc/generic/$(PACKAGE)/ + cp -u README $(TDS)/doc/generic/$(PACKAGE)/ + cp -u $(MAIN).pdf $(TDS)/doc/generic/$(PACKAGE)/ +# + cp -u Changes $(TDS)/tex/latex/$(PACKAGE)/ + cp -u $(PACKAGE).sty $(TDS)/tex/latex/$(PACKAGE)/ +# + cp -u Changes $(TDS)/tex/generic/$(PACKAGE)/ + cp -u $(PACKAGE).tex $(TDS)/tex/generic/$(PACKAGE)/ +# + cp -u Changes $(TDS)/dvips/$(PACKAGE)/ + cp -u $(PACKAGE).pro $(TDS)/dvips/$(PACKAGE)/ + cp -u $(PACKAGE).pro ~/Links/dvips-local/ +# + cp -u Changes $(TDS)/source/$(PACKAGE)/ + cp -u $(MAIN).tex $(TDS)/source/$(PACKAGE)/ + cp -u $(MAIN).bib $(TDS)/source/$(PACKAGE)/ + cp -u Makefile $(TDS)/source/$(PACKAGE)/ + +# EOF diff --git a/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx b/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx deleted file mode 100644 index 291524ae593..00000000000 --- a/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx +++ /dev/null @@ -1,1608 +0,0 @@ -% \iffalse meta-comment, etc. -%% -%% Package `pst-3d.dtx' -%% -%% Timothy Van Zandt <tvz@nwu.edu> (tvz) -%% Herbert Voss <voss@pstricks.de> (hv) -%% -%% September 03, 2005 -%% -%% This file is under the LaTeX Project Public License -%% See CTAN archives in directory macros/latex/base/lppl.txt. -%% -%% DESCRIPTION: -%% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks -%% -% \fi -% \iffalse -%<*driver> -\documentclass{ltxdoc} -\GetFileInfo{pst-3d.dtx} -\usepackage[T1]{fontenc} -\usepackage{textcomp,fancyvrb} -\usepackage{graphics,showexpl} -\usepackage{amsmath,array} -\usepackage{multido} -\usepackage{pstricks,pst-node,pst-plot} -\usepackage{pst-3d} -\AtBeginDocument{ -% \OnlyDescription % comment out for implementation details - \EnableCrossrefs - \RecordChanges - \CodelineIndex} -\AtEndDocument{ - \PrintChanges - \PrintIndex} -\hbadness=7000 % Over and under full box warnings -\hfuzz=3pt -\begin{document} - \DocInput{pst-3d.dtx} -\end{document} -%</driver> -% \fi -% -% \changes{v1.00}{2005/09/08}{% -% using the extended pst-xkey instead of the old pst-key package; -% creating a dtx file; -% new \LaTeX\ wrapper file (hv)} -% \changes{v0.90}{2001/02/16}{First public release. (tvz)} -% -% \DoNotIndex{\!,\",\#,\$,\%,\&,\',\(,\+,\*,\,,\-,\.,\/,\:,\;,\<,\=,\>,\?} -% \DoNotIndex{\@,\@B,\@K,\@cTq,\@f,\@fPl,\@ifnextchar,\@nameuse,\@oVk} -% \DoNotIndex{\[,\\,\],\^,\_,\ } -% \DoNotIndex{\^,\\^,\\\^,$\^$,$\\^$,$\\^$} -% \DoNotIndex{\0,\2,\4,\5,\6,\7,\8,} -% \DoNotIndex{\A,\a} -% \DoNotIndex{\B,\b,\Bc,\begin,\Bq,\Bqc} -% \DoNotIndex{\C,\c,\catcode,\cJA,\CodelineIndex,\csname} -% \DoNotIndex{\D,\def,\define@key,\Df,\divide,\DocInput,\documentclass,\pst@addfams} -% \DoNotIndex{\eCN,\edef,\else,\eHd,\eMcj,\EnableCrossrefs,\end,\endcsname} -% \DoNotIndex{\endCenterExample,\endExample,\endinput,\endpsclip} -% \DoNotIndex{\PrintIndex,\PrintChanges,\ProvidesFile} -% \DoNotIndex{\endpspicture,\endSideBySideExample,\Example} -% \DoNotIndex{\F,\f,\FdUrr,\fi,\filedate,\fileversion,\FV@Environment} -% \DoNotIndex{\FV@UseKeyValues,\FV@XRightMargin,\FVB@Example,\fvset} -% \DoNotIndex{\G,\g,\GetFileInfo,\gr,\GradientLoaded,\gsFKrbK@o,\gsj,\gsOX} -% \DoNotIndex{\hbadness,\hfuzz,\HLEmphasize,\HLMacro,\HLMacro@i} -% \DoNotIndex{\HLReverse,\HLReverse@i,\hqcu,\HqY} -% \DoNotIndex{\I,\i,\ifx,\input,\Ir,\IU} -% \DoNotIndex{\j,\jl,\JT,\JVodH} -% \DoNotIndex{\K,\k,\kfSlL} -% \DoNotIndex{\L,\let} -% \DoNotIndex{\message,\mHNa,\mIU} -% \DoNotIndex{\N,\nB,\newcmykcolor,\newdimen,\newif,\nW} -% \DoNotIndex{\O,\oCDJDo,\ocQhVI,\OnlyDescription,\oRKJ} -% \DoNotIndex{\P,\p,\ProvidesPackage,\psframe,\pslinewidth,\psset} -% \DoNotIndex{\PstAtCode,\PSTricksLoaded} -% \DoNotIndex{\q,\Qr,\qssRXq,\qu,\qXjFQp,\qYL} -% \DoNotIndex{\R,\r,\RecordChanges,\relax,\RlaYI,\rN,\Rp,\rp,\RPDXNn,\rput} -% \DoNotIndex{\S,\scalebox,\SgY,\SideBySide@Example,\SideBySideExample} -% \DoNotIndex{\SgY,\sk,\Sp,\space,\sZb} -% \DoNotIndex{\T,\the,\tw@} -% \DoNotIndex{\u,\UiSWGEf@,\uJi,\usepackage,\uVQdMM,\UYj} -% \DoNotIndex{\VerbatimEnvironment,\VerbatimInput,\VrC@} -% \DoNotIndex{\WhZ,\WjKCYb,\WNs} -% \DoNotIndex{\XkN,\XW} -% \DoNotIndex{\Z,\ZCM,\Ze} -% \DoNotIndex{\addtocounter,\advance,\alph,\arabic,\AtBeginDocument,\AtEndDocument} -% \DoNotIndex{\AtEndOfPackage,\begingroup,\bfseries,\bgroup,\box,\csname} -% \DoNotIndex{\else,\endcsname,\endgroup,\endinput,\expandafter,\fi} -% \DoNotIndex{\TeX,\z@,\p@,\@one,\xdef,\thr@@,\string,\sixt@@n,\reset,\or,\multiply,\repeat,\RequirePackage} -% \DoNotIndex{\@cclvi,\@ne,\@ehpa,\@nil,\copy,\dp,\global,\hbox,\hss,\ht,\ifodd,\ifdim,\ifcase,\kern} -% \DoNotIndex{\chardef,\loop,\leavevmode,\ifnum,\lower} -% \setcounter{IndexColumns}{2} -% -% \let\pstIIIDFileVersion\fileversion -% \let\pstIIIDFileDate\filedate -% \newcommand{\PstIIIDPackage}{`\textsf{pst-3d}'} -% \newcommand{\PstIIIDMacro}{\cs{Pst3d}} -% -% ^^A From ltugboat.cls -% -% ^^A Typeset the name of an environment -% \providecommand\env[1]{\textsf{#1}} -% \providecommand\clsname[1]{\textsf{#1}} -% \providecommand\pkgname[1]{\textsf{#1}} -% \providecommand\optname[1]{\textsf{#1}} -% \providecommand\progname[1]{\textsf{#1}} -% -% ^^A A list of options for a package/class -% \newenvironment{optlist}{\begin{description}% -% \renewcommand\makelabel[1]{% -% \descriptionlabel{\mdseries\optname{##1}}}% -% \itemsep0.25\itemsep}% -% {\end{description}} -% -% \makeatletter -% -% ^^A Utility macros -% -% ^^A Example macros - adapted from the `fvrb-ex' package -% ^^A --------------------------------------------------- -% -% ^^A Take care that we use here the four /?_Z characters as escape -% ^^A characters, so we can't use these characters in the examples! -% -% ^^A To highlight some verbatim sequences (comments, macro names, etc.) -% \def\HLEmphasize#1{\textit{#1}} -% \newcommand{\BS}{\texttt{\symbol{`\\}}} -% \def\HLMacro#1{\BS{}def\HLMacro@i#1\@nil} -% \def\HLMacro@i#1def#2\@nil{\HLReverse{#2}} -% \def\HLReverse#1{{\setlength{\fboxsep}{1pt}\HLReverse@i{#1}}} -% \def\HLReverse@i#1{\colorbox{black}{\textcolor{white}{\textbf{#1}}}} -% -% \def\Example{\FV@Environment{}{Example}} -% \def\endExample{% -% \end{VerbatimOut} -% \Below@Example{\input{\jobname.tmp}} -% \endgroup} -% -% \def\CenterExample{\FV@Environment{}{Example}} -% \def\endCenterExample{% -% \end{VerbatimOut} -% \begin{center} -% \Below@Example{\input{\jobname.tmp}} -% \end{center} -% \endgroup} -% -% \def\SideBySideExample{\FV@Environment{}{Example}} -% \def\endSideBySideExample{% -% \end{VerbatimOut} -% \SideBySide@Example{\input{\jobname.tmp}} -% \endgroup} -% -% \def\FVB@Example{% -% \begingroup -% \FV@UseKeyValues -% \parindent=0pt -% \multiply\topsep by 2 -% \VerbatimEnvironment -% \begin{VerbatimOut}[gobble=4,codes={\catcode`\Z=12}]{\jobname.tmp}} -% -% \def\Below@Example#1{% -% \VerbatimInput[gobble=0,commentchar=Z,commandchars=/?_,frame=single, -% numbers=left,numbersep=3pt]{\jobname.tmp} -% \catcode`\%=14\relax -% \catcode`\Z=9\relax -% ^^A We suppress the effect of the highlighting macros -% \catcode`/=0\relax -% \catcode`?=1\relax -% \catcode`_=2\relax -% \def\HLEmphasize##1{##1}% -% \def\HLMacro##1{##1}% -% \def\HLReverse##1{##1}% -% #1 -% \par} -% -% \def\SideBySide@Example#1{% -% \vskip 1mm -% \@tempdimb=\FV@XRightMargin -% \advance\@tempdimb -5mm -% \begin{minipage}[c]{\@tempdimb} -% \fvset{xrightmargin=0pt} -% \catcode`\%=14\relax -% \catcode`\Z=9\relax -% ^^A We suppress the effect of the highlighting macros -% \catcode`/=0\relax -% \catcode`?=1\relax -% \catcode`_=2\relax -% \def\HLEmphasize##1{##1}% -% \def\HLMacro##1{##1}% -% \def\HLReverse##1{##1}% -% #1 -% \end{minipage}% -% \@tempdimb=\textwidth -% \advance\@tempdimb -\FV@XRightMargin -% \advance\@tempdimb 5mm -% \begin{minipage}[c]{\@tempdimb} -% \VerbatimInput[gobble=0,commentchar=Z,commandchars=/?_, -% frame=single,numbers=left,numbersep=3pt, -% xleftmargin=5mm,xrightmargin=0pt]{\jobname.tmp} -% \end{minipage} -% \vskip 1mm} -% -% ^^A End of example macros from `fvrb-ex' -% -% ^^A Customizations of the "Verbatim" environment -% \RecustomVerbatimEnvironment{Verbatim}{Verbatim}% -% {gobble=4,frame=single,numbers=left,numbersep=3pt,commandchars=/?_} -% -% ^^A For the possible index and changes log -% \setlength{\columnseprule}{0.6pt} -% -% -% \def\PiCTeX{PiC\TeX} -% \def\arc{\texttt{arc}} -% \def\sign{\texttt{sign}} -% -% ^^A Beginning of the documentation itself -% -% \title{The \PstIIIDPackage{} package\\Tilting and other pseudo-3D tricks with PSTricks} -% \author{Timothy Van Zandt\\ -% Herbert Vo\ss} -% \date{Version \pstIIIDFileVersion\ \pstIIIDFileDate\ \\ -% {\small Documentation revised \today\ (hv)}} -% -% \maketitle -% -% \begin{abstract} -% \texttt{pst-3d} provides basic macros for shadows, tilting and -% three dimensional representations of text or graphical objects. -% \end{abstract} -% -% \clearpage -% \tableofcontents -% -% \section{introduction} -% -% The base package \texttt{pstricks} already disposes of some macros with which three -% dimensional effects can be obtained. -% There are several packages though which support the creation of three -% dimensional objects or functions. A compilation is shown in -% table~\ref{tab:pst3d:pakete}. Here already several of the packages overlap, for -% parallel developments are nothing unusual in the \TeX{} world. Although -% \verb+pst-3d+ is one of the older packages, it shall be dealt with nevertheless, -% for it also contains the preliminary stage of the 3D representations, that is -% shadow creation and tilting. -% -% \begin{table}[htb] -% \caption{Summary of all 3D packages}\label{tab:pst3d:pakete} -% \centering -% \begin{tabular}{ll} -% \emph{package} & \emph{content}\\\hline -% \texttt{pst-3d} & basic 3D operations\\ -% \texttt{pst-3dplot} & Three dimensional plots\\ -% \texttt{pst-fr3d} & Three dimensional framed Boxes\\ -% \texttt{pst-gr3d} & 3D grids\\ -% \texttt{pst-map3dII}& 3D Geographical Projection\\ -% \texttt{pst-ob3d} & Three dimensional basic objects\\ -% \texttt{pst-vue3d} & Three dimensional views\\ -% \end{tabular} -% \end{table} -% -% -% \section{Shadow}\label{sec:pst3d:schattenwurf} -% \verb+pst-3d+ defines the macro \verb+\psshadow+ with the following syntax: -% \begin{verbatim} -% \psshadow[<parameters>]{<material>] -% \end{verbatim} -% As parameters the ones given in table~\ref{tab:pst-3d:schattenparameter} are -% available next to all previously defined, if they have a meaning for the -% material to be shadowed. This can be anything text-like, text, rules and -% mathematical expressions in inline mode. -% -% \medskip -% \begin{SideBySideExample}[xrightmargin=.35\linewidth] -% \newgray{gray75}{.75} -% \psset{Tshadowcolor=gray75} -% \psshadow{\huge Shadow}\\[10pt] -% \psshadow{\huge $f(x)=x^2$}\\[15pt] -% \psshadow[Tshadowsize=2.5]{% -% \rule{2cm}{10pt}} -% \end{SideBySideExample} -% -% \subsection{Parameters}\label{subsec:pst3d:schattenparameter} -% Table~\ref{tab:pst-3d:schattenparameter} shows a compilation of the used -% parameters. -% -% -% -% -% \begin{table}[htb] -% \caption{Summary of all \texttt{shadow} parameters}\label{tab:pst-3d:schattenparameter} -% \centering -% \begin{tabular}{>{\ttfamily}l>{\ttfamily}l>{\ttfamily}l} -% \textrm{\emph{name}} & \textrm{\emph{values}} & \textrm{\emph{default}}\\\hline -% Tshadowangle & <angle> & 60\\ -% Tshadowcolor & <colour> & lightgray\\ -% Tshadowsize & <value> & 1 -% \end{tabular} -% \end{table} -% -% -% \subsubsection{\texttt{Tshadowangle}}\label{subsubsec:pst3d:tshadowangle} -% \verb+Tshadowangle+ denotes the angle of the shadow, -% referring to the perpendicular of the paper plane. The angle of $90$° therewith -% corresponds to the text itself. Negative angles cause the shadow to arise -% from the paper plane. - -% \medskip -% \begin{SideBySideExample}[xrightmargin=.25\linewidth] -% \newgray{gray75}{.75} -% \psset{Tshadowcolor=gray75} -% \psshadow{\huge shadow}\\[5pt] -% \psshadow[Tshadowangle=30]{\huge shadow}\\[5pt] -% \psshadow[Tshadowangle=70]{\huge shadow}\\[5pt] -% \psshadow[Tshadowangle=-30]{\huge shadow} -% \end{SideBySideExample} -% -% \medskip -% \begin{itemize} -% \item Angular values of $0$° and $180$° are not allowed. -% \end{itemize} -% -% -% -% \subsubsection{\texttt{Tshadowcolor}}\label{subsubsec:pst3d:tshadowcolor} -% \verb+Tshadowcolor+ deontes the shadow colour. -% -% \begin{SideBySideExample}[xrightmargin=.25\linewidth] -% \psshadow{\huge shadow}\\[5pt] -% \psshadow[Tshadowcolor=red]{\huge shadow}\\[5pt] -% \psshadow[Tshadowcolor=green]{\huge shadow}\\[5pt] -% \psshadow[Tshadowcolor=blue]{\huge shadow} -% \end{SideBySideExample} -% -% -% \subsubsection{\texttt{Tshadowsize}}\label{subsubsec:pst3d:tshadowsize} -% \verb+Tshadowsize+ determines the size of the -% shadow\index{shadow!size} as a scaling factor\index{scaling factor}. -% -% \begin{SideBySideExample}[xrightmargin=.25\linewidth] -% \psshadow{\Huge shadow}\\[5pt] -% \psshadow[Tshadowsize=0.5]{\Huge shadow}\\[10pt] -% \psshadow[Tshadowsize=1.5]{\Huge shadow}\\[20pt] -% \psshadow[Tshadowsize=2.5]{\Huge shadow} -% \end{SideBySideExample} -% -% -% -% -% -% \section{Tilting}\label{sec:pst3d:kippen} -% With the tilting of objects the -% perspective views of three dimensional objects can be simulated. \verb+pst-3d+ -% defines two macros for this. -% -% \begin{verbatim} -% \pstilt[<parameters>]{<angle>}{<material>} -% \psTilt[<parameters>]{<angle>}{<material>} -% \end{verbatim} -% -% Figure~\ref{fig:pst3d:demo} shows the difference between these two macros. -% Principally everything can be given as argument to those macros and therewith -% tilted. With vertical material, as distinguished formulae, eventually the -% argument has to be put into a \verb+\parbox+ before (see -% example), -% -% \begin{figure}[htb] -% \centering -% \bgroup -% \begin{pspicture}(0,-0.2)(9,3) -% \psline[linestyle=dashed](0,2)(9,2) -% \psline{->}(9,0) -% \def\Bar{\psframe*[linecolor=lightgray](0,0)(0.5,2)} -% \rput(0.5,0){\Bar} -% \psset{arrowscale=2,linewidth=0.1pt,tbarsize=2mm} -% \psline{|<->|}(0.25,0)(0.25,2)\rput*{90}(0.25,1){\small 2cm} -% \rput(2,0){\psTilt{30}{\Bar}} -% \psarc{->}(2.2,0){2}{0}{26}\rput(4.5,0.5){30°} -% \pnode(2,0.3){A}\pnode(5.3,2.25){B} -% \ncline{|<->|}{A}{B}\ncput*[nrot=:U]{\small 4cm} -% \rput(6,0){\pstilt{30}{\Bar}} -% \psarc{->}(6.2,0){2}{0}{26}\rput(8.5,0.5){30°} -% \pnode(6,0.3){A}\pnode(7.65,1.25){B} -% \ncline{|<->|}{A}{B}\ncput*[nrot=:U]{\small 2cm} -% \uput[90](0.5,2.5){\cs{Bar}} -% \uput[90](3.75,2.5){\cs{psTilt\{30\}\{\textbackslash Bar\}}} -% \uput[90](7.25,2.5){\cs{pstilt\{30\}\{\textbackslash Bar\}}} -% \end{pspicture} -% \egroup -% \caption{Demonstration of the difference between \cs{pstilt} and \cs{psTilt}}\label{fig:pst3d:demo} -% \end{figure} -% -% \medskip -% \begin{itemize} -% \item Angular values of $0$\textdegree\ and $180$\textdegree\ are not allowed. -% \end{itemize} -% -% \subsection{\cs{pstilt}}\label{subsec:pst3d:pstilt} -% \verb+\pstilt+ tilts objects that their original height appears -% as new length of the tilted object, wherewith the object becomes smaller. The -% hynotenuse of the triangle from nadir, height and perpendicular now corresponds -% to the old height (see figure~\ref{fig:pst3d:demo}). At this the length is -% calculated from the middle of the base side. -% -% -% \medskip\noindent -% \begin{SideBySideExample}[xrightmargin=.4\linewidth] -% \def\Bar{\psframe(0,0)(0.25,2)} -% \begin{pspicture}(5,2) -% \multido{\nA=15+15}{11}{\rput(2.5,0){% -% \pstilt{\nA}{\Bar}}} -% \end{pspicture} -% \end{SideBySideExample} -% -% -% -% \medskip\noindent -% \begin{SideBySideExample}[xrightmargin=.4\linewidth] -% \pstilt{60}{% -% \begin{pspicture}(-0.5,-0.5)(2,2) -% \psaxes[axesstyle=frame](2,2) -% \end{pspicture}} -% \end{SideBySideExample} -% -% -% \medskip\noindent -% \begin{SideBySideExample}[xrightmargin=.4\linewidth] -% \newpsstyle{TCyan}{% -% fillstyle=vlines,hatchcolor=cyan, -% hatchwidth=0.1\pslinewidth,% -% hatchsep=1.5\pslinewidth} -% \begin{pspicture}(2,4) -% \rput[lb](0,0){\pstilt{45}{% -% \psframe[linestyle=dashed,% -% fillstyle=solid,fillcolor=red](2,4)}} -% \psframe[style=TCyan](0,0)(2,4) -% \end{pspicture} -% \end{SideBySideExample} -% -% -% \medskip -% With the package \verb+rotating+ macros to rotate text are -% provided, to achieve slant table headings for example. It is more difficult when -% they are provided with a frame. With \cs{pstilt} or \cs{psTilt} this is no -% problem. The program listing given below only shows the application of -% \cs{pstilt} for the macro only has to be replaced by \cs{psTilt} to obtain the -% other example. - -% \begin{SideBySideExample}[xrightmargin=.3\linewidth] -% \begin{tabular}{l} -% \pstilt{60}{% -% \begin{tabular}{|p{1em}|p{1em}|p{1em}|}\hline -% \psrotateleft{column 1\ } -% & \psrotateleft{column 2\ } -% & \psrotateleft{column 3\ } -% \end{tabular}}\\ -% \begin{tabular}{|p{1em}|p{1em}|p{1em}|}\hline -% 1 & 2 & 3 \\\hline -% 4 & 5 & 6 \\\hline -% \end{tabular} -% \end{tabular} -% \end{SideBySideExample} -% -% -% \subsection{\cs{psTilt}}\label{subsec:pst3d:psTilt} -% \verb+\psTilt+ tilts objects that their original height is -% preserved, so that the object could become infinitely long in theory (see -% figure~\ref{fig:pst3d:demo}). -% -% -% \medskip\noindent -% \begin{CenterExample} -% \begin{pspicture}(5,2) -% \def\Bar{\psframe(0,0)(0.25,2)} -% \multido{\nA=15+15}{11}{\rput(2.5,0){% -% \psTilt{\nA}{\Bar}}} -% \end{pspicture} -% \end{CenterExample} -% -% -% -% \medskip\noindent -% \begin{SideBySideExample}[xrightmargin=.4\linewidth] -% \psTilt{60}{% -% \begin{pspicture}(-0.5,-0.5)(2,2) -% \psaxes[axesstyle=frame](2,2) -% \end{pspicture}} -% \end{SideBySideExample} -% -% -% \medskip\noindent -% \begin{SideBySideExample}[xrightmargin=.475\linewidth] -% \newpsstyle{TCyan}{% -% fillstyle=vlines,hatchcolor=cyan, -% hatchwidth=0.1\pslinewidth,% -% hatchsep=1.5\pslinewidth} -% \begin{pspicture}(2,4) -% \rput[lb](0,0){\psTilt{45}{% -% \psframe[linestyle=dashed,% -% fillstyle=solid,% -% fillcolor=red](2,4)}} -% \psframe[style=TCyan](0,0)(2,4) -% \end{pspicture} -% \end{SideBySideExample} -% -% -% \section[Three dimensional representations]{% -% Three dimensional representations\protect\footnote{Some of the examples were created by Manuel Luque.}}\label{sec:pst3d:3d} -% -% -% \verb+pst-3d+ only supports parallel projections, so that geometrical objects -% such as spheres or cylinders can only be displayed restricted. Although -% \verb+pst-3d+ principally only defines one single macro for the 3D -% projection, the package is very efficient in its -% application and is also used as a base for other packages.\cite{pst-3dplot}\cite{pst-vue3d} -% -% \subsection{\cs{ThreeDput}}\label{subsec:pst3d:threedput} -% \verb+pst-3d+ only defines this single macro, which can be -% used to arbitrarily display line or area shaped objects in the three dimensional -% space in the end though. -% -% \begin{verbatim} -% \ThreeDput[<parameters>]{<material>} -% \ThreeDput[<parameters>](<x,y,z>){<material>} -% \end{verbatim} -% -% Without a specification of coordinates, $(0,0,0)$ is taken as origin of -% ordinates as a rule. As ``material''{} anything is understood that can be put -% into a box. If it is vertical material in the \TeX{} sense, it has to be put in -% a \verb+\parbox+ or \verb+minipage+ before. -% -% To simplify the specified source code, the macro \verb+\IIIDKOSystem+ is used in -% the following, which draws the coordinate axes with the grid and is not -% specified in the following anymore. -% -% -% \makeatletter -% \newgray{gray75}{0.75}\newgray{gray80}{0.80}newgray{gray85}{0.85} -% \newgray{gray90}{0.90}\newgray{gray95}{0.95} -% \def\xyPlain#1{% -% \ThreeDput[normal=0 0 1](0,0,0){% -% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)% -% \psline{->}(0,0)(0,#1)\psline{->}(0,0)(#1,0)% -% \ifdim\psk@gridlabels pt>\z@ -% \uput[180]{0.2}(0,#1){$y$}\uput[-90]{0.2}(#1,0){$x$}\fi}} -% \def\xzPlain#1{% -% \ThreeDput[normal=0 -1 0](0,0,0){% -% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)% -% \psline{->}(0,0)(0,5) \psline{->}(0,0)(#1,0)% -% \ifdim\psk@gridlabels pt>\z@% -% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$x$}% -% \fi}} -% \def\yzPlain#1{% -% \ThreeDput[normal=1 0 0](0,0,0){% -% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)% -% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0)% -% \ifdim\psk@gridlabels pt>\z@% -% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$y$}% -% \fi}} -% \def\IIIDKOSystem{\@ifnextchar[{\IIIDKOSystem@i}{\IIIDKOSystem@i[]}} -% \def\IIIDKOSystem@i[#1]#2{% -% \psset{#1}% -% \xyPlain{#2}\xzPlain{#2}\yzPlain{#2}} -% \makeatother -% -% \medskip\noindent -% \begin{CenterExample} -% \makeatletter -% \def\xyPlain#1{% -% \ThreeDput[normal=0 0 1](0,0,0){% xy-plane -% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1) -% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0) -% \ifdim\psk@gridlabels pt>\z@ -% \uput[180]{0.2}(0,#1){$y$}\uput[-90]{0.2}(#1,0){$x$}\fi }} -% \def\xzPlain#1{% -% \ThreeDput[normal=0 -1 0](0,0,0){% xz-plane -% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1) -% \psline{->}(0,0)(0,5) \psline{->}(0,0)(#1,0) -% \ifdim\psk@gridlabels pt>\z@ -% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$x$}% -% \fi }} -% \def\yzPlain#1{% -% \ThreeDput[normal=1 0 0](0,0,0){% yz-plane -% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1) -% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0) -% \ifdim\psk@gridlabels pt>\z@ -% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$y$}% -% \fi }} -% \def\IIIDKOSystem{\@ifnextchar[{\IIIDKOSystem@i}{\IIIDKOSystem@i[]}} -% \def\IIIDKOSystem@i[#1]#2{% -% \psset{#1}% -% \xyPlain{#2}\xzPlain{#2}\yzPlain{#2}} -% \makeatother -% \newgray{gray75}{0.75} -% \newgray{gray80}{0.8} -% \newgray{gray85}{0.85} -% \newgray{gray95}{0.95} -% \begin{pspicture}(0,-1.25)(5,6) -% \psset{viewpoint=1 -1 0.75} -% \IIIDKOSystem{5} -% \ThreeDput{\psframe*[linecolor=gray80](3,3)} -% \ThreeDput(1.5,1.5,0){\Huge below} -% \ThreeDput(0,0,1.5){\psframe*[linecolor=gray75](3,3)} -% \ThreeDput(1.5,1.5,1.5){\Huge center} -% \ThreeDput(0,0,3){\psframe*[linecolor=gray85](3,3)} -% \ThreeDput(1.5,1.5,3){\Huge above} -% \xzPlain{5} -% \ThreeDput(4,4,0){\psframe*[linecolor=gray95](-1,-1)(1,1)} -% \ThreeDput(4,4,0){\psdot[dotscale=3]} -% \end{pspicture} -% \end{CenterExample} -% -% -% The coordinates of \verb+ThreeDput+ refer to the centre of the object, which -% does not necessarily need to be the geometrical centre. -% \begin{verbatim} -% \psframe(2,2)% centre bottom left (0,0) -% \psframe(-1,-1(1,1)% centre in the middle (0,0) -% arbitrary text% centre in the middle of the base line -% \end{verbatim} -% -% In the above example the smaller square with its centre $(0,0)$ has been set -% exactly to the coordinated $(4,4,0)$. -% The macro \verb+ThreeDput+ can be manifoldly applied, which is performed -% especially by the package \verb+pst-vue3d+\cite{pst-vue3d}. By -% specifying the normal vector $\vec{n}$ and a point $P(x,y,z)$ of the stright -% line and/or the plane the posture in space can be determined definitely. Areas -% can be provided with different levels of brightness to increase the spatial -% impression. -% -% -% -% \medskip\noindent -% \begin{CenterExample} -% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95} -% \begin{pspicture}(-4.5,-3.5)(3,4.75) -% \psset{viewpoint=1 1.5 1} -% \IIIDKOSystem[gridlabels=0pt,gridcolor=lightgray,subgriddiv=0]{5}% -% \ThreeDput[normal=0 0 1]{% xy-plane -% \psline[linewidth=3pt,linecolor=blue]{->}(4,4)(4,5.5)% -% \uput[90](4,5.5){\color{blue}$\vec{n}-{A}$}}% -% \ThreeDput[normal=0 -1 0]{% xz-plane -% \psline[linewidth=3pt,linecolor=green]{->}(4,0)(5.5,0)% -% \uput[90](5.5,0){\psscalebox{-1 1}{% -% \textcolor{green}{$\vec{n}-B$}}}}% -% \ThreeDput[normal=1 0 0]{% yz-plane -% \psline[linewidth=3pt,linecolor=red]{->}(0,4)(0,5.5)% -% \uput[0](0,5.5){$\vec{n}-{top}$}}% cube and axes -% \ThreeDput[normal=0 0 1](0,0,4){% -% \psframe*[linecolor=gray75](4,4)\rput(2,2){\Huge\textbf{TOP}}}% -% \ThreeDput[normal=0 1 0](4,4,0){% -% \psframe*[linecolor=gray95](4,4)\rput(2,2){\Huge\textbf{side A}}}% -% \ThreeDput[normal=1 0 0](4,0,0){% -% \psframe*[linecolor=gray85](4,4)\rput(2,2){\Huge\textbf{side B}}}% -% \ThreeDput[normal=0 0 1](0,0,4){% -% \psline(4,0)\uput[90](3,0){$X-top$}\psline(0,4)\uput[0](0,3){$Y-top$}}% -% \ThreeDput[normal=0 1 0](4,4,0){% -% \psline(4,0)\uput[90](3,0){$X-A$}\psline(0,4)\uput[0](0,3){$Y-A$}}% -% \ThreeDput[normal=1 0 0](4,0,0){% -% \psline(4,0)\uput[90](3,0){$X-B$}\psline(0,4)\uput[0](0,3){$Y-B$}}% -% \end{pspicture} -% \end{CenterExample} -% -% -% \subsection{3D parameters}\label{subsec:pst3d:3dParameter} -% Table~\ref{tab:pst-3d:3dparameter} shows a compilation of -% the parameters which can be used to influence 3D representations. -% -% \begin{table}[htb] -% \caption{Summary of all 3D parameters}\label{tab:pst-3d:3dparameter} -% \begin{tabular}{>{\ttfamily}l>{\ttfamily}l>{\ttfamily}l} -% \textrm{name} & \textrm{values} & \textrm{default}\\\hline -% viewpoint & <valuex valuey valuez> & 1 -1 1\\ -% viewangle & <angle> & 0\\ -% normal & <valuex valuey valuez> & 0 0 1\\ -% embedangle & <angle> & 0 -% \end{tabular} -% \end{table} -% -% \subsubsection{\texttt{viewpoint}}\label{subsubsec:pst3d:viewpoint} -% The viewing direction to the 3D object influences the -% representation essentially. With \verb+viewpoint+ the $(x,y,z)$ coordinates -% which denote the vector of the viewing direction are specified. Because of the -% parallel projection the length of this vector is unimportant, so that -% \verb+(10.5 1.5)+ and \verb+(2 1 3)+ yield the same representations. -% Figure~\ref{fig:pst3d:viewpoint} shows who somebody would regard this -% representation, whereat the representation itself is of course regarded from -% another point in this case, otherwise one had to look directly onto the vector. -% -% -% \SpecialCoor -% \def\oeil{% -% \pscurve(1;160)(0.8;180)(1;200) -% \pscustom{\gsave\psarc(0,0){1}{165}{195} -% \pscurve(1;195)(0.85;180)(1;165) -% \fill[fillstyle=solid,fillcolor=blue]\grestore} -% \pscurve[linewidth=.4pt](1;195)(0.85;180)(1;165) -% {\psset{linewidth=2pt} -% \psarc(0,1){1}{180}{270} -% \psarc(0,-1){1}{90}{180}} -% \psarc(0,0){1}{150}{210} -% \psset{linewidth=4pt,linecolor=gray} -% \pscurve(-.5,3.5)(-1,3)(-1.2,2.5)(-1.3,2)(-1.4,1)(-1.35,0.5)(-1.2,-.2)(-1.35,-.5) -% (-1.4,-1)(-1.5,-1.5)(-1.8,-2)(-1.8,-2.3)(-1.65,-2.5)(-1.35,-2.55)(-.95,-2.8) -% (-.95,-3.35)(-1,-3.65)(-.8,-4)(-.4,-4.1) -% \pscurve(-.8,-4)(-.8,-4.2)(-.5,-4.5)(-.4,-5)(-.25,-5.5)(0,-5.8)(.5,-6)} -% -% -% \begin{figure}[htb] -% \centering -% \begin{pspicture}(-5,-1)(5,6) -% \psset{viewpoint=3 5 2} -% \psset{unit=2} -% \ThreeDput[normal=0 0 1](0,0,0){% -% \psline{->}(0,0)(2,0) -% \uput[90](2,0){$x$} -% \qdisk(1,0.5){2pt} -% \psline(1,0)(1,0.5)\psline(1,0.5)(0,0.5) -% \psline[linestyle=dotted](0,0)(1,0.5) -% \psset{fillstyle=solid,fillcolor=lightgray,linestyle=none} -% \psframe(1,0)(1.15,.15) -% \psframe(0,.5)(.15,.65)} -% \ThreeDput[normal=1 0 0](0,0,0){% -% \psline{->}(0,0)(2,0) -% \uput[90](2,0){$y$} -% \psline{->}(0,0)(0,2) -% \uput[180](0,2){$z$} -% \uput[90](0.5,0){0.5} -% \uput[180](0,1.5){1.5} -% \uput[135](0,0){0} -% \rput(1.2,1.5){\large 3D representations}} -% \ThreeDput[normal=0 1 0](0,0,0){% -% \uput[90](-2,0){$x$} -% \uput[90](-1,0){1} -% \rput(-1.5,1){\texttt{pst-3d}}} -% \ThreeDput[normal=.5 -1 0](0,0,0){% -% \psframe[linestyle=none,fillstyle=hlines,hatchwidth=0.1pt, -% hatchsep=2pt,hatchcolor=gray90](0,0)(1.118,1.5) -% \psline[linewidth=3pt,linecolor=red,arrowinset=0]{->}(0,0)(1.118,1.5) -% \psline[linestyle=dashed](0,0)(2.236,3) -% \psline(1.118,0)(1.118,1.5) -% \psline(1.118,1.5)(0,1.5) -% \rput{53.3}(2.5348,3.4009){\psscalebox{0.2}{\oeil}}} -% \end{pspicture} -% \caption{Definition of the \texttt{viewpoints}}\label{fig:pst3d:viewpoint} -% \end{figure} -% -% -% For figure~\ref{fig:pst3d:viewpoint} a viewpoint of \verb+viewpoint=3 5 2+ was -% defined. If one desires to regard it for instance from the $y$ axis from a -% larger height, \verb+viewpoint=0 1 3+ could be chosen. The viewer has moved one -% unit in $y$ direction and four units in $z$ direction from the centre (origin) -% and regards everything from there. -% -% -% \medskip -% \begin{itemize} -% \item The \verb+viewpoint+ principally \textbf{has} to be defined with -% values not equal to zero, for this would lead to a division by zero. -% Specifications of $0.001$ for a coordinate are already sufficing to -% escape the division by zero and blind out the coordinate. -% \end{itemize} -% -% A good value for the viewpoint would be \verb+viewpoint=1 1 0.5+ for instance, -% which corresponds to a horizontal rotation by 45° and a vertical by ca. 20°. -% Another meaningful point is also \verb+viewpoint=1.5 1 0.5+, which now -% corresponds to a horizontal rotation by 33° and the same vertical rotation. Both -% can be seen in the examples below. -% -% \medskip -% \begin{CenterExample} -% \begin{pspicture}(-3,-2.5)(-3,4) -% \psset{unit=0.75} -% \psset{viewpoint=1 1 0.5} -% \IIIDKOSystem{5} -% \end{pspicture}\hfill -% \begin{pspicture}(-3,-2.5)(2.2,4) -% \psset{unit=0.75} -% \psset{viewpoint=1 1.5 0.5} -% \psset{gridlabels=6pt} -% \IIIDKOSystem{5} -% \end{pspicture} -% \end{CenterExample} -% -% -% \subsubsection{\texttt{viewangle}}\label{subsubsec:pst3d:viewangle} -% Additional to the \verb+viewpoint+ option one can rotate the object by another -% option called \verb+viewangle+. This could also be done by the macro \verb+\rotatebox+, -% but \verb+viewangle+ has some advantages . -% -% -% \bigskip\noindent -% \begin{CenterExample} -% \begin{pspicture}(-1,-2.5)(4,4) -% \psset{unit=0.7,viewpoint=1 1 0.5,viewangle=20} -% \IIIDKOSystem{5} -% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)} -% \ThreeDput(2,2,0){\Huge Unten} -% \end{pspicture} -% \begin{pspicture}(-3,-2.5)(1,4) -% \psset{unit=0.7,viewpoint=1 1.5 0.5,viewangle=-30} -% \IIIDKOSystem{5} -% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)} -% \ThreeDput(2,2,0){\Huge Unten} -% \end{pspicture} -% \end{CenterExample} -% -% -% \subsubsection{\texttt{normal}}\label{subsubsec:pst3d:normal} -% \verb+normal+ denotes the direction of the normal -% vector which is perpendicular to a corresponding area. -% Therewith the posture of an object in three dimensional space is definitely -% determined by the normal vector. -% -% \medskip\noindent -% \begin{CenterExample} -% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95} -% \begin{pspicture}(-3.5,-2.5)(-3,5) -% \psset{viewpoint=1 1.5 0.5} -% \IIIDKOSystem{5} -% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)} -% \ThreeDput(2,2,0){\huge\psrotatedown{xy-plane}} -% \ThreeDput[normal=0 -1 0](0,0,0){\psframe*[linecolor=gray85](4,4)} -% \ThreeDput[normal=0 1 0](2,0,2){\huge xz-plane} -% \ThreeDput[normal=1 0 0](0,0,0){\psframe*[linecolor=gray90](4,4)} -% \ThreeDput[normal=1 0 0](0,2,2){\huge yz-plane} -% \ThreeDput[normal=0 0 1](0,0,0){% xy-plane -% \psline{->}(0,0)(0,5)\psline{->}(0,0)(5,0)} -% \ThreeDput[normal=0 1 0](0,0,0){\psline{->}(0,0)(0,5)} -% \end{pspicture} -% \end{CenterExample} -% -% -% Without a assignment through the normal vector the above example could not have -% been created that easily. Let us step through the code for a better -% understanding. -% -% \begin{description} -% \item[\cs{psset\{viewpoint=1 1.5 0.5\}}:] the -% \verb+viewpoint+ is set to the point $P(1,1.5,0.5)$. -% \item[\cs{IIIDKOSystem\{5\}}:] first the coordinate system with the grid is -% drawn, so that axes and grid remain visible on the areas, which makes a -% better optical allocation possible. -% \item[\cs{ThreeDput(0,0,0)\{\textbackslash psframe*[linecolor=gray80](4,4)\}}:] -% puts a square with a side length of four into the origin of ordinates with -% the lower left edge. Since no normal vector is specified here, the default -% value $\vec{n}=(0,0,1)$ is taken, wherewith the area is positioned in the -% first quadrant of the $xy$ plane. -% \item[\cs{ThreeDput(2,2,0)\{\textbackslash huge\textbackslash psrotatedown\{xy-plane\}\}}:] -% puts the text rotated by $180$° centric to the point $(2,2,0)$ in the -% \verb+xy-plane+. -% \item[\cs{ThreeDput[normal=0 -1 0](0,0,0)\{\textbackslash psframe*[linecolor=gray85](4,4)\}}:] -% puts a square with a side length of four in the origin of ordinates with the -% lower left edge. Since the normal vector is the ``negative''{} $y$ axis, the -% square is positioned in the first quadrant of the $xz$ plane. With -% \verb+normal=0 1 0+ it would have been the second quadrant. -% \item[\cs{ThreeDput[normal=0 1 0](2,0,2)\{\textbackslash huge xz-plane\}}:] -% puts the text in the \verb+xy-plane+ centric to the point $(2,0,2)$. Because -% the $xz$ plane is regarded from the back from the viewpoint, the normal -% vector of the area has to be reversed, otherwise the text would be read from -% the ``back''{}. -% \item[\cs{ThreeDput[normal=1 0 0](0,0,0)\{\textbackslash psframe*[linecolor=gray90](4,4)\}}:] -% puts a square with a side length of four in the origin of ordinates with the -% lower left edge. The unit vector is the ``positive''{} $x$ axis, therefore -% the square is positioned in the first quadrant of the $yz$ plane. -% \item[\cs{ThreeDput[normal=1 0 0](0,2,2)\{\textbackslash huge yz-plane\}}:] -% puts the text in the \verb+yz-plane+ centric to the point $(0,2,2)$. Since -% the text is written at the ``positive''{} side of the area, the normal -% vector stays the same. -% \item[\cs{ThreeDput[normal=0 0 1](0,0,0)}:] the coordinate axes have been -% overwritten by the three areas and are redrawn now, first the $xy$ axes. -% \item[\cs{ThreeDput[normal=0 1 0](0,0,0)}:] and now the $z$ axis is drawn. -% \end{description} -% -% \subsubsection{\texttt{embedangle}}\label{subsubsec:pst3d:embedangle} -% With \verb+viewangle+ a rotation perpendicular to the plane -% of the viewer could be made. With \verb+embedangle+ a rotation perpendicular to -% the normal vector can be made. The counting of the angles is made in the -% mathematical sense, counterclockwise. -% -% \medskip -% \begin{CenterExample} -% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95} -% \def\tBlack#1#2{% -% \psframe[style=#2](2,2) -% \rput(1,1){\textcolor{#1}{\textbf{PSTricks}}}} -% \newpsstyle{SolidYellow}{fillstyle=solid,fillcolor=yellow} -% \newpsstyle{TransparencyRed}{fillstyle=vlines,hatchcolor=red, -% hatchwidth=0.1\pslinewidth,hatchsep=1\pslinewidth} -% \newpsstyle{TransparencyBlue}{fillstyle=vlines,hatchcolor=gray75,% -% hatchwidth=0.1\pslinewidth,hatchsep=1\pslinewidth} -% \begin{pspicture}(-1.2,-1.75)(4.8,3.7) -% \ThreeDput{\psgrid[subgriddiv=0](-2,0)(4,3)} -% \ThreeDput(-1,0,0){\tBlack{black}{SolidYellow}} -% \ThreeDput(2,0,0){\tBlack{black}{SolidYellow}} -% \ThreeDput[embedangle=50](-1,0,0){\tBlack{gray}{TransparencyRed}} -% \ThreeDput[embedangle=50](2,0,0){\tBlack{gray}{TransparencyBlue}} -% \ThreeDput[normal=0 1 0](-1,0,0){\psline[linewidth=0.1,linecolor=red](0,4)} -% \ThreeDput[normal=0 1 0](2,0,0){\psline[linewidth=0.1,linecolor=blue](0,4)} -% \end{pspicture} -% \psset{viewpoint=1 1 100} -% \begin{pspicture}(-2.5,-4.5)(2.8,1.7) -% \ThreeDput{\psgrid[subgriddiv=0](-2,0)(4,3)} -% \ThreeDput(-1,0,0){\tBlack{black}{SolidYellow}} -% \ThreeDput(2,0,0){\tBlack{black}{SolidYellow}} -% \ThreeDput[embedangle=50](-1,0,0){\tBlack{gray}{TransparencyRed}} -% \ThreeDput[embedangle=50](2,0,0){\tBlack{gray}{TransparencyBlue}} -% \ThreeDput[normal=0 1 0](-1,0,0){\psline[linewidth=0.1,linecolor=red](0,4)} -% \ThreeDput[normal=0 1 0](2,0,0){\psline[linewidth=0.1,linecolor=blue](0,4)} -% \end{pspicture} -% \end{CenterExample} -% -% -% \StopEventually{} -% -% ^^A .................... End of the documentation part .................... -% -% \section{Driver file} -% -% The next bit of code contains the documentation driver file for \TeX{}, -% i.e., the file that will produce the documentation you are currently -% reading. It will be extracted from this file by the \texttt{docstrip} -% program. -% -% -% \section{\PstIIIDPackage{} \LaTeX{} wrapper} -% -% \begin{macrocode} -%<*latex-wrapper> -%% -\RequirePackage{pstricks} -\ProvidesPackage{pst-3d}[2005/09/02 package wrapper for - pst-3d.tex (hv)] -\input{pst-3d.tex} -\ProvidesFile{pst-3d.tex} - [\filedate\space v\fileversion\space `PST-3d' (tvz)] -%</latex-wrapper> -% \end{macrocode} -% -% \section{\PstIIIDPackage{} code} -% -%<*pst-3d> -% -% \verb+pst-3d+ Require the basic \verb+pstricks+ package and for the key value -% operations the \verb+pst-xkey+ package. -% -% \begin{macrocode} -\ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi -\ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % (hv 2005-09-03) -% \end{macrocode} -% -% Catcodes changes. -% -% \begin{macrocode} -\edef\PstAtCode{\the\catcode`\@} -\catcode`\@=11\relax -% \end{macrocode} -% -% Add the key-family name to the xkeyval package -% -% \begin{macrocode} -\pst@addfams{pst-3d} -% \end{macrocode} -% -\def\fileversion{1.00} -\def\filedate{2005/09/03} -\message{`PST-3d' v\fileversion, \filedate\space (tvz)} -% -% Mark the package as loaded -% -% \begin{macrocode} -\csname PSTthreeDLoaded\endcsname -\let\PSTthreeDLoaded\endinput -% \end{macrocode} -% -% \subsection{Basic 3D transformations} -% -% \begin{macro}{\tx@SetMatrixThreeD} -% Viewpoint for 3D coordinates is given by three angles: $\alpha$, $\beta$ and -% $\gamma$. $\alpha$ and $\beta$ determine the direction from which one is -% looking. $\gamma$ then determines the orientation of the observing. -% When $\alpha$, $\beta$ and $\gamma$ are all zero, the observer is looking -% from the negative part of the $y$-axis, and sees the $xz$-plane the way in -% 2D one sees the $xy$ plan. Hence, to convert the 3D coordinates to their 2D -% project, $\langle x, y, z\rangle$ map to $\langle x, z\rangle$. -% When the orientation is different, we rotate the coordinates, and then -% perform the same projection. -% We move up to latitude $\beta$, over to longitude $\alpha$, and then rotate -% by $\gamma$. This means that we first rotate around $y$-axis by $\gamma$, -% then around $x$-axis by $\beta$, and the around $z$-axis by $\alpha$. -% -% Here are the matrices: -% \begin{eqnarray*} -% R_z(\alpha) & = & \left[ -% \begin{array}{ccc} -% \cos \alpha & -\sin \alpha & 0 \\ -% \sin \alpha & cos \alpha & 0 \\ -% 0 & 0 & 1 -% \end{array} \right] \\ -% R_x(\beta) & = & \left[ -% \begin{array}{ccc} -% 1 & 0 & 0 \\ -% 0 & \cos \beta & \sin \beta \\ -% 0 & -\sin \beta & \cos \beta -% \end{array} \right] \\ -% R_y(\gamma) & = & \left[ -% \begin{array}{ccc} -% \cos \gamma & 0 & -\sin \gamma \\ -% 0 & 1 & 0 \\ -% \sin \gamma & 0 & \cos \gamma -% \end{array} \right] -% \end{eqnarray*} -% -% The rotation of a coordinate is then performed by the matrix $R_z(\alpha) -% R_x(\beta) R_y(\gamma)$. The first and third columns of the matrix are the -% basis vectors of the plan upon which the 3D coordinates are project (the old -% basis vectors were $\langle 1, 0, 0\rangle$ and $\langle 0, 0, 1\rangle$; rotating these -% gives the first and third columns of the matrix). -% -% These new base vectors are: -% \begin{eqnarray*} -% \tilde{x} & = & \left[ -% \begin{array}{c} -% \cos\alpha \cos\gamma - \sin\beta \sin\alpha \sin\gamma \\ -% \sin\alpha \cos\gamma + \sin\beta \cos\alpha \sin\gamma \\ -% \cos\beta \sin\gamma -% \end{array} \right] \\ -% \tilde{z} & = & \left[ -% \begin{array}{c} -% -\cos\alpha \sin\gamma - \sin\beta \sin\alpha \cos\gamma \\ -% -\sin\alpha \sin\gamma + \sin\beta \cos\alpha \cos\gamma \\ -% \cos\beta \cos\gamma -% \end{array} \right] -% \end{eqnarray*} -% -% Rather than specifying the angles $\alpha$ and $\beta$, the user gives a -% vector indicating where the viewpoint is. This new viewpoint is the rotation -% o the old viewpoint. The old viewpoint is $\langle 0, -1, 0\rangle$, and so the new -% viewpoint is -% \[ -% R_z(\alpha) R_x(\beta) \left[ \begin{array}{c} 0\\-1\\0 \end{array} \right] -% \, = \, -% \left[ \begin{array}{c} -% \cos\beta \sin\alpha \\ -% -\cos\beta \cos\alpha \\ -% \sin\beta -% \end{array} \right] -% \, = \, -% \left[ \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right] -% \] -% Therefore, -% \begin{eqnarray*} -% \alpha & = & \arc\tan (v_1 / -v_2) \\ -% \beta & = & \arc\tan (v_3 \sin\alpha / v_1) -% \end{eqnarray*} -% Unless $p_1=p_2=0$, in which case $\alpha=0$ and $\beta=\sign(p_3)90$, or -% $p_1=p_3=0$, in which case $\beta=0$. -% -% The syntax of \verb+SetMatrixThreeD+ is -% \[ -% v_1\ v_2\ v_3\ \gamma\ \mathrm{SetMatrixThreeD} -% \] -% \verb+SetMatrixThreeD+ first computes -% \[ -% \begin{array}{ll} -% a=\sin\alpha & b=\cos\alpha\\ -% c=\sin\beta & d=\cos\beta\\ -% e=\sin\gamma & f=\cos\gamma -% \end{array} -% \] -% and then sets \verb+Matrix3D+ to \verb+[+$\tilde{x}$ $\tilde{z}$\verb+]+. -% -% \begin{macrocode} -\pst@def{SetMatrixThreeD}<% - dup sin /e ED cos /f ED - /p3 ED /p2 ED /p1 ED - p1 0 eq - { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def - p3 p2 abs - } - { p2 0 eq - { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def - p3 p1 abs - } - { p1 dup mul p2 dup mul add sqrt dup - p1 exch div /a ED - p2 exch div neg /b ED - p3 p1 a div - } - ifelse - } - ifelse - atan dup sin /c ED cos /d ED - /Matrix3D - [ - b f mul c a mul e mul sub - a f mul c b mul e mul add - d e mul - b e mul neg c a mul f mul sub - a e mul neg c b mul f mul add - d f mul - ] def> -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\tx@ProjThreeD} -% The syntax of the macro \verb+tx@ProjThreeD+ is -% \[ -% x\ y\ z\ \mathrm{ProjThreeD}\ x'\ y' -% \] -% where $x'=\langle x, y, z\rangle \cdot \tilde{x}$ and $y'=\langle x, y, z\rangle \cdot -% \tilde{z}$. -% -% \begin{macrocode} -\pst@def{ProjThreeD}<% - /z ED /y ED /x ED - Matrix3D aload pop - z mul exch y mul add exch x mul add - 4 1 roll - z mul exch y mul add exch x mul add - exch> -% \end{macrocode} -% -% To embed 2D $\langle x, y\rangle$ coordinates in 3D, the user specifies the normal -% vector and an angle. If we decompose this normal vector into an angle, as -% when converting 3D coordinates to 2D coordinates, and let $\hat\alpha$, -% $\hat\beta$ and $\hat\gamma$ be the three angles, then when these angles are -% all zero the coordinate $\langle x, y\rangle$ gets mapped to $\langle x, 0, y\rangle$, and -% otherwise $\langle x, y\rangle$ gets mapped to -% \[ -% R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma) -% \left[ \begin{array}{c} x \\ 0 \\ y \end{array} \right] -% \, = \, -% \left[ \begin{array}{c} -% \hat{x}_1 x + \hat{z}_1 y\\ -% \hat{x}_2 x + \hat{z}_2 y\\ -% \hat{x}_3 x + \hat{z}_3 y -% \end{array} \right] -% \] -% where $\hat{x}$ and $\hat{z}$ are the first and third columns of $R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma)$. -% -% Now add on a 3D-origin: -% \[ -% \left[ \begin{array}{c} -% \hat{x}_1 x + \hat{z}_1 y + x_0\\ -% \hat{x}_2 x + \hat{z}_2 y + y_0\\ -% \hat{x}_3 x + \hat{z}_3 y + z_0 -% \end{array} \right] -% \] -% -% Now when we project back onto 2D coordinates, we get -% \begin{align*} -% x' & = \tilde{x}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) + -% \tilde{x}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) + -% \tilde{x}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\ -% & = -% (\tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) x -% + (\tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) y -% + \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0\\ -% y' & = \tilde{z}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) + -% \tilde{z}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) + -% \tilde{z}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\ -% & = -% (\tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) x -% + (\tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) y -% + \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0 -% \end{align*} -% Hence, the transformation matrix is: -% \[ -% \left[ \begin{array}{c} -% \tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) \\ -% \tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) \\ -% \tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) \\ -% \tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) \\ -% \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0 \\ -% \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0 -% \end{array} \right] -% \] -% \end{macro} -% \begin{macro}{\tx@SetMatrixEmbed} -% The syntax of \verb+SetMatrixEmbed+ is -% \begin{align*} -% x_0\ y_0\ z_0\ \hat{v_1}\ \hat{v_2}\ \hat{v_3}\ \hat{\gamma}\\ -% v_1\ v_2\ v_3\ \gamma\ \mathrm{setMatrixEmbed} -% \end{align*} -% \verb+SetMatrixEmbed+ first sets \verb+<x1 x2 x3 y1 y2 y3>+ to the basis vectors for -% the viewpoint projection (the tilde stuff above). Then it sets \verb+Matrix3D+ to -% the basis vectors for the embedded plane. Finally, it sets the -% transformation matrix to the matrix given above. -% -% \begin{macrocode} -\pst@def{SetMatrixEmbed}<% - \tx@SetMatrixThreeD - Matrix3D aload pop - /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED - \tx@SetMatrixThreeD - [ - Matrix3D aload pop - z3 mul exch z2 mul add exch z1 mul add 4 1 roll - z3 mul exch z2 mul add exch z1 mul add - Matrix3D aload pop - x3 mul exch x2 mul add exch x1 mul add 4 1 roll - x3 mul exch x2 mul add exch x1 mul add - 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy - x3 mul exch x2 mul add exch x1 mul add 4 1 roll - z3 mul exch z2 mul add exch z1 mul add - ] - concat> -% \end{macrocode} -% \end{macro} -% -% \subsection{Parameter} -% -% \begin{macro}{\psk@viewpoint} -% First we need a macro \verb+\pssetzlength+ for the third coordinate. It is adopted from -% the definition of the y-axes: -% \begin{macrocode} -\let\pssetzlength\pssetylength -% \end{macrocode} -% The viewpoint is set by its three coordinates $(x\ y\ z)$. It is preset -% to $x=1$, $y=-1$ and $z=1$. -% \begin{macrocode} -\define@key[psset]{pst-3d}{viewpoint}{% - \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil - \let\psk@viewpoint\pst@tempg} -\def\psset@@viewpoint#1 #2 #3 #4\@nil{% - \begingroup - \pssetxlength\pst@dima{#1}% - \pssetylength\pst@dimb{#2}% - \pssetzlength\pst@dimc{#3}% - \xdef\pst@tempg{% - \pst@number\pst@dima \pst@number\pst@dimb \pst@number\pst@dimc}% - \endgroup} -\psset[pst-3d]{viewpoint=1 -1 1} -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\psk@viewangle} -% \begin{macrocode} -\define@key[psset]{pst-3d}{viewangle}{% - \pst@getangle{#1}\psk@viewangle} -\psset[pst-3d]{viewangle=0} -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\psk@normal} -% \begin{macrocode} -\define@key[psset]{pst-3d}{normal}{% - \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil - \let\psk@normal\pst@tempg} -\psset[pst-3d]{normal=0 0 1} -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\psk@embedangle} -% \begin{macrocode} -\define@key[psset]{pst-3d}{embedangle}{% - \pst@getangle{#1}\psk@embedangle} -\psset[pst-3d]{embedangle=0} -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\psTshadowsize} -% \begin{macrocode} -\define@key[psset]{pst-3d}{Tshadowsize}{% - \pst@checknum{#1}\psTshadowsize} -\psset[pst-3d]{Tshadowsize=1} -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\psk@Tshadowangle} -% \begin{macrocode} -\define@key[psset]{pst-3d}{Tshadowangle}{% - \pst@getangle{#1}\psk@Tshadowangle} -\psset[pst-3d]{Tshadowangle=60} -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\psTshadowcolor} -% \begin{macrocode} -\define@key[psset]{pst-3d}{Tshadowcolor}{% - \pst@getcolor{#1}\psTshadowcolor} -\psset[pst-3d]{Tshadowcolor=lightgray} -% \end{macrocode} -% \end{macro} -% - -% \subsection{\texttt{PostScript} code} -% -% \begin{macro}{\tx@TMSave} -% \begin{macrocode} -\pst@def{TMSave}<% - tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if - /TMatrix [ TMatrix CM ] cvx def> -% \end{macrocode} -% \end{macro} -% \begin{macro}{\tx@TMRestore} -% \begin{macrocode} -\pst@def{TMRestore}<% - CP /TMatrix [ TMatrix setmatrix ] cvx def moveto> -% -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\tx@TMChange} -% The syntax: -% \begin{verbatim} -% {<Proc for modifying tm>} TMChange -% \end{verbatim} -% \begin{macrocode} -\pst@def{TMChange}<% - \tx@TMSave - /cp [ currentpoint ] cvx def % ??? Check this later. - CM -% \end{macrocode} -% -% Set ''standard`` coordinate system , with \verb+pt+ units and origin at currentpoint. -% This let's us rotate, or whatever, around \TeX's current point, without -% having to worry about strange coordinate systems that the dvi-to-ps -% driver might be using. -% \begin{macrocode} - CP T \tx@STV -% \end{macrocode} -% Let M = old matrix (on stack), and M' equal current matrix. Then -% go from M' to M by applying M Inv(M'). -% \begin{macrocode} - CM matrix invertmatrix % Inv(M') - matrix concatmatrix % M Inv(M') -% \end{macrocode} -% Now modify transformation matrix: -% \begin{macrocode} - exch exec -% \end{macrocode} -% Now apply M Inv(M') -% \begin{macrocode} - concat cp moveto> -% \end{macrocode} -% \end{macro} -% -% \subsection{Three dimensional operations} -% -% There is only one macro which collects all the basic operations for three dimansional representation -% of a text or graphic object. -% -% \begin{macro}{\ThreeDput} -% \begin{macrocode} -\def\ThreeDput{\def\pst@par{}\pst@object{ThreeDput}} -\def\ThreeDput@i{\@ifnextchar({\ThreeDput@ii}{\ThreeDput@ii(\z@,\z@,\z@)}} -\def\ThreeDput@ii(#1,#2,#3){% - \pst@killglue\pst@makebox{\ThreeDput@iii(#1,#2,#3)}} -\def\ThreeDput@iii(#1,#2,#3){% - \begingroup - \use@par - \if@star\pst@starbox\fi - \pst@makesmall\pst@hbox - \pssetxlength\pst@dima{#1}% - \pssetylength\pst@dimb{#2}% - \pssetzlength\pst@dimc{#3}% - \leavevmode - \hbox{% - \pst@Verb{% - { \pst@number\pst@dima - \pst@number\pst@dimb - \pst@number\pst@dimc - \psk@normal - \psk@embedangle - \psk@viewpoint - \psk@viewangle - \tx@SetMatrixEmbed - } \tx@TMChange}% - \box\pst@hbox - \pst@Verb{\tx@TMRestore}}% - \endgroup - \ignorespaces} -% \end{macrocode} -% \end{macro} -% -% -% \subsection{Arithmetic\label{Arithmetic}} -% -% \begin{macro}{\pst@sinandcos} -% Syntax: -% \begin{LVerbatim} -% \pst@sinandcos{<dim>}{<int>} -% \end{LVerbatim} -% <dim>, in "sp" units, should equal 100,000 times the angle, in degrees -% between 0 and 90. <int> should equal the angle's quadrant (0, 1, 2 or 3). -% \verb+\pst@dimg+ is set to $\sin(\theta)$ and \verb+\pst@dimh+ is set to -% $\cos(\theta)$ (in pt's). -% -% The algorithms uses the usual McLaurin expansion. -% \begin{macrocode} -\def\pst@sinandcos#1{% - \begingroup - \pst@dima=#1\relax - \pst@dima=.366022\pst@dima %Now 1pt=1/32rad - \pst@dimb=\pst@dima % dimb->32sin(angle) in pts - \pst@dimc=32\p@ % dimc->32cos(angle) in pts - \pst@dimtonum\pst@dima\pst@tempa - \pst@cntb=\tw@ - \pst@cntc=-\@ne - \pst@cntg=32 - \loop - \ifnum\pst@dima>\@cclvi % 256 - \pst@dima=\pst@tempa\pst@dima - \divide\pst@dima\pst@cntg - \divide\pst@dima\pst@cntb - \ifodd\pst@cntb - \advance\pst@dimb \pst@cntc\pst@dima - \pst@cntc=-\pst@cntc - \else - \advance\pst@dimc by \pst@cntc\pst@dima - \fi - \advance\pst@cntb\@ne - \repeat - \divide\pst@dimb\pst@cntg - \divide\pst@dimc\pst@cntg - \global\pst@dimg\pst@dimb - \global\pst@dimh\pst@dimc - \endgroup} -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\pst@getsinandcos} -% \verb+\pst@getsinandcos+ normalizes the angle to be in the first quadrant, sets -% \verb+\pst@quadrant+ to 0 for the first quadrant, 1 for the second, 2 for the -% third, and 3 for the fourth, invokes \verb+\pst@sinandcos+, and sets \verb+\pst@sin+ -% to the sine and \verb+\pst@cos+ to the cosine. -% \begin{macrocode} -\def\pst@getsinandcos#1{% - \pst@dimg=100000sp - \pst@dimg=#1\pst@dimg - \pst@dimh=36000000sp - \pst@cntg=0 - \loop - \ifnum\pst@dimg<\z@ - \advance\pst@dimg\pst@dimh - \repeat - \loop - \ifnum\pst@dimg>\pst@dimh - \advance\pst@dimg-\pst@dimh - \repeat - \pst@dimh=9000000sp - \def\pst@tempg{% - \ifnum\pst@dimg<\pst@dimh\else - \advance\pst@dimg-\pst@dimh - \advance\pst@cntg\@ne - \ifnum\pst@cntg>\thr@@ \advance\pst@cntg-4 \fi - \expandafter\pst@tempg - \fi}% - \pst@tempg - \chardef\pst@quadrant\pst@cntg - \ifdim\pst@dimg=\z@ - \def\pst@sin{0}% - \def\pst@cos{1}% - \else - \pst@sinandcos\pst@dimg - \pst@dimtonum\pst@dimg\pst@sin - \pst@dimtonum\pst@dimh\pst@cos - \fi% -} -% \end{macrocode} -% \end{macro} -% -% \subsection{Tilting} -% -% \begin{macro}{\pstilt} -% \begin{macrocode} -\def\pstilt#1{\pst@makebox{\pstilt@{#1}}} -\def\pstilt@#1{% - \begingroup - \leavevmode - \pst@getsinandcos{#1}% - \hbox{% - \ifcase\pst@quadrant - \kern\pst@cos\dp\pst@hbox - \pst@dima=\pst@cos\ht\pst@hbox - \ht\pst@hbox=\pst@sin\ht\pst@hbox - \dp\pst@hbox=\pst@sin\dp\pst@hbox - \or - \kern\pst@sin\ht\pst@hbox - \pst@dima=\pst@sin\dp\pst@hbox - \ht\pst@hbox=\pst@cos\ht\pst@hbox - \dp\pst@hbox=\pst@cos\dp\pst@hbox - \or - \kern\pst@cos\ht\pst@hbox - \pst@dima=\pst@sin\dp\pst@hbox - \pst@dimg=\pst@sin\ht\pst@hbox - \ht\pst@hbox=\pst@sin\dp\pst@hbox - \dp\pst@hbox=\pst@dimg - \or - \kern\pst@sin\dp\pst@hbox - \pst@dima=\pst@sin\ht\pst@hbox - \pst@dimg=\pst@cos\ht\pst@hbox - \ht\pst@hbox=\pst@cos\dp\pst@hbox - \dp\pst@hbox=\pst@dimg - \fi - \pst@Verb{% - { [ 1 0 - \pst@cos\space \ifnum\pst@quadrant>\@ne neg \fi - \pst@sin\space - \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi - \ifodd\pst@quadrant exch \fi - 0 0 - ] concat - } \tx@TMChange}% - \box\pst@hbox - \pst@Verb{\tx@TMRestore}% - \kern\pst@dima}% - \endgroup} -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\psTilt} -% \begin{macrocode} -\def\psTilt#1{\pst@makebox{\psTilt@{#1}}} -\def\psTilt@#1{% - \begingroup - \leavevmode - \pst@getsinandcos{#1}% - \hbox{% - \ifodd\pst@quadrant - \pst@@divide{\dp\pst@hbox}{\pst@cos\p@}% - \ifnum\pst@quadrant=\thr@@\kern\else\pst@dima=\fi\pst@sin\pst@dimg - \pst@@divide{\ht\pst@hbox}{\pst@cos\p@}% - \ifnum\pst@quadrant=\@ne\kern\else\pst@dima=\fi\pst@sin\pst@dimg - \else - \ifdim\pst@sin\p@=\z@ - \@pstrickserr{\string\psTilt\space angle cannot be 0 or 180}\@ehpa - \def\pst@sin{.7071}% - \def\pst@cos{.7071}% - \fi - \pst@@divide{\dp\pst@hbox}{\pst@sin\p@}% - \ifnum\pst@quadrant=\z@\kern\else\pst@dima=\fi\pst@cos\pst@dimg - \pst@@divide{\ht\pst@hbox}{\pst@sin\p@}% - \ifnum\pst@quadrant=\tw@\kern\else\pst@dima=\fi\pst@cos\pst@dimg - \fi - \ifnum\pst@quadrant>\@ne - \pst@dimg=\ht\pst@hbox - \ht\pst@hbox=\dp\pst@hbox - \dp\pst@hbox=\pst@dimg - \fi - \pst@Verb{% - { [ 1 0 - \pst@cos\space \pst@sin\space - \ifodd\pst@quadrant exch \fi - \tx@Div - \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi - \ifnum\pst@quadrant>\@ne -1 \else 1 \fi - 0 0 - ] concat - } \tx@TMChange}% - \box\pst@hbox - \pst@Verb{\tx@TMRestore}% - \kern\pst@dima}% - \endgroup} -% \end{macrocode} -% \end{macro} -% -% -% \subsection{Shadow} -% -% \begin{macro}{\psshadow} -% \begin{macrocode} -\def\psshadow{\pst@object{psshadow}} -\def\psshadow@i{\pst@makebox{\psshadow@ii}} -\def\psshadow@ii{% - \begingroup - \use@par - \leavevmode - \pst@getsinandcos{\psk@Tshadowangle}% - \hbox{% - \lower\dp\pst@hbox\hbox{% - \pst@Verb{% - { [ 1 0 - \pst@cos\space \psTshadowsize mul - \ifnum\pst@quadrant>\@ne neg \fi - \pst@sin\space \psTshadowsize mul - \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi - \ifodd\pst@quadrant exch \fi - 0 0 - ] concat - } \tx@TMChange}}% - \hbox to\z@{% patch 2 (hv), to get it run with xcolor _and_ TeX - \pst@Verb{ gsave \pst@usecolor\psTshadowcolor}% - \copy\pst@hbox - \pst@Verb{ grestore}\hss}% -% \hbox to\z@{{\@nameuse{\psTshadowcolor}\copy\pst@hbox\hss}}% - \pst@Verb{\tx@TMRestore}% - \box\pst@hbox}% - \endgroup} -% \end{macrocode} -% \end{macro} -% -% \subsection{Closing} -% -% Catcodes restoration. -% -% \begin{macrocode} -\catcode`\@=\PstAtCode\relax -% \end{macrocode} -% -%</pst-3d> -% -\endinput -%% -%% END pst-3d.tex diff --git a/Master/texmf-dist/source/generic/pst-3d/pst-3d.ins b/Master/texmf-dist/source/generic/pst-3d/pst-3d.ins deleted file mode 100644 index 4e3e1e54e90..00000000000 --- a/Master/texmf-dist/source/generic/pst-3d/pst-3d.ins +++ /dev/null @@ -1,38 +0,0 @@ -%% `pst-3d.ins' -%% -%% Docstrip installation instruction file for docstyle `pst-lens' -%% -%% Timothy Van Zandt <tvz@nwu.edu> (tvz) -%% Herbert Voss <voss@pstricks.de> (hv) -%% -%% December 31, 2005 - -\def\batchfile{pst-3d.ins} -\input docstrip.tex -\keepsilent -\Msg{*** Generating the `pst-3d' package ***} -\askforoverwritefalse -\generate{\file{pst-3d.tex}{\from{pst-3d.dtx}{pst-3d}}} -\generate{\file{pst-3d.sty}{\from{pst-3d.dtx}{latex-wrapper}}} -% -\ifToplevel{% -\Msg{***********************************************************} -\Msg{*} -\Msg{* To finish the installation you have to move the files} -\Msg{* pst-3d.sty and pst-3d.tex in a directory/folder searched by TeX.} -\Msg{*} -\Msg{* To produce the documentation, run the file `pst-3d.dtx'} -\Msg{* through LaTeX.} -\Msg{*} -\Msg{* If you require the commented code, desactivating the} -\Msg{* OnlyDescription macro, you must recompile, execute:} -\Msg{* `makeindex -s gind.ist pst-3d'} -\Msg{* `makeindex -s gglo.ist -o pst-3d.gls pst-3d.glo'} -\Msg{* and recompile.} -\Msg{*} -\Msg{***********************************************************} -} - -\endinput -%% -%% End of file `pst-3d.ins' diff --git a/Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex b/Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex index 9c84eebdf73..ec28ebb0aa1 100644 --- a/Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex +++ b/Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex @@ -1,106 +1,47 @@ -%% +%% $Id: pst-3d.tex 289 2010-02-13 14:35:35Z herbert $ %% This is file `pst-3d.tex', -%% generated with the docstrip utility. -%% -%% The original source files were: %% -%% pst-3d.dtx (with options: `pst-3d') -%% %% IMPORTANT NOTICE: -%% -%% For the copyright see the source file. -%% -%% Any modified versions of this file must be renamed -%% with new filenames distinct from pst-3d.tex. -%% -%% For distribution of the original source see the terms -%% for copying and modification in the file pst-3d.dtx. -%% -%% This generated file may be distributed as long as the -%% original source files, as listed above, are part of the -%% same distribution. (The sources need not necessarily be -%% in the same archive or directory.) %% -%% Package `pst-3d.dtx' +%% Package `pst-3d.tex' %% %% Timothy Van Zandt <tvz@nwu.edu> (tvz) -%% Herbert Voss <voss@pstricks.de> (hv) -%% -%% September 03, 2005 -%% -%% This file is under the LaTeX Project Public License -%% See CTAN archives in directory macros/latex/base/lppl.txt. +%% Herbert Voss <hvoss _at_ tug.org> (hv) +%% +%% This program can be redistributed and/or modified under the terms +%% of the LaTeX Project Public License Distributed from CTAN archives +%% in directory macros/latex/base/lppl.txt. %% %% DESCRIPTION: %% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks %% - - +% +\csname PSTthreeDLoaded\endcsname +\let\PSTthreeDLoaded\endinput \ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi -\ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % (hv 2005-09-03) +\ifx\PSTXKeyLoaded\endinput\else \input pst-xkey \fi % (hv 2005-09-03) +% +\def\fileversion{1.10} +\def\filedate{2010/02/13} +\message{`PST-3d' v\fileversion, \filedate\space (tvz)} +% \edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax \pst@addfams{pst-3d} -\def\fileversion{1.00} -\def\filedate{2005/09/03} -\message{`PST-3d' v\fileversion, \filedate\space (tvz)} -\csname PSTthreeDLoaded\endcsname -\let\PSTthreeDLoaded\endinput -\pst@def{SetMatrixThreeD}<% - dup sin /e ED cos /f ED - /p3 ED /p2 ED /p1 ED - p1 0 eq - { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def - p3 p2 abs - } - { p2 0 eq - { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def - p3 p1 abs - } - { p1 dup mul p2 dup mul add sqrt dup - p1 exch div /a ED - p2 exch div neg /b ED - p3 p1 a div - } - ifelse - } - ifelse - atan dup sin /c ED cos /d ED - /Matrix3D - [ - b f mul c a mul e mul sub - a f mul c b mul e mul add - d e mul - b e mul neg c a mul f mul sub - a e mul neg c b mul f mul add - d f mul - ] def> -\pst@def{ProjThreeD}<% - /z ED /y ED /x ED - Matrix3D aload pop - z mul exch y mul add exch x mul add - 4 1 roll - z mul exch y mul add exch x mul add - exch> -\pst@def{SetMatrixEmbed}<% - \tx@SetMatrixThreeD - Matrix3D aload pop - /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED - \tx@SetMatrixThreeD - [ - Matrix3D aload pop - z3 mul exch z2 mul add exch z1 mul add 4 1 roll - z3 mul exch z2 mul add exch z1 mul add - Matrix3D aload pop - x3 mul exch x2 mul add exch x1 mul add 4 1 roll - x3 mul exch x2 mul add exch x1 mul add - 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy - x3 mul exch x2 mul add exch x1 mul add 4 1 roll - z3 mul exch z2 mul add exch z1 mul add - ] - concat> + +%% prologue for postcript +% +\pstheader{pst-3d.pro}% +% +\def\tx@SetMatrixThreeD{ tx@3Ddict begin SetMatrixThreeD end } +\def\tx@ProjThreeD{ tx@3Ddict begin ProjThreeD end } +\def\tx@SetMatrixEmbed{ tx@3Ddict begin SetMatrixEmbed end } +\def\tx@TMSave{ tx@3Ddict begin TMSave end } +\def\tx@TMRestore{ tx@3Ddict begin TMRestore end } +\def\tx@TMChange{ tx@3Ddict begin TMChange end } +% \let\pssetzlength\pssetylength -\define@key[psset]{pst-3d}{viewpoint}{% +\define@key[psset]{pst-3d}{viewpoint}[1 -1 1]{% \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil \let\psk@viewpoint\pst@tempg} \def\psset@@viewpoint#1 #2 #3 #4\@nil{% @@ -112,55 +53,36 @@ \pst@number\pst@dima \pst@number\pst@dimb \pst@number\pst@dimc}% \endgroup} \psset[pst-3d]{viewpoint=1 -1 1} -\define@key[psset]{pst-3d}{viewangle}{% - \pst@getangle{#1}\psk@viewangle} +\define@key[psset]{pst-3d}{viewangle}[0]{\pst@getangle{#1}\psk@viewangle} \psset[pst-3d]{viewangle=0} -\define@key[psset]{pst-3d}{normal}{% +\define@key[psset]{pst-3d}{normal}[0 0 1]{% \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil \let\psk@normal\pst@tempg} \psset[pst-3d]{normal=0 0 1} -\define@key[psset]{pst-3d}{embedangle}{% - \pst@getangle{#1}\psk@embedangle} +\define@key[psset]{pst-3d}{embedangle}[0]{\pst@getangle{#1}\psk@embedangle} \psset[pst-3d]{embedangle=0} -\define@key[psset]{pst-3d}{Tshadowsize}{% - \pst@checknum{#1}\psTshadowsize} +\define@key[psset]{pst-3d}{Tshadowsize}[1]{\pst@checknum{#1}\psTshadowsize} \psset[pst-3d]{Tshadowsize=1} -\define@key[psset]{pst-3d}{Tshadowangle}{% - \pst@getangle{#1}\psk@Tshadowangle} +\define@key[psset]{pst-3d}{Tshadowangle}[60]{\pst@getangle{#1}\psk@Tshadowangle} \psset[pst-3d]{Tshadowangle=60} -\define@key[psset]{pst-3d}{Tshadowcolor}{% - \pst@getcolor{#1}\psTshadowcolor} +\define@key[psset]{pst-3d}{Tshadowcolor}[lightgray]{\pst@getcolor{#1}\psTshadowcolor} \psset[pst-3d]{Tshadowcolor=lightgray} - -\pst@def{TMSave}<% - tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if - /TMatrix [ TMatrix CM ] cvx def> -\pst@def{TMRestore}<% - CP /TMatrix [ TMatrix setmatrix ] cvx def moveto> -\pst@def{TMChange}<% - \tx@TMSave - /cp [ currentpoint ] cvx def % ??? Check this later. - CM - CP T \tx@STV - CM matrix invertmatrix % Inv(M') - matrix concatmatrix % M Inv(M') - exch exec - concat cp moveto> -\def\ThreeDput{\def\pst@par{}\pst@object{ThreeDput}} +% +\def\ThreeDput{\pst@object{ThreeDput}} \def\ThreeDput@i{\@ifnextchar({\ThreeDput@ii}{\ThreeDput@ii(\z@,\z@,\z@)}} \def\ThreeDput@ii(#1,#2,#3){% \pst@killglue\pst@makebox{\ThreeDput@iii(#1,#2,#3)}} \def\ThreeDput@iii(#1,#2,#3){% \begingroup - \use@par - \if@star\pst@starbox\fi - \pst@makesmall\pst@hbox - \pssetxlength\pst@dima{#1}% - \pssetylength\pst@dimb{#2}% - \pssetzlength\pst@dimc{#3}% - \leavevmode - \hbox{% - \pst@Verb{% + \use@par + \if@star\pst@starbox\fi + \pst@makesmall\pst@hbox + \pssetxlength\pst@dima{#1}% + \pssetylength\pst@dimb{#2}% + \pssetzlength\pst@dimc{#3}% + \leavevmode + \hbox{% + \pst@Verb{% { \pst@number\pst@dima \pst@number\pst@dimb \pst@number\pst@dimc @@ -174,6 +96,7 @@ \pst@Verb{\tx@TMRestore}}% \endgroup \ignorespaces} +% \def\pst@sinandcos#1{% \begingroup \pst@dima=#1\relax @@ -202,6 +125,7 @@ \global\pst@dimg\pst@dimb \global\pst@dimh\pst@dimc \endgroup} +% \def\pst@getsinandcos#1{% \pst@dimg=100000sp \pst@dimg=#1\pst@dimg @@ -234,6 +158,7 @@ \pst@dimtonum\pst@dimh\pst@cos \fi% } +% \def\pstilt#1{\pst@makebox{\pstilt@{#1}}} \def\pstilt@#1{% \begingroup @@ -276,6 +201,7 @@ \pst@Verb{\tx@TMRestore}% \kern\pst@dima}% \endgroup} +% \def\psTilt#1{\pst@makebox{\psTilt@{#1}}} \def\psTilt@#1{% \begingroup @@ -317,6 +243,7 @@ \pst@Verb{\tx@TMRestore}% \kern\pst@dima}% \endgroup} +% \def\psshadow{\pst@object{psshadow}} \def\psshadow@i{\pst@makebox{\psshadow@ii}} \def\psshadow@ii{% @@ -343,6 +270,17 @@ \pst@Verb{\tx@TMRestore}% \box\pst@hbox}% \endgroup} +% +\def\psAffinTransform{\pst@object{psAffinTransform}} +\def\psAffinTransform@i#1{ + \begin@SpecialObj% + \pst@makebox{\psAffinTransform@ii{#1}}}% +\def\psAffinTransform@ii#1{% + \pst@Verb{ { [#1] concat } \tx@TMChange }% + \box\pst@hbox \pst@Verb{ \tx@TMRestore }% + \end@SpecialObj} +\makeatother +% \catcode`\@=\PstAtCode\relax \endinput %% diff --git a/Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty b/Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty index b57cd73cc61..920468451f3 100644 --- a/Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty +++ b/Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty @@ -1,48 +1,13 @@ -%% -%% This is file `pst-3d.sty', -%% generated with the docstrip utility. -%% -%% The original source files were: -%% -%% pst-3d.dtx (with options: `latex-wrapper') -%% -%% IMPORTANT NOTICE: -%% -%% For the copyright see the source file. -%% -%% Any modified versions of this file must be renamed -%% with new filenames distinct from pst-3d.sty. -%% -%% For distribution of the original source see the terms -%% for copying and modification in the file pst-3d.dtx. -%% -%% This generated file may be distributed as long as the -%% original source files, as listed above, are part of the -%% same distribution. (The sources need not necessarily be -%% in the same archive or directory.) -%% -%% Package `pst-3d.dtx' -%% -%% Timothy Van Zandt <tvz@nwu.edu> (tvz) -%% Herbert Voss <voss@pstricks.de> (hv) -%% -%% September 03, 2005 -%% -%% This file is under the LaTeX Project Public License -%% See CTAN archives in directory macros/latex/base/lppl.txt. -%% -%% DESCRIPTION: -%% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks -%% - - -%% +%% $Id: pst-3d.sty 234 2009-12-30 22:03:29Z herbert $ \RequirePackage{pstricks} -\ProvidesPackage{pst-3d}[2005/09/02 package wrapper for +\ProvidesPackage{pst-3d}[2009/07/28 package wrapper for pst-3d.tex (hv)] \input{pst-3d.tex} +\IfFileExists{pst-3d.pro}{% + \ProvidesFile{pst-3d.pro} + [2010/01/01 v. 0.01, PostScript prologue file (hv)] + \@addtofilelist{pst-3d.pro}}{}% \ProvidesFile{pst-3d.tex} - [\filedate\space v\fileversion\space `PST-3d' (tvz)] + [\filedate\space v\fileversion\space `PST-3d' (hv)] \endinput -%% %% End of file `pst-3d.sty'. |