summaryrefslogtreecommitdiff
path: root/Master/tlpkg/tlperl/lib/Math/BigRat.pm
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2018-03-08 00:16:42 +0000
committerKarl Berry <karl@freefriends.org>2018-03-08 00:16:42 +0000
commit34a8597760ab5740abd49b6d8be10e1876f5ce98 (patch)
tree099a794912a28b3ebbc857961643ba29b28e674a /Master/tlpkg/tlperl/lib/Math/BigRat.pm
parent2ca3610031316a7312d046d3ae4c783452831216 (diff)
(tl)perl 5.26.1 from siep
git-svn-id: svn://tug.org/texlive/trunk@46882 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/tlpkg/tlperl/lib/Math/BigRat.pm')
-rw-r--r--Master/tlpkg/tlperl/lib/Math/BigRat.pm3478
1 files changed, 2000 insertions, 1478 deletions
diff --git a/Master/tlpkg/tlperl/lib/Math/BigRat.pm b/Master/tlpkg/tlperl/lib/Math/BigRat.pm
index 95c2927a864..c604a2706f7 100644
--- a/Master/tlpkg/tlperl/lib/Math/BigRat.pm
+++ b/Master/tlpkg/tlperl/lib/Math/BigRat.pm
@@ -12,40 +12,199 @@
package Math::BigRat;
-# anything older is untested, and unlikely to work
use 5.006;
use strict;
use warnings;
use Carp ();
-use Math::BigFloat;
+use Math::BigFloat '1.999718';
-our ($VERSION, @ISA, $upgrade, $downgrade,
- $accuracy, $precision, $round_mode, $div_scale, $_trap_nan, $_trap_inf);
+our $VERSION = '0.2611';
-@ISA = qw(Math::BigFloat);
+our @ISA = qw(Math::BigFloat);
-$VERSION = '0.260802';
-$VERSION = eval $VERSION;
-
-# Inherit overload from Math::BigFloat, but disable the bitwise ops that don't
-# make much sense for rationals unless they're truncated or something first.
+our ($accuracy, $precision, $round_mode, $div_scale,
+ $upgrade, $downgrade, $_trap_nan, $_trap_inf);
use overload
- map {
- my $op = $_;
- ($op => sub {
- Carp::croak("bitwise operation $op not supported in Math::BigRat");
- });
- } qw(& | ^ ~ << >> &= |= ^= <<= >>=);
+
+ # overload key: with_assign
+
+ '+' => sub { $_[0] -> copy() -> badd($_[1]); },
+
+ '-' => sub { my $c = $_[0] -> copy;
+ $_[2] ? $c -> bneg() -> badd( $_[1])
+ : $c -> bsub($_[1]); },
+
+ '*' => sub { $_[0] -> copy() -> bmul($_[1]); },
+
+ '/' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bdiv($_[0])
+ : $_[0] -> copy() -> bdiv($_[1]); },
+
+
+ '%' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bmod($_[0])
+ : $_[0] -> copy() -> bmod($_[1]); },
+
+ '**' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bpow($_[0])
+ : $_[0] -> copy() -> bpow($_[1]); },
+
+ '<<' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> blsft($_[0])
+ : $_[0] -> copy() -> blsft($_[1]); },
+
+ '>>' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> brsft($_[0])
+ : $_[0] -> copy() -> brsft($_[1]); },
+
+ # overload key: assign
+
+ '+=' => sub { $_[0]->badd($_[1]); },
+
+ '-=' => sub { $_[0]->bsub($_[1]); },
+
+ '*=' => sub { $_[0]->bmul($_[1]); },
+
+ '/=' => sub { scalar $_[0]->bdiv($_[1]); },
+
+ '%=' => sub { $_[0]->bmod($_[1]); },
+
+ '**=' => sub { $_[0]->bpow($_[1]); },
+
+
+ '<<=' => sub { $_[0]->blsft($_[1]); },
+
+ '>>=' => sub { $_[0]->brsft($_[1]); },
+
+# 'x=' => sub { },
+
+# '.=' => sub { },
+
+ # overload key: num_comparison
+
+ '<' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> blt($_[0])
+ : $_[0] -> blt($_[1]); },
+
+ '<=' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> ble($_[0])
+ : $_[0] -> ble($_[1]); },
+
+ '>' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bgt($_[0])
+ : $_[0] -> bgt($_[1]); },
+
+ '>=' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bge($_[0])
+ : $_[0] -> bge($_[1]); },
+
+ '==' => sub { $_[0] -> beq($_[1]); },
+
+ '!=' => sub { $_[0] -> bne($_[1]); },
+
+ # overload key: 3way_comparison
+
+ '<=>' => sub { my $cmp = $_[0] -> bcmp($_[1]);
+ defined($cmp) && $_[2] ? -$cmp : $cmp; },
+
+ 'cmp' => sub { $_[2] ? "$_[1]" cmp $_[0] -> bstr()
+ : $_[0] -> bstr() cmp "$_[1]"; },
+
+ # overload key: str_comparison
+
+# 'lt' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrlt($_[0])
+# : $_[0] -> bstrlt($_[1]); },
+#
+# 'le' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrle($_[0])
+# : $_[0] -> bstrle($_[1]); },
+#
+# 'gt' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrgt($_[0])
+# : $_[0] -> bstrgt($_[1]); },
+#
+# 'ge' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrge($_[0])
+# : $_[0] -> bstrge($_[1]); },
+#
+# 'eq' => sub { $_[0] -> bstreq($_[1]); },
+#
+# 'ne' => sub { $_[0] -> bstrne($_[1]); },
+
+ # overload key: binary
+
+ '&' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> band($_[0])
+ : $_[0] -> copy() -> band($_[1]); },
+
+ '&=' => sub { $_[0] -> band($_[1]); },
+
+ '|' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bior($_[0])
+ : $_[0] -> copy() -> bior($_[1]); },
+
+ '|=' => sub { $_[0] -> bior($_[1]); },
+
+ '^' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bxor($_[0])
+ : $_[0] -> copy() -> bxor($_[1]); },
+
+ '^=' => sub { $_[0] -> bxor($_[1]); },
+
+# '&.' => sub { },
+
+# '&.=' => sub { },
+
+# '|.' => sub { },
+
+# '|.=' => sub { },
+
+# '^.' => sub { },
+
+# '^.=' => sub { },
+
+ # overload key: unary
+
+ 'neg' => sub { $_[0] -> copy() -> bneg(); },
+
+# '!' => sub { },
+
+ '~' => sub { $_[0] -> copy() -> bnot(); },
+
+# '~.' => sub { },
+
+ # overload key: mutators
+
+ '++' => sub { $_[0] -> binc() },
+
+ '--' => sub { $_[0] -> bdec() },
+
+ # overload key: func
+
+ 'atan2' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> batan2($_[0])
+ : $_[0] -> copy() -> batan2($_[1]); },
+
+ 'cos' => sub { $_[0] -> copy() -> bcos(); },
+
+ 'sin' => sub { $_[0] -> copy() -> bsin(); },
+
+ 'exp' => sub { $_[0] -> copy() -> bexp($_[1]); },
+
+ 'abs' => sub { $_[0] -> copy() -> babs(); },
+
+ 'log' => sub { $_[0] -> copy() -> blog(); },
+
+ 'sqrt' => sub { $_[0] -> copy() -> bsqrt(); },
+
+ 'int' => sub { $_[0] -> copy() -> bint(); },
+
+ # overload key: conversion
+
+ 'bool' => sub { $_[0] -> is_zero() ? '' : 1; },
+
+ '""' => sub { $_[0] -> bstr(); },
+
+ '0+' => sub { $_[0] -> numify(); },
+
+ '=' => sub { $_[0]->copy(); },
+
+ ;
BEGIN {
*objectify = \&Math::BigInt::objectify; # inherit this from BigInt
*AUTOLOAD = \&Math::BigFloat::AUTOLOAD; # can't inherit AUTOLOAD
- # We inherit these from BigFloat because currently it is not possible
- # that MBF has a different $MBI variable than we, because MBF also uses
- # Math::BigInt::config->('lib'); (there is always only one library loaded)
+ # We inherit these from BigFloat because currently it is not possible that
+ # Math::BigFloat has a different $LIB variable than we, because
+ # Math::BigFloat also uses Math::BigInt::config->('lib') (there is always
+ # only one library loaded)
*_e_add = \&Math::BigFloat::_e_add;
*_e_sub = \&Math::BigFloat::_e_sub;
*as_int = \&as_number;
@@ -56,11 +215,11 @@ BEGIN {
##############################################################################
# Global constants and flags. Access these only via the accessor methods!
-$accuracy = $precision = undef;
+$accuracy = $precision = undef;
$round_mode = 'even';
-$div_scale = 40;
-$upgrade = undef;
-$downgrade = undef;
+$div_scale = 40;
+$upgrade = undef;
+$downgrade = undef;
# These are internally, and not to be used from the outside at all!
@@ -69,267 +228,298 @@ $_trap_inf = 0; # are infs ok? set w/ config()
# the package we are using for our private parts, defaults to:
# Math::BigInt->config()->{lib}
-my $MBI = 'Math::BigInt::Calc';
+
+my $LIB = 'Math::BigInt::Calc';
my $nan = 'NaN';
-my $class = 'Math::BigRat';
+#my $class = 'Math::BigRat';
sub isa {
- return 0 if $_[1] =~ /^Math::Big(Int|Float)/; # we aren't
+ return 0 if $_[1] =~ /^Math::Big(Int|Float)/; # we aren't
UNIVERSAL::isa(@_);
}
##############################################################################
-# If $x is a Math::BigRat object and $f is a Math::BigFloat object, then
-#
-# $x -> _new_from_float($f)
-#
-# converts $x into a Math::BigRat with the value of $f.
-
-sub _new_from_float
- {
- # turn a single float input into a rational number (like '0.1')
- my ($self,$f) = @_;
+sub new {
+ my $proto = shift;
+ my $protoref = ref $proto;
+ my $class = $protoref || $proto;
- return $self->bnan() if $f->is_nan();
- return $self->binf($f->{sign}) if $f->{sign} =~ /^[+-]inf$/;
+ # Check the way we are called.
- $self->{_n} = $MBI->_copy($f->{_m}); # mantissa
- $self->{_d} = $MBI->_one();
- $self->{sign} = $f->{sign} || '+';
- if ($f->{_es} eq '-')
- {
- # something like Math::BigRat->new('0.1');
- # 1 / 1 => 1/10
- $MBI->_lsft($self->{_d}, $f->{_e} ,10);
+ if ($protoref) {
+ Carp::croak("new() is a class method, not an instance method");
}
- else
- {
- # something like Math::BigRat->new('10');
- # 1 / 1 => 10/1
- $MBI->_lsft($self->{_n}, $f->{_e} ,10) unless
- $MBI->_is_zero($f->{_e});
+
+ if (@_ < 1) {
+ #Carp::carp("Using new() with no argument is deprecated;",
+ # " use bzero() or new(0) instead");
+ return $class -> bzero();
}
- return $self -> bnorm();
- }
-# If $x is a Math::BigRat object and $i is a Math::BigInt object, then
-#
-# $x -> _new_from_int($i)
-#
-# converts $x into a Math::BigRat with the value of $i.
+ if (@_ > 2) {
+ Carp::carp("Superfluous arguments to new() ignored.");
+ }
-sub _new_from_int {
- my ($self, $i) = @_;
+ # Get numerator and denominator. If any of the arguments is undefined,
+ # return zero.
- return $self -> bnan() if $i -> is_nan();
- return $self -> binf($i -> sign()) if $i -> is_inf();
+ my ($n, $d) = @_;
- $self -> {_n} = $MBI -> _copy($i -> {value});
- $self -> {_d} = $MBI -> _one();
- $self -> {sign} = $i -> {sign};
- return $self;
-}
+ if (@_ == 1 && !defined $n ||
+ @_ == 2 && (!defined $n || !defined $d))
+ {
+ #Carp::carp("Use of uninitialized value in new()");
+ return $class -> bzero();
+ }
-sub new {
- my $self = shift;
- my $selfref = ref $self;
- my $class = $selfref || $self;
+ # Initialize a new object.
- # Get numerator and denominator.
+ my $self = bless {}, $class;
- my ($n, $d) = @_;
+ # One or two input arguments may be given. First handle the numerator $n.
- # If called as a class method, initialize a new object.
+ if (ref($n)) {
+ $n = Math::BigFloat -> new($n, undef, undef)
+ unless ($n -> isa('Math::BigRat') ||
+ $n -> isa('Math::BigInt') ||
+ $n -> isa('Math::BigFloat'));
+ } else {
+ if (defined $d) {
+ # If the denominator is defined, the numerator is not a string
+ # fraction, e.g., "355/113".
+ $n = Math::BigFloat -> new($n, undef, undef);
+ } else {
+ # If the denominator is undefined, the numerator might be a string
+ # fraction, e.g., "355/113".
+ if ($n =~ m| ^ \s* (\S+) \s* / \s* (\S+) \s* $ |x) {
+ $n = Math::BigFloat -> new($1, undef, undef);
+ $d = Math::BigFloat -> new($2, undef, undef);
+ } else {
+ $n = Math::BigFloat -> new($n, undef, undef);
+ }
+ }
+ }
- $self = bless {}, $class unless $selfref;
+ # At this point $n is an object and $d is either an object or undefined. An
+ # undefined $d means that $d was not specified by the caller (not that $d
+ # was specified as an undefined value).
- # Input like $class->new($n), where there is no denominator, and where $n
- # is a Math::BigInt or Math::BigFloat.
+ unless (defined $d) {
+ #return $n -> copy($n) if $n -> isa('Math::BigRat');
+ return $class -> copy($n) if $n -> isa('Math::BigRat');
+ return $class -> bnan() if $n -> is_nan();
+ return $class -> binf($n -> sign()) if $n -> is_inf();
- if ((!defined $d) && (ref $n) && (!$n->isa('Math::BigRat'))) {
- if ($n->isa('Math::BigFloat')) {
- $self->_new_from_float($n);
+ if ($n -> isa('Math::BigInt')) {
+ $self -> {_n} = $LIB -> _new($n -> copy() -> babs() -> bstr());
+ $self -> {_d} = $LIB -> _one();
+ $self -> {sign} = $n -> sign();
+ return $self;
}
- elsif ($n->isa('Math::BigInt')) {
- # TODO: trap NaN, inf
- $self->{_n} = $MBI->_copy($n->{value}); # "mantissa" = N
- $self->{_d} = $MBI->_one(); # d => 1
- $self->{sign} = $n->{sign};
- }
- elsif ($n->isa('Math::BigInt::Lite')) {
- # TODO: trap NaN, inf
- $self->{sign} = '+';
- $self->{sign} = '-' if $$n < 0;
- $self->{_n} = $MBI->_new(abs($$n)); # "mantissa" = N
- $self->{_d} = $MBI->_one(); # d => 1
+
+ if ($n -> isa('Math::BigFloat')) {
+ my $m = $n -> mantissa() -> babs();
+ my $e = $n -> exponent();
+ $self -> {_n} = $LIB -> _new($m -> bstr());
+ $self -> {_d} = $LIB -> _one();
+
+ if ($e > 0) {
+ $self -> {_n} = $LIB -> _lsft($self -> {_n},
+ $LIB -> _new($e -> bstr()), 10);
+ } elsif ($e < 0) {
+ $self -> {_d} = $LIB -> _lsft($self -> {_d},
+ $LIB -> _new(-$e -> bstr()), 10);
+
+ my $gcd = $LIB -> _gcd($LIB -> _copy($self -> {_n}), $self -> {_d});
+ if (!$LIB -> _is_one($gcd)) {
+ $self -> {_n} = $LIB -> _div($self->{_n}, $gcd);
+ $self -> {_d} = $LIB -> _div($self->{_d}, $gcd);
+ }
+ }
+
+ $self -> {sign} = $n -> sign();
+ return $self;
}
- return $self->bnorm(); # normalize (120/100 => 6/5)
+
+ die "I don't know how to handle this"; # should never get here
}
- # Input like $class->new($n, $d) where $n and $d both are Math::BigInt
- # objects or Math::BigInt::Lite objects.
- if (ref($d) && ref($n)) {
+ # At the point we know that both $n and $d are defined. We know that $n is
+ # an object, but $d might still be a scalar. Now handle $d.
- # do N first (for $self->{sign}):
- if ($n->isa('Math::BigInt')) {
- # TODO: trap NaN, inf
- $self->{_n} = $MBI->_copy($n->{value}); # "mantissa" = N
- $self->{sign} = $n->{sign};
- }
- elsif ($n->isa('Math::BigInt::Lite')) {
- # TODO: trap NaN, inf
- $self->{sign} = '+';
- $self->{sign} = '-' if $$n < 0;
- $self->{_n} = $MBI->_new(abs($$n)); # "mantissa" = $n
- }
- else {
- Carp::croak(ref($n) . " is not a recognized object format for"
- . " Math::BigRat->new");
- }
+ $d = Math::BigFloat -> new($d, undef, undef)
+ unless ref($d) && ($d -> isa('Math::BigRat') ||
+ $d -> isa('Math::BigInt') ||
+ $d -> isa('Math::BigFloat'));
- # now D:
- if ($d->isa('Math::BigInt')) {
- # TODO: trap NaN, inf
- $self->{_d} = $MBI->_copy($d->{value}); # "mantissa" = D
- # +/+ or -/- => +, +/- or -/+ => -
- $self->{sign} = $d->{sign} ne $self->{sign} ? '-' : '+';
- } elsif ($d->isa('Math::BigInt::Lite')) {
- # TODO: trap NaN, inf
- $self->{_d} = $MBI->_new(abs($$d)); # "mantissa" = D
- my $ds = '+';
- $ds = '-' if $$d < 0;
- # +/+ or -/- => +, +/- or -/+ => -
- $self->{sign} = $ds ne $self->{sign} ? '-' : '+';
- } else {
- Carp::croak(ref($d) . " is not a recognized object format for"
- . " Math::BigRat->new");
- }
+ # At this point both $n and $d are objects.
- return $self->bnorm(); # normalize (120/100 => 6/5)
+ return $class -> bnan() if $n -> is_nan() || $d -> is_nan();
+
+ # At this point neither $n nor $d is a NaN.
+
+ if ($n -> is_zero()) {
+ return $class -> bnan() if $d -> is_zero(); # 0/0 = NaN
+ return $class -> bzero();
}
- return $n->copy() if ref $n; # already a BigRat
+ return $class -> binf($d -> sign()) if $d -> is_zero();
+
+ # At this point, neither $n nor $d is a NaN or a zero.
- if (!defined $n) {
- $self->{_n} = $MBI->_zero(); # undef => 0
- $self->{_d} = $MBI->_one();
- $self->{sign} = '+';
- return $self;
+ if ($d < 0) { # make sure denominator is positive
+ $n -> bneg();
+ $d -> bneg();
}
- # string input with / delimiter
- if ($n =~ m|\s*/\s*|) {
- return $class->bnan() if $n =~ m|/.*/|; # 1/2/3 isn't valid
- return $class->bnan() if $n =~ m|/\s*$|; # 1/ isn't valid
- ($n, $d) = split (/\//, $n);
- # try as BigFloats first
- if (($n =~ /[\.eE]/) || ($d =~ /[\.eE]/)) {
- local $Math::BigFloat::accuracy = undef;
- local $Math::BigFloat::precision = undef;
+ if ($n -> is_inf()) {
+ return $class -> bnan() if $d -> is_inf(); # Inf/Inf = NaN
+ return $class -> binf($n -> sign());
+ }
- # one of them looks like a float
- my $nf = Math::BigFloat->new($n, undef, undef);
- $self->{sign} = '+';
- return $self->bnan() if $nf->is_nan();
+ # At this point $n is finite.
- $self->{_n} = $MBI->_copy($nf->{_m}); # get mantissa
+ return $class -> bzero() if $d -> is_inf();
+ return $class -> binf($d -> sign()) if $d -> is_zero();
- # now correct $self->{_n} due to $n
- my $f = Math::BigFloat->new($d, undef, undef);
- return $self->bnan() if $f->is_nan();
- $self->{_d} = $MBI->_copy($f->{_m});
+ # At this point both $n and $d are finite and non-zero.
- # calculate the difference between nE and dE
- my $diff_e = $nf->exponent()->bsub($f->exponent);
- if ($diff_e->is_negative()) {
- # < 0: mul d with it
- $MBI->_lsft($self->{_d}, $MBI->_new($diff_e->babs()), 10);
- } elsif (!$diff_e->is_zero()) {
- # > 0: mul n with it
- $MBI->_lsft($self->{_n}, $MBI->_new($diff_e), 10);
- }
- } else {
- # both d and n look like (big)ints
-
- $self->{sign} = '+'; # no sign => '+'
- $self->{_n} = undef;
- $self->{_d} = undef;
- if ($n =~ /^([+-]?)0*([0-9]+)\z/) { # first part ok?
- $self->{sign} = $1 || '+'; # no sign => '+'
- $self->{_n} = $MBI->_new($2 || 0);
- }
+ if ($n < 0) {
+ $n -> bneg();
+ $self -> {sign} = '-';
+ } else {
+ $self -> {sign} = '+';
+ }
- if ($d =~ /^([+-]?)0*([0-9]+)\z/) { # second part ok?
- $self->{sign} =~ tr/+-/-+/ if ($1 || '') eq '-'; # negate if second part neg.
- $self->{_d} = $MBI->_new($2 || 0);
- }
+ if ($n -> isa('Math::BigRat')) {
- if (!defined $self->{_n} || !defined $self->{_d}) {
- $d = Math::BigInt->new($d, undef, undef) unless ref $d;
- $n = Math::BigInt->new($n, undef, undef) unless ref $n;
-
- if ($n->{sign} =~ /^[+-]$/ && $d->{sign} =~ /^[+-]$/) {
- # both parts are ok as integers (weird things like ' 1e0'
- $self->{_n} = $MBI->_copy($n->{value});
- $self->{_d} = $MBI->_copy($d->{value});
- $self->{sign} = $n->{sign};
- $self->{sign} =~ tr/+-/-+/ if $d->{sign} eq '-'; # -1/-2 => 1/2
- return $self->bnorm();
- }
+ if ($d -> isa('Math::BigRat')) {
- $self->{sign} = '+'; # a default sign
- return $self->bnan() if $n->is_nan() || $d->is_nan();
-
- # handle inf cases:
- if ($n->is_inf() || $d->is_inf()) {
- if ($n->is_inf()) {
- return $self->bnan() if $d->is_inf(); # both are inf => NaN
- my $s = '+'; # '+inf/+123' or '-inf/-123'
- $s = '-' if substr($n->{sign}, 0, 1) ne $d->{sign};
- # +-inf/123 => +-inf
- return $self->binf($s);
- }
- # 123/inf => 0
- return $self->bzero();
- }
- }
- }
+ # At this point both $n and $d is a Math::BigRat.
- return $self->bnorm();
- }
+ # p r p * s (p / gcd(p, r)) * (s / gcd(s, q))
+ # - / - = ----- = ---------------------------------
+ # q s q * r (q / gcd(s, q)) * (r / gcd(p, r))
- # simple string input
- if (($n =~ /[\.eE]/) && $n !~ /^0x/) {
- # looks like a float, quacks like a float, so probably is a float
- $self->{sign} = 'NaN';
- local $Math::BigFloat::accuracy = undef;
- local $Math::BigFloat::precision = undef;
- $self->_new_from_float(Math::BigFloat->new($n, undef, undef));
- } else {
- # for simple forms, use $MBI directly
- if ($n =~ /^([+-]?)0*([0-9]+)\z/) {
- $self->{sign} = $1 || '+';
- $self->{_n} = $MBI->_new($2 || 0);
- $self->{_d} = $MBI->_one();
+ my $p = $n -> {_n};
+ my $q = $n -> {_d};
+ my $r = $d -> {_n};
+ my $s = $d -> {_d};
+ my $gcd_pr = $LIB -> _gcd($LIB -> _copy($p), $r);
+ my $gcd_sq = $LIB -> _gcd($LIB -> _copy($s), $q);
+ $self -> {_n} = $LIB -> _mul($LIB -> _div($LIB -> _copy($p), $gcd_pr),
+ $LIB -> _div($LIB -> _copy($s), $gcd_sq));
+ $self -> {_d} = $LIB -> _mul($LIB -> _div($LIB -> _copy($q), $gcd_sq),
+ $LIB -> _div($LIB -> _copy($r), $gcd_pr));
+
+ return $self; # no need for $self -> bnorm() here
}
- elsif ($n =~ /^\s*([+-]?)inf(inity)?\s*\z/i) {
- my $sgn = $1 || '+';
- $self->{sign} = $sgn . 'inf'; # set a default sign for bstr()
- $self->binf($sgn);
+
+ # At this point, $n is a Math::BigRat and $d is a Math::Big(Int|Float).
+
+ my $p = $n -> {_n};
+ my $q = $n -> {_d};
+ my $m = $d -> mantissa();
+ my $e = $d -> exponent();
+
+ # / p
+ # | ------------ if e > 0
+ # | q * m * 10^e
+ # |
+ # p | p
+ # - / (m * 10^e) = | ----- if e == 0
+ # q | q * m
+ # |
+ # | p * 10^-e
+ # | -------- if e < 0
+ # \ q * m
+
+ $self -> {_n} = $LIB -> _copy($p);
+ $self -> {_d} = $LIB -> _mul($LIB -> _copy($q), $m);
+ if ($e > 0) {
+ $self -> {_d} = $LIB -> _lsft($self -> {_d}, $e, 10);
+ } elsif ($e < 0) {
+ $self -> {_n} = $LIB -> _lsft($self -> {_n}, -$e, 10);
}
- else {
- my $n = Math::BigInt->new($n, undef, undef);
- $self->{_n} = $MBI->_copy($n->{value});
- $self->{_d} = $MBI->_one();
- $self->{sign} = $n->{sign};
- return $self->bnan() if $self->{sign} eq 'NaN';
+ return $self -> bnorm();
+
+ } else {
+
+ if ($d -> isa('Math::BigRat')) {
+
+ # At this point $n is a Math::Big(Int|Float) and $d is a
+ # Math::BigRat.
+
+ my $m = $n -> mantissa();
+ my $e = $n -> exponent();
+ my $p = $d -> {_n};
+ my $q = $d -> {_d};
+
+ # / q * m * 10^e
+ # | ------------ if e > 0
+ # | p
+ # |
+ # p | m * q
+ # (m * 10^e) / - = | ----- if e == 0
+ # q | p
+ # |
+ # | q * m
+ # | --------- if e < 0
+ # \ p * 10^-e
+
+ $self -> {_n} = $LIB -> _mul($LIB -> _copy($q), $m);
+ $self -> {_d} = $LIB -> _copy($p);
+ if ($e > 0) {
+ $self -> {_n} = $LIB -> _lsft($self -> {_n}, $e, 10);
+ } elsif ($e < 0) {
+ $self -> {_d} = $LIB -> _lsft($self -> {_d}, -$e, 10);
+ }
+ return $self -> bnorm();
+
+ } else {
+
+ # At this point $n and $d are both a Math::Big(Int|Float)
+
+ my $m1 = $n -> mantissa();
+ my $e1 = $n -> exponent();
+ my $m2 = $d -> mantissa();
+ my $e2 = $d -> exponent();
+
+ # /
+ # | m1 * 10^(e1 - e2)
+ # | ----------------- if e1 > e2
+ # | m2
+ # |
+ # m1 * 10^e1 | m1
+ # ---------- = | -- if e1 = e2
+ # m2 * 10^e2 | m2
+ # |
+ # | m1
+ # | ----------------- if e1 < e2
+ # | m2 * 10^(e2 - e1)
+ # \
+
+ $self -> {_n} = $LIB -> _new($m1 -> bstr());
+ $self -> {_d} = $LIB -> _new($m2 -> bstr());
+ my $ediff = $e1 - $e2;
+ if ($ediff > 0) {
+ $self -> {_n} = $LIB -> _lsft($self -> {_n},
+ $LIB -> _new($ediff -> bstr()),
+ 10);
+ } elsif ($ediff < 0) {
+ $self -> {_d} = $LIB -> _lsft($self -> {_d},
+ $LIB -> _new(-$ediff -> bstr()),
+ 10);
+ }
+
+ return $self -> bnorm();
}
}
- $self->bnorm();
+ return $self;
}
sub copy {
@@ -344,318 +534,390 @@ sub copy {
my $copy = bless {}, $class;
$copy->{sign} = $self->{sign};
- $copy->{_d} = $MBI->_copy($self->{_d});
- $copy->{_n} = $MBI->_copy($self->{_n});
+ $copy->{_d} = $LIB->_copy($self->{_d});
+ $copy->{_n} = $LIB->_copy($self->{_n});
$copy->{_a} = $self->{_a} if defined $self->{_a};
$copy->{_p} = $self->{_p} if defined $self->{_p};
- $copy;
+ #($copy, $copy->{_a}, $copy->{_p})
+ # = $copy->_find_round_parameters(@_);
+
+ return $copy;
+}
+
+sub bnan {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ $self = bless {}, $class unless $selfref;
+
+ if ($_trap_nan) {
+ Carp::croak ("Tried to set a variable to NaN in $class->bnan()");
+ }
+
+ $self -> {sign} = $nan;
+ $self -> {_n} = $LIB -> _zero();
+ $self -> {_d} = $LIB -> _one();
+
+ ($self, $self->{_a}, $self->{_p})
+ = $self->_find_round_parameters(@_);
+
+ return $self;
+}
+
+sub binf {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ $self = bless {}, $class unless $selfref;
+
+ my $sign = shift();
+ $sign = defined($sign) && substr($sign, 0, 1) eq '-' ? '-inf' : '+inf';
+
+ if ($_trap_inf) {
+ Carp::croak ("Tried to set a variable to +-inf in $class->binf()");
+ }
+
+ $self -> {sign} = $sign;
+ $self -> {_n} = $LIB -> _zero();
+ $self -> {_d} = $LIB -> _one();
+
+ ($self, $self->{_a}, $self->{_p})
+ = $self->_find_round_parameters(@_);
+
+ return $self;
+}
+
+sub bone {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ $self = bless {}, $class unless $selfref;
+
+ my $sign = shift();
+ $sign = '+' unless defined($sign) && $sign eq '-';
+
+ $self -> {sign} = $sign;
+ $self -> {_n} = $LIB -> _one();
+ $self -> {_d} = $LIB -> _one();
+
+ ($self, $self->{_a}, $self->{_p})
+ = $self->_find_round_parameters(@_);
+
+ return $self;
+}
+
+sub bzero {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ $self = bless {}, $class unless $selfref;
+
+ $self -> {sign} = '+';
+ $self -> {_n} = $LIB -> _zero();
+ $self -> {_d} = $LIB -> _one();
+
+ ($self, $self->{_a}, $self->{_p})
+ = $self->_find_round_parameters(@_);
+
+ return $self;
}
##############################################################################
-sub config
- {
- # return (later set?) configuration data as hash ref
- my $class = shift || 'Math::BigRat';
+sub config {
+ # return (later set?) configuration data as hash ref
+ my $class = shift() || 'Math::BigRat';
- if (@_ == 1 && ref($_[0]) ne 'HASH')
- {
- my $cfg = $class->SUPER::config();
- return $cfg->{$_[0]};
+ if (@_ == 1 && ref($_[0]) ne 'HASH') {
+ my $cfg = $class->SUPER::config();
+ return $cfg->{$_[0]};
}
- my $cfg = $class->SUPER::config(@_);
+ my $cfg = $class->SUPER::config(@_);
- # now we need only to override the ones that are different from our parent
- $cfg->{class} = $class;
- $cfg->{with} = $MBI;
- $cfg;
- }
+ # now we need only to override the ones that are different from our parent
+ $cfg->{class} = $class;
+ $cfg->{with} = $LIB;
+
+ $cfg;
+}
##############################################################################
-sub bstr
- {
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+sub bstr {
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
- if ($x->{sign} !~ /^[+-]$/) # inf, NaN etc
- {
- my $s = $x->{sign}; $s =~ s/^\+//; # +inf => inf
- return $s;
+ if ($x->{sign} !~ /^[+-]$/) { # inf, NaN etc
+ my $s = $x->{sign};
+ $s =~ s/^\+//; # +inf => inf
+ return $s;
}
- my $s = ''; $s = $x->{sign} if $x->{sign} ne '+'; # '+3/2' => '3/2'
+ my $s = '';
+ $s = $x->{sign} if $x->{sign} ne '+'; # '+3/2' => '3/2'
- return $s . $MBI->_str($x->{_n}) if $MBI->_is_one($x->{_d});
- $s . $MBI->_str($x->{_n}) . '/' . $MBI->_str($x->{_d});
- }
+ return $s . $LIB->_str($x->{_n}) if $LIB->_is_one($x->{_d});
+ $s . $LIB->_str($x->{_n}) . '/' . $LIB->_str($x->{_d});
+}
-sub bsstr
- {
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+sub bsstr {
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
- if ($x->{sign} !~ /^[+-]$/) # inf, NaN etc
- {
- my $s = $x->{sign}; $s =~ s/^\+//; # +inf => inf
- return $s;
+ if ($x->{sign} !~ /^[+-]$/) { # inf, NaN etc
+ my $s = $x->{sign};
+ $s =~ s/^\+//; # +inf => inf
+ return $s;
}
- my $s = ''; $s = $x->{sign} if $x->{sign} ne '+'; # +3 vs 3
- $s . $MBI->_str($x->{_n}) . '/' . $MBI->_str($x->{_d});
- }
+ my $s = '';
+ $s = $x->{sign} if $x->{sign} ne '+'; # +3 vs 3
+ $s . $LIB->_str($x->{_n}) . '/' . $LIB->_str($x->{_d});
+}
-sub bnorm
- {
- # reduce the number to the shortest form
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+sub bnorm {
+ # reduce the number to the shortest form
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
- # Both parts must be objects of whatever we are using today.
- if (my $c = $MBI->_check($x->{_n}))
- {
+ # Both parts must be objects of whatever we are using today.
+ if (my $c = $LIB->_check($x->{_n})) {
Carp::croak("n did not pass the self-check ($c) in bnorm()");
}
- if (my $c = $MBI->_check($x->{_d}))
- {
+ if (my $c = $LIB->_check($x->{_d})) {
Carp::croak("d did not pass the self-check ($c) in bnorm()");
}
- # no normalize for NaN, inf etc.
- return $x if $x->{sign} !~ /^[+-]$/;
+ # no normalize for NaN, inf etc.
+ return $x if $x->{sign} !~ /^[+-]$/;
- # normalize zeros to 0/1
- if ($MBI->_is_zero($x->{_n}))
- {
- $x->{sign} = '+'; # never leave a -0
- $x->{_d} = $MBI->_one() unless $MBI->_is_one($x->{_d});
- return $x;
+ # normalize zeros to 0/1
+ if ($LIB->_is_zero($x->{_n})) {
+ $x->{sign} = '+'; # never leave a -0
+ $x->{_d} = $LIB->_one() unless $LIB->_is_one($x->{_d});
+ return $x;
}
- return $x if $MBI->_is_one($x->{_d}); # no need to reduce
-
- # reduce other numbers
- my $gcd = $MBI->_copy($x->{_n});
- $gcd = $MBI->_gcd($gcd,$x->{_d});
+ return $x if $LIB->_is_one($x->{_d}); # no need to reduce
- if (!$MBI->_is_one($gcd))
- {
- $x->{_n} = $MBI->_div($x->{_n},$gcd);
- $x->{_d} = $MBI->_div($x->{_d},$gcd);
+ # Compute the GCD.
+ my $gcd = $LIB->_gcd($LIB->_copy($x->{_n}), $x->{_d});
+ if (!$LIB->_is_one($gcd)) {
+ $x->{_n} = $LIB->_div($x->{_n}, $gcd);
+ $x->{_d} = $LIB->_div($x->{_d}, $gcd);
}
- $x;
- }
+
+ $x;
+}
##############################################################################
# sign manipulation
-sub bneg
- {
- # (BRAT or num_str) return BRAT
- # negate number or make a negated number from string
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+sub bneg {
+ # (BRAT or num_str) return BRAT
+ # negate number or make a negated number from string
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
- return $x if $x->modify('bneg');
+ return $x if $x->modify('bneg');
- # for +0 do not negate (to have always normalized +0). Does nothing for 'NaN'
- $x->{sign} =~ tr/+-/-+/
- unless ($x->{sign} eq '+' && $MBI->_is_zero($x->{_n}));
- $x;
- }
+ # for +0 do not negate (to have always normalized +0). Does nothing for 'NaN'
+ $x->{sign} =~ tr/+-/-+/
+ unless ($x->{sign} eq '+' && $LIB->_is_zero($x->{_n}));
+ $x;
+}
##############################################################################
# special values
-sub _bnan
- {
- # used by parent class bnan() to initialize number to NaN
- my $self = shift;
+sub _bnan {
+ # used by parent class bnan() to initialize number to NaN
+ my $self = shift;
- if ($_trap_nan)
- {
- my $class = ref($self);
- # "$self" below will stringify the object, this blows up if $self is a
- # partial object (happens under trap_nan), so fix it beforehand
- $self->{_d} = $MBI->_zero() unless defined $self->{_d};
- $self->{_n} = $MBI->_zero() unless defined $self->{_n};
- Carp::croak ("Tried to set $self to NaN in $class\::_bnan()");
- }
- $self->{_n} = $MBI->_zero();
- $self->{_d} = $MBI->_zero();
- }
-
-sub _binf
- {
- # used by parent class bone() to initialize number to +inf/-inf
- my $self = shift;
-
- if ($_trap_inf)
- {
- my $class = ref($self);
- # "$self" below will stringify the object, this blows up if $self is a
- # partial object (happens under trap_nan), so fix it beforehand
- $self->{_d} = $MBI->_zero() unless defined $self->{_d};
- $self->{_n} = $MBI->_zero() unless defined $self->{_n};
- Carp::croak ("Tried to set $self to inf in $class\::_binf()");
- }
- $self->{_n} = $MBI->_zero();
- $self->{_d} = $MBI->_zero();
- }
-
-sub _bone
- {
- # used by parent class bone() to initialize number to +1/-1
- my $self = shift;
- $self->{_n} = $MBI->_one();
- $self->{_d} = $MBI->_one();
- }
-
-sub _bzero
- {
- # used by parent class bzero() to initialize number to 0
- my $self = shift;
- $self->{_n} = $MBI->_zero();
- $self->{_d} = $MBI->_one();
- }
+ if ($_trap_nan) {
+ my $class = ref($self);
+ # "$self" below will stringify the object, this blows up if $self is a
+ # partial object (happens under trap_nan), so fix it beforehand
+ $self->{_d} = $LIB->_zero() unless defined $self->{_d};
+ $self->{_n} = $LIB->_zero() unless defined $self->{_n};
+ Carp::croak ("Tried to set $self to NaN in $class\::_bnan()");
+ }
+ $self->{_n} = $LIB->_zero();
+ $self->{_d} = $LIB->_zero();
+}
+
+sub _binf {
+ # used by parent class bone() to initialize number to +inf/-inf
+ my $self = shift;
+
+ if ($_trap_inf) {
+ my $class = ref($self);
+ # "$self" below will stringify the object, this blows up if $self is a
+ # partial object (happens under trap_nan), so fix it beforehand
+ $self->{_d} = $LIB->_zero() unless defined $self->{_d};
+ $self->{_n} = $LIB->_zero() unless defined $self->{_n};
+ Carp::croak ("Tried to set $self to inf in $class\::_binf()");
+ }
+ $self->{_n} = $LIB->_zero();
+ $self->{_d} = $LIB->_zero();
+}
+
+sub _bone {
+ # used by parent class bone() to initialize number to +1/-1
+ my $self = shift;
+ $self->{_n} = $LIB->_one();
+ $self->{_d} = $LIB->_one();
+}
+
+sub _bzero {
+ # used by parent class bzero() to initialize number to 0
+ my $self = shift;
+ $self->{_n} = $LIB->_zero();
+ $self->{_d} = $LIB->_one();
+}
##############################################################################
# mul/add/div etc
-sub badd
- {
- # add two rational numbers
+sub badd {
+ # add two rational numbers
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,@_);
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
}
- # +inf + +inf => +inf, -inf + -inf => -inf
- return $x->binf(substr($x->{sign},0,1))
- if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
+ # +inf + +inf => +inf, -inf + -inf => -inf
+ return $x->binf(substr($x->{sign}, 0, 1))
+ if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
- # +inf + -inf or -inf + +inf => NaN
- return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+ # +inf + -inf or -inf + +inf => NaN
+ return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
- # 1 1 gcd(3,4) = 1 1*3 + 1*4 7
- # - + - = --------- = --
- # 4 3 4*3 12
+ # 1 1 gcd(3, 4) = 1 1*3 + 1*4 7
+ # - + - = --------- = --
+ # 4 3 4*3 12
- # we do not compute the gcd() here, but simple do:
- # 5 7 5*3 + 7*4 43
- # - + - = --------- = --
- # 4 3 4*3 12
+ # we do not compute the gcd() here, but simple do:
+ # 5 7 5*3 + 7*4 43
+ # - + - = --------- = --
+ # 4 3 4*3 12
- # and bnorm() will then take care of the rest
+ # and bnorm() will then take care of the rest
- # 5 * 3
- $x->{_n} = $MBI->_mul($x->{_n}, $y->{_d});
+ # 5 * 3
+ $x->{_n} = $LIB->_mul($x->{_n}, $y->{_d});
- # 7 * 4
- my $m = $MBI->_mul($MBI->_copy($y->{_n}), $x->{_d});
+ # 7 * 4
+ my $m = $LIB->_mul($LIB->_copy($y->{_n}), $x->{_d});
- # 5 * 3 + 7 * 4
- ($x->{_n}, $x->{sign}) = _e_add($x->{_n}, $m, $x->{sign}, $y->{sign});
+ # 5 * 3 + 7 * 4
+ ($x->{_n}, $x->{sign}) = _e_add($x->{_n}, $m, $x->{sign}, $y->{sign});
- # 4 * 3
- $x->{_d} = $MBI->_mul($x->{_d}, $y->{_d});
+ # 4 * 3
+ $x->{_d} = $LIB->_mul($x->{_d}, $y->{_d});
- # normalize result, and possible round
- $x->bnorm()->round(@r);
- }
+ # normalize result, and possible round
+ $x->bnorm()->round(@r);
+}
-sub bsub
- {
- # subtract two rational numbers
+sub bsub {
+ # subtract two rational numbers
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,@_);
- }
-
- # flip sign of $x, call badd(), then flip sign of result
- $x->{sign} =~ tr/+-/-+/
- unless $x->{sign} eq '+' && $MBI->_is_zero($x->{_n}); # not -0
- $x->badd($y,@r); # does norm and round
- $x->{sign} =~ tr/+-/-+/
- unless $x->{sign} eq '+' && $MBI->_is_zero($x->{_n}); # not -0
- $x;
- }
-
-sub bmul
- {
- # multiply two rational numbers
-
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,@_);
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
}
- return $x->bnan() if ($x->{sign} eq 'NaN' || $y->{sign} eq 'NaN');
+ # flip sign of $x, call badd(), then flip sign of result
+ $x->{sign} =~ tr/+-/-+/
+ unless $x->{sign} eq '+' && $LIB->_is_zero($x->{_n}); # not -0
+ $x->badd($y, @r); # does norm and round
+ $x->{sign} =~ tr/+-/-+/
+ unless $x->{sign} eq '+' && $LIB->_is_zero($x->{_n}); # not -0
- # inf handling
- if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
- {
- return $x->bnan() if $x->is_zero() || $y->is_zero();
- # result will always be +-inf:
- # +inf * +/+inf => +inf, -inf * -/-inf => +inf
- # +inf * -/-inf => -inf, -inf * +/+inf => -inf
- return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
- return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
- return $x->binf('-');
+ $x;
+}
+
+sub bmul {
+ # multiply two rational numbers
+
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
+ }
+
+ return $x->bnan() if $x->{sign} eq 'NaN' || $y->{sign} eq 'NaN';
+
+ # inf handling
+ if ($x->{sign} =~ /^[+-]inf$/ || $y->{sign} =~ /^[+-]inf$/) {
+ return $x->bnan() if $x->is_zero() || $y->is_zero();
+ # result will always be +-inf:
+ # +inf * +/+inf => +inf, -inf * -/-inf => +inf
+ # +inf * -/-inf => -inf, -inf * +/+inf => -inf
+ return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
+ return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
+ return $x->binf('-');
}
- # x== 0 # also: or y == 1 or y == -1
- return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
+ # x == 0 # also: or y == 1 or y == -1
+ return wantarray ? ($x, $class->bzero()) : $x if $x -> is_zero();
- # XXX TODO:
- # According to Knuth, this can be optimized by doing gcd twice (for d and n)
- # and reducing in one step. This would save us the bnorm() at the end.
+ if ($y -> is_zero()) {
+ $x -> bzero();
+ return wantarray ? ($x, $class->bzero()) : $x;
+ }
- # 1 2 1 * 2 2 1
- # - * - = ----- = - = -
- # 4 3 4 * 3 12 6
+ # According to Knuth, this can be optimized by doing gcd twice (for d
+ # and n) and reducing in one step. This saves us a bnorm() at the end.
+ #
+ # p s p * s (p / gcd(p, r)) * (s / gcd(s, q))
+ # - * - = ----- = ---------------------------------
+ # q r q * r (q / gcd(s, q)) * (r / gcd(p, r))
- $x->{_n} = $MBI->_mul($x->{_n}, $y->{_n});
- $x->{_d} = $MBI->_mul($x->{_d}, $y->{_d});
+ my $gcd_pr = $LIB -> _gcd($LIB -> _copy($x->{_n}), $y->{_d});
+ my $gcd_sq = $LIB -> _gcd($LIB -> _copy($y->{_n}), $x->{_d});
- # compute new sign
- $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
+ $x->{_n} = $LIB -> _mul(scalar $LIB -> _div($x->{_n}, $gcd_pr),
+ scalar $LIB -> _div($y->{_n}, $gcd_sq));
+ $x->{_d} = $LIB -> _mul(scalar $LIB -> _div($x->{_d}, $gcd_sq),
+ scalar $LIB -> _div($y->{_d}, $gcd_pr));
- $x->bnorm()->round(@r);
- }
+ # compute new sign
+ $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
-sub bdiv
- {
- # (dividend: BRAT or num_str, divisor: BRAT or num_str) return
- # (BRAT,BRAT) (quo,rem) or BRAT (only rem)
+ $x->round(@r);
+}
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,@_);
+sub bdiv {
+ # (dividend: BRAT or num_str, divisor: BRAT or num_str) return
+ # (BRAT, BRAT) (quo, rem) or BRAT (only rem)
+
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
}
- return $x if $x->modify('bdiv');
+ return $x if $x->modify('bdiv');
- my $wantarray = wantarray; # call only once
+ my $wantarray = wantarray; # call only once
# At least one argument is NaN. This is handled the same way as in
# Math::BigInt -> bdiv(). See the comments in the code implementing that
# method.
if ($x -> is_nan() || $y -> is_nan()) {
- return $wantarray ? ($x -> bnan(), $self -> bnan()) : $x -> bnan();
+ return $wantarray ? ($x -> bnan(), $class -> bnan()) : $x -> bnan();
}
# Divide by zero and modulo zero. This is handled the same way as in
@@ -681,7 +943,7 @@ sub bdiv
if ($x -> is_inf()) {
my ($quo, $rem);
- $rem = $self -> bnan() if $wantarray;
+ $rem = $class -> bnan() if $wantarray;
if ($y -> is_inf()) {
$quo = $x -> bnan();
} else {
@@ -691,78 +953,76 @@ sub bdiv
return $wantarray ? ($quo, $rem) : $quo;
}
- # Denominator (divisor) is +/-inf. This is handled the same way as in
- # Math::BigFloat -> bdiv(). See the comments in the code implementing that
- # method.
-
- if ($y -> is_inf()) {
- my ($quo, $rem);
- if ($wantarray) {
- if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) {
- $rem = $x -> copy();
- $quo = $x -> bzero();
- } else {
- $rem = $self -> binf($y -> {sign});
- $quo = $x -> bone('-');
- }
- return ($quo, $rem);
- } else {
- if ($y -> is_inf()) {
- if ($x -> is_nan() || $x -> is_inf()) {
- return $x -> bnan();
- } else {
- return $x -> bzero();
- }
- }
- }
- }
-
- # At this point, both the numerator and denominator are finite numbers, and
- # the denominator (divisor) is non-zero.
-
- # x == 0?
- return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
-
- # XXX TODO: list context, upgrade
- # According to Knuth, this can be optimized by doing gcd twice (for d and n)
- # and reducing in one step. This would save us the bnorm() at the end.
-
- # 1 1 1 3
- # - / - == - * -
- # 4 3 4 1
-
- $x->{_n} = $MBI->_mul($x->{_n}, $y->{_d});
- $x->{_d} = $MBI->_mul($x->{_d}, $y->{_n});
-
- # compute new sign
- $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
-
- $x -> bnorm();
- if (wantarray) {
- my $rem = $x -> copy();
- $x -> bfloor();
- $x -> round(@r);
- $rem -> bsub($x -> copy()) -> bmul($y);
- return $x, $rem;
- } else {
- $x -> round(@r);
- return $x;
- }
- }
-
-sub bmod
- {
- # compute "remainder" (in Perl way) of $x / $y
-
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,@_);
+ # Denominator (divisor) is +/-inf. This is handled the same way as in
+ # Math::BigFloat -> bdiv(). See the comments in the code implementing that
+ # method.
+
+ if ($y -> is_inf()) {
+ my ($quo, $rem);
+ if ($wantarray) {
+ if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) {
+ $rem = $x -> copy();
+ $quo = $x -> bzero();
+ } else {
+ $rem = $class -> binf($y -> {sign});
+ $quo = $x -> bone('-');
+ }
+ return ($quo, $rem);
+ } else {
+ if ($y -> is_inf()) {
+ if ($x -> is_nan() || $x -> is_inf()) {
+ return $x -> bnan();
+ } else {
+ return $x -> bzero();
+ }
+ }
+ }
}
- return $x if $x->modify('bmod');
+ # At this point, both the numerator and denominator are finite numbers, and
+ # the denominator (divisor) is non-zero.
+
+ # x == 0?
+ return wantarray ? ($x, $class->bzero()) : $x if $x->is_zero();
+
+ # XXX TODO: list context, upgrade
+ # According to Knuth, this can be optimized by doing gcd twice (for d and n)
+ # and reducing in one step. This would save us the bnorm() at the end.
+ #
+ # p r p * s (p / gcd(p, r)) * (s / gcd(s, q))
+ # - / - = ----- = ---------------------------------
+ # q s q * r (q / gcd(s, q)) * (r / gcd(p, r))
+
+ $x->{_n} = $LIB->_mul($x->{_n}, $y->{_d});
+ $x->{_d} = $LIB->_mul($x->{_d}, $y->{_n});
+
+ # compute new sign
+ $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
+
+ $x -> bnorm();
+ if (wantarray) {
+ my $rem = $x -> copy();
+ $x -> bfloor();
+ $x -> round(@r);
+ $rem -> bsub($x -> copy()) -> bmul($y);
+ return $x, $rem;
+ } else {
+ $x -> round(@r);
+ return $x;
+ }
+}
+
+sub bmod {
+ # compute "remainder" (in Perl way) of $x / $y
+
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
+ }
+
+ return $x if $x->modify('bmod');
# At least one argument is NaN. This is handled the same way as in
# Math::BigInt -> bmod().
@@ -795,938 +1055,1031 @@ sub bmod
}
}
- # At this point, both the numerator and denominator are finite numbers, and
- # the denominator (divisor) is non-zero.
+ # At this point, both the numerator and denominator are finite numbers, and
+ # the denominator (divisor) is non-zero.
- return $x if $x->is_zero(); # 0 / 7 = 0, mod 0
+ return $x if $x->is_zero(); # 0 / 7 = 0, mod 0
- # Compute $x - $y * floor($x/$y). This can probably be optimized by working
- # on a lower level.
+ # Compute $x - $y * floor($x/$y). This can probably be optimized by working
+ # on a lower level.
- $x -> bsub($x -> copy() -> bdiv($y) -> bfloor() -> bmul($y));
- return $x -> round(@r);
- }
+ $x -> bsub($x -> copy() -> bdiv($y) -> bfloor() -> bmul($y));
+ return $x -> round(@r);
+}
##############################################################################
# bdec/binc
-sub bdec
- {
- # decrement value (subtract 1)
- my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+sub bdec {
+ # decrement value (subtract 1)
+ my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
- return $x if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf
+ return $x if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf
- if ($x->{sign} eq '-')
- {
- $x->{_n} = $MBI->_add($x->{_n}, $x->{_d}); # -5/2 => -7/2
+ if ($x->{sign} eq '-') {
+ $x->{_n} = $LIB->_add($x->{_n}, $x->{_d}); # -5/2 => -7/2
+ } else {
+ if ($LIB->_acmp($x->{_n}, $x->{_d}) < 0) # n < d?
+ {
+ # 1/3 -- => -2/3
+ $x->{_n} = $LIB->_sub($LIB->_copy($x->{_d}), $x->{_n});
+ $x->{sign} = '-';
+ } else {
+ $x->{_n} = $LIB->_sub($x->{_n}, $x->{_d}); # 5/2 => 3/2
+ }
}
- else
- {
- if ($MBI->_acmp($x->{_n},$x->{_d}) < 0) # n < d?
- {
- # 1/3 -- => -2/3
- $x->{_n} = $MBI->_sub($MBI->_copy($x->{_d}), $x->{_n});
- $x->{sign} = '-';
- }
- else
- {
- $x->{_n} = $MBI->_sub($x->{_n}, $x->{_d}); # 5/2 => 3/2
- }
- }
- $x->bnorm()->round(@r);
- }
-
-sub binc
- {
- # increment value (add 1)
- my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
-
- return $x if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf
-
- if ($x->{sign} eq '-')
- {
- if ($MBI->_acmp($x->{_n},$x->{_d}) < 0)
- {
- # -1/3 ++ => 2/3 (overflow at 0)
- $x->{_n} = $MBI->_sub($MBI->_copy($x->{_d}), $x->{_n});
- $x->{sign} = '+';
- }
- else
- {
- $x->{_n} = $MBI->_sub($x->{_n}, $x->{_d}); # -5/2 => -3/2
- }
- }
- else
- {
- $x->{_n} = $MBI->_add($x->{_n},$x->{_d}); # 5/2 => 7/2
+ $x->bnorm()->round(@r);
+}
+
+sub binc {
+ # increment value (add 1)
+ my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
+
+ return $x if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf
+
+ if ($x->{sign} eq '-') {
+ if ($LIB->_acmp($x->{_n}, $x->{_d}) < 0) {
+ # -1/3 ++ => 2/3 (overflow at 0)
+ $x->{_n} = $LIB->_sub($LIB->_copy($x->{_d}), $x->{_n});
+ $x->{sign} = '+';
+ } else {
+ $x->{_n} = $LIB->_sub($x->{_n}, $x->{_d}); # -5/2 => -3/2
+ }
+ } else {
+ $x->{_n} = $LIB->_add($x->{_n}, $x->{_d}); # 5/2 => 7/2
}
- $x->bnorm()->round(@r);
- }
+ $x->bnorm()->round(@r);
+}
##############################################################################
# is_foo methods (the rest is inherited)
-sub is_int
- {
- # return true if arg (BRAT or num_str) is an integer
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
-
- return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN and +-inf aren't
- $MBI->_is_one($x->{_d}); # x/y && y != 1 => no integer
- 0;
- }
-
-sub is_zero
- {
- # return true if arg (BRAT or num_str) is zero
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
-
- return 1 if $x->{sign} eq '+' && $MBI->_is_zero($x->{_n});
- 0;
- }
-
-sub is_one
- {
- # return true if arg (BRAT or num_str) is +1 or -1 if signis given
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
-
- my $sign = $_[2] || ''; $sign = '+' if $sign ne '-';
- return 1
- if ($x->{sign} eq $sign && $MBI->_is_one($x->{_n}) && $MBI->_is_one($x->{_d}));
- 0;
- }
-
-sub is_odd
- {
- # return true if arg (BFLOAT or num_str) is odd or false if even
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
-
- return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
- ($MBI->_is_one($x->{_d}) && $MBI->_is_odd($x->{_n})); # x/2 is not, but 3/1
- 0;
- }
-
-sub is_even
- {
- # return true if arg (BINT or num_str) is even or false if odd
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
-
- return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
- return 1 if ($MBI->_is_one($x->{_d}) # x/3 is never
- && $MBI->_is_even($x->{_n})); # but 4/1 is
- 0;
- }
+sub is_int {
+ # return true if arg (BRAT or num_str) is an integer
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
+
+ return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN and +-inf aren't
+ $LIB->_is_one($x->{_d}); # x/y && y != 1 => no integer
+ 0;
+}
+
+sub is_zero {
+ # return true if arg (BRAT or num_str) is zero
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
+
+ return 1 if $x->{sign} eq '+' && $LIB->_is_zero($x->{_n});
+ 0;
+}
+
+sub is_one {
+ # return true if arg (BRAT or num_str) is +1 or -1 if signis given
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
+
+ my $sign = $_[2] || ''; $sign = '+' if $sign ne '-';
+ return 1
+ if ($x->{sign} eq $sign && $LIB->_is_one($x->{_n}) && $LIB->_is_one($x->{_d}));
+ 0;
+}
+
+sub is_odd {
+ # return true if arg (BFLOAT or num_str) is odd or false if even
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
+
+ return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
+ ($LIB->_is_one($x->{_d}) && $LIB->_is_odd($x->{_n})); # x/2 is not, but 3/1
+ 0;
+}
+
+sub is_even {
+ # return true if arg (BINT or num_str) is even or false if odd
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
+
+ return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
+ return 1 if ($LIB->_is_one($x->{_d}) # x/3 is never
+ && $LIB->_is_even($x->{_n})); # but 4/1 is
+ 0;
+}
##############################################################################
# parts() and friends
-sub numerator
- {
- my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+sub numerator {
+ my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
- # NaN, inf, -inf
- return Math::BigInt->new($x->{sign}) if ($x->{sign} !~ /^[+-]$/);
+ # NaN, inf, -inf
+ return Math::BigInt->new($x->{sign}) if ($x->{sign} !~ /^[+-]$/);
- my $n = Math::BigInt->new($MBI->_str($x->{_n})); $n->{sign} = $x->{sign};
- $n;
- }
+ my $n = Math::BigInt->new($LIB->_str($x->{_n}));
+ $n->{sign} = $x->{sign};
+ $n;
+}
-sub denominator
- {
- my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+sub denominator {
+ my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
- # NaN
- return Math::BigInt->new($x->{sign}) if $x->{sign} eq 'NaN';
- # inf, -inf
- return Math::BigInt->bone() if $x->{sign} !~ /^[+-]$/;
+ # NaN
+ return Math::BigInt->new($x->{sign}) if $x->{sign} eq 'NaN';
+ # inf, -inf
+ return Math::BigInt->bone() if $x->{sign} !~ /^[+-]$/;
- Math::BigInt->new($MBI->_str($x->{_d}));
- }
+ Math::BigInt->new($LIB->_str($x->{_d}));
+}
-sub parts
- {
- my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+sub parts {
+ my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
- my $c = 'Math::BigInt';
+ my $c = 'Math::BigInt';
- return ($c->bnan(),$c->bnan()) if $x->{sign} eq 'NaN';
- return ($c->binf(),$c->binf()) if $x->{sign} eq '+inf';
- return ($c->binf('-'),$c->binf()) if $x->{sign} eq '-inf';
+ return ($c->bnan(), $c->bnan()) if $x->{sign} eq 'NaN';
+ return ($c->binf(), $c->binf()) if $x->{sign} eq '+inf';
+ return ($c->binf('-'), $c->binf()) if $x->{sign} eq '-inf';
- my $n = $c->new($MBI->_str($x->{_n}));
- $n->{sign} = $x->{sign};
- my $d = $c->new($MBI->_str($x->{_d}));
- ($n,$d);
- }
+ my $n = $c->new($LIB->_str($x->{_n}));
+ $n->{sign} = $x->{sign};
+ my $d = $c->new($LIB->_str($x->{_d}));
+ ($n, $d);
+}
-sub length
- {
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+sub length {
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
- return $nan unless $x->is_int();
- $MBI->_len($x->{_n}); # length(-123/1) => length(123)
- }
+ return $nan unless $x->is_int();
+ $LIB->_len($x->{_n}); # length(-123/1) => length(123)
+}
-sub digit
- {
- my ($self,$x,$n) = ref($_[0]) ? (undef,$_[0],$_[1]) : objectify(1,@_);
+sub digit {
+ my ($class, $x, $n) = ref($_[0]) ? (undef, $_[0], $_[1]) : objectify(1, @_);
- return $nan unless $x->is_int();
- $MBI->_digit($x->{_n},$n || 0); # digit(-123/1,2) => digit(123,2)
- }
+ return $nan unless $x->is_int();
+ $LIB->_digit($x->{_n}, $n || 0); # digit(-123/1, 2) => digit(123, 2)
+}
##############################################################################
# special calc routines
-sub bceil
- {
- my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
-
- return $x if $x->{sign} !~ /^[+-]$/ || # not for NaN, inf
- $MBI->_is_one($x->{_d}); # 22/1 => 22, 0/1 => 0
-
- $x->{_n} = $MBI->_div($x->{_n},$x->{_d}); # 22/7 => 3/1 w/ truncate
- $x->{_d} = $MBI->_one(); # d => 1
- $x->{_n} = $MBI->_inc($x->{_n})
- if $x->{sign} eq '+'; # +22/7 => 4/1
- $x->{sign} = '+' if $MBI->_is_zero($x->{_n}); # -0 => 0
- $x;
- }
-
-sub bfloor
- {
- my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
-
- return $x if $x->{sign} !~ /^[+-]$/ || # not for NaN, inf
- $MBI->_is_one($x->{_d}); # 22/1 => 22, 0/1 => 0
-
- $x->{_n} = $MBI->_div($x->{_n},$x->{_d}); # 22/7 => 3/1 w/ truncate
- $x->{_d} = $MBI->_one(); # d => 1
- $x->{_n} = $MBI->_inc($x->{_n})
- if $x->{sign} eq '-'; # -22/7 => -4/1
- $x;
- }
-
-sub bfac
- {
- my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
-
- # if $x is not an integer
- if (($x->{sign} ne '+') || (!$MBI->_is_one($x->{_d})))
- {
- return $x->bnan();
+sub bceil {
+ my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
+
+ return $x if ($x->{sign} !~ /^[+-]$/ || # not for NaN, inf
+ $LIB->_is_one($x->{_d})); # 22/1 => 22, 0/1 => 0
+
+ $x->{_n} = $LIB->_div($x->{_n}, $x->{_d}); # 22/7 => 3/1 w/ truncate
+ $x->{_d} = $LIB->_one(); # d => 1
+ $x->{_n} = $LIB->_inc($x->{_n}) if $x->{sign} eq '+'; # +22/7 => 4/1
+ $x->{sign} = '+' if $x->{sign} eq '-' && $LIB->_is_zero($x->{_n}); # -0 => 0
+ $x;
+}
+
+sub bfloor {
+ my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
+
+ return $x if ($x->{sign} !~ /^[+-]$/ || # not for NaN, inf
+ $LIB->_is_one($x->{_d})); # 22/1 => 22, 0/1 => 0
+
+ $x->{_n} = $LIB->_div($x->{_n}, $x->{_d}); # 22/7 => 3/1 w/ truncate
+ $x->{_d} = $LIB->_one(); # d => 1
+ $x->{_n} = $LIB->_inc($x->{_n}) if $x->{sign} eq '-'; # -22/7 => -4/1
+ $x;
+}
+
+sub bint {
+ my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
+
+ return $x if ($x->{sign} !~ /^[+-]$/ || # +/-inf or NaN
+ $LIB -> _is_one($x->{_d})); # already an integer
+
+ $x->{_n} = $LIB->_div($x->{_n}, $x->{_d}); # 22/7 => 3/1 w/ truncate
+ $x->{_d} = $LIB->_one(); # d => 1
+ $x->{sign} = '+' if $x->{sign} eq '-' && $LIB -> _is_zero($x->{_n});
+ return $x;
+}
+
+sub bfac {
+ my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
+
+ # if $x is not an integer
+ if (($x->{sign} ne '+') || (!$LIB->_is_one($x->{_d}))) {
+ return $x->bnan();
}
- $x->{_n} = $MBI->_fac($x->{_n});
- # since _d is 1, we don't need to reduce/norm the result
- $x->round(@r);
- }
+ $x->{_n} = $LIB->_fac($x->{_n});
+ # since _d is 1, we don't need to reduce/norm the result
+ $x->round(@r);
+}
-sub bpow
- {
- # power ($x ** $y)
+sub bpow {
+ # power ($x ** $y)
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,@_);
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
}
- return $x if $x->{sign} =~ /^[+-]inf$/; # -inf/+inf ** x
- return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
- return $x->bone(@r) if $y->is_zero();
- return $x->round(@r) if $x->is_one() || $y->is_one();
+ return $x if $x->{sign} =~ /^[+-]inf$/; # -inf/+inf ** x
+ return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
+ return $x->bone(@r) if $y->is_zero();
+ return $x->round(@r) if $x->is_one() || $y->is_one();
- if ($x->{sign} eq '-' && $MBI->_is_one($x->{_n}) && $MBI->_is_one($x->{_d}))
- {
- # if $x == -1 and odd/even y => +1/-1
- return $y->is_odd() ? $x->round(@r) : $x->babs()->round(@r);
- # my Casio FX-5500L has a bug here: -1 ** 2 is -1, but -1 * -1 is 1;
+ if ($x->{sign} eq '-' && $LIB->_is_one($x->{_n}) && $LIB->_is_one($x->{_d})) {
+ # if $x == -1 and odd/even y => +1/-1
+ return $y->is_odd() ? $x->round(@r) : $x->babs()->round(@r);
+ # my Casio FX-5500L has a bug here: -1 ** 2 is -1, but -1 * -1 is 1;
}
- # 1 ** -y => 1 / (1 ** |y|)
- # so do test for negative $y after above's clause
+ # 1 ** -y => 1 / (1 ** |y|)
+ # so do test for negative $y after above's clause
- return $x->round(@r) if $x->is_zero(); # 0**y => 0 (if not y <= 0)
+ return $x->round(@r) if $x->is_zero(); # 0**y => 0 (if not y <= 0)
- # shortcut if y == 1/N (is then sqrt() respective broot())
- if ($MBI->_is_one($y->{_n}))
- {
- return $x->bsqrt(@r) if $MBI->_is_two($y->{_d}); # 1/2 => sqrt
- return $x->broot($MBI->_str($y->{_d}),@r); # 1/N => root(N)
+ # shortcut if y == 1/N (is then sqrt() respective broot())
+ if ($LIB->_is_one($y->{_n})) {
+ return $x->bsqrt(@r) if $LIB->_is_two($y->{_d}); # 1/2 => sqrt
+ return $x->broot($LIB->_str($y->{_d}), @r); # 1/N => root(N)
}
- # shortcut y/1 (and/or x/1)
- if ($MBI->_is_one($y->{_d}))
- {
- # shortcut for x/1 and y/1
- if ($MBI->_is_one($x->{_d}))
- {
- $x->{_n} = $MBI->_pow($x->{_n},$y->{_n}); # x/1 ** y/1 => (x ** y)/1
- if ($y->{sign} eq '-')
- {
- # 0.2 ** -3 => 1/(0.2 ** 3)
- ($x->{_n},$x->{_d}) = ($x->{_d},$x->{_n}); # swap
+ # shortcut y/1 (and/or x/1)
+ if ($LIB->_is_one($y->{_d})) {
+ # shortcut for x/1 and y/1
+ if ($LIB->_is_one($x->{_d})) {
+ $x->{_n} = $LIB->_pow($x->{_n}, $y->{_n}); # x/1 ** y/1 => (x ** y)/1
+ if ($y->{sign} eq '-') {
+ # 0.2 ** -3 => 1/(0.2 ** 3)
+ ($x->{_n}, $x->{_d}) = ($x->{_d}, $x->{_n}); # swap
+ }
+ # correct sign; + ** + => +
+ if ($x->{sign} eq '-') {
+ # - * - => +, - * - * - => -
+ $x->{sign} = '+' if $x->{sign} eq '-' && $LIB->_is_even($y->{_n});
+ }
+ return $x->round(@r);
}
- # correct sign; + ** + => +
- if ($x->{sign} eq '-')
- {
- # - * - => +, - * - * - => -
- $x->{sign} = '+' if $MBI->_is_even($y->{_n});
+
+ # x/z ** y/1
+ $x->{_n} = $LIB->_pow($x->{_n}, $y->{_n}); # 5/2 ** y/1 => 5 ** y / 2 ** y
+ $x->{_d} = $LIB->_pow($x->{_d}, $y->{_n});
+ if ($y->{sign} eq '-') {
+ # 0.2 ** -3 => 1/(0.2 ** 3)
+ ($x->{_n}, $x->{_d}) = ($x->{_d}, $x->{_n}); # swap
}
- return $x->round(@r);
- }
- # x/z ** y/1
- $x->{_n} = $MBI->_pow($x->{_n},$y->{_n}); # 5/2 ** y/1 => 5 ** y / 2 ** y
- $x->{_d} = $MBI->_pow($x->{_d},$y->{_n});
- if ($y->{sign} eq '-')
- {
- # 0.2 ** -3 => 1/(0.2 ** 3)
- ($x->{_n},$x->{_d}) = ($x->{_d},$x->{_n}); # swap
- }
- # correct sign; + ** + => +
- if ($x->{sign} eq '-')
- {
- # - * - => +, - * - * - => -
- $x->{sign} = '+' if $MBI->_is_even($y->{_n});
- }
- return $x->round(@r);
- }
-
-# print STDERR "# $x $y\n";
-
- # otherwise:
-
- # n/d n ______________
- # a/b = -\/ (a/b) ** d
-
- # (a/b) ** n == (a ** n) / (b ** n)
- $MBI->_pow($x->{_n}, $y->{_n});
- $MBI->_pow($x->{_d}, $y->{_n});
-
- return $x->broot($MBI->_str($y->{_d}),@r); # n/d => root(n)
- }
-
-sub blog
- {
- # Return the logarithm of the operand. If a second operand is defined, that
- # value is used as the base, otherwise the base is assumed to be Euler's
- # constant.
-
- # Don't objectify the base, since an undefined base, as in $x->blog() or
- # $x->blog(undef) signals that the base is Euler's number.
-
- # set up parameters
- my ($self,$x,$base,@r) = (ref($_[0]),@_);
-
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$base,@r) = objectify(1,$class,@_);
- }
-
- return $x if $x->modify('blog');
-
- # Handle all exception cases and all trivial cases. I have used Wolfram Alpha
- # (http://www.wolframalpha.com) as the reference for these cases.
-
- return $x -> bnan() if $x -> is_nan();
-
- if (defined $base) {
- $base = $self -> new($base) unless ref $base;
- if ($base -> is_nan() || $base -> is_one()) {
- return $x -> bnan();
- } elsif ($base -> is_inf() || $base -> is_zero()) {
- return $x -> bnan() if $x -> is_inf() || $x -> is_zero();
- return $x -> bzero();
- } elsif ($base -> is_negative()) { # -inf < base < 0
- return $x -> bzero() if $x -> is_one(); # x = 1
- return $x -> bone() if $x == $base; # x = base
- return $x -> bnan(); # otherwise
- }
- return $x -> bone() if $x == $base; # 0 < base && 0 < x < inf
- }
-
- # We now know that the base is either undefined or positive and finite.
-
- if ($x -> is_inf()) { # x = +/-inf
- my $sign = defined $base && $base < 1 ? '-' : '+';
- return $x -> binf($sign);
- } elsif ($x -> is_neg()) { # -inf < x < 0
- return $x -> bnan();
- } elsif ($x -> is_one()) { # x = 1
- return $x -> bzero();
- } elsif ($x -> is_zero()) { # x = 0
- my $sign = defined $base && $base < 1 ? '+' : '-';
- return $x -> binf($sign);
- }
-
- # At this point we are done handling all exception cases and trivial cases.
-
- # Do it with Math::BigFloats and convert back to Math::BigRat.
- $base = $base -> _as_float() if defined $base;
- $x -> _new_from_float($x -> _as_float() -> blog($base, @r));
- }
-
-sub bexp
- {
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
-
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,$class,@_);
+ # correct sign; + ** + => +
+
+ $x->{sign} = '+' if $x->{sign} eq '-' && $LIB->_is_even($y->{_n});
+ return $x->round(@r);
}
- return $x->binf(@r) if $x->{sign} eq '+inf';
- return $x->bzero(@r) if $x->{sign} eq '-inf';
+ # print STDERR "# $x $y\n";
- # we need to limit the accuracy to protect against overflow
- my $fallback = 0;
- my ($scale,@params);
- ($x,@params) = $x->_find_round_parameters(@r);
+ # otherwise:
- # also takes care of the "error in _find_round_parameters?" case
- return $x if $x->{sign} eq 'NaN';
+ # n/d n ______________
+ # a/b = -\/ (a/b) ** d
- # no rounding at all, so must use fallback
- if (scalar @params == 0)
- {
- # simulate old behaviour
- $params[0] = $self->div_scale(); # and round to it as accuracy
- $params[1] = undef; # P = undef
- $scale = $params[0]+4; # at least four more for proper round
- $params[2] = $r[2]; # round mode by caller or undef
- $fallback = 1; # to clear a/p afterwards
- }
- else
- {
- # the 4 below is empirical, and there might be cases where it's not enough...
- $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ # (a/b) ** n == (a ** n) / (b ** n)
+ $LIB->_pow($x->{_n}, $y->{_n});
+ $LIB->_pow($x->{_d}, $y->{_n});
+
+ return $x->broot($LIB->_str($y->{_d}), @r); # n/d => root(n)
+}
+
+sub blog {
+ # Return the logarithm of the operand. If a second operand is defined, that
+ # value is used as the base, otherwise the base is assumed to be Euler's
+ # constant.
+
+ # Don't objectify the base, since an undefined base, as in $x->blog() or
+ # $x->blog(undef) signals that the base is Euler's number.
+
+ # set up parameters
+ my ($class, $x, $base, @r) = (ref($_[0]), @_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $base, @r) = objectify(1, @_);
}
- return $x->bone(@params) if $x->is_zero();
+ return $x if $x->modify('blog');
- # See the comments in Math::BigFloat on how this algorithm works.
- # Basically we calculate A and B (where B is faculty(N)) so that A/B = e
+ # Handle all exception cases and all trivial cases. I have used Wolfram Alpha
+ # (http://www.wolframalpha.com) as the reference for these cases.
- my $x_org = $x->copy();
- if ($scale <= 75)
- {
- # set $x directly from a cached string form
- $x->{_n} =
- $MBI->_new("90933395208605785401971970164779391644753259799242");
- $x->{_d} =
- $MBI->_new("33452526613163807108170062053440751665152000000000");
- $x->{sign} = '+';
- }
- else
- {
- # compute A and B so that e = A / B.
-
- # After some terms we end up with this, so we use it as a starting point:
- my $A = $MBI->_new("90933395208605785401971970164779391644753259799242");
- my $F = $MBI->_new(42); my $step = 42;
-
- # Compute how many steps we need to take to get $A and $B sufficiently big
- my $steps = Math::BigFloat::_len_to_steps($scale - 4);
-# print STDERR "# Doing $steps steps for ", $scale-4, " digits\n";
- while ($step++ <= $steps)
- {
- # calculate $a * $f + 1
- $A = $MBI->_mul($A, $F);
- $A = $MBI->_inc($A);
- # increment f
- $F = $MBI->_inc($F);
- }
- # compute $B as factorial of $steps (this is faster than doing it manually)
- my $B = $MBI->_fac($MBI->_new($steps));
-
-# print "A ", $MBI->_str($A), "\nB ", $MBI->_str($B), "\n";
-
- $x->{_n} = $A;
- $x->{_d} = $B;
- $x->{sign} = '+';
- }
-
- # $x contains now an estimate of e, with some surplus digits, so we can round
- if (!$x_org->is_one())
- {
- # raise $x to the wanted power and round it in one step:
- $x->bpow($x_org, @params);
+ return $x -> bnan() if $x -> is_nan();
+
+ if (defined $base) {
+ $base = $class -> new($base) unless ref $base;
+ if ($base -> is_nan() || $base -> is_one()) {
+ return $x -> bnan();
+ } elsif ($base -> is_inf() || $base -> is_zero()) {
+ return $x -> bnan() if $x -> is_inf() || $x -> is_zero();
+ return $x -> bzero();
+ } elsif ($base -> is_negative()) { # -inf < base < 0
+ return $x -> bzero() if $x -> is_one(); # x = 1
+ return $x -> bone() if $x == $base; # x = base
+ return $x -> bnan(); # otherwise
+ }
+ return $x -> bone() if $x == $base; # 0 < base && 0 < x < inf
}
- else
- {
- # else just round the already computed result
- delete $x->{_a}; delete $x->{_p};
- # shortcut to not run through _find_round_parameters again
- if (defined $params[0])
- {
- $x->bround($params[0],$params[2]); # then round accordingly
- }
- else
- {
- $x->bfround($params[1],$params[2]); # then round accordingly
- }
- }
- if ($fallback)
- {
- # clear a/p after round, since user did not request it
- delete $x->{_a}; delete $x->{_p};
+
+ # We now know that the base is either undefined or positive and finite.
+
+ if ($x -> is_inf()) { # x = +/-inf
+ my $sign = defined $base && $base < 1 ? '-' : '+';
+ return $x -> binf($sign);
+ } elsif ($x -> is_neg()) { # -inf < x < 0
+ return $x -> bnan();
+ } elsif ($x -> is_one()) { # x = 1
+ return $x -> bzero();
+ } elsif ($x -> is_zero()) { # x = 0
+ my $sign = defined $base && $base < 1 ? '+' : '-';
+ return $x -> binf($sign);
}
- $x;
- }
+ # At this point we are done handling all exception cases and trivial cases.
-sub bnok
- {
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ $base = Math::BigFloat -> new($base) if defined $base;
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,$class,@_);
+ my $xn = Math::BigFloat -> new($LIB -> _str($x->{_n}));
+ my $xd = Math::BigFloat -> new($LIB -> _str($x->{_d}));
+
+ my $xtmp = Math::BigRat -> new($xn -> bdiv($xd) -> blog($base, @r) -> bsstr());
+
+ $x -> {sign} = $xtmp -> {sign};
+ $x -> {_n} = $xtmp -> {_n};
+ $x -> {_d} = $xtmp -> {_d};
+
+ return $x;
+}
+
+sub bexp {
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
}
- # do it with floats
- $x->_new_from_float($x->_as_float()->bnok(Math::BigFloat->new("$y"),@r));
- }
+ return $x->binf(@r) if $x->{sign} eq '+inf';
+ return $x->bzero(@r) if $x->{sign} eq '-inf';
-sub _float_from_part
- {
- my $x = shift;
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my ($scale, @params);
+ ($x, @params) = $x->_find_round_parameters(@r);
- my $f = Math::BigFloat->bzero();
- $f->{_m} = $MBI->_copy($x);
- $f->{_e} = $MBI->_zero();
+ # also takes care of the "error in _find_round_parameters?" case
+ return $x if $x->{sign} eq 'NaN';
- $f;
- }
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0) {
+ # simulate old behaviour
+ $params[0] = $class->div_scale(); # and round to it as accuracy
+ $params[1] = undef; # P = undef
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r[2]; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ } else {
+ # the 4 below is empirical, and there might be cases where it's not enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
-sub _as_float
- {
- my $x = shift;
+ return $x->bone(@params) if $x->is_zero();
- local $Math::BigFloat::upgrade = undef;
- local $Math::BigFloat::accuracy = undef;
- local $Math::BigFloat::precision = undef;
- # 22/7 => 3.142857143..
+ # See the comments in Math::BigFloat on how this algorithm works.
+ # Basically we calculate A and B (where B is faculty(N)) so that A/B = e
- my $a = $x->accuracy() || 0;
- if ($a != 0 || !$MBI->_is_one($x->{_d}))
- {
- # n/d
- return scalar Math::BigFloat->new($x->{sign} . $MBI->_str($x->{_n}))->bdiv($MBI->_str($x->{_d}), $x->accuracy());
- }
- # just n
- Math::BigFloat->new($x->{sign} . $MBI->_str($x->{_n}));
- }
-
-sub broot
- {
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,@_);
+ my $x_org = $x->copy();
+ if ($scale <= 75) {
+ # set $x directly from a cached string form
+ $x->{_n} =
+ $LIB->_new("90933395208605785401971970164779391644753259799242");
+ $x->{_d} =
+ $LIB->_new("33452526613163807108170062053440751665152000000000");
+ $x->{sign} = '+';
+ } else {
+ # compute A and B so that e = A / B.
+
+ # After some terms we end up with this, so we use it as a starting point:
+ my $A = $LIB->_new("90933395208605785401971970164779391644753259799242");
+ my $F = $LIB->_new(42); my $step = 42;
+
+ # Compute how many steps we need to take to get $A and $B sufficiently big
+ my $steps = Math::BigFloat::_len_to_steps($scale - 4);
+ # print STDERR "# Doing $steps steps for ", $scale-4, " digits\n";
+ while ($step++ <= $steps) {
+ # calculate $a * $f + 1
+ $A = $LIB->_mul($A, $F);
+ $A = $LIB->_inc($A);
+ # increment f
+ $F = $LIB->_inc($F);
+ }
+ # compute $B as factorial of $steps (this is faster than doing it manually)
+ my $B = $LIB->_fac($LIB->_new($steps));
+
+ # print "A ", $LIB->_str($A), "\nB ", $LIB->_str($B), "\n";
+
+ $x->{_n} = $A;
+ $x->{_d} = $B;
+ $x->{sign} = '+';
}
- if ($x->is_int() && $y->is_int())
- {
- return $self->new($x->as_number()->broot($y->as_number(),@r));
+ # $x contains now an estimate of e, with some surplus digits, so we can round
+ if (!$x_org->is_one()) {
+ # raise $x to the wanted power and round it in one step:
+ $x->bpow($x_org, @params);
+ } else {
+ # else just round the already computed result
+ delete $x->{_a}; delete $x->{_p};
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0]) {
+ $x->bround($params[0], $params[2]); # then round accordingly
+ } else {
+ $x->bfround($params[1], $params[2]); # then round accordingly
+ }
+ }
+ if ($fallback) {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
}
- # do it with floats
- $x->_new_from_float($x->_as_float()->broot($y->_as_float(),@r))->bnorm()->bround(@r);
- }
+ $x;
+}
-sub bmodpow
- {
- # set up parameters
- my ($self,$x,$y,$m,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,$m,@r) = objectify(3,@_);
+sub bnok {
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
}
- # $x or $y or $m are NaN or +-inf => NaN
- return $x->bnan()
- if $x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/ ||
- $m->{sign} !~ /^[+-]$/;
+ my $xint = Math::BigInt -> new($x -> bint() -> bsstr());
+ my $yint = Math::BigInt -> new($y -> bint() -> bsstr());
+ $xint -> bnok($yint);
- if ($x->is_int() && $y->is_int() && $m->is_int())
- {
- return $self->new($x->as_number()->bmodpow($y->as_number(),$m,@r));
- }
+ $x -> {sign} = $xint -> {sign};
+ $x -> {_n} = $xint -> {_n};
+ $x -> {_d} = $xint -> {_d};
- warn ("bmodpow() not fully implemented");
- $x->bnan();
- }
+ return $x;
+}
-sub bmodinv
- {
- # set up parameters
- my ($self,$x,$y,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y,@r) = objectify(2,@_);
+sub broot {
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
}
- # $x or $y are NaN or +-inf => NaN
- return $x->bnan()
- if $x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/;
+ # Convert $x into a Math::BigFloat.
- if ($x->is_int() && $y->is_int())
- {
- return $self->new($x->as_number()->bmodinv($y->as_number(),@r));
- }
+ my $xd = Math::BigFloat -> new($LIB -> _str($x->{_d}));
+ my $xflt = Math::BigFloat -> new($LIB -> _str($x->{_n})) -> bdiv($xd);
+ $xflt -> {sign} = $x -> {sign};
- warn ("bmodinv() not fully implemented");
- $x->bnan();
- }
+ # Convert $y into a Math::BigFloat.
-sub bsqrt
- {
- my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+ my $yd = Math::BigFloat -> new($LIB -> _str($y->{_d}));
+ my $yflt = Math::BigFloat -> new($LIB -> _str($y->{_n})) -> bdiv($yd);
+ $yflt -> {sign} = $y -> {sign};
- return $x->bnan() if $x->{sign} !~ /^[+]/; # NaN, -inf or < 0
- return $x if $x->{sign} eq '+inf'; # sqrt(inf) == inf
- return $x->round(@r) if $x->is_zero() || $x->is_one();
+ # Compute the root and convert back to a Math::BigRat.
- local $Math::BigFloat::upgrade = undef;
- local $Math::BigFloat::downgrade = undef;
- local $Math::BigFloat::precision = undef;
- local $Math::BigFloat::accuracy = undef;
- local $Math::BigInt::upgrade = undef;
- local $Math::BigInt::precision = undef;
- local $Math::BigInt::accuracy = undef;
+ $xflt -> broot($yflt, @r);
+ my $xtmp = Math::BigRat -> new($xflt -> bsstr());
- $x->{_n} = _float_from_part($x->{_n})->bsqrt();
- $x->{_d} = _float_from_part($x->{_d})->bsqrt();
+ $x -> {sign} = $xtmp -> {sign};
+ $x -> {_n} = $xtmp -> {_n};
+ $x -> {_d} = $xtmp -> {_d};
- # XXX TODO: we probably can optimize this:
+ return $x;
+}
- # if sqrt(D) was not integer
- if ($x->{_d}->{_es} ne '+')
- {
- $x->{_n}->blsft($x->{_d}->exponent()->babs(),10); # 7.1/4.51 => 7.1/45.1
- $x->{_d} = $MBI->_copy($x->{_d}->{_m}); # 7.1/45.1 => 71/45.1
+sub bmodpow {
+ # set up parameters
+ my ($class, $x, $y, $m, @r) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, $m, @r) = objectify(3, @_);
}
- # if sqrt(N) was not integer
- if ($x->{_n}->{_es} ne '+')
- {
- $x->{_d}->blsft($x->{_n}->exponent()->babs(),10); # 71/45.1 => 710/45.1
- $x->{_n} = $MBI->_copy($x->{_n}->{_m}); # 710/45.1 => 710/451
+
+ # Convert $x, $y, and $m into Math::BigInt objects.
+
+ my $xint = Math::BigInt -> new($x -> copy() -> bint());
+ my $yint = Math::BigInt -> new($y -> copy() -> bint());
+ my $mint = Math::BigInt -> new($m -> copy() -> bint());
+
+ $xint -> bmodpow($y, $m, @r);
+ my $xtmp = Math::BigRat -> new($xint -> bsstr());
+
+ $x -> {sign} = $xtmp -> {sign};
+ $x -> {_n} = $xtmp -> {_n};
+ $x -> {_d} = $xtmp -> {_d};
+ return $x;
+}
+
+sub bmodinv {
+ # set up parameters
+ my ($class, $x, $y, @r) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y, @r) = objectify(2, @_);
}
- # convert parts to $MBI again
- $x->{_n} = $MBI->_lsft($MBI->_copy($x->{_n}->{_m}), $x->{_n}->{_e}, 10)
- if ref($x->{_n}) ne $MBI && ref($x->{_n}) ne 'ARRAY';
- $x->{_d} = $MBI->_lsft($MBI->_copy($x->{_d}->{_m}), $x->{_d}->{_e}, 10)
- if ref($x->{_d}) ne $MBI && ref($x->{_d}) ne 'ARRAY';
+ # Convert $x and $y into Math::BigInt objects.
+
+ my $xint = Math::BigInt -> new($x -> copy() -> bint());
+ my $yint = Math::BigInt -> new($y -> copy() -> bint());
+
+ $xint -> bmodinv($y, @r);
+ my $xtmp = Math::BigRat -> new($xint -> bsstr());
+
+ $x -> {sign} = $xtmp -> {sign};
+ $x -> {_n} = $xtmp -> {_n};
+ $x -> {_d} = $xtmp -> {_d};
+ return $x;
+}
+
+sub bsqrt {
+ my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
+
+ return $x->bnan() if $x->{sign} !~ /^[+]/; # NaN, -inf or < 0
+ return $x if $x->{sign} eq '+inf'; # sqrt(inf) == inf
+ return $x->round(@r) if $x->is_zero() || $x->is_one();
+
+ local $Math::BigFloat::upgrade = undef;
+ local $Math::BigFloat::downgrade = undef;
+ local $Math::BigFloat::precision = undef;
+ local $Math::BigFloat::accuracy = undef;
+ local $Math::BigInt::upgrade = undef;
+ local $Math::BigInt::precision = undef;
+ local $Math::BigInt::accuracy = undef;
+
+ my $xn = Math::BigFloat -> new($LIB -> _str($x->{_n}));
+ my $xd = Math::BigFloat -> new($LIB -> _str($x->{_d}));
- $x->bnorm()->round(@r);
- }
+ my $xtmp = Math::BigRat -> new($xn -> bdiv($xd) -> bsqrt() -> bsstr());
-sub blsft
- {
- my ($self,$x,$y,$b,@r) = objectify(3,@_);
+ $x -> {sign} = $xtmp -> {sign};
+ $x -> {_n} = $xtmp -> {_n};
+ $x -> {_d} = $xtmp -> {_d};
- $b = 2 unless defined $b;
- $b = $self->new($b) unless ref ($b);
- $x->bmul($b->copy()->bpow($y), @r);
- $x;
- }
+ $x->round(@r);
+}
+
+sub blsft {
+ my ($class, $x, $y, $b, @r) = objectify(2, @_);
+
+ $b = 2 if !defined $b;
+ $b = $class -> new($b) unless ref($b) && $b -> isa($class);
+
+ return $x -> bnan() if $x -> is_nan() || $y -> is_nan() || $b -> is_nan();
+
+ # shift by a negative amount?
+ return $x -> brsft($y -> copy() -> babs(), $b) if $y -> {sign} =~ /^-/;
+
+ $x -> bmul($b -> bpow($y));
+}
+
+sub brsft {
+ my ($class, $x, $y, $b, @r) = objectify(2, @_);
+
+ $b = 2 if !defined $b;
+ $b = $class -> new($b) unless ref($b) && $b -> isa($class);
+
+ return $x -> bnan() if $x -> is_nan() || $y -> is_nan() || $b -> is_nan();
-sub brsft
- {
- my ($self,$x,$y,$b,@r) = objectify(3,@_);
+ # shift by a negative amount?
+ return $x -> blsft($y -> copy() -> babs(), $b) if $y -> {sign} =~ /^-/;
- $b = 2 unless defined $b;
- $b = $self->new($b) unless ref ($b);
- $x->bdiv($b->copy()->bpow($y), @r);
- $x;
- }
+ # the following call to bdiv() will return either quotient (scalar context)
+ # or quotient and remainder (list context).
+ $x -> bdiv($b -> bpow($y));
+}
+
+sub band {
+ my $x = shift;
+ my $xref = ref($x);
+ my $class = $xref || $x;
+
+ Carp::croak 'band() is an instance method, not a class method' unless $xref;
+ Carp::croak 'Not enough arguments for band()' if @_ < 1;
+
+ my $y = shift;
+ $y = $class -> new($y) unless ref($y);
+
+ my @r = @_;
+
+ my $xtmp = Math::BigInt -> new($x -> bint()); # to Math::BigInt
+ $xtmp -> band($y);
+ $xtmp = $class -> new($xtmp); # back to Math::BigRat
+
+ $x -> {sign} = $xtmp -> {sign};
+ $x -> {_n} = $xtmp -> {_n};
+ $x -> {_d} = $xtmp -> {_d};
+
+ return $x -> round(@r);
+}
+
+sub bior {
+ my $x = shift;
+ my $xref = ref($x);
+ my $class = $xref || $x;
+
+ Carp::croak 'bior() is an instance method, not a class method' unless $xref;
+ Carp::croak 'Not enough arguments for bior()' if @_ < 1;
+
+ my $y = shift;
+ $y = $class -> new($y) unless ref($y);
+
+ my @r = @_;
+
+ my $xtmp = Math::BigInt -> new($x -> bint()); # to Math::BigInt
+ $xtmp -> bior($y);
+ $xtmp = $class -> new($xtmp); # back to Math::BigRat
+
+ $x -> {sign} = $xtmp -> {sign};
+ $x -> {_n} = $xtmp -> {_n};
+ $x -> {_d} = $xtmp -> {_d};
+
+ return $x -> round(@r);
+}
+
+sub bxor {
+ my $x = shift;
+ my $xref = ref($x);
+ my $class = $xref || $x;
+
+ Carp::croak 'bxor() is an instance method, not a class method' unless $xref;
+ Carp::croak 'Not enough arguments for bxor()' if @_ < 1;
+
+ my $y = shift;
+ $y = $class -> new($y) unless ref($y);
+
+ my @r = @_;
+
+ my $xtmp = Math::BigInt -> new($x -> bint()); # to Math::BigInt
+ $xtmp -> bxor($y);
+ $xtmp = $class -> new($xtmp); # back to Math::BigRat
+
+ $x -> {sign} = $xtmp -> {sign};
+ $x -> {_n} = $xtmp -> {_n};
+ $x -> {_d} = $xtmp -> {_d};
+
+ return $x -> round(@r);
+}
+
+sub bnot {
+ my $x = shift;
+ my $xref = ref($x);
+ my $class = $xref || $x;
+
+ Carp::croak 'bnot() is an instance method, not a class method' unless $xref;
+
+ my @r = @_;
+
+ my $xtmp = Math::BigInt -> new($x -> bint()); # to Math::BigInt
+ $xtmp -> bnot();
+ $xtmp = $class -> new($xtmp); # back to Math::BigRat
+
+ $x -> {sign} = $xtmp -> {sign};
+ $x -> {_n} = $xtmp -> {_n};
+ $x -> {_d} = $xtmp -> {_d};
+
+ return $x -> round(@r);
+}
##############################################################################
# round
-sub round
- {
- $_[0];
- }
+sub round {
+ $_[0];
+}
-sub bround
- {
- $_[0];
- }
+sub bround {
+ $_[0];
+}
-sub bfround
- {
- $_[0];
- }
+sub bfround {
+ $_[0];
+}
##############################################################################
# comparing
-sub bcmp
- {
- # compare two signed numbers
+sub bcmp {
+ # compare two signed numbers
- # set up parameters
- my ($self,$x,$y) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y) = objectify(2,@_);
+ # set up parameters
+ my ($class, $x, $y) = (ref($_[0]), @_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y) = objectify(2, @_);
}
- if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
- {
- # handle +-inf and NaN
- return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
- return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
- return +1 if $x->{sign} eq '+inf';
- return -1 if $x->{sign} eq '-inf';
- return -1 if $y->{sign} eq '+inf';
- return +1;
- }
- # check sign for speed first
- return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
- return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
-
- # shortcut
- my $xz = $MBI->_is_zero($x->{_n});
- my $yz = $MBI->_is_zero($y->{_n});
- return 0 if $xz && $yz; # 0 <=> 0
- return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y
- return 1 if $yz && $x->{sign} eq '+'; # +x <=> 0
-
- my $t = $MBI->_mul($MBI->_copy($x->{_n}), $y->{_d});
- my $u = $MBI->_mul($MBI->_copy($y->{_n}), $x->{_d});
-
- my $cmp = $MBI->_acmp($t,$u); # signs are equal
- $cmp = -$cmp if $x->{sign} eq '-'; # both are '-' => reverse
- $cmp;
- }
-
-sub bacmp
- {
- # compare two numbers (as unsigned)
-
- # set up parameters
- my ($self,$x,$y) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
- {
- ($self,$x,$y) = objectify(2,$class,@_);
+ if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/) {
+ # $x is NaN and/or $y is NaN
+ return undef if $x->{sign} eq $nan || $y->{sign} eq $nan;
+ # $x and $y are both either +inf or -inf
+ return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
+ # $x = +inf and $y < +inf
+ return +1 if $x->{sign} eq '+inf';
+ # $x = -inf and $y > -inf
+ return -1 if $x->{sign} eq '-inf';
+ # $x < +inf and $y = +inf
+ return -1 if $y->{sign} eq '+inf';
+ # $x > -inf and $y = -inf
+ return +1;
}
- if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
- {
- # handle +-inf and NaN
- return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
- return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
- return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
- return -1;
+ # $x >= 0 and $y < 0
+ return 1 if $x->{sign} eq '+' && $y->{sign} eq '-';
+ # $x < 0 and $y >= 0
+ return -1 if $x->{sign} eq '-' && $y->{sign} eq '+';
+
+ # At this point, we know that $x and $y have the same sign.
+
+ # shortcut
+ my $xz = $LIB->_is_zero($x->{_n});
+ my $yz = $LIB->_is_zero($y->{_n});
+ return 0 if $xz && $yz; # 0 <=> 0
+ return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y
+ return 1 if $yz && $x->{sign} eq '+'; # +x <=> 0
+
+ my $t = $LIB->_mul($LIB->_copy($x->{_n}), $y->{_d});
+ my $u = $LIB->_mul($LIB->_copy($y->{_n}), $x->{_d});
+
+ my $cmp = $LIB->_acmp($t, $u); # signs are equal
+ $cmp = -$cmp if $x->{sign} eq '-'; # both are '-' => reverse
+ $cmp;
+}
+
+sub bacmp {
+ # compare two numbers (as unsigned)
+
+ # set up parameters
+ my ($class, $x, $y) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
+ ($class, $x, $y) = objectify(2, @_);
+ }
+
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) {
+ # handle +-inf and NaN
+ return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+ return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
+ return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
+ return -1;
}
- my $t = $MBI->_mul($MBI->_copy($x->{_n}), $y->{_d});
- my $u = $MBI->_mul($MBI->_copy($y->{_n}), $x->{_d});
- $MBI->_acmp($t,$u); # ignore signs
- }
+ my $t = $LIB->_mul($LIB->_copy($x->{_n}), $y->{_d});
+ my $u = $LIB->_mul($LIB->_copy($y->{_n}), $x->{_d});
+ $LIB->_acmp($t, $u); # ignore signs
+}
+
+sub beq {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ Carp::croak 'beq() is an instance method, not a class method' unless $selfref;
+ Carp::croak 'Wrong number of arguments for beq()' unless @_ == 1;
+
+ my $cmp = $self -> bcmp(shift);
+ return defined($cmp) && ! $cmp;
+}
+
+sub bne {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ Carp::croak 'bne() is an instance method, not a class method' unless $selfref;
+ Carp::croak 'Wrong number of arguments for bne()' unless @_ == 1;
+
+ my $cmp = $self -> bcmp(shift);
+ return defined($cmp) && ! $cmp ? '' : 1;
+}
+
+sub blt {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ Carp::croak 'blt() is an instance method, not a class method' unless $selfref;
+ Carp::croak 'Wrong number of arguments for blt()' unless @_ == 1;
+
+ my $cmp = $self -> bcmp(shift);
+ return defined($cmp) && $cmp < 0;
+}
+
+sub ble {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ Carp::croak 'ble() is an instance method, not a class method' unless $selfref;
+ Carp::croak 'Wrong number of arguments for ble()' unless @_ == 1;
+
+ my $cmp = $self -> bcmp(shift);
+ return defined($cmp) && $cmp <= 0;
+}
+
+sub bgt {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ Carp::croak 'bgt() is an instance method, not a class method' unless $selfref;
+ Carp::croak 'Wrong number of arguments for bgt()' unless @_ == 1;
+
+ my $cmp = $self -> bcmp(shift);
+ return defined($cmp) && $cmp > 0;
+}
+
+sub bge {
+ my $self = shift;
+ my $selfref = ref $self;
+ my $class = $selfref || $self;
+
+ Carp::croak 'bge() is an instance method, not a class method'
+ unless $selfref;
+ Carp::croak 'Wrong number of arguments for bge()' unless @_ == 1;
+
+ my $cmp = $self -> bcmp(shift);
+ return defined($cmp) && $cmp >= 0;
+}
##############################################################################
-# output conversation
+# output conversion
-sub numify
- {
- # convert 17/8 => float (aka 2.125)
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+sub numify {
+ # convert 17/8 => float (aka 2.125)
+ my ($self, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
- return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, NaN, etc
+ # Non-finite number.
- # N/1 => N
- my $neg = ''; $neg = '-' if $x->{sign} eq '-';
- return $neg . $MBI->_num($x->{_n}) if $MBI->_is_one($x->{_d});
+ return $x->bstr() if $x->{sign} !~ /^[+-]$/;
- $x->_as_float()->numify() + 0.0;
- }
+ # Finite number.
-sub as_number
- {
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+ my $abs = $LIB->_is_one($x->{_d})
+ ? $LIB->_num($x->{_n})
+ : Math::BigFloat -> new($LIB->_str($x->{_n}))
+ -> bdiv($LIB->_str($x->{_d}))
+ -> bstr();
+ return $x->{sign} eq '-' ? 0 - $abs : 0 + $abs;
+}
- # NaN, inf etc
- return Math::BigInt->new($x->{sign}) if $x->{sign} !~ /^[+-]$/;
+sub as_number {
+ my ($self, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
- my $u = Math::BigInt->bzero();
- $u->{value} = $MBI->_div($MBI->_copy($x->{_n}), $x->{_d}); # 22/7 => 3
- $u->bneg if $x->{sign} eq '-'; # no negative zero
- $u;
- }
+ # NaN, inf etc
+ return Math::BigInt->new($x->{sign}) if $x->{sign} !~ /^[+-]$/;
-sub as_float
- {
- # return N/D as Math::BigFloat
+ my $u = Math::BigInt->bzero();
+ $u->{value} = $LIB->_div($LIB->_copy($x->{_n}), $x->{_d}); # 22/7 => 3
+ $u->bneg if $x->{sign} eq '-'; # no negative zero
+ $u;
+}
- # set up parameters
- my ($self,$x,@r) = (ref($_[0]),@_);
- # objectify is costly, so avoid it
- ($self,$x,@r) = objectify(1,$class,@_) unless ref $_[0];
+sub as_float {
+ # return N/D as Math::BigFloat
- # NaN, inf etc
- return Math::BigFloat->new($x->{sign}) if $x->{sign} !~ /^[+-]$/;
+ # set up parameters
+ my ($class, $x, @r) = (ref($_[0]), @_);
+ # objectify is costly, so avoid it
+ ($class, $x, @r) = objectify(1, @_) unless ref $_[0];
- my $u = Math::BigFloat->bzero();
- $u->{sign} = $x->{sign};
- # n
- $u->{_m} = $MBI->_copy($x->{_n});
- $u->{_e} = $MBI->_zero();
- $u->bdiv($MBI->_str($x->{_d}), @r);
- # return $u
- $u;
- }
+ # NaN, inf etc
+ return Math::BigFloat->new($x->{sign}) if $x->{sign} !~ /^[+-]$/;
-sub as_bin
- {
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+ my $xd = Math::BigFloat -> new($LIB -> _str($x->{_d}));
+ my $xflt = Math::BigFloat -> new($LIB -> _str($x->{_n}));
+ $xflt -> {sign} = $x -> {sign};
+ $xflt -> bdiv($xd, @r);
- return $x unless $x->is_int();
+ return $xflt;
+}
- my $s = $x->{sign}; $s = '' if $s eq '+';
- $s . $MBI->_as_bin($x->{_n});
- }
+sub as_bin {
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
-sub as_hex
- {
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+ return $x unless $x->is_int();
- return $x unless $x->is_int();
+ my $s = $x->{sign};
+ $s = '' if $s eq '+';
+ $s . $LIB->_as_bin($x->{_n});
+}
- my $s = $x->{sign}; $s = '' if $s eq '+';
- $s . $MBI->_as_hex($x->{_n});
- }
+sub as_hex {
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
-sub as_oct
- {
- my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+ return $x unless $x->is_int();
- return $x unless $x->is_int();
+ my $s = $x->{sign}; $s = '' if $s eq '+';
+ $s . $LIB->_as_hex($x->{_n});
+}
- my $s = $x->{sign}; $s = '' if $s eq '+';
- $s . $MBI->_as_oct($x->{_n});
- }
+sub as_oct {
+ my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
+
+ return $x unless $x->is_int();
+
+ my $s = $x->{sign}; $s = '' if $s eq '+';
+ $s . $LIB->_as_oct($x->{_n});
+}
##############################################################################
-sub from_hex
- {
- my $class = shift;
+sub from_hex {
+ my $class = shift;
- $class->new(@_);
- }
+ $class->new(@_);
+}
-sub from_bin
- {
- my $class = shift;
+sub from_bin {
+ my $class = shift;
- $class->new(@_);
- }
+ $class->new(@_);
+}
-sub from_oct
- {
- my $class = shift;
+sub from_oct {
+ my $class = shift;
- my @parts;
- for my $c (@_)
- {
- push @parts, Math::BigInt->from_oct($c);
+ my @parts;
+ for my $c (@_) {
+ push @parts, Math::BigInt->from_oct($c);
}
- $class->new (@parts);
- }
+ $class->new (@parts);
+}
##############################################################################
# import
-sub import
- {
- my $self = shift;
- my $l = scalar @_;
- my $lib = ''; my @a;
- my $try = 'try';
+sub import {
+ my $class = shift;
+ my $l = scalar @_;
+ my $lib = ''; my @a;
+ my $try = 'try';
- for (my $i = 0; $i < $l ; $i++)
- {
- if ($_[$i] eq ':constant')
- {
- # this rest causes overlord er load to step in
- overload::constant float => sub { $self->new(shift); };
- }
-# elsif ($_[$i] eq 'upgrade')
-# {
-# # this causes upgrading
-# $upgrade = $_[$i+1]; # or undef to disable
-# $i++;
-# }
- elsif ($_[$i] eq 'downgrade')
- {
- # this causes downgrading
- $downgrade = $_[$i+1]; # or undef to disable
- $i++;
- }
- elsif ($_[$i] =~ /^(lib|try|only)\z/)
- {
- $lib = $_[$i+1] || ''; # default Calc
- $try = $1; # lib, try or only
- $i++;
- }
- elsif ($_[$i] eq 'with')
- {
- # this argument is no longer used
- #$MBI = $_[$i+1] || 'Math::BigInt::Calc'; # default Math::BigInt::Calc
- $i++;
- }
- else
- {
- push @a, $_[$i];
- }
- }
- require Math::BigInt;
-
- # let use Math::BigInt lib => 'GMP'; use Math::BigRat; still have GMP
- if ($lib ne '')
- {
- my @c = split /\s*,\s*/, $lib;
- foreach (@c)
- {
- $_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters
- }
- $lib = join(",", @c);
+ for (my $i = 0; $i < $l ; $i++) {
+ if ($_[$i] eq ':constant') {
+ # this rest causes overlord er load to step in
+ overload::constant float => sub { $class->new(shift); };
+ }
+ # elsif ($_[$i] eq 'upgrade')
+ # {
+ # # this causes upgrading
+ # $upgrade = $_[$i+1]; # or undef to disable
+ # $i++;
+ # }
+ elsif ($_[$i] eq 'downgrade') {
+ # this causes downgrading
+ $downgrade = $_[$i+1]; # or undef to disable
+ $i++;
+ } elsif ($_[$i] =~ /^(lib|try|only)\z/) {
+ $lib = $_[$i+1] || ''; # default Calc
+ $try = $1; # lib, try or only
+ $i++;
+ } elsif ($_[$i] eq 'with') {
+ # this argument is no longer used
+ #$LIB = $_[$i+1] || 'Math::BigInt::Calc'; # default Math::BigInt::Calc
+ $i++;
+ } else {
+ push @a, $_[$i];
+ }
}
- my @import = ('objectify');
- push @import, $try => $lib if $lib ne '';
+ require Math::BigInt;
- # MBI already loaded, so feed it our lib arguments
- Math::BigInt->import(@import);
+ # let use Math::BigInt lib => 'GMP'; use Math::BigRat; still have GMP
+ if ($lib ne '') {
+ my @c = split /\s*,\s*/, $lib;
+ foreach (@c) {
+ $_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters
+ }
+ $lib = join(",", @c);
+ }
+ my @import = ('objectify');
+ push @import, $try => $lib if $lib ne '';
- $MBI = Math::BigFloat->config()->{lib};
+ # LIB already loaded, so feed it our lib arguments
+ Math::BigInt->import(@import);
- # register us with MBI to get notified of future lib changes
- Math::BigInt::_register_callback($self, sub { $MBI = $_[0]; });
+ $LIB = Math::BigFloat->config()->{lib};
- # any non :constant stuff is handled by our parent, Exporter (loaded
- # by Math::BigFloat, even if @_ is empty, to give it a chance
- $self->SUPER::import(@a); # for subclasses
- $self->export_to_level(1,$self,@a); # need this, too
- }
+ # register us with LIB to get notified of future lib changes
+ Math::BigInt::_register_callback($class, sub { $LIB = $_[0]; });
+
+ # any non :constant stuff is handled by our parent, Exporter (loaded
+ # by Math::BigFloat, even if @_ is empty, to give it a chance
+ $class->SUPER::import(@a); # for subclasses
+ $class->export_to_level(1, $class, @a); # need this, too
+}
1;
@@ -1740,17 +2093,17 @@ Math::BigRat - Arbitrary big rational numbers
=head1 SYNOPSIS
- use Math::BigRat;
+ use Math::BigRat;
- my $x = Math::BigRat->new('3/7'); $x += '5/9';
+ my $x = Math::BigRat->new('3/7'); $x += '5/9';
- print $x->bstr(),"\n";
- print $x ** 2,"\n";
+ print $x->bstr(), "\n";
+ print $x ** 2, "\n";
- my $y = Math::BigRat->new('inf');
- print "$y ", ($y->is_inf ? 'is' : 'is not') , " infinity\n";
+ my $y = Math::BigRat->new('inf');
+ print "$y ", ($y->is_inf ? 'is' : 'is not'), " infinity\n";
- my $z = Math::BigRat->new(144); $z->bsqrt();
+ my $z = Math::BigRat->new(144); $z->bsqrt();
=head1 DESCRIPTION
@@ -1762,24 +2115,22 @@ for arbitrary big rational numbers.
You can change the underlying module that does the low-level
math operations by using:
- use Math::BigRat try => 'GMP';
+ use Math::BigRat try => 'GMP';
Note: This needs Math::BigInt::GMP installed.
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
- use Math::BigRat try => 'Foo,Math::BigInt::Bar';
+ use Math::BigRat try => 'Foo,Math::BigInt::Bar';
-If you want to get warned when the fallback occurs, replace "try" with
-"lib":
+If you want to get warned when the fallback occurs, replace "try" with "lib":
- use Math::BigRat lib => 'Foo,Math::BigInt::Bar';
+ use Math::BigRat lib => 'Foo,Math::BigInt::Bar';
-If you want the code to die instead, replace "try" with
-"only":
+If you want the code to die instead, replace "try" with "only":
- use Math::BigRat only => 'Foo,Math::BigInt::Bar';
+ use Math::BigRat only => 'Foo,Math::BigInt::Bar';
=head1 METHODS
@@ -1787,316 +2138,481 @@ Any methods not listed here are derived from Math::BigFloat (or
Math::BigInt), so make sure you check these two modules for further
information.
-=head2 new()
+=over
- $x = Math::BigRat->new('1/3');
+=item new()
+
+ $x = Math::BigRat->new('1/3');
Create a new Math::BigRat object. Input can come in various forms:
- $x = Math::BigRat->new(123); # scalars
- $x = Math::BigRat->new('inf'); # infinity
- $x = Math::BigRat->new('123.3'); # float
- $x = Math::BigRat->new('1/3'); # simple string
- $x = Math::BigRat->new('1 / 3'); # spaced
- $x = Math::BigRat->new('1 / 0.1'); # w/ floats
- $x = Math::BigRat->new(Math::BigInt->new(3)); # BigInt
- $x = Math::BigRat->new(Math::BigFloat->new('3.1')); # BigFloat
- $x = Math::BigRat->new(Math::BigInt::Lite->new('2')); # BigLite
+ $x = Math::BigRat->new(123); # scalars
+ $x = Math::BigRat->new('inf'); # infinity
+ $x = Math::BigRat->new('123.3'); # float
+ $x = Math::BigRat->new('1/3'); # simple string
+ $x = Math::BigRat->new('1 / 3'); # spaced
+ $x = Math::BigRat->new('1 / 0.1'); # w/ floats
+ $x = Math::BigRat->new(Math::BigInt->new(3)); # BigInt
+ $x = Math::BigRat->new(Math::BigFloat->new('3.1')); # BigFloat
+ $x = Math::BigRat->new(Math::BigInt::Lite->new('2')); # BigLite
- # You can also give D and N as different objects:
- $x = Math::BigRat->new(
- Math::BigInt->new(-123),
- Math::BigInt->new(7),
- ); # => -123/7
+ # You can also give D and N as different objects:
+ $x = Math::BigRat->new(
+ Math::BigInt->new(-123),
+ Math::BigInt->new(7),
+ ); # => -123/7
-=head2 numerator()
+=item numerator()
- $n = $x->numerator();
+ $n = $x->numerator();
Returns a copy of the numerator (the part above the line) as signed BigInt.
-=head2 denominator()
+=item denominator()
- $d = $x->denominator();
+ $d = $x->denominator();
Returns a copy of the denominator (the part under the line) as positive BigInt.
-=head2 parts()
+=item parts()
- ($n,$d) = $x->parts();
+ ($n, $d) = $x->parts();
Return a list consisting of (signed) numerator and (unsigned) denominator as
BigInts.
-=head2 numify()
+=item numify()
- my $y = $x->numify();
+ my $y = $x->numify();
Returns the object as a scalar. This will lose some data if the object
cannot be represented by a normal Perl scalar (integer or float), so
-use L<as_int()|/as_int()E<sol>as_number()> or L</as_float()> instead.
+use L<as_int()|/"as_int()/as_number()"> or L</as_float()> instead.
This routine is automatically used whenever a scalar is required:
- my $x = Math::BigRat->new('3/1');
- @array = (0,1,2,3);
- $y = $array[$x]; # set $y to 3
+ my $x = Math::BigRat->new('3/1');
+ @array = (0, 1, 2, 3);
+ $y = $array[$x]; # set $y to 3
-=head2 as_int()/as_number()
+=item as_int()/as_number()
- $x = Math::BigRat->new('13/7');
- print $x->as_int(),"\n"; # '1'
+ $x = Math::BigRat->new('13/7');
+ print $x->as_int(), "\n"; # '1'
Returns a copy of the object as BigInt, truncated to an integer.
C<as_number()> is an alias for C<as_int()>.
-=head2 as_float()
+=item as_float()
- $x = Math::BigRat->new('13/7');
- print $x->as_float(),"\n"; # '1'
+ $x = Math::BigRat->new('13/7');
+ print $x->as_float(), "\n"; # '1'
- $x = Math::BigRat->new('2/3');
- print $x->as_float(5),"\n"; # '0.66667'
+ $x = Math::BigRat->new('2/3');
+ print $x->as_float(5), "\n"; # '0.66667'
Returns a copy of the object as BigFloat, preserving the
accuracy as wanted, or the default of 40 digits.
This method was added in v0.22 of Math::BigRat (April 2008).
-=head2 as_hex()
+=item as_hex()
- $x = Math::BigRat->new('13');
- print $x->as_hex(),"\n"; # '0xd'
+ $x = Math::BigRat->new('13');
+ print $x->as_hex(), "\n"; # '0xd'
Returns the BigRat as hexadecimal string. Works only for integers.
-=head2 as_bin()
+=item as_bin()
- $x = Math::BigRat->new('13');
- print $x->as_bin(),"\n"; # '0x1101'
+ $x = Math::BigRat->new('13');
+ print $x->as_bin(), "\n"; # '0x1101'
Returns the BigRat as binary string. Works only for integers.
-=head2 as_oct()
+=item as_oct()
- $x = Math::BigRat->new('13');
- print $x->as_oct(),"\n"; # '015'
+ $x = Math::BigRat->new('13');
+ print $x->as_oct(), "\n"; # '015'
Returns the BigRat as octal string. Works only for integers.
-=head2 from_hex()/from_bin()/from_oct()
+=item from_hex()
+
+ my $h = Math::BigRat->from_hex('0x10');
+
+Create a BigRat from a hexadecimal number in string form.
+
+=item from_oct()
+
+ my $o = Math::BigRat->from_oct('020');
+
+Create a BigRat from an octal number in string form.
+
+=item from_bin()
+
+ my $b = Math::BigRat->from_bin('0b10000000');
+
+Create a BigRat from an binary number in string form.
- my $h = Math::BigRat->from_hex('0x10');
- my $b = Math::BigRat->from_bin('0b10000000');
- my $o = Math::BigRat->from_oct('020');
+=item bnan()
-Create a BigRat from an hexadecimal, binary or octal number
-in string form.
+ $x = Math::BigRat->bnan();
-=head2 length()
+Creates a new BigRat object representing NaN (Not A Number).
+If used on an object, it will set it to NaN:
- $len = $x->length();
+ $x->bnan();
+
+=item bzero()
+
+ $x = Math::BigRat->bzero();
+
+Creates a new BigRat object representing zero.
+If used on an object, it will set it to zero:
+
+ $x->bzero();
+
+=item binf()
+
+ $x = Math::BigRat->binf($sign);
+
+Creates a new BigRat object representing infinity. The optional argument is
+either '-' or '+', indicating whether you want infinity or minus infinity.
+If used on an object, it will set it to infinity:
+
+ $x->binf();
+ $x->binf('-');
+
+=item bone()
+
+ $x = Math::BigRat->bone($sign);
+
+Creates a new BigRat object representing one. The optional argument is
+either '-' or '+', indicating whether you want one or minus one.
+If used on an object, it will set it to one:
+
+ $x->bone(); # +1
+ $x->bone('-'); # -1
+
+=item length()
+
+ $len = $x->length();
Return the length of $x in digits for integer values.
-=head2 digit()
+=item digit()
- print Math::BigRat->new('123/1')->digit(1); # 1
- print Math::BigRat->new('123/1')->digit(-1); # 3
+ print Math::BigRat->new('123/1')->digit(1); # 1
+ print Math::BigRat->new('123/1')->digit(-1); # 3
Return the N'ths digit from X when X is an integer value.
-=head2 bnorm()
+=item bnorm()
- $x->bnorm();
+ $x->bnorm();
Reduce the number to the shortest form. This routine is called
automatically whenever it is needed.
-=head2 bfac()
+=item bfac()
- $x->bfac();
+ $x->bfac();
Calculates the factorial of $x. For instance:
- print Math::BigRat->new('3/1')->bfac(),"\n"; # 1*2*3
- print Math::BigRat->new('5/1')->bfac(),"\n"; # 1*2*3*4*5
+ print Math::BigRat->new('3/1')->bfac(), "\n"; # 1*2*3
+ print Math::BigRat->new('5/1')->bfac(), "\n"; # 1*2*3*4*5
Works currently only for integers.
-=head2 bround()/round()/bfround()
+=item bround()/round()/bfround()
Are not yet implemented.
-=head2 bmod()
+=item bmod()
- $x->bmod($y);
+ $x->bmod($y);
Returns $x modulo $y. When $x is finite, and $y is finite and non-zero, the
result is identical to the remainder after floored division (F-division). If,
in addition, both $x and $y are integers, the result is identical to the result
from Perl's % operator.
-=head2 bneg()
+=item bmodinv()
+
+ $x->bmodinv($mod); # modular multiplicative inverse
+
+Returns the multiplicative inverse of C<$x> modulo C<$mod>. If
+
+ $y = $x -> copy() -> bmodinv($mod)
+
+then C<$y> is the number closest to zero, and with the same sign as C<$mod>,
+satisfying
+
+ ($x * $y) % $mod = 1 % $mod
- $x->bneg();
+If C<$x> and C<$y> are non-zero, they must be relative primes, i.e.,
+C<bgcd($y, $mod)==1>. 'C<NaN>' is returned when no modular multiplicative
+inverse exists.
+
+=item bmodpow()
+
+ $num->bmodpow($exp,$mod); # modular exponentiation
+ # ($num**$exp % $mod)
+
+Returns the value of C<$num> taken to the power C<$exp> in the modulus
+C<$mod> using binary exponentiation. C<bmodpow> is far superior to
+writing
+
+ $num ** $exp % $mod
+
+because it is much faster - it reduces internal variables into
+the modulus whenever possible, so it operates on smaller numbers.
+
+C<bmodpow> also supports negative exponents.
+
+ bmodpow($num, -1, $mod)
+
+is exactly equivalent to
+
+ bmodinv($num, $mod)
+
+=item bneg()
+
+ $x->bneg();
Used to negate the object in-place.
-=head2 is_one()
+=item is_one()
- print "$x is 1\n" if $x->is_one();
+ print "$x is 1\n" if $x->is_one();
Return true if $x is exactly one, otherwise false.
-=head2 is_zero()
+=item is_zero()
- print "$x is 0\n" if $x->is_zero();
+ print "$x is 0\n" if $x->is_zero();
Return true if $x is exactly zero, otherwise false.
-=head2 is_pos()/is_positive()
+=item is_pos()/is_positive()
- print "$x is >= 0\n" if $x->is_positive();
+ print "$x is >= 0\n" if $x->is_positive();
Return true if $x is positive (greater than or equal to zero), otherwise
false. Please note that '+inf' is also positive, while 'NaN' and '-inf' aren't.
C<is_positive()> is an alias for C<is_pos()>.
-=head2 is_neg()/is_negative()
+=item is_neg()/is_negative()
- print "$x is < 0\n" if $x->is_negative();
+ print "$x is < 0\n" if $x->is_negative();
Return true if $x is negative (smaller than zero), otherwise false. Please
note that '-inf' is also negative, while 'NaN' and '+inf' aren't.
C<is_negative()> is an alias for C<is_neg()>.
-=head2 is_int()
+=item is_int()
- print "$x is an integer\n" if $x->is_int();
+ print "$x is an integer\n" if $x->is_int();
Return true if $x has a denominator of 1 (e.g. no fraction parts), otherwise
false. Please note that '-inf', 'inf' and 'NaN' aren't integer.
-=head2 is_odd()
+=item is_odd()
- print "$x is odd\n" if $x->is_odd();
+ print "$x is odd\n" if $x->is_odd();
Return true if $x is odd, otherwise false.
-=head2 is_even()
+=item is_even()
- print "$x is even\n" if $x->is_even();
+ print "$x is even\n" if $x->is_even();
Return true if $x is even, otherwise false.
-=head2 bceil()
+=item bceil()
- $x->bceil();
+ $x->bceil();
Set $x to the next bigger integer value (e.g. truncate the number to integer
and then increment it by one).
-=head2 bfloor()
+=item bfloor()
- $x->bfloor();
+ $x->bfloor();
Truncate $x to an integer value.
-=head2 bsqrt()
+=item bint()
+
+ $x->bint();
+
+Round $x towards zero.
- $x->bsqrt();
+=item bsqrt()
+
+ $x->bsqrt();
Calculate the square root of $x.
-=head2 broot()
+=item broot()
- $x->broot($n);
+ $x->broot($n);
Calculate the N'th root of $x.
-=head2 badd()
+=item badd()
- $x->badd($y);
+ $x->badd($y);
Adds $y to $x and returns the result.
-=head2 bmul()
+=item bmul()
- $x->bmul($y);
+ $x->bmul($y);
Multiplies $y to $x and returns the result.
-=head2 bsub()
+=item bsub()
- $x->bsub($y);
+ $x->bsub($y);
Subtracts $y from $x and returns the result.
-=head2 bdiv()
+=item bdiv()
- $q = $x->bdiv($y);
- ($q, $r) = $x->bdiv($y);
+ $q = $x->bdiv($y);
+ ($q, $r) = $x->bdiv($y);
In scalar context, divides $x by $y and returns the result. In list context,
does floored division (F-division), returning an integer $q and a remainder $r
so that $x = $q * $y + $r. The remainer (modulo) is equal to what is returned
by C<$x->bmod($y)>.
-=head2 bdec()
+=item bdec()
- $x->bdec();
+ $x->bdec();
Decrements $x by 1 and returns the result.
-=head2 binc()
+=item binc()
- $x->binc();
+ $x->binc();
Increments $x by 1 and returns the result.
-=head2 copy()
+=item copy()
- my $z = $x->copy();
+ my $z = $x->copy();
Makes a deep copy of the object.
Please see the documentation in L<Math::BigInt> for further details.
-=head2 bstr()/bsstr()
+=item bstr()/bsstr()
- my $x = Math::BigInt->new('8/4');
- print $x->bstr(),"\n"; # prints 1/2
- print $x->bsstr(),"\n"; # prints 1/2
+ my $x = Math::BigRat->new('8/4');
+ print $x->bstr(), "\n"; # prints 1/2
+ print $x->bsstr(), "\n"; # prints 1/2
Return a string representing this object.
-=head2 bacmp()/bcmp()
+=item bcmp()
-Used to compare numbers.
+ $x->bcmp($y);
-Please see the documentation in L<Math::BigInt> for further details.
+Compares $x with $y and takes the sign into account.
+Returns -1, 0, 1 or undef.
+
+=item bacmp()
+
+ $x->bacmp($y);
+
+Compares $x with $y while ignoring their sign. Returns -1, 0, 1 or undef.
+
+=item beq()
-=head2 blsft()/brsft()
+ $x -> beq($y);
+
+Returns true if and only if $x is equal to $y, and false otherwise.
+
+=item bne()
+
+ $x -> bne($y);
+
+Returns true if and only if $x is not equal to $y, and false otherwise.
+
+=item blt()
+
+ $x -> blt($y);
+
+Returns true if and only if $x is equal to $y, and false otherwise.
+
+=item ble()
+
+ $x -> ble($y);
+
+Returns true if and only if $x is less than or equal to $y, and false
+otherwise.
+
+=item bgt()
+
+ $x -> bgt($y);
+
+Returns true if and only if $x is greater than $y, and false otherwise.
+
+=item bge()
+
+ $x -> bge($y);
+
+Returns true if and only if $x is greater than or equal to $y, and false
+otherwise.
+
+=item blsft()/brsft()
Used to shift numbers left/right.
Please see the documentation in L<Math::BigInt> for further details.
-=head2 bpow()
+=item band()
+
+ $x->band($y); # bitwise and
+
+=item bior()
- $x->bpow($y);
+ $x->bior($y); # bitwise inclusive or
+
+=item bxor()
+
+ $x->bxor($y); # bitwise exclusive or
+
+=item bnot()
+
+ $x->bnot(); # bitwise not (two's complement)
+
+=item bpow()
+
+ $x->bpow($y);
Compute $x ** $y.
Please see the documentation in L<Math::BigInt> for further details.
-=head2 bexp()
+=item blog()
+
+ $x->blog($base, $accuracy); # logarithm of x to the base $base
+
+If C<$base> is not defined, Euler's number (e) is used:
+
+ print $x->blog(undef, 100); # log(x) to 100 digits
- $x->bexp($accuracy); # calculate e ** X
+=item bexp()
+
+ $x->bexp($accuracy); # calculate e ** X
Calculates two integers A and B so that A/B is equal to C<e ** $x>, where C<e> is
Euler's number.
@@ -2105,65 +2621,63 @@ This method was added in v0.20 of Math::BigRat (May 2007).
See also C<blog()>.
-=head2 bnok()
+=item bnok()
- $x->bnok($y); # x over y (binomial coefficient n over k)
+ $x->bnok($y); # x over y (binomial coefficient n over k)
Calculates the binomial coefficient n over k, also called the "choose"
function. The result is equivalent to:
- ( n ) n!
- | - | = -------
- ( k ) k!(n-k)!
+ ( n ) n!
+ | - | = -------
+ ( k ) k!(n-k)!
This method was added in v0.20 of Math::BigRat (May 2007).
-=head2 config()
+=item config()
- use Data::Dumper;
+ use Data::Dumper;
- print Dumper ( Math::BigRat->config() );
- print Math::BigRat->config()->{lib},"\n";
+ print Dumper ( Math::BigRat->config() );
+ print Math::BigRat->config()->{lib}, "\n";
Returns a hash containing the configuration, e.g. the version number, lib
loaded etc. The following hash keys are currently filled in with the
appropriate information.
- key RO/RW Description
- Example
- ============================================================
- lib RO Name of the Math library
- Math::BigInt::Calc
- lib_version RO Version of 'lib'
- 0.30
- class RO The class of config you just called
- Math::BigRat
- version RO version number of the class you used
- 0.10
- upgrade RW To which class numbers are upgraded
- undef
- downgrade RW To which class numbers are downgraded
- undef
- precision RW Global precision
- undef
- accuracy RW Global accuracy
- undef
- round_mode RW Global round mode
- even
- div_scale RW Fallback accuracy for div
- 40
- trap_nan RW Trap creation of NaN (undef = no)
- undef
- trap_inf RW Trap creation of +inf/-inf (undef = no)
- undef
+ key RO/RW Description
+ Example
+ ============================================================
+ lib RO Name of the Math library
+ Math::BigInt::Calc
+ lib_version RO Version of 'lib'
+ 0.30
+ class RO The class of config you just called
+ Math::BigRat
+ version RO version number of the class you used
+ 0.10
+ upgrade RW To which class numbers are upgraded
+ undef
+ downgrade RW To which class numbers are downgraded
+ undef
+ precision RW Global precision
+ undef
+ accuracy RW Global accuracy
+ undef
+ round_mode RW Global round mode
+ even
+ div_scale RW Fallback accuracy for div
+ 40
+ trap_nan RW Trap creation of NaN (undef = no)
+ undef
+ trap_inf RW Trap creation of +inf/-inf (undef = no)
+ undef
By passing a reference to a hash you may set the configuration values. This
works only for values that a marked with a C<RW> above, anything else is
read-only.
-=head2 objectify()
-
-This is an internal routine that turns scalars into objects.
+=back
=head1 BUGS
@@ -2236,8 +2750,16 @@ L<Math::BigInt::FastCalc>, L<Math::BigInt::GMP>, and L<Math::BigInt::Pari>.
=head1 AUTHORS
-(C) by Tels L<http://bloodgate.com/> 2001 - 2009.
+=over 4
+
+=item *
-Currently maintained by Peter John Acklam <pjacklam@online.no>.
+Tels L<http://bloodgate.com/> 2001-2009.
+
+=item *
+
+Maintained by Peter John Acklam <pjacklam@online.no> 2011-
+
+=back
=cut