diff options
author | Karl Berry <karl@freefriends.org> | 2015-01-03 23:18:09 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2015-01-03 23:18:09 +0000 |
commit | 6a6760b318629498bb287bbb60ae5018b9d5ca97 (patch) | |
tree | 1ca8dabce92ad28fd4118b6b1530266f5d472951 /Master/texmf-dist | |
parent | 998bb9be5849d17bb2548edb716803c5533b0605 (diff) |
rm physymb, moved to ctan:/obsolete per author request
git-svn-id: svn://tug.org/texlive/trunk@35952 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist')
-rw-r--r-- | Master/texmf-dist/doc/latex/physymb/README | 28 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/physymb/physymb.pdf | bin | 289060 -> 0 bytes | |||
-rw-r--r-- | Master/texmf-dist/source/latex/physymb/physymb.dtx | 997 | ||||
-rw-r--r-- | Master/texmf-dist/source/latex/physymb/physymb.ins | 46 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/physymb/physymb.sty | 257 |
5 files changed, 0 insertions, 1328 deletions
diff --git a/Master/texmf-dist/doc/latex/physymb/README b/Master/texmf-dist/doc/latex/physymb/README deleted file mode 100644 index a35b8dde6a7..00000000000 --- a/Master/texmf-dist/doc/latex/physymb/README +++ /dev/null @@ -1,28 +0,0 @@ - ======================== physymb ============================ - Created by David Zaslavsky <diazona@ellipsix.net> - -The physymb package contains a bunch of assorted macros that may -be useful to physicists (and perhaps occasionally mathematicians). - -The package contains four files: - -* README: This file :) -* physymb.pdf: The PDF documentation, which details all the macros - defined by the package. -* physymb.dtx: The documented source. Running pdflatex on this - reproduces the PDF documentation. -* physymb.ins: The installer file. Running latex or pdflatex on - this will generate the actual package file, physymb.sty. - -To install the package, it should be enough to just copy physymb.sty -to the tex/latex/physymb/ directory (which you may need to create) -within your local TDS tree, which is typically $HOME/texmf/ on -a Linux system. The location varies on Windows. It's also recommended -to copy physymb.pdf into doc/latex/physymb/ under the TDS tree. - -If you don't know what a TDS tree is, or want to have this explained -in more detail, see -http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages - -physymb is licensed under the LaTeX Project Public License, -version 1.3 or later. diff --git a/Master/texmf-dist/doc/latex/physymb/physymb.pdf b/Master/texmf-dist/doc/latex/physymb/physymb.pdf Binary files differdeleted file mode 100644 index b77a18aefdc..00000000000 --- a/Master/texmf-dist/doc/latex/physymb/physymb.pdf +++ /dev/null diff --git a/Master/texmf-dist/source/latex/physymb/physymb.dtx b/Master/texmf-dist/source/latex/physymb/physymb.dtx deleted file mode 100644 index 838d2361569..00000000000 --- a/Master/texmf-dist/source/latex/physymb/physymb.dtx +++ /dev/null @@ -1,997 +0,0 @@ -% \iffalse meta-comment -% -% Copyright (C) 2005-2011 by David Zaslavsky <diazona@ellipsix.net> -% -% This work may be distributed and/or modified under the -% conditions of the LaTeX Project Public License, either version 1.3 -% of this license or (at your option) any later version. -% The latest version of this license is in -% http://www.latex-project.org/lppl.txt -% and version 1.3 or later is part of all distributions of LaTeX -% version 2005/12/01 or later. -% -% This work has the LPPL maintenance status `maintained'. -% -% The Current Maintainer of this work is David Zaslavsky -% -% This work consists of the files physymb.dtx and physymb.ins -% and the derived files physymb.sty and physymb.pdf. -% -% \fi - -% \iffalse -%<package>\NeedsTeXFormat{LaTeX2e}[1999/12/01] -%<package>\ProvidesPackage{physymb}[2011/05/09 v0.2 Physics symbol definitions] -% -%<*driver> -\documentclass{ltxdoc} -\usepackage[boldvectors,units,particle]{physymb} -\usepackage{hyperref} -\EnableCrossrefs -\CodelineIndex -\RecordChanges -\begin{document} - \DocInput{physymb.dtx} -\end{document} -%</driver> -% \fi - -% \CheckSum{706} -%% \CharacterTable -%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z -%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z -%% Digits \0\1\2\3\4\5\6\7\8\9 -%% Exclamation \! Double quote \" Hash (number) \# -%% Dollar \$ Percent \% Ampersand \& -%% Acute accent \' Left paren \( Right paren \) -%% Asterisk \* Plus \+ Comma \, -%% Minus \- Point \. Solidus \/ -%% Colon \: Semicolon \; Less than \< -%% Equals \= Greater than \> Question mark \? -%% Commercial at \@ Left bracket \[ Backslash \\ -%% Right bracket \] Circumflex \^ Underscore \_ -%% Grave accent \` Left brace \{ Vertical bar \| -%% Right brace \} Tilde \~} -% -% \changes{v0.1}{2010/12/15}{Conversion from sty to dtx} -% -% \GetFileInfo{physymb.sty} -% -% \DoNotIndex{\#,\$,\%,\&,\@,\\,\{,\},\^,\_,\~,\ } -% \DoNotIndex{\accentset,\allowdisplaybreaks} -% \DoNotIndex{\bar,\boolean} -% \DoNotIndex{\cos,\cubic} -% \DoNotIndex{\dagger,\DeclareFontShape,\DeclareMathAlphabet,\DeclareMathOperator} -% \DoNotIndex{\DeclareOption,\DeclareSIUnit,\Delta} -% \DoNotIndex{\ell\ensuremath,\equal} -% \DoNotIndex{\frac} -% \DoNotIndex{\gamma} -% \DoNotIndex{\hat} -% \DoNotIndex{\ifthenelse} -% \DoNotIndex{\joule} -% \DoNotIndex{\Lambda,\langle,\left,\lVert,\lvert} -% \DoNotIndex{\mathbb,\mathbf,\mathcal,\mathcalligra,\mathrm,\meter,\mu} -% \DoNotIndex{\nabla,\newboolean,\newcommand,\nu} -% \DoNotIndex{\Omega,\omega} -% \DoNotIndex{\partial,\per,\phi,\pi,\ProcessOptions} -% \DoNotIndex{\rangle,\relax,\renewcommand,\RequirePackage,\rho,\right,\rightharpoonup} -% \DoNotIndex{\rpcubic,\rVert,\rvert} -% \DoNotIndex{\setboolean,\Sigma,\sin,\star} -% \DoNotIndex{\tan,\tau,\theta,\times} -% \DoNotIndex{\unit} -% \DoNotIndex{\vert} -% \DoNotIndex{\Xi} -% -% \title{The \textsf{physymb} package\thanks{This document corresponds to \textsf{physymb}~\fileversion, dated~\filedate.}} -% \author{David Zaslavsky \\ \texttt{diazona@ellipsix.net}} -% -% \maketitle -% \begin{abstract} -% The |physymb| package is nothing but a bunch of simple macro definitions that -% may be useful for typesetting physics papers. -% \end{abstract} -% -% Most of the functionality of |physymb| is provided by importing the |siunitx| and -% |braket| packages. If you're just looking to write numbers in scientific notation, -% quantities with units, and/or Dirac notation, I recommend using those packages -% directly. -% -% There are a lot of macros in this package, and it typically doesn't take as many -% lines to explain their meanings as it does to list them all. For that reason, when -% there are a bunch of similar macros that I explain together, I've usually only listed -% one or two in the left margin. In these cases, all the macros are given in the text. -% -% \section{Options} -% -% |physymb| recognizes the following options, in no particular order. -% -% \begin{itemize} -% \item |arrowvectors| causes vectors (specifically, the |\vec| command) to be rendered -% with an arrow above the symbol. -% \item |boldvectors| causes vectors (again, from |\vec|) to be rendered by typesetting -% the symbol in bold. It's the alternative to |arrowvectors|. -% \item |braket| pulls in the |braket| package. (It's precisely equivalent to -% |\usepackage{braket}|, it's just here for convenience.) -% \item |feynman| pulls in the |feynmp| package. (It's precisely equivalent to -% |\usepackage{feynmp}|, it's just here for convenience.) -% \item |particle| enables all the particle physics macros. -% \item |units| pulls in the |siunitx| package and enables the additional unit macros. -% \end{itemize} -% -% \section{Macros} -% -% \subsection{Trigonometry} -% -% \DescribeMacro{\asin} -% \DescribeMacro{\acos} -% The AMS packages only define inverse trigonometric functions using the ``arc'' -% syntax, i.e. they actually prefix ``arc'' to the name (as in $\arcsin x$). -% Sometimes you'd rather write them with a superscript $-1$ to save space, so -% those versions are included here. We have the inverse functions |\asin|, -% |\acos|, |\atan|, |\asec|, |\acsc|, and |\acot|. -% -% \DescribeMacro{\sech} -% \DescribeMacro{\cosh} -% For some reason, the hyperbolic sine and cosine |\sech| and |\cosh| aren't -% defined in the AMS packages. This fixes that. -% -% \DescribeMacro{\asinh} -% \DescribeMacro{\acosh} -% Finally, the inverse hyperbolic trig functions written with the superscript -% $-1$ are defined just as with the regular inverse trig functions. We have -% |\asinh|, |\acosh|, |\atanh|, |\asech|, |\acsch|, and |\acoth|. -% -% \subsection{Sets} -% -% There are certain sets of numbers that are semi-frequently referenced in physics. -% Typically they're used to say something like $n\in\intset$. Of course, a -% macro like |\intset| is not necessarily much quicker than writing -% |\mathbb{Z}|, but these macros are intended to have names that relate to -% their meanings so that you don't have to remember which letter goes to which set. -% -% \DescribeMacro{\whlset} -% |\whlset| ($\whlset$) denotes the set of whole numbers, which is typically -% defined to include all integers greater than zero, although there are different -% contradictory definitions floating around. -% -% \DescribeMacro{\natset} -% |\natset| ($\natset$) denotes the set of natural numbers, which is typically -% defined to include all integers greater than or equal to zero. Some people -% define ``natural numbers'' to exclude zero. -% -% \DescribeMacro{\intset} -% |\intset| ($\intset$) denotes the set of all integers. -% -% \DescribeMacro{\realset} -% |\realset| ($\realset$) denotes the set of all real numbers. -% -% \DescribeMacro{\imagset} -% |\imagset| ($\imagset$) denotes the set of all imaginary numbers, which is -% all complex numbers with real part equal to zero. This one is infrequently -% used. -% -% \DescribeMacro{\cpxset} -% |\cpxset| ($\cpxset$) denotes the set of all complex numbers. -% -% \subsection{Calculus} -% -% Probably the most useful macros in the package are the derivative operators. -% Since it's so common to write something of the form $\ud{y}{x}$ or $\pd{y}{x}$, -% we have two-character macros for each: -% \begin{itemize} -% \item \DescribeMacro{\ud} |\ud|\marg{top}\marg{bottom} typesets the normal total derivative -% \item \DescribeMacro{\pd} |\pd|\marg{top}\marg{bottom} typesets a partial derivative, which -% is the same thing but with a partial derivative symbol instead of the $\udc$. -% \end{itemize} -% \DescribeMacro{\udd} -% \DescribeMacro{\uddd} -% \DescribeMacro{\pdd} -% \DescribeMacro{\pddd} -% There are variants of these that produce higher-order derivatives; you can add -% an order by adding another |d|, up to a total of three. -% If you need something higher than the third derivative, you're on your own, but it's -% easy to construct it using |\frac| and |\udc| or |\pdc|, -% \begin{center} -% |\frac{\udc^4 y}{\udc x^4}| -% \end{center} -% -% \DescribeMacro{\udc} -% \DescribeMacro{\pdc} -% The macro |\udc| gives you the character that represents a differential. It's typically -% set in roman type to distinguish it from a variable. |\pdc| is also defined as the -% partial derivative character for consistency. There are variants of each with exponents -% (up to 3) built in; again, you get them by adding an extra |d| or two to the name of the -% command, |\uddc| and |\udddc| and so on. -% -% \DescribeMacro{\uds} -% \DescribeMacro{\pds} -% If you're using these in an integral, it's common to want a small space before the -% differential, so there are variants of the preceding commands defined that include -% this small space for you; they replace the |c| with an |s|. They follow the same -% pattern of adding additional |d|'s to get exponents. For example: -% -% \begin{minipage}{.64\textwidth} -% \begin{center} -% |\iint e^{i\vec{k}\cdot\vec{x}}\udds\vec{x}| -% \end{center} -% \end{minipage} -% \begin{minipage}{.34\textwidth} -% \begin{equation*} -% \iint e^{i\vec{k}\cdot\vec{x}}\udds\vec{x} -% \end{equation*} -% \end{minipage} -% -% \subsection{Vector Calculus} -% -% \DescribeMacro{\div} -% \DescribeMacro{\grad} -% \DescribeMacro{\curl} -% |\physymb| defines |\div|, |\grad|, and |\curl|, to represent the -% divergence, gradient, and curl. These are typeset with the nabla -% (or ``del'') character, $\nabla$, rather than being written out -% as words. Naturally, I would love to add an |\allthat| if I can -% find something good for it to represent. -% -% \DescribeMacro{\lapl} -% There is also a macro for the Laplacian operator (divergence of a -% gradient), |\lapl|. -% -% \subsection{Complex Analysis} -% -% \DescribeMacro{\conj} -% There is a macro to indicate the conjugate of a number, |\conj|\marg{number}. -% It puts a superscript star after the number, as in $\conj{z}$. -% -% \DescribeMacro{\realop} -% \DescribeMacro{\imagop} -% The traditional keywords indicating the real and imaginary parts of a complex number -% are given macros |\realop| and |\imagop|. They typeset $\realop$ and $\imagop$ -% respectively. -% -% \DescribeMacro{\real} -% \DescribeMacro{\imag} -% Why the |op|? Well, there are alternate versions that will also put curly braces -% around the following argument, |\real| and |\imag|. This is the way $\realop$ and -% $\imagop$ are often used. (I'm open to changing the definitions of these based on -% feedback.) -% -% \begin{minipage}{.64\textwidth} -% \begin{center} -% |\real{z}, \imag{z}| -% \end{center} -% \end{minipage} -% \begin{minipage}{.34\textwidth} -% \begin{equation*} -% \real{z}, \imag{z} -% \end{equation*} -% \end{minipage} -% -% \DescribeMacro{\abs} -% The macro |\abs|\marg{value} surrounds its argument with vertical bars. -% -% \subsection{Linear Algebra} -% -% There are several assorted macros for linear algebra keywords and concepts. -% -% \DescribeMacro{\vec} -% \DescribeMacro{\vecvar} -% Vectors can be written using the macro |\vec|\marg{label}, which typesets -% the \meta{label} either in bold or with an arrow over it, according to which -% option was passed to the package (|arrowvectors| or |boldvectors|). -% The default is to use an arrow, to resemble the builtin definition of -% |\vec| (which, by the way, is overridden by this package). In many cases -% I prefer bold. |\vecvar|\marg{label} is another macro that does the exact -% same thing, for consistency with the other kinds of variables. -% -% \DescribeMacro{\tnsvar} -% The macro |\tnsvar|\marg{label} is for typesetting tensors. This just makes -% the \meta{label} bold, it doesn't do anything with indices. If you want a way -% to typeset tensor indices, look at the -% \href{http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tensor}{tensor} -% package. -% -% \DescribeMacro{\matvar} -% |\matvar|\marg{label} is intended to designate matrices. It makes the label -% bold. -% -% \DescribeMacro{\identitym} -% The macro |\identitym| represents the identity matrix. It typesets a 1 in -% the same style as |\matvar| (so, bold). -% -% \DescribeMacro{\determinant} -% The macro |\determinant|\marg{matrix} uses vertical bars to denote the determinant -% of the \meta{matrix}. It's an alternative to the keyword operator |\det|, which -% just typesets as $\det$. -% -% \DescribeMacro{\trace} -% The macro |\trace| just typesets $\trace$. It's akin to |\det|. -% -% \DescribeMacro{\diag} -% This just typesets $\diag$, which is used to represent a matrix with the given entries -% on the diagonal. For example, one might write |\diag(1,2,3,4)|. -% -% \DescribeMacro{\norm} -% The norm of a vector can be denoted by double vertical bars. This is implemented by -% |\norm|\marg{value}. -% -% \DescribeMacro{\unitx} -% \DescribeMacro{\unity} -% \DescribeMacro{\unitz} -% Since it's so common to refer to unit vectors using hat notation, there are a -% bunch of macros for them using various letters. The package defines |\unitd|, -% |\unite|, |\uniti|, |\unitj|, |\unitk|, |\unitl| (which typesets as $\unitl$, -% not the normal $l$), |\unitn|, |\unitp|, |\unitq|, |\unitr|, |\units|, |\unitt|, -% |\unitu|, |\unitv|, |\unitw|, |\unitx|, |\unity|, |\unitz|, and for non-roman -% characters, |\unitphi|, |\unitrho|, |\unittheta|, and |\unitomega|. -% \DescribeMacro{\unitvec} -% If you want to use a different letter as a unit vector, it can be done with -% |\unitvec|\marg{symbol}. -% -% \DescribeMacro{\herm} -% |\herm|\marg{operator} designates the hermitian conjugate of an operator with -% a superscript dagger. -% -% \DescribeMacro{\transpose} -% |\transpose|\marg{matrix} sets a superscript $T$ after the matrix to denote -% the transpose. -% -% \DescribeMacro{\commut} -% \DescribeMacro{\acommut} -% There are simple macros for the commutator, |\commut|\marg{operator}\marg{operator}, -% and the anticommutator, |\acommut|\marg{operator}\marg{operator}. They just -% put the appropriate kind of braces around the arguments (and the comma between -% them, of course). -% -% \subsection{Differential Geometry} -% \DescribeMacro{\exd} -% The exterior derivative has a macro, |\exd|, kind of like the macro for differentials -% ($\udc$) although typeset in bold to distinguish it. This one doesn't have any variants, -% though, because $\exd^2 = 0$. -% -% \DescribeMacro{\hodge} -% The macro |\hodge| just puts a star (not superscript) to represent the Hodge dual. -% Use it as a prefix to the variable, $\hodge\exd x$. -% -% \subsection{Classical Mechanics} -% -% \DescribeMacro{\pbrac} -% The Poisson brackets of a pair of variables can be typeset using the macro -% |\pbrac|\marg{function}\marg{function}. This just surrounds the two arguments -% with curly braces, producing $\pbrac{f}{g}$. -% -% \DescribeMacro{\pbracvars} -% If you want to specify which variables the derivatives in the Poisson brackets -% are being taken with respect to, use the variant -% \begin{center} -% |\pbracvars|\marg{function}\marg{function}\marg{variable}\marg{variable} -% \end{center} -% It comes out looking like $\pbracvars{f}{g}{q}{p}$. -% -% \subsection{Quantum Mechanics} -% -% If the |braket| option is passed, |physymb| pulls in the |braket| package for -% writing Dirac notation. See the documentation for that package for details. -% -% \subsection{Units} -% -% If the |units| option is provided to |physymb|, it automatically includes the -% |siunitx| package and defines some additional units that are often useful in practice. -% See the documentation of |siunitx| for commands provided by that package. -% -% \paragraph{Additional units} The |siunitx| package only includes SI units (as -% the name would suggest), but there are certain non-SI units that turn out to -% be occasionally useful when dealing with American non-scientists. |physymb| -% defines a selection of them as macros. -% -% \DescribeMacro{\torr} -% \DescribeMacro{\mmHg} -% Torr, |\torr|, and millimeters of mercury, |\mmHg|, are common atmospheric pressure units. -% -% \DescribeMacro{\amu} -% |\amu| represents the atomic mass unit, defined as $\frac{1}{12}$ of the mass of a carbon 12 -% atom. -% -% \DescribeMacro{\yr} -% |\yr| represents a year with the symbol $\si{\yr}$. There are various definitions of -% different kinds of years floating around, but generally the symbol is the same. -% -% \DescribeMacro{\erg} -% |\erg| represents an erg, the CGS unit of energy, which still finds occasional use. -% Its value is $\SI{1e-7}{\joule}$. -% -% \DescribeMacro{\gauss} -% |\gauss| is the Gauss, a unit of magnetic field equal to $\SI{1e-4}{\tesla}$. -% -% \DescribeMacro{\molar} -% |\molar| represents a molar, a unit of concentration equal to one mole per liter. -% Strictly speaking, this is a chemistry unit, but it occasionally comes up in -% physics so it shouldn't hurt to have the macro around. -% -% \DescribeMacro{\poise} -% The poise is the CGS unit of viscosity, equal to $\SI{0.1}{\pascal\second}$. -% -% \DescribeMacro{\foot} -% The foot is the Imperial unit of length, equal to $\SI{30.48}{\centi\meter}$. -% -% \DescribeMacro{\mileperhour} -% This is typically (or perhaps almost exclusively) used to measure transportation -% speeds: cars, trains, airplanes, etc. It's equal to about -% $\SI{0.447}{\meter\per\second}$. -% -% \DescribeMacro{\pound} -% \DescribeMacro{\poundforce} -% The pound is the Imperial unit of either force or mass, depending on who you -% ask. Technically I believe it is a force, but in many situations -% I've often found it clearer to treat it as a unit of mass and use $\si{\poundforce}$ -% (pound of force) as the unit of force. |physymb| defines macros for both. -% -% In this sense, a pound is equal to about -% $\SI{453.59}{\gram}$, and the pound of force is the weight of that mass -% under standard Earth surface gravity, which works out to about -% $\SI{4.448}{\newton}$. -% -% \subsection{Particle Physics} -% -% As a particle physicist, I do a lot of work that involves notation for elementary particles, -% so it's become useful to have a set of macros that produce standard written representations -% for them.\footnote{If there are other areas of physics in which a lot of short macros like -% these would be useful, I'm open to suggestions for adding them.} The names of the commands -% are pretty cryptic, but I've found that once you get used to using them, the names aren't -% hard to remember and the effort saved by having short macro names at least \emph{feels} -% worthwhile. -% -% In general, all the macro names follow the same pattern. Each one ends with a type -% code that identifies the type of particle: |q| for quark, |lp| for a ``regular'' lepton, -% |nu| for a neutrino, |br| for a baryon, |m| for a meson, and |bsn| for a boson. At the -% beginning is a particle code consisting of one or two letters that identify the specific -% particle within that type. -% -% Most of the basic macros consist of just those two parts. Antifermion macros are -% constructed by prepending an |a| to the type code. For vector bosons that occur in -% charge triplets, you prepend one of |p| (plus), |z| (zero), or |m| (minus) to indicate -% which one of the triplet you want. The same goes for baryons which occur in ``triplets'' -% with the same name (three particles denoted by the same letter, even though they -% may not actually be a triplet). Singlet baryons have the |z| as well for consistency. -% -% The proton and neutron are named differently because their names are so common. -% -% \paragraph{Quarks} -% \DescribeMacro{\upq} -% \DescribeMacro{\dnq} -% Each of the quark macros is named with three letters. The first two letters are the -% particle code representing the name of the quark, and the third is the type code |q|. -% The macros are |\upq|, |\dnq|, |\srq|, |\chq|, |\btq|, and |\tpq|, representing the -% up, down, strange, charm, bottom, and top quarks, respectively. -% -% \DescribeMacro{\upaq} -% \DescribeMacro{\dnaq} -% The corresponding macros for the antiquarks are obtained by prepending |a| to the -% type code |q|. We have |\upaq|, |\dnaq|, |\sraq|, |\chaq|, |\btaq|, and |\tpaq|. -% -% \paragraph{Leptons} -% \DescribeMacro{\elp} -% \DescribeMacro{\enu} -% Leptons are done a little differently because there are two distinct types. The macros for -% the electron, muon, and tau lepton are named with a letter and |lp|: we have |\elp| for the -% electron, |\ulp| for the muon, and |\tlp| for the tau. Neutrino macros are constructed -% using the same first letter, but |nu| instead of |lp|: |\enu|, |\unu|, and |\tnu|. -% -% \DescribeMacro{\ealp} -% \DescribeMacro{\eanu} -% Antileptons are named with an |a| between the particle code and the type code. -% So we get |\ealp|, |\ualp|, and |\talp| for the ``regular'' antileptons and -% |\eanu|, |\uanu|, and |\tanu| for the antineutrinos. -% -% \paragraph{Baryons} -% \DescribeMacro{\lmzbr} -% \DescribeMacro{\sgpbr} -% \DescribeMacro{\sgzbr} -% \DescribeMacro{\sgmbr} -% Many of the most commonly referenced baryons in the standard model have -% macros defined. Each of these ends with the type code |br|. Most of them are built -% by putting a particle code and a charge letter together: we have |\lmzbr| for the -% lambda baryon; |\sgpbr|, |\sgzbr|, |\sgmbr| for the sigmas, |\xizbr| and |\ximbr| -% for the xi particles, and |\ommbr| for the omega of charge $-1$. The delta macros -% are named on the same principle but since there are four of them, we use two charge -% letters to indicate the $+2$ charge: |\dlppbr|, |\dlpbr|, |\dlzbr|, and |\dlmbr|. -% -% \DescribeMacro{\sgspbr} -% \DescribeMacro{\sgszbr} -% \DescribeMacro{\sgsmbr} -% In addition, there are macros for the starred (excited) versions of the sigmas and -% xis (only), obtained by adding an |s| before the charge letter: |\sgspbr| etc. and -% |\xiszbr| etc. -% -% \DescribeMacro{\prbr} -% \DescribeMacro{\nebr} -% The proton and neutron don't quite fall into the pattern because their names aren't -% used for multiple particles. The proton is |\prbr| and the neutron is |\nebr|. -% -% \DescribeMacro{\dlmmabr} -% The antiparticles to all these are obtained in \emph{almost} the usual way, by -% adding |a| just before the type code |br|. The one difference is that the charge -% letters are updated to reflect the actual charge of the antiparticle, so for example -% the antipartcle of the $\dlppbr$ (|\dlppbr|), the $\dlmmabr$, is written |\dlmmabr|, -% with two |m|'s because of its double-minus charge. -% -% \paragraph{Mesons} -% \DescribeMacro{\pipm} -% \DescribeMacro{\pizm} -% \DescribeMacro{\pimm} -% Essentially all the mesons defined in the standard model have macros. The naming can -% be a bit tricky because some of them are named as charge triplets while others are -% named as antiparticles. In the former case, we have the $\pi$s, |\pipm|, |\pizm|, and |\pimm|, -% and the $\rho$s, |\ropm|, |\rozm|, and |\romm|. (I'm not sure if it'd make it cleaner -% to just add the |h| into the names) The kaons have similar names, |\kapm|, -% |\kazm|, and |\kamm|, but there is also the $\kazam$, |\kazam|. Finally, the neutral -% mesons are named |\etam|, |\etapm| (here the |p| is for ``prime,'' not ``plus''), and -% |\phim|. -% -% \paragraph{Bosons} -% \DescribeMacro{\phbsn} -% \DescribeMacro{\Wpbsn} -% \DescribeMacro{\Wmbsn} -% There aren't that many bosons so the naming is simple: |\phbsn| for the photon, -% |\Zzbsn| for the neutral $\Zzbsn$, and |\Wpbsn| and |\Wmbsn| for the $\Wbsn$s. There's -% also |\Wbsn|, which does not indicate either charge, for when you need to refer to -% a generic $\Wbsn$ boson. The Higgs boson is written |\hbsn|. -% -% \DescribeMacro{\photon} -% Also, there is a macro |\photon| which is defined to be the same thing as |\phbsn|. -% It's included to support some old LaTeX files I wrote and although it will -% \emph{probably} not be removed from the package in the future, I make no guarantees. -% -% \subsection{Miscellaneous} -% -% \DescribeMacro{\scriptr} |\scriptr| produces the script r found in Griffiths' -% electromagnetism textbook, or at least the closest equivalent in LaTeX, $\scriptr$. -% -% \DescribeMacro{\orderof} |\orderof|\marg{expression} represents the order of an -% expression, for example the error term in a perturbation series. Typical usage -% would be like -% -% \begin{minipage}{.64\textwidth} -% \begin{center} -% |\frac{1}{1 - x} = 1 + x + \orderof{x^2}| -% \end{center} -% \end{minipage} -% \begin{minipage}{.34\textwidth} -% \begin{equation*} -% \frac{1}{1 - x} = 1 + x + \orderof{x^2} -% \end{equation*} -% \end{minipage} -% -% It can also be used to discuss the growth of a function, e.g. -% ``$\orderof{x^3}$ for large $x$,'' or for similar uses such as big-O notation -% in computer algorithm analysis. -% -% \DescribeMacro{\sgn} -% There is a macro for the sign operator, |\sgn|, defined as -% \begin{equation*} -% \sgn x = \begin{cases}1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0\end{cases} -% \end{equation*} -% (and yes, this is not really \emph{complex} analysis) -% -% \DescribeMacro{\round} -% Occasionally it's useful to have some way to designate rounding a number. -% The |\round| macro can be used for that. It comes out as $\round(x)$ (I do -% recommend the parentheses). -% -% \DescribeMacro{\evalat} -% The macro -% |\evalat|\marg{expression}\marg{lower limit}\marg{upper limit} -% is mainly useful for when you want to denote the numerical value -% of a derivative at a specific point, or when you want to represent the -% evaluation of an integral at the endpoints of the range of integration. -% It produces a vertical bar at the right of the \meta{expression}, -% with the \meta{lower limit} and \meta{upper limit} typeset at the -% lower and upper endpoints of the bar, respectively. -% -% \begin{minipage}{.64\textwidth} -% \begin{center} -% |\evalat{x^3 + 3x - 5}{2}{7}| -% \end{center} -% \end{minipage} -% \begin{minipage}{.34\textwidth} -% \begin{equation*} -% \evalat{x^3 + 3x - 5}{2}{7} -% \end{equation*} -% \end{minipage} -% -% \StopEventually{\PrintChanges\PrintIndex} -% -% \section{Feedback} -% -% This package is always a work in progress, both in terms of adding new macros -% to the collection and fixing any errors or inconveniences in the ones that -% are already here. Any feedback you may have will be welcome at my email address, -% given at the top of the document. -% -% \section{Implementation} -% -% \subsection{Initialization} -% \begin{macrocode} -\RequirePackage{ifthen} -% \end{macrocode} -% This flag is set if the |particle| option is enabled. It enables definitions of particle symbol macros. -% \begin{macrocode} -\newboolean{pparticle} -% \end{macrocode} -% This flag is set if the |feynman| option is enabled. It pulls in the |feynmf| package. -% \begin{macrocode} -\newboolean{pfeynman} -% \end{macrocode} -% This flag is set if the |braket| option is enabled. It pulls in the |braket| package. -% \begin{macrocode} -\newboolean{pbraket} -% \end{macrocode} -% This flag is set if the |units| option is enabled. It pulls in the |siunitx| package and provides additional unit definitions. -% \begin{macrocode} -\newboolean{punits} -% \end{macrocode} -% This flag is set if the |boldvectors| option is enabled. It causes vectors to be rendered using a bold font instead of an overset arrow. -% \begin{macrocode} -\newboolean{pboldvectors} -% \end{macrocode} -% -% \subsection{Option Declarations} -% These are the option declarations, pretty self-explanatory. -% \begin{macrocode} -\DeclareOption{braket}{\setboolean{pbraket}{true}} -\DeclareOption{particle}{\setboolean{pparticle}{true}} -\DeclareOption{units}{\setboolean{punits}{true}} -\DeclareOption{feynman}{\setboolean{pfeynman}{true}} -\DeclareOption{arrowvectors}{\setboolean{pboldvectors}{false}} -\DeclareOption{boldvectors}{\setboolean{pboldvectors}{true}} -\ProcessOptions\relax -% \end{macrocode} -% -% \subsection{Macro Definitions} -% Here we bring in the AMS packages for mathematical notation. -% \begin{macrocode} -\RequirePackage{amsbsy} -\RequirePackage{amsmath} -\RequirePackage{amsfonts} -\RequirePackage{amssymb} -\allowdisplaybreaks[2] -\RequirePackage{accents} -% \end{macrocode} -% |calligra| is the package that includes the script r, $\scriptr$. -% \begin{macrocode} -\RequirePackage{calligra} -\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n} -\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{} -\newcommand{\scriptr}{\mathcalligra{r}} -% \end{macrocode} -% Here we load the |braket| package if the corresponding option was passed. -% \begin{macrocode} -\ifthenelse{\boolean{pbraket}} -{ - \RequirePackage{braket} -} -{} -% \end{macrocode} -% Here we load |siunitx| if the |units| option was passed. -% \begin{macrocode} -\ifthenelse{\boolean{punits}} -{ - \RequirePackage{siunitx} -% \end{macrocode} -% These are some useful non-SI units -% \begin{macrocode} - \DeclareSIUnit{\torr}{torr} - \DeclareSIUnit{\mmhg}{mmHg} - \DeclareSIUnit{\amu}{amu} - \DeclareSIUnit{\yr}{yr} - \DeclareSIUnit{\erg}{erg} - \DeclareSIUnit{\gauss}{Ga} - \DeclareSIUnit{\molar}{\textsc{M}} % this follows the style set up in the siunitx manual - \DeclareSIUnit{\poise}{P} - \DeclareSIUnit{\foot}{ft} - \DeclareSIUnit{\mileperhour}{mph} - \DeclareSIUnit{\pound}{lb} - \DeclareSIUnit{\poundforce}{lbf} -} -{} -% \end{macrocode} -% |\orderof| uses the calligraphic capital O, $\mathcal{O}$ -% \begin{macrocode} -\newcommand{\orderof}[1]{\ensuremath{\mathcal{O}\left(#1\right)}} -% \end{macrocode} -% Now we come to assorted functions and keywords. First some inverse trig functions: -% \begin{macrocode} -\DeclareMathOperator{\asin}{\sin^{-1}} -\DeclareMathOperator{\acos}{\cos^{-1}} -\DeclareMathOperator{\atan}{\tan^{-1}} -\DeclareMathOperator{\asec}{\sec^{-1}} -\DeclareMathOperator{\acsc}{\csc^{-1}} -\DeclareMathOperator{\acot}{\cot^{-1}} -% \end{macrocode} -% and hyperbolic trig functions: -% \begin{macrocode} -\DeclareMathOperator{\sech}{sech} -\DeclareMathOperator{\csch}{csch} -\DeclareMathOperator{\asinh}{\sinh^{-1}} -\DeclareMathOperator{\acosh}{\cosh^{-1}} -\DeclareMathOperator{\atanh}{\tanh^{-1}} -\DeclareMathOperator{\asech}{\sech^{-1}} -\DeclareMathOperator{\acsch}{\csch^{-1}} -\DeclareMathOperator{\acoth}{\coth^{-1}} -% \end{macrocode} -% Next are some linear algebra keywords. -% \begin{macrocode} -\DeclareMathOperator{\diag}{diag} -\DeclareMathOperator{\realop}{Re} -\DeclareMathOperator{\imagop}{Im} -\newcommand{\real}[1]{\realop\{#1\}} -\newcommand{\imag}[1]{\imagop\{#1\}} -% \end{macrocode} -% The sign and absolute value keywords: -% \begin{macrocode} -\DeclareMathOperator{\sgn}{sgn} -\newcommand{\abs}[1]{\left\lvert#1\right\rvert} -% \end{macrocode} -% Norm of a vector: -% \begin{macrocode} -\newcommand{\norm}[1]{\left\lVert#1\right\rVert} -% \end{macrocode} -% Evaluation at endpoints uses |\left.| to get no visible mark on the left side. -% \begin{macrocode} -\newcommand{\evalat}[3]{\left.#1\right|_{#2}^{#3}} -% \end{macrocode} -% Poisson brackets are just braces -% \begin{macrocode} -\newcommand{\pbrac}[2]{\left\{#1,#2\right\}} -\newcommand{\pbracvars}[4]{\left\{#1,#2\right\}_{#3,#4}} -% \end{macrocode} -% This handles the redefinition of |\vec|. If the |boldvectors| option was passed, -% a vector is denoted by bolding the argument. If |arrowvectors| was passed, the -% vector is denoted by putting an arrow over the argument. -% Some people use an undertilde, which will probably be added in the future. -% \begin{macrocode} -\ifthenelse{\boolean{pboldvectors}}% - {\renewcommand{\vec}[1]{\mathbf{#1}}}% - {\renewcommand{\vec}[1]{\accentset{\rightharpoonup}{#1}}} -% \end{macrocode} -% |\vecvar| is just a synonym for |\vec| -% \begin{macrocode} -\newcommand{\vecvar}[1]{\vec{#1}} -% \end{macrocode} -% |\tnsvar| always uses bold. Some people use undertildes, which will be added. -% \begin{macrocode} -\newcommand{\tnsvar}[1]{\mathbf{#1}} -% \end{macrocode} -% |\matvar| always uses bold. -% \begin{macrocode} -\newcommand{\matvar}[1]{\mathbf{#1}} -% \end{macrocode} -% |\identitym| is a bold $1$ -% \begin{macrocode} -\newcommand{\identitym}{\mathbf{1}} -% \end{macrocode} -% |\determinant| uses vertical bars. -% \begin{macrocode} -\newcommand{\determinant}[1]{\left\lvert#1\right\rvert} -% \end{macrocode} -% |\trace| uses capital Tr. -% \begin{macrocode} -\DeclareMathOperator{\trace}{Tr} -% \end{macrocode} -% Now we get to some unit vectors, all just the relevant letter with a hat. -% \begin{macrocode} -\newcommand{\unitd}{\hat{d}} -\newcommand{\unite}{\hat{e}} -\newcommand{\uniti}{\hat{\imath}} -\newcommand{\unitj}{\hat{\jmath}} -\newcommand{\unitk}{\hat{k}} -\newcommand{\unitl}{\hat{\ell}} -\newcommand{\unitn}{\hat{n}} -\newcommand{\unitp}{\hat{p}} -\newcommand{\unitq}{\hat{q}} -\newcommand{\unitr}{\hat{r}} -\newcommand{\units}{\hat{s}} -\newcommand{\unitt}{\hat{t}} -\newcommand{\unitu}{\hat{u}} -\newcommand{\unitv}{\hat{v}} -\newcommand{\unitw}{\hat{w}} -\newcommand{\unitx}{\hat{x}} -\newcommand{\unity}{\hat{y}} -\newcommand{\unitz}{\hat{z}} -\newcommand{\unitphi}{\hat{\phi}} -\newcommand{\unitrho}{\hat{\rho}} -\newcommand{\unittheta}{\hat{\theta}} -\newcommand{\unitomega}{\hat{\omega}} -% \end{macrocode} -% This turns any letter into a unit vector. -% \begin{macrocode} -\newcommand{\unitvec}[1]{\hat{#1}} -% \end{macrocode} -% |\udc| is just an upright (roman) d, and similarly for higher-order differentials. -% \begin{macrocode} -\newcommand{\udc}{\mathrm{d}} -\newcommand{\uddc}{\mathrm{d}^2} -\newcommand{\udddc}{\mathrm{d}^3} -% \end{macrocode} -% |\pdc| is just |\partial|, defined for similarity with |\udc|. -% \begin{macrocode} -\newcommand{\pdc}{\partial} -\newcommand{\pddc}{\partial^2} -\newcommand{\pdddc}{\partial^3} -% \end{macrocode} -% |\uds| is just like |\udc| but it includes a small space in front. If I can figure -% out how to do it I'll make the command autodetect the preceding character(s) and -% figure out whether to add the space or not. -% \begin{macrocode} -\newcommand{\uds}{\,\mathrm{d}} -\newcommand{\udds}{\,\mathrm{d}^2} -\newcommand{\uddds}{\,\mathrm{d}^3} -% \end{macrocode} -% |\pds| is also defined for similarity as just |\partial| with a space in front, -% although I'm not sure this one is really useful. -% \begin{macrocode} -\newcommand{\pds}{\,\partial} -\newcommand{\pdds}{\,\partial^2} -\newcommand{\pddds}{\,\partial^3} -% \end{macrocode} -% |\ud| typesets a derivative using |\udc|. Similarly for second and third derivatives. -% \begin{macrocode} -\newcommand{\ud}[2]{\frac{\mathrm{d}#1}{\mathrm{d}#2}} -\newcommand{\udd}[2]{\frac{\mathrm{d}^2#1}{\mathrm{d} #2^2}} -\newcommand{\uddd}[2]{\frac{\mathrm{d}^3#1}{\mathrm{d} #2^3}} -% \end{macrocode} -% |\pd| does the same for partial derivatives with |\pdc|. -% \begin{macrocode} -\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}} -\newcommand{\pdd}[2]{\frac{\partial^2#1}{\partial #2^2}} -\newcommand{\pddd}[2]{\frac{\partial^3#1}{\partial #2^3}} -% \end{macrocode} -% |\grad| typesets the gradient symbol, a nabla with an arrow over it (actually a harpoon). -% This is done the same way regardless of the |arrowvectors| or |boldvectors| setting. -% \begin{macrocode} -\newcommand{\grad}{\accentset{\rightharpoonup}{\nabla}} -% \end{macrocode} -% |\div| is the divergence, defined using |\grad|. Ordinarily |\div| stands for the -% division symbol but nobody really uses that, so I figured it's worth replacing. -% \begin{macrocode} -\renewcommand{\div}{\grad\cdot} -% \end{macrocode} -% |\curl| is done in the obvious way using |\grad| -% \begin{macrocode} -\newcommand{\curl}{\grad\times} -% \end{macrocode} -% |\lapl| is written without a harpoon since it's a scalar operator -% \begin{macrocode} -\newcommand{\lapl}{\nabla^2} -% \end{macrocode} -% |\conj| just puts a superscript star -% \begin{macrocode} -\newcommand{\conj}[1]{{#1 ^{*}}} -% \end{macrocode} -% |\herm| is the same thing but for operators or matrices, so with a dagger -% \begin{macrocode} -\newcommand{\herm}[1]{{#1 ^{\dagger}}} -% \end{macrocode} -% |\transpose| does the same with a $T$ -% \begin{macrocode} -\newcommand{\transpose}[1]{{#1 ^{T}}} -% \end{macrocode} -% These set notations are mostly done with |\mathbb| -% \begin{macrocode} -\newcommand{\natset}{\mathbb{N}} -\newcommand{\intset}{\mathbb{Z}} -\newcommand{\cpxset}{\mathbb{C}} -\newcommand{\whlset}{\mathbb{Q}} -\newcommand{\realset}{\mathbb{R}} -\newcommand{\imagset}{\mathbb{I}} -% \end{macrocode} -% Commutators and anticommutators are done in the obvious way -% \begin{macrocode} -\newcommand{\commut}[2]{\left[ #1, #2 \right]} -\newcommand{\acommut}[2]{\left\{ #1, #2 \right\}} -% \end{macrocode} -% The |\round| operator just typesets the word ``round'' -% \begin{macrocode} -\DeclareMathOperator{\round}{round} -% \end{macrocode} -% The exterior derivative is typeset in bold, in contrast to the differential $\udc$ which -% is just a plain roman font -% \begin{macrocode} -\DeclareMathOperator{\exd}{\mathbf{d}} -% \end{macrocode} -% The Hodge dual uses a star, but not superscript like |\conj|. -% \begin{macrocode} -\newcommand{\hodge}{\star} -% \end{macrocode} -% These are short macros to typeset the symbols for the elementary (and common non-elementary) -% particles. Each one is set in math roman font, as opposed to text roman font if it makes -% a difference. They're followed by an empty token |{}| for reasons which I forget. -% -% These are only defined if the |particle| option was passed. -% \begin{macrocode} -\ifthenelse{\boolean{pparticle}} -{ -\newcommand{\upq}{\ensuremath{\mathrm{u}}{}} -\newcommand{\dnq}{\ensuremath{\mathrm{d}}{}} -\newcommand{\srq}{\ensuremath{\mathrm{s}}{}} -\newcommand{\chq}{\ensuremath{\mathrm{c}}{}} -\newcommand{\btq}{\ensuremath{\mathrm{b}}{}} -\newcommand{\tpq}{\ensuremath{\mathrm{t}}{}} -\newcommand{\upaq}{\ensuremath{\bar{\mathrm{u}}}{}} -\newcommand{\dnaq}{\ensuremath{\bar{\mathrm{d}}}{}} -\newcommand{\sraq}{\ensuremath{\bar{\mathrm{s}}}{}} -\newcommand{\chaq}{\ensuremath{\bar{\mathrm{c}}}{}} -\newcommand{\btaq}{\ensuremath{\bar{\mathrm{b}}}{}} -\newcommand{\tpaq}{\ensuremath{\bar{\mathrm{t}}}{}} -\newcommand{\elp}{\ensuremath{\mathrm{e}^-}{}} -\newcommand{\enu}{\ensuremath{\nu_\mathrm{e}}{}} -\newcommand{\ulp}{\ensuremath{\mu^-}{}} -\newcommand{\unu}{\ensuremath{\nu_{\mu}}{}} -\newcommand{\tlp}{\ensuremath{\tau^-}{}} -\newcommand{\tnu}{\ensuremath{\nu_{\tau}}{}} -\newcommand{\ealp}{\ensuremath{\mathrm{e}^+}{}} -\newcommand{\eanu}{\ensuremath{\bar{\nu}_\mathrm{e}}{}} -\newcommand{\ualp}{\ensuremath{\mu^+}{}} -\newcommand{\uanu}{\ensuremath{\bar{\nu}_{\mu}}{}} -\newcommand{\talp}{\ensuremath{\tau^+}{}} -\newcommand{\tanu}{\ensuremath{\bar{\nu}_{\tau}}{}} -\newcommand{\prbr}{\ensuremath{\mathrm{p}^+}{}} -\newcommand{\nebr}{\ensuremath{\mathrm{n}^0}{}} -\newcommand{\lmzbr}{\ensuremath{\Lambda^0}{}} -\newcommand{\sgpbr}{\ensuremath{\Sigma^+}{}} -\newcommand{\sgzbr}{\ensuremath{\Sigma^0}{}} -\newcommand{\sgmbr}{\ensuremath{\Sigma^-}{}} -\newcommand{\dlppbr}{\ensuremath{\Delta^{++}}{}} -\newcommand{\dlpbr}{\ensuremath{\Delta^+}{}} -\newcommand{\dlzbr}{\ensuremath{\Delta^0}{}} -\newcommand{\dlmbr}{\ensuremath{\Delta^-}{}} -\newcommand{\xizbr}{\ensuremath{\Xi^0}{}} -\newcommand{\ximbr}{\ensuremath{\Xi^-}{}} -\newcommand{\ommbr}{\ensuremath{\Omega^-}{}} -\newcommand{\sgspbr}{\ensuremath{\Sigma^{*+}}{}} -\newcommand{\sgszbr}{\ensuremath{\Sigma^{*0}}{}} -\newcommand{\sgsmbr}{\ensuremath{\Sigma^{*-}}{}} -\newcommand{\xiszbr}{\ensuremath{\Xi^{*0}}{}} -\newcommand{\xismbr}{\ensuremath{\Xi^{*-}}{}} -\newcommand{\prabr}{\ensuremath{\mathrm{p}^-}{}} -\newcommand{\neabr}{\ensuremath{\bar{\mathrm{n}}^0}{}} -\newcommand{\dlpabr}{\ensuremath{\bar{\Delta}^{+}}{}} -\newcommand{\dlzabr}{\ensuremath{\bar{\Delta}^{0}}{}} -\newcommand{\dlmabr}{\ensuremath{\bar{\Delta}^{-}}{}} -\newcommand{\dlmmabr}{\ensuremath{\bar{\Delta}^{--}}{}} -\newcommand{\pipm}{\ensuremath{\pi^+}{}} -\newcommand{\pizm}{\ensuremath{\pi^0}{}} -\newcommand{\pimm}{\ensuremath{\pi^-}{}} -\newcommand{\kapm}{\ensuremath{K^+}{}} -\newcommand{\kazm}{\ensuremath{K^0}{}} -\newcommand{\kazam}{\ensuremath{\bar{K}^0}{}} -\newcommand{\kamm}{\ensuremath{K^-}{}} -\newcommand{\ropm}{\ensuremath{\rho^+}{}} -\newcommand{\rozm}{\ensuremath{\rho^0}{}} -\newcommand{\romm}{\ensuremath{\rho^-}{}} -\newcommand{\etam}{\ensuremath{\eta}{}} -\newcommand{\etapm}{\ensuremath{\eta'}{}} -\newcommand{\kaspm}{\ensuremath{\mathrm{K}^{*+}}{}} -\newcommand{\kaszm}{\ensuremath{\mathrm{K}^{*0}}{}} -\newcommand{\kaszam}{\ensuremath{\bar{\mathrm{K}}^{*0}}{}} -\newcommand{\kasmm}{\ensuremath{\mathrm{K}^{*-}}{}} -\newcommand{\omm}{\ensuremath{\omega}{}} -\newcommand{\phim}{\ensuremath{\phi}{}} -\newcommand{\phbsn}{\ensuremath{\gamma}{}} -\newcommand{\Wbsn}{\ensuremath{\mathrm{W}}{}} -\newcommand{\Wpbsn}{\ensuremath{\mathrm{W}^{+}}{}} -\newcommand{\Wmbsn}{\ensuremath{\mathrm{W}^{-}}{}} -\newcommand{\Zzbsn}{\ensuremath{\mathrm{Z}^{0}}{}} -\newcommand{\hbsn}{\ensuremath{\mathrm{h}}{}} -\newcommand{\photon}{\phbsn} -} -{} -% \end{macrocode} -% The |feynman| option is implemented by just loading the package |feynmp|. -% \begin{macrocode} -\ifthenelse{\boolean{pfeynman}}% - {\RequirePackage{feynmp}}% - {} -% \end{macrocode} -% -% \pagebreak[2] -% \Finale
\ No newline at end of file diff --git a/Master/texmf-dist/source/latex/physymb/physymb.ins b/Master/texmf-dist/source/latex/physymb/physymb.ins deleted file mode 100644 index 4526c957031..00000000000 --- a/Master/texmf-dist/source/latex/physymb/physymb.ins +++ /dev/null @@ -1,46 +0,0 @@ -%% -%% Copyright (C) 2005-2011 by David Zaslavsky <diazona@ellipsix.net> -%% -%% This work may be distributed and/or modified under the -%% conditions of the LaTeX Project Public License, either version 1.3 -%% of this license or (at your option) any later version. -%% The latest version of this license is in -%% http://www.latex-project.org/lppl.txt -%% and version 1.3 or later is part of all distributions of LaTeX -%% version 2005/12/01 or later. -%% -%% This work has the LPPL maintenance status `maintained'. -%% -%% The Current Maintainer of this work is David Zaslavsky -%% -%% This work consists of the files physymb.dtx and physymb.ins -%% and the derived files physymb.sty and physymb.pdf. -%% -\input docstrip.tex -\keepsilent -\usedir{tex/latex/physymb} -\preamble -This is a generated file. -Copyright (C) 2005-2011 by David Zaslavsky <diazona@ellipsix.net> -This file may be distributed and/or modified under the -conditions of the LaTeX Project Public License, either -version 1.3 of this license or (at your option) any later -version. The latest version of this license is in: -http://www.latex-project.org/lppl.txt -and version 1.3 or later is part of all distributions of -LaTeX version 2005/12/01 or later. -\endpreamble -\generate{\file{physymb.sty}{\from{physymb.dtx}{package}}} -\Msg{*********************************************************} -\Msg{*} -\Msg{* To finish the installation you have to move the} -\Msg{* following file into a directory searched by TeX:} -\Msg{*} -\Msg{* \space\space physymb.sty} -\Msg{*} -\Msg{* To produce the documentation run the file physymb.dtx} -\Msg{* through LaTeX.} -\Msg{*} -\Msg{* Happy TeXing!} -\Msg{*********************************************************} -\endbatchfile diff --git a/Master/texmf-dist/tex/latex/physymb/physymb.sty b/Master/texmf-dist/tex/latex/physymb/physymb.sty deleted file mode 100644 index f913b4de7d5..00000000000 --- a/Master/texmf-dist/tex/latex/physymb/physymb.sty +++ /dev/null @@ -1,257 +0,0 @@ -%% -%% This is file `physymb.sty', -%% generated with the docstrip utility. -%% -%% The original source files were: -%% -%% physymb.dtx (with options: `package') -%% This is a generated file. -%% Copyright (C) 2005-2011 by David Zaslavsky <diazona@ellipsix.net> -%% This file may be distributed and/or modified under the -%% conditions of the LaTeX Project Public License, either -%% version 1.3 of this license or (at your option) any later -%% version. The latest version of this license is in: -%% http://www.latex-project.org/lppl.txt -%% and version 1.3 or later is part of all distributions of -%% LaTeX version 2005/12/01 or later. - -\NeedsTeXFormat{LaTeX2e}[1999/12/01] -\ProvidesPackage{physymb}[2011/05/09 v0.2 Physics symbol definitions] - -%% \CharacterTable -%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z -%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z -%% Digits \0\1\2\3\4\5\6\7\8\9 -%% Exclamation \! Double quote \" Hash (number) \# -%% Dollar \$ Percent \% Ampersand \& -%% Acute accent \' Left paren \( Right paren \) -%% Asterisk \* Plus \+ Comma \, -%% Minus \- Point \. Solidus \/ -%% Colon \: Semicolon \; Less than \< -%% Equals \= Greater than \> Question mark \? -%% Commercial at \@ Left bracket \[ Backslash \\ -%% Right bracket \] Circumflex \^ Underscore \_ -%% Grave accent \` Left brace \{ Vertical bar \| -%% Right brace \} Tilde \~} -\RequirePackage{ifthen} -\newboolean{pparticle} -\newboolean{pfeynman} -\newboolean{pbraket} -\newboolean{punits} -\newboolean{pboldvectors} -\DeclareOption{braket}{\setboolean{pbraket}{true}} -\DeclareOption{particle}{\setboolean{pparticle}{true}} -\DeclareOption{units}{\setboolean{punits}{true}} -\DeclareOption{feynman}{\setboolean{pfeynman}{true}} -\DeclareOption{arrowvectors}{\setboolean{pboldvectors}{false}} -\DeclareOption{boldvectors}{\setboolean{pboldvectors}{true}} -\ProcessOptions\relax -\RequirePackage{amsbsy} -\RequirePackage{amsmath} -\RequirePackage{amsfonts} -\RequirePackage{amssymb} -\allowdisplaybreaks[2] -\RequirePackage{accents} -\RequirePackage{calligra} -\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n} -\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{} -\newcommand{\scriptr}{\mathcalligra{r}} -\ifthenelse{\boolean{pbraket}} -{ - \RequirePackage{braket} -} -{} -\ifthenelse{\boolean{punits}} -{ - \RequirePackage{siunitx} - \DeclareSIUnit{\torr}{torr} - \DeclareSIUnit{\mmhg}{mmHg} - \DeclareSIUnit{\amu}{amu} - \DeclareSIUnit{\yr}{yr} - \DeclareSIUnit{\erg}{erg} - \DeclareSIUnit{\gauss}{Ga} - \DeclareSIUnit{\molar}{\textsc{M}} % this follows the style set up in the siunitx manual - \DeclareSIUnit{\poise}{P} - \DeclareSIUnit{\foot}{ft} - \DeclareSIUnit{\mileperhour}{mph} - \DeclareSIUnit{\pound}{lb} - \DeclareSIUnit{\poundforce}{lbf} -} -{} -\newcommand{\orderof}[1]{\ensuremath{\mathcal{O}\left(#1\right)}} -\DeclareMathOperator{\asin}{\sin^{-1}} -\DeclareMathOperator{\acos}{\cos^{-1}} -\DeclareMathOperator{\atan}{\tan^{-1}} -\DeclareMathOperator{\asec}{\sec^{-1}} -\DeclareMathOperator{\acsc}{\csc^{-1}} -\DeclareMathOperator{\acot}{\cot^{-1}} -\DeclareMathOperator{\sech}{sech} -\DeclareMathOperator{\csch}{csch} -\DeclareMathOperator{\asinh}{\sinh^{-1}} -\DeclareMathOperator{\acosh}{\cosh^{-1}} -\DeclareMathOperator{\atanh}{\tanh^{-1}} -\DeclareMathOperator{\asech}{\sech^{-1}} -\DeclareMathOperator{\acsch}{\csch^{-1}} -\DeclareMathOperator{\acoth}{\coth^{-1}} -\DeclareMathOperator{\diag}{diag} -\DeclareMathOperator{\realop}{Re} -\DeclareMathOperator{\imagop}{Im} -\newcommand{\real}[1]{\realop\{#1\}} -\newcommand{\imag}[1]{\imagop\{#1\}} -\DeclareMathOperator{\sgn}{sgn} -\newcommand{\abs}[1]{\left\lvert#1\right\rvert} -\newcommand{\norm}[1]{\left\lVert#1\right\rVert} -\newcommand{\evalat}[3]{\left.#1\right|_{#2}^{#3}} -\newcommand{\pbrac}[2]{\left\{#1,#2\right\}} -\newcommand{\pbracvars}[4]{\left\{#1,#2\right\}_{#3,#4}} -\ifthenelse{\boolean{pboldvectors}}% - {\renewcommand{\vec}[1]{\mathbf{#1}}}% - {\renewcommand{\vec}[1]{\accentset{\rightharpoonup}{#1}}} -\newcommand{\vecvar}[1]{\vec{#1}} -\newcommand{\tnsvar}[1]{\mathbf{#1}} -\newcommand{\matvar}[1]{\mathbf{#1}} -\newcommand{\identitym}{\mathbf{1}} -\newcommand{\determinant}[1]{\left\lvert#1\right\rvert} -\DeclareMathOperator{\trace}{Tr} -\newcommand{\unitd}{\hat{d}} -\newcommand{\unite}{\hat{e}} -\newcommand{\uniti}{\hat{\imath}} -\newcommand{\unitj}{\hat{\jmath}} -\newcommand{\unitk}{\hat{k}} -\newcommand{\unitl}{\hat{\ell}} -\newcommand{\unitn}{\hat{n}} -\newcommand{\unitp}{\hat{p}} -\newcommand{\unitq}{\hat{q}} -\newcommand{\unitr}{\hat{r}} -\newcommand{\units}{\hat{s}} -\newcommand{\unitt}{\hat{t}} -\newcommand{\unitu}{\hat{u}} -\newcommand{\unitv}{\hat{v}} -\newcommand{\unitw}{\hat{w}} -\newcommand{\unitx}{\hat{x}} -\newcommand{\unity}{\hat{y}} -\newcommand{\unitz}{\hat{z}} -\newcommand{\unitphi}{\hat{\phi}} -\newcommand{\unitrho}{\hat{\rho}} -\newcommand{\unittheta}{\hat{\theta}} -\newcommand{\unitomega}{\hat{\omega}} -\newcommand{\unitvec}[1]{\hat{#1}} -\newcommand{\udc}{\mathrm{d}} -\newcommand{\uddc}{\mathrm{d}^2} -\newcommand{\udddc}{\mathrm{d}^3} -\newcommand{\pdc}{\partial} -\newcommand{\pddc}{\partial^2} -\newcommand{\pdddc}{\partial^3} -\newcommand{\uds}{\,\mathrm{d}} -\newcommand{\udds}{\,\mathrm{d}^2} -\newcommand{\uddds}{\,\mathrm{d}^3} -\newcommand{\pds}{\,\partial} -\newcommand{\pdds}{\,\partial^2} -\newcommand{\pddds}{\,\partial^3} -\newcommand{\ud}[2]{\frac{\mathrm{d}#1}{\mathrm{d}#2}} -\newcommand{\udd}[2]{\frac{\mathrm{d}^2#1}{\mathrm{d} #2^2}} -\newcommand{\uddd}[2]{\frac{\mathrm{d}^3#1}{\mathrm{d} #2^3}} -\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}} -\newcommand{\pdd}[2]{\frac{\partial^2#1}{\partial #2^2}} -\newcommand{\pddd}[2]{\frac{\partial^3#1}{\partial #2^3}} -\newcommand{\grad}{\accentset{\rightharpoonup}{\nabla}} -\renewcommand{\div}{\grad\cdot} -\newcommand{\curl}{\grad\times} -\newcommand{\lapl}{\nabla^2} -\newcommand{\conj}[1]{{#1 ^{*}}} -\newcommand{\herm}[1]{{#1 ^{\dagger}}} -\newcommand{\transpose}[1]{{#1 ^{T}}} -\newcommand{\natset}{\mathbb{N}} -\newcommand{\intset}{\mathbb{Z}} -\newcommand{\cpxset}{\mathbb{C}} -\newcommand{\whlset}{\mathbb{Q}} -\newcommand{\realset}{\mathbb{R}} -\newcommand{\imagset}{\mathbb{I}} -\newcommand{\commut}[2]{\left[ #1, #2 \right]} -\newcommand{\acommut}[2]{\left\{ #1, #2 \right\}} -\DeclareMathOperator{\round}{round} -\DeclareMathOperator{\exd}{\mathbf{d}} -\newcommand{\hodge}{\star} -\ifthenelse{\boolean{pparticle}} -{ -\newcommand{\upq}{\ensuremath{\mathrm{u}}{}} -\newcommand{\dnq}{\ensuremath{\mathrm{d}}{}} -\newcommand{\srq}{\ensuremath{\mathrm{s}}{}} -\newcommand{\chq}{\ensuremath{\mathrm{c}}{}} -\newcommand{\btq}{\ensuremath{\mathrm{b}}{}} -\newcommand{\tpq}{\ensuremath{\mathrm{t}}{}} -\newcommand{\upaq}{\ensuremath{\bar{\mathrm{u}}}{}} -\newcommand{\dnaq}{\ensuremath{\bar{\mathrm{d}}}{}} -\newcommand{\sraq}{\ensuremath{\bar{\mathrm{s}}}{}} -\newcommand{\chaq}{\ensuremath{\bar{\mathrm{c}}}{}} -\newcommand{\btaq}{\ensuremath{\bar{\mathrm{b}}}{}} -\newcommand{\tpaq}{\ensuremath{\bar{\mathrm{t}}}{}} -\newcommand{\elp}{\ensuremath{\mathrm{e}^-}{}} -\newcommand{\enu}{\ensuremath{\nu_\mathrm{e}}{}} -\newcommand{\ulp}{\ensuremath{\mu^-}{}} -\newcommand{\unu}{\ensuremath{\nu_{\mu}}{}} -\newcommand{\tlp}{\ensuremath{\tau^-}{}} -\newcommand{\tnu}{\ensuremath{\nu_{\tau}}{}} -\newcommand{\ealp}{\ensuremath{\mathrm{e}^+}{}} -\newcommand{\eanu}{\ensuremath{\bar{\nu}_\mathrm{e}}{}} -\newcommand{\ualp}{\ensuremath{\mu^+}{}} -\newcommand{\uanu}{\ensuremath{\bar{\nu}_{\mu}}{}} -\newcommand{\talp}{\ensuremath{\tau^+}{}} -\newcommand{\tanu}{\ensuremath{\bar{\nu}_{\tau}}{}} -\newcommand{\prbr}{\ensuremath{\mathrm{p}^+}{}} -\newcommand{\nebr}{\ensuremath{\mathrm{n}^0}{}} -\newcommand{\lmzbr}{\ensuremath{\Lambda^0}{}} -\newcommand{\sgpbr}{\ensuremath{\Sigma^+}{}} -\newcommand{\sgzbr}{\ensuremath{\Sigma^0}{}} -\newcommand{\sgmbr}{\ensuremath{\Sigma^-}{}} -\newcommand{\dlppbr}{\ensuremath{\Delta^{++}}{}} -\newcommand{\dlpbr}{\ensuremath{\Delta^+}{}} -\newcommand{\dlzbr}{\ensuremath{\Delta^0}{}} -\newcommand{\dlmbr}{\ensuremath{\Delta^-}{}} -\newcommand{\xizbr}{\ensuremath{\Xi^0}{}} -\newcommand{\ximbr}{\ensuremath{\Xi^-}{}} -\newcommand{\ommbr}{\ensuremath{\Omega^-}{}} -\newcommand{\sgspbr}{\ensuremath{\Sigma^{*+}}{}} -\newcommand{\sgszbr}{\ensuremath{\Sigma^{*0}}{}} -\newcommand{\sgsmbr}{\ensuremath{\Sigma^{*-}}{}} -\newcommand{\xiszbr}{\ensuremath{\Xi^{*0}}{}} -\newcommand{\xismbr}{\ensuremath{\Xi^{*-}}{}} -\newcommand{\prabr}{\ensuremath{\mathrm{p}^-}{}} -\newcommand{\neabr}{\ensuremath{\bar{\mathrm{n}}^0}{}} -\newcommand{\dlpabr}{\ensuremath{\bar{\Delta}^{+}}{}} -\newcommand{\dlzabr}{\ensuremath{\bar{\Delta}^{0}}{}} -\newcommand{\dlmabr}{\ensuremath{\bar{\Delta}^{-}}{}} -\newcommand{\dlmmabr}{\ensuremath{\bar{\Delta}^{--}}{}} -\newcommand{\pipm}{\ensuremath{\pi^+}{}} -\newcommand{\pizm}{\ensuremath{\pi^0}{}} -\newcommand{\pimm}{\ensuremath{\pi^-}{}} -\newcommand{\kapm}{\ensuremath{K^+}{}} -\newcommand{\kazm}{\ensuremath{K^0}{}} -\newcommand{\kazam}{\ensuremath{\bar{K}^0}{}} -\newcommand{\kamm}{\ensuremath{K^-}{}} -\newcommand{\ropm}{\ensuremath{\rho^+}{}} -\newcommand{\rozm}{\ensuremath{\rho^0}{}} -\newcommand{\romm}{\ensuremath{\rho^-}{}} -\newcommand{\etam}{\ensuremath{\eta}{}} -\newcommand{\etapm}{\ensuremath{\eta'}{}} -\newcommand{\kaspm}{\ensuremath{\mathrm{K}^{*+}}{}} -\newcommand{\kaszm}{\ensuremath{\mathrm{K}^{*0}}{}} -\newcommand{\kaszam}{\ensuremath{\bar{\mathrm{K}}^{*0}}{}} -\newcommand{\kasmm}{\ensuremath{\mathrm{K}^{*-}}{}} -\newcommand{\omm}{\ensuremath{\omega}{}} -\newcommand{\phim}{\ensuremath{\phi}{}} -\newcommand{\phbsn}{\ensuremath{\gamma}{}} -\newcommand{\Wbsn}{\ensuremath{\mathrm{W}}{}} -\newcommand{\Wpbsn}{\ensuremath{\mathrm{W}^{+}}{}} -\newcommand{\Wmbsn}{\ensuremath{\mathrm{W}^{-}}{}} -\newcommand{\Zzbsn}{\ensuremath{\mathrm{Z}^{0}}{}} -\newcommand{\hbsn}{\ensuremath{\mathrm{h}}{}} -\newcommand{\photon}{\phbsn} -} -{} -\ifthenelse{\boolean{pfeynman}}% - {\RequirePackage{feynmp}}% - {} -\endinput -%% -%% End of file `physymb.sty'. |