summaryrefslogtreecommitdiff
path: root/Master/texmf-dist
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2015-01-03 23:18:09 +0000
committerKarl Berry <karl@freefriends.org>2015-01-03 23:18:09 +0000
commit6a6760b318629498bb287bbb60ae5018b9d5ca97 (patch)
tree1ca8dabce92ad28fd4118b6b1530266f5d472951 /Master/texmf-dist
parent998bb9be5849d17bb2548edb716803c5533b0605 (diff)
rm physymb, moved to ctan:/obsolete per author request
git-svn-id: svn://tug.org/texlive/trunk@35952 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist')
-rw-r--r--Master/texmf-dist/doc/latex/physymb/README28
-rw-r--r--Master/texmf-dist/doc/latex/physymb/physymb.pdfbin289060 -> 0 bytes
-rw-r--r--Master/texmf-dist/source/latex/physymb/physymb.dtx997
-rw-r--r--Master/texmf-dist/source/latex/physymb/physymb.ins46
-rw-r--r--Master/texmf-dist/tex/latex/physymb/physymb.sty257
5 files changed, 0 insertions, 1328 deletions
diff --git a/Master/texmf-dist/doc/latex/physymb/README b/Master/texmf-dist/doc/latex/physymb/README
deleted file mode 100644
index a35b8dde6a7..00000000000
--- a/Master/texmf-dist/doc/latex/physymb/README
+++ /dev/null
@@ -1,28 +0,0 @@
- ======================== physymb ============================
- Created by David Zaslavsky <diazona@ellipsix.net>
-
-The physymb package contains a bunch of assorted macros that may
-be useful to physicists (and perhaps occasionally mathematicians).
-
-The package contains four files:
-
-* README: This file :)
-* physymb.pdf: The PDF documentation, which details all the macros
- defined by the package.
-* physymb.dtx: The documented source. Running pdflatex on this
- reproduces the PDF documentation.
-* physymb.ins: The installer file. Running latex or pdflatex on
- this will generate the actual package file, physymb.sty.
-
-To install the package, it should be enough to just copy physymb.sty
-to the tex/latex/physymb/ directory (which you may need to create)
-within your local TDS tree, which is typically $HOME/texmf/ on
-a Linux system. The location varies on Windows. It's also recommended
-to copy physymb.pdf into doc/latex/physymb/ under the TDS tree.
-
-If you don't know what a TDS tree is, or want to have this explained
-in more detail, see
-http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages
-
-physymb is licensed under the LaTeX Project Public License,
-version 1.3 or later.
diff --git a/Master/texmf-dist/doc/latex/physymb/physymb.pdf b/Master/texmf-dist/doc/latex/physymb/physymb.pdf
deleted file mode 100644
index b77a18aefdc..00000000000
--- a/Master/texmf-dist/doc/latex/physymb/physymb.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/source/latex/physymb/physymb.dtx b/Master/texmf-dist/source/latex/physymb/physymb.dtx
deleted file mode 100644
index 838d2361569..00000000000
--- a/Master/texmf-dist/source/latex/physymb/physymb.dtx
+++ /dev/null
@@ -1,997 +0,0 @@
-% \iffalse meta-comment
-%
-% Copyright (C) 2005-2011 by David Zaslavsky <diazona@ellipsix.net>
-%
-% This work may be distributed and/or modified under the
-% conditions of the LaTeX Project Public License, either version 1.3
-% of this license or (at your option) any later version.
-% The latest version of this license is in
-% http://www.latex-project.org/lppl.txt
-% and version 1.3 or later is part of all distributions of LaTeX
-% version 2005/12/01 or later.
-%
-% This work has the LPPL maintenance status `maintained'.
-%
-% The Current Maintainer of this work is David Zaslavsky
-%
-% This work consists of the files physymb.dtx and physymb.ins
-% and the derived files physymb.sty and physymb.pdf.
-%
-% \fi
-
-% \iffalse
-%<package>\NeedsTeXFormat{LaTeX2e}[1999/12/01]
-%<package>\ProvidesPackage{physymb}[2011/05/09 v0.2 Physics symbol definitions]
-%
-%<*driver>
-\documentclass{ltxdoc}
-\usepackage[boldvectors,units,particle]{physymb}
-\usepackage{hyperref}
-\EnableCrossrefs
-\CodelineIndex
-\RecordChanges
-\begin{document}
- \DocInput{physymb.dtx}
-\end{document}
-%</driver>
-% \fi
-
-% \CheckSum{706}
-%% \CharacterTable
-%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
-%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
-%% Digits \0\1\2\3\4\5\6\7\8\9
-%% Exclamation \! Double quote \" Hash (number) \#
-%% Dollar \$ Percent \% Ampersand \&
-%% Acute accent \' Left paren \( Right paren \)
-%% Asterisk \* Plus \+ Comma \,
-%% Minus \- Point \. Solidus \/
-%% Colon \: Semicolon \; Less than \<
-%% Equals \= Greater than \> Question mark \?
-%% Commercial at \@ Left bracket \[ Backslash \\
-%% Right bracket \] Circumflex \^ Underscore \_
-%% Grave accent \` Left brace \{ Vertical bar \|
-%% Right brace \} Tilde \~}
-%
-% \changes{v0.1}{2010/12/15}{Conversion from sty to dtx}
-%
-% \GetFileInfo{physymb.sty}
-%
-% \DoNotIndex{\#,\$,\%,\&,\@,\\,\{,\},\^,\_,\~,\ }
-% \DoNotIndex{\accentset,\allowdisplaybreaks}
-% \DoNotIndex{\bar,\boolean}
-% \DoNotIndex{\cos,\cubic}
-% \DoNotIndex{\dagger,\DeclareFontShape,\DeclareMathAlphabet,\DeclareMathOperator}
-% \DoNotIndex{\DeclareOption,\DeclareSIUnit,\Delta}
-% \DoNotIndex{\ell\ensuremath,\equal}
-% \DoNotIndex{\frac}
-% \DoNotIndex{\gamma}
-% \DoNotIndex{\hat}
-% \DoNotIndex{\ifthenelse}
-% \DoNotIndex{\joule}
-% \DoNotIndex{\Lambda,\langle,\left,\lVert,\lvert}
-% \DoNotIndex{\mathbb,\mathbf,\mathcal,\mathcalligra,\mathrm,\meter,\mu}
-% \DoNotIndex{\nabla,\newboolean,\newcommand,\nu}
-% \DoNotIndex{\Omega,\omega}
-% \DoNotIndex{\partial,\per,\phi,\pi,\ProcessOptions}
-% \DoNotIndex{\rangle,\relax,\renewcommand,\RequirePackage,\rho,\right,\rightharpoonup}
-% \DoNotIndex{\rpcubic,\rVert,\rvert}
-% \DoNotIndex{\setboolean,\Sigma,\sin,\star}
-% \DoNotIndex{\tan,\tau,\theta,\times}
-% \DoNotIndex{\unit}
-% \DoNotIndex{\vert}
-% \DoNotIndex{\Xi}
-%
-% \title{The \textsf{physymb} package\thanks{This document corresponds to \textsf{physymb}~\fileversion, dated~\filedate.}}
-% \author{David Zaslavsky \\ \texttt{diazona@ellipsix.net}}
-%
-% \maketitle
-% \begin{abstract}
-% The |physymb| package is nothing but a bunch of simple macro definitions that
-% may be useful for typesetting physics papers.
-% \end{abstract}
-%
-% Most of the functionality of |physymb| is provided by importing the |siunitx| and
-% |braket| packages. If you're just looking to write numbers in scientific notation,
-% quantities with units, and/or Dirac notation, I recommend using those packages
-% directly.
-%
-% There are a lot of macros in this package, and it typically doesn't take as many
-% lines to explain their meanings as it does to list them all. For that reason, when
-% there are a bunch of similar macros that I explain together, I've usually only listed
-% one or two in the left margin. In these cases, all the macros are given in the text.
-%
-% \section{Options}
-%
-% |physymb| recognizes the following options, in no particular order.
-%
-% \begin{itemize}
-% \item |arrowvectors| causes vectors (specifically, the |\vec| command) to be rendered
-% with an arrow above the symbol.
-% \item |boldvectors| causes vectors (again, from |\vec|) to be rendered by typesetting
-% the symbol in bold. It's the alternative to |arrowvectors|.
-% \item |braket| pulls in the |braket| package. (It's precisely equivalent to
-% |\usepackage{braket}|, it's just here for convenience.)
-% \item |feynman| pulls in the |feynmp| package. (It's precisely equivalent to
-% |\usepackage{feynmp}|, it's just here for convenience.)
-% \item |particle| enables all the particle physics macros.
-% \item |units| pulls in the |siunitx| package and enables the additional unit macros.
-% \end{itemize}
-%
-% \section{Macros}
-%
-% \subsection{Trigonometry}
-%
-% \DescribeMacro{\asin}
-% \DescribeMacro{\acos}
-% The AMS packages only define inverse trigonometric functions using the ``arc''
-% syntax, i.e. they actually prefix ``arc'' to the name (as in $\arcsin x$).
-% Sometimes you'd rather write them with a superscript $-1$ to save space, so
-% those versions are included here. We have the inverse functions |\asin|,
-% |\acos|, |\atan|, |\asec|, |\acsc|, and |\acot|.
-%
-% \DescribeMacro{\sech}
-% \DescribeMacro{\cosh}
-% For some reason, the hyperbolic sine and cosine |\sech| and |\cosh| aren't
-% defined in the AMS packages. This fixes that.
-%
-% \DescribeMacro{\asinh}
-% \DescribeMacro{\acosh}
-% Finally, the inverse hyperbolic trig functions written with the superscript
-% $-1$ are defined just as with the regular inverse trig functions. We have
-% |\asinh|, |\acosh|, |\atanh|, |\asech|, |\acsch|, and |\acoth|.
-%
-% \subsection{Sets}
-%
-% There are certain sets of numbers that are semi-frequently referenced in physics.
-% Typically they're used to say something like $n\in\intset$. Of course, a
-% macro like |\intset| is not necessarily much quicker than writing
-% |\mathbb{Z}|, but these macros are intended to have names that relate to
-% their meanings so that you don't have to remember which letter goes to which set.
-%
-% \DescribeMacro{\whlset}
-% |\whlset| ($\whlset$) denotes the set of whole numbers, which is typically
-% defined to include all integers greater than zero, although there are different
-% contradictory definitions floating around.
-%
-% \DescribeMacro{\natset}
-% |\natset| ($\natset$) denotes the set of natural numbers, which is typically
-% defined to include all integers greater than or equal to zero. Some people
-% define ``natural numbers'' to exclude zero.
-%
-% \DescribeMacro{\intset}
-% |\intset| ($\intset$) denotes the set of all integers.
-%
-% \DescribeMacro{\realset}
-% |\realset| ($\realset$) denotes the set of all real numbers.
-%
-% \DescribeMacro{\imagset}
-% |\imagset| ($\imagset$) denotes the set of all imaginary numbers, which is
-% all complex numbers with real part equal to zero. This one is infrequently
-% used.
-%
-% \DescribeMacro{\cpxset}
-% |\cpxset| ($\cpxset$) denotes the set of all complex numbers.
-%
-% \subsection{Calculus}
-%
-% Probably the most useful macros in the package are the derivative operators.
-% Since it's so common to write something of the form $\ud{y}{x}$ or $\pd{y}{x}$,
-% we have two-character macros for each:
-% \begin{itemize}
-% \item \DescribeMacro{\ud} |\ud|\marg{top}\marg{bottom} typesets the normal total derivative
-% \item \DescribeMacro{\pd} |\pd|\marg{top}\marg{bottom} typesets a partial derivative, which
-% is the same thing but with a partial derivative symbol instead of the $\udc$.
-% \end{itemize}
-% \DescribeMacro{\udd}
-% \DescribeMacro{\uddd}
-% \DescribeMacro{\pdd}
-% \DescribeMacro{\pddd}
-% There are variants of these that produce higher-order derivatives; you can add
-% an order by adding another |d|, up to a total of three.
-% If you need something higher than the third derivative, you're on your own, but it's
-% easy to construct it using |\frac| and |\udc| or |\pdc|,
-% \begin{center}
-% |\frac{\udc^4 y}{\udc x^4}|
-% \end{center}
-%
-% \DescribeMacro{\udc}
-% \DescribeMacro{\pdc}
-% The macro |\udc| gives you the character that represents a differential. It's typically
-% set in roman type to distinguish it from a variable. |\pdc| is also defined as the
-% partial derivative character for consistency. There are variants of each with exponents
-% (up to 3) built in; again, you get them by adding an extra |d| or two to the name of the
-% command, |\uddc| and |\udddc| and so on.
-%
-% \DescribeMacro{\uds}
-% \DescribeMacro{\pds}
-% If you're using these in an integral, it's common to want a small space before the
-% differential, so there are variants of the preceding commands defined that include
-% this small space for you; they replace the |c| with an |s|. They follow the same
-% pattern of adding additional |d|'s to get exponents. For example:
-%
-% \begin{minipage}{.64\textwidth}
-% \begin{center}
-% |\iint e^{i\vec{k}\cdot\vec{x}}\udds\vec{x}|
-% \end{center}
-% \end{minipage}
-% \begin{minipage}{.34\textwidth}
-% \begin{equation*}
-% \iint e^{i\vec{k}\cdot\vec{x}}\udds\vec{x}
-% \end{equation*}
-% \end{minipage}
-%
-% \subsection{Vector Calculus}
-%
-% \DescribeMacro{\div}
-% \DescribeMacro{\grad}
-% \DescribeMacro{\curl}
-% |\physymb| defines |\div|, |\grad|, and |\curl|, to represent the
-% divergence, gradient, and curl. These are typeset with the nabla
-% (or ``del'') character, $\nabla$, rather than being written out
-% as words. Naturally, I would love to add an |\allthat| if I can
-% find something good for it to represent.
-%
-% \DescribeMacro{\lapl}
-% There is also a macro for the Laplacian operator (divergence of a
-% gradient), |\lapl|.
-%
-% \subsection{Complex Analysis}
-%
-% \DescribeMacro{\conj}
-% There is a macro to indicate the conjugate of a number, |\conj|\marg{number}.
-% It puts a superscript star after the number, as in $\conj{z}$.
-%
-% \DescribeMacro{\realop}
-% \DescribeMacro{\imagop}
-% The traditional keywords indicating the real and imaginary parts of a complex number
-% are given macros |\realop| and |\imagop|. They typeset $\realop$ and $\imagop$
-% respectively.
-%
-% \DescribeMacro{\real}
-% \DescribeMacro{\imag}
-% Why the |op|? Well, there are alternate versions that will also put curly braces
-% around the following argument, |\real| and |\imag|. This is the way $\realop$ and
-% $\imagop$ are often used. (I'm open to changing the definitions of these based on
-% feedback.)
-%
-% \begin{minipage}{.64\textwidth}
-% \begin{center}
-% |\real{z}, \imag{z}|
-% \end{center}
-% \end{minipage}
-% \begin{minipage}{.34\textwidth}
-% \begin{equation*}
-% \real{z}, \imag{z}
-% \end{equation*}
-% \end{minipage}
-%
-% \DescribeMacro{\abs}
-% The macro |\abs|\marg{value} surrounds its argument with vertical bars.
-%
-% \subsection{Linear Algebra}
-%
-% There are several assorted macros for linear algebra keywords and concepts.
-%
-% \DescribeMacro{\vec}
-% \DescribeMacro{\vecvar}
-% Vectors can be written using the macro |\vec|\marg{label}, which typesets
-% the \meta{label} either in bold or with an arrow over it, according to which
-% option was passed to the package (|arrowvectors| or |boldvectors|).
-% The default is to use an arrow, to resemble the builtin definition of
-% |\vec| (which, by the way, is overridden by this package). In many cases
-% I prefer bold. |\vecvar|\marg{label} is another macro that does the exact
-% same thing, for consistency with the other kinds of variables.
-%
-% \DescribeMacro{\tnsvar}
-% The macro |\tnsvar|\marg{label} is for typesetting tensors. This just makes
-% the \meta{label} bold, it doesn't do anything with indices. If you want a way
-% to typeset tensor indices, look at the
-% \href{http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tensor}{tensor}
-% package.
-%
-% \DescribeMacro{\matvar}
-% |\matvar|\marg{label} is intended to designate matrices. It makes the label
-% bold.
-%
-% \DescribeMacro{\identitym}
-% The macro |\identitym| represents the identity matrix. It typesets a 1 in
-% the same style as |\matvar| (so, bold).
-%
-% \DescribeMacro{\determinant}
-% The macro |\determinant|\marg{matrix} uses vertical bars to denote the determinant
-% of the \meta{matrix}. It's an alternative to the keyword operator |\det|, which
-% just typesets as $\det$.
-%
-% \DescribeMacro{\trace}
-% The macro |\trace| just typesets $\trace$. It's akin to |\det|.
-%
-% \DescribeMacro{\diag}
-% This just typesets $\diag$, which is used to represent a matrix with the given entries
-% on the diagonal. For example, one might write |\diag(1,2,3,4)|.
-%
-% \DescribeMacro{\norm}
-% The norm of a vector can be denoted by double vertical bars. This is implemented by
-% |\norm|\marg{value}.
-%
-% \DescribeMacro{\unitx}
-% \DescribeMacro{\unity}
-% \DescribeMacro{\unitz}
-% Since it's so common to refer to unit vectors using hat notation, there are a
-% bunch of macros for them using various letters. The package defines |\unitd|,
-% |\unite|, |\uniti|, |\unitj|, |\unitk|, |\unitl| (which typesets as $\unitl$,
-% not the normal $l$), |\unitn|, |\unitp|, |\unitq|, |\unitr|, |\units|, |\unitt|,
-% |\unitu|, |\unitv|, |\unitw|, |\unitx|, |\unity|, |\unitz|, and for non-roman
-% characters, |\unitphi|, |\unitrho|, |\unittheta|, and |\unitomega|.
-% \DescribeMacro{\unitvec}
-% If you want to use a different letter as a unit vector, it can be done with
-% |\unitvec|\marg{symbol}.
-%
-% \DescribeMacro{\herm}
-% |\herm|\marg{operator} designates the hermitian conjugate of an operator with
-% a superscript dagger.
-%
-% \DescribeMacro{\transpose}
-% |\transpose|\marg{matrix} sets a superscript $T$ after the matrix to denote
-% the transpose.
-%
-% \DescribeMacro{\commut}
-% \DescribeMacro{\acommut}
-% There are simple macros for the commutator, |\commut|\marg{operator}\marg{operator},
-% and the anticommutator, |\acommut|\marg{operator}\marg{operator}. They just
-% put the appropriate kind of braces around the arguments (and the comma between
-% them, of course).
-%
-% \subsection{Differential Geometry}
-% \DescribeMacro{\exd}
-% The exterior derivative has a macro, |\exd|, kind of like the macro for differentials
-% ($\udc$) although typeset in bold to distinguish it. This one doesn't have any variants,
-% though, because $\exd^2 = 0$.
-%
-% \DescribeMacro{\hodge}
-% The macro |\hodge| just puts a star (not superscript) to represent the Hodge dual.
-% Use it as a prefix to the variable, $\hodge\exd x$.
-%
-% \subsection{Classical Mechanics}
-%
-% \DescribeMacro{\pbrac}
-% The Poisson brackets of a pair of variables can be typeset using the macro
-% |\pbrac|\marg{function}\marg{function}. This just surrounds the two arguments
-% with curly braces, producing $\pbrac{f}{g}$.
-%
-% \DescribeMacro{\pbracvars}
-% If you want to specify which variables the derivatives in the Poisson brackets
-% are being taken with respect to, use the variant
-% \begin{center}
-% |\pbracvars|\marg{function}\marg{function}\marg{variable}\marg{variable}
-% \end{center}
-% It comes out looking like $\pbracvars{f}{g}{q}{p}$.
-%
-% \subsection{Quantum Mechanics}
-%
-% If the |braket| option is passed, |physymb| pulls in the |braket| package for
-% writing Dirac notation. See the documentation for that package for details.
-%
-% \subsection{Units}
-%
-% If the |units| option is provided to |physymb|, it automatically includes the
-% |siunitx| package and defines some additional units that are often useful in practice.
-% See the documentation of |siunitx| for commands provided by that package.
-%
-% \paragraph{Additional units} The |siunitx| package only includes SI units (as
-% the name would suggest), but there are certain non-SI units that turn out to
-% be occasionally useful when dealing with American non-scientists. |physymb|
-% defines a selection of them as macros.
-%
-% \DescribeMacro{\torr}
-% \DescribeMacro{\mmHg}
-% Torr, |\torr|, and millimeters of mercury, |\mmHg|, are common atmospheric pressure units.
-%
-% \DescribeMacro{\amu}
-% |\amu| represents the atomic mass unit, defined as $\frac{1}{12}$ of the mass of a carbon 12
-% atom.
-%
-% \DescribeMacro{\yr}
-% |\yr| represents a year with the symbol $\si{\yr}$. There are various definitions of
-% different kinds of years floating around, but generally the symbol is the same.
-%
-% \DescribeMacro{\erg}
-% |\erg| represents an erg, the CGS unit of energy, which still finds occasional use.
-% Its value is $\SI{1e-7}{\joule}$.
-%
-% \DescribeMacro{\gauss}
-% |\gauss| is the Gauss, a unit of magnetic field equal to $\SI{1e-4}{\tesla}$.
-%
-% \DescribeMacro{\molar}
-% |\molar| represents a molar, a unit of concentration equal to one mole per liter.
-% Strictly speaking, this is a chemistry unit, but it occasionally comes up in
-% physics so it shouldn't hurt to have the macro around.
-%
-% \DescribeMacro{\poise}
-% The poise is the CGS unit of viscosity, equal to $\SI{0.1}{\pascal\second}$.
-%
-% \DescribeMacro{\foot}
-% The foot is the Imperial unit of length, equal to $\SI{30.48}{\centi\meter}$.
-%
-% \DescribeMacro{\mileperhour}
-% This is typically (or perhaps almost exclusively) used to measure transportation
-% speeds: cars, trains, airplanes, etc. It's equal to about
-% $\SI{0.447}{\meter\per\second}$.
-%
-% \DescribeMacro{\pound}
-% \DescribeMacro{\poundforce}
-% The pound is the Imperial unit of either force or mass, depending on who you
-% ask. Technically I believe it is a force, but in many situations
-% I've often found it clearer to treat it as a unit of mass and use $\si{\poundforce}$
-% (pound of force) as the unit of force. |physymb| defines macros for both.
-%
-% In this sense, a pound is equal to about
-% $\SI{453.59}{\gram}$, and the pound of force is the weight of that mass
-% under standard Earth surface gravity, which works out to about
-% $\SI{4.448}{\newton}$.
-%
-% \subsection{Particle Physics}
-%
-% As a particle physicist, I do a lot of work that involves notation for elementary particles,
-% so it's become useful to have a set of macros that produce standard written representations
-% for them.\footnote{If there are other areas of physics in which a lot of short macros like
-% these would be useful, I'm open to suggestions for adding them.} The names of the commands
-% are pretty cryptic, but I've found that once you get used to using them, the names aren't
-% hard to remember and the effort saved by having short macro names at least \emph{feels}
-% worthwhile.
-%
-% In general, all the macro names follow the same pattern. Each one ends with a type
-% code that identifies the type of particle: |q| for quark, |lp| for a ``regular'' lepton,
-% |nu| for a neutrino, |br| for a baryon, |m| for a meson, and |bsn| for a boson. At the
-% beginning is a particle code consisting of one or two letters that identify the specific
-% particle within that type.
-%
-% Most of the basic macros consist of just those two parts. Antifermion macros are
-% constructed by prepending an |a| to the type code. For vector bosons that occur in
-% charge triplets, you prepend one of |p| (plus), |z| (zero), or |m| (minus) to indicate
-% which one of the triplet you want. The same goes for baryons which occur in ``triplets''
-% with the same name (three particles denoted by the same letter, even though they
-% may not actually be a triplet). Singlet baryons have the |z| as well for consistency.
-%
-% The proton and neutron are named differently because their names are so common.
-%
-% \paragraph{Quarks}
-% \DescribeMacro{\upq}
-% \DescribeMacro{\dnq}
-% Each of the quark macros is named with three letters. The first two letters are the
-% particle code representing the name of the quark, and the third is the type code |q|.
-% The macros are |\upq|, |\dnq|, |\srq|, |\chq|, |\btq|, and |\tpq|, representing the
-% up, down, strange, charm, bottom, and top quarks, respectively.
-%
-% \DescribeMacro{\upaq}
-% \DescribeMacro{\dnaq}
-% The corresponding macros for the antiquarks are obtained by prepending |a| to the
-% type code |q|. We have |\upaq|, |\dnaq|, |\sraq|, |\chaq|, |\btaq|, and |\tpaq|.
-%
-% \paragraph{Leptons}
-% \DescribeMacro{\elp}
-% \DescribeMacro{\enu}
-% Leptons are done a little differently because there are two distinct types. The macros for
-% the electron, muon, and tau lepton are named with a letter and |lp|: we have |\elp| for the
-% electron, |\ulp| for the muon, and |\tlp| for the tau. Neutrino macros are constructed
-% using the same first letter, but |nu| instead of |lp|: |\enu|, |\unu|, and |\tnu|.
-%
-% \DescribeMacro{\ealp}
-% \DescribeMacro{\eanu}
-% Antileptons are named with an |a| between the particle code and the type code.
-% So we get |\ealp|, |\ualp|, and |\talp| for the ``regular'' antileptons and
-% |\eanu|, |\uanu|, and |\tanu| for the antineutrinos.
-%
-% \paragraph{Baryons}
-% \DescribeMacro{\lmzbr}
-% \DescribeMacro{\sgpbr}
-% \DescribeMacro{\sgzbr}
-% \DescribeMacro{\sgmbr}
-% Many of the most commonly referenced baryons in the standard model have
-% macros defined. Each of these ends with the type code |br|. Most of them are built
-% by putting a particle code and a charge letter together: we have |\lmzbr| for the
-% lambda baryon; |\sgpbr|, |\sgzbr|, |\sgmbr| for the sigmas, |\xizbr| and |\ximbr|
-% for the xi particles, and |\ommbr| for the omega of charge $-1$. The delta macros
-% are named on the same principle but since there are four of them, we use two charge
-% letters to indicate the $+2$ charge: |\dlppbr|, |\dlpbr|, |\dlzbr|, and |\dlmbr|.
-%
-% \DescribeMacro{\sgspbr}
-% \DescribeMacro{\sgszbr}
-% \DescribeMacro{\sgsmbr}
-% In addition, there are macros for the starred (excited) versions of the sigmas and
-% xis (only), obtained by adding an |s| before the charge letter: |\sgspbr| etc. and
-% |\xiszbr| etc.
-%
-% \DescribeMacro{\prbr}
-% \DescribeMacro{\nebr}
-% The proton and neutron don't quite fall into the pattern because their names aren't
-% used for multiple particles. The proton is |\prbr| and the neutron is |\nebr|.
-%
-% \DescribeMacro{\dlmmabr}
-% The antiparticles to all these are obtained in \emph{almost} the usual way, by
-% adding |a| just before the type code |br|. The one difference is that the charge
-% letters are updated to reflect the actual charge of the antiparticle, so for example
-% the antipartcle of the $\dlppbr$ (|\dlppbr|), the $\dlmmabr$, is written |\dlmmabr|,
-% with two |m|'s because of its double-minus charge.
-%
-% \paragraph{Mesons}
-% \DescribeMacro{\pipm}
-% \DescribeMacro{\pizm}
-% \DescribeMacro{\pimm}
-% Essentially all the mesons defined in the standard model have macros. The naming can
-% be a bit tricky because some of them are named as charge triplets while others are
-% named as antiparticles. In the former case, we have the $\pi$s, |\pipm|, |\pizm|, and |\pimm|,
-% and the $\rho$s, |\ropm|, |\rozm|, and |\romm|. (I'm not sure if it'd make it cleaner
-% to just add the |h| into the names) The kaons have similar names, |\kapm|,
-% |\kazm|, and |\kamm|, but there is also the $\kazam$, |\kazam|. Finally, the neutral
-% mesons are named |\etam|, |\etapm| (here the |p| is for ``prime,'' not ``plus''), and
-% |\phim|.
-%
-% \paragraph{Bosons}
-% \DescribeMacro{\phbsn}
-% \DescribeMacro{\Wpbsn}
-% \DescribeMacro{\Wmbsn}
-% There aren't that many bosons so the naming is simple: |\phbsn| for the photon,
-% |\Zzbsn| for the neutral $\Zzbsn$, and |\Wpbsn| and |\Wmbsn| for the $\Wbsn$s. There's
-% also |\Wbsn|, which does not indicate either charge, for when you need to refer to
-% a generic $\Wbsn$ boson. The Higgs boson is written |\hbsn|.
-%
-% \DescribeMacro{\photon}
-% Also, there is a macro |\photon| which is defined to be the same thing as |\phbsn|.
-% It's included to support some old LaTeX files I wrote and although it will
-% \emph{probably} not be removed from the package in the future, I make no guarantees.
-%
-% \subsection{Miscellaneous}
-%
-% \DescribeMacro{\scriptr} |\scriptr| produces the script r found in Griffiths'
-% electromagnetism textbook, or at least the closest equivalent in LaTeX, $\scriptr$.
-%
-% \DescribeMacro{\orderof} |\orderof|\marg{expression} represents the order of an
-% expression, for example the error term in a perturbation series. Typical usage
-% would be like
-%
-% \begin{minipage}{.64\textwidth}
-% \begin{center}
-% |\frac{1}{1 - x} = 1 + x + \orderof{x^2}|
-% \end{center}
-% \end{minipage}
-% \begin{minipage}{.34\textwidth}
-% \begin{equation*}
-% \frac{1}{1 - x} = 1 + x + \orderof{x^2}
-% \end{equation*}
-% \end{minipage}
-%
-% It can also be used to discuss the growth of a function, e.g.
-% ``$\orderof{x^3}$ for large $x$,'' or for similar uses such as big-O notation
-% in computer algorithm analysis.
-%
-% \DescribeMacro{\sgn}
-% There is a macro for the sign operator, |\sgn|, defined as
-% \begin{equation*}
-% \sgn x = \begin{cases}1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0\end{cases}
-% \end{equation*}
-% (and yes, this is not really \emph{complex} analysis)
-%
-% \DescribeMacro{\round}
-% Occasionally it's useful to have some way to designate rounding a number.
-% The |\round| macro can be used for that. It comes out as $\round(x)$ (I do
-% recommend the parentheses).
-%
-% \DescribeMacro{\evalat}
-% The macro
-% |\evalat|\marg{expression}\marg{lower limit}\marg{upper limit}
-% is mainly useful for when you want to denote the numerical value
-% of a derivative at a specific point, or when you want to represent the
-% evaluation of an integral at the endpoints of the range of integration.
-% It produces a vertical bar at the right of the \meta{expression},
-% with the \meta{lower limit} and \meta{upper limit} typeset at the
-% lower and upper endpoints of the bar, respectively.
-%
-% \begin{minipage}{.64\textwidth}
-% \begin{center}
-% |\evalat{x^3 + 3x - 5}{2}{7}|
-% \end{center}
-% \end{minipage}
-% \begin{minipage}{.34\textwidth}
-% \begin{equation*}
-% \evalat{x^3 + 3x - 5}{2}{7}
-% \end{equation*}
-% \end{minipage}
-%
-% \StopEventually{\PrintChanges\PrintIndex}
-%
-% \section{Feedback}
-%
-% This package is always a work in progress, both in terms of adding new macros
-% to the collection and fixing any errors or inconveniences in the ones that
-% are already here. Any feedback you may have will be welcome at my email address,
-% given at the top of the document.
-%
-% \section{Implementation}
-%
-% \subsection{Initialization}
-% \begin{macrocode}
-\RequirePackage{ifthen}
-% \end{macrocode}
-% This flag is set if the |particle| option is enabled. It enables definitions of particle symbol macros.
-% \begin{macrocode}
-\newboolean{pparticle}
-% \end{macrocode}
-% This flag is set if the |feynman| option is enabled. It pulls in the |feynmf| package.
-% \begin{macrocode}
-\newboolean{pfeynman}
-% \end{macrocode}
-% This flag is set if the |braket| option is enabled. It pulls in the |braket| package.
-% \begin{macrocode}
-\newboolean{pbraket}
-% \end{macrocode}
-% This flag is set if the |units| option is enabled. It pulls in the |siunitx| package and provides additional unit definitions.
-% \begin{macrocode}
-\newboolean{punits}
-% \end{macrocode}
-% This flag is set if the |boldvectors| option is enabled. It causes vectors to be rendered using a bold font instead of an overset arrow.
-% \begin{macrocode}
-\newboolean{pboldvectors}
-% \end{macrocode}
-%
-% \subsection{Option Declarations}
-% These are the option declarations, pretty self-explanatory.
-% \begin{macrocode}
-\DeclareOption{braket}{\setboolean{pbraket}{true}}
-\DeclareOption{particle}{\setboolean{pparticle}{true}}
-\DeclareOption{units}{\setboolean{punits}{true}}
-\DeclareOption{feynman}{\setboolean{pfeynman}{true}}
-\DeclareOption{arrowvectors}{\setboolean{pboldvectors}{false}}
-\DeclareOption{boldvectors}{\setboolean{pboldvectors}{true}}
-\ProcessOptions\relax
-% \end{macrocode}
-%
-% \subsection{Macro Definitions}
-% Here we bring in the AMS packages for mathematical notation.
-% \begin{macrocode}
-\RequirePackage{amsbsy}
-\RequirePackage{amsmath}
-\RequirePackage{amsfonts}
-\RequirePackage{amssymb}
-\allowdisplaybreaks[2]
-\RequirePackage{accents}
-% \end{macrocode}
-% |calligra| is the package that includes the script r, $\scriptr$.
-% \begin{macrocode}
-\RequirePackage{calligra}
-\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}
-\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}
-\newcommand{\scriptr}{\mathcalligra{r}}
-% \end{macrocode}
-% Here we load the |braket| package if the corresponding option was passed.
-% \begin{macrocode}
-\ifthenelse{\boolean{pbraket}}
-{
- \RequirePackage{braket}
-}
-{}
-% \end{macrocode}
-% Here we load |siunitx| if the |units| option was passed.
-% \begin{macrocode}
-\ifthenelse{\boolean{punits}}
-{
- \RequirePackage{siunitx}
-% \end{macrocode}
-% These are some useful non-SI units
-% \begin{macrocode}
- \DeclareSIUnit{\torr}{torr}
- \DeclareSIUnit{\mmhg}{mmHg}
- \DeclareSIUnit{\amu}{amu}
- \DeclareSIUnit{\yr}{yr}
- \DeclareSIUnit{\erg}{erg}
- \DeclareSIUnit{\gauss}{Ga}
- \DeclareSIUnit{\molar}{\textsc{M}} % this follows the style set up in the siunitx manual
- \DeclareSIUnit{\poise}{P}
- \DeclareSIUnit{\foot}{ft}
- \DeclareSIUnit{\mileperhour}{mph}
- \DeclareSIUnit{\pound}{lb}
- \DeclareSIUnit{\poundforce}{lbf}
-}
-{}
-% \end{macrocode}
-% |\orderof| uses the calligraphic capital O, $\mathcal{O}$
-% \begin{macrocode}
-\newcommand{\orderof}[1]{\ensuremath{\mathcal{O}\left(#1\right)}}
-% \end{macrocode}
-% Now we come to assorted functions and keywords. First some inverse trig functions:
-% \begin{macrocode}
-\DeclareMathOperator{\asin}{\sin^{-1}}
-\DeclareMathOperator{\acos}{\cos^{-1}}
-\DeclareMathOperator{\atan}{\tan^{-1}}
-\DeclareMathOperator{\asec}{\sec^{-1}}
-\DeclareMathOperator{\acsc}{\csc^{-1}}
-\DeclareMathOperator{\acot}{\cot^{-1}}
-% \end{macrocode}
-% and hyperbolic trig functions:
-% \begin{macrocode}
-\DeclareMathOperator{\sech}{sech}
-\DeclareMathOperator{\csch}{csch}
-\DeclareMathOperator{\asinh}{\sinh^{-1}}
-\DeclareMathOperator{\acosh}{\cosh^{-1}}
-\DeclareMathOperator{\atanh}{\tanh^{-1}}
-\DeclareMathOperator{\asech}{\sech^{-1}}
-\DeclareMathOperator{\acsch}{\csch^{-1}}
-\DeclareMathOperator{\acoth}{\coth^{-1}}
-% \end{macrocode}
-% Next are some linear algebra keywords.
-% \begin{macrocode}
-\DeclareMathOperator{\diag}{diag}
-\DeclareMathOperator{\realop}{Re}
-\DeclareMathOperator{\imagop}{Im}
-\newcommand{\real}[1]{\realop\{#1\}}
-\newcommand{\imag}[1]{\imagop\{#1\}}
-% \end{macrocode}
-% The sign and absolute value keywords:
-% \begin{macrocode}
-\DeclareMathOperator{\sgn}{sgn}
-\newcommand{\abs}[1]{\left\lvert#1\right\rvert}
-% \end{macrocode}
-% Norm of a vector:
-% \begin{macrocode}
-\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
-% \end{macrocode}
-% Evaluation at endpoints uses |\left.| to get no visible mark on the left side.
-% \begin{macrocode}
-\newcommand{\evalat}[3]{\left.#1\right|_{#2}^{#3}}
-% \end{macrocode}
-% Poisson brackets are just braces
-% \begin{macrocode}
-\newcommand{\pbrac}[2]{\left\{#1,#2\right\}}
-\newcommand{\pbracvars}[4]{\left\{#1,#2\right\}_{#3,#4}}
-% \end{macrocode}
-% This handles the redefinition of |\vec|. If the |boldvectors| option was passed,
-% a vector is denoted by bolding the argument. If |arrowvectors| was passed, the
-% vector is denoted by putting an arrow over the argument.
-% Some people use an undertilde, which will probably be added in the future.
-% \begin{macrocode}
-\ifthenelse{\boolean{pboldvectors}}%
- {\renewcommand{\vec}[1]{\mathbf{#1}}}%
- {\renewcommand{\vec}[1]{\accentset{\rightharpoonup}{#1}}}
-% \end{macrocode}
-% |\vecvar| is just a synonym for |\vec|
-% \begin{macrocode}
-\newcommand{\vecvar}[1]{\vec{#1}}
-% \end{macrocode}
-% |\tnsvar| always uses bold. Some people use undertildes, which will be added.
-% \begin{macrocode}
-\newcommand{\tnsvar}[1]{\mathbf{#1}}
-% \end{macrocode}
-% |\matvar| always uses bold.
-% \begin{macrocode}
-\newcommand{\matvar}[1]{\mathbf{#1}}
-% \end{macrocode}
-% |\identitym| is a bold $1$
-% \begin{macrocode}
-\newcommand{\identitym}{\mathbf{1}}
-% \end{macrocode}
-% |\determinant| uses vertical bars.
-% \begin{macrocode}
-\newcommand{\determinant}[1]{\left\lvert#1\right\rvert}
-% \end{macrocode}
-% |\trace| uses capital Tr.
-% \begin{macrocode}
-\DeclareMathOperator{\trace}{Tr}
-% \end{macrocode}
-% Now we get to some unit vectors, all just the relevant letter with a hat.
-% \begin{macrocode}
-\newcommand{\unitd}{\hat{d}}
-\newcommand{\unite}{\hat{e}}
-\newcommand{\uniti}{\hat{\imath}}
-\newcommand{\unitj}{\hat{\jmath}}
-\newcommand{\unitk}{\hat{k}}
-\newcommand{\unitl}{\hat{\ell}}
-\newcommand{\unitn}{\hat{n}}
-\newcommand{\unitp}{\hat{p}}
-\newcommand{\unitq}{\hat{q}}
-\newcommand{\unitr}{\hat{r}}
-\newcommand{\units}{\hat{s}}
-\newcommand{\unitt}{\hat{t}}
-\newcommand{\unitu}{\hat{u}}
-\newcommand{\unitv}{\hat{v}}
-\newcommand{\unitw}{\hat{w}}
-\newcommand{\unitx}{\hat{x}}
-\newcommand{\unity}{\hat{y}}
-\newcommand{\unitz}{\hat{z}}
-\newcommand{\unitphi}{\hat{\phi}}
-\newcommand{\unitrho}{\hat{\rho}}
-\newcommand{\unittheta}{\hat{\theta}}
-\newcommand{\unitomega}{\hat{\omega}}
-% \end{macrocode}
-% This turns any letter into a unit vector.
-% \begin{macrocode}
-\newcommand{\unitvec}[1]{\hat{#1}}
-% \end{macrocode}
-% |\udc| is just an upright (roman) d, and similarly for higher-order differentials.
-% \begin{macrocode}
-\newcommand{\udc}{\mathrm{d}}
-\newcommand{\uddc}{\mathrm{d}^2}
-\newcommand{\udddc}{\mathrm{d}^3}
-% \end{macrocode}
-% |\pdc| is just |\partial|, defined for similarity with |\udc|.
-% \begin{macrocode}
-\newcommand{\pdc}{\partial}
-\newcommand{\pddc}{\partial^2}
-\newcommand{\pdddc}{\partial^3}
-% \end{macrocode}
-% |\uds| is just like |\udc| but it includes a small space in front. If I can figure
-% out how to do it I'll make the command autodetect the preceding character(s) and
-% figure out whether to add the space or not.
-% \begin{macrocode}
-\newcommand{\uds}{\,\mathrm{d}}
-\newcommand{\udds}{\,\mathrm{d}^2}
-\newcommand{\uddds}{\,\mathrm{d}^3}
-% \end{macrocode}
-% |\pds| is also defined for similarity as just |\partial| with a space in front,
-% although I'm not sure this one is really useful.
-% \begin{macrocode}
-\newcommand{\pds}{\,\partial}
-\newcommand{\pdds}{\,\partial^2}
-\newcommand{\pddds}{\,\partial^3}
-% \end{macrocode}
-% |\ud| typesets a derivative using |\udc|. Similarly for second and third derivatives.
-% \begin{macrocode}
-\newcommand{\ud}[2]{\frac{\mathrm{d}#1}{\mathrm{d}#2}}
-\newcommand{\udd}[2]{\frac{\mathrm{d}^2#1}{\mathrm{d} #2^2}}
-\newcommand{\uddd}[2]{\frac{\mathrm{d}^3#1}{\mathrm{d} #2^3}}
-% \end{macrocode}
-% |\pd| does the same for partial derivatives with |\pdc|.
-% \begin{macrocode}
-\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}
-\newcommand{\pdd}[2]{\frac{\partial^2#1}{\partial #2^2}}
-\newcommand{\pddd}[2]{\frac{\partial^3#1}{\partial #2^3}}
-% \end{macrocode}
-% |\grad| typesets the gradient symbol, a nabla with an arrow over it (actually a harpoon).
-% This is done the same way regardless of the |arrowvectors| or |boldvectors| setting.
-% \begin{macrocode}
-\newcommand{\grad}{\accentset{\rightharpoonup}{\nabla}}
-% \end{macrocode}
-% |\div| is the divergence, defined using |\grad|. Ordinarily |\div| stands for the
-% division symbol but nobody really uses that, so I figured it's worth replacing.
-% \begin{macrocode}
-\renewcommand{\div}{\grad\cdot}
-% \end{macrocode}
-% |\curl| is done in the obvious way using |\grad|
-% \begin{macrocode}
-\newcommand{\curl}{\grad\times}
-% \end{macrocode}
-% |\lapl| is written without a harpoon since it's a scalar operator
-% \begin{macrocode}
-\newcommand{\lapl}{\nabla^2}
-% \end{macrocode}
-% |\conj| just puts a superscript star
-% \begin{macrocode}
-\newcommand{\conj}[1]{{#1 ^{*}}}
-% \end{macrocode}
-% |\herm| is the same thing but for operators or matrices, so with a dagger
-% \begin{macrocode}
-\newcommand{\herm}[1]{{#1 ^{\dagger}}}
-% \end{macrocode}
-% |\transpose| does the same with a $T$
-% \begin{macrocode}
-\newcommand{\transpose}[1]{{#1 ^{T}}}
-% \end{macrocode}
-% These set notations are mostly done with |\mathbb|
-% \begin{macrocode}
-\newcommand{\natset}{\mathbb{N}}
-\newcommand{\intset}{\mathbb{Z}}
-\newcommand{\cpxset}{\mathbb{C}}
-\newcommand{\whlset}{\mathbb{Q}}
-\newcommand{\realset}{\mathbb{R}}
-\newcommand{\imagset}{\mathbb{I}}
-% \end{macrocode}
-% Commutators and anticommutators are done in the obvious way
-% \begin{macrocode}
-\newcommand{\commut}[2]{\left[ #1, #2 \right]}
-\newcommand{\acommut}[2]{\left\{ #1, #2 \right\}}
-% \end{macrocode}
-% The |\round| operator just typesets the word ``round''
-% \begin{macrocode}
-\DeclareMathOperator{\round}{round}
-% \end{macrocode}
-% The exterior derivative is typeset in bold, in contrast to the differential $\udc$ which
-% is just a plain roman font
-% \begin{macrocode}
-\DeclareMathOperator{\exd}{\mathbf{d}}
-% \end{macrocode}
-% The Hodge dual uses a star, but not superscript like |\conj|.
-% \begin{macrocode}
-\newcommand{\hodge}{\star}
-% \end{macrocode}
-% These are short macros to typeset the symbols for the elementary (and common non-elementary)
-% particles. Each one is set in math roman font, as opposed to text roman font if it makes
-% a difference. They're followed by an empty token |{}| for reasons which I forget.
-%
-% These are only defined if the |particle| option was passed.
-% \begin{macrocode}
-\ifthenelse{\boolean{pparticle}}
-{
-\newcommand{\upq}{\ensuremath{\mathrm{u}}{}}
-\newcommand{\dnq}{\ensuremath{\mathrm{d}}{}}
-\newcommand{\srq}{\ensuremath{\mathrm{s}}{}}
-\newcommand{\chq}{\ensuremath{\mathrm{c}}{}}
-\newcommand{\btq}{\ensuremath{\mathrm{b}}{}}
-\newcommand{\tpq}{\ensuremath{\mathrm{t}}{}}
-\newcommand{\upaq}{\ensuremath{\bar{\mathrm{u}}}{}}
-\newcommand{\dnaq}{\ensuremath{\bar{\mathrm{d}}}{}}
-\newcommand{\sraq}{\ensuremath{\bar{\mathrm{s}}}{}}
-\newcommand{\chaq}{\ensuremath{\bar{\mathrm{c}}}{}}
-\newcommand{\btaq}{\ensuremath{\bar{\mathrm{b}}}{}}
-\newcommand{\tpaq}{\ensuremath{\bar{\mathrm{t}}}{}}
-\newcommand{\elp}{\ensuremath{\mathrm{e}^-}{}}
-\newcommand{\enu}{\ensuremath{\nu_\mathrm{e}}{}}
-\newcommand{\ulp}{\ensuremath{\mu^-}{}}
-\newcommand{\unu}{\ensuremath{\nu_{\mu}}{}}
-\newcommand{\tlp}{\ensuremath{\tau^-}{}}
-\newcommand{\tnu}{\ensuremath{\nu_{\tau}}{}}
-\newcommand{\ealp}{\ensuremath{\mathrm{e}^+}{}}
-\newcommand{\eanu}{\ensuremath{\bar{\nu}_\mathrm{e}}{}}
-\newcommand{\ualp}{\ensuremath{\mu^+}{}}
-\newcommand{\uanu}{\ensuremath{\bar{\nu}_{\mu}}{}}
-\newcommand{\talp}{\ensuremath{\tau^+}{}}
-\newcommand{\tanu}{\ensuremath{\bar{\nu}_{\tau}}{}}
-\newcommand{\prbr}{\ensuremath{\mathrm{p}^+}{}}
-\newcommand{\nebr}{\ensuremath{\mathrm{n}^0}{}}
-\newcommand{\lmzbr}{\ensuremath{\Lambda^0}{}}
-\newcommand{\sgpbr}{\ensuremath{\Sigma^+}{}}
-\newcommand{\sgzbr}{\ensuremath{\Sigma^0}{}}
-\newcommand{\sgmbr}{\ensuremath{\Sigma^-}{}}
-\newcommand{\dlppbr}{\ensuremath{\Delta^{++}}{}}
-\newcommand{\dlpbr}{\ensuremath{\Delta^+}{}}
-\newcommand{\dlzbr}{\ensuremath{\Delta^0}{}}
-\newcommand{\dlmbr}{\ensuremath{\Delta^-}{}}
-\newcommand{\xizbr}{\ensuremath{\Xi^0}{}}
-\newcommand{\ximbr}{\ensuremath{\Xi^-}{}}
-\newcommand{\ommbr}{\ensuremath{\Omega^-}{}}
-\newcommand{\sgspbr}{\ensuremath{\Sigma^{*+}}{}}
-\newcommand{\sgszbr}{\ensuremath{\Sigma^{*0}}{}}
-\newcommand{\sgsmbr}{\ensuremath{\Sigma^{*-}}{}}
-\newcommand{\xiszbr}{\ensuremath{\Xi^{*0}}{}}
-\newcommand{\xismbr}{\ensuremath{\Xi^{*-}}{}}
-\newcommand{\prabr}{\ensuremath{\mathrm{p}^-}{}}
-\newcommand{\neabr}{\ensuremath{\bar{\mathrm{n}}^0}{}}
-\newcommand{\dlpabr}{\ensuremath{\bar{\Delta}^{+}}{}}
-\newcommand{\dlzabr}{\ensuremath{\bar{\Delta}^{0}}{}}
-\newcommand{\dlmabr}{\ensuremath{\bar{\Delta}^{-}}{}}
-\newcommand{\dlmmabr}{\ensuremath{\bar{\Delta}^{--}}{}}
-\newcommand{\pipm}{\ensuremath{\pi^+}{}}
-\newcommand{\pizm}{\ensuremath{\pi^0}{}}
-\newcommand{\pimm}{\ensuremath{\pi^-}{}}
-\newcommand{\kapm}{\ensuremath{K^+}{}}
-\newcommand{\kazm}{\ensuremath{K^0}{}}
-\newcommand{\kazam}{\ensuremath{\bar{K}^0}{}}
-\newcommand{\kamm}{\ensuremath{K^-}{}}
-\newcommand{\ropm}{\ensuremath{\rho^+}{}}
-\newcommand{\rozm}{\ensuremath{\rho^0}{}}
-\newcommand{\romm}{\ensuremath{\rho^-}{}}
-\newcommand{\etam}{\ensuremath{\eta}{}}
-\newcommand{\etapm}{\ensuremath{\eta'}{}}
-\newcommand{\kaspm}{\ensuremath{\mathrm{K}^{*+}}{}}
-\newcommand{\kaszm}{\ensuremath{\mathrm{K}^{*0}}{}}
-\newcommand{\kaszam}{\ensuremath{\bar{\mathrm{K}}^{*0}}{}}
-\newcommand{\kasmm}{\ensuremath{\mathrm{K}^{*-}}{}}
-\newcommand{\omm}{\ensuremath{\omega}{}}
-\newcommand{\phim}{\ensuremath{\phi}{}}
-\newcommand{\phbsn}{\ensuremath{\gamma}{}}
-\newcommand{\Wbsn}{\ensuremath{\mathrm{W}}{}}
-\newcommand{\Wpbsn}{\ensuremath{\mathrm{W}^{+}}{}}
-\newcommand{\Wmbsn}{\ensuremath{\mathrm{W}^{-}}{}}
-\newcommand{\Zzbsn}{\ensuremath{\mathrm{Z}^{0}}{}}
-\newcommand{\hbsn}{\ensuremath{\mathrm{h}}{}}
-\newcommand{\photon}{\phbsn}
-}
-{}
-% \end{macrocode}
-% The |feynman| option is implemented by just loading the package |feynmp|.
-% \begin{macrocode}
-\ifthenelse{\boolean{pfeynman}}%
- {\RequirePackage{feynmp}}%
- {}
-% \end{macrocode}
-%
-% \pagebreak[2]
-% \Finale \ No newline at end of file
diff --git a/Master/texmf-dist/source/latex/physymb/physymb.ins b/Master/texmf-dist/source/latex/physymb/physymb.ins
deleted file mode 100644
index 4526c957031..00000000000
--- a/Master/texmf-dist/source/latex/physymb/physymb.ins
+++ /dev/null
@@ -1,46 +0,0 @@
-%%
-%% Copyright (C) 2005-2011 by David Zaslavsky <diazona@ellipsix.net>
-%%
-%% This work may be distributed and/or modified under the
-%% conditions of the LaTeX Project Public License, either version 1.3
-%% of this license or (at your option) any later version.
-%% The latest version of this license is in
-%% http://www.latex-project.org/lppl.txt
-%% and version 1.3 or later is part of all distributions of LaTeX
-%% version 2005/12/01 or later.
-%%
-%% This work has the LPPL maintenance status `maintained'.
-%%
-%% The Current Maintainer of this work is David Zaslavsky
-%%
-%% This work consists of the files physymb.dtx and physymb.ins
-%% and the derived files physymb.sty and physymb.pdf.
-%%
-\input docstrip.tex
-\keepsilent
-\usedir{tex/latex/physymb}
-\preamble
-This is a generated file.
-Copyright (C) 2005-2011 by David Zaslavsky <diazona@ellipsix.net>
-This file may be distributed and/or modified under the
-conditions of the LaTeX Project Public License, either
-version 1.3 of this license or (at your option) any later
-version. The latest version of this license is in:
-http://www.latex-project.org/lppl.txt
-and version 1.3 or later is part of all distributions of
-LaTeX version 2005/12/01 or later.
-\endpreamble
-\generate{\file{physymb.sty}{\from{physymb.dtx}{package}}}
-\Msg{*********************************************************}
-\Msg{*}
-\Msg{* To finish the installation you have to move the}
-\Msg{* following file into a directory searched by TeX:}
-\Msg{*}
-\Msg{* \space\space physymb.sty}
-\Msg{*}
-\Msg{* To produce the documentation run the file physymb.dtx}
-\Msg{* through LaTeX.}
-\Msg{*}
-\Msg{* Happy TeXing!}
-\Msg{*********************************************************}
-\endbatchfile
diff --git a/Master/texmf-dist/tex/latex/physymb/physymb.sty b/Master/texmf-dist/tex/latex/physymb/physymb.sty
deleted file mode 100644
index f913b4de7d5..00000000000
--- a/Master/texmf-dist/tex/latex/physymb/physymb.sty
+++ /dev/null
@@ -1,257 +0,0 @@
-%%
-%% This is file `physymb.sty',
-%% generated with the docstrip utility.
-%%
-%% The original source files were:
-%%
-%% physymb.dtx (with options: `package')
-%% This is a generated file.
-%% Copyright (C) 2005-2011 by David Zaslavsky <diazona@ellipsix.net>
-%% This file may be distributed and/or modified under the
-%% conditions of the LaTeX Project Public License, either
-%% version 1.3 of this license or (at your option) any later
-%% version. The latest version of this license is in:
-%% http://www.latex-project.org/lppl.txt
-%% and version 1.3 or later is part of all distributions of
-%% LaTeX version 2005/12/01 or later.
-
-\NeedsTeXFormat{LaTeX2e}[1999/12/01]
-\ProvidesPackage{physymb}[2011/05/09 v0.2 Physics symbol definitions]
-
-%% \CharacterTable
-%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
-%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
-%% Digits \0\1\2\3\4\5\6\7\8\9
-%% Exclamation \! Double quote \" Hash (number) \#
-%% Dollar \$ Percent \% Ampersand \&
-%% Acute accent \' Left paren \( Right paren \)
-%% Asterisk \* Plus \+ Comma \,
-%% Minus \- Point \. Solidus \/
-%% Colon \: Semicolon \; Less than \<
-%% Equals \= Greater than \> Question mark \?
-%% Commercial at \@ Left bracket \[ Backslash \\
-%% Right bracket \] Circumflex \^ Underscore \_
-%% Grave accent \` Left brace \{ Vertical bar \|
-%% Right brace \} Tilde \~}
-\RequirePackage{ifthen}
-\newboolean{pparticle}
-\newboolean{pfeynman}
-\newboolean{pbraket}
-\newboolean{punits}
-\newboolean{pboldvectors}
-\DeclareOption{braket}{\setboolean{pbraket}{true}}
-\DeclareOption{particle}{\setboolean{pparticle}{true}}
-\DeclareOption{units}{\setboolean{punits}{true}}
-\DeclareOption{feynman}{\setboolean{pfeynman}{true}}
-\DeclareOption{arrowvectors}{\setboolean{pboldvectors}{false}}
-\DeclareOption{boldvectors}{\setboolean{pboldvectors}{true}}
-\ProcessOptions\relax
-\RequirePackage{amsbsy}
-\RequirePackage{amsmath}
-\RequirePackage{amsfonts}
-\RequirePackage{amssymb}
-\allowdisplaybreaks[2]
-\RequirePackage{accents}
-\RequirePackage{calligra}
-\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}
-\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}
-\newcommand{\scriptr}{\mathcalligra{r}}
-\ifthenelse{\boolean{pbraket}}
-{
- \RequirePackage{braket}
-}
-{}
-\ifthenelse{\boolean{punits}}
-{
- \RequirePackage{siunitx}
- \DeclareSIUnit{\torr}{torr}
- \DeclareSIUnit{\mmhg}{mmHg}
- \DeclareSIUnit{\amu}{amu}
- \DeclareSIUnit{\yr}{yr}
- \DeclareSIUnit{\erg}{erg}
- \DeclareSIUnit{\gauss}{Ga}
- \DeclareSIUnit{\molar}{\textsc{M}} % this follows the style set up in the siunitx manual
- \DeclareSIUnit{\poise}{P}
- \DeclareSIUnit{\foot}{ft}
- \DeclareSIUnit{\mileperhour}{mph}
- \DeclareSIUnit{\pound}{lb}
- \DeclareSIUnit{\poundforce}{lbf}
-}
-{}
-\newcommand{\orderof}[1]{\ensuremath{\mathcal{O}\left(#1\right)}}
-\DeclareMathOperator{\asin}{\sin^{-1}}
-\DeclareMathOperator{\acos}{\cos^{-1}}
-\DeclareMathOperator{\atan}{\tan^{-1}}
-\DeclareMathOperator{\asec}{\sec^{-1}}
-\DeclareMathOperator{\acsc}{\csc^{-1}}
-\DeclareMathOperator{\acot}{\cot^{-1}}
-\DeclareMathOperator{\sech}{sech}
-\DeclareMathOperator{\csch}{csch}
-\DeclareMathOperator{\asinh}{\sinh^{-1}}
-\DeclareMathOperator{\acosh}{\cosh^{-1}}
-\DeclareMathOperator{\atanh}{\tanh^{-1}}
-\DeclareMathOperator{\asech}{\sech^{-1}}
-\DeclareMathOperator{\acsch}{\csch^{-1}}
-\DeclareMathOperator{\acoth}{\coth^{-1}}
-\DeclareMathOperator{\diag}{diag}
-\DeclareMathOperator{\realop}{Re}
-\DeclareMathOperator{\imagop}{Im}
-\newcommand{\real}[1]{\realop\{#1\}}
-\newcommand{\imag}[1]{\imagop\{#1\}}
-\DeclareMathOperator{\sgn}{sgn}
-\newcommand{\abs}[1]{\left\lvert#1\right\rvert}
-\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
-\newcommand{\evalat}[3]{\left.#1\right|_{#2}^{#3}}
-\newcommand{\pbrac}[2]{\left\{#1,#2\right\}}
-\newcommand{\pbracvars}[4]{\left\{#1,#2\right\}_{#3,#4}}
-\ifthenelse{\boolean{pboldvectors}}%
- {\renewcommand{\vec}[1]{\mathbf{#1}}}%
- {\renewcommand{\vec}[1]{\accentset{\rightharpoonup}{#1}}}
-\newcommand{\vecvar}[1]{\vec{#1}}
-\newcommand{\tnsvar}[1]{\mathbf{#1}}
-\newcommand{\matvar}[1]{\mathbf{#1}}
-\newcommand{\identitym}{\mathbf{1}}
-\newcommand{\determinant}[1]{\left\lvert#1\right\rvert}
-\DeclareMathOperator{\trace}{Tr}
-\newcommand{\unitd}{\hat{d}}
-\newcommand{\unite}{\hat{e}}
-\newcommand{\uniti}{\hat{\imath}}
-\newcommand{\unitj}{\hat{\jmath}}
-\newcommand{\unitk}{\hat{k}}
-\newcommand{\unitl}{\hat{\ell}}
-\newcommand{\unitn}{\hat{n}}
-\newcommand{\unitp}{\hat{p}}
-\newcommand{\unitq}{\hat{q}}
-\newcommand{\unitr}{\hat{r}}
-\newcommand{\units}{\hat{s}}
-\newcommand{\unitt}{\hat{t}}
-\newcommand{\unitu}{\hat{u}}
-\newcommand{\unitv}{\hat{v}}
-\newcommand{\unitw}{\hat{w}}
-\newcommand{\unitx}{\hat{x}}
-\newcommand{\unity}{\hat{y}}
-\newcommand{\unitz}{\hat{z}}
-\newcommand{\unitphi}{\hat{\phi}}
-\newcommand{\unitrho}{\hat{\rho}}
-\newcommand{\unittheta}{\hat{\theta}}
-\newcommand{\unitomega}{\hat{\omega}}
-\newcommand{\unitvec}[1]{\hat{#1}}
-\newcommand{\udc}{\mathrm{d}}
-\newcommand{\uddc}{\mathrm{d}^2}
-\newcommand{\udddc}{\mathrm{d}^3}
-\newcommand{\pdc}{\partial}
-\newcommand{\pddc}{\partial^2}
-\newcommand{\pdddc}{\partial^3}
-\newcommand{\uds}{\,\mathrm{d}}
-\newcommand{\udds}{\,\mathrm{d}^2}
-\newcommand{\uddds}{\,\mathrm{d}^3}
-\newcommand{\pds}{\,\partial}
-\newcommand{\pdds}{\,\partial^2}
-\newcommand{\pddds}{\,\partial^3}
-\newcommand{\ud}[2]{\frac{\mathrm{d}#1}{\mathrm{d}#2}}
-\newcommand{\udd}[2]{\frac{\mathrm{d}^2#1}{\mathrm{d} #2^2}}
-\newcommand{\uddd}[2]{\frac{\mathrm{d}^3#1}{\mathrm{d} #2^3}}
-\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}
-\newcommand{\pdd}[2]{\frac{\partial^2#1}{\partial #2^2}}
-\newcommand{\pddd}[2]{\frac{\partial^3#1}{\partial #2^3}}
-\newcommand{\grad}{\accentset{\rightharpoonup}{\nabla}}
-\renewcommand{\div}{\grad\cdot}
-\newcommand{\curl}{\grad\times}
-\newcommand{\lapl}{\nabla^2}
-\newcommand{\conj}[1]{{#1 ^{*}}}
-\newcommand{\herm}[1]{{#1 ^{\dagger}}}
-\newcommand{\transpose}[1]{{#1 ^{T}}}
-\newcommand{\natset}{\mathbb{N}}
-\newcommand{\intset}{\mathbb{Z}}
-\newcommand{\cpxset}{\mathbb{C}}
-\newcommand{\whlset}{\mathbb{Q}}
-\newcommand{\realset}{\mathbb{R}}
-\newcommand{\imagset}{\mathbb{I}}
-\newcommand{\commut}[2]{\left[ #1, #2 \right]}
-\newcommand{\acommut}[2]{\left\{ #1, #2 \right\}}
-\DeclareMathOperator{\round}{round}
-\DeclareMathOperator{\exd}{\mathbf{d}}
-\newcommand{\hodge}{\star}
-\ifthenelse{\boolean{pparticle}}
-{
-\newcommand{\upq}{\ensuremath{\mathrm{u}}{}}
-\newcommand{\dnq}{\ensuremath{\mathrm{d}}{}}
-\newcommand{\srq}{\ensuremath{\mathrm{s}}{}}
-\newcommand{\chq}{\ensuremath{\mathrm{c}}{}}
-\newcommand{\btq}{\ensuremath{\mathrm{b}}{}}
-\newcommand{\tpq}{\ensuremath{\mathrm{t}}{}}
-\newcommand{\upaq}{\ensuremath{\bar{\mathrm{u}}}{}}
-\newcommand{\dnaq}{\ensuremath{\bar{\mathrm{d}}}{}}
-\newcommand{\sraq}{\ensuremath{\bar{\mathrm{s}}}{}}
-\newcommand{\chaq}{\ensuremath{\bar{\mathrm{c}}}{}}
-\newcommand{\btaq}{\ensuremath{\bar{\mathrm{b}}}{}}
-\newcommand{\tpaq}{\ensuremath{\bar{\mathrm{t}}}{}}
-\newcommand{\elp}{\ensuremath{\mathrm{e}^-}{}}
-\newcommand{\enu}{\ensuremath{\nu_\mathrm{e}}{}}
-\newcommand{\ulp}{\ensuremath{\mu^-}{}}
-\newcommand{\unu}{\ensuremath{\nu_{\mu}}{}}
-\newcommand{\tlp}{\ensuremath{\tau^-}{}}
-\newcommand{\tnu}{\ensuremath{\nu_{\tau}}{}}
-\newcommand{\ealp}{\ensuremath{\mathrm{e}^+}{}}
-\newcommand{\eanu}{\ensuremath{\bar{\nu}_\mathrm{e}}{}}
-\newcommand{\ualp}{\ensuremath{\mu^+}{}}
-\newcommand{\uanu}{\ensuremath{\bar{\nu}_{\mu}}{}}
-\newcommand{\talp}{\ensuremath{\tau^+}{}}
-\newcommand{\tanu}{\ensuremath{\bar{\nu}_{\tau}}{}}
-\newcommand{\prbr}{\ensuremath{\mathrm{p}^+}{}}
-\newcommand{\nebr}{\ensuremath{\mathrm{n}^0}{}}
-\newcommand{\lmzbr}{\ensuremath{\Lambda^0}{}}
-\newcommand{\sgpbr}{\ensuremath{\Sigma^+}{}}
-\newcommand{\sgzbr}{\ensuremath{\Sigma^0}{}}
-\newcommand{\sgmbr}{\ensuremath{\Sigma^-}{}}
-\newcommand{\dlppbr}{\ensuremath{\Delta^{++}}{}}
-\newcommand{\dlpbr}{\ensuremath{\Delta^+}{}}
-\newcommand{\dlzbr}{\ensuremath{\Delta^0}{}}
-\newcommand{\dlmbr}{\ensuremath{\Delta^-}{}}
-\newcommand{\xizbr}{\ensuremath{\Xi^0}{}}
-\newcommand{\ximbr}{\ensuremath{\Xi^-}{}}
-\newcommand{\ommbr}{\ensuremath{\Omega^-}{}}
-\newcommand{\sgspbr}{\ensuremath{\Sigma^{*+}}{}}
-\newcommand{\sgszbr}{\ensuremath{\Sigma^{*0}}{}}
-\newcommand{\sgsmbr}{\ensuremath{\Sigma^{*-}}{}}
-\newcommand{\xiszbr}{\ensuremath{\Xi^{*0}}{}}
-\newcommand{\xismbr}{\ensuremath{\Xi^{*-}}{}}
-\newcommand{\prabr}{\ensuremath{\mathrm{p}^-}{}}
-\newcommand{\neabr}{\ensuremath{\bar{\mathrm{n}}^0}{}}
-\newcommand{\dlpabr}{\ensuremath{\bar{\Delta}^{+}}{}}
-\newcommand{\dlzabr}{\ensuremath{\bar{\Delta}^{0}}{}}
-\newcommand{\dlmabr}{\ensuremath{\bar{\Delta}^{-}}{}}
-\newcommand{\dlmmabr}{\ensuremath{\bar{\Delta}^{--}}{}}
-\newcommand{\pipm}{\ensuremath{\pi^+}{}}
-\newcommand{\pizm}{\ensuremath{\pi^0}{}}
-\newcommand{\pimm}{\ensuremath{\pi^-}{}}
-\newcommand{\kapm}{\ensuremath{K^+}{}}
-\newcommand{\kazm}{\ensuremath{K^0}{}}
-\newcommand{\kazam}{\ensuremath{\bar{K}^0}{}}
-\newcommand{\kamm}{\ensuremath{K^-}{}}
-\newcommand{\ropm}{\ensuremath{\rho^+}{}}
-\newcommand{\rozm}{\ensuremath{\rho^0}{}}
-\newcommand{\romm}{\ensuremath{\rho^-}{}}
-\newcommand{\etam}{\ensuremath{\eta}{}}
-\newcommand{\etapm}{\ensuremath{\eta'}{}}
-\newcommand{\kaspm}{\ensuremath{\mathrm{K}^{*+}}{}}
-\newcommand{\kaszm}{\ensuremath{\mathrm{K}^{*0}}{}}
-\newcommand{\kaszam}{\ensuremath{\bar{\mathrm{K}}^{*0}}{}}
-\newcommand{\kasmm}{\ensuremath{\mathrm{K}^{*-}}{}}
-\newcommand{\omm}{\ensuremath{\omega}{}}
-\newcommand{\phim}{\ensuremath{\phi}{}}
-\newcommand{\phbsn}{\ensuremath{\gamma}{}}
-\newcommand{\Wbsn}{\ensuremath{\mathrm{W}}{}}
-\newcommand{\Wpbsn}{\ensuremath{\mathrm{W}^{+}}{}}
-\newcommand{\Wmbsn}{\ensuremath{\mathrm{W}^{-}}{}}
-\newcommand{\Zzbsn}{\ensuremath{\mathrm{Z}^{0}}{}}
-\newcommand{\hbsn}{\ensuremath{\mathrm{h}}{}}
-\newcommand{\photon}{\phbsn}
-}
-{}
-\ifthenelse{\boolean{pfeynman}}%
- {\RequirePackage{feynmp}}%
- {}
-\endinput
-%%
-%% End of file `physymb.sty'.