summaryrefslogtreecommitdiff
path: root/Master/texmf-dist
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2022-12-21 20:48:01 +0000
committerKarl Berry <karl@freefriends.org>2022-12-21 20:48:01 +0000
commit276f0d2d16de46cdbe5f71560ea806531260d1eb (patch)
treec668aacab261496c8938b9285ab9ef679bba4da2 /Master/texmf-dist
parent1368ca6026cfc0db8ffea6a2c7b4fdf1780ac206 (diff)
pdfmsym (21dec22)
git-svn-id: svn://tug.org/texlive/trunk@65324 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist')
-rw-r--r--Master/texmf-dist/doc/generic/pdfmsym/README.md21
-rw-r--r--Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.pdfbin190599 -> 219777 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.tex170
-rw-r--r--Master/texmf-dist/tex/generic/pdfmsym/pdfmsym.tex314
4 files changed, 444 insertions, 61 deletions
diff --git a/Master/texmf-dist/doc/generic/pdfmsym/README.md b/Master/texmf-dist/doc/generic/pdfmsym/README.md
index 5954add2ed1..f79a98d1cbd 100644
--- a/Master/texmf-dist/doc/generic/pdfmsym/README.md
+++ b/Master/texmf-dist/doc/generic/pdfmsym/README.md
@@ -1,10 +1,25 @@
# PDF Math Symbols - pdfMsym
-## version 1.0.2
+## version 1.1.0
+
The pdfMsym package provides mathematical symbols for PDF-dependent TeX compilers.
-Read the documentation (documentation.pdf) for more details.
+pdfMsym requires the font size in order to properly scale its symbols, so the following two lines must be added to your document in order to properly load it:
+
+ \input pdfmsym
+ \pdfmsymsetscalefactor{10}
+
+assuming you want to load the package at a 10pt font, you can change the 10 to whatever suits your needs.
+If you do not add the `\pdfmsymsetscalefactor` line, all of the macros which require pdf drawing won't work, as well as possibly some other macros.
+
+The pdfMsym package also provides a relatively easy-to-use interface for creating new symbols.
+Read the documentation (pdfmsym-doc.pdf) for more details.
+
The pdfMsym package is provided under the MIT license.
-Compile the documentation via `pdftex pdfsym-doc.tex`.
+Compile the documentation via `pdftex pdfmsym-doc.tex`.
The pdfMsym package was created and is maintained by Slurp who can be reached via email: slurper04@gmail.com
Please report any bugs or issues with the package, doing so would be greatly appreciated.
+Suggestions for features to add to the package will also be greatly appreciated.
+
+Thank you for using pdfMsym,
+ - Slurp
diff --git a/Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.pdf b/Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.pdf
index 6e0305bb561..bd2dab960b6 100644
--- a/Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.pdf
+++ b/Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.tex b/Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.tex
index f7e84d1bb40..9c621958323 100644
--- a/Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.tex
+++ b/Master/texmf-dist/doc/generic/pdfmsym/pdfmsym-doc.tex
@@ -48,6 +48,7 @@
\catcode`\/=0%
\catcode`\$=12%
\catcode`\\=12%
+ \catcode`\#=12%
\catcode`\%=12 \setbox1=\hbox\bgroup}}
\def\endcode{%
\egroup\egroup%
@@ -98,15 +99,17 @@
}}
\def\showcasevecc#1#2#3{\hbox to\hsize{\hss\vbox{\tabskip=5pt\openup3\jot%
-\halign{\tt\hskip 1cm\string##\tabskip=0pt\hfil&\quad##\hfil&\quad\hfil##\tabskip=5pt\cr
+\halign{\tt\hskip 1cm\string##\tabskip=0pt\hfil&&\quad##\hfil&\quad\hfil##\tabskip=5pt\cr
\omit\tt\string#1: & \tt\string#1 & \tt\expandafter\string\csname short\m@strip#1\endcsname%
\cr\noalign{\kern3pt\hrule\kern3pt}
- \displaystyle & $\displaystyle #2$ & $\displaystyle #3$\cr
- \textstyle & $\textstyle #2$ & $\textstyle #3$\cr
- \scriptstyle & $\scriptstyle #2$ & $\scriptstyle #3$\cr
- \scriptscriptstyle & $\scriptscriptstyle #2$ & $\scriptscriptstyle #3$\cr}
+ \displaystyle & $\displaystyle #1{#2}$ & $\displaystyle \csname short\m@strip#1\endcsname{#3}$ \cr
+ \textstyle & $\textstyle #1{#2}$ & $\textstyle \csname short\m@strip#1\endcsname{#3}$ \cr
+ \scriptstyle & $\scriptstyle #1{#2}$ & $\scriptstyle \csname short\m@strip#1\endcsname{#3}$ \cr
+ \scriptscriptstyle & $\scriptscriptstyle #1{#2}$ & $\scriptscriptstyle \csname short\m@strip#1\endcsname{#3}$ \cr}
}\hss}\bigskip}
+\def\showcaseveccs#1#2#3#4{\showcasevecc{#1}{#3}{#4}\showcasevecc{#2}{#3}{#4}}
+
\def\showcasearrow#1#2#3#4{\hbox to\hsize{\hss\vbox{\tabskip=0pt\openup3\jot
\halign{\tt\hskip 1cm\string##\tabskip=0pt\hfil&\quad##\hfil&\quad\hfil##\hfil\quad&\quad\hfil##\tabskip=5pt\cr
\omit\tt\string#1: & \tt\string#1 & \tt\expandafter\string\csname long\m@strip#1\endcsname &
@@ -138,7 +141,7 @@
{\setbox0=\hbox{\fakebold{\pdfMsym}}\centerline{\hbox to8\wd0{\hfil\it version \pdfMsymversion}}}
\centerline{\it S. Lurp}
\centerline{\tt slurper04@gmail.com}
-\centerline{\it December 15, 2022}
+\centerline{\it December 21, 2022}
\bigskip
\hbox to \hsize{\hfil\vbox{\hsize=.7\hsize
@@ -156,20 +159,20 @@ Unfortunately, some macros are not supported by \xetex.
\hrule
}\hfil}
-\vfill\break
+\vfill\eject
\footline={\hfil\folio\hfil}
\section{An Introduction to \scalebox[2]{\fakebold\pdfMsym}}
The main motivator for creating \pdfMsym{} was \TeX's poor implementation of the \macroname\overrightarrow{} macro which many
times yields unsavory results.
-For example \icode \overrightarrow{\hbox{ABC}}/eicode{} yields:
+For example \icode \overrightarrow{\rm ABC}/eicode{} yields:
-$$ \overrightarrow{\hbox{ABC}} $$
+$$ \overrightarrow{\rm ABC} $$
As you can see, the arrow overlaps with the {\tt ABC} which is undesirable.
-This can be fixed by altering the \macroname\rightarrow{} macro, but I decided to make a more versatile alternative.
-The \pdfMsym{} alternative, \macroname\vecc{}, on the other hand yields:
+This can be fixed by altering the \macroname\rightarrow{} macro, but I decided to make a more versatile alternative:
+the \pdfMsym{} alternative \macroname\vecc{}:
$$ \vecc{\hbox{ABC}} $$
@@ -195,11 +198,21 @@ This section will simply be an exhaustive list of all the predefined symbols \pd
\subsection{Math Symbols}
{\tabskip=10pt plus 5pt minus 5pt\openup3\jot\halign to \hsize{{\hsize=.45\hsize#}\hfil&\hfil{\hsize=.45\hsize#}\cr
-\vbox{\showcase\dwedge{A\dwedge B}} & \vbox{\showcase\dcup{A\dcup B}}\cr
-\vbox{\showcase\bigdwedge{A\dwedge\bigdwedge_{n=1}^N B_n}} & \vbox{\showcase\bigdcup{A\dcup\bigdcup_{n=1}^N B_n}}\cr
-\noalign{\vfil\eject}
+\vbox{\showcase\dwedge{A\dwedge B}} & \vbox{\showcase\bigdwedge{A\dwedge\bigdwedge_{n=1}^N B_n}}\cr
+\vbox{\showcase\circwedge{A\circwedge B}} & \vbox{\showcase\bigcircwedge{A\circwedge\bigcircwedge_{k=1}^n A_k}}\cr
+\noalign{\vfill\eject}
+\vbox{\showcase\dcup{A\dcup B}} & \vbox{\showcase\bigdcup{A\dcup\bigdcup_{n=1}^N B_n}}\cr
\vbox{\showcase\aint{f(x) + \aint_a^b g(x)\, dx}} & \vbox{\showcase\divs{n\divs m}}\cr
-\vbox{\showcase\ndivs{n\ndivs m}} & \cr}}
+\vbox{\showcase\ndivs{n\ndivs m}} & \vbox{\showcase\bigforall{P: \bigforall_{x\in X}Q(x)}}\cr
+\vbox{\showcase\bigexists{P: \bigexists_{x\in X}Q(x)}} & \cr}}
+
+\bigskip
+\pdfMsym{} also provides arbitrary length closed loop integrals via
+\macrousage \oiNint{<N>} /emacrousage
+which creates an $N$ dimensional closed loop integral.
+Similarly \macroname\biNint{} creates a similar integral sign but rectangular instead of elliptical.
+
+\line{\hfil$\displaystyle{\textstyle\oiNint{3}_A^B}\quad\oiNint{3}_A^B\hfil\biNint{3}_{A}^{B}\quad{\textstyle\biNint{3}_A^B}$\hfil}
Additionally, \macroname\lightning{} is provided as a textmode command and renders \lightning.
@@ -209,16 +222,17 @@ Each vector comes as a pair: the normal form and the short form.
The normal form is meant to cover longer material while the short form covers shorter material.
\bigskip
-\showcasevecc\vecc{\vecc{\hbox{ABC}}}{\shortvecc{a}}
-\showcasevecc\lvecc{\lvecc{\hbox{ABC}}}{\shortlvecc{a}}
-\showcasevecc\overrightharp{\overrightharp{\hbox{ABC}}}{\shortoverrightharp{a}}
+\showcaseveccs\vecc\undervecc{\rm ABC}a
+\showcasevecc\lvecc{\rm ABC}a
+\showcasevecc\underlvecc{\rm ABC}a
+\showcaseveccs\straightvecc\understraightvecc{\rm ABC}a
\vfill\eject
-\showcasevecc\overleftharp{\overleftharp{\hbox{ABC}}}{\shortoverleftharp{a}}
-\showcasevecc\oveleftrrightvecc{\overleftrightvecc{\hbox{ABC}}}{\shortoverleftrightvecc{a}}
-\showcasevecc\oveleftrrightharp{\overleftrightharp{\hbox{ABC}}}{\shortoverleftrightharp{a}}
-\showcasevecc\overrightleftharp{\overrightleftharp{\hbox{ABC}}}{\shortoverrightleftharp{a}}
-\showcasevecc\straightvecc{\straightvecc{\hbox{ABC}}}{\shortstraightvecc{a}}
-\showcasevecc\straightlvecc{\straightlvecc{\hbox{ABC}}}{\shortstraightlvecc{a}}
+\showcaseveccs\straightlvecc\understraightlvecc{\rm ABC}a
+\showcaseveccs\overrightharp\underrightharp{\rm ABC}a
+\showcaseveccs\overleftharp\underleftharp{\rm ABC}a
+\showcaseveccs\overleftrightvecc\underleftrightvecc{\rm ABC}a
+\showcaseveccs\overleftrightharp\underleftrightharp{\rm ABC}a
+\showcaseveccs\overrightleftharp\underrightleftharp{\rm ABC}a
\unless\ifx\pdfxform\undefined
The \macroname\constvec{} macro has the following usage:
@@ -241,7 +255,6 @@ And creates an extended arrow to fit both the top and bottom material.
\showcasearrow\varrightharp{A\varrightharp B}{A\longvarrightharp B}{A\xvarrightharp{ABC}[abc] B}
\showcasearrow\varleftharp{A\varleftharp B}{A\longvarleftharp B}{A\xvarleftharp{ABC}[abc] B}
\showcasearrow\varleftrightarrow{A\varleftrightarrow B}{A\longvarleftrightarrow B}{A\xvarleftrightarrow{ABC}[abc] B}
-\vfill\eject
\showcasearrow\varleftrightharp{A\varleftrightharp B}{A\longvarleftrightharp B}{A\xvarleftrightharp{ABC}[abc] B}
\showcasearrow\varrightleftharp{A\varrightleftharp B}{A\longvarrightleftharp B}{A\xvarrightleftharp{ABC}[abc] B}
\showcasearrow\varmapsto{A\varmapsto B}{A\longvarmapsto B}{A\xvarmapsto{ABC}[abc] B}
@@ -252,6 +265,22 @@ And creates an extended arrow to fit both the top and bottom material.
\showcasearrow\varcirclerightarrow{A\varcirclerightarrow B}{A\longvarcirclerightarrow B}{A\xvarcirclerightarrow{ABC}[abc] B}
\showcasearrow\varcircleleftarrow{A\varcircleleftarrow B}{A\longvarcircleleftarrow B}{A\xvarcircleleftarrow{ABC}[abc] B}
+As well as single-stroke arrows, \pdfMsym{} provides double stroke arrows which are analogous to single stroke arrows and have
+an identical usage.
+
+\bigskip
+\showcasearrow\varRightarrow{A\varRightarrow B}{A\longvarRightarrow B}{A\xvarRightarrow{ABC}[abc] B}
+\showcasearrow\varLeftarrow{A\varLeftarrow B}{A\longvarLeftarrow B}{A\xvarLeftarrow{ABC}[abc] B}
+\showcasearrow\varCirclerightarrow{A\varCirclerightarrow B}{A\longvarCirclerightarrow B}{A\xvarCirclerightarrow{ABC}[abc] B}
+\showcasearrow\varCircleleftarrow{A\varCircleleftarrow B}{A\longvarCircleleftarrow B}{A\xvarCircleleftarrow{ABC}[abc] B}
+\showcasearrow\varSquarerightarrow{A\varSquarerightarrow B}{A\longvarSquarerightarrow B}{A\xvarSquarerightarrow{ABC}[abc] B}
+\showcasearrow\varSquareleftarrow{A\varSquareleftarrow B}{A\longvarSquareleftarrow B}{A\xvarSquareleftarrow{ABC}[abc] B}
+\showcasearrow\varRibbonrightarrow{A\varRibbonrightarrow B}{A\longvarRibbonrightarrow B}{A\xvarRibbonrightarrow{ABC}[abc] B}
+\showcasearrow\varRibbonleftarrow{A\varRibbonleftarrow B}{A\longvarRibbonleftarrow B}{A\xvarRibbonleftarrow{ABC}[abc] B}
+\showcasearrow\squaredarrow{A\squaredarrow B}{A\longsquaredarrow B}{A\xsquaredarrow{ABC}[abc] B}
+\showcasearrow\roundedarrow{A\roundedarrow B}{A\longroundedarrow B}{A\xroundedarrow{ABC}[abc] B}
+
+\vfill\eject
\subsection{Wide Accents}
Wide accents provide variants to the commonly used accents like \macroname\widehat{} and \macroname\widetilde.
Unlike these accents, \pdfMsym's wide accents can grow arbitrarily large.
@@ -273,11 +302,13 @@ $$ \suum_{\hbox{abcdef}}^{\hbox{ABCDEF}} \qquad \prood_{\hbox{abcdef}}^{\hbox{AB
These are not available in \xetex.
\fi
-\vfill\eject
\section{Defining Your Own Symbols}
-\pdfMsym{} provides an interface for creating your own mathematical symbols through the use of \macroname\pdfliteral s.
-This interface requires prior knowledege of drawing with PDFs.
+The following section outlines the interface which \pdfMsym{} utilizes to create its symbols.
+Some of the macros require knowledge of {\scten pdf}'s native graphics operators, which is not explained here.
+For resources on that, consult Adobe's {\scten pdf} Reference, chapter $4$ (Graphics).
+
+\subsection{The Macros}
\macroexp{\@linehead@type{<pdf code>}{<width>}} This creates a ``linehead'' which is used to cap lines, like
\macroname\@rarrow{} ($\@rarrow{.4}{2.5}$).
@@ -293,8 +324,11 @@ For example, the definition of \macroname\@rarrow{} is:
\def\@rarrow {\@linehead@type{0 0 m 2 0 l 1 0 0 1 0 1.5 c 2 0 m 1 0 0 -1 0 -1.5 c S}{2}}
/endcode
-The predefine lineheads are
+The predefined lineheads are
\icode \@rarrow, \@larrow, \@rharp, \@lharp, \@rdharp, \@rlharp, \@mapcap, \@rsarrow, \@lsarrow, \@backhook, \@fronthook, \@doublerarrow, \@doublelarrow, /hfil/break\@circlecap/eicode.
+And the predefined double-stroked/wide lineheads are
+\icode \@Rarrow, \@Larrow, \@Linecap, \@Rightcirclecap, \@Leftcirclecap, \@Rightsquarecap, \@Leftsquarecap, \@Rightribboncap,
+/hfil/break\@Leftribboncap/eicode.
\emacroexp
\macroexp{\@vecc@def{<vector name>}<left cap><right cap>} This creates a vector macro, like \macroname\vecc.
@@ -305,6 +339,14 @@ For example, the definition of the {\tt vecc} vectors is:
/endcode
\emacroexp
+\macroexp{\@undervecc@def{<vector name>}<left cap><right cap>} This creates an under-vector macro, like \macroname\undervecc.
+This creates both the normal and short variations of the vector.
+For example, the definition of the {\tt undervecc} vectors is:
+\begincode
+\@undervecc@def{undervecc}\@linecap\@rarrow
+/endcode
+\emacroexp
+
\macroexp{\@arrow@def{<arrow name>}<left cap><right cap>} This creates an arrow macro, like \macroname\varrightarrow.
This creates the normal, long, and extendable versions of the arrow.
For example, the definition of the {\it varrightarrow} vectors is:
@@ -313,6 +355,18 @@ For example, the definition of the {\it varrightarrow} vectors is:
/endcode
\emacroexp
+\macroexp{\@Arrow@def{<arrow name>}<left cap><right cap><height displacement>} This creates a double-stroked arrow, like
+\macroname\varRightarrow.
+This macro creates the normal, long, and extendable versions of the arrow.
+{\it height displacement} is half the difference in height between the two strokes (the difference of height between one stroke
+and the center).
+For the default double stroke linecaps \pdfMsym{} defines, this should be $1$.
+For example, the definition of {\it varRightarrow} is:
+\begincode
+\@Arrow@def{varRightarrow}\@Linecap\@Rarrow{1}
+/endcode
+\emacroexp
+
\macroexp{\@wide@accent{<pdf code>}} This creates a wide accent, like \macroname\varwidecheck.
The width of the drawing by the {\it pdf code} should be $1$, and it should be filled not stroked (since the accent is
transformed to stretch over the material beneath it).
@@ -323,7 +377,7 @@ For example, the definition of \macroname\varwidecheck{} is:
/endcode
\emacroexp
-\macroexp{\pdf@drawing@macro{<name>}{<pdf code>}{<width>}{<height>}{<horizontal skew>}{<depth>}} This creates a text mode
+\macroexp{\pdf@drawing@macro{<name>}{<pdf code>}{<width>}{<height>}{<depth>}{<horizontal skew>}} This creates a text mode
symbol like \macroname\lightning.
It is important that the {\it pdf code} fits inside the box created by {\it width, height,\/} and {\it depth} since the
drawing is placed inside of an XForm and so anything outside the box will be cropped.
@@ -338,7 +392,7 @@ For example, the definition of \macroname\lightning{} is:
/endcode
\emacroexp
-\macroexp{\pdf@drawing@math@macro{<name>}{<pdf code>}{<width>}{<height>}{<skew>}{<depth>}<style scaling>} This creates a math
+\macroexp{\pdf@drawing@math@macro{<name>}{<pdf code>}{<width>}{<height>}{<depth>}{<skew>}<style scaling>} This creates a math
mode symbol like \macroname\divs.
The first few parameters are identical in use as \macroname\pdf@drawing@macro's, and {\it style scaling} is used to set the
scaling for the symbol in different math styles.
@@ -378,6 +432,34 @@ Another example, this time the definition of \macroname\bigdcup{} is:
/endcode
\emacroexp
+\macroexp{\@skewedlim@op{<operator>}{<sup1>}{<sub1>}{<sup2>}{<sub2>}{<sup3>}{<sub3>}{<default limit>}}
+This creates a large math operator with skewed limits, like \macroname\int.
+{\it operator} should be a math operator, {\it sup1} and {\it sub1} are the skews of the superscript and subscript of the
+operator, respectively under \macroname\nolimits.
+Similarly {\it sup2} and {\it sub2} are the skews for \macroname\limits, and {\it sup3} and {\it sub3} are the
+skews for the default limit (if this is not followed by \macroname\limits{} or \macroname\nolimits) which is given by
+{\it default limit}.
+
+For example, \macroname\@oiNint{} is defined to be a macro which creates the shape of \macroname\oiNint{} (see below), and
+\macroname\oiNint{} is defined as
+\begincode
+\def\oiNint#1{\@skewedlim@op{\mathop{\@oiNint{#1}}}{-4}{6}{-10}{10}{-4}{6}\nolimits}
+/endcode
+\emacroexp
+
+\macroexp{\putexsym{<symbol>}<left cap><right cap>{<height displacement>}{<skew>}} This draws a double stroked drawing on top of
+{\it symbol} whose caps are {\it left cap} and {\it right cap} with a height displacement (the half the space between strokes) of
+{\it height displacement}.
+{\it skew} alters the space between the end of {\it symbol} and where the double stroked drawing is drawn.
+For example, \macroname\@oiNint, which gives the shape of \macroname\oiNint, is defined as
+\begincode
+\def\@oiNint#1{\putexsym{\iNint{#1}}\@BigLeftcirclecap\@BigRightcirclecap{2.5}{4}}
+/endcode
+\macroname\iNint{} is a macro
+\macrousage \iNint{<N>} /emacrousage
+which prints {\it N} integrals with a kern \macroname\iNint@kern@{} between each one.
+\emacroexp
+
\unless\ifx\pdfxform\undefined
\macroexp{\@wide@operator{<name>}<operator>{<first cut>}{<second cut>}} This creates an extendable operator of {\it operator}
whose name is {\it name}, like \macroname\suum.
@@ -397,4 +479,30 @@ $$ \@show@slices{suum} $$
These macros are not available for \xetex.
\emacroexp
\fi
+
+\subsection{The Dimensions}
+For fine-tuning of symbols, it may be useful to familiarize oneself with the various dimensions \pdfMsym{} utilizes for various
+purposes throught its symbol definitions.
+Dimensions are all defined as macros, and are all dimensionless.
+If a dimension is defined as $1$ then it corresponds to $1$ in $10$pt font.
+
+{\everycr{\noalign{\kern10pt}}\halign{\tt\vtop{\hsize=.2\hsize#}\hfil\tabskip=.05\hsize&\hfil\vtop{\hsize=.75\hsize#}\tabskip=0pt\cr
+\string\@font@scale & The amount of scaling relative to $10$pt, this is defined via \macroname\pdfmsymsetscalefactor.\cr
+\string\vecc@w & The height of the arrows, similarly there is \macroname\vecc@hw{} which must be equal to half of \macroname\vecc@w.\cr
+\string\vecc@skew & \pdfMsym{} leaves a space of \macroname\vecc@skew{} between the ends of material and the endpoints of
+the vector on top or below the material.\cr
+\string\vecc@X@s\par\string\vecc@X@sf & \macroname\vecc@X@s{} is the ratio of the scaling factor (as a decimal) of the
+$X$ math style ($X$ can be {\tt displaystyle}, {\tt textstyle}, etc.).
+Similarly \macroname\vecc@X@sf{} should be numerically equivalent to \macroname\vecc@X@s{} but written as a fraction.
+\pdfMsym{} scales (many, but not all, see \macroname\exsym@X@s{} and \macroname\exsym@X@sf) math macros according to these values.\cr
+\string\vecc@skip & The amount of space between material and the vector symbol above or below it.\cr
+\string\arrow@skip & The math kerning to be used around an arrow.
+\macroname\arrow@skip{} must be defined as glue, eg \icode \mkern1mu/eicode.\cr
+\string\xarrow@buffer & The amount of extra arrow to add between the caps of an extendable arrow and when the above/below material begins.\cr
+\string\accent@skew & Analogous to \macroname\vecc@skew{} but for extendable accents.\cr
+\string\accent@raise & Analogous to \macroname\vecc@skip{} but for extendable accents.\cr
+\string\exsym@X@s\par\string\exsym@X@sf & Analogous to \macroname\vecc@X@s{} and \macroname\vecc@X@sf but used by \macroname\putexsym.\cr
+\string\iNint@kern@ & The amount of kerning to put between integral signs in \macroname\iNint.
+This must be given as glue, eg. \icode \mkern-10mu\mathchoice{\mkern-5mu}{}{}{}/eicode.\cr
+}}
\end
diff --git a/Master/texmf-dist/tex/generic/pdfmsym/pdfmsym.tex b/Master/texmf-dist/tex/generic/pdfmsym/pdfmsym.tex
index 732d9b1c6ac..f08317ac562 100644
--- a/Master/texmf-dist/tex/generic/pdfmsym/pdfmsym.tex
+++ b/Master/texmf-dist/tex/generic/pdfmsym/pdfmsym.tex
@@ -8,9 +8,12 @@
\catcode`\@=11
\def\pdfMsym{{\scten pdf}{\rm M}{\scten sym}}
-\def\pdfMsymversion{1.0.2}
+\def\pdfMsymversion{1.1.0}
+
+\ifx\@gobble\undefined
+ \long\def\@gobble#1{}
+\fi
-\def\@gobble#1{}
\def\m@strip{\expandafter\@gobble\string}
\ifx\@ifnextchar\undefined
@@ -28,8 +31,18 @@
}
\fi
-\def\@firstoftwo#1#2{#1}
-\def\@secondoftwo#1#2{#2}
+\ifx\@firstoftwo\undefined
+ \long\def\@firstoftwo#1#2{#1}
+ \long\def\@secondoftwo#1#2{#2}
+\fi
+
+\long\def\pdfmsym@afterfi#1#2\fi{\fi#1}
+
+\def\pdfmsym@repeated#1#2{%
+ \ifnum#1>0 %
+ \pdfmsym@afterfi{#2\expandafter\pdfmsym@repeated\expandafter{\the\numexpr #1-1\relax}{#2}}%
+ \fi%
+}
\begingroup\lccode`\?=`\p \lccode`\!=`\t %
\lowercase{\endgroup
@@ -71,8 +84,8 @@
{\@@linehead@type{#3}{#4}{#1}{#2}[1][1]}%
}
-\def\@rarrow {\@linehead@type{0 0 m 2 0 l 1 0 0 1 0 1.5 c 2 0 m 1 0 0 -1 0 -1.5 c S}{2}}
-\def\@larrow {\@linehead@type{2 0 m 0 0 l 1 0 2 1 2 1.5 c 0 0 m 1 0 2 -1 2 -1.5 c S}{2}}
+\def\@rarrow {\@linehead@type{0 0 m 2 0 l 1 0 0 1.2 0 1.5 c 2 0 m 1 0 0 -1.2 0 -1.5 c S}{2}}
+\def\@larrow {\@linehead@type{2 0 m 0 0 l 1 0 2 1.2 2 1.5 c 0 0 m 1 0 2 -1.2 2 -1.5 c S}{2}}
\def\@rharp {\@linehead@type{0 0 m 2 0 l 1 0 0 1 0 1.5 c S}{2}}
\def\@lharp {\@linehead@type{2 0 m 0 0 l 1 0 2 1 2 1.5 c S}{2}}
\def\@rdharp {\@linehead@type{0 0 m 2 0 l 1 0 0 -1 0 -1.5 c S}{2}}
@@ -81,44 +94,98 @@
\def\@mapcap {\@linehead@type{0 1.5 m 0 -1.5 l 0 0 m 1 0 l S}{1}}
\def\@rsarrow{\@linehead@type{0 0 m 2 0 l 0 1 l 2 0 m 0 -1 l S}{2}}
\def\@lsarrow{\@linehead@type{2 0 m 0 0 l 2 1 l 0 0 m 2 -1 l S}{2}}
-\def\@backhook{\@linehead@type{.5 1 m .25 1 0 .75 0 .5 c 0 .25 .25 0 .5 0 c S}{0.5}}
-\def\@fronthook{\@linehead@type{0 1 m .25 1 .5 .75 .5 .5 c .5 .25 .25 0 0 0 c S}{0.5}}
-\def\@doublerarrow{\@linehead@type{0 0 m 2 0 l 1 0 0 1 0 1.5 c 2 0 m 1 0 0 -1 0 -1.5 c 2 0 m 4 0 l 3 0 2 1 2 1.5 c 4 0 m 3 0 2 -1 2 -1.5 c S}{4}}
-\def\@doublelarrow{\@linehead@type{4 0 m 2 0 l 3 0 4 1 4 1.5 c 2 0 m 3 0 4 -1 4 -1.5 c 2 0 m 0 0 l 1 0 2 1 2 1.5 c 0 0 m 1 0 2 -1 2 -1.5 c S}{4}}
+\def\@backhook{\@linehead@type{1 2 m .5 2 0 1.5 0 1 c 0 .5 .5 0 1 0 c S}{1}}
+\def\@fronthook{\@linehead@type{0 2 m .5 2 1 1.5 1 1 c 1 .5 .5 0 0 0 c S}{1}}
+\def\@doublerarrow{\@linehead@type{0 0 m 2 0 l 1 0 0 1.2 0 1.5 c 2 0 m 1 0 0 -1.2 0 -1.5 c 2 0 m 4 0 l 3 0 2 1.2 2 1.5 c 4 0 m 3 0 2 -1.2 2 -1.5 c S}{4}}
+\def\@doublelarrow{\@linehead@type{4 0 m 2 0 l 3 0 4 1.2 4 1.5 c 2 0 m 3 0 4 -1.2 4 -1.5 c 2 0 m 0 0 l 1 0 2 1.2 2 1.5 c 0 0 m 1 0 2 -1.2 2 -1.5 c S}{4}}
\def\@circlecap{\@linehead@type{0 0 m 0 .5 .5 1 1 1 c 1.5 1 2 .5 2 0 c 2 -.5 1.5 -1 1 -1 c .5 -1 0 -.5 0 0 c S}{2}}
+\def\@Rarrow {\@linehead@type{0 -1 m 1 -1 l 0 1 m 1 1 l 3 0 m 1.5 0 0 2 0 2.5 c 3 0 m 1.5 0 0 -2 0 -2.5 c S}{3}}
+\def\@Larrow {\@linehead@type{3 -1 m 2 -1 l 3 1 m 2 1 l 0 0 m 1.5 0 3 2 3 2.5 c 0 0 m 1.5 0 3 -2 3 -2.5 c S}{3}}
+\def\@Linecap {\@linehead@type{0 -1 m 1 -1 l 0 1 m 1 1 l S}{1}}
+\def\@Rightcirclecap{\@linehead@type{0 1 m .5 1 1 .5 1 0 c 1 -.5 .5 -1 0 -1 c S}{1}}
+\def\@Leftcirclecap{\@linehead@type{1 1 m .5 1 0 .5 0 0 c 0 -.5 .5 -1 1 -1 c S}{1}}
+\def\@Rightsquarecap{\@linehead@type{0 1 m 1 1 l 1 -1 l 0 -1 l S}{1}}
+\def\@Leftsquarecap{\@linehead@type{1 1 m 0 1 l 0 -1 l 1 -1 l S}{1}}
+\def\@Rightribboncap{\@linehead@type{0 1 m 2 1 l 0 0 l 2 -1 l 0 -1 l S}{2}}
+\def\@Leftribboncap{\@linehead@type{1.5 1 m 0 1 l 1.5 0 l 0 -1 l 1.5 -1 l S}{1.5}}
+\def\@Circlescap{\@linehead@type{0 -1 m 0 -.5 .5 0 1 0 c 1.5 0 2 -.5 2 -1 c 2 -1.5 1.5 -2 1 -2 c .5 -2 0 -1.5 0 -1 c
+ 0 1 m 0 1.5 .5 2 1 2 c 1.5 2 2 1.5 2 1 c 2 .5 1.5 0 1 0 c .5 0 0 .5 0 1 c S}{2}}
+
\def\vecc@w{.4} \def\vecc@hw{.2} \def\vecc@skew{2.5}
\def\vecc@displaystyle@s{1} \def\vecc@displaystyle@sf{1}
\def\vecc@textstyle@s{1} \def\vecc@textstyle@sf{1}
\def\vecc@scriptstyle@s{.8} \def\vecc@scriptstyle@sf{8 / 10}
\def\vecc@scriptscriptstyle@s{.6} \def\vecc@scriptscriptstyle@sf{6 / 10}
+\def\vecc@skip{.4}
+
+%\def\@@@vecc@type#1#2#3#4#5{%
+% \mathord{\mathop{\kern\z@#1}\limits^{%
+% \mkern\vecc@skew mu%
+% #2{\vecc@w}{\vecc@hw}[#4][#5]%
+% \cleaders\hrule height \dimexpr \vecc@w pt * #4 * \@font@scale\relax\hfill%
+% #3{\vecc@w}{\vecc@hw}[#4][#5]%
+% \mkern\vecc@skew mu}%
+%}}
+
+\def\@@@vecc@type#1#2#3#4#5#6{%
+ \vbox{\offinterlineskip%
+ \ialign{##\cr
+ $\m@th\mkern\vecc@skew mu%
+ #2{\vecc@w}{\vecc@hw}[#4][#5]%
+ \cleaders\hrule height \dimexpr \vecc@w pt * #4 * \@font@scale\relax\hfill%
+ #3{\vecc@w}{\vecc@hw}[#4][#5]%
+ \mkern\vecc@skew mu$\cr\noalign{\kern\dimexpr\vecc@skip ex * #4\relax}%%
+ $\m@th#6#1$\cr%
+ }%
+ }%
+}
-\def\@@@vecc@type#1#2#3#4#5{%
- \mathord{\mathop{\kern\z@#1}\limits^{%
- \mkern\vecc@skew mu%
- #2{\vecc@w}{\vecc@hw}[#4][#5]%
- \cleaders\hrule height \dimexpr \vecc@w pt * #4 * \@font@scale\relax\hfill%
- #3{\vecc@w}{\vecc@hw}[#4][#5]%
- \mkern\vecc@skew mu}%
-}}
-
-\def\@@vecc@type#1#2{\@@@vecc@type#2{\csname vecc@\m@strip#1@sf\endcsname}{\csname vecc@\m@strip#1@s\endcsname}}
+\def\@@vecc@type#1#2{\@@@vecc@type#2{\csname vecc@\m@strip#1@sf\endcsname}{\csname vecc@\m@strip#1@s\endcsname}{#1}}
\def\@vecc@type#1#2#3{\mathpalette\@@vecc@type{{#1}{#2}{#3}}}
+\def\@@@undervecc@type#1#2#3#4#5#6{%
+ \vtop{\offinterlineskip%
+ \ialign{##\cr
+ $\m@th#6#1$\cr\noalign{\kern\dimexpr\vecc@skip ex * #4\relax}%
+ $\m@th\mkern\vecc@skew mu%
+ #2{\vecc@w}{\vecc@hw}[#4][#5]%
+ \cleaders\hrule height \dimexpr \vecc@w pt * #4 * \@font@scale\relax\hfill%
+ #3{\vecc@w}{\vecc@hw}[#4][#5]%
+ \mkern\vecc@skew mu$\cr%
+ }%
+ }%
+}
+
+\def\@@undervecc@type#1#2{\@@@undervecc@type#2{\csname vecc@\m@strip#1@sf\endcsname}{\csname vecc@\m@strip#1@s\endcsname}{#1}}
+\def\@undervecc@type#1#2#3{\mathpalette\@@undervecc@type{{#1}{#2}{#3}}}
+
\def\@vecc@def#1#2#3{%
\expandafter\def\csname #1\endcsname##1{\@vecc@type{##1}{#2}{#3}}%
\expandafter\def\csname short#1\endcsname##1{{\def\vecc@skew{0}\csname #1\endcsname{##1}}}%
}
+\def\@undervecc@def#1#2#3{%
+ \expandafter\def\csname #1\endcsname##1{\@undervecc@type{##1}{#2}{#3}}%
+ \expandafter\def\csname short#1\endcsname##1{{\def\vecc@skew{0}\csname #1\endcsname{##1}}}%
+}
+
+\def\@overunder@def#1#2#3{\@vecc@def{over#1}{#2}{#3}\@undervecc@def{under#1}{#2}{#3}}
+
\@vecc@def{vecc}\@linecap\@rarrow
\@vecc@def{lvecc}\@larrow\@linecap
-\@vecc@def{overrightharp}\@linecap\@rharp
-\@vecc@def{overleftharp}\@lharp\@linecap
-\@vecc@def{overleftrightvecc}\@larrow\@rarrow
-\@vecc@def{overleftrightharp}\@lharp\@rdharp
-\@vecc@def{overrightleftharp}\@ldharp\@rharp
\@vecc@def{straightvecc}\@linecap\@rsarrow
\@vecc@def{straightlvecc}\@lsarrow\@linecap
+\@undervecc@def{undervecc}\@linecap\@rarrow
+\@undervecc@def{underlvecc}\@larrow\@linecap
+\@undervecc@def{understraightvecc}\@linecap\@rsarrow
+\@undervecc@def{understraightlvecc}\@lsarrow\@linecap
+
+\@overunder@def{rightharp}\@linecap\@rharp
+\@overunder@def{leftharp}\@lharp\@linecap
+\@overunder@def{leftrightvecc}\@larrow\@rarrow
+\@overunder@def{leftrightharp}\@lharp\@rdharp
+\@overunder@def{rightleftharp}\@ldharp\@rharp
\unless\ifx\pdfxform\undefined
\def\@@constvec#1#2#3{{%
@@ -132,7 +199,7 @@
\fi
\def\arrow@skip{\mkern1mu}
-\def\xarrow@buffer{3}
+\def\xarrow@buffer{1}
\def\@@@xarrow@type#1#2#3#4#5#6#7{\mathrel{\arrow@skip%
\vcenter{\hbox{$#7%
#1{\vecc@w}{\vecc@hw}[#5][#6]%
@@ -185,6 +252,93 @@
\@arrow@def{varcirclerightarrow}\@circlecap\@rarrow
\@arrow@def{varcircleleftarrow}\@larrow\@circlecap
+\def\@subscriptconvdef#1#2{\expandafter\let\csname \m@strip#1@subconv\endcsname=#2}
+\def\@subscriptconv#1{\csname \m@strip#1@subconv\endcsname}
+\@subscriptconvdef\displaystyle\scriptstyle
+\@subscriptconvdef\textstyle\scriptstyle
+\@subscriptconvdef\scriptstyle\scriptscriptstyle
+\@subscriptconvdef\scriptscriptstyle\scriptscriptstyle
+
+\def\@@Arrow@rule#1#2#3{%
+ \lower\dimexpr #2 * #3 * \@font@scale\relax
+ \vbox{%
+ \hrule width #1 height \dimexpr \vecc@w pt * #3 * \@font@scale\relax depth 0pt%
+ \kern\dimexpr #2 * #3 * \@font@scale * 2 - \vecc@w pt * #3 * \@font@scale\relax%
+ \hrule width #1 height \dimexpr \vecc@w pt * #3 * \@font@scale\relax depth 0pt%
+ }%
+}
+
+% #1 width #2 bar height difference #3 mathstyle scale (fraction)
+\def\@Arrow@rule#1#2#3{%
+ \@@Arrow@rule{\dimexpr #1 * #3\relax}{#2}{#3}%
+}
+
+% #1 left cap
+% #2 right cap
+% #3 bar displacement
+% #4 top material
+% #5 bottom material
+% #6 mathstyle scale (fraction)
+% #7 mathstyle scale (decimal)
+% #8 mathstyle
+\def\@@@xArrow@type#1#2#3#4#5#6#7#8{\mathrel{\arrow@skip%
+ {\setbox0=\hbox{$#8-$}\raise.5\dimexpr\ht0-\dp0-(\vecc@w pt * #6 * \@font@scale)\relax\hbox{$#8%
+ \setbox0=\hbox{$\@subscriptconv#8#5$}%
+ #1{\vecc@w}{\vecc@hw}[#6][#7]%
+ \@Arrow@rule{\xarrow@buffer pt}{#3 pt}{#6}%
+ \lower\dimexpr (#3 pt + \vecc@skip ex) * #6 * \@font@scale+\ht0\relax
+ \vbox{\offinterlineskip%
+ \ialign{\hfil##\hfil\cr
+ $\@subscriptconv#8#4$\cr\noalign{\kern\dimexpr\vecc@skip ex * #6 * \@font@scale\relax}%
+ \leaders\hrule height \dimexpr \vecc@w pt * #6 * \@font@scale\relax\hfill\cr%
+ \noalign{\kern\dimexpr #3 pt * #6 * \@font@scale * 2 - \vecc@w pt * #6 * \@font@scale\relax}%
+ \leaders\hrule height \dimexpr \vecc@w pt * #6 * \@font@scale\relax\hfill\cr\noalign{\kern\dimexpr\vecc@skip ex * #6 * \@font@scale\relax}%
+ $\@subscriptconv#8#5$\cr%
+ }%
+ }%
+ \@Arrow@rule{\xarrow@buffer pt}{#3 pt}{#6}%
+ #2{\vecc@w}{\vecc@hw}[#6][#7]%
+ $}}%
+ \arrow@skip%
+}}
+
+\def\@@xArrow@type#1#2{\@@@xArrow@type#2{\csname vecc@\m@strip#1@sf\endcsname}{\csname vecc@\m@strip#1@s\endcsname}{#1}}
+\def\@xArrow@type#1#2#3#4#5{\mathpalette\@@xArrow@type{{#1}{#2}{#3}{#4}{#5}}}
+
+\def\@@@Arrow@type#1#2#3#4#5#6#7{\mathrel{\arrow@skip%
+ \vcenter{\hbox{$#7%
+ #1{\vecc@w}{\vecc@hw}[#5][#6]%
+ \@Arrow@rule{#3}{#4pt}{#5}%
+ #2{\vecc@w}{\vecc@hw}[#5][#6]%
+ $}}\arrow@skip%
+}}
+
+\def\@@Arrow@type#1#2{\@@@Arrow@type#2{\csname vecc@\m@strip#1@sf\endcsname}{\csname vecc@\m@strip#1@s\endcsname}{#1}}
+\def\@Arrow@type#1#2#3#4{\mathpalette\@@Arrow@type{{#1}{#2}{#3}{#4}}}
+
+\def\@Arrow@def#1#2#3#4{%
+ \expandafter\def\csname #1\endcsname{\@Arrow@type{#2}{#3}{1ex}{#4}}%
+ \expandafter\def\csname long#1\endcsname{\@Arrow@type{#2}{#3}{2ex}{#4}}%
+ \expandafter\def\csname @x#1\endcsname##1[##2]{\@xArrow@type{#2}{#3}{#4}{##1}{##2}}%
+ \expandafter\def\csname x#1\endcsname##1{%
+ \@ifnextchar[ {\csname @x#1\endcsname{##1}}%
+ {\csname @x#1\endcsname{##1}[]}%
+ }%
+}
+
+\@Arrow@def{varRightarrow}\@Linecap\@Rarrow{1}
+\@Arrow@def{varLeftarrow}\@Larrow\@Linecap{1}
+\@Arrow@def{varCirclerightarrow}\@Leftcirclecap\@Rarrow{1}
+\@Arrow@def{varCircleleftarrow}\@Larrow\@Rightcirclecap{1}
+\@Arrow@def{varSquarerightarrow}\@Leftsquarecap\@Rarrow{1}
+\@Arrow@def{varSquareleftarrow}\@Larrow\@Rightsquarecap{1}
+\@Arrow@def{varRibbonrightarrow}\@Leftribboncap\@Rarrow{1}
+\@Arrow@def{varRibbonleftarrow}\@Larrow\@Rightribboncap{1}
+\@Arrow@def{roundedarrow}\@Leftcirclecap\@Rightcirclecap{1}
+\@Arrow@def{squaredarrow}\@Leftsquarecap\@Rightsquarecap{1}
+\@Arrow@def{rightPP}\@Circlescap\@Rightcirclecap{1}
+\@Arrow@def{leftPP}\@Leftcirclecap\@Circlescap{1}
+
\def\accent@skew{.4}
\def\accent@raise{.25}
\def\@@@wide@accent#1#2#3{{%
@@ -212,6 +366,86 @@
\def\varwidehat{\@wide@accent{0 0 m .5 .9 l 1 0 l 1 .3 l .5 1.6 l 0 .3 l f}}
\def\varwidetilde{\@wide@accent{0 0 m .25 1.5 .45 1.1 .5 1 c .55 .9 .75 0 1 1.5 c 1 1.75 l .75 .5 .55 1.4 .5 1.5 c .45 1.6 .25 2 0 .25 c f}}
+\def\@skewedlim@op@done#1#2#3#4#5{#1^{\mkern-#2mu#4}_{\mkern-#3mu#5}}
+\def\@skewedlim@op@supsub#1#2#3#4_#5{\@skewedlim@op@done{#1}{#2}{#3}{#4}{#5}}
+\def\@skewedlim@op@subsup#1#2#3#4^#5{\@skewedlim@op@done{#1}{#2}{#3}{#5}{#4}}
+\def\@skewedlim@op@sub#1#2#3#4#5{%
+ \@ifnextchar^ {\@skewedlim@op@subsup{#1}{#2}{#3}{#5}}%
+ {\@skewedlim@op@done{#1}{#2}{#3}{}{#5}}%
+}
+\def\@skewedlim@op@sup#1#2#3#4#5{%
+ \@ifnextchar_ {\@skewedlim@op@supsub{#1}{#2}{#3}{#5}}%
+ {\@skewedlim@op@done{#1}{#2}{#3}{#5}{}}%
+}
+\def\@skewedlim@op@nsup#1#2#3{%
+ \@ifnextchar_ {\@skewedlim@op@sub{#1}{#2}{#3}}%
+ {\@skewedlim@op@done{#1}{#2}{#3}{}{}}%
+}
+\def\@@skewedlim@op#1#2#3{%
+ \@ifnextchar^ {\@skewedlim@op@sup{#1}{#2}{#3}}%
+ {\@skewedlim@op@nsup{#1}{#2}{#3}}%
+}
+
+\def\@skewedlim@op@limits{%
+ \ifx\@skewedlim@char\nolimits%
+ \pdfmsym@afterfi{\@@skewedlim@op{\@skewedlim@atom\nolimits}{\@skewedlim@nolim@supskew}{\@skewedlim@nolim@subskew}}%
+ \else%
+ \pdfmsym@afterfi{\ifx\@skewedlim@char\limits%
+ \pdfmsym@afterfi{\@@skewedlim@op{\@skewedlim@atom\limits}{\@skewedlim@lim@supskew}{\@skewedlim@lim@subskew}}%
+ \else%
+ \pdfmsym@afterfi{\@@skewedlim@op{\@skewedlim@atom\@skewedlim@preflim}{\@skewedlim@preflim@supskew}{\@skewedlim@preflim@subskew}\@skewedlim@char}%
+ \fi}%
+ \fi%
+}
+
+\def\@skewedlim@op#1#2#3#4#5#6#7#8{%
+ \def\@skewedlim@atom{#1}%
+ \def\@skewedlim@nolim@supskew{#2}\def\@skewedlim@nolim@subskew{#3}%
+ \def\@skewedlim@lim@supskew{#4}\def\@skewedlim@lim@subskew{#5}%
+ \def\@skewedlim@preflim@supskew{#6}\def\@skewedlim@preflim@subskew{#7}%
+ \def\@skewedlim@preflim{#8}%
+ \afterassignment\@skewedlim@op@limits%
+ \let\@skewedlim@char=%
+}
+
+\def\exsym@displaystyle@s{1} \def\exsym@displaystyle@sf{1}
+\def\exsym@textstyle@s{.7} \def\exsym@textstyle@sf{7 / 10}
+\def\exsym@scriptstyle@s{.7} \def\exsym@scriptstyle@sf{7 / 10}
+\def\exsym@scriptscriptstyle@s{.6} \def\exsym@scriptscriptstyle@sf{6 / 10}
+% #1 main symbol
+% #2 left cap
+% #3 right cap
+% #4 height difference
+% #5 width skew
+% #6 mathstyle scale (fraction)
+% #7 mathstyle scale (decimal)
+% #8 mathstyle
+\def\@@putexsym#1#2#3#4#5#6#7#8{{%
+ \setbox0=\hbox{$\m@th#8#1$}%
+ \setbox1=\hbox{$\m@th#2{\vecc@w}{\vecc@hw}[#6][#7]$}%
+ \kern\dimexpr\wd1 - #5 pt * #6 * \@font@scale\relax\rlap{$#8#1$}\kern-\dimexpr\wd1 - #5pt * #6 * \@font@scale\relax%
+ \raise.5\dimexpr\ht0-\dp0\relax
+ \vbox{\hbox{$#8#2{\vecc@w}{\vecc@hw}[#6][#7]\@@Arrow@rule{\dimexpr\wd0- #5 pt * #6 * \@font@scale * 2\relax}{#4 pt}{#6}#3{\vecc@w}{\vecc@hw}[#6][#7]$}}%
+}}
+
+\def\@putexsym#1#2{\@@putexsym#2{\csname exsym@\m@strip#1@sf\endcsname}{\csname exsym@\m@strip#1@s\endcsname}{#1}}
+\def\putexsym#1#2#3#4#5{\mathpalette\@putexsym{{#1}{#2}{#3}{#4}{#5}}}
+
+\def\@BigRightcirclecap{\@linehead@type{0 2.5 m 1 2.5 2 1.25 2 0 c 2 -1.25 1 -2.5 0 -2.5 c S}{2}}
+\def\@BigLeftcirclecap{\@linehead@type {2 2.5 m 1 2.5 0 1.25 0 0 c 0 -1.25 1 -2.5 2 -2.5 c S}{2}}
+\def\@BigRightsquarecap{\@linehead@type {0 2.5 m 1 2.5 l 1 -2.5 l 0 -2.5 l S}{1}}
+\def\@BigLeftsquarecap{\@linehead@type{1 2.5 m 0 2.5 l 0 -2.5 l 1 -2.5 l S}{1}}
+\def\@BigCirclescap{\@linehead@type{0 -2 m 0 -1 1 0 2 0 c 3 0 4 -1 4 -2 c 4 -3 3 -4 2 -4 c 1 -4 0 -3 0 -2 c
+ 0 2 m 0 3 1 4 2 4 c 3 4 4 3 4 2 c 4 1 3 0 2 0 c 1 0 0 1 0 2 c S}{4}}
+
+\def\iNint@kern@{\mkern-10mu\mathchoice{\mkern-5mu}{}{}{}}
+\def\iNint#1{\pdfmsym@repeated{\numexpr #1-1\relax}{\int\iNint@kern@}\int}
+\def\@oiNint#1{\putexsym{\iNint{#1}}\@BigLeftcirclecap\@BigRightcirclecap{2.5}{4}}
+\def\@biNint#1{\putexsym{\iNint{#1}}\@BigLeftsquarecap\@BigRightsquarecap{2.5}{4}}
+
+\def\oiNint#1{\@skewedlim@op{\mathop{\@oiNint{#1}}}{-4}{6}{-10}{10}{-4}{6}\nolimits}
+\def\biNint#1{\@skewedlim@op{\mathop{\@biNint{#1}}}{-6}{6}{-10}{10}{-6}{6}\nolimits}
+
\def\@@putsym#1#2#3{{\setbox0=\hbox{$#1#2$}\rlap{\hbox to \wd0{\hss$#1#3$\hss}}}}
\def\@putsym#1#2{\@@putsym#1#2}
\def\putsym#1#2{\mathpalette\@putsym{{#1}{#2}}\mathopen{}#1}
@@ -219,6 +453,8 @@
\def\aint{\mathop{}\mathclose{}\putsym\int-}
\def\dwedge{\mathbin{\putsym\wedge\cdot}}
\def\bigdwedge{\mathop{\putsym\bigwedge\cdot}}
+\def\circwedge{\mathbin{\putsym\wedge\smallcircle}}
+\def\bigcircwedge{\mathop{\putsym\bigwedge\smallcircle}}
\def\dcup{\mathbin{\putsym\cup\cdot}}
\def\bigdcup{\mathop{\putsym\bigcup\cdot}}
@@ -271,7 +507,9 @@
{#5 * \@firstoftwo#9}
{#6 * \@firstoftwo#9}%
\expandafter\def\csname @#1@\endcsname##1##2{\math@drawing@get{#1}{##1}}%
- \expandafter\def\csname #1\endcsname{\expandafter\mathpalette\csname @#1@\endcsname{}}
+ \expandafter\def\csname #1\endcsname{\expandafter\mathpalette\csname @#1@\endcsname{}}%
+ \expandafter\def\csname @center@#1@\endcsname##1##2{\vcenter{\hbox{\math@drawing@get{#1}{##1}}}}%
+ \expandafter\def\csname center@#1\endcsname{\expandafter\mathpalette\csname @center@#1@\endcsname{}}%
}
\def\math@sym@defs{%
@@ -300,6 +538,28 @@
{5.4pt}{10pt}{0pt}{.2pt}
{{1}{1}}{{7 / 10}{.7}}{{11 / 20}{.55}}
\def\divs{\mathrel{\@divs}}
+
+ \pdf@drawing@math@macro{@bigforall}
+ {.8 w 1 J 1 j
+ 0 9.5 m 6 -4 l 12 9.5 l
+ 2.8 4 m 9.2 4 l S}
+ {14pt}{10.8pt}{4.8pt}{1pt}
+ {{7 / 10}{.7}}{{5 / 10}{.5}}{{35 / 100}{.35}}
+ \def\bigforall{\mathop{\@bigforall}}
+
+ \pdf@drawing@math@macro{@bigexists}
+ {.8 w 1 J 1 j
+ 0 9.5 m 8 9.5 l 8 -4.5 l 0 -4.5 l
+ 1 2.5 m 7.9 2.5 l S}
+ {10pt}{10.8pt}{4.8pt}{1pt}
+ {{7 / 10}{.7}}{{5 / 10}{.5}}{{35 / 100}{.35}}
+ \def\bigexists{\mathop{\@bigexists}}
+
+ \pdf@drawing@math@macro{@smallcircle}
+ {.3 w 0 .5 m 0 .75 .25 1 .5 1 c .75 1 1 .75 1 .5 c 1 .25 .75 0 .5 0 c .25 0 0 .25 0 .5 c S}
+ {1.6pt}{1.6pt}{.3pt}{.3pt}
+ {{1}{1}}{{7 / 10}{.7}}{{6 / 10}{.6}}
+ \let\smallcircle=\center@@smallcircle
}
% Thanks to Plante for this macro (it is a generalized version of the one found in TeX Pearls 2006 by