summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/tablor
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2013-10-07 23:01:31 +0000
committerKarl Berry <karl@freefriends.org>2013-10-07 23:01:31 +0000
commitb1c0b4cd7b7d238d2bb2b035d2f88b1969f4e107 (patch)
tree1678173f29099f6676951a77d042a1044a2ce4e8 /Master/texmf-dist/tex/latex/tablor
parentd2e3e6169a106814b9a75158223ffeba7c36cc7b (diff)
tablor (7oct13)
git-svn-id: svn://tug.org/texlive/trunk@31855 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/latex/tablor')
-rw-r--r--Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty210
-rw-r--r--Master/texmf-dist/tex/latex/tablor/tablor.sty210
2 files changed, 211 insertions, 209 deletions
diff --git a/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty b/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty
index a41e846c597..2ef9eba2204 100644
--- a/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty
+++ b/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty
@@ -1,5 +1,7 @@
+% Last modified: <tablor-xetex.sty modifié par Guillaume CONNAN le dimanche 6 octobre 2013 à 14h 46min 27s>
+
\NeedsTeXFormat{LaTeX2e}[1995/12/01]
-\ProvidesPackage{tablor-xetex}[08/05/2010 v4.07 la machine a creer des
+\ProvidesPackage{tablor-xetex}[06/10/2013 v4.07-g la machine a creer des
tableaux de signes et variations compatible xetex]
% \copyleft Connan le Barbare (aka Guillaume Connan) \copyright
@@ -350,8 +352,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" ";
pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex);
";fpour;
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -366,34 +368,34 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.1))>0;
lsf:=if(member(Z[nz-1],F)==0){""}else{"nonDefBarre;
"}
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
li:=lvic+nom+"}$ etex);"+
- if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1"}else{"0"}+
");";
- if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)){
"limGauche(btex
- $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$
- etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$
+ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}}
}; }
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -539,8 +541,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" ";
pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex);
";fpour;
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],FP)==0){
@@ -555,34 +557,34 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.1))>0;
lsf:=if(member(Z[nz-1],FP)==0){""}else{"nonDefBarre;
"}
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
li:=lvic+nom+"}$ etex);"+
- if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1"}else{"0"}+
");";
- if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)){
"valPos(btex
- $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$
+ $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$
etex,"+if(krm==1){"1);"}else{"0);"} }
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}}
}; }
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}};
@@ -744,8 +746,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" ";
pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex);
";fpour;
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(member(Z[0],IMIN)!=0){if((member(Z[0],F)==0) and (fp(Z[0])!=undef)){"debutNonDef;"}else{"debutNonDefStrict;"}}else{if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -792,40 +794,40 @@ lsf:=if(member(Z[nz-1],IMAX)!=0){if((member(Z[nz-1],F)==0) and (fp(Z[nz-1])!=und
"}}
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
li:=lvic +nom+"}$ etex);"+
- if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1"}else{"0"}+
");";
if(nz>2){
for(r:=1; r<=nz-2;r++){
- krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],IMIN)!=0){"limGauche(btex $"+if(lmrm==1){
"-\\infty"}else{
- latex(simplify(limit(f(x),x=Z[r],-1)))}
+ latex(simplify(limit(f(x),x,Z[r],-1)))}
+"$ etex,"+if(krm==1){
"1);"}else{"0);"}
+if(member(Z[r],F)==0){"debutNonDef;"}else{"debutNonDefStrict;"}
}//fsi Zr=Imin
else{
if (member(Z[r],IMAX)!=0){if(member(Z[r],F)==0){"finNonDef;"}else{"finNonDefStrict;"}+"limDroite(btex $"+if(lmrp==1){
- "-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}
+ "-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}
+"$ etex,"+if(krp==1){
"1);"}else{"0);"}
}else{
if(member(Z[r],F)){
"limGauche(btex $"+if(lmrm==1){
"-\\infty"}else{
- latex(simplify(limit(f(x),x=Z[r],-1)))}
+ latex(simplify(limit(f(x),x,Z[r],-1)))}
+"$ etex,"+if(krm==1){
"1);"}else{"0);"}
+"nonDefBarre;limDroite(btex $"+if(lmrp==1){
- "-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}
+ "-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}
+"$ etex,"+if(krp==1){
"1);"}else{"0);"}
}//fsi (member Zr F)
@@ -841,15 +843,15 @@ if(nz>2){
};//ffor
}//fsi nz
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -1001,8 +1003,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" ";
pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex);
";fpour;
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -1017,31 +1019,31 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.01))>0;
lsf:=if(member(Z[nz-1],F)==0){""}else{"nonDefBarre;
"}
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
li:=lvic+nom+"}$ etex);"+
- if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1"}else{"0"}+
");";
- if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}}
}; }
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -1206,8 +1208,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}};
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -1242,7 +1244,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
@@ -1250,36 +1252,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity;
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
li:=lvic+nom+"}$ etex);
-"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "};
if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)) {
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex
$ "+ao+" $ etex,0.5);"
}else{" "};
};//for
}else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1));
- krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ;
- lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
+ krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1));
+ krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex
$ "+ao+" $ etex,0.5);
";rr:=rr+1;
}// testS==0
else{lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}};rr:=rr+1;
@@ -1292,14 +1294,14 @@ else{lp:=lp+if(member(Z[rr],F)){
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -1480,8 +1482,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}};
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -1515,7 +1517,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
@@ -1523,36 +1525,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity;
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
li:=lvic+nom+"}$ etex);
-"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "};
if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)) {
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex
$ "+ao+" $ etex,0.5);"
}else{" "};
};//for
}else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1));
- krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ;
- lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
+ krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1));
+ krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex
$ "+ao+" $ etex,0.5);
";rr:=rr+1;
}// testS==0
else{lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}};rr:=rr+1;
@@ -1565,14 +1567,14 @@ else{lp:=lp+if(member(Z[rr],F)){
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -1767,8 +1769,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}};
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -1802,7 +1804,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
@@ -1810,36 +1812,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity;
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
li:=lvic+nom+"}$ etex);
-"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "};
if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)) {
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex
$ "+ao+" $ etex,0.5);"
}else{" "};
};//for
}else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1));
- krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ;
- lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
+ krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1));
+ krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex
$ "+ao+" $ etex,0.5);
";rr:=rr+1;
}// testS==0
else{lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}};rr:=rr+1;
@@ -1852,14 +1854,14 @@ else{lp:=lp+if(member(Z[rr],F)){
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
diff --git a/Master/texmf-dist/tex/latex/tablor/tablor.sty b/Master/texmf-dist/tex/latex/tablor/tablor.sty
index 1221170e0ae..7a1dc82fe41 100644
--- a/Master/texmf-dist/tex/latex/tablor/tablor.sty
+++ b/Master/texmf-dist/tex/latex/tablor/tablor.sty
@@ -1,8 +1,8 @@
-% Last modified: <tablor.sty modifi par Guillaume Connan le dimanche 19 fvrier 2012 18h 02min 15s>
+% Last modified: <tablor.sty modifi par Guillaume CONNAN le dimanche 6 octobre 2013 14h 46min 18s>
\NeedsTeXFormat{LaTeX2e}[1995/12/01]
-\ProvidesPackage{tablor}[19/02/2012 v4.07b la machine a creer des tableaux de signes et variations]
+\ProvidesPackage{tablor}[06/10/2013 v4.07g la machine a creer des tableaux de signes et variations]
% \copyleft Connan le Barbare (aka Guillaume Connan) \copyright
% This work may be distributed and/or mofified under the conditions
@@ -315,8 +315,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" ";
pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex);
";fpour;
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -331,34 +331,34 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.1))>0;
lsf:=if(member(Z[nz-1],F)==0){""}else{"nonDefBarre;
"}
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
li:=lvic+nom+"}$ etex);"+
- if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1"}else{"0"}+
");";
- if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)){
"limGauche(btex
- $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$
- etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$
+ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}}
}; }
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -504,8 +504,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" ";
pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex);
";fpour;
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],FP)==0){
@@ -520,34 +520,34 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.1))>0;
lsf:=if(member(Z[nz-1],FP)==0){""}else{"nonDefBarre;
"}
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
li:=lvic+nom+"}$ etex);"+
- if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1"}else{"0"}+
");";
- if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)){
"valPos(btex
- $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$
+ $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$
etex,"+if(krm==1){"1);"}else{"0);"} }
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}}
}; }
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}};
@@ -709,8 +709,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" ";
pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex);
";fpour;
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(member(Z[0],IMIN)!=0){if((member(Z[0],F)==0) and (fp(Z[0])!=undef)){"debutNonDef;"}else{"debutNonDefStrict;"}}else{if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -748,40 +748,40 @@ lsf:=if(member(Z[nz-1],IMAX)!=0){if((member(Z[nz-1],F)==0) and (fp(Z[nz-1])!=und
"}}
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
li:=lvic +nom+"}$ etex);"+
- if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1"}else{"0"}+
");";
if(nz>2){
for(r:=1; r<=nz-2;r++){
- krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],IMIN)!=0){"limGauche(btex $"+if(lmrm==1){
"-\\infty"}else{
- latex(simplify(limit(f(x),x=Z[r],-1)))}
+ latex(simplify(limit(f(x),x,Z[r],-1)))}
+"$ etex,"+if(krm==1){
"1);"}else{"0);"}
+if(member(Z[r],F)==0){"debutNonDef;"}else{"debutNonDefStrict;"}
}//fsi Zr=Imin
else{
if (member(Z[r],IMAX)!=0){if(member(Z[r],F)==0){"finNonDef;"}else{"finNonDefStrict;"}+"limDroite(btex $"+if(lmrp==1){
- "-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}
+ "-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}
+"$ etex,"+if(krp==1){
"1);"}else{"0);"}
}else{
if(member(Z[r],F)){
"limGauche(btex $"+if(lmrm==1){
"-\\infty"}else{
- latex(simplify(limit(f(x),x=Z[r],-1)))}
+ latex(simplify(limit(f(x),x,Z[r],-1)))}
+"$ etex,"+if(krm==1){
"1);"}else{"0);"}
+"nonDefBarre;limDroite(btex $"+if(lmrp==1){
- "-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}
+ "-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}
+"$ etex,"+if(krp==1){
"1);"}else{"0);"}
}//fsi (member Zr F)
@@ -797,15 +797,15 @@ if(nz>2){
};//ffor
}//fsi nz
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -946,8 +946,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" ";
pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex);
";fpour;
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -962,31 +962,31 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.01))>0;
lsf:=if(member(Z[nz-1],F)==0){""}else{"nonDefBarre;
"}
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
li:=lvic+nom+"}$ etex);"+
- if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1"}else{"0"}+
");";
- if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}}
}; }
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -1151,8 +1151,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}};
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -1187,7 +1187,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
@@ -1195,36 +1195,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity;
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
li:=lvic+nom+"}$ etex);
-"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "};
if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)) {
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex
$ "+ao+" $ etex,0.5);"
}else{" "};
};//for
}else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1));
- krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ;
- lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
+ krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1));
+ krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex
$ "+ao+" $ etex,0.5);
";rr:=rr+1;
}// testS==0
else{lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}};rr:=rr+1;
@@ -1237,14 +1237,14 @@ else{lp:=lp+if(member(Z[rr],F)){
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -1425,8 +1425,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}};
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -1460,7 +1460,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
@@ -1468,36 +1468,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity;
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
li:=lvic+nom+"}$ etex);
-"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "};
if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)) {
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex
$ "+ao+" $ etex,0.5);"
}else{" "};
};//for
}else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1));
- krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ;
- lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
+ krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1));
+ krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex
$ "+ao+" $ etex,0.5);
";rr:=rr+1;
}// testS==0
else{lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}};rr:=rr+1;
@@ -1510,14 +1510,14 @@ else{lp:=lp+if(member(Z[rr],F)){
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};
@@ -1716,8 +1716,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}};
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
- k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1));
- kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1));
+ k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1));
+ kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1));
lsi:=lsic+nom+"'("+nomv+")}$ etex);"+
if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){
@@ -1751,7 +1751,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[
-lm0:=limit(f(x),x=Z[0],1)==-infinity;
+lm0:=limit(f(x),x,Z[0],1)==-infinity;
@@ -1759,36 +1759,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity;
TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0);
li:=lvic+nom+"}$ etex);
-"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}
- else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+
+"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}
+ else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+
if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "};
if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1));
- krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ;
- lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity;
+ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1));
+ krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity;
lp:=lp+if(member(Z[r],F)) {
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$
etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex
$ "+ao+" $ etex,0.5);"
}else{" "};
};//for
}else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0);
- krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1));
- krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ;
- lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
+ krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1));
+ krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ;
+ lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1]));
if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex
$ "+ao+" $ etex,0.5);
";rr:=rr+1;
}// testS==0
else{lp:=lp+if(member(Z[rr],F)){
- "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
+ "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}}
else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$
etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);
"}}};rr:=rr+1;
@@ -1801,14 +1801,14 @@ else{lp:=lp+if(member(Z[rr],F)){
-lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity;
+lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity;
lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);"}else{"0);"}}
else{"limGauche(btex $"+
- if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+
+ if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+
if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}};