From b1c0b4cd7b7d238d2bb2b035d2f88b1969f4e107 Mon Sep 17 00:00:00 2001 From: Karl Berry Date: Mon, 7 Oct 2013 23:01:31 +0000 Subject: tablor (7oct13) git-svn-id: svn://tug.org/texlive/trunk@31855 c570f23f-e606-0410-a88d-b1316a301751 --- .../texmf-dist/tex/latex/tablor/tablor-xetex.sty | 210 +++++++++++---------- Master/texmf-dist/tex/latex/tablor/tablor.sty | 210 ++++++++++----------- 2 files changed, 211 insertions(+), 209 deletions(-) (limited to 'Master/texmf-dist/tex/latex/tablor') diff --git a/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty b/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty index a41e846c597..2ef9eba2204 100644 --- a/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty +++ b/Master/texmf-dist/tex/latex/tablor/tablor-xetex.sty @@ -1,5 +1,7 @@ +% Last modified: + \NeedsTeXFormat{LaTeX2e}[1995/12/01] -\ProvidesPackage{tablor-xetex}[08/05/2010 v4.07 la machine a creer des +\ProvidesPackage{tablor-xetex}[06/10/2013 v4.07-g la machine a creer des tableaux de signes et variations compatible xetex] % \copyleft Connan le Barbare (aka Guillaume Connan) \copyright @@ -350,8 +352,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" "; pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex); ";fpour; - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -366,34 +368,34 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.1))>0; lsf:=if(member(Z[nz-1],F)==0){""}else{"nonDefBarre; "} -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; li:=lvic+nom+"}$ etex);"+ - if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ + if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1"}else{"0"}+ ");"; - if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)){ "limGauche(btex - $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ - etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ + etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}} }; } -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -539,8 +541,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" "; pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex); ";fpour; - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],FP)==0){ @@ -555,34 +557,34 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.1))>0; lsf:=if(member(Z[nz-1],FP)==0){""}else{"nonDefBarre; "} -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; li:=lvic+nom+"}$ etex);"+ - if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ + if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1"}else{"0"}+ ");"; - if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)){ "valPos(btex - $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ + $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"} } else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}} }; } -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}}; @@ -744,8 +746,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" "; pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex); ";fpour; - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(member(Z[0],IMIN)!=0){if((member(Z[0],F)==0) and (fp(Z[0])!=undef)){"debutNonDef;"}else{"debutNonDefStrict;"}}else{if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -792,40 +794,40 @@ lsf:=if(member(Z[nz-1],IMAX)!=0){if((member(Z[nz-1],F)==0) and (fp(Z[nz-1])!=und "}} -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; li:=lvic +nom+"}$ etex);"+ - if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ + if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1"}else{"0"}+ ");"; if(nz>2){ for(r:=1; r<=nz-2;r++){ - krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],IMIN)!=0){"limGauche(btex $"+if(lmrm==1){ "-\\infty"}else{ - latex(simplify(limit(f(x),x=Z[r],-1)))} + latex(simplify(limit(f(x),x,Z[r],-1)))} +"$ etex,"+if(krm==1){ "1);"}else{"0);"} +if(member(Z[r],F)==0){"debutNonDef;"}else{"debutNonDefStrict;"} }//fsi Zr=Imin else{ if (member(Z[r],IMAX)!=0){if(member(Z[r],F)==0){"finNonDef;"}else{"finNonDefStrict;"}+"limDroite(btex $"+if(lmrp==1){ - "-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))} + "-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))} +"$ etex,"+if(krp==1){ "1);"}else{"0);"} }else{ if(member(Z[r],F)){ "limGauche(btex $"+if(lmrm==1){ "-\\infty"}else{ - latex(simplify(limit(f(x),x=Z[r],-1)))} + latex(simplify(limit(f(x),x,Z[r],-1)))} +"$ etex,"+if(krm==1){ "1);"}else{"0);"} +"nonDefBarre;limDroite(btex $"+if(lmrp==1){ - "-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))} + "-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))} +"$ etex,"+if(krp==1){ "1);"}else{"0);"} }//fsi (member Zr F) @@ -841,15 +843,15 @@ if(nz>2){ };//ffor }//fsi nz -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -1001,8 +1003,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" "; pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex); ";fpour; - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -1017,31 +1019,31 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.01))>0; lsf:=if(member(Z[nz-1],F)==0){""}else{"nonDefBarre; "} -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; li:=lvic+nom+"}$ etex);"+ - if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ + if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1"}else{"0"}+ ");"; - if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}} }; } -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -1206,8 +1208,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}}; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -1242,7 +1244,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[ -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; @@ -1250,36 +1252,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); li:=lvic+nom+"}$ etex); -"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ +"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "}; if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)) { - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);" }else{" "}; };//for }else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1)); - krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ; - lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); + krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1)); + krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ; + lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex $ "+ao+" $ etex,0.5); ";rr:=rr+1; }// testS==0 else{lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}};rr:=rr+1; @@ -1292,14 +1294,14 @@ else{lp:=lp+if(member(Z[rr],F)){ -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -1480,8 +1482,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}}; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -1515,7 +1517,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[ -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; @@ -1523,36 +1525,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); li:=lvic+nom+"}$ etex); -"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ +"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "}; if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)) { - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);" }else{" "}; };//for }else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1)); - krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ; - lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); + krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1)); + krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ; + lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex $ "+ao+" $ etex,0.5); ";rr:=rr+1; }// testS==0 else{lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}};rr:=rr+1; @@ -1565,14 +1567,14 @@ else{lp:=lp+if(member(Z[rr],F)){ -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -1767,8 +1769,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}}; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -1802,7 +1804,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[ -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; @@ -1810,36 +1812,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); li:=lvic+nom+"}$ etex); -"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ +"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "}; if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)) { - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);" }else{" "}; };//for }else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1)); - krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ; - lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); + krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1)); + krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ; + lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex $ "+ao+" $ etex,0.5); ";rr:=rr+1; }// testS==0 else{lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}};rr:=rr+1; @@ -1852,14 +1854,14 @@ else{lp:=lp+if(member(Z[rr],F)){ -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; diff --git a/Master/texmf-dist/tex/latex/tablor/tablor.sty b/Master/texmf-dist/tex/latex/tablor/tablor.sty index 1221170e0ae..7a1dc82fe41 100644 --- a/Master/texmf-dist/tex/latex/tablor/tablor.sty +++ b/Master/texmf-dist/tex/latex/tablor/tablor.sty @@ -1,8 +1,8 @@ -% Last modified: +% Last modified: \NeedsTeXFormat{LaTeX2e}[1995/12/01] -\ProvidesPackage{tablor}[19/02/2012 v4.07b la machine a creer des tableaux de signes et variations] +\ProvidesPackage{tablor}[06/10/2013 v4.07g la machine a creer des tableaux de signes et variations] % \copyleft Connan le Barbare (aka Guillaume Connan) \copyright % This work may be distributed and/or mofified under the conditions @@ -315,8 +315,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" "; pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex); ";fpour; - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -331,34 +331,34 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.1))>0; lsf:=if(member(Z[nz-1],F)==0){""}else{"nonDefBarre; "} -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; li:=lvic+nom+"}$ etex);"+ - if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ + if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1"}else{"0"}+ ");"; - if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)){ "limGauche(btex - $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ - etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ + etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}} }; } -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -504,8 +504,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" "; pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex); ";fpour; - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],FP)==0){ @@ -520,34 +520,34 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.1))>0; lsf:=if(member(Z[nz-1],FP)==0){""}else{"nonDefBarre; "} -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; li:=lvic+nom+"}$ etex);"+ - if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ + if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1"}else{"0"}+ ");"; - if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)){ "valPos(btex - $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ + $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"} } else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}} }; } -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}}; @@ -709,8 +709,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" "; pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex); ";fpour; - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(member(Z[0],IMIN)!=0){if((member(Z[0],F)==0) and (fp(Z[0])!=undef)){"debutNonDef;"}else{"debutNonDefStrict;"}}else{if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -748,40 +748,40 @@ lsf:=if(member(Z[nz-1],IMAX)!=0){if((member(Z[nz-1],F)==0) and (fp(Z[nz-1])!=und "}} -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; li:=lvic +nom+"}$ etex);"+ - if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ + if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1"}else{"0"}+ ");"; if(nz>2){ for(r:=1; r<=nz-2;r++){ - krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],IMIN)!=0){"limGauche(btex $"+if(lmrm==1){ "-\\infty"}else{ - latex(simplify(limit(f(x),x=Z[r],-1)))} + latex(simplify(limit(f(x),x,Z[r],-1)))} +"$ etex,"+if(krm==1){ "1);"}else{"0);"} +if(member(Z[r],F)==0){"debutNonDef;"}else{"debutNonDefStrict;"} }//fsi Zr=Imin else{ if (member(Z[r],IMAX)!=0){if(member(Z[r],F)==0){"finNonDef;"}else{"finNonDefStrict;"}+"limDroite(btex $"+if(lmrp==1){ - "-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))} + "-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))} +"$ etex,"+if(krp==1){ "1);"}else{"0);"} }else{ if(member(Z[r],F)){ "limGauche(btex $"+if(lmrm==1){ "-\\infty"}else{ - latex(simplify(limit(f(x),x=Z[r],-1)))} + latex(simplify(limit(f(x),x,Z[r],-1)))} +"$ etex,"+if(krm==1){ "1);"}else{"0);"} +"nonDefBarre;limDroite(btex $"+if(lmrp==1){ - "-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))} + "-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))} +"$ etex,"+if(krp==1){ "1);"}else{"0);"} }//fsi (member Zr F) @@ -797,15 +797,15 @@ if(nz>2){ };//ffor }//fsi nz -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -946,8 +946,8 @@ l0:=" newLigneVariables(btex $"+nomv+"$ etex);";lp:=" "; lf:=" ";lsp:=" "; pour m de 0 jusque nz-1 faire l0:=l0+"val(btex $"+latex(Z[m])+"$ etex); ";fpour; - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(sign(evalf(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -962,31 +962,31 @@ if(nz>2){ for(r:=1; r<=nz-2;r++){ ksp:=evalf(fp(Z[r]+0.01))>0; lsf:=if(member(Z[nz-1],F)==0){""}else{"nonDefBarre; "} -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; li:=lvic+nom+"}$ etex);"+ - if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ + if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1"}else{"0"}+ ");"; - if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + if(nz>2){ for(r:=1; r<=nz-2;r++){ krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(sign(evalf(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}} }; } -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -1151,8 +1151,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}}; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1.0){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -1187,7 +1187,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[ -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; @@ -1195,36 +1195,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); li:=lvic+nom+"}$ etex); -"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ +"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "}; if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)) { - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);" }else{" "}; };//for }else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1)); - krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ; - lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); + krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1)); + krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ; + lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex $ "+ao+" $ etex,0.5); ";rr:=rr+1; }// testS==0 else{lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}};rr:=rr+1; @@ -1237,14 +1237,14 @@ else{lp:=lp+if(member(Z[rr],F)){ -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -1425,8 +1425,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}}; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -1460,7 +1460,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[ -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; @@ -1468,36 +1468,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); li:=lvic+nom+"}$ etex); -"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ +"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "}; if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)) { - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);" }else{" "}; };//for }else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1)); - krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ; - lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); + krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1)); + krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ; + lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex $ "+ao+" $ etex,0.5); ";rr:=rr+1; }// testS==0 else{lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}};rr:=rr+1; @@ -1510,14 +1510,14 @@ else{lp:=lp+if(member(Z[rr],F)){ -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; @@ -1716,8 +1716,8 @@ else{l0:=l0+"val(btex $"+latex(Z[kk])+"$ etex);";kk:=kk+1}}; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); - k0:= evalf(limit(f(x),x=Z[0],1))> evalf(limit(f(x),x=Z[1],-1)); - kz:=evalf(limit(f(x),x=Z[nz-1],-1))> evalf(limit(f(x),x=Z[nz-2],1)); + k0:= evalf(limit(f(x),x,Z[0],1))> evalf(limit(f(x),x,Z[1],-1)); + kz:=evalf(limit(f(x),x,Z[nz-1],-1))> evalf(limit(f(x),x,Z[nz-2],1)); lsi:=lsic+nom+"'("+nomv+")}$ etex);"+ if(Z[0]==-infinity){if(evalf(sign(fp(if(Z[1]==+infinity){0}else{Z[1]-10^(-5)})))==1){"plus;"}else{"moins;"}}else{if(member(Z[0],F)==0){ @@ -1751,7 +1751,7 @@ else{for(r:=1; r<=NL-2;r++){kspp:=evalf(fp(Z[rr]+0.01))>0;TestS:=(evalf(sign(LL[ -lm0:=limit(f(x),x=Z[0],1)==-infinity; +lm0:=limit(f(x),x,Z[0],1)==-infinity; @@ -1759,36 +1759,36 @@ lm0:=limit(f(x),x=Z[0],1)==-infinity; TestS:=(evalf(sign(LL[0]-ao))==evalf(sign(LL[1]-ao))) or (evalf(sign(LL[0]-ao))==0.0) or (evalf(sign(LL[1]-ao))==0.0); li:=lvic+nom+"}$ etex); -"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"} - else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[0],1)))}+"$ etex,"}+ +"+ if(member(Z[0],F)==0){"valPos(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"} + else{"nonDefBarre;limDroite(btex $"+if(lm0==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[0],1)))}+"$ etex,"}+ if(k0==1){"1);"}else{"0);"}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);"}else{" "}; if(nz>2){if(nz==NL){for(r:=1; r<=nz-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[r-1],1))< evalf(limit(f(x),x=Z[r],-1)); - krp:=evalf(limit(f(x),x=Z[r],1))> evalf(limit(f(x),x=Z[r+1],-1)) ; - lmrm:=limit(f(x),x=Z[r],-1)==-infinity;lmrp:=limit(f(x),x=Z[r],1)==-infinity; + krm:=evalf(limit(f(x),x,Z[r-1],1))< evalf(limit(f(x),x,Z[r],-1)); + krp:=evalf(limit(f(x),x,Z[r],1))> evalf(limit(f(x),x,Z[r+1],-1)) ; + lmrm:=limit(f(x),x,Z[r],-1)==-infinity;lmrp:=limit(f(x),x,Z[r],1)==-infinity; lp:=lp+if(member(Z[r],F)) { - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[r],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[r])))+"$ etex,"+if(evalf(sign(fp(Z[r]-0.01)))==sign(fp(Z[r]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+if(TestS==0){"valPos(btex $ "+ao+" $ etex,0.5);" }else{" "}; };//for }else{rr:=1;for(r:=1; r<=NL-2;r++){TestS:=(evalf(sign(LL[r]-ao))==evalf(sign(LL[r+1]-ao))) or (evalf(sign(LL[r]-ao))==0.0)or (evalf(sign(LL[r+1]-ao))==0.0); - krm:=evalf(limit(f(x),x=Z[rr-1],1))< evalf(limit(f(x),x=Z[rr],-1)); - krp:=evalf(limit(f(x),x=Z[rr],1))> evalf(limit(f(x),x=Z[rr+1],-1)) ; - lmrm:=limit(f(x),x=Z[rr],-1)==-infinity;lmrp:=limit(f(x),x=Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); + krm:=evalf(limit(f(x),x,Z[rr-1],1))< evalf(limit(f(x),x,Z[rr],-1)); + krp:=evalf(limit(f(x),x,Z[rr],1))> evalf(limit(f(x),x,Z[rr+1],-1)) ; + lmrm:=limit(f(x),x,Z[rr],-1)==-infinity;lmrp:=limit(f(x),x,Z[rr],1)==-infinity; TestL:=(abs(LL[r])==abs(LL[r+1])); if(PB[r]==1){if(TestS==0){lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0);"}}}+"valPos(btex $ "+ao+" $ etex,0.5); ";rr:=rr+1; }// testS==0 else{lp:=lp+if(member(Z[rr],F)){ - "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} + "limGauche(btex $"+if(lmrm==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],-1)))}+"$ etex,"+if(krm==1){"1);"}else{"0);"}+"nonDefBarre;limDroite(btex $"+if(lmrp==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[rr],1)))}+"$ etex,"+if(krp==1){"1);"}else{"0);"}} else{"valPos(btex $"+latex(simplify(f(Z[rr])))+"$ etex,"+if(evalf(sign(fp(Z[rr]-0.01)))==sign(fp(Z[rr]+0.01))){"0.5);"}else{if(krp==1){"1);"}else{"0); "}}};rr:=rr+1; @@ -1801,14 +1801,14 @@ else{lp:=lp+if(member(Z[rr],F)){ -lnz:=limit(f(x),x=Z[nz-1],-1)==-infinity; +lnz:=limit(f(x),x,Z[nz-1],-1)==-infinity; lf:=if(member(Z[nz-1],F)==0){"valPos(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);"}else{"0);"}} else{"limGauche(btex $"+ - if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x=Z[nz-1],-1)))}+"$ etex,"+ + if(lnz==1){"-\\infty"}else{latex(simplify(limit(f(x),x,Z[nz-1],-1)))}+"$ etex,"+ if(kz==1){"1);nonDefBarre;"}else{"0);nonDefBarre;"}}; -- cgit v1.2.3