diff options
author | Karl Berry <karl@freefriends.org> | 2021-03-14 23:20:35 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2021-03-14 23:20:35 +0000 |
commit | ebdd82171b15452eaab47d1063eae03bd546f19a (patch) | |
tree | e1f1a5db51b76217bd92380fda0b9eaa9b75b963 /Master/texmf-dist/tex/latex/profcollege/PfC-EquationComposition2.tex | |
parent | d29be5d59e00d1cc95847ebc8bf00b21edc6afb7 (diff) |
profcollege (14mar21) (branch)
git-svn-id: svn://tug.org/texlive/branches/branch2020.0@58365 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/latex/profcollege/PfC-EquationComposition2.tex')
-rw-r--r-- | Master/texmf-dist/tex/latex/profcollege/PfC-EquationComposition2.tex | 275 |
1 files changed, 275 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/latex/profcollege/PfC-EquationComposition2.tex b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationComposition2.tex new file mode 100644 index 00000000000..38493f89966 --- /dev/null +++ b/Master/texmf-dist/tex/latex/profcollege/PfC-EquationComposition2.tex @@ -0,0 +1,275 @@ +% Licence : Released under the LaTeX Project Public License v1.3c +% or later, see http://www.latex-project.org/lppl.txtf +\newcommand{\EquaDeuxComposition}[5][]{%type ax+b=d ou b=cx+d$ + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide + \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3} + \else%cas ax+b=d + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }{%ELSE + \xintifboolexpr{#3=0}{%ax+b=d + \EquaBase[#1]{#2}{}{}{#5}% + }{%ax+b=d$ Ici + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{% + }{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{%ICI ? + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + }{} + } + } + \fi +} + +\newcommand{\EquaTroisComposition}[5][]{%ax+b=cx ou ax=cx+d + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 + \ifx\bla#5\bla% + %% paramètre oublié + \else + \EquaTroisComposition[#1]{#4}{#5}{#2}{}% + \fi + \else + \xintifboolexpr{#2=0}{%b=cx + \EquaBase[#1]{#4}{}{}{#3} + }{% + \xintifboolexpr{#4=0}{%ax+b=0 + \EquaDeuxComposition[#1]{#2}{#3}{}{0} + }{%ax+b=cx + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=0}{%ax=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% + {%ax+b=ax + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + }% + }{%% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{0}\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{0-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} + \begin{align*}% + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + }% + }% + }% + }% + \fi +}% + + +\newcommand{\ResolEquationComposition}[5][]{% + \useKVdefault[ClesEquation]% + \setKV[ClesEquation]{#1}% + \xintifboolexpr{#2=0}{% + \xintifboolexpr{#4=0}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% + {%b<>d + L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% + }% + }% + {%0x+b=cx+d$ + \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3}% + }% + }{% + \xintifboolexpr{#4=0}{%ax+b=0x+d + \EquaDeuxComposition[#1]{#2}{#3}{}{#5}% + } + {%ax+b=cx+d$ + \xintifboolexpr{#3=0}{% + \xintifboolexpr{#5=0}{%ax=cx + \EquaTroisComposition[#1]{#2}{0}{#4}{}% + }% + {%ax=cx+d + \EquaTroisComposition[#1]{#4}{#5}{#2}{}% + }% + }% + {\xintifboolexpr{#5=0}{%ax+b=cx + \EquaTroisComposition[#1]{#2}{#3}{#4}{}% + }% + {%ax+b=cx+d -- ici + \xintifboolexpr{#2=#4}{% + \xintifboolexpr{#3=#5}{%b=d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% + {%b<>d + L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + }% + }{ + %% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{} + }{%ax+b=cx+d avec a<c % Autre cas délicat + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}% + \begin{align*}% + \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ + \mathcolor{Ccompo}{\num{\fpeval{#3-#5}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa=1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% + }{} + \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{ + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + \ifboolKV[ClesEquation]{Entier}{% + \SSimpliTest{\Coeffb}{\Coeffa}% + \ifboolKV[ClesEquation]{Simplification}{% + \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ + }{} + }{} + } + \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + \end{align*} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + }{}% + }% + }% + }% + }% + }% + }% +}%
\ No newline at end of file |