diff options
author | Karl Berry <karl@freefriends.org> | 2012-07-24 16:55:31 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2012-07-24 16:55:31 +0000 |
commit | 3772071fea36876c9bd7ed1fd05f7352f1d362d5 (patch) | |
tree | 0d3a5b83892d21e6cba11f5df4650ff34fd53870 /Master/texmf-dist/source/latex/randomwalk | |
parent | 3accf11dd41cac5f2c81b83a2a712c77ffab2b6a (diff) |
randomwalk (18jul12)
git-svn-id: svn://tug.org/texlive/trunk@27139 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/randomwalk')
-rw-r--r-- | Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx | 531 | ||||
-rw-r--r-- | Master/texmf-dist/source/latex/randomwalk/randomwalk.ins | 6 |
2 files changed, 252 insertions, 285 deletions
diff --git a/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx b/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx index 1e38dd7d3bf..13512f7b461 100644 --- a/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx +++ b/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx @@ -1,5 +1,5 @@ % \iffalse -%% File: randomwalk.dtx Copyright (C) 2011 Bruno Le Floch +%% File: randomwalk.dtx Copyright (C) 2011-2012 Bruno Le Floch %% %% It may be distributed and/or modified under the conditions of the %% LaTeX Project Public License (LPPL), either version 1.3c of this @@ -13,15 +13,12 @@ %<*driver|package> \RequirePackage{l3names} %</driver|package> -%\fi -\GetIdInfo$Id: randomwalk.dtx 0.2 2011-09-09 10:15:31Z blefloch $ - {Customizable Random Walks using TikZ}% -%\iffalse %<*driver> %\fi -\ProvidesFile{\ExplFileName.dtx} - [\ExplFileDate\space v\ExplFileVersion\space\ExplFileDescription] +\ProvidesFile{randomwalk.dtx} + [2012-07-10 v0.2 Customizable random walks using TikZ] %\iffalse +\RequirePackage[check-declarations]{expl3} \documentclass[full]{l3doc} \usepackage{randomwalk} \usepackage{amsmath} @@ -34,9 +31,9 @@ % % \title{The \textsf{randomwalk} package: \\ % customizable random walks using TikZ\thanks{This file has version -% number \ExplFileVersion, last revised \ExplFileDate.}} +% number 0.2, last revised 2012-07-10.}} % \author{Bruno Le Floch} -% \date{\ExplFileDate} +% \date{July 10, 2012} % % \maketitle % \tableofcontents @@ -45,14 +42,14 @@ % % \begin{abstract} % -% The |randomwalk| package draws random walks using TikZ. The following -% parameters can be customized: +% The \pkg{randomwalk} package draws random walks using TikZ. The +% following parameters can be customized: % \begin{itemize} -% \item The number of steps, of course. -% \item The length of the steps, either a fixed length, or a length taken -% at random from a given set. -% \item The angle of each step, either taken at random from a given set, or -% uniformly distributed. +% \item The number of steps, of course. +% \item The length of the steps, either a fixed length, or a length +% taken at random from a given set. +% \item The angle of each step, either taken at random from a given +% set, or uniformly distributed. % \end{itemize} % % \end{abstract} @@ -60,8 +57,9 @@ % % \section{How to use it} % -% The |randomwalk| package has exactly one user command: |\RandomWalk|, -% which takes a list of key-value pairs as its argument. A few examples: +% The \pkg{randomwalk} package has exactly one user command: +% \cs{RandomWalk}, which takes a list of key-value pairs as its +% argument. A few examples: % \begin{verbatim} % \RandomWalk {number = 100, length = {4pt, 10pt}} % \RandomWalk {number = 100, angles = {0,60,120,180,240,300}, degree} @@ -70,37 +68,34 @@ % \end{verbatim} % The simplest is to give a list of all the keys, and their meaning: % \begin{itemize} -% -% \item |number|: the number of steps (default \(10\)) -% -% \item |length|: the length of each step: either one dimension (e.g., |1em|), -% or a comma-separated list of dimensions (e.g. |{2pt, 5pt}|), by -% default |10pt|. The length of each step is a random element in this set -% of possible dimensions. -% -% \item |angles|: the polar angle for each step: a comma-separated list of -% angles, and each step takes a random angle among the list. If this is not specified, then the angle is uniformly distributed along the circle. -% -% \item |degree|(|s|): specifies that the angles are given in degrees. -% -% \item |angles-relative|: instead of being absolute, the angles are relative -% to the direction of the previous step. -% +% \item \texttt{number}: the number of steps (default \(10\)) +% \item \texttt{length}: the length of each step: either one dimension +% (\emph{e.g.}, |1em|), or a comma-separated list of dimensions +% (\emph{e.g.}, |{2pt, 5pt}|), by default |10pt|. The length of each +% step is a random element in this set of possible dimensions. +% \item \texttt{angles}: the polar angle for each step: a +% comma-separated list of angles, and each step takes a random angle +% among the list. If this is not specified, then the angle is +% uniformly distributed along the circle. +% \item \texttt{degree} or \texttt{degrees}: specify that the angles +% are given in degrees. +% \item \texttt{angles-relative}: instead of being absolute, the +% angles are relative to the direction of the previous step. % \end{itemize} % % \begin{figure} % \begin{center} % \framebox{\RandomWalk {number = 400, length = {4pt, 10pt}}} -% \caption{The result of \texttt{RandomWalk\{number\ =\ -% 400,\ length\ =\ \{4pt,\ 10pt\}\}}: a \(400\) steps long walk, -% where each step has one of two lengths.} +% \caption{The result of \texttt{RandomWalk\{number\ =\ 400,\ +% length\ =\ \{4pt,\ 10pt\}\}}: a \(400\) steps long walk, where +% each step has one of two lengths.} % \end{center} % \end{figure} % % \begin{figure} % \begin{center} -% \framebox{\RandomWalk{number = 100, -% angles = {0,60,120,180,240,300}, degrees}} +% \framebox{\RandomWalk{number = 100, angles = +% {0,60,120,180,240,300}, degrees}} % \caption{The result of \texttt{\string\RandomWalk\{number\ =\ % 100,\ angles\ =\ \{0,60,120,180,240,300\}, degrees\}}: angles % are constrained.} @@ -109,10 +104,10 @@ % % \begin{figure} % \begin{center} -% \framebox{\RandomWalk {number = 40, length = 1em, -% angles = {0,15,30,-15,-30}, degree, angles-relative}} -% \caption{A last example: \texttt{\string\RandomWalk\ \{number\ =\ 100,\ -% length\ =\ 2em,\ angles\ =\ \{0,10,20,-10,-20\},\ +% \framebox{\RandomWalk {number = 40, length = 1em, angles = +% {0,15,30,-15,-30}, degree, angles-relative}} +% \caption{A last example: \texttt{\string\RandomWalk\ \{number\ =\ +% 100,\ length\ =\ 2em,\ angles\ =\ \{0,10,20,-10,-20\},\ % degree,\ angles-relative\}}} % \end{center} % \end{figure} @@ -125,147 +120,225 @@ % % \subsection{Packages} % -% The whole |expl3| bundle is loaded first, including Joseph Wright's -% very useful package |l3fp.sty| for floating point calculations. +% The whole \pkg{expl3} bundle is loaded first. % %<*package> % \begin{macrocode} +%<@@=randomwalk> +% \end{macrocode} +% +% \begin{macrocode} \ProvidesExplPackage - {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription} + {randomwalk.sty}{2012/07/10}{0.2}{Customizable random walks using TikZ} \RequirePackage{expl3} \RequirePackage{xparse} % \end{macrocode} % -% I use some LaTeX2e packages: TikZ, for figures, and lcg for -% random numbers. +% I use some \LaTeXe{} packages: \pkg{TikZ}, for figures, and \pkg{lcg} +% for random numbers. % \begin{macrocode} \RequirePackage{tikz} % \end{macrocode} % -% |lcg| needs to know the smallest and biggest random numbers that it -% should produce, |\c_rw_lcg_first| and |_last|. It will then store them in -% |\c@lcg@rand|: the |\c@| is there because of how \LaTeXe\ defines -% counters. To make it clear that |\c| has a very special meaning here, -% I do not follow \LaTeX3 naming conventions. +% \pkg{lcg} needs to know the smallest and biggest random numbers that +% it should produce, which we take to be $0$ and $\cs{c_@@_lcg_last_int} +% = 2^{31}-2$. It will then store them in \cs{c@lcg@rand}: the |\c@| is +% there because of how \LaTeXe{} defines counters. To make it clear that +% |\c| has a very special meaning here, I do not follow \LaTeX3 naming +% conventions. % -% The |lcg| package would support a range of \( 2^{31} - 1 \), but -% |l3fp| constrains us to \(9\) digit numbers, so we take the closest -% available power of \(2\), namely \( 536870911 = 2^{29} - 1 \). +% It seems that the \pkg{lcg} package has to be loaded after the +% document class, hence we do it \cs{AtBeginDocument}. +% \begin{macrocode} +\int_const:Nn \c_@@_lcg_last_int { \c_max_int - \c_one } +\AtBeginDocument + { + \RequirePackage + [ + first= \c_zero , + last = \c_@@_lcg_last_int , + counter = lcg@rand + ] + { lcg } + \rand % This \rand avoids some very odd bug. + } +% \end{macrocode} +% +% \subsection{Variables} % +% \begin{variable}{\l_@@_step_number_int} +% The number of steps requested by the caller. % \begin{macrocode} -\int_const:Nn \c_rw_lcg_first_int {0} -\int_const:Nn \c_rw_lcg_last_int {536870911} -\int_const:Nn \c_rw_lcg_range_int - { \c_rw_lcg_last_int - \c_rw_lcg_first_int } -\RequirePackage - [ - first= \c_rw_lcg_first_int, - last = \c_rw_lcg_last_int, - counter = lcg@rand - ] - { lcg } -\rand % This \rand avoids some very odd bug. +\int_new:N \l_@@_step_number_int % \end{macrocode} +% \end{variable} % -% We need this constant for fast conversion from degrees to radians later. +% \begin{variable}{\l_@@_relative_angles_bool} +% Booleans for whether angles are relative (keyval option). % \begin{macrocode} -\fp_const:Nn \c_rw_one_degree_fp {+1.74532925e-2} +\bool_new:N \l_@@_relative_angles_bool % \end{macrocode} +% \end{variable} % +% \begin{variable}{\l_@@_revert_random_bool} +% Booleans for whether to revert the random seed to its original value +% or keep the last value reached at the end of a random path. +% \begin{macrocode} +\bool_new:N \l_@@_revert_random_bool +% \end{macrocode} +% \end{variable} +% +% \begin{macro}{\@@_rand_angle:, \@@_rand_length:} +% Set the \cs{l_@@_angle_fp} and \cs{l_@@_length_fp} of the next step, +% most often randomly. +% \begin{macrocode} +\cs_new_protected_nopar:Npn \@@_rand_angle: { } +\cs_new_protected_nopar:Npn \@@_rand_length: { } +% \end{macrocode} +% \end{macro} +% +% \begin{variable}{\l_@@_angle_fp, \l_@@_length_fp} +% Angle and length of the next step. +% \begin{macrocode} +\fp_new:N \l_@@_angle_fp +\fp_new:N \l_@@_length_fp +% \end{macrocode} +% \end{variable} +% +% \begin{variable}{\l_@@_old_x_fp, \l_@@_old_y_fp} +% \begin{variable}{\l_@@_new_x_fp, \l_@@_new_y_fp} +% Coordinates of the two ends of each step: each \cs{draw} statement +% goes from the |_old| point to the |_new| point. See +% \cs{@@_step_draw:}. +% \begin{macrocode} +\fp_new:N \l_@@_old_x_fp +\fp_new:N \l_@@_old_y_fp +\fp_new:N \l_@@_new_x_fp +\fp_new:N \l_@@_new_y_fp +% \end{macrocode} +% \end{variable} +% \end{variable} +% +% \begin{variable}{\l_@@_angles_seq, \l_@@_lengths_seq} +% Sequences containing all allowed angles and lengths. +% \begin{macrocode} +\seq_new:N \l_@@_angles_seq +\seq_new:N \l_@@_lengths_seq +% \end{macrocode} +% \end{variable} % % \subsection{How the key-value list is treated} % % \begin{macro}{\RandomWalk} -% The only user command is |\RandomWalk|: it simply does the setup, and -% calls the internal macro |\rw_walk:|. +% The only user command is \cs{RandomWalk}: it simply does the setup, +% and calls the internal macro \cs{@@_walk:}. % \begin{macrocode} \DeclareDocumentCommand \RandomWalk { m } { - \rw_set_defaults: + \@@_set_defaults: \keys_set:nn { randomwalk } { #1 } - \rw_walk: + \@@_walk: } % \end{macrocode} % \end{macro} % -% -% \begin{macro}{\g_rw_Ado_tl} -% \begin{macro}{\g_rw_Ldo_tl} -% \begin{macro}{\rw_set_defaults:} +% \begin{macro}{\@@_set_defaults:} % Currently, the package treats the length of steps, and the angle, -% completely independently. The token list \cs{g_rw_Ldo_tl} contains -% the action that should be done to decide the length of the next step, -% while the token list \cs{g_rw_Ado_tl} pertains to the angle. +% completely independently. The function \cs{@@_rand_length:} +% contains the action that decides the length of the next step, while +% the function \cs{@@_rand_angle:} pertains to the angle. % -% \cs{rw_set_defaults:} sets the default values before processing the user's -% key-value input. +% \cs{@@_set_defaults:} sets the default values before processing the +% user's key-value input. % \begin{macrocode} -\tl_new:N \g_rw_Ado_tl -\tl_new:N \g_rw_Ldo_tl -\bool_new:N \l_rw_A_relative_bool -\bool_new:N \l_rw_revert_random_bool -\cs_new:Npn \rw_set_defaults: +\cs_new:Npn \@@_set_defaults: { - \fp_set:Nn \l_rw_step_length_fp {10} - \int_set:Nn \l_rw_step_number_int {10} - \tl_gset:Nn \g_rw_Ado_tl { \rw_Ainterval:nn {-\c_pi_fp} {\c_pi_fp} } - \tl_gset:Nn \g_rw_Ldo_tl { \rw_Lfixed:n \l_rw_step_length_fp } %^^A bug? - \bool_set_false:N \l_rw_revert_random_bool - \bool_set_false:N \l_rw_A_relative_bool + \int_set:Nn \l_@@_step_number_int {10} + \cs_gset_protected_nopar:Npn \@@_rand_angle: + { \@@_fp_set_rand:Nnn \l_@@_angle_fp { - pi } { pi } } + \cs_gset_protected_nopar:Npn \@@_rand_length: + { \fp_set:Nn \l_@@_length_fp {10} } + \bool_set_false:N \l_@@_revert_random_bool + \bool_set_false:N \l_@@_relative_angles_bool } % \end{macrocode} % \end{macro} -% \end{macro} -% \end{macro} % % \begin{macro}{\keys_define:nn} % We introduce the keys for the package. % \begin{macrocode} \keys_define:nn { randomwalk } { - number .value_required:, - length .value_required:, - angles .value_required:, - number .code:n = {\int_set:Nn \l_rw_step_number_int {#1}}, + number .value_required: , + length .value_required: , + angles .value_required: , + number .int_set:N = \l_@@_step_number_int , length .code:n = { - \clist_set:Nn \l_rw_lengths_clist {#1} - \rw_clist_fp_from_dim:N \l_rw_lengths_clist - \int_compare:nNnTF { \clist_length:N \l_rw_lengths_clist } = {1} - { \tl_gset:Nn \g_rw_Ldo_tl { \rw_Lfixed:n \l_rw_lengths_clist } } - { \tl_gset:Nn \g_rw_Ldo_tl { \rw_Llist:N \l_rw_lengths_clist } } - }, + \seq_set_split:Nnn \l_@@_lengths_seq { , } {#1} + \seq_set_map:NNn \l_@@_lengths_seq + \l_@@_lengths_seq { \dim_to_fp:n {##1} } + \int_compare:nNnTF { \seq_length:N \l_@@_lengths_seq } = {1} + { + \cs_gset_protected_nopar:Npn \@@_rand_length: + { \fp_set:Nn \l_@@_length_fp {#1} } + } + { + \cs_gset_protected_nopar:Npn \@@_rand_length: + { + \@@_fp_set_rand_seq_item:NN + \l_@@_length_fp \l_@@_lengths_seq + } + } + } , angles .code:n = { - \clist_set:Nn \l_rw_angles_clist {#1} - \tl_gset:Nn \g_rw_Ado_tl { \rw_Alist:N \l_rw_angles_clist } - }, - degree .code:n = { \rw_radians_from_degrees:N \l_rw_angles_clist }, - degrees .code:n = { \rw_radians_from_degrees:N \l_rw_angles_clist }, - angles-relative .code:n = { \bool_set_true:N \l_rw_A_relative_bool }, - revert-random .bool_set:N = \l_rw_revert_random_bool, + \seq_set_split:Nnn \l_@@_angles_seq { , } {#1} + \cs_gset_protected_nopar:Npn \@@_rand_angle: + { + \bool_if:NTF \l_@@_relative_angles_bool + { \@@_fp_add_rand_seq_item:NN } + { \@@_fp_set_rand_seq_item:NN } + \l_@@_angle_fp \l_@@_angles_seq + } + } , + degree .code:n = + { \@@_radians_from_degrees:N \l_@@_angles_seq } , + degrees .code:n = + { \@@_radians_from_degrees:N \l_@@_angles_seq } , + angles-relative .code:n = + { \bool_set_true:N \l_@@_relative_angles_bool } , + revert-random .bool_set:N = \l_@@_revert_random_bool , } % \end{macrocode} % \end{macro} % +% \begin{macro}{\@@_radians_from_degrees:N} +% Helper macro to convert all items in |#1| to degrees. +% \begin{macrocode} +\cs_new:Npn \@@_radians_from_degrees:N #1 + { \seq_set_map:NNn #1 #1 { \fp_eval:n { ##1 deg } } } +% \end{macrocode} +% \end{macro} % % \subsection{Drawing} % -% \begin{macro}{\rw_walk:} -% We are ready to define |\rw_walk:|, which draws a TikZ picture of -% a random walk with the parameters set up by the |keys|. -% We reset all the coordinates to zero originally. Then we draw the relevant -% TikZ picture by repeatedly calling |\rw_step_draw:|. +% \begin{macro}{\@@_walk:} +% We are ready to define \cs{@@_walk:}, which draws a \pkg{TikZ} +% picture of a random walk with the parameters set up by the +% \texttt{keys}. We reset all the coordinates to zero originally. +% Then we draw the relevant \pkg{TikZ} picture by repeatedly calling +% \cs{@@_step_draw:}. % \begin{macrocode} -\cs_new:Npn \rw_walk: +\cs_new:Npn \@@_walk: { - \fp_zero:N \l_rw_old_x_fp - \fp_zero:N \l_rw_old_y_fp - \fp_zero:N \l_rw_new_x_fp - \fp_zero:N \l_rw_new_y_fp \begin{tikzpicture} - \prg_replicate:nn { \l_rw_step_number_int } { \rw_step_draw: } - \bool_if:NF \l_rw_revert_random_bool + \fp_zero:N \l_@@_old_x_fp + \fp_zero:N \l_@@_old_y_fp + \fp_zero:N \l_@@_new_x_fp + \fp_zero:N \l_@@_new_y_fp + \prg_replicate:nn { \l_@@_step_number_int } { \@@_step_draw: } + \bool_if:NF \l_@@_revert_random_bool { \int_gset_eq:NN \cr@nd \cr@nd } \end{tikzpicture} } @@ -273,191 +346,85 @@ % \cs{cr@nd} is internal to the lcg package. % \end{macro} % -% \begin{macro}{\rw_step_draw:} -% |\rw_step_draw:| passes its second argument \emph{with one level of -% braces removed} to its first argument, responsible for making a random -% step. Then, |\rw_step_draw:| draws the random step. +% \begin{macro}{\@@_step_draw:} +% \cs{@@_step_draw:} calls \cs{@@_rand_length:} and +% \cs{@@_rand_angle:} to determine the length and angle of the new +% step. This is then converted to cartesian coordinates and added to +% the previous end-point. Finally, we call \pkg{TikZ}'s \cs{draw} to +% produce a line from the |_old| to the |_new| point. % \begin{macrocode} -\cs_new:Npn \rw_step_draw: +\cs_new:Npn \@@_step_draw: { - \g_rw_Ldo_tl - \g_rw_Ado_tl - \rw_cartesian_from_polar:NNNN - \l_rw_step_x_fp \l_rw_step_y_fp - \l_rw_radius_fp \l_rw_angle_fp - \fp_add:Nn \l_rw_new_x_fp { \l_rw_step_x_fp } - \fp_add:Nn \l_rw_new_y_fp { \l_rw_step_y_fp } - \draw ( \fp_to_dim:N \l_rw_old_x_fp, \fp_to_dim:N \l_rw_old_y_fp ) - -- ( \fp_to_dim:N \l_rw_new_x_fp, \fp_to_dim:N \l_rw_new_y_fp ); - \fp_set_eq:NN \l_rw_old_x_fp \l_rw_new_x_fp - \fp_set_eq:NN \l_rw_old_y_fp \l_rw_new_y_fp + \@@_rand_length: + \@@_rand_angle: + \fp_set_eq:NN \l_@@_old_x_fp \l_@@_new_x_fp + \fp_set_eq:NN \l_@@_old_y_fp \l_@@_new_y_fp + \fp_add:Nn \l_@@_new_x_fp { \l_@@_length_fp * cos \l_@@_angle_fp } + \fp_add:Nn \l_@@_new_y_fp { \l_@@_length_fp * sin \l_@@_angle_fp } + \draw ( \fp_to_dim:N \l_@@_old_x_fp, \fp_to_dim:N \l_@@_old_y_fp ) + -- ( \fp_to_dim:N \l_@@_new_x_fp, \fp_to_dim:N \l_@@_new_y_fp ); } % \end{macrocode} % \end{macro} % -% The next couple of macros store a random floating point in -% |\l_rw_length_fp| or |\l_rw_angle_fp|. +% \subsection{On random numbers and items} % -% \begin{macro}{\rw_L..:.} -% First for the length of steps. -% \begin{macrocode} -\cs_new:Npn \rw_Lfixed:n #1 - { \fp_set:Nn \l_rw_radius_fp {#1} } -\cs_new:Npn \rw_Llist:N #1 - { \rw_set_to_random_clist_element:NN \l_rw_radius_fp #1 } -\cs_new:Npn \rw_Linterval:nn #1#2 - { \rw_set_to_random_fp:Nnn \l_rw_radius_fp {#1} {#2} } -% \end{macrocode} -% \end{macro} +% For random numbers, the interface of \pkg{lcg} is not quite enough, so +% we provide our own \LaTeX3-y functions. Also, this will allow us to +% change quite easily our source of random numbers. % -% \begin{macro}{\rw_A..:.} -% Then for angles. +% \begin{macro}[aux]{\@@_int_set_rand:Nnn} +% Sets the integer register |#1| equal to a random integer between +% |#2| and |#3| inclusive. % \begin{macrocode} -\cs_new:Npn \rw_Ainterval:nn #1#2 +\cs_new:Npn \@@_int_set_rand:Nnn #1#2#3 { - \bool_if:NTF \l_rw_A_relative_bool - { \rw_add_to_random_fp:Nnn } - { \rw_set_to_random_fp:Nnn } - \l_rw_angle_fp {#1} {#2} - } -\cs_new:Npn \rw_Alist:N #1 - { - \bool_if:NTF \l_rw_A_relative_bool - { \rw_add_to_random_clist_element:NN } - { \rw_set_to_random_clist_element:NN } - \l_rw_angle_fp #1 + \rand + \int_set:Nn #1 { #2 + \int_mod:nn {\c@lcg@rand} { #3 + 1 - (#2) } } } % \end{macrocode} % \end{macro} % -% \begin{macro}{\rw_cartesian_from_polar:NNNN} -% The four arguments of |\rw_cartesian_from_polar:NNNN| are -% \( (x, y, r, \theta) \): it sets \( (x, y) \) equal to the cartesian -% coordinates corresponding to a radius \(r\) and an angle \( \theta \). -% We also give a version with global assignments. +% \begin{macro}[aux]{\@@_fp_set_rand:Nnn, \@@_fp_add_rand:Nnn} +% \begin{macro}[aux]{\@@_fp_set_rand_aux:NNnn} +% We also need floating point random numbers, both assigned and added +% to the variable |#1| (well, |#2| of the auxiliary). % \begin{macrocode} -\cs_new_protected:Npn \rw_cartesian_from_polar:NNNN #1#2#3#4 - { - \fp_cos:Nn #1 {\fp_use:N #4} - \fp_sin:Nn #2 {\fp_use:N #4} - \fp_mul:Nn #1 {\fp_use:N #3} - \fp_mul:Nn #2 {\fp_use:N #3} - } -\cs_new_protected:Npn \rw_gcartesian_from_polar:NNNN #1#2#3#4 +\cs_new_nopar:Npn \@@_fp_set_rand:Nnn + { \@@_fp_set_rand_aux:NNnn \fp_set:Nn } +\cs_new_nopar:Npn \@@_fp_add_rand:Nnn + { \@@_fp_set_rand_aux:NNnn \fp_add:Nn } +\cs_new:Npn \@@_fp_set_rand_aux:NNnn #1#2#3#4 { - \fp_gcos:Nn #1 {\fp_use:N #4} - \fp_gsin:Nn #2 {\fp_use:N #4} - \fp_gmul:Nn #1 {\fp_use:N #3} - \fp_gmul:Nn #2 {\fp_use:N #3} + \rand + #1 #2 { #3 + (#4 - (#3)) * \c@lcg@rand / \c_@@_lcg_last_int } } % \end{macrocode} % \end{macro} +% \end{macro} % -% We cannot yet do the conversion in the other direction: |l3fp.dtx| does -% not yet provide inverse trigonometric functions. But in fact, we do not -% need this conversion, so let's stop worrying. -% -% \subsection{On random numbers etc.} -% -% For random numbers, the interface of |lcg| is not quite enough, so we -% provide our own \LaTeX3y functions. Also, this will allow us to change -% quite easily our source of random numbers. -% +% \begin{macro}[aux]{\@@_fp_set_rand_seq_item:NN, \@@_fp_add_rand_seq_item:NN} +% \begin{macro}[aux]{\@@_fp_set_rand_item_aux:NNNNN} +% We can now pick an element at random from a sequence, and either +% assign it or add it to the fp variable |#4|. The same auxiliary +% could be used for picking random items from other types of lists. % \begin{macrocode} -\cs_new:Npn \rw_set_to_random_int:Nnn #1#2#3 +\cs_new_protected_nopar:Npn \@@_fp_set_rand_seq_item:NN + { \@@_fp_set_rand_item_aux:NNNNN \fp_set:Nn \seq_item:Nn \seq_length:N } +\cs_new_protected_nopar:Npn \@@_fp_add_rand_seq_item:NN + { \@@_fp_set_rand_item_aux:NNNNN \fp_add:Nn \seq_item:Nn \seq_length:N } +\cs_new_protected:Npn \@@_fp_set_rand_item_aux:NNNNN #1#2#3#4#5 { \rand - \int_set:Nn #1 { \int_mod:nn {\c@lcg@rand} { #3 - (#2) } } - } -% \end{macrocode} -% We also need floating point random numbers. -% \begin{macrocode} -\cs_new:Npn \rw_set_to_random_fp:Nnn #1#2#3 - { - \fp_set:Nn \l_rw_tmpa_fp {#3} - \fp_sub:Nn \l_rw_tmpa_fp {#2} - \rand - \fp_set:Nn \l_rw_tmpb_fp { \int_use:N \c@lcg@rand } - \fp_div:Nn \l_rw_tmpb_fp { \int_use:N \c_rw_lcg_range_int } - \fp_mul:Nn \l_rw_tmpa_fp { \l_rw_tmpb_fp } - \fp_add:Nn \l_rw_tmpa_fp {#2} - \fp_set:Nn #1 { \l_rw_tmpa_fp } - } -\cs_new:Npn \rw_add_to_random_fp:Nnn #1#2#3 - { - \fp_set:Nn \l_rw_tmpa_fp {#3} - \fp_sub:Nn \l_rw_tmpa_fp {#2} - \rand - \fp_set:Nn \l_rw_tmpb_fp { \int_use:N \c@lcg@rand } - \fp_div:Nn \l_rw_tmpb_fp { \int_use:N \c_rw_lcg_range_int } - \fp_mul:Nn \l_rw_tmpa_fp { \l_rw_tmpb_fp } - \fp_add:Nn \l_rw_tmpa_fp {#2} - \fp_add:Nn #1 { \l_rw_tmpa_fp } %here: mod? - } -% \end{macrocode} -% -% We can now pick an element at random from a comma-separated list -% \begin{macrocode} -\cs_new:Npn \rw_set_to_random_clist_element:NN #1#2 - { - \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} { \clist_length:N #2 } - \fp_set:Nn #1 { \clist_item:Nn #2 { \l_rw_tmpb_int } } - } -\cs_new:Npn \rw_add_to_random_clist_element:NN #1#2 - { - \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} { \clist_length:N #2 } - \fp_add:Nn #1 { \clist_item:Nn #2 { \l_rw_tmpb_int } } - } -% \end{macrocode} -% -% \subsection{Other comma list operations} -% More stuff on |clist|s. -% \begin{macrocode} -\cs_new:Npn \rw_radians_from_degrees:N #1 - { - \clist_clear:N \l_rw_tmpa_clist - \clist_map_inline:Nn #1 - { - \fp_set:Nn \l_rw_tmpa_fp {##1} - \fp_mul:Nn \l_rw_tmpa_fp { \c_rw_one_degree_fp } - \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp - } - \clist_set_eq:NN #1 \l_rw_tmpa_clist - } -\cs_new:Npn \rw_clist_fp_from_dim:N #1 - { - \clist_clear:N \l_rw_tmpa_clist - \clist_map_inline:Nn #1 - { - \fp_set_from_dim:Nn \l_rw_tmpa_fp {##1} - \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp - } - \clist_set_eq:NN #1 \l_rw_tmpa_clist + #1 #4 { #2 #5 { 1 + \int_mod:nn { \c@lcg@rand } { #3 #5 } } } } % \end{macrocode} +% \end{macro} +% \end{macro} % -% \subsection{Variables} -% -% We need a bunch of floating point numbers: each step line goes from the -% |_old| point to the |_new| point. The coordinates |_add| are those of the -% vector from one to the next, so that |_new = _old + _add|. % \begin{macrocode} -\fp_new:N \l_rw_old_x_fp -\fp_new:N \l_rw_old_y_fp -\fp_new:N \l_rw_step_x_fp -\fp_new:N \l_rw_step_y_fp -\fp_new:N \l_rw_new_x_fp -\fp_new:N \l_rw_new_y_fp -\fp_new:N \l_rw_angle_fp -\int_new:N \l_rw_step_number_int -\clist_new:N \l_rw_angles_clist -\clist_new:N \l_rw_lengths_clist -\fp_new:N \l_rw_tmpa_fp -\fp_new:N \l_rw_tmpb_fp -\clist_new:N \l_rw_tmpa_clist -\int_new:N \l_rw_tmpb_int -% \end{macrocode} %</package> +% \end{macrocode} % % \end{implementation} % diff --git a/Master/texmf-dist/source/latex/randomwalk/randomwalk.ins b/Master/texmf-dist/source/latex/randomwalk/randomwalk.ins index 151851b0974..4e21b32a93c 100644 --- a/Master/texmf-dist/source/latex/randomwalk/randomwalk.ins +++ b/Master/texmf-dist/source/latex/randomwalk/randomwalk.ins @@ -1,4 +1,4 @@ -\input docstrip.tex +\input l3docstrip.tex \askforoverwritefalse \preamble @@ -6,8 +6,8 @@ Do not distribute a modified version of this file. Communicate any suggestions for changing this package -to Bruno Le Floch (first@su.rname.fr, replaced by the -relevant parts of my name). +to Bruno Le Floch (see the latex-randomwalk repository +on GitHub). \endpreamble % stop docstrip adding \endinput |