summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3str-convert.dtx
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2019-07-02 21:03:06 +0000
committerKarl Berry <karl@freefriends.org>2019-07-02 21:03:06 +0000
commit6cd9cb9b90a640486b1e6cf9bf4385e1622dc621 (patch)
tree55b66dec7d3519db5b1b299ba0ae90aa4fe2714d /Master/texmf-dist/source/latex/l3kernel/l3str-convert.dtx
parent0eeaf7545f37a529bbc7549c23ec0f2160e509e0 (diff)
l3 (2jul19)
git-svn-id: svn://tug.org/texlive/trunk@51534 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3str-convert.dtx')
-rw-r--r--Master/texmf-dist/source/latex/l3kernel/l3str-convert.dtx3471
1 files changed, 3471 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3str-convert.dtx b/Master/texmf-dist/source/latex/l3kernel/l3str-convert.dtx
new file mode 100644
index 00000000000..90e625f61b0
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3kernel/l3str-convert.dtx
@@ -0,0 +1,3471 @@
+% \iffalse meta-comment
+%
+%% File: l3str-convert.dtx
+%
+% Copyright (C) 2013-2019 The LaTeX3 Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% https://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3kernel bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver>
+\documentclass[full,kernel]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+%
+% \title{^^A
+% The \textsf{l3str-convert} package: string encoding conversions^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2019-07-01}
+%
+% \maketitle
+%
+% \begin{documentation}
+%
+% \section{Encoding and escaping schemes}
+%
+% Traditionally, string encodings only specify how strings of characters
+% should be stored as bytes. However, the resulting lists of bytes are
+% often to be used in contexts where only a restricted subset of bytes
+% are permitted (\emph{e.g.}, \textsc{pdf} string objects,
+% \textsc{url}s). Hence, storing a string of characters is done in two
+% steps.
+% \begin{itemize}
+% \item The code points (\enquote{character codes}) are expressed as
+% bytes following a given \enquote{encoding}. This can be
+% \textsc{utf-16}, \textsc{iso 8859-1}, \emph{etc.} See
+% Table~\ref{tab:encodings} for a list of supported
+% encodings.\footnote{Encodings and escapings will be added as they
+% are requested.}
+% \item Bytes are translated to \TeX{} tokens through a given
+% \enquote{escaping}. Those are defined for the most part by the
+% \texttt{pdf} file format. See Table~\ref{tab:escapings} for a
+% list of escaping methods supported.\footnotemark
+% \end{itemize}
+%
+% \begin{table}\centering
+% \caption{\label{tab:encodings}Supported encodings.
+% Non-alphanumeric characters are ignored,
+% and capital letters are lower-cased
+% before searching for the encoding in this list.}
+% \begin{tabular}{cc}
+% \toprule
+% \meta{Encoding} & description \\
+% \midrule
+% \texttt{utf8} & \textsc{utf-8} \\
+% \texttt{utf16} & \textsc{utf-16}, with byte-order mark \\
+% \texttt{utf16be} & \textsc{utf-16}, big-endian \\
+% \texttt{utf16le} & \textsc{utf-16}, little-endian \\
+% \texttt{utf32} & \textsc{utf-32}, with byte-order mark \\
+% \texttt{utf32be} & \textsc{utf-32}, big-endian \\
+% \texttt{utf32le} & \textsc{utf-32}, little-endian \\
+% \midrule
+% \texttt{iso88591}, \texttt{latin1} & \textsc{iso 8859-1} \\
+% \texttt{iso88592}, \texttt{latin2} & \textsc{iso 8859-2} \\
+% \texttt{iso88593}, \texttt{latin3} & \textsc{iso 8859-3} \\
+% \texttt{iso88594}, \texttt{latin4} & \textsc{iso 8859-4} \\
+% \texttt{iso88595} & \textsc{iso 8859-5} \\
+% \texttt{iso88596} & \textsc{iso 8859-6} \\
+% \texttt{iso88597} & \textsc{iso 8859-7} \\
+% \texttt{iso88598} & \textsc{iso 8859-8} \\
+% \texttt{iso88599}, \texttt{latin5} & \textsc{iso 8859-9} \\
+% \texttt{iso885910}, \texttt{latin6} & \textsc{iso 8859-10} \\
+% \texttt{iso885911} & \textsc{iso 8859-11} \\
+% \texttt{iso885913}, \texttt{latin7} & \textsc{iso 8859-13} \\
+% \texttt{iso885914}, \texttt{latin8} & \textsc{iso 8859-14} \\
+% \texttt{iso885915}, \texttt{latin9} & \textsc{iso 8859-15} \\
+% \texttt{iso885916}, \texttt{latin10} & \textsc{iso 8859-16} \\
+% \midrule
+% \texttt{clist} & comma-list of integers \\
+% \meta{empty} & native (Unicode) string \\
+% \bottomrule
+% \end{tabular}
+% \end{table}
+%
+% \begin{table}\centering
+% \caption{\label{tab:escapings}Supported escapings.
+% Non-alphanumeric characters are ignored,
+% and capital letters are lower-cased
+% before searching for the escaping in this list.}
+% \begin{tabular}{cc}
+% \toprule
+% \meta{Escaping} & description \\
+% \midrule
+% \texttt{bytes}, or empty
+% & arbitrary bytes \\
+% \texttt{hex}, \texttt{hexadecimal}
+% & byte $=$ two hexadecimal digits \\
+% \texttt{name}
+% & see \tn{pdfescapename} \\
+% \texttt{string}
+% & see \tn{pdfescapestring} \\
+% \texttt{url}
+% & encoding used in \textsc{url}s \\
+% \bottomrule
+% \end{tabular}
+% \end{table}
+%
+% \section{Conversion functions}
+%
+% \begin{function}{\str_set_convert:Nnnn, \str_gset_convert:Nnnn}
+% \begin{syntax}
+% \cs{str_set_convert:Nnnn} \meta{str~var} \Arg{string} \Arg{name~1} \Arg{name~2}
+% \end{syntax}
+% This function converts the \meta{string} from the encoding given by
+% \meta{name~1} to the encoding given by \meta{name~2}, and stores the
+% result in the \meta{str~var}. Each \meta{name} can have the form
+% \meta{encoding} or \meta{encoding}\texttt{/}\meta{escaping}, where
+% the possible values of \meta{encoding} and \meta{escaping} are given
+% in Tables~\ref{tab:encodings} and~\ref{tab:escapings}, respectively.
+% The default escaping is to input and output bytes directly. The
+% special case of an empty \meta{name} indicates the use of
+% \enquote{native} strings, 8-bit for \pdfTeX{}, and Unicode strings
+% for the other two engines.
+%
+% For example,
+% \begin{verbatim}
+% \str_set_convert:Nnnn \l_foo_str { Hello! } { } { utf16/hex }
+% \end{verbatim}
+% results in the variable \cs{l_foo_str} holding the string
+% \texttt{FEFF00480065006C006C006F0021}. This is obtained by
+% converting each character in the (native) string \texttt{Hello!} to
+% the \textsc{utf-16} encoding, and expressing each byte as a pair of
+% hexadecimal digits. Note the presence of a (big-endian) byte order
+% mark \hexnum{FEFF}, which can be avoided by specifying the encoding
+% \texttt{utf16be/hex}.
+%
+% An error is raised if the \meta{string} is not valid according to
+% the \meta{escaping~1} and \meta{encoding~1}, or if it cannot be
+% reencoded in the \meta{encoding~2} and \meta{escaping~2} (for
+% instance, if a character does not exist in the \meta{encoding~2}).
+% Erroneous input is replaced by the Unicode replacement character
+% \hexnum{FFFD}, and characters which cannot be reencoded are replaced
+% by either the replacement character \hexnum{FFFD} if it exists in
+% the \meta{encoding~2}, or an encoding-specific replacement
+% character, or the question mark character.
+% \end{function}
+%
+% \begin{function}[TF]{\str_set_convert:Nnnn, \str_gset_convert:Nnnn}
+% \begin{syntax}
+% \cs{str_set_convert:NnnnTF} \meta{str~var} \Arg{string} \Arg{name~1} \Arg{name~2} \Arg{true code} \Arg{false code}
+% \end{syntax}
+% As \cs{str_set_convert:Nnnn}, converts the \meta{string} from the
+% encoding given by \meta{name~1} to the encoding given by
+% \meta{name~2}, and assigns the result to \meta{str~var}. Contrarily
+% to \cs{str_set_convert:Nnnn}, the conditional variant does not raise
+% errors in case the \meta{string} is not valid according to the
+% \meta{name~1} encoding, or cannot be expressed in the \meta{name~2}
+% encoding. Instead, the \meta{false code} is performed.
+% \end{function}
+%
+% \section{Creating $8$-bit mappings}
+%
+% \begin{function}{\str_declare_eight_bit_encoding:nnn}
+% \begin{syntax}
+% \cs{str_declare_eight_bit_encoding:nnn} \Arg{name} \Arg{mapping} \Arg{missing}
+% \end{syntax}
+% Declares the encoding \meta{name} to map bytes to Unicode
+% characters according to the \meta{mapping}, and map those bytes
+% which are not mentioned in the \meta{mapping} either to the
+% replacement character (if they appear in \meta{missing}), or to
+% themselves.
+% \end{function}
+%
+% \section{Possibilities, and things to do}
+%
+% Encoding/escaping-related tasks.
+% \begin{itemize}
+% \item In \XeTeX{}/\LuaTeX{}, would it be better to use the
+% |^^^^....| approach to build a string from a given list of
+% character codes? Namely, within a group, assign |0-9a-f| and all
+% characters we want to category ``other'', then assign~|^| the
+% category superscript, and use \tn{scantokens}.
+% \item Change \cs{str_set_convert:Nnnn} to expand its last two
+% arguments.
+% \item Describe the internal format in the code comments. Refuse code
+% points in $[\hexnum{D800}, \hexnum{DFFF}]$ in the internal
+% representation?
+% \item Add documentation about each encoding and escaping method, and
+% add examples.
+% \item The \texttt{hex} unescaping should raise an error for
+% odd-token count strings.
+% \item Decide what bytes should be escaped in the \texttt{url}
+% escaping. Perhaps |!'()*-./0123456789_| are safe, and all other
+% characters should be escaped?
+% \item Automate generation of 8-bit mapping files.
+% \item Change the framework for 8-bit encodings: for decoding from
+% 8-bit to Unicode, use $256$ integer registers; for encoding, use a
+% tree-box.
+% \item More encodings (see Heiko's \pkg{stringenc}). CESU?
+% \item More escapings: \textsc{ascii85}, shell escapes, lua escapes,
+% \emph{etc.}?
+% \end{itemize}
+%
+% \end{documentation}
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3str-convert} implementation}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=str>
+% \end{macrocode}
+%
+% \subsection{Helpers}
+%
+% \subsubsection{Variables and constants}
+%
+% \begin{macro}{\@@_tmp:w}
+% \begin{variable}{\l_@@_internal_int}
+% \begin{variable}{\l_@@_internal_tl}
+% Internal scratch space for some functions.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_tmp:w { }
+\tl_new:N \l_@@_internal_tl
+\int_new:N \l_@@_internal_int
+% \end{macrocode}
+% \end{variable}
+% \end{variable}
+% \end{macro}
+%
+% \begin{variable}{\g_@@_result_tl}
+% The \cs{g_@@_result_tl} variable is used to hold the result of
+% various internal string operations (mostly conversions) which are
+% typically performed in a group. The variable is global so that it
+% remains defined outside the group, to be assigned to a user-provided
+% variable.
+% \begin{macrocode}
+\tl_new:N \g_@@_result_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\c_@@_replacement_char_int}
+% When converting, invalid bytes are replaced by the Unicode
+% replacement character \hexnum{FFFD}.
+% \begin{macrocode}
+\int_const:Nn \c_@@_replacement_char_int { "FFFD }
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\c_@@_max_byte_int}
+% The maximal byte number.
+% \begin{macrocode}
+\int_const:Nn \c_@@_max_byte_int { 255 }
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\g_@@_alias_prop}
+% To avoid needing one file per encoding/escaping alias, we keep track
+% of those in a property list.
+% \begin{macrocode}
+\prop_new:N \g_@@_alias_prop
+\prop_gput:Nnn \g_@@_alias_prop { latin1 } { iso88591 }
+\prop_gput:Nnn \g_@@_alias_prop { latin2 } { iso88592 }
+\prop_gput:Nnn \g_@@_alias_prop { latin3 } { iso88593 }
+\prop_gput:Nnn \g_@@_alias_prop { latin4 } { iso88594 }
+\prop_gput:Nnn \g_@@_alias_prop { latin5 } { iso88599 }
+\prop_gput:Nnn \g_@@_alias_prop { latin6 } { iso885910 }
+\prop_gput:Nnn \g_@@_alias_prop { latin7 } { iso885913 }
+\prop_gput:Nnn \g_@@_alias_prop { latin8 } { iso885914 }
+\prop_gput:Nnn \g_@@_alias_prop { latin9 } { iso885915 }
+\prop_gput:Nnn \g_@@_alias_prop { latin10 } { iso885916 }
+\prop_gput:Nnn \g_@@_alias_prop { utf16le } { utf16 }
+\prop_gput:Nnn \g_@@_alias_prop { utf16be } { utf16 }
+\prop_gput:Nnn \g_@@_alias_prop { utf32le } { utf32 }
+\prop_gput:Nnn \g_@@_alias_prop { utf32be } { utf32 }
+\prop_gput:Nnn \g_@@_alias_prop { hexadecimal } { hex }
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\g_@@_error_bool}
+% In conversion functions with a built-in conditional, errors are not
+% reported directly to the user, but the information is collected in
+% this boolean, used at the end to decide on which branch of the
+% conditional to take.
+% \begin{macrocode}
+\bool_new:N \g_@@_error_bool
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{str_byte, str_error}
+% Conversions from one \meta{encoding}/\meta{escaping} pair to another
+% are done within \texttt{x}-expanding assignments. Errors are
+% signalled by raising the relevant flag.
+% \begin{macrocode}
+\flag_new:n { str_byte }
+\flag_new:n { str_error }
+% \end{macrocode}
+% \end{variable}
+%
+% \subsection{String conditionals}
+%
+% \begin{macro}[EXP]{\@@_if_contains_char:NNT, \@@_if_contains_char:NNTF}
+% \begin{macro}[EXP]{\@@_if_contains_char:nNTF}
+% \begin{macro}[EXP]{\@@_if_contains_char_aux:NN}
+% \begin{macro}[EXP]{\@@_if_contains_char_true:}
+% \begin{syntax}
+% \cs{@@_if_contains_char:nNTF} \Arg{token list} \meta{char}
+% \end{syntax}
+% Expects the \meta{token list} to be an \meta{other string}: the
+% caller is responsible for ensuring that no (too-)special catcodes
+% remain. Spaces with catcode $10$ are ignored.
+% Loop over the characters of the string, comparing character codes.
+% The loop is broken if character codes match. Otherwise we return
+% \enquote{false}.
+% \begin{macrocode}
+\prg_new_conditional:Npnn \@@_if_contains_char:NN #1#2 { T , TF }
+ {
+ \exp_after:wN \@@_if_contains_char_aux:NN \exp_after:wN #2
+ #1 { \prg_break:n { ? \fi: } }
+ \prg_break_point:
+ \prg_return_false:
+ }
+\prg_new_conditional:Npnn \@@_if_contains_char:nN #1#2 { TF }
+ {
+ \@@_if_contains_char_aux:NN #2 #1 { \prg_break:n { ? \fi: } }
+ \prg_break_point:
+ \prg_return_false:
+ }
+\cs_new:Npn \@@_if_contains_char_aux:NN #1#2
+ {
+ \if_charcode:w #1 #2
+ \exp_after:wN \@@_if_contains_char_true:
+ \fi:
+ \@@_if_contains_char_aux:NN #1
+ }
+\cs_new:Npn \@@_if_contains_char_true:
+ { \prg_break:n { \prg_return_true: \use_none:n } }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[rEXP]{\@@_octal_use:NTF}
+% \begin{syntax}
+% \cs{@@_octal_use:NTF} \meta{token} \Arg{true code} \Arg{false code}
+% \end{syntax}
+% If the \meta{token} is an octal digit, it is left in the input
+% stream, \emph{followed} by the \meta{true code}. Otherwise, the
+% \meta{false code} is left in the input stream.
+% \begin{texnote}
+% This function will fail if the escape character is an octal
+% digit. We are thus careful to set the escape character to a known
+% value before using it.
+% \end{texnote}
+% \TeX{} dutifully detects octal digits for us: if |#1| is an octal
+% digit, then the right-hand side of the comparison is |'1#1|, greater
+% than $1$. Otherwise, the right-hand side stops as |'1|, and the
+% conditional takes the \texttt{false} branch.
+% \begin{macrocode}
+\prg_new_conditional:Npnn \@@_octal_use:N #1 { TF }
+ {
+ \if_int_compare:w 1 < '1 \token_to_str:N #1 \exp_stop_f:
+ #1 \prg_return_true:
+ \else:
+ \prg_return_false:
+ \fi:
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[rEXP]{\@@_hexadecimal_use:NTF}
+% \TeX{} detects uppercase hexadecimal digits for us (see
+% \cs{@@_octal_use:NTF}), but not the lowercase letters, which we
+% need to detect and replace by their uppercase counterpart.
+% \begin{macrocode}
+\prg_new_conditional:Npnn \@@_hexadecimal_use:N #1 { TF }
+ {
+ \if_int_compare:w 1 < "1 \token_to_str:N #1 \exp_stop_f:
+ #1 \prg_return_true:
+ \else:
+ \if_case:w \int_eval:n { \exp_after:wN ` \token_to_str:N #1 - `a }
+ A
+ \or: B
+ \or: C
+ \or: D
+ \or: E
+ \or: F
+ \else:
+ \prg_return_false:
+ \exp_after:wN \use_none:n
+ \fi:
+ \prg_return_true:
+ \fi:
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Conversions}
+%
+% \subsubsection{Producing one byte or character}
+%
+% \begin{variable}{\c_@@_byte_0_tl, \c_@@_byte_1_tl, \c_@@_byte_255_tl}
+% \begin{variable}{\c_@@_byte_-1_tl}
+% For each integer $N$ in the range $[0,255]$, we create a constant
+% token list which holds three character tokens with category code
+% other: the character with character code $N$, followed by the
+% representation of $N$ as two hexadecimal digits. The value $-1$ is
+% given a default token list which ensures that later functions give
+% an empty result for the input $-1$.
+% \begin{macrocode}
+\group_begin:
+ \tl_set:Nx \l_@@_internal_tl { \tl_to_str:n { 0123456789ABCDEF } }
+ \tl_map_inline:Nn \l_@@_internal_tl
+ {
+ \tl_map_inline:Nn \l_@@_internal_tl
+ {
+ \tl_const:cx { c_@@_byte_ \int_eval:n {"#1##1} _tl }
+ { \char_generate:nn { "#1##1 } { 12 } #1 ##1 }
+ }
+ }
+\group_end:
+\tl_const:cn { c_@@_byte_-1_tl } { { } \use_none:n { } }
+% \end{macrocode}
+% \end{variable}
+% \end{variable}
+%
+% \begin{macro}[EXP]{\@@_output_byte:n}
+% \begin{macro}[EXP]{\@@_output_byte:w}
+% \begin{macro}[EXP]{\@@_output_hexadecimal:n}
+% \begin{macro}[EXP]{\@@_output_end:}
+% Those functions must be used carefully: feeding them a value outside
+% the range $[-1,255]$ will attempt to use the undefined token list
+% variable \cs{c_@@_byte_\meta{number}_tl}. Assuming that the
+% argument is in the right range, we expand the corresponding token
+% list, and pick either the byte (first token) or the hexadecimal
+% representations (second and third tokens). The value $-1$ produces
+% an empty result in both cases.
+% \begin{macrocode}
+\cs_new:Npn \@@_output_byte:n #1
+ { \@@_output_byte:w #1 \@@_output_end: }
+\cs_new:Npn \@@_output_byte:w
+ {
+ \exp_after:wN \exp_after:wN
+ \exp_after:wN \use_i:nnn
+ \cs:w c_@@_byte_ \int_eval:w
+ }
+\cs_new:Npn \@@_output_hexadecimal:n #1
+ {
+ \exp_after:wN \exp_after:wN
+ \exp_after:wN \use_none:n
+ \cs:w c_@@_byte_ \int_eval:n {#1} _tl \cs_end:
+ }
+\cs_new:Npn \@@_output_end:
+ { \scan_stop: _tl \cs_end: }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[rEXP]{\@@_output_byte_pair_be:n}
+% \begin{macro}[rEXP]{\@@_output_byte_pair_le:n}
+% \begin{macro}[rEXP]{\@@_output_byte_pair:nnN}
+% Convert a number in the range $[0,65535]$ to a pair of bytes, either
+% big-endian or little-endian.
+% \begin{macrocode}
+\cs_new:Npn \@@_output_byte_pair_be:n #1
+ {
+ \exp_args:Nf \@@_output_byte_pair:nnN
+ { \int_div_truncate:nn { #1 } { "100 } } {#1} \use:nn
+ }
+\cs_new:Npn \@@_output_byte_pair_le:n #1
+ {
+ \exp_args:Nf \@@_output_byte_pair:nnN
+ { \int_div_truncate:nn { #1 } { "100 } } {#1} \use_ii_i:nn
+ }
+\cs_new:Npn \@@_output_byte_pair:nnN #1#2#3
+ {
+ #3
+ { \@@_output_byte:n { #1 } }
+ { \@@_output_byte:n { #2 - #1 * "100 } }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsubsection{Mapping functions for conversions}
+%
+% \begin{macro}{\@@_convert_gmap:N}
+% \begin{macro}[rEXP]{\@@_convert_gmap_loop:NN}
+% This maps the function |#1| over all characters in
+% \cs{g_@@_result_tl}, which should be a byte string in most cases,
+% sometimes a native string.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_gmap:N #1
+ {
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \exp_after:wN \@@_convert_gmap_loop:NN
+ \exp_after:wN #1
+ \g_@@_result_tl { ? \prg_break: }
+ \prg_break_point:
+ }
+ }
+\cs_new:Npn \@@_convert_gmap_loop:NN #1#2
+ {
+ \use_none:n #2
+ #1#2
+ \@@_convert_gmap_loop:NN #1
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_gmap_internal:N}
+% \begin{macro}[rEXP]{\@@_convert_gmap_internal_loop:Nw}
+% This maps the function |#1| over all character codes in
+% \cs{g_@@_result_tl}, which must be in the internal representation.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_gmap_internal:N #1
+ {
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \exp_after:wN \@@_convert_gmap_internal_loop:Nww
+ \exp_after:wN #1
+ \g_@@_result_tl \s__tl \q_stop \prg_break: \s__tl
+ \prg_break_point:
+ }
+ }
+\cs_new:Npn \@@_convert_gmap_internal_loop:Nww #1 #2 \s__tl #3 \s__tl
+ {
+ \use_none_delimit_by_q_stop:w #3 \q_stop
+ #1 {#3}
+ \@@_convert_gmap_internal_loop:Nww #1
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsubsection{Error-reporting during conversion}
+%
+% \begin{macro}{\@@_if_flag_error:nnx}
+% \begin{macro}{\@@_if_flag_no_error:nnx}
+% When converting using the function \cs{str_set_convert:Nnnn}, errors
+% should be reported to the user after each step in the
+% conversion. Errors are signalled by raising some flag (typically
+% \texttt{@@_error}), so here we test that flag: if it is raised,
+% give the user an error, otherwise remove the arguments. On the other
+% hand, in the conditional functions \cs{str_set_convert:NnnnTF},
+% errors should be suppressed. This is done by changing
+% \cs{@@_if_flag_error:nnx} into \cs{@@_if_flag_no_error:nnx}
+% locally.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_if_flag_error:nnx #1
+ {
+ \flag_if_raised:nTF {#1}
+ { \__kernel_msg_error:nnx { str } }
+ { \use_none:nn }
+ }
+\cs_new_protected:Npn \@@_if_flag_no_error:nnx #1#2#3
+ { \flag_if_raised:nT {#1} { \bool_gset_true:N \g_@@_error_bool } }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[rEXP]{\@@_if_flag_times:nT}
+% At the end of each conversion step, we raise all relevant errors as
+% one error message, built on the fly. The height of each flag
+% indicates how many times a given error was encountered. This
+% function prints |#2| followed by the number of occurrences of an
+% error if it occurred, nothing otherwise.
+% \begin{macrocode}
+\cs_new:Npn \@@_if_flag_times:nT #1#2
+ { \flag_if_raised:nT {#1} { #2~(x \flag_height:n {#1} ) } }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsubsection{Framework for conversions}
+%
+% Most functions in this module expect to be working with
+% \enquote{native} strings. Strings can also be stored as bytes, in one
+% of many encodings, for instance \textsc{utf8}. The bytes themselves
+% can be expressed in various ways in terms of \TeX{} tokens, for
+% instance as pairs of hexadecimal digits. The questions of going from
+% arbitrary Unicode code points to bytes, and from bytes to tokens are
+% mostly independent.
+%
+% Conversions are done in four steps:
+% \begin{itemize}
+% \item \enquote{unescape} produces a string of bytes;
+% \item \enquote{decode} takes in a string of bytes, and converts it
+% to a list of Unicode characters in an internal representation,
+% with items of the form
+% \begin{quote}
+% \meta{bytes} \cs{s__tl} \meta{Unicode code point} \cs{s__tl}
+% \end{quote}
+% where we have collected the \meta{bytes} which combined to form
+% this particular Unicode character, and the \meta{Unicode code
+% point} is in the range $[0,\hexnum{10FFFF}]$.
+% \item \enquote{encode} encodes the internal list of code points as a
+% byte string in the new encoding;
+% \item \enquote{escape} escapes bytes as requested.
+% \end{itemize}
+% The process is modified in case one of the encoding is empty (or the
+% conversion function has been set equal to the empty encoding because
+% it was not found): then the unescape or escape step is ignored, and
+% the decode or encode steps work on tokens instead of bytes. Otherwise,
+% each step must ensure that it passes a correct byte string or internal
+% string to the next step.
+%
+% \begin{macro}{\str_set_convert:Nnnn, \str_gset_convert:Nnnn}
+% \begin{macro}[TF]{\str_set_convert:Nnnn, \str_gset_convert:Nnnn}
+% \begin{macro}{\@@_convert:nNNnnn}
+% The input string is stored in \cs{g_@@_result_tl}, then we:
+% unescape and decode; encode and escape; exit the group and store the
+% result in the user's variable. The various conversion functions all
+% act on \cs{g_@@_result_tl}. Errors are silenced for the conditional
+% functions by redefining \cs{@@_if_flag_error:nnx} locally.
+% \begin{macrocode}
+\cs_new_protected:Npn \str_set_convert:Nnnn
+ { \@@_convert:nNNnnn { } \tl_set_eq:NN }
+\cs_new_protected:Npn \str_gset_convert:Nnnn
+ { \@@_convert:nNNnnn { } \tl_gset_eq:NN }
+\prg_new_protected_conditional:Npnn
+ \str_set_convert:Nnnn #1#2#3#4 { T , F , TF }
+ {
+ \bool_gset_false:N \g_@@_error_bool
+ \@@_convert:nNNnnn
+ { \cs_set_eq:NN \@@_if_flag_error:nnx \@@_if_flag_no_error:nnx }
+ \tl_set_eq:NN #1 {#2} {#3} {#4}
+ \bool_if:NTF \g_@@_error_bool \prg_return_false: \prg_return_true:
+ }
+\prg_new_protected_conditional:Npnn
+ \str_gset_convert:Nnnn #1#2#3#4 { T , F , TF }
+ {
+ \bool_gset_false:N \g_@@_error_bool
+ \@@_convert:nNNnnn
+ { \cs_set_eq:NN \@@_if_flag_error:nnx \@@_if_flag_no_error:nnx }
+ \tl_gset_eq:NN #1 {#2} {#3} {#4}
+ \bool_if:NTF \g_@@_error_bool \prg_return_false: \prg_return_true:
+ }
+\cs_new_protected:Npn \@@_convert:nNNnnn #1#2#3#4#5#6
+ {
+ \group_begin:
+ #1
+ \tl_gset:Nx \g_@@_result_tl { \__kernel_str_to_other_fast:n {#4} }
+ \exp_after:wN \@@_convert:wwwnn
+ \tl_to_str:n {#5} /// \q_stop
+ { decode } { unescape }
+ \prg_do_nothing:
+ \@@_convert_decode_:
+ \exp_after:wN \@@_convert:wwwnn
+ \tl_to_str:n {#6} /// \q_stop
+ { encode } { escape }
+ \use_ii_i:nn
+ \@@_convert_encode_:
+ \group_end:
+ #2 #3 \g_@@_result_tl
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert:wwwnn}
+% \begin{macro}{\@@_convert:NNnNN}
+% The task of \cs{@@_convert:wwwnn} is to split
+% \meta{encoding}/\meta{escaping} pairs into their components, |#1|
+% and |#2|. Calls to \cs{@@_convert:nnn} ensure that the
+% corresponding conversion functions are defined. The third auxiliary
+% does the main work.
+% \begin{itemize}
+% \item |#1| is the encoding conversion function;
+% \item |#2| is the escaping function;
+% \item |#3| is the escaping name for use in an error message;
+% \item |#4| is \cs{prg_do_nothing:} for unescaping/decoding, and
+% \cs{use_ii_i:nn} for encoding/escaping;
+% \item |#5| is the default encoding function (either
+% \enquote{decode} or \enquote{encode}), for which there should be
+% no escaping.
+% \end{itemize}
+% Let us ignore the native encoding for a second. In the
+% unescaping/decoding phase, we want to do |#2#1| in this order, and
+% in the encoding/escaping phase, the order should be reversed:
+% |#4#2#1| does exactly that. If one of the encodings is the default
+% (native), then the escaping should be ignored, with an error if any
+% was given, and only the encoding, |#1|, should be performed.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert:wwwnn
+ #1 / #2 // #3 \q_stop #4#5
+ {
+ \@@_convert:nnn {enc} {#4} {#1}
+ \@@_convert:nnn {esc} {#5} {#2}
+ \exp_args:Ncc \@@_convert:NNnNN
+ { @@_convert_#4_#1: } { @@_convert_#5_#2: } {#2}
+ }
+\cs_new_protected:Npn \@@_convert:NNnNN #1#2#3#4#5
+ {
+ \if_meaning:w #1 #5
+ \tl_if_empty:nF {#3}
+ { \__kernel_msg_error:nnx { str } { native-escaping } {#3} }
+ #1
+ \else:
+ #4 #2 #1
+ \fi:
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert:nnn}
+% \begin{macro}{\@@_convert:nnnn}
+% The arguments of \cs{@@_convert:nnn} are: \texttt{enc} or
+% \texttt{esc}, used to build filenames, the type of the conversion
+% (unescape, decode, encode, escape), and the encoding or escaping
+% name. If the function is already defined, no need to do anything.
+% Otherwise, filter out all non-alphanumerics in the name, and
+% lowercase it. Feed that, and the same three arguments, to
+% \cs{@@_convert:nnnn}. The task is then to make sure that the
+% conversion function |#3_#1| corresponding to the type |#3| and
+% filtered name |#1| is defined, then set our initial conversion
+% function |#3_#4| equal to that.
+%
+% How do we get the |#3_#1| conversion to be defined if it isn't?
+% Two main cases.
+%
+% First, if |#1| is a key in \cs{g_@@_alias_prop}, then the value
+% \cs{l_@@_internal_tl} tells us what file to load. Loading is
+% skipped if the file was already read, \emph{i.e.}, if the conversion
+% command based on \cs{l_@@_internal_tl} already exists. Otherwise,
+% try to load the file; if that fails, there is an error, use the
+% default empty name instead.
+%
+% Second, |#1| may be absent from the property list. The
+% \cs{cs_if_exist:cF} test is automatically false, and we search for a
+% file defining the encoding or escaping |#1| (this should allow
+% third-party \texttt{.def} files). If the file is not found, there is
+% an error, use the default empty name instead.
+%
+% In all cases, the conversion based on \cs{l_@@_internal_tl} is
+% defined, so we can set the |#3_#1| function equal to that. In some
+% cases (\emph{e.g.}, \texttt{utf16be}), the |#3_#1| function is
+% actually defined within the file we just loaded, and it is different
+% from the \cs{l_@@_internal_tl}-based function: we mustn't clobber
+% that different definition.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert:nnn #1#2#3
+ {
+ \cs_if_exist:cF { @@_convert_#2_#3: }
+ {
+ \exp_args:Nx \@@_convert:nnnn
+ { \@@_convert_lowercase_alphanum:n {#3} }
+ {#1} {#2} {#3}
+ }
+ }
+\cs_new_protected:Npn \@@_convert:nnnn #1#2#3#4
+ {
+ \cs_if_exist:cF { @@_convert_#3_#1: }
+ {
+ \prop_get:NnNF \g_@@_alias_prop {#1} \l_@@_internal_tl
+ { \tl_set:Nn \l_@@_internal_tl {#1} }
+ \cs_if_exist:cF { @@_convert_#3_ \l_@@_internal_tl : }
+ {
+ \file_if_exist:nTF { l3str-#2- \l_@@_internal_tl .def }
+ {
+ \group_begin:
+ \@@_load_catcodes:
+ \file_input:n { l3str-#2- \l_@@_internal_tl .def }
+ \group_end:
+ }
+ {
+ \tl_clear:N \l_@@_internal_tl
+ \__kernel_msg_error:nnxx { str } { unknown-#2 } {#4} {#1}
+ }
+ }
+ \cs_if_exist:cF { @@_convert_#3_#1: }
+ {
+ \cs_gset_eq:cc { @@_convert_#3_#1: }
+ { @@_convert_#3_ \l_@@_internal_tl : }
+ }
+ }
+ \cs_gset_eq:cc { @@_convert_#3_#4: } { @@_convert_#3_#1: }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[rEXP]{\@@_convert_lowercase_alphanum:n}
+% \begin{macro}[rEXP]{\@@_convert_lowercase_alphanum_loop:N}
+% This function keeps only letters and digits, with upper case letters
+% converted to lower case.
+% \begin{macrocode}
+\cs_new:Npn \@@_convert_lowercase_alphanum:n #1
+ {
+ \exp_after:wN \@@_convert_lowercase_alphanum_loop:N
+ \tl_to_str:n {#1} { ? \prg_break: }
+ \prg_break_point:
+ }
+\cs_new:Npn \@@_convert_lowercase_alphanum_loop:N #1
+ {
+ \use_none:n #1
+ \if_int_compare:w `#1 > `Z \exp_stop_f:
+ \if_int_compare:w `#1 > `z \exp_stop_f: \else:
+ \if_int_compare:w `#1 < `a \exp_stop_f: \else:
+ #1
+ \fi:
+ \fi:
+ \else:
+ \if_int_compare:w `#1 < `A \exp_stop_f:
+ \if_int_compare:w 1 < 1#1 \exp_stop_f:
+ #1
+ \fi:
+ \else:
+ \@@_output_byte:n { `#1 + `a - `A }
+ \fi:
+ \fi:
+ \@@_convert_lowercase_alphanum_loop:N
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_load_catcodes:}
+% Since encoding files may be loaded at arbitrary places in a \TeX{}
+% document, including within verbatim mode, we set the catcodes of all
+% characters appearing in any encoding definition file.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_load_catcodes:
+ {
+ \char_set_catcode_escape:N \\
+ \char_set_catcode_group_begin:N \{
+ \char_set_catcode_group_end:N \}
+ \char_set_catcode_math_toggle:N \$
+ \char_set_catcode_alignment:N \&
+ \char_set_catcode_parameter:N \#
+ \char_set_catcode_math_superscript:N \^
+ \char_set_catcode_ignore:N \ %
+ \char_set_catcode_space:N \~
+ \tl_map_function:nN { abcdefghijklmnopqrstuvwxyz_:ABCDEFILNPSTUX }
+ \char_set_catcode_letter:N
+ \tl_map_function:nN { 0123456789"'?*+-.(),`!/<>[];= }
+ \char_set_catcode_other:N
+ \char_set_catcode_comment:N \%
+ \int_set:Nn \tex_endlinechar:D {32}
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsubsection{Byte unescape and escape}
+%
+% Strings of bytes may need to be stored in auxiliary files in safe
+% \enquote{escaping} formats. Each such escaping is only loaded as
+% needed. By default, on input any non-byte is filtered out, while the
+% output simply consists in letting bytes through.
+%
+% \begin{macro}[rEXP]{\@@_filter_bytes:n}
+% \begin{macro}[rEXP]{\@@_filter_bytes_aux:N}
+% In the case of 8-bit engines, every character is a byte. For
+% Unicode-aware engines, test the character code; non-bytes cause us
+% to raise the flag \texttt{str_byte}. Spaces have already been given
+% the correct category code when this function is called.
+% \begin{macrocode}
+\bool_lazy_any:nTF
+ {
+ \sys_if_engine_luatex_p:
+ \sys_if_engine_xetex_p:
+ }
+ {
+ \cs_new:Npn \@@_filter_bytes:n #1
+ {
+ \@@_filter_bytes_aux:N #1
+ { ? \prg_break: }
+ \prg_break_point:
+ }
+ \cs_new:Npn \@@_filter_bytes_aux:N #1
+ {
+ \use_none:n #1
+ \if_int_compare:w `#1 < 256 \exp_stop_f:
+ #1
+ \else:
+ \flag_raise:n { str_byte }
+ \fi:
+ \@@_filter_bytes_aux:N
+ }
+ }
+ { \cs_new_eq:NN \@@_filter_bytes:n \use:n }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_unescape_:}
+% \begin{macro}{\@@_convert_unescape_bytes:}
+% The simplest unescaping method removes non-bytes from
+% \cs{g_@@_result_tl}.
+% \begin{macrocode}
+\bool_lazy_any:nTF
+ {
+ \sys_if_engine_luatex_p:
+ \sys_if_engine_xetex_p:
+ }
+ {
+ \cs_new_protected:Npn \@@_convert_unescape_:
+ {
+ \flag_clear:n { str_byte }
+ \tl_gset:Nx \g_@@_result_tl
+ { \exp_args:No \@@_filter_bytes:n \g_@@_result_tl }
+ \@@_if_flag_error:nnx { str_byte } { non-byte } { bytes }
+ }
+ }
+ { \cs_new_protected:Npn \@@_convert_unescape_: { } }
+\cs_new_eq:NN \@@_convert_unescape_bytes: \@@_convert_unescape_:
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_escape_:}
+% \begin{macro}{\@@_convert_escape_bytes:}
+% The simplest form of escape leaves the bytes from the previous step
+% of the conversion unchanged.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_escape_: { }
+\cs_new_eq:NN \@@_convert_escape_bytes: \@@_convert_escape_:
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsubsection{Native strings}
+%
+% \begin{macro}{\@@_convert_decode_:}
+% \begin{macro}[rEXP]{\@@_decode_native_char:N}
+% Convert each character to its character code, one at a time.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_decode_:
+ { \@@_convert_gmap:N \@@_decode_native_char:N }
+\cs_new:Npn \@@_decode_native_char:N #1
+ { #1 \s__tl \int_value:w `#1 \s__tl }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_encode_:}
+% \begin{macro}[EXP]{\@@_encode_native_char:n}
+% The conversion from an internal string to native character tokens
+% basically maps \cs{char_generate:nn} through the code-points, but in
+% non-Unicode-aware engines we use a fall-back character |?| rather
+% than nothing when given a character code outside $[0,255]$. We
+% detect the presence of bad characters using a flag and only produce
+% a single error after the \texttt{x}-expanding assignment.
+% \begin{macrocode}
+\bool_lazy_any:nTF
+ {
+ \sys_if_engine_luatex_p:
+ \sys_if_engine_xetex_p:
+ }
+ {
+ \cs_new_protected:Npn \@@_convert_encode_:
+ { \@@_convert_gmap_internal:N \@@_encode_native_char:n }
+ \cs_new:Npn \@@_encode_native_char:n #1
+ { \char_generate:nn {#1} {12} }
+ }
+ {
+ \cs_new_protected:Npn \@@_convert_encode_:
+ {
+ \flag_clear:n { str_error }
+ \@@_convert_gmap_internal:N \@@_encode_native_char:n
+ \@@_if_flag_error:nnx { str_error }
+ { native-overflow } { }
+ }
+ \cs_new:Npn \@@_encode_native_char:n #1
+ {
+ \if_int_compare:w #1 > \c_@@_max_byte_int
+ \flag_raise:n { str_error }
+ ?
+ \else:
+ \char_generate:nn {#1} {12}
+ \fi:
+ }
+ \__kernel_msg_new:nnnn { str } { native-overflow }
+ { Character~code~too~large~for~this~engine. }
+ {
+ This~engine~only~support~8-bit~characters:~
+ valid~character~codes~are~in~the~range~[0,255].~
+ To~manipulate~arbitrary~Unicode,~use~LuaTeX~or~XeTeX.
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsubsection{\texttt{clist}}
+%
+% \begin{macro}{\@@_convert_decode_clist:}
+% \begin{macro}[rEXP]{\@@_decode_clist_char:n}
+% Convert each integer to the internal form. We first turn
+% \cs{g_@@_result_tl} into a clist variable, as this avoids problems
+% with leading or trailing commas.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_decode_clist:
+ {
+ \clist_gset:No \g_@@_result_tl \g_@@_result_tl
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \exp_args:No \clist_map_function:nN
+ \g_@@_result_tl \@@_decode_clist_char:n
+ }
+ }
+\cs_new:Npn \@@_decode_clist_char:n #1
+ { #1 \s__tl \int_eval:n {#1} \s__tl }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_encode_clist:}
+% \begin{macro}[rEXP]{\@@_encode_clist_char:n}
+% Convert the internal list of character codes to a comma-list of
+% character codes. The first line produces a comma-list with a
+% leading comma, removed in the next step (this also works in the
+% empty case, since \cs{tl_tail:N} does not trigger an error in this
+% case).
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_encode_clist:
+ {
+ \@@_convert_gmap_internal:N \@@_encode_clist_char:n
+ \tl_gset:Nx \g_@@_result_tl { \tl_tail:N \g_@@_result_tl }
+ }
+\cs_new:Npn \@@_encode_clist_char:n #1 { , #1 }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsubsection{8-bit encodings}
+%
+% This section will be entirely rewritten: it is not yet clear in what
+% situations 8-bit encodings are used, hence I don't know what exactly
+% should be optimized. The current approach is reasonably efficient to
+% convert long strings, and it scales well when using many different
+% encodings. An approach based on csnames would have a smaller constant
+% load time for each individual conversion, but has a large hash table
+% cost. Using a range of \tn{count} registers works for decoding, but
+% not for encoding: one possibility there would be to use a binary tree
+% for the mapping of Unicode characters to bytes, stored as a box, one
+% per encoding.
+%
+% Since the section is going to be rewritten, documentation lacks.
+%
+% All the 8-bit encodings which \pkg{l3str} supports rely on the same
+% internal functions.
+%
+% \begin{macro}{\str_declare_eight_bit_encoding:nnn}
+% All the 8-bit encoding definition file start with
+% \cs{str_declare_eight_bit_encoding:nnn} \Arg{encoding name}
+% \Arg{mapping} \Arg{missing bytes}. The \meta{mapping} argument is a
+% token list of pairs \Arg{byte} \Arg{Unicode} expressed in uppercase
+% hexadecimal notation. The \meta{missing} argument is a token list
+% of \Arg{byte}. Every \meta{byte} which does not appear in the
+% \meta{mapping} nor the \meta{missing} lists maps to the same code
+% point in Unicode.
+% \begin{macrocode}
+\cs_new_protected:Npn \str_declare_eight_bit_encoding:nnn #1#2#3
+ {
+ \tl_set:Nn \l_@@_internal_tl {#1}
+ \cs_new_protected:cpn { @@_convert_decode_#1: }
+ { \@@_convert_decode_eight_bit:n {#1} }
+ \cs_new_protected:cpn { @@_convert_encode_#1: }
+ { \@@_convert_encode_eight_bit:n {#1} }
+ \tl_const:cn { c_@@_encoding_#1_tl } {#2}
+ \tl_const:cn { c_@@_encoding_#1_missing_tl } {#3}
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_decode_eight_bit:n}
+% \begin{macro}{\@@_decode_eight_bit_load:nn}
+% \begin{macro}{\@@_decode_eight_bit_load_missing:n}
+% \begin{macro}[EXP]{\@@_decode_eight_bit_char:N}
+%^^A todo: document
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_decode_eight_bit:n #1
+ {
+ \group_begin:
+ \int_zero:N \l_@@_internal_int
+ \exp_last_unbraced:Nx \@@_decode_eight_bit_load:nn
+ { \tl_use:c { c_@@_encoding_#1_tl } }
+ { \q_stop \prg_break: } { }
+ \prg_break_point:
+ \exp_last_unbraced:Nx \@@_decode_eight_bit_load_missing:n
+ { \tl_use:c { c_@@_encoding_#1_missing_tl } }
+ { \q_stop \prg_break: }
+ \prg_break_point:
+ \flag_clear:n { str_error }
+ \@@_convert_gmap:N \@@_decode_eight_bit_char:N
+ \@@_if_flag_error:nnx { str_error } { decode-8-bit } {#1}
+ \group_end:
+ }
+\cs_new_protected:Npn \@@_decode_eight_bit_load:nn #1#2
+ {
+ \use_none_delimit_by_q_stop:w #1 \q_stop
+ \tex_dimen:D "#1 = \l_@@_internal_int sp \scan_stop:
+ \tex_skip:D \l_@@_internal_int = "#1 sp \scan_stop:
+ \tex_toks:D \l_@@_internal_int \exp_after:wN { \int_value:w "#2 }
+ \int_incr:N \l_@@_internal_int
+ \@@_decode_eight_bit_load:nn
+ }
+\cs_new_protected:Npn \@@_decode_eight_bit_load_missing:n #1
+ {
+ \use_none_delimit_by_q_stop:w #1 \q_stop
+ \tex_dimen:D "#1 = \l_@@_internal_int sp \scan_stop:
+ \tex_skip:D \l_@@_internal_int = "#1 sp \scan_stop:
+ \tex_toks:D \l_@@_internal_int \exp_after:wN
+ { \int_use:N \c_@@_replacement_char_int }
+ \int_incr:N \l_@@_internal_int
+ \@@_decode_eight_bit_load_missing:n
+ }
+\cs_new:Npn \@@_decode_eight_bit_char:N #1
+ {
+ #1 \s__tl
+ \if_int_compare:w \tex_dimen:D `#1 < \l_@@_internal_int
+ \if_int_compare:w \tex_skip:D \tex_dimen:D `#1 = `#1 \exp_stop_f:
+ \tex_the:D \tex_toks:D \tex_dimen:D
+ \fi:
+ \fi:
+ \int_value:w `#1 \s__tl
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_encode_eight_bit:n}
+% \begin{macro}{\@@_encode_eight_bit_load:nn}
+% \begin{macro}[rEXP]{\@@_encode_eight_bit_char:n}
+% \begin{macro}[rEXP]{\@@_encode_eight_bit_char_aux:n}
+%^^A todo: document
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_encode_eight_bit:n #1
+ {
+ \group_begin:
+ \int_zero:N \l_@@_internal_int
+ \exp_last_unbraced:Nx \@@_encode_eight_bit_load:nn
+ { \tl_use:c { c_@@_encoding_#1_tl } }
+ { \q_stop \prg_break: } { }
+ \prg_break_point:
+ \flag_clear:n { str_error }
+ \@@_convert_gmap_internal:N \@@_encode_eight_bit_char:n
+ \@@_if_flag_error:nnx { str_error } { encode-8-bit } {#1}
+ \group_end:
+ }
+\cs_new_protected:Npn \@@_encode_eight_bit_load:nn #1#2
+ {
+ \use_none_delimit_by_q_stop:w #1 \q_stop
+ \tex_dimen:D "#2 = \l_@@_internal_int sp \scan_stop:
+ \tex_skip:D \l_@@_internal_int = "#2 sp \scan_stop:
+ \exp_args:NNf \tex_toks:D \l_@@_internal_int
+ { \@@_output_byte:n { "#1 } }
+ \int_incr:N \l_@@_internal_int
+ \@@_encode_eight_bit_load:nn
+ }
+\cs_new:Npn \@@_encode_eight_bit_char:n #1
+ {
+ \if_int_compare:w #1 > \c_max_register_int
+ \flag_raise:n { str_error }
+ \else:
+ \if_int_compare:w \tex_dimen:D #1 < \l_@@_internal_int
+ \if_int_compare:w \tex_skip:D \tex_dimen:D #1 = #1 \exp_stop_f:
+ \tex_the:D \tex_toks:D \tex_dimen:D #1 \exp_stop_f:
+ \exp_after:wN \exp_after:wN \exp_after:wN \use_none:nn
+ \fi:
+ \fi:
+ \@@_encode_eight_bit_char_aux:n {#1}
+ \fi:
+ }
+\cs_new:Npn \@@_encode_eight_bit_char_aux:n #1
+ {
+ \if_int_compare:w #1 > \c_@@_max_byte_int
+ \flag_raise:n { str_error }
+ \else:
+ \@@_output_byte:n {#1}
+ \fi:
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Messages}
+%
+% General messages, and messages for the encodings and escapings loaded
+% by default (\enquote{native}, and \enquote{bytes}).
+% \begin{macrocode}
+\__kernel_msg_new:nnn { str } { unknown-esc }
+ { Escaping~scheme~'#1'~(filtered:~'#2')~unknown. }
+\__kernel_msg_new:nnn { str } { unknown-enc }
+ { Encoding~scheme~'#1'~(filtered:~'#2')~unknown. }
+\__kernel_msg_new:nnnn { str } { native-escaping }
+ { The~'native'~encoding~scheme~does~not~support~any~escaping. }
+ {
+ Since~native~strings~do~not~consist~in~bytes,~
+ none~of~the~escaping~methods~make~sense.~
+ The~specified~escaping,~'#1',~will be ignored.
+ }
+\__kernel_msg_new:nnn { str } { file-not-found }
+ { File~'l3str-#1.def'~not~found. }
+% \end{macrocode}
+%
+% Message used when the \enquote{bytes} unescaping fails because the
+% string given to \cs{str_set_convert:Nnnn} contains a non-byte. This
+% cannot happen for the -8-bit engines.
+% Messages used for other escapings and
+% encodings are defined in each definition file.
+% \begin{macrocode}
+\bool_lazy_any:nT
+ {
+ \sys_if_engine_luatex_p:
+ \sys_if_engine_xetex_p:
+ }
+ {
+ \__kernel_msg_new:nnnn { str } { non-byte }
+ { String~invalid~in~escaping~'#1':~it~may~only~contain~bytes. }
+ {
+ Some~characters~in~the~string~you~asked~to~convert~are~not~
+ 8-bit~characters.~Perhaps~the~string~is~a~'native'~Unicode~string?~
+ If~it~is,~try~using\\
+ \\
+ \iow_indent:n
+ {
+ \iow_char:N\\str_set_convert:Nnnn \\
+ \ \ <str~var>~\{~<string>~\}~\{~native~\}~\{~<target~encoding>~\}
+ }
+ }
+ }
+% \end{macrocode}
+%
+% Those messages are used when converting to and from 8-bit encodings.
+% \begin{macrocode}
+\__kernel_msg_new:nnnn { str } { decode-8-bit }
+ { Invalid~string~in~encoding~'#1'. }
+ {
+ LaTeX~came~across~a~byte~which~is~not~defined~to~represent~
+ any~character~in~the~encoding~'#1'.
+ }
+\__kernel_msg_new:nnnn { str } { encode-8-bit }
+ { Unicode~string~cannot~be~converted~to~encoding~'#1'. }
+ {
+ The~encoding~'#1'~only~contains~a~subset~of~all~Unicode~characters.~
+ LaTeX~was~asked~to~convert~a~string~to~that~encoding,~but~that~
+ string~contains~a~character~that~'#1'~does~not~support.
+ }
+% \end{macrocode}
+%
+% \subsection{Escaping definitions}
+%
+% Several of those encodings are defined by the pdf file format. The
+% following byte storage methods are defined:
+% \begin{itemize}
+% \item \texttt{bytes} (default), non-bytes are filtered out, and
+% bytes are left untouched (this is defined by default);
+% \item \texttt{hex} or \texttt{hexadecimal}, as per the \pdfTeX{}
+% primitive \tn{pdfescapehex}
+% \item \texttt{name}, as per the \pdfTeX{} primitive
+% \tn{pdfescapename}
+% \item \texttt{string}, as per the \pdfTeX{} primitive
+% \tn{pdfescapestring}
+% \item \texttt{url}, as per the percent encoding of urls.
+% \end{itemize}
+%
+% \subsubsection{Unescape methods}
+%
+% \begin{macro}{\@@_convert_unescape_hex:}
+% \begin{macro}[rEXP]{\@@_unescape_hex_auxi:N}
+% \begin{macro}[rEXP]{\@@_unescape_hex_auxii:N}
+% Take chars two by two, and interpret each pair as the hexadecimal
+% code for a byte. Anything else than hexadecimal digits is ignored,
+% raising the flag. A string which contains an odd number of
+% hexadecimal digits gets |0| appended to it: this is equivalent to
+% appending a |0| in all cases, and dropping it if it is alone.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_unescape_hex:
+ {
+ \group_begin:
+ \flag_clear:n { str_error }
+ \int_set:Nn \tex_escapechar:D { 92 }
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \@@_output_byte:w "
+ \exp_last_unbraced:Nf \@@_unescape_hex_auxi:N
+ { \tl_to_str:N \g_@@_result_tl }
+ 0 { ? 0 - 1 \prg_break: }
+ \prg_break_point:
+ \@@_output_end:
+ }
+ \@@_if_flag_error:nnx { str_error } { unescape-hex } { }
+ \group_end:
+ }
+\cs_new:Npn \@@_unescape_hex_auxi:N #1
+ {
+ \use_none:n #1
+ \@@_hexadecimal_use:NTF #1
+ { \@@_unescape_hex_auxii:N }
+ {
+ \flag_raise:n { str_error }
+ \@@_unescape_hex_auxi:N
+ }
+ }
+\cs_new:Npn \@@_unescape_hex_auxii:N #1
+ {
+ \use_none:n #1
+ \@@_hexadecimal_use:NTF #1
+ {
+ \@@_output_end:
+ \@@_output_byte:w " \@@_unescape_hex_auxi:N
+ }
+ {
+ \flag_raise:n { str_error }
+ \@@_unescape_hex_auxii:N
+ }
+ }
+\__kernel_msg_new:nnnn { str } { unescape-hex }
+ { String~invalid~in~escaping~'hex':~only~hexadecimal~digits~allowed. }
+ {
+ Some~characters~in~the~string~you~asked~to~convert~are~not~
+ hexadecimal~digits~(0-9,~A-F,~a-f)~nor~spaces.
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_unescape_name:}
+% \begin{macro}[rEXP]{\@@_unescape_name_loop:wNN}
+% \begin{macro}{\@@_convert_unescape_url:}
+% \begin{macro}[rEXP]{\@@_unescape_url_loop:wNN}
+% The \cs{@@_convert_unescape_name:} function replaces each
+% occurrence of |#| followed by two hexadecimal digits in
+% \cs{g_@@_result_tl} by the corresponding byte. The \texttt{url}
+% function is identical, with escape character |%| instead of |#|.
+% Thus we define the two together. The arguments of \cs{@@_tmp:w} are
+% the character code of |#| or |%| in hexadecimal, the name of the
+% main function to define, and the name of the auxiliary which
+% performs the loop.
+%
+% The looping auxiliary |#3| finds the next escape character, reads
+% the following two characters, and tests them. The test
+% \cs{@@_hexadecimal_use:NTF} leaves the upper-case digit in the
+% input stream, hence we surround the test with
+% \cs{@@_output_byte:w}~|"| and \cs{@@_output_end:}. If both
+% characters are hexadecimal digits, they should be removed before
+% looping: this is done by \cs{use_i:nnn}. If one of the characters
+% is not a hexadecimal digit, then feed |"#1| to
+% \cs{@@_output_byte:w} to produce the escape character, raise the
+% flag, and call the looping function followed by the two characters
+% (remove \cs{use_i:nnn}).
+% \begin{macrocode}
+\cs_set_protected:Npn \@@_tmp:w #1#2#3
+ {
+ \cs_new_protected:cpn { @@_convert_unescape_#2: }
+ {
+ \group_begin:
+ \flag_clear:n { str_byte }
+ \flag_clear:n { str_error }
+ \int_set:Nn \tex_escapechar:D { 92 }
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \exp_after:wN #3 \g_@@_result_tl
+ #1 ? { ? \prg_break: }
+ \prg_break_point:
+ }
+ \@@_if_flag_error:nnx { str_byte } { non-byte } { #2 }
+ \@@_if_flag_error:nnx { str_error } { unescape-#2 } { }
+ \group_end:
+ }
+ \cs_new:Npn #3 ##1#1##2##3
+ {
+ \@@_filter_bytes:n {##1}
+ \use_none:n ##3
+ \@@_output_byte:w "
+ \@@_hexadecimal_use:NTF ##2
+ {
+ \@@_hexadecimal_use:NTF ##3
+ { }
+ {
+ \flag_raise:n { str_error }
+ * 0 + `#1 \use_i:nn
+ }
+ }
+ {
+ \flag_raise:n { str_error }
+ 0 + `#1 \use_i:nn
+ }
+ \@@_output_end:
+ \use_i:nnn #3 ##2##3
+ }
+ \__kernel_msg_new:nnnn { str } { unescape-#2 }
+ { String~invalid~in~escaping~'#2'. }
+ {
+ LaTeX~came~across~the~escape~character~'#1'~not~followed~by~
+ two~hexadecimal~digits.~This~is~invalid~in~the~escaping~'#2'.
+ }
+ }
+\exp_after:wN \@@_tmp:w \c_hash_str { name }
+ \@@_unescape_name_loop:wNN
+\exp_after:wN \@@_tmp:w \c_percent_str { url }
+ \@@_unescape_url_loop:wNN
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_unescape_string:}
+% \begin{macro}[rEXP]{\@@_unescape_string_newlines:wN}
+% \begin{macro}[rEXP]{\@@_unescape_string_loop:wNNN}
+% \begin{macro}[rEXP]{\@@_unescape_string_repeat:NNNNNN}
+% The \texttt{string} escaping is somewhat similar to the
+% \texttt{name} and \texttt{url} escapings, with escape character |\|.
+% The first step is to convert all three line endings, |^^J|, |^^M|,
+% and |^^M^^J| to the common |^^J|, as per the \textsc{pdf}
+% specification. This step cannot raise the flag.
+%
+% Then the following escape sequences are decoded.
+% \begin{itemize}\def\makelabel#1{\hss\llap{\ttfamily\string#1}}
+% \item[\n] Line feed ($10$)
+% \item[\r] Carriage return ($13$)
+% \item[\t] Horizontal tab ($9$)
+% \item[\b] Backspace ($8$)
+% \item[\f] Form feed ($12$)
+% \item[\(] Left parenthesis
+% \item[\)] Right parenthesis
+% \item[\\] Backslash
+% \item[\ddd] (backslash followed by $1$ to $3$ octal digits) Byte
+% \texttt{ddd} (octal), subtracting $256$ in case of overflow.
+% \end{itemize}
+% If followed by an end-of-line character, the backslash and the
+% end-of-line are ignored. If followed by anything else, the backslash
+% is ignored, raising the error flag.
+% \begin{macrocode}
+\group_begin:
+ \char_set_catcode_other:N \^^J
+ \char_set_catcode_other:N \^^M
+ \cs_set_protected:Npn \@@_tmp:w #1
+ {
+ \cs_new_protected:Npn \@@_convert_unescape_string:
+ {
+ \group_begin:
+ \flag_clear:n { str_byte }
+ \flag_clear:n { str_error }
+ \int_set:Nn \tex_escapechar:D { 92 }
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \exp_after:wN \@@_unescape_string_newlines:wN
+ \g_@@_result_tl \prg_break: ^^M ?
+ \prg_break_point:
+ }
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \exp_after:wN \@@_unescape_string_loop:wNNN
+ \g_@@_result_tl #1 ?? { ? \prg_break: }
+ \prg_break_point:
+ }
+ \@@_if_flag_error:nnx { str_byte } { non-byte } { string }
+ \@@_if_flag_error:nnx { str_error } { unescape-string } { }
+ \group_end:
+ }
+ }
+ \exp_args:No \@@_tmp:w { \c_backslash_str }
+ \exp_last_unbraced:NNNNo
+ \cs_new:Npn \@@_unescape_string_loop:wNNN #1 \c_backslash_str #2#3#4
+ {
+ \@@_filter_bytes:n {#1}
+ \use_none:n #4
+ \@@_output_byte:w '
+ \@@_octal_use:NTF #2
+ {
+ \@@_octal_use:NTF #3
+ {
+ \@@_octal_use:NTF #4
+ {
+ \if_int_compare:w #2 > 3 \exp_stop_f:
+ - 256
+ \fi:
+ \@@_unescape_string_repeat:NNNNNN
+ }
+ { \@@_unescape_string_repeat:NNNNNN ? }
+ }
+ { \@@_unescape_string_repeat:NNNNNN ?? }
+ }
+ {
+ \str_case_e:nnF {#2}
+ {
+ { \c_backslash_str } { 134 }
+ { ( } { 50 }
+ { ) } { 51 }
+ { r } { 15 }
+ { f } { 14 }
+ { n } { 12 }
+ { t } { 11 }
+ { b } { 10 }
+ { ^^J } { 0 - 1 }
+ }
+ {
+ \flag_raise:n { str_error }
+ 0 - 1 \use_i:nn
+ }
+ }
+ \@@_output_end:
+ \use_i:nn \@@_unescape_string_loop:wNNN #2#3#4
+ }
+ \cs_new:Npn \@@_unescape_string_repeat:NNNNNN #1#2#3#4#5#6
+ { \@@_output_end: \@@_unescape_string_loop:wNNN }
+ \cs_new:Npn \@@_unescape_string_newlines:wN #1 ^^M #2
+ {
+ #1
+ \if_charcode:w ^^J #2 \else: ^^J \fi:
+ \@@_unescape_string_newlines:wN #2
+ }
+ \__kernel_msg_new:nnnn { str } { unescape-string }
+ { String~invalid~in~escaping~'string'. }
+ {
+ LaTeX~came~across~an~escape~character~'\c_backslash_str'~
+ not~followed~by~any~of:~'n',~'r',~'t',~'b',~'f',~'(',~')',~
+ '\c_backslash_str',~one~to~three~octal~digits,~or~the~end~
+ of~a~line.
+ }
+\group_end:
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsubsection{Escape methods}
+%
+% Currently, none of the escape methods can lead to errors, assuming
+% that their input is made out of bytes.
+%
+% \begin{macro}{\@@_convert_escape_hex:}
+% \begin{macro}[rEXP]{\@@_escape_hex_char:N}
+% Loop and convert each byte to hexadecimal.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_escape_hex:
+ { \@@_convert_gmap:N \@@_escape_hex_char:N }
+\cs_new:Npn \@@_escape_hex_char:N #1
+ { \@@_output_hexadecimal:n { `#1 } }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_escape_name:}
+% \begin{macro}[rEXP]{\@@_escape_name_char:N}
+% \begin{macro}[rEXP]{\@@_if_escape_name:NTF}
+% \begin{variable}{\c_@@_escape_name_str}
+% \begin{variable}{\c_@@_escape_name_not_str}
+% For each byte, test whether it should be output as is, or be
+% \enquote{hash-encoded}. Roughly, bytes outside the range
+% $[\hexnum{2A},\hexnum{7E}]$ are hash-encoded. We keep two lists of
+% exceptions: characters in \cs{c_@@_escape_name_not_str} are not
+% hash-encoded, and characters in the \cs{c_@@_escape_name_str} are
+% encoded.
+% \begin{macrocode}
+\str_const:Nn \c_@@_escape_name_not_str { ! " $ & ' } %$
+\str_const:Nn \c_@@_escape_name_str { {}/<>[] }
+\cs_new_protected:Npn \@@_convert_escape_name:
+ { \@@_convert_gmap:N \@@_escape_name_char:N }
+\cs_new:Npn \@@_escape_name_char:N #1
+ {
+ \@@_if_escape_name:NTF #1 {#1}
+ { \c_hash_str \@@_output_hexadecimal:n {`#1} }
+ }
+\prg_new_conditional:Npnn \@@_if_escape_name:N #1 { TF }
+ {
+ \if_int_compare:w `#1 < "2A \exp_stop_f:
+ \@@_if_contains_char:NNTF \c_@@_escape_name_not_str #1
+ \prg_return_true: \prg_return_false:
+ \else:
+ \if_int_compare:w `#1 > "7E \exp_stop_f:
+ \prg_return_false:
+ \else:
+ \@@_if_contains_char:NNTF \c_@@_escape_name_str #1
+ \prg_return_false: \prg_return_true:
+ \fi:
+ \fi:
+ }
+% \end{macrocode}
+% \end{variable}
+% \end{variable}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_escape_string:}
+% \begin{macro}[rEXP]{\@@_escape_string_char:N}
+% \begin{macro}[rEXP]{\@@_if_escape_string:NTF}
+% \begin{variable}{\c_@@_escape_string_str}
+% Any character below (and including) space, and any character above
+% (and including) \texttt{del}, are converted to octal. One backslash
+% is added before each parenthesis and backslash.
+% \begin{macrocode}
+\str_const:Nx \c_@@_escape_string_str
+ { \c_backslash_str ( ) }
+\cs_new_protected:Npn \@@_convert_escape_string:
+ { \@@_convert_gmap:N \@@_escape_string_char:N }
+\cs_new:Npn \@@_escape_string_char:N #1
+ {
+ \@@_if_escape_string:NTF #1
+ {
+ \@@_if_contains_char:NNT
+ \c_@@_escape_string_str #1
+ { \c_backslash_str }
+ #1
+ }
+ {
+ \c_backslash_str
+ \int_div_truncate:nn {`#1} {64}
+ \int_mod:nn { \int_div_truncate:nn {`#1} { 8 } } { 8 }
+ \int_mod:nn {`#1} { 8 }
+ }
+ }
+\prg_new_conditional:Npnn \@@_if_escape_string:N #1 { TF }
+ {
+ \if_int_compare:w `#1 < "21 \exp_stop_f:
+ \prg_return_false:
+ \else:
+ \if_int_compare:w `#1 > "7E \exp_stop_f:
+ \prg_return_false:
+ \else:
+ \prg_return_true:
+ \fi:
+ \fi:
+ }
+% \end{macrocode}
+% \end{variable}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_convert_escape_url:}
+% \begin{macro}[rEXP]{\@@_escape_url_char:N}
+% \begin{macro}[rEXP]{\@@_if_escape_url:NTF}
+% This function is similar to \cs{@@_convert_escape_name:}, escaping
+% different characters.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert_escape_url:
+ { \@@_convert_gmap:N \@@_escape_url_char:N }
+\cs_new:Npn \@@_escape_url_char:N #1
+ {
+ \@@_if_escape_url:NTF #1 {#1}
+ { \c_percent_str \@@_output_hexadecimal:n { `#1 } }
+ }
+\prg_new_conditional:Npnn \@@_if_escape_url:N #1 { TF }
+ {
+ \if_int_compare:w `#1 < "41 \exp_stop_f:
+ \@@_if_contains_char:nNTF { "-.<> } #1
+ \prg_return_true: \prg_return_false:
+ \else:
+ \if_int_compare:w `#1 > "7E \exp_stop_f:
+ \prg_return_false:
+ \else:
+ \@@_if_contains_char:nNTF { [ ] } #1
+ \prg_return_false: \prg_return_true:
+ \fi:
+ \fi:
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Encoding definitions}
+%
+% The \texttt{native} encoding is automatically defined. Other encodings
+% are loaded as needed. The following encodings are supported:
+% \begin{itemize}
+% \item \textsc{utf-8};
+% \item \textsc{utf-16}, big-, little-endian, or with byte order mark;
+% \item \textsc{utf-32}, big-, little-endian, or with byte order mark;
+% \item the \textsc{iso 8859} code pages, numbered from $1$ to $16$,
+% skipping the inexistent \textsc{iso 8859-12}.
+% \end{itemize}
+%
+% \subsubsection{\textsc{utf-8} support}
+%
+% \begin{macro}{\@@_convert_encode_utf8:}
+% \begin{macro}[rEXP]{\@@_encode_utf_viii_char:n}
+% \begin{macro}[rEXP]{\@@_encode_utf_viii_loop:wwnnw}
+% Loop through the internal string, and convert each character to its
+% \textsc{utf-8} representation. The representation is built from the
+% right-most (least significant) byte to the left-most (most
+% significant) byte. Continuation bytes are in the range $[128,191]$,
+% taking $64$ different values, hence we roughly want to express the
+% character code in base $64$, shifting the first digit in the
+% representation by some number depending on how many continuation
+% bytes there are. In the range $[0,127]$, output the corresponding
+% byte directly. In the range $[128,2047]$, output the remainder
+% modulo $64$, plus $128$ as a continuation byte, then output the
+% quotient (which is in the range $[0,31]$), shifted by $192$. In the
+% next range, $[2048,65535]$, split the character code into residue
+% and quotient modulo $64$, output the residue as a first continuation
+% byte, then repeat; this leaves us with a quotient in the range
+% $[0,15]$, which we output shifted by $224$. The last range,
+% $[65536,1114111]$, follows the same pattern: once we realize that
+% dividing twice by $64$ leaves us with a number larger than $15$, we
+% repeat, producing a last continuation byte, and offset the quotient
+% by $240$ for the leading byte.
+%
+% How is that implemented? \cs{@@_encode_utf_vii_loop:wwnnw} takes
+% successive quotients as its first argument, the quotient from the
+% previous step as its second argument (except in step~$1$), the bound
+% for quotients that trigger one more step or not, and finally the
+% offset used if this step should produce the leading byte. Leading
+% bytes can be in the ranges $[0,127]$, $[192,223]$, $[224,239]$, and
+% $[240,247]$ (really, that last limit should be $244$ because Unicode
+% stops at the code point $1114111$). At each step, if the quotient
+% |#1| is less than the limit |#3| for that range, output the leading
+% byte (|#1| shifted by |#4|) and stop. Otherwise, we need one more
+% step: use the quotient of |#1| by $64$, and |#1| as arguments for
+% the looping auxiliary, and output the continuation byte
+% corresponding to the remainder $|#2|-64|#1|+128$. The bizarre
+% construction |- 1 + 0 *| removes the spurious initial
+% continuation byte (better methods welcome).
+% \begin{macrocode}
+\cs_new_protected:cpn { @@_convert_encode_utf8: }
+ { \@@_convert_gmap_internal:N \@@_encode_utf_viii_char:n }
+\cs_new:Npn \@@_encode_utf_viii_char:n #1
+ {
+ \@@_encode_utf_viii_loop:wwnnw #1 ; - 1 + 0 * ;
+ { 128 } { 0 }
+ { 32 } { 192 }
+ { 16 } { 224 }
+ { 8 } { 240 }
+ \q_stop
+ }
+\cs_new:Npn \@@_encode_utf_viii_loop:wwnnw #1; #2; #3#4 #5 \q_stop
+ {
+ \if_int_compare:w #1 < #3 \exp_stop_f:
+ \@@_output_byte:n { #1 + #4 }
+ \exp_after:wN \use_none_delimit_by_q_stop:w
+ \fi:
+ \exp_after:wN \@@_encode_utf_viii_loop:wwnnw
+ \int_value:w \int_div_truncate:nn {#1} {64} ; #1 ;
+ #5 \q_stop
+ \@@_output_byte:n { #2 - 64 * ( #1 - 2 ) }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{variable}
+% {
+% \l_@@_missing_flag ,
+% \l_@@_extra_flag ,
+% \l_@@_overlong_flag ,
+% \l_@@_overflow_flag ,
+% }
+% When decoding a string that is purportedly in the \textsc{utf-8}
+% encoding, four different errors can occur, signalled by a specific
+% flag for each (we define those flags using \cs{flag_clear_new:n}
+% rather than \cs{flag_new:n}, because they are shared with other
+% encoding definition files).
+% \begin{itemize}
+% \item \enquote{Missing continuation byte}: a leading byte is not
+% followed by the right number of continuation bytes.
+% \item \enquote{Extra continuation byte}: a continuation byte
+% appears where it was not expected, \emph{i.e.}, not after an
+% appropriate leading byte.
+% \item \enquote{Overlong}: a Unicode character is expressed using
+% more bytes than necessary, for instance, \hexnum{C0}\hexnum{80}
+% for the code point $0$, instead of a single null byte.
+% \item \enquote{Overflow}: this occurs when decoding produces
+% Unicode code points greater than $1114111$.
+% \end{itemize}
+% We only raise one \LaTeX3 error message, combining all the errors
+% which occurred. In the short message, the leading comma must be
+% removed to get a grammatically correct sentence. In the long text,
+% first remind the user what a correct \textsc{utf-8} string should
+% look like, then add error-specific information.
+% \begin{macrocode}
+\flag_clear_new:n { str_missing }
+\flag_clear_new:n { str_extra }
+\flag_clear_new:n { str_overlong }
+\flag_clear_new:n { str_overflow }
+\__kernel_msg_new:nnnn { str } { utf8-decode }
+ {
+ Invalid~UTF-8~string:
+ \exp_last_unbraced:Nf \use_none:n
+ {
+ \@@_if_flag_times:nT { str_missing } { ,~missing~continuation~byte }
+ \@@_if_flag_times:nT { str_extra } { ,~extra~continuation~byte }
+ \@@_if_flag_times:nT { str_overlong } { ,~overlong~form }
+ \@@_if_flag_times:nT { str_overflow } { ,~code~point~too~large }
+ }
+ .
+ }
+ {
+ In~the~UTF-8~encoding,~each~Unicode~character~consists~in~
+ 1~to~4~bytes,~with~the~following~bit~pattern: \\
+ \iow_indent:n
+ {
+ Code~point~\ \ \ \ <~128:~0xxxxxxx \\
+ Code~point~\ \ \ <~2048:~110xxxxx~10xxxxxx \\
+ Code~point~\ \ <~65536:~1110xxxx~10xxxxxx~10xxxxxx \\
+ Code~point~ <~1114112:~11110xxx~10xxxxxx~10xxxxxx~10xxxxxx \\
+ }
+ Bytes~of~the~form~10xxxxxx~are~called~continuation~bytes.
+ \flag_if_raised:nT { str_missing }
+ {
+ \\\\
+ A~leading~byte~(in~the~range~[192,255])~was~not~followed~by~
+ the~appropriate~number~of~continuation~bytes.
+ }
+ \flag_if_raised:nT { str_extra }
+ {
+ \\\\
+ LaTeX~came~across~a~continuation~byte~when~it~was~not~expected.
+ }
+ \flag_if_raised:nT { str_overlong }
+ {
+ \\\\
+ Every~Unicode~code~point~must~be~expressed~in~the~shortest~
+ possible~form.~For~instance,~'0xC0'~'0x83'~is~not~a~valid~
+ representation~for~the~code~point~3.
+ }
+ \flag_if_raised:nT { str_overflow }
+ {
+ \\\\
+ Unicode~limits~code~points~to~the~range~[0,1114111].
+ }
+ }
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\@@_convert_decode_utf8:}
+% \begin{macro}[rEXP]
+% {
+% \@@_decode_utf_viii_start:N,
+% \@@_decode_utf_viii_continuation:wwN,
+% \@@_decode_utf_viii_aux:wNnnwN
+% }
+% \begin{macro}[rEXP]
+% {\@@_decode_utf_viii_overflow:w, \@@_decode_utf_viii_end:}
+% Decoding is significantly harder than encoding. As before, lower
+% some flags, which are tested at the end (in bulk, to trigger at most
+% one \LaTeX3 error, as explained above). We expect successive
+% multi-byte sequences of the form \meta{start byte}
+% \meta{continuation bytes}. The \texttt{_start} auxiliary tests the
+% first byte:
+% \begin{itemize}
+% \item $[0,\hexnum{7F}]$: the byte stands alone, and is converted
+% to its own character code;
+% \item $[\hexnum{80}, \hexnum{BF}]$: unexpected continuation byte,
+% raise the appropriate flag, and convert that byte to the
+% replacement character \hexnum{FFFD};
+% \item $[\hexnum{C0}, \hexnum{FF}]$: this byte should be followed
+% by some continuation byte(s).
+% \end{itemize}
+% In the first two cases, \cs{use_none_delimit_by_q_stop:w} removes
+% data that only the third case requires, namely the limits of ranges
+% of Unicode characters which can be expressed with $1$, $2$, $3$, or
+% $4$ bytes.
+%
+% We can now concentrate on the multi-byte case and the
+% \texttt{_continuation} auxiliary. We expect |#3| to be in the range
+% $[\hexnum{80}, \hexnum{BF}]$. The test for this goes as follows: if
+% the character code is less than \hexnum{80}, we compare it to
+% $-\hexnum{C0}$, yielding \texttt{false}; otherwise to \hexnum{C0},
+% yielding \texttt{true} in the range $[\hexnum{80}, \hexnum{BF}]$ and
+% \texttt{false} otherwise. If we find that the byte is not a
+% continuation range, stop the current slew of bytes, output the
+% replacement character, and continue parsing with the \texttt{_start}
+% auxiliary, starting at the byte we just tested. Once we know that
+% the byte is a continuation byte, leave it behind us in the input
+% stream, compute what code point the bytes read so far would produce,
+% and feed that number to the \texttt{_aux} function.
+%
+% The \texttt{_aux} function tests whether we should look for more
+% continuation bytes or not. If the number it receives as |#1| is less
+% than the maximum |#4| for the current range, then we are done: check
+% for an overlong representation by comparing |#1| with the maximum
+% |#3| for the previous range. Otherwise, we call the
+% \texttt{_continuation} auxiliary again, after shifting the
+% \enquote{current code point} by |#4| (maximum from the range we just
+% checked).
+%
+% Two additional tests are needed: if we reach the end of the list of
+% range maxima and we are still not done, then we are faced with an
+% overflow. Clean up, and again insert the code point \hexnum{FFFD}
+% for the replacement character. Also, every time we read a byte, we
+% need to check whether we reached the end of the string. In a correct
+% \textsc{utf-8} string, this happens automatically when the
+% \texttt{_start} auxiliary leaves its first argument in the input
+% stream: the end-marker begins with \cs{prg_break:}, which ends
+% the loop. On the other hand, if the end is reached when looking for
+% a continuation byte, the \cs{use_none:n} |#3| construction removes
+% the first token from the end-marker, and leaves the \texttt{_end}
+% auxiliary, which raises the appropriate error flag before ending the
+% mapping.
+% \begin{macrocode}
+\cs_new_protected:cpn { @@_convert_decode_utf8: }
+ {
+ \flag_clear:n { str_error }
+ \flag_clear:n { str_missing }
+ \flag_clear:n { str_extra }
+ \flag_clear:n { str_overlong }
+ \flag_clear:n { str_overflow }
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \exp_after:wN \@@_decode_utf_viii_start:N \g_@@_result_tl
+ { \prg_break: \@@_decode_utf_viii_end: }
+ \prg_break_point:
+ }
+ \@@_if_flag_error:nnx { str_error } { utf8-decode } { }
+ }
+\cs_new:Npn \@@_decode_utf_viii_start:N #1
+ {
+ #1
+ \if_int_compare:w `#1 < "C0 \exp_stop_f:
+ \s__tl
+ \if_int_compare:w `#1 < "80 \exp_stop_f:
+ \int_value:w `#1
+ \else:
+ \flag_raise:n { str_extra }
+ \flag_raise:n { str_error }
+ \int_use:N \c_@@_replacement_char_int
+ \fi:
+ \else:
+ \exp_after:wN \@@_decode_utf_viii_continuation:wwN
+ \int_value:w \int_eval:n { `#1 - "C0 } \exp_after:wN
+ \fi:
+ \s__tl
+ \use_none_delimit_by_q_stop:w {"80} {"800} {"10000} {"110000} \q_stop
+ \@@_decode_utf_viii_start:N
+ }
+\cs_new:Npn \@@_decode_utf_viii_continuation:wwN
+ #1 \s__tl #2 \@@_decode_utf_viii_start:N #3
+ {
+ \use_none:n #3
+ \if_int_compare:w `#3 <
+ \if_int_compare:w `#3 < "80 \exp_stop_f: - \fi:
+ "C0 \exp_stop_f:
+ #3
+ \exp_after:wN \@@_decode_utf_viii_aux:wNnnwN
+ \int_value:w \int_eval:n { #1 * "40 + `#3 - "80 } \exp_after:wN
+ \else:
+ \s__tl
+ \flag_raise:n { str_missing }
+ \flag_raise:n { str_error }
+ \int_use:N \c_@@_replacement_char_int
+ \fi:
+ \s__tl
+ #2
+ \@@_decode_utf_viii_start:N #3
+ }
+\cs_new:Npn \@@_decode_utf_viii_aux:wNnnwN
+ #1 \s__tl #2#3#4 #5 \@@_decode_utf_viii_start:N #6
+ {
+ \if_int_compare:w #1 < #4 \exp_stop_f:
+ \s__tl
+ \if_int_compare:w #1 < #3 \exp_stop_f:
+ \flag_raise:n { str_overlong }
+ \flag_raise:n { str_error }
+ \int_use:N \c_@@_replacement_char_int
+ \else:
+ #1
+ \fi:
+ \else:
+ \if_meaning:w \q_stop #5
+ \@@_decode_utf_viii_overflow:w #1
+ \fi:
+ \exp_after:wN \@@_decode_utf_viii_continuation:wwN
+ \int_value:w \int_eval:n { #1 - #4 } \exp_after:wN
+ \fi:
+ \s__tl
+ #2 {#4} #5
+ \@@_decode_utf_viii_start:N
+ }
+\cs_new:Npn \@@_decode_utf_viii_overflow:w #1 \fi: #2 \fi:
+ {
+ \fi: \fi:
+ \flag_raise:n { str_overflow }
+ \flag_raise:n { str_error }
+ \int_use:N \c_@@_replacement_char_int
+ }
+\cs_new:Npn \@@_decode_utf_viii_end:
+ {
+ \s__tl
+ \flag_raise:n { str_missing }
+ \flag_raise:n { str_error }
+ \int_use:N \c_@@_replacement_char_int \s__tl
+ \prg_break:
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsubsection{\textsc{utf-16} support}
+%
+% The definitions are done in a category code regime where the bytes
+% $254$ and $255$ used by the byte order mark have catcode~$12$.
+% \begin{macrocode}
+\group_begin:
+ \char_set_catcode_other:N \^^fe
+ \char_set_catcode_other:N \^^ff
+% \end{macrocode}
+%
+% \begin{macro}
+% {
+% \@@_convert_encode_utf16: ,
+% \@@_convert_encode_utf16be: ,
+% \@@_convert_encode_utf16le: ,
+% }
+% \begin{macro}[rEXP]
+% {
+% \@@_encode_utf_xvi_aux:N ,
+% \@@_encode_utf_xvi_char:n ,
+% }
+% When the endianness is not specified, it is big-endian by default,
+% and we add a byte-order mark. Convert characters one by one in a
+% loop, with different behaviours depending on the character code.
+% \begin{itemize}
+% \item $[0, \hexnum{D7FF}]$: converted to two bytes;
+% \item $[\hexnum{D800}, \hexnum{DFFF}]$ are used as surrogates:
+% they cannot be converted and are replaced by the replacement
+% character;
+% \item $[\hexnum{E000}, \hexnum{FFFF}]$: converted to two bytes;
+% \item $[\hexnum{10000}, \hexnum{10FFFF}]$: converted to a pair of
+% surrogates, each two bytes. The magic \hexnum{D7C0} is
+% $\hexnum{D800}-\hexnum{10000}/\hexnum{400}$.
+% \end{itemize}
+% For the duration of this operation, \cs{@@_tmp:w} is defined as a
+% function to convert a number in the range $[0, \hexnum{FFFF}]$ to a
+% pair of bytes (either big endian or little endian), by feeding the
+% quotient of the division of |#1| by \hexnum{100}, followed by |#1|
+% to \cs{@@_encode_utf_xvi_be:nn} or its \texttt{le} analog: those
+% compute the remainder, and output two bytes for the quotient and
+% remainder.
+% \begin{macrocode}
+ \cs_new_protected:cpn { @@_convert_encode_utf16: }
+ {
+ \@@_encode_utf_xvi_aux:N \@@_output_byte_pair_be:n
+ \tl_gput_left:Nx \g_@@_result_tl { ^^fe ^^ff }
+ }
+ \cs_new_protected:cpn { @@_convert_encode_utf16be: }
+ { \@@_encode_utf_xvi_aux:N \@@_output_byte_pair_be:n }
+ \cs_new_protected:cpn { @@_convert_encode_utf16le: }
+ { \@@_encode_utf_xvi_aux:N \@@_output_byte_pair_le:n }
+ \cs_new_protected:Npn \@@_encode_utf_xvi_aux:N #1
+ {
+ \flag_clear:n { str_error }
+ \cs_set_eq:NN \@@_tmp:w #1
+ \@@_convert_gmap_internal:N \@@_encode_utf_xvi_char:n
+ \@@_if_flag_error:nnx { str_error } { utf16-encode } { }
+ }
+ \cs_new:Npn \@@_encode_utf_xvi_char:n #1
+ {
+ \if_int_compare:w #1 < "D800 \exp_stop_f:
+ \@@_tmp:w {#1}
+ \else:
+ \if_int_compare:w #1 < "10000 \exp_stop_f:
+ \if_int_compare:w #1 < "E000 \exp_stop_f:
+ \flag_raise:n { str_error }
+ \@@_tmp:w { \c_@@_replacement_char_int }
+ \else:
+ \@@_tmp:w {#1}
+ \fi:
+ \else:
+ \exp_args:Nf \@@_tmp:w { \int_div_truncate:nn {#1} {"400} + "D7C0 }
+ \exp_args:Nf \@@_tmp:w { \int_mod:nn {#1} {"400} + "DC00 }
+ \fi:
+ \fi:
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{variable}
+% {
+% \l_@@_missing_flag ,
+% \l_@@_extra_flag ,
+% \l_@@_end_flag ,
+% }
+% When encoding a Unicode string to \textsc{utf-16}, only one error
+% can occur: code points in the range $[\hexnum{D800},
+% \hexnum{DFFF}]$, corresponding to surrogates, cannot be encoded. We
+% use the all-purpose flag \texttt{@@_error} to signal that error.
+%
+% When decoding a Unicode string which is purportedly in
+% \textsc{utf-16}, three errors can occur: a missing trail surrogate,
+% an unexpected trail surrogate, and a string containing an odd number
+% of bytes.
+% \begin{macrocode}
+ \flag_clear_new:n { str_missing }
+ \flag_clear_new:n { str_extra }
+ \flag_clear_new:n { str_end }
+ \__kernel_msg_new:nnnn { str } { utf16-encode }
+ { Unicode~string~cannot~be~expressed~in~UTF-16:~surrogate. }
+ {
+ Surrogate~code~points~(in~the~range~[U+D800,~U+DFFF])~
+ can~be~expressed~in~the~UTF-8~and~UTF-32~encodings,~
+ but~not~in~the~UTF-16~encoding.
+ }
+ \__kernel_msg_new:nnnn { str } { utf16-decode }
+ {
+ Invalid~UTF-16~string:
+ \exp_last_unbraced:Nf \use_none:n
+ {
+ \@@_if_flag_times:nT { str_missing } { ,~missing~trail~surrogate }
+ \@@_if_flag_times:nT { str_extra } { ,~extra~trail~surrogate }
+ \@@_if_flag_times:nT { str_end } { ,~odd~number~of~bytes }
+ }
+ .
+ }
+ {
+ In~the~UTF-16~encoding,~each~Unicode~character~is~encoded~as~
+ 2~or~4~bytes: \\
+ \iow_indent:n
+ {
+ Code~point~in~[U+0000,~U+D7FF]:~two~bytes \\
+ Code~point~in~[U+D800,~U+DFFF]:~illegal \\
+ Code~point~in~[U+E000,~U+FFFF]:~two~bytes \\
+ Code~point~in~[U+10000,~U+10FFFF]:~
+ a~lead~surrogate~and~a~trail~surrogate \\
+ }
+ Lead~surrogates~are~pairs~of~bytes~in~the~range~[0xD800,~0xDBFF],~
+ and~trail~surrogates~are~in~the~range~[0xDC00,~0xDFFF].
+ \flag_if_raised:nT { str_missing }
+ {
+ \\\\
+ A~lead~surrogate~was~not~followed~by~a~trail~surrogate.
+ }
+ \flag_if_raised:nT { str_extra }
+ {
+ \\\\
+ LaTeX~came~across~a~trail~surrogate~when~it~was~not~expected.
+ }
+ \flag_if_raised:nT { str_end }
+ {
+ \\\\
+ The~string~contained~an~odd~number~of~bytes.~This~is~invalid:~
+ the~basic~code~unit~for~UTF-16~is~16~bits~(2~bytes).
+ }
+ }
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}
+% {
+% \@@_convert_decode_utf16: ,
+% \@@_convert_decode_utf16be: ,
+% \@@_convert_decode_utf16le: ,
+% }
+% \begin{macro}{\@@_decode_utf_xvi_bom:NN, \@@_decode_utf_xvi:Nw}
+% As for \textsc{utf-8}, decoding \textsc{utf-16} is harder than
+% encoding it. If the endianness is unknown, check the first two
+% bytes: if those are \hexnum{FE} and \hexnum{FF} in either order,
+% remove them and use the corresponding endianness, otherwise assume
+% big-endianness. The three endianness cases are based on a common
+% auxiliary whose first argument is $1$ for big-endian and $2$ for
+% little-endian, and whose second argument, delimited by the scan mark
+% \cs{s_stop}, is expanded once (the string may be long; passing
+% \cs{g_@@_result_tl} as an argument before expansion is cheaper).
+%
+% The \cs{@@_decode_utf_xvi:Nw} function defines \cs{@@_tmp:w} to
+% take two arguments and return the character code of the first one if
+% the string is big-endian, and the second one if the string is
+% little-endian, then loops over the string using
+% \cs{@@_decode_utf_xvi_pair:NN} described below.
+% \begin{macrocode}
+ \cs_new_protected:cpn { @@_convert_decode_utf16be: }
+ { \@@_decode_utf_xvi:Nw 1 \g_@@_result_tl \s_stop }
+ \cs_new_protected:cpn { @@_convert_decode_utf16le: }
+ { \@@_decode_utf_xvi:Nw 2 \g_@@_result_tl \s_stop }
+ \cs_new_protected:cpn { @@_convert_decode_utf16: }
+ {
+ \exp_after:wN \@@_decode_utf_xvi_bom:NN
+ \g_@@_result_tl \s_stop \s_stop \s_stop
+ }
+ \cs_new_protected:Npn \@@_decode_utf_xvi_bom:NN #1#2
+ {
+ \str_if_eq:nnTF { #1#2 } { ^^ff ^^fe }
+ { \@@_decode_utf_xvi:Nw 2 }
+ {
+ \str_if_eq:nnTF { #1#2 } { ^^fe ^^ff }
+ { \@@_decode_utf_xvi:Nw 1 }
+ { \@@_decode_utf_xvi:Nw 1 #1#2 }
+ }
+ }
+ \cs_new_protected:Npn \@@_decode_utf_xvi:Nw #1#2 \s_stop
+ {
+ \flag_clear:n { str_error }
+ \flag_clear:n { str_missing }
+ \flag_clear:n { str_extra }
+ \flag_clear:n { str_end }
+ \cs_set:Npn \@@_tmp:w ##1 ##2 { ` ## #1 }
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \exp_after:wN \@@_decode_utf_xvi_pair:NN
+ #2 \q_nil \q_nil
+ \prg_break_point:
+ }
+ \@@_if_flag_error:nnx { str_error } { utf16-decode } { }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[rEXP]
+% {
+% \@@_decode_utf_xvi_pair:NN ,
+% \@@_decode_utf_xvi_quad:NNwNN ,
+% \@@_decode_utf_xvi_pair_end:Nw ,
+% }
+% \begin{macro}[rEXP]
+% {
+% \@@_decode_utf_xvi_error:nNN ,
+% \@@_decode_utf_xvi_extra:NNw ,
+% }
+% Bytes are read two at a time. At this stage, |\@@_tmp:w #1#2|
+% expands to the character code of the most significant byte, and we
+% distinguish cases depending on which range it lies in:
+% \begin{itemize}
+% \item $[\hexnum{D8}, \hexnum{DB}]$ signals a lead surrogate, and
+% the integer expression yields $1$ (\eTeX{} rounds ties away from
+% zero);
+% \item $[\hexnum{DC}, \hexnum{DF}]$ signals a trail surrogate,
+% unexpected here, and the integer expression yields $2$;
+% \item any other value signals a code point in the Basic
+% Multilingual Plane, which stands for itself, and the
+% \cs{if_case:w} construction expands to nothing (cases other than
+% $1$ or $2$), leaving the relevant material in the input stream,
+% followed by another call to the \texttt{_pair} auxiliary.
+% \end{itemize}
+% The case of a lead surrogate is treated by the \texttt{_quad}
+% auxiliary, whose arguments |#1|, |#2|, |#4| and |#5| are the four
+% bytes. We expect the most significant byte of |#4#5| to be in the
+% range $[\hexnum{DC}, \hexnum{DF}]$ (trail surrogate). The test is
+% similar to the test used for continuation bytes in the
+% \textsc{utf-8} decoding functions. In the case where |#4#5| is
+% indeed a trail surrogate, leave |#1#2#4#5| \cs{s__tl}
+% \meta{code~point} \cs{s__tl}, and remove the pair |#4#5| before
+% looping with \cs{@@_decode_utf_xvi_pair:NN}. Otherwise, of course,
+% complain about the missing surrogate.
+%
+% The magic number \hexnum{D7F7} is such that
+% $\hexnum{D7F7}*\hexnum{400} = \hexnum{D800}*\hexnum{400} +
+% \hexnum{DC00} - \hexnum{10000}$.
+%
+% Every time we read a pair of bytes, we test for the end-marker
+% \cs{q_nil}. When reaching the end, we additionally check that the
+% string had an even length. Also, if the end is reached when
+% expecting a trail surrogate, we treat that as a missing surrogate.
+% \begin{macrocode}
+ \cs_new:Npn \@@_decode_utf_xvi_pair:NN #1#2
+ {
+ \if_meaning:w \q_nil #2
+ \@@_decode_utf_xvi_pair_end:Nw #1
+ \fi:
+ \if_case:w
+ \int_eval:n { ( \@@_tmp:w #1#2 - "D6 ) / 4 } \scan_stop:
+ \or: \exp_after:wN \@@_decode_utf_xvi_quad:NNwNN
+ \or: \exp_after:wN \@@_decode_utf_xvi_extra:NNw
+ \fi:
+ #1#2 \s__tl
+ \int_eval:n { "100 * \@@_tmp:w #1#2 + \@@_tmp:w #2#1 } \s__tl
+ \@@_decode_utf_xvi_pair:NN
+ }
+ \cs_new:Npn \@@_decode_utf_xvi_quad:NNwNN
+ #1#2 #3 \@@_decode_utf_xvi_pair:NN #4#5
+ {
+ \if_meaning:w \q_nil #5
+ \@@_decode_utf_xvi_error:nNN { missing } #1#2
+ \@@_decode_utf_xvi_pair_end:Nw #4
+ \fi:
+ \if_int_compare:w
+ \if_int_compare:w \@@_tmp:w #4#5 < "DC \exp_stop_f:
+ 0 = 1
+ \else:
+ \@@_tmp:w #4#5 < "E0
+ \fi:
+ \exp_stop_f:
+ #1 #2 #4 #5 \s__tl
+ \int_eval:n
+ {
+ ( "100 * \@@_tmp:w #1#2 + \@@_tmp:w #2#1 - "D7F7 ) * "400
+ + "100 * \@@_tmp:w #4#5 + \@@_tmp:w #5#4
+ }
+ \s__tl
+ \exp_after:wN \use_i:nnn
+ \else:
+ \@@_decode_utf_xvi_error:nNN { missing } #1#2
+ \fi:
+ \@@_decode_utf_xvi_pair:NN #4#5
+ }
+ \cs_new:Npn \@@_decode_utf_xvi_pair_end:Nw #1 \fi:
+ {
+ \fi:
+ \if_meaning:w \q_nil #1
+ \else:
+ \@@_decode_utf_xvi_error:nNN { end } #1 \prg_do_nothing:
+ \fi:
+ \prg_break:
+ }
+ \cs_new:Npn \@@_decode_utf_xvi_extra:NNw #1#2 \s__tl #3 \s__tl
+ { \@@_decode_utf_xvi_error:nNN { extra } #1#2 }
+ \cs_new:Npn \@@_decode_utf_xvi_error:nNN #1#2#3
+ {
+ \flag_raise:n { str_error }
+ \flag_raise:n { str_#1 }
+ #2 #3 \s__tl
+ \int_use:N \c_@@_replacement_char_int \s__tl
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% Restore the original catcodes of bytes $254$ and $255$.
+% \begin{macrocode}
+\group_end:
+% \end{macrocode}
+%
+% \subsubsection{\textsc{utf-32} support}
+%
+% The definitions are done in a category code regime where the bytes
+% $0$, $254$ and $255$ used by the byte order mark have catcode
+% \enquote{other}.
+% \begin{macrocode}
+\group_begin:
+ \char_set_catcode_other:N \^^00
+ \char_set_catcode_other:N \^^fe
+ \char_set_catcode_other:N \^^ff
+% \end{macrocode}
+%
+% \begin{macro}
+% {
+% \@@_convert_encode_utf32: ,
+% \@@_convert_encode_utf32be: ,
+% \@@_convert_encode_utf32le: ,
+% }
+% \begin{macro}[rEXP]
+% {
+% \@@_encode_utf_xxxii_be:n ,
+% \@@_encode_utf_xxxii_be_aux:nn ,
+% \@@_encode_utf_xxxii_le:n ,
+% \@@_encode_utf_xxxii_le_aux:nn ,
+% }
+% Convert each integer in the comma-list \cs{g_@@_result_tl} to a
+% sequence of four bytes. The functions for big-endian and
+% little-endian encodings are very similar, but the
+% \cs{@@_output_byte:n} instructions are reversed.
+% \begin{macrocode}
+ \cs_new_protected:cpn { @@_convert_encode_utf32: }
+ {
+ \@@_convert_gmap_internal:N \@@_encode_utf_xxxii_be:n
+ \tl_gput_left:Nx \g_@@_result_tl { ^^00 ^^00 ^^fe ^^ff }
+ }
+ \cs_new_protected:cpn { @@_convert_encode_utf32be: }
+ { \@@_convert_gmap_internal:N \@@_encode_utf_xxxii_be:n }
+ \cs_new_protected:cpn { @@_convert_encode_utf32le: }
+ { \@@_convert_gmap_internal:N \@@_encode_utf_xxxii_le:n }
+ \cs_new:Npn \@@_encode_utf_xxxii_be:n #1
+ {
+ \exp_args:Nf \@@_encode_utf_xxxii_be_aux:nn
+ { \int_div_truncate:nn {#1} { "100 } } {#1}
+ }
+ \cs_new:Npn \@@_encode_utf_xxxii_be_aux:nn #1#2
+ {
+ ^^00
+ \@@_output_byte_pair_be:n {#1}
+ \@@_output_byte:n { #2 - #1 * "100 }
+ }
+ \cs_new:Npn \@@_encode_utf_xxxii_le:n #1
+ {
+ \exp_args:Nf \@@_encode_utf_xxxii_le_aux:nn
+ { \int_div_truncate:nn {#1} { "100 } } {#1}
+ }
+ \cs_new:Npn \@@_encode_utf_xxxii_le_aux:nn #1#2
+ {
+ \@@_output_byte:n { #2 - #1 * "100 }
+ \@@_output_byte_pair_le:n {#1}
+ ^^00
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{variable}{str_overflow, str_end}
+% There can be no error when encoding in \textsc{utf-32}. When
+% decoding, the string may not have length $4n$, or it may contain
+% code points larger than \hexnum{10FFFF}. The latter case often
+% happens if the encoding was in fact not \textsc{utf-32}, because
+% most arbitrary strings are not valid in \textsc{utf-32}.
+% \begin{macrocode}
+ \flag_clear_new:n { str_overflow }
+ \flag_clear_new:n { str_end }
+ \__kernel_msg_new:nnnn { str } { utf32-decode }
+ {
+ Invalid~UTF-32~string:
+ \exp_last_unbraced:Nf \use_none:n
+ {
+ \@@_if_flag_times:nT { str_overflow } { ,~code~point~too~large }
+ \@@_if_flag_times:nT { str_end } { ,~truncated~string }
+ }
+ .
+ }
+ {
+ In~the~UTF-32~encoding,~every~Unicode~character~
+ (in~the~range~[U+0000,~U+10FFFF])~is~encoded~as~4~bytes.
+ \flag_if_raised:nT { str_overflow }
+ {
+ \\\\
+ LaTeX~came~across~a~code~point~larger~than~1114111,~
+ the~maximum~code~point~defined~by~Unicode.~
+ Perhaps~the~string~was~not~encoded~in~the~UTF-32~encoding?
+ }
+ \flag_if_raised:nT { str_end }
+ {
+ \\\\
+ The~length~of~the~string~is~not~a~multiple~of~4.~
+ Perhaps~the~string~was~truncated?
+ }
+ }
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}
+% {
+% \@@_convert_decode_utf32: ,
+% \@@_convert_decode_utf32be: ,
+% \@@_convert_decode_utf32le: ,
+% }
+% \begin{macro}
+% {\@@_decode_utf_xxxii_bom:NNNN, \@@_decode_utf_xxxii:Nw}
+% \begin{macro}[rEXP]
+% {\@@_decode_utf_xxxii_loop:NNNN, \@@_decode_utf_xxxii_end:w}
+%
+% The structure is similar to \textsc{utf-16} decoding functions. If
+% the endianness is not given, test the first $4$ bytes of the string
+% (possibly \cs{s_stop} if the string is too short) for the presence
+% of a byte-order mark. If there is a byte-order mark, use that
+% endianness, and remove the $4$ bytes, otherwise default to
+% big-endian, and leave the $4$ bytes in place. The
+% \cs{@@_decode_utf_xxxii:Nw} auxiliary receives $1$ or $2$ as its
+% first argument indicating endianness, and the string to convert as
+% its second argument (expanded or not). It sets \cs{@@_tmp:w} to
+% expand to the character code of either of its two arguments
+% depending on endianness, then triggers the \texttt{_loop} auxiliary
+% inside an \texttt{x}-expanding assignment to \cs{g_@@_result_tl}.
+%
+% The \texttt{_loop} auxiliary first checks for the end-of-string
+% marker \cs{s_stop}, calling the \texttt{_end} auxiliary if
+% appropriate. Otherwise, leave the \meta{4~bytes} \cs{s__tl} behind,
+% then check that the code point is not overflowing: the leading byte
+% must be $0$, and the following byte at most $16$.
+%
+% In the ending code, we check that there remains no byte: there
+% should be nothing left until the first \cs{s_stop}. Break the map.
+% \begin{macrocode}
+ \cs_new_protected:cpn { @@_convert_decode_utf32be: }
+ { \@@_decode_utf_xxxii:Nw 1 \g_@@_result_tl \s_stop }
+ \cs_new_protected:cpn { @@_convert_decode_utf32le: }
+ { \@@_decode_utf_xxxii:Nw 2 \g_@@_result_tl \s_stop }
+ \cs_new_protected:cpn { @@_convert_decode_utf32: }
+ {
+ \exp_after:wN \@@_decode_utf_xxxii_bom:NNNN \g_@@_result_tl
+ \s_stop \s_stop \s_stop \s_stop \s_stop
+ }
+ \cs_new_protected:Npn \@@_decode_utf_xxxii_bom:NNNN #1#2#3#4
+ {
+ \str_if_eq:nnTF { #1#2#3#4 } { ^^ff ^^fe ^^00 ^^00 }
+ { \@@_decode_utf_xxxii:Nw 2 }
+ {
+ \str_if_eq:nnTF { #1#2#3#4 } { ^^00 ^^00 ^^fe ^^ff }
+ { \@@_decode_utf_xxxii:Nw 1 }
+ { \@@_decode_utf_xxxii:Nw 1 #1#2#3#4 }
+ }
+ }
+ \cs_new_protected:Npn \@@_decode_utf_xxxii:Nw #1#2 \s_stop
+ {
+ \flag_clear:n { str_overflow }
+ \flag_clear:n { str_end }
+ \flag_clear:n { str_error }
+ \cs_set:Npn \@@_tmp:w ##1 ##2 { ` ## #1 }
+ \tl_gset:Nx \g_@@_result_tl
+ {
+ \exp_after:wN \@@_decode_utf_xxxii_loop:NNNN
+ #2 \s_stop \s_stop \s_stop \s_stop
+ \prg_break_point:
+ }
+ \@@_if_flag_error:nnx { str_error } { utf32-decode } { }
+ }
+ \cs_new:Npn \@@_decode_utf_xxxii_loop:NNNN #1#2#3#4
+ {
+ \if_meaning:w \s_stop #4
+ \exp_after:wN \@@_decode_utf_xxxii_end:w
+ \fi:
+ #1#2#3#4 \s__tl
+ \if_int_compare:w \@@_tmp:w #1#4 > 0 \exp_stop_f:
+ \flag_raise:n { str_overflow }
+ \flag_raise:n { str_error }
+ \int_use:N \c_@@_replacement_char_int
+ \else:
+ \if_int_compare:w \@@_tmp:w #2#3 > 16 \exp_stop_f:
+ \flag_raise:n { str_overflow }
+ \flag_raise:n { str_error }
+ \int_use:N \c_@@_replacement_char_int
+ \else:
+ \int_eval:n
+ { \@@_tmp:w #2#3*"10000 + \@@_tmp:w #3#2*"100 + \@@_tmp:w #4#1 }
+ \fi:
+ \fi:
+ \s__tl
+ \@@_decode_utf_xxxii_loop:NNNN
+ }
+ \cs_new:Npn \@@_decode_utf_xxxii_end:w #1 \s_stop
+ {
+ \tl_if_empty:nF {#1}
+ {
+ \flag_raise:n { str_end }
+ \flag_raise:n { str_error }
+ #1 \s__tl
+ \int_use:N \c_@@_replacement_char_int \s__tl
+ }
+ \prg_break:
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% Restore the original catcodes of bytes $0$, $254$ and $255$.
+% \begin{macrocode}
+\group_end:
+% \end{macrocode}
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \subsubsection{\textsc{iso 8859} support}
+%
+% The \textsc{iso-8859-1} encoding exactly matches with the $256$ first
+% Unicode characters. For other 8-bit encodings of the \textsc{iso-8859}
+% family, we keep track only of differences, and of unassigned bytes.
+% \begin{macrocode}
+%<*iso88591>
+\str_declare_eight_bit_encoding:nnn { iso88591 }
+ {
+ }
+ {
+ }
+%</iso88591>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso88592>
+\str_declare_eight_bit_encoding:nnn { iso88592 }
+ {
+ { A1 } { 0104 }
+ { A2 } { 02D8 }
+ { A3 } { 0141 }
+ { A5 } { 013D }
+ { A6 } { 015A }
+ { A9 } { 0160 }
+ { AA } { 015E }
+ { AB } { 0164 }
+ { AC } { 0179 }
+ { AE } { 017D }
+ { AF } { 017B }
+ { B1 } { 0105 }
+ { B2 } { 02DB }
+ { B3 } { 0142 }
+ { B5 } { 013E }
+ { B6 } { 015B }
+ { B7 } { 02C7 }
+ { B9 } { 0161 }
+ { BA } { 015F }
+ { BB } { 0165 }
+ { BC } { 017A }
+ { BD } { 02DD }
+ { BE } { 017E }
+ { BF } { 017C }
+ { C0 } { 0154 }
+ { C3 } { 0102 }
+ { C5 } { 0139 }
+ { C6 } { 0106 }
+ { C8 } { 010C }
+ { CA } { 0118 }
+ { CC } { 011A }
+ { CF } { 010E }
+ { D0 } { 0110 }
+ { D1 } { 0143 }
+ { D2 } { 0147 }
+ { D5 } { 0150 }
+ { D8 } { 0158 }
+ { D9 } { 016E }
+ { DB } { 0170 }
+ { DE } { 0162 }
+ { E0 } { 0155 }
+ { E3 } { 0103 }
+ { E5 } { 013A }
+ { E6 } { 0107 }
+ { E8 } { 010D }
+ { EA } { 0119 }
+ { EC } { 011B }
+ { EF } { 010F }
+ { F0 } { 0111 }
+ { F1 } { 0144 }
+ { F2 } { 0148 }
+ { F5 } { 0151 }
+ { F8 } { 0159 }
+ { F9 } { 016F }
+ { FB } { 0171 }
+ { FE } { 0163 }
+ { FF } { 02D9 }
+ }
+ {
+ }
+%</iso88592>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso88593>
+\str_declare_eight_bit_encoding:nnn { iso88593 }
+ {
+ { A1 } { 0126 }
+ { A2 } { 02D8 }
+ { A6 } { 0124 }
+ { A9 } { 0130 }
+ { AA } { 015E }
+ { AB } { 011E }
+ { AC } { 0134 }
+ { AF } { 017B }
+ { B1 } { 0127 }
+ { B6 } { 0125 }
+ { B9 } { 0131 }
+ { BA } { 015F }
+ { BB } { 011F }
+ { BC } { 0135 }
+ { BF } { 017C }
+ { C5 } { 010A }
+ { C6 } { 0108 }
+ { D5 } { 0120 }
+ { D8 } { 011C }
+ { DD } { 016C }
+ { DE } { 015C }
+ { E5 } { 010B }
+ { E6 } { 0109 }
+ { F5 } { 0121 }
+ { F8 } { 011D }
+ { FD } { 016D }
+ { FE } { 015D }
+ { FF } { 02D9 }
+ }
+ {
+ { A5 }
+ { AE }
+ { BE }
+ { C3 }
+ { D0 }
+ { E3 }
+ { F0 }
+ }
+%</iso88593>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso88594>
+\str_declare_eight_bit_encoding:nnn { iso88594 }
+ {
+ { A1 } { 0104 }
+ { A2 } { 0138 }
+ { A3 } { 0156 }
+ { A5 } { 0128 }
+ { A6 } { 013B }
+ { A9 } { 0160 }
+ { AA } { 0112 }
+ { AB } { 0122 }
+ { AC } { 0166 }
+ { AE } { 017D }
+ { B1 } { 0105 }
+ { B2 } { 02DB }
+ { B3 } { 0157 }
+ { B5 } { 0129 }
+ { B6 } { 013C }
+ { B7 } { 02C7 }
+ { B9 } { 0161 }
+ { BA } { 0113 }
+ { BB } { 0123 }
+ { BC } { 0167 }
+ { BD } { 014A }
+ { BE } { 017E }
+ { BF } { 014B }
+ { C0 } { 0100 }
+ { C7 } { 012E }
+ { C8 } { 010C }
+ { CA } { 0118 }
+ { CC } { 0116 }
+ { CF } { 012A }
+ { D0 } { 0110 }
+ { D1 } { 0145 }
+ { D2 } { 014C }
+ { D3 } { 0136 }
+ { D9 } { 0172 }
+ { DD } { 0168 }
+ { DE } { 016A }
+ { E0 } { 0101 }
+ { E7 } { 012F }
+ { E8 } { 010D }
+ { EA } { 0119 }
+ { EC } { 0117 }
+ { EF } { 012B }
+ { F0 } { 0111 }
+ { F1 } { 0146 }
+ { F2 } { 014D }
+ { F3 } { 0137 }
+ { F9 } { 0173 }
+ { FD } { 0169 }
+ { FE } { 016B }
+ { FF } { 02D9 }
+ }
+ {
+ }
+%</iso88594>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso88595>
+\str_declare_eight_bit_encoding:nnn { iso88595 }
+ {
+ { A1 } { 0401 }
+ { A2 } { 0402 }
+ { A3 } { 0403 }
+ { A4 } { 0404 }
+ { A5 } { 0405 }
+ { A6 } { 0406 }
+ { A7 } { 0407 }
+ { A8 } { 0408 }
+ { A9 } { 0409 }
+ { AA } { 040A }
+ { AB } { 040B }
+ { AC } { 040C }
+ { AE } { 040E }
+ { AF } { 040F }
+ { B0 } { 0410 }
+ { B1 } { 0411 }
+ { B2 } { 0412 }
+ { B3 } { 0413 }
+ { B4 } { 0414 }
+ { B5 } { 0415 }
+ { B6 } { 0416 }
+ { B7 } { 0417 }
+ { B8 } { 0418 }
+ { B9 } { 0419 }
+ { BA } { 041A }
+ { BB } { 041B }
+ { BC } { 041C }
+ { BD } { 041D }
+ { BE } { 041E }
+ { BF } { 041F }
+ { C0 } { 0420 }
+ { C1 } { 0421 }
+ { C2 } { 0422 }
+ { C3 } { 0423 }
+ { C4 } { 0424 }
+ { C5 } { 0425 }
+ { C6 } { 0426 }
+ { C7 } { 0427 }
+ { C8 } { 0428 }
+ { C9 } { 0429 }
+ { CA } { 042A }
+ { CB } { 042B }
+ { CC } { 042C }
+ { CD } { 042D }
+ { CE } { 042E }
+ { CF } { 042F }
+ { D0 } { 0430 }
+ { D1 } { 0431 }
+ { D2 } { 0432 }
+ { D3 } { 0433 }
+ { D4 } { 0434 }
+ { D5 } { 0435 }
+ { D6 } { 0436 }
+ { D7 } { 0437 }
+ { D8 } { 0438 }
+ { D9 } { 0439 }
+ { DA } { 043A }
+ { DB } { 043B }
+ { DC } { 043C }
+ { DD } { 043D }
+ { DE } { 043E }
+ { DF } { 043F }
+ { E0 } { 0440 }
+ { E1 } { 0441 }
+ { E2 } { 0442 }
+ { E3 } { 0443 }
+ { E4 } { 0444 }
+ { E5 } { 0445 }
+ { E6 } { 0446 }
+ { E7 } { 0447 }
+ { E8 } { 0448 }
+ { E9 } { 0449 }
+ { EA } { 044A }
+ { EB } { 044B }
+ { EC } { 044C }
+ { ED } { 044D }
+ { EE } { 044E }
+ { EF } { 044F }
+ { F0 } { 2116 }
+ { F1 } { 0451 }
+ { F2 } { 0452 }
+ { F3 } { 0453 }
+ { F4 } { 0454 }
+ { F5 } { 0455 }
+ { F6 } { 0456 }
+ { F7 } { 0457 }
+ { F8 } { 0458 }
+ { F9 } { 0459 }
+ { FA } { 045A }
+ { FB } { 045B }
+ { FC } { 045C }
+ { FD } { 00A7 }
+ { FE } { 045E }
+ { FF } { 045F }
+ }
+ {
+ }
+%</iso88595>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso88596>
+\str_declare_eight_bit_encoding:nnn { iso88596 }
+ {
+ { AC } { 060C }
+ { BB } { 061B }
+ { BF } { 061F }
+ { C1 } { 0621 }
+ { C2 } { 0622 }
+ { C3 } { 0623 }
+ { C4 } { 0624 }
+ { C5 } { 0625 }
+ { C6 } { 0626 }
+ { C7 } { 0627 }
+ { C8 } { 0628 }
+ { C9 } { 0629 }
+ { CA } { 062A }
+ { CB } { 062B }
+ { CC } { 062C }
+ { CD } { 062D }
+ { CE } { 062E }
+ { CF } { 062F }
+ { D0 } { 0630 }
+ { D1 } { 0631 }
+ { D2 } { 0632 }
+ { D3 } { 0633 }
+ { D4 } { 0634 }
+ { D5 } { 0635 }
+ { D6 } { 0636 }
+ { D7 } { 0637 }
+ { D8 } { 0638 }
+ { D9 } { 0639 }
+ { DA } { 063A }
+ { E0 } { 0640 }
+ { E1 } { 0641 }
+ { E2 } { 0642 }
+ { E3 } { 0643 }
+ { E4 } { 0644 }
+ { E5 } { 0645 }
+ { E6 } { 0646 }
+ { E7 } { 0647 }
+ { E8 } { 0648 }
+ { E9 } { 0649 }
+ { EA } { 064A }
+ { EB } { 064B }
+ { EC } { 064C }
+ { ED } { 064D }
+ { EE } { 064E }
+ { EF } { 064F }
+ { F0 } { 0650 }
+ { F1 } { 0651 }
+ { F2 } { 0652 }
+ }
+ {
+ { A1 }
+ { A2 }
+ { A3 }
+ { A5 }
+ { A6 }
+ { A7 }
+ { A8 }
+ { A9 }
+ { AA }
+ { AB }
+ { AE }
+ { AF }
+ { B0 }
+ { B1 }
+ { B2 }
+ { B3 }
+ { B4 }
+ { B5 }
+ { B6 }
+ { B7 }
+ { B8 }
+ { B9 }
+ { BA }
+ { BC }
+ { BD }
+ { BE }
+ { C0 }
+ { DB }
+ { DC }
+ { DD }
+ { DE }
+ { DF }
+ }
+%</iso88596>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso88597>
+\str_declare_eight_bit_encoding:nnn { iso88597 }
+ {
+ { A1 } { 2018 }
+ { A2 } { 2019 }
+ { A4 } { 20AC }
+ { A5 } { 20AF }
+ { AA } { 037A }
+ { AF } { 2015 }
+ { B4 } { 0384 }
+ { B5 } { 0385 }
+ { B6 } { 0386 }
+ { B8 } { 0388 }
+ { B9 } { 0389 }
+ { BA } { 038A }
+ { BC } { 038C }
+ { BE } { 038E }
+ { BF } { 038F }
+ { C0 } { 0390 }
+ { C1 } { 0391 }
+ { C2 } { 0392 }
+ { C3 } { 0393 }
+ { C4 } { 0394 }
+ { C5 } { 0395 }
+ { C6 } { 0396 }
+ { C7 } { 0397 }
+ { C8 } { 0398 }
+ { C9 } { 0399 }
+ { CA } { 039A }
+ { CB } { 039B }
+ { CC } { 039C }
+ { CD } { 039D }
+ { CE } { 039E }
+ { CF } { 039F }
+ { D0 } { 03A0 }
+ { D1 } { 03A1 }
+ { D3 } { 03A3 }
+ { D4 } { 03A4 }
+ { D5 } { 03A5 }
+ { D6 } { 03A6 }
+ { D7 } { 03A7 }
+ { D8 } { 03A8 }
+ { D9 } { 03A9 }
+ { DA } { 03AA }
+ { DB } { 03AB }
+ { DC } { 03AC }
+ { DD } { 03AD }
+ { DE } { 03AE }
+ { DF } { 03AF }
+ { E0 } { 03B0 }
+ { E1 } { 03B1 }
+ { E2 } { 03B2 }
+ { E3 } { 03B3 }
+ { E4 } { 03B4 }
+ { E5 } { 03B5 }
+ { E6 } { 03B6 }
+ { E7 } { 03B7 }
+ { E8 } { 03B8 }
+ { E9 } { 03B9 }
+ { EA } { 03BA }
+ { EB } { 03BB }
+ { EC } { 03BC }
+ { ED } { 03BD }
+ { EE } { 03BE }
+ { EF } { 03BF }
+ { F0 } { 03C0 }
+ { F1 } { 03C1 }
+ { F2 } { 03C2 }
+ { F3 } { 03C3 }
+ { F4 } { 03C4 }
+ { F5 } { 03C5 }
+ { F6 } { 03C6 }
+ { F7 } { 03C7 }
+ { F8 } { 03C8 }
+ { F9 } { 03C9 }
+ { FA } { 03CA }
+ { FB } { 03CB }
+ { FC } { 03CC }
+ { FD } { 03CD }
+ { FE } { 03CE }
+ }
+ {
+ { AE }
+ { D2 }
+ }
+%</iso88597>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso88598>
+\str_declare_eight_bit_encoding:nnn { iso88598 }
+ {
+ { AA } { 00D7 }
+ { BA } { 00F7 }
+ { DF } { 2017 }
+ { E0 } { 05D0 }
+ { E1 } { 05D1 }
+ { E2 } { 05D2 }
+ { E3 } { 05D3 }
+ { E4 } { 05D4 }
+ { E5 } { 05D5 }
+ { E6 } { 05D6 }
+ { E7 } { 05D7 }
+ { E8 } { 05D8 }
+ { E9 } { 05D9 }
+ { EA } { 05DA }
+ { EB } { 05DB }
+ { EC } { 05DC }
+ { ED } { 05DD }
+ { EE } { 05DE }
+ { EF } { 05DF }
+ { F0 } { 05E0 }
+ { F1 } { 05E1 }
+ { F2 } { 05E2 }
+ { F3 } { 05E3 }
+ { F4 } { 05E4 }
+ { F5 } { 05E5 }
+ { F6 } { 05E6 }
+ { F7 } { 05E7 }
+ { F8 } { 05E8 }
+ { F9 } { 05E9 }
+ { FA } { 05EA }
+ { FD } { 200E }
+ { FE } { 200F }
+ }
+ {
+ { A1 }
+ { BF }
+ { C0 }
+ { C1 }
+ { C2 }
+ { C3 }
+ { C4 }
+ { C5 }
+ { C6 }
+ { C7 }
+ { C8 }
+ { C9 }
+ { CA }
+ { CB }
+ { CC }
+ { CD }
+ { CE }
+ { CF }
+ { D0 }
+ { D1 }
+ { D2 }
+ { D3 }
+ { D4 }
+ { D5 }
+ { D6 }
+ { D7 }
+ { D8 }
+ { D9 }
+ { DA }
+ { DB }
+ { DC }
+ { DD }
+ { DE }
+ { FB }
+ { FC }
+ }
+%</iso88598>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso88599>
+\str_declare_eight_bit_encoding:nnn { iso88599 }
+ {
+ { D0 } { 011E }
+ { DD } { 0130 }
+ { DE } { 015E }
+ { F0 } { 011F }
+ { FD } { 0131 }
+ { FE } { 015F }
+ }
+ {
+ }
+%</iso88599>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso885910>
+\str_declare_eight_bit_encoding:nnn { iso885910 }
+ {
+ { A1 } { 0104 }
+ { A2 } { 0112 }
+ { A3 } { 0122 }
+ { A4 } { 012A }
+ { A5 } { 0128 }
+ { A6 } { 0136 }
+ { A8 } { 013B }
+ { A9 } { 0110 }
+ { AA } { 0160 }
+ { AB } { 0166 }
+ { AC } { 017D }
+ { AE } { 016A }
+ { AF } { 014A }
+ { B1 } { 0105 }
+ { B2 } { 0113 }
+ { B3 } { 0123 }
+ { B4 } { 012B }
+ { B5 } { 0129 }
+ { B6 } { 0137 }
+ { B8 } { 013C }
+ { B9 } { 0111 }
+ { BA } { 0161 }
+ { BB } { 0167 }
+ { BC } { 017E }
+ { BD } { 2015 }
+ { BE } { 016B }
+ { BF } { 014B }
+ { C0 } { 0100 }
+ { C7 } { 012E }
+ { C8 } { 010C }
+ { CA } { 0118 }
+ { CC } { 0116 }
+ { D1 } { 0145 }
+ { D2 } { 014C }
+ { D7 } { 0168 }
+ { D9 } { 0172 }
+ { E0 } { 0101 }
+ { E7 } { 012F }
+ { E8 } { 010D }
+ { EA } { 0119 }
+ { EC } { 0117 }
+ { F1 } { 0146 }
+ { F2 } { 014D }
+ { F7 } { 0169 }
+ { F9 } { 0173 }
+ { FF } { 0138 }
+ }
+ {
+ }
+%</iso885910>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso885911>
+\str_declare_eight_bit_encoding:nnn { iso885911 }
+ {
+ { A1 } { 0E01 }
+ { A2 } { 0E02 }
+ { A3 } { 0E03 }
+ { A4 } { 0E04 }
+ { A5 } { 0E05 }
+ { A6 } { 0E06 }
+ { A7 } { 0E07 }
+ { A8 } { 0E08 }
+ { A9 } { 0E09 }
+ { AA } { 0E0A }
+ { AB } { 0E0B }
+ { AC } { 0E0C }
+ { AD } { 0E0D }
+ { AE } { 0E0E }
+ { AF } { 0E0F }
+ { B0 } { 0E10 }
+ { B1 } { 0E11 }
+ { B2 } { 0E12 }
+ { B3 } { 0E13 }
+ { B4 } { 0E14 }
+ { B5 } { 0E15 }
+ { B6 } { 0E16 }
+ { B7 } { 0E17 }
+ { B8 } { 0E18 }
+ { B9 } { 0E19 }
+ { BA } { 0E1A }
+ { BB } { 0E1B }
+ { BC } { 0E1C }
+ { BD } { 0E1D }
+ { BE } { 0E1E }
+ { BF } { 0E1F }
+ { C0 } { 0E20 }
+ { C1 } { 0E21 }
+ { C2 } { 0E22 }
+ { C3 } { 0E23 }
+ { C4 } { 0E24 }
+ { C5 } { 0E25 }
+ { C6 } { 0E26 }
+ { C7 } { 0E27 }
+ { C8 } { 0E28 }
+ { C9 } { 0E29 }
+ { CA } { 0E2A }
+ { CB } { 0E2B }
+ { CC } { 0E2C }
+ { CD } { 0E2D }
+ { CE } { 0E2E }
+ { CF } { 0E2F }
+ { D0 } { 0E30 }
+ { D1 } { 0E31 }
+ { D2 } { 0E32 }
+ { D3 } { 0E33 }
+ { D4 } { 0E34 }
+ { D5 } { 0E35 }
+ { D6 } { 0E36 }
+ { D7 } { 0E37 }
+ { D8 } { 0E38 }
+ { D9 } { 0E39 }
+ { DA } { 0E3A }
+ { DF } { 0E3F }
+ { E0 } { 0E40 }
+ { E1 } { 0E41 }
+ { E2 } { 0E42 }
+ { E3 } { 0E43 }
+ { E4 } { 0E44 }
+ { E5 } { 0E45 }
+ { E6 } { 0E46 }
+ { E7 } { 0E47 }
+ { E8 } { 0E48 }
+ { E9 } { 0E49 }
+ { EA } { 0E4A }
+ { EB } { 0E4B }
+ { EC } { 0E4C }
+ { ED } { 0E4D }
+ { EE } { 0E4E }
+ { EF } { 0E4F }
+ { F0 } { 0E50 }
+ { F1 } { 0E51 }
+ { F2 } { 0E52 }
+ { F3 } { 0E53 }
+ { F4 } { 0E54 }
+ { F5 } { 0E55 }
+ { F6 } { 0E56 }
+ { F7 } { 0E57 }
+ { F8 } { 0E58 }
+ { F9 } { 0E59 }
+ { FA } { 0E5A }
+ { FB } { 0E5B }
+ }
+ {
+ { DB }
+ { DC }
+ { DD }
+ { DE }
+ }
+%</iso885911>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso885913>
+\str_declare_eight_bit_encoding:nnn { iso885913 }
+ {
+ { A1 } { 201D }
+ { A5 } { 201E }
+ { A8 } { 00D8 }
+ { AA } { 0156 }
+ { AF } { 00C6 }
+ { B4 } { 201C }
+ { B8 } { 00F8 }
+ { BA } { 0157 }
+ { BF } { 00E6 }
+ { C0 } { 0104 }
+ { C1 } { 012E }
+ { C2 } { 0100 }
+ { C3 } { 0106 }
+ { C6 } { 0118 }
+ { C7 } { 0112 }
+ { C8 } { 010C }
+ { CA } { 0179 }
+ { CB } { 0116 }
+ { CC } { 0122 }
+ { CD } { 0136 }
+ { CE } { 012A }
+ { CF } { 013B }
+ { D0 } { 0160 }
+ { D1 } { 0143 }
+ { D2 } { 0145 }
+ { D4 } { 014C }
+ { D8 } { 0172 }
+ { D9 } { 0141 }
+ { DA } { 015A }
+ { DB } { 016A }
+ { DD } { 017B }
+ { DE } { 017D }
+ { E0 } { 0105 }
+ { E1 } { 012F }
+ { E2 } { 0101 }
+ { E3 } { 0107 }
+ { E6 } { 0119 }
+ { E7 } { 0113 }
+ { E8 } { 010D }
+ { EA } { 017A }
+ { EB } { 0117 }
+ { EC } { 0123 }
+ { ED } { 0137 }
+ { EE } { 012B }
+ { EF } { 013C }
+ { F0 } { 0161 }
+ { F1 } { 0144 }
+ { F2 } { 0146 }
+ { F4 } { 014D }
+ { F8 } { 0173 }
+ { F9 } { 0142 }
+ { FA } { 015B }
+ { FB } { 016B }
+ { FD } { 017C }
+ { FE } { 017E }
+ { FF } { 2019 }
+ }
+ {
+ }
+%</iso885913>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso885914>
+\str_declare_eight_bit_encoding:nnn { iso885914 }
+ {
+ { A1 } { 1E02 }
+ { A2 } { 1E03 }
+ { A4 } { 010A }
+ { A5 } { 010B }
+ { A6 } { 1E0A }
+ { A8 } { 1E80 }
+ { AA } { 1E82 }
+ { AB } { 1E0B }
+ { AC } { 1EF2 }
+ { AF } { 0178 }
+ { B0 } { 1E1E }
+ { B1 } { 1E1F }
+ { B2 } { 0120 }
+ { B3 } { 0121 }
+ { B4 } { 1E40 }
+ { B5 } { 1E41 }
+ { B7 } { 1E56 }
+ { B8 } { 1E81 }
+ { B9 } { 1E57 }
+ { BA } { 1E83 }
+ { BB } { 1E60 }
+ { BC } { 1EF3 }
+ { BD } { 1E84 }
+ { BE } { 1E85 }
+ { BF } { 1E61 }
+ { D0 } { 0174 }
+ { D7 } { 1E6A }
+ { DE } { 0176 }
+ { F0 } { 0175 }
+ { F7 } { 1E6B }
+ { FE } { 0177 }
+ }
+ {
+ }
+%</iso885914>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso885915>
+\str_declare_eight_bit_encoding:nnn { iso885915 }
+ {
+ { A4 } { 20AC }
+ { A6 } { 0160 }
+ { A8 } { 0161 }
+ { B4 } { 017D }
+ { B8 } { 017E }
+ { BC } { 0152 }
+ { BD } { 0153 }
+ { BE } { 0178 }
+ }
+ {
+ }
+%</iso885915>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*iso885916>
+\str_declare_eight_bit_encoding:nnn { iso885916 }
+ {
+ { A1 } { 0104 }
+ { A2 } { 0105 }
+ { A3 } { 0141 }
+ { A4 } { 20AC }
+ { A5 } { 201E }
+ { A6 } { 0160 }
+ { A8 } { 0161 }
+ { AA } { 0218 }
+ { AC } { 0179 }
+ { AE } { 017A }
+ { AF } { 017B }
+ { B2 } { 010C }
+ { B3 } { 0142 }
+ { B4 } { 017D }
+ { B5 } { 201D }
+ { B8 } { 017E }
+ { B9 } { 010D }
+ { BA } { 0219 }
+ { BC } { 0152 }
+ { BD } { 0153 }
+ { BE } { 0178 }
+ { BF } { 017C }
+ { C3 } { 0102 }
+ { C5 } { 0106 }
+ { D0 } { 0110 }
+ { D1 } { 0143 }
+ { D5 } { 0150 }
+ { D7 } { 015A }
+ { D8 } { 0170 }
+ { DD } { 0118 }
+ { DE } { 021A }
+ { E3 } { 0103 }
+ { E5 } { 0107 }
+ { F0 } { 0111 }
+ { F1 } { 0144 }
+ { F5 } { 0151 }
+ { F7 } { 015B }
+ { F8 } { 0171 }
+ { FD } { 0119 }
+ { FE } { 021B }
+ }
+ {
+ }
+%</iso885916>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex