summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2007-01-02 22:42:25 +0000
committerKarl Berry <karl@freefriends.org>2007-01-02 22:42:25 +0000
commit0a17be9af1c1cd8e5452befa92ff920a401c47fb (patch)
treeb6ffc2205d70f5572d0c3e4e7965f69b7e3ea87b /Master/texmf-dist/doc
parent119aceca4b577e5c6428d2683c92b1eb3e2f1c61 (diff)
remove xymtex (again), it is nonfree
git-svn-id: svn://tug.org/texlive/trunk@3102 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/readme2.doc22
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/readme2.jpn66
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/xymadd.tex2792
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/xymman.sty63
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/xymtex2.doc94
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/xymtx200.dvibin412660 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/xymtx200.tex56
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/xymyl.tex2900
8 files changed, 0 insertions, 5993 deletions
diff --git a/Master/texmf-dist/doc/latex/xymtex/readme2.doc b/Master/texmf-dist/doc/latex/xymtex/readme2.doc
deleted file mode 100644
index 90355a56c29..00000000000
--- a/Master/texmf-dist/doc/latex/xymtex/readme2.doc
+++ /dev/null
@@ -1,22 +0,0 @@
-readme2.doc
-Notes for XyMTeX
-Copyright (C) 1993, 1996, 1998 by Shinsaku Fujita, All rights reserved.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-(old) readme1.doc
-Notes for XyMTeX
-Copyright (C) 1993, 1996 by Shinsaku Fujita, All rights reserved.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-Name: XyMTeX
-Description: Macro Package including LaTeX document-style options for
- typesetting chemical structural formulas
-Keywords: LaTeX, chemistry, structural formula
-Author: Shinsaku Fujita
-Supported: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html
-Latest Version: 2.00
-Archives: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html
-Note: Documentation in xymtx200.tex (xymtx200.dvi)
-
-For Installment, see xymtex2.doc (xymtex2.jpn)
-
- \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/xymtex/readme2.jpn b/Master/texmf-dist/doc/latex/xymtex/readme2.jpn
deleted file mode 100644
index 4144fe7a1b4..00000000000
--- a/Master/texmf-dist/doc/latex/xymtex/readme2.jpn
+++ /dev/null
@@ -1,66 +0,0 @@
-readme2.jpn
-Notes for XyMTeX (in Japanese)
-Copyright (C) 1993, 1996, 1998 by Shinsaku Fujita. All rights reserved.
-===========================================================================
-(旧)readme1.jpn
-Notes for XyMTeX (in Japanese)
-Copyright (C) 1993, 1996 by Shinsaku Fujita. All rights reserved.
-===========================================================================
-名 称: XyMTeX
-登録名: xymtex2.lzh for drawing chem. structures
-概 要: 化学構造式を描くためのマクロパッケージ
-    (LaTeX用のオプションファイル類を含む)
-鍵 語: LaTeX, 化学, 構造式
-作 者: Shinsaku Fujita (藤田 眞作)
-登録者: 藤田 眞作
-最新版: 2.00
-本 籍: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html
-覚 書: ドキュメントは、xymtx200.tex (xymtx200.dvi)
-===========================================================================
-Name: XyMTeX
-Description: Macro Package including LaTeX document-style options for
- typesetting chemical structural formulas
-Keywords: LaTeX, chemistry, structural formula
-Author: Shinsaku Fujita
-Supported: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html
-Latest Version: 2.00
-Archives: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html
-Note: Documentation in xymtx200.tex (xymtx200.dvi)
-===========================================================================
-
-<説明>
- XyMTeXは、化学構造式を描くためののマクロパッケージです。 これは、
-LaTeX2e用のパッケージファイル群から成り立っています。各ファイルには
-化学構造式を描くためのコマンドのマクロコードが含まれています。各コマンドは、
-広範囲の化合物の構造が描けるように、新しい構想のもとに作成したものです。
-LaTeXのpicture環境を前提にして、その範囲内 (図形組版)で構造式が描けるように
-なっています。したがって、構造式出力のプリンターは (プリンタードライバーさえ
-あれば) 種類を選ばず、たとえば写植機でも出力が可能です。
-
- 約100ページのマニュアル (xymtx200.dvi) が付属しています。この中に、Version
-2.00で追加した機能とコマンドの書式 (仕様) と描画例を多数記載しましたので、
-解凍後、まずどのようなことができるのかをご覧ください。
-
- chemist.styやmathchem.sty (下記拙著に付録として付いているフロッピーディスク
-に収録)に含まれるコマンドを併用すれば、さらにいろいろな反応スキームなどを
-描くことができるようになります。XyMTeX(version1.01)から、chemist.styも同梱
-してあります。
-
-  「化学者・生化学者のためのLaTeX---パソコンによる論文作成の手引」
-   藤田 眞作 著、東京化学同人 (1993) FD付
-
-基本的な使用法は、XyMTeX verion 2.00でも以前のバージョンでも同じです。
-このため、付属のマニュアル (xymtx200.dvi)では、基本的な使用法を記載
-してありません。これらは、次のレファレンスマニュアルを参照してください。
-
- 「XyMTeX--Typesetting Chemical Structural Formulas」
- 藤田眞作著、アジソン・ウェスレイ・ジャパン (1997) CD-DOM付
-
-<ダウンロード・解凍>
-(1) ファイル名xymtex2.lzhでダウンロードしてください
-(2) TeXのメインディレクトリー内でlhaで解凍してください。
-   a:\tex>lha x b:\xymtex2
-
-詳しいインストールの方法は、xymtex2.docをご覧下さい。
-
- \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/xymtex/xymadd.tex b/Master/texmf-dist/doc/latex/xymtex/xymadd.tex
deleted file mode 100644
index 10cfa37c649..00000000000
--- a/Master/texmf-dist/doc/latex/xymtex/xymadd.tex
+++ /dev/null
@@ -1,2792 +0,0 @@
-%xymadd.tex
-%Copyright (C) 1998, Shinsaku Fujita, All rights reserved.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%This file is a part of xymtx200.tex that is the manual of the macro
-%package `XyMTeX' (Version 2.00) for drawing chemical structural formulas.
-%This file is not permitted to be translated into Japanese and any other
-%languages.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Added Commands}
-
-\section{Six-six Fused Carbocycles}
-\subsection{Vertical-Bottom Forms of Decaline Derivatives}
-
-The macro \verb/\decalinevb/ is used to draw
-decaline derivatives of vertical-bottom
-type (added to \textsf{carom.sty}),
-where the numbering of atoms is given from the bottom
-to the left-upper part.
-The word ``vertical'' means that each benzene ring is a vertical type.
-The word ``bottom'' means that the benzene ring with young
-locant numbers is located at the bottom.
-The format of this command is as follows:
-\begin{verbatim}
- \decalinevb[BONDLIST]{SUBSLIST}
-\end{verbatim}
-%
-% ***************************
-% * decaline derivatives *
-% * (vertical bottom type) *
-% ***************************
-% The following numbering is adopted in this macro.
-%
-% 7
-% *
-% 6 * * 8
-% | |
-% | | 0G (4a)
-% 5 * * *
-% 0F(4a) * * 1
-% | |
-% | |
-% 4 * * 2
-% *
-% 3
-% ^
-% |
-% the original point
-%
-
-Locant numbers for designating substitution positions
-and characters for showing bonds to be doubled
-are represented by the following diagram:
-{\origpttrue
-\begin{center}
-\begin{picture}(1000,1200)(0,0)
-\put(0,0){\decalinevb{%
-1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
-3Sb==3Sb(l);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l);%
-5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);%
-7Sb==7Sb(l);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sb(r);%
-0F==0F;0G==0G}}
-{\footnotesize
-\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}}
-\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (550,\the\shifti) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{center}
-}
-The handedness for each oriented or double-sided position
-is shown with a character set in parentheses.
-The option argument BONDLIST is based on the
-assignment of characters (a--k) to respective bonds
-as shown in the above diagram.
-A bond modifier in the argument SUBSLIST for $n=1\mbox{--}8$ can be
-one of bond modifiers shown in Table \ref{tt:200a}.
-The substitution at the bridgehead positions is
-designated as shown in Table 4.3 of \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
-\decalinevb{1D==O;0FB==H;0GA==H} \qquad
-\decalinevb{1B==CH$_{2}$OSiR$_{3}$;3D==O;4A==CH$_{3}$OCO;%
-0FB==CH$_{3}$;0GA==H}
-\end{verbatim}
-These commands produce:
-\begin{center}
-\decalinevb{1D==O;0FB==H;0GA==H} \qquad
-\decalinevb{1B==CH$_{2}$OSiR$_{3}$;3D==O;4A==CH$_{3}$OCO;%
-0FB==CH$_{3}$;0GA==H}
-\end{center}
-
-The related commands, \verb/\naphdrvb/ and \verb/\tetralinevb/,
-have been defined on the basis of the command \verb/\decalinevb/.
-
-\subsection{Vertical-Top Forms of Decaline Derivatives}
-
-The macro \verb/\decalinevt/ (added to \textsf{carom.sty})
-is used for drawing decaline derivatives
-of vertical-bottom type (numbering from the top to the left-down part).
-The word ``vertical'' means that each benzene ring is a vertical type.
-The word ``top'' means that the benzene ring with young locant
-numbers is located at the top.
-% ************************
-% * decaline derivatives *
-% * (vertical-top type) *
-% ************************
-% The following numbering is adopted in this macro.
-%
-% 2
-% *
-% 1 * * 3
-% | |
-% | |
-% 0G (8a) * * 4
-% 8 * * 0F(4a)
-% | |
-% | |
-% 7 * * 5
-% *
-% 6
-% ^
-% |
-% the original point
-%
-The format of this command is as follows:
-\begin{verbatim}
- \decalinevt[BONDLIST]{SUBSLIST}
-\end{verbatim}
-
-Locant numbers for designating substitution positions
-and characters for showing bonds to be doubled
-are represented by the following diagram:
-{\origpttrue
-\begin{center}
-\begin{picture}(1000,1200)(0,0)
-\put(0,0){\decalinevt{%
-1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==2Sa(r);%
-3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);%
-5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(l);6Sa==6Sa(r);%
-7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8Sb(l);%
-0F==0F;0G==0G}}
-{\footnotesize
-\put(171,303){\bdloocant{b}{c}{d}{k}{j}{a}}
-\put(0,0){\bdloocant{}{e}{f}{g}{h}{i}}}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (400,\the\shifti) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{center}
-}
-
-The handedness for each oriented or double-sided position
-is shown with a character set in parentheses.
-The option argument BONDLIST is based on the
-assignment of characters (a--k) to respective bonds
-as shown in the above diagram.
-A bond modifier in the argument SUBSLIST for $n=1\mbox{--}8$ can be
-one of bond modifiers shown in Table \ref{tt:200a}.
-The substitution at the bridgehead positions is
-designated as shown in Table 4.3 of \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
-\decalinevt{1D==O;0FB==H;0GA==H} \qquad
-\decalinevt{1B==R$_{3}$SiOCH$_{2}$;3D==O;4A==COOHCH$_{3}$;%
-0FB==CH$_{3}$;0GA==H}
-\end{verbatim}
-These commands produce:
-\begin{center}
-\decalinevt{1D==O;0FB==H;0GA==H} \qquad
-\decalinevt{1B==R$_{3}$SiOCH$_{2}$;3D==O;4A==COOHCH$_{3}$;%
-0FB==CH$_{3}$;0GA==H}
-\end{center}
-
-The related commands, \verb/\naphdrvt/ and \verb/\tetralinevt/,
-have been defined on the basis of the command \verb/\decalinevt/.
-
-
-\section{Six-six Fused Heterocycles}
-\subsection{Vertical-Bottom Forms}
-
-The macro \verb/\decaheterovb/ is generally used to draw
-six-six-fused heterocycles of vertical-bottom type (\textsf{hetarom.sty}).
-\begin{verbatim}
- \decaheterovb[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-% ***************************
-% * decahetro derivatives *
-% * (vertical bottom type) *
-% ***************************
-% The following numbering is adopted in this macro.
-%
-% 7
-% *
-% 6 * * 8
-% | |
-% | | 0G (4a)
-% 5 * * *
-% 0F(4a) * * 1
-% | |
-% | |
-% 4 * * 2
-% *
-% 3
-% ^
-% |
-% the original point
-
-
-Locant numbers for designating substitution positions
-as well as characters for setting double bonds
-are shown in the following diagram:
-{
-\begin{xymspec}
-\begin{picture}(1000,1200)(0,0)
-\put(0,0){\decaheterovb[]{1==1;2==2;3==3;4==4;5==5;%
-6==6;7==7;8==8;9==9;{{10}}==10}{%
-1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
-3Sb==3Sb(l);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l);%
-5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);%
-7Sb==7Sb(l);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sa(r);%
-9==9;{{10}}==10}}
-{\footnotesize
-\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}}
-\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}}
-%\put(0,0){\bdloocant{i}{k}{e}{f}{g}{h}}
-%\put(342,0){\bdloocant{a}{b}{c}{d}{}{j}}}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (550,\the\shifti) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-}
-The handedness for each oriented or double-sided position
-is shown with a character set in parentheses.
-The optional argument BONDLIST is used to specify a bond pattern.
-
-The argument ATOMLIST has a similar format concerning the positions of
-$n$ = 1 to 8. A hetero-atom on the 4a-position is
-designated to be 4a==N or 9==N;
-and a hetero-atom on the 8a-position is given as to be
-8a==N or \{\{10\}\}==N.
-
-The argument SUBSLIST for this macro takes a general format,
-in which the modifiers listed in Table \ref{tt:200a} are used.
-Note that 9 and 10 should be used for designating
-4a and 8a positions.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
-\decaheterovb[]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$}
-\decaheterovb[]{5==O}{9==HO;{{10}}==OH}
-\decaheterovb[ch]{1==O}{9A==HOCH$_{2}$;{{10}A}==H;%
-4==CH$_{3}$;7==CH$_{3}$}
-\end{verbatim}
-produce the following structures:
-\begin{center}
-\decaheterovb[]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$}
-\decaheterovb[]{5==O}{9==HO;{{10}}==OH}
-\decaheterovb[ch]{1==O}{9A==HOCH$_{2}$;{{10}A}==H;%
-4==CH$_{3}$;7==CH$_{3}$}
-\end{center}
-
-Macros for drawing related fused heterocycles are also defined.
-The formats of these commands are as follows:
-\begin{verbatim}
- \quinolinevb[BONDLIST]{SUBSLIST}
- \isoquinolinevb[BONDLIST]{SUBSLIST}
- \quinoxalinevb[BONDLIST]{SUBSLIST}
- \quinazolinevb[BONDLIST]{SUBSLIST}
- \cinnolinevb[BONDLIST]{SUBSLIST}
- \pteridinevb[BONDLIST]{SUBSLIST}
-\end{verbatim}
-
-\subsection{Vertical-Top Forms}
-The macro \verb/\decaheterovt/ is generally used to draw
-six-six-fused heterocycles of vertical-top type (\textsf{hetarom.sty}).
-\begin{verbatim}
- \decaheterovt[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-% ****************************
-% * decaheterovt derivatives *
-% * (vertical-top type) *
-% ****************************
-% The following numbering is adopted in this macro.
-%
-% 2
-% *
-% 1 * * 3
-% | |
-% | |
-% 0G (8a) * * 4
-% 8 * * 0F(4a)
-% | |
-% | |
-% 7 * * 5
-% *
-% 6
-% ^
-% |
-% the original point
-% \end{verbatim}
-
-Locant numbers for designating substitution positions
-as well as characters for setting double bonds
-are shown in the following diagram:
-{
-\begin{xymspec}
-\begin{picture}(1000,1200)(0,0)
-\put(0,0){\decaheterovt[]{1==1;2==2;3==3;4==4;5==5;%
-6==6;7==7;8==8;9==9;{{10}}==10}{%
-1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==2Sa(r);%
-3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);%
-5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(l);6Sa==6Sa(r);%
-7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8Sa(l);%
-9==9;{{10}}==10}}
-{\footnotesize
-\put(171,303){\bdloocant{b}{c}{d}{k}{j}{a}}
-\put(0,0){\bdloocant{}{e}{f}{g}{h}{i}}}
-%\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}}
-%\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (400,\the\shifti) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-}
-The handedness for each oriented or double-sided position
-is shown with a character set in parentheses.
-The optional argument BONDLIST is used to specify a bond pattern.
-
-The argument ATOMLIST has a similar format concerning the positions of
-$n$ = 1 to 8. A hetero-atom on the 4a-position is
-designated to be 4a==N or 9==N;
-and a hetero-atom on the 8a-position is given as to be
-8a==N or \{\{10\}\}==N.
-
-The argument SUBSLIST for this macro takes a general format,
-in which the modifiers listed in Table \ref{tt:200a} are used.
-Note that 9 and 10 should be used for designating
-4a and 8a positions.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
-\decaheterovt[]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH}
-\decaheterovt[]{5==O}{9==OH;{{10}}==HO}
-\decaheterovt[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;%
-4==CH$_{3}$;7==CH$_{3}$}
-\end{verbatim}
-produce the following structures:
-\begin{center}
-\vspace*{1cm}
-\decaheterovt[]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH}
-\decaheterovt[]{5==O}{9==OH;{{10}}==HO}
-\decaheterovt[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;%
-4==CH$_{3}$;7==CH$_{3}$}
-\end{center}
-
-Macros for drawing related fused heterocycles are also defined.
-The formats of these commands are as follows:
-\begin{verbatim}
- \quinolinevt[BONDLIST]{SUBSLIST}
- \isoquinolinevt[BONDLIST]{SUBSLIST}
- \quinoxalinevt[BONDLIST]{SUBSLIST}
- \quinazolinevt[BONDLIST]{SUBSLIST}
- \cinnolinevt[BONDLIST]{SUBSLIST}
- \pteridinevt[BONDLIST]{SUBSLIST}
-\end{verbatim}
-
-\section{Three-Membered Carbocycles}
-
-The macro \verb/\cyclopropanev/ (the same command
-as \verb/\cyclopropane/)
-for drawing three-membered carbocycles
-has the following format (\textsf{lowcycle.sty})
-\begin{verbatim}
- \cyclopropanev[BONDLIST]{SUBSLIST}
-\end{verbatim}
-% ****************************
-% * cyclopropane derivatives *
-% * (vertical type) *
-% ****************************
-% The following numbering is adopted in this macro.
-%
-% b
-% 3--------2
-% c ` / a
-% `1/ <===== the original point
-%
-%
-%
-The locant numbering (1--3)
-and the bond description (a--c) are common as
-shown in the following diagram:
-\begin{xymspec}
-\begin{picture}(1000,600)(0,0)
-\put(0,0){\cyclopropanev[]{%
-1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
-3Sb==3Sb(l);3Sa==3Sa(l)}}
-\put(0,0){\circle{80}}
-\put(400,240){\circle{80}}
-\put(500,250){a}
-\put(300,250){c}
-\put(380,460){b}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
- \cyclopropanev{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \cyclopropanev{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \cyclopropanev{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
-\end{verbatim}
-produce the following structures:
-\begin{center}
- \cyclopropanev{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \cyclopropanev{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \cyclopropanev{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
-\end{center}
-
-The macro \verb/\cyclopropanevi/
-(the same command as \verb/\cyclopropanei/)
-for drawing three-membered carbocycles of inverse type
-has the following format (\textsf{lowcycle.sty})
-\begin{verbatim}
- \cyclopropanevi[BONDLIST]{SUBSLIST}
-\end{verbatim}
-% ****************************
-% * cyclopropane derivatives *
-% * (inverse vertical type) *
-% ****************************
-% The following numbering is adopted in this macro.
-%
-% /1` <===== the original point
-% c / ` a
-% 3--------2
-% b
-%
-% \cyclopropanei[BONDLIST]{SUBSLIST}
-% \cyclopropanevi[BONDLIST]{SUBSLIST}
-
-The following diagram shows
-The locant numbering (1--3)
-and the bond description (a--c):
-\begin{xymspec}
-\begin{picture}(1000,600)(0,0)
-\put(0,0){\cyclopropanevi[]{%
-1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
-3Sb==3Sb(l);3Sa==3Sa(l)}}
-\put(0,0){\circle{80}}
-\put(400,340){\circle{80}}
-\put(500,250){a}
-\put(250,250){c}
-\put(380,50){b}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,340) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-For the arguments, BONDLIST and SUBSLIST, see the counterparts
-of \verb/\cyclopropane/ described in \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
- \cyclopropanevi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \cyclopropanevi{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \cyclopropanevi{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
-\end{verbatim}
-produce the following structures:
-\begin{center}
- \cyclopropanevi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \cyclopropanevi{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \cyclopropanevi{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
-\end{center}
-
-The macro \verb/\cyclopropaneh/
-for drawing three-membered carbocycles of horizontal type
-has the following format (\textsf{lowcycle.sty})
-\begin{verbatim}
- \cyclopropaneh[BONDLIST]{SUBSLIST}
-\end{verbatim}
-% ****************************
-% * cyclopropane derivatives *
-% * (horizontal type) *
-% ****************************
-%
-% aaa fff
-% 3
-% | ` c
-% b | 1 bbb ccc
-% | / a
-% 2/
-% ddd eee
-%
-
-The locant numbering (1--3)
-and the bond description (a--c) are common as
-shown in the following diagram:
-\begin{xymspec}
-\begin{picture}(600,1000)(0,0)
-\put(0,0){\cyclopropaneh[]{%
-1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(l);2Sa==2Sa(r);%
-3Sb==3Sb(l);3Sa==3Sa(r)}}
-\put(0,0){\circle{80}}
-\put(200,240){\circle{80}}
-\put(300,150){a}
-\put(100,320){b}
-\put(300,450){c}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (200,240) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
- \cyclopropaneh{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
- \cyclopropaneh{2Sa==COOH;2Sb==HOCO}\qquad\qquad
- \cyclopropaneh{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
-\end{verbatim}
-produce the following structures:
-\begin{center}
- \cyclopropaneh{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
- \cyclopropaneh{2Sa==COOH;2Sb==HOCO}\qquad\qquad
- \cyclopropaneh{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
-\end{center}
-
-The macro \verb/\cyclopropanehi/
-for drawing three-membered carbocycles of inverse horizontal type
-has the following format (\textsf{lowcycle.sty})
-\begin{verbatim}
- \cyclopropanehi[BONDLIST]{SUBSLIST}
-\end{verbatim}
-% ****************************
-% * cyclopropane derivatives *
-% * (inverse horizontal type)*
-% ****************************
-%
-% aaa bbb
-% c 3
-% / |
-% eee 1 | b
-% fff a` |
-% 2 <---original point
-% ccc ddd
-
-The locant numbering (1--3)
-and the bond description (a--c) are common as
-shown in the following diagram:
-\begin{xymspec}
-\begin{picture}(600,1000)(0,0)
-\put(0,0){\cyclopropanehi[]{%
-1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);%
-3Sb==3Sb(r);3Sa==3Sa(r)}}
-\put(0,0){\circle{80}}
-\put(400,240){\circle{80}}
-\put(300,150){a}
-\put(450,320){b}
-\put(300,450){c}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (400,240) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
- \cyclopropanehi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \cyclopropanehi{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \cyclopropanehi{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
-\end{verbatim}
-produce the following structures:
-\begin{center}
- \cyclopropanehi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \cyclopropanehi{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \cyclopropanehi{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
-\end{center}
-
-\section{Three-Membered Heterocycles}
-
-The macro \verb/\threeheterov/
-(the same command as \verb/\threehetero/)
-for drawing three-membered heterocycles
-has the following format (\textsf{hetarom.sty})
-\begin{verbatim}
- \threeheterov[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-% ****************************
-% * threeheterov derivatives *
-% * (vertical type) *
-% ****************************
-% The following numbering is adopted in this macro.
-%
-% b
-% 3--------2
-% c ` / a
-% `1/ <===== the original point
-%
-%
-%
-The locant numbering (1--3)
-and the bond description (a--c) are common as
-shown in the following diagram:
-\begin{xymspec}
-\begin{picture}(1000,600)(0,0)
-\put(0,0){\threeheterov[]{1==1;2==2;3==3}{%
-1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
-3Sb==3Sb(l);3Sa==3Sa(l)}}
-\put(0,0){\circle{80}}
-\put(400,240){\circle{80}}
-\put(500,250){a}
-\put(300,250){c}
-\put(380,460){b}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
- \threeheterov{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \threeheterov{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \threeheterov{2==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
-\end{verbatim}
-produce the following structures:
-\begin{center}
- \threeheterov{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \threeheterov{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \threeheterov{2==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
-\end{center}
-
-The macro \verb/\threeheterovi/
-(the same command as \verb/\threeheteroi/)
-for drawing three-membered heterocycles of inverse type
-has the following format (\textsf{hetarom.sty})
-\begin{verbatim}
- \threeheterovi[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-% ****************************
-% * threehetero derivatives *
-% * (inverse vertical type) *
-% ****************************
-% The following numbering is adopted in this macro.
-%
-% /1` <===== the original point
-% c / ` a
-% 3--------2
-% b
-%
-% \threeheteroi[BONDLIST]{ATOMLIST}{SUBSLIST}
-% \threeheterovi[BONDLIST]{ATOMLIST}{SUBSLIST}
-
-The following diagram shows
-The locant numbering (1--3)
-and the bond description (a--c):
-\begin{xymspec}
-\begin{picture}(1000,600)(0,0)
-\put(0,0){\threeheterovi[]{1==1;2==2;3==3}{%
-1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
-3Sb==3Sb(l);3Sa==3Sa(l)}}
-\put(0,0){\circle{80}}
-\put(400,340){\circle{80}}
-\put(500,250){a}
-\put(250,250){c}
-\put(380,50){b}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,340) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-For the arguments, BONDLIST and SUBSLIST, see the counterparts
-of \verb/\threehetero/ described in \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
- \threeheterovi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \threeheterovi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \threeheterovi{1==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
-\end{verbatim}
-produce the following structures:
-\begin{center}
- \threeheterovi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \threeheterovi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \threeheterovi{1==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
-\end{center}
-
-The macro \verb/\threeheteroh/
-for drawing three-membered heterocycles of horizontal type
-has the following format (\textsf{hetaromh.sty})
-\begin{verbatim}
- \threeheteroh[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-% ****************************
-% * threehetero derivatives *
-% * (horizontal type) *
-% ****************************
-%
-% aaa fff
-% 3
-% | ` c
-% b | 1 bbb ccc
-% | / a
-% 2/
-% ddd eee
-%
-
-The locant numbering (1--3)
-and the bond description (a--c) are common as
-shown in the following diagram:
-\begin{xymspec}
-\begin{picture}(600,1000)(0,0)
-\put(0,0){\threeheteroh[]{1==1;2==2;3==3}{%
-1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(l);2Sa==2Sa(r);%
-3Sb==3Sb(l);3Sa==3Sa(r)}}
-\put(0,0){\circle{80}}
-\put(200,240){\circle{80}}
-\put(300,150){a}
-\put(100,320){b}
-\put(300,450){c}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (200,240) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
- \threeheteroh{1==O}{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
- \threeheteroh{1==O}{2Sa==COOH;2Sb==HOCO}\qquad\qquad
- \threeheteroh{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
-\end{verbatim}
-produce the following structures:
-\begin{center}
- \threeheteroh{1==O}{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
- \threeheteroh{1==O}{2Sa==COOH;2Sb==HOCO}\qquad\qquad
- \threeheteroh{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
-\end{center}
-
-The macro \verb/\threeheterohi/
-for drawing three-membered heterocycles of inverse horizontal type
-has the following format (\textsf{hetatomh.sty})
-\begin{verbatim}
- \threeheterohi[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-% ****************************
-% * threehetero derivatives *
-% * (inverse horizontal type)*
-% ****************************
-%
-% aaa bbb
-% c 3
-% / |
-% eee 1 | b
-% fff a` |
-% 2 <---original point
-% ccc ddd
-
-The locant numbering (1--3)
-and the bond description (a--c) are common as
-shown in the following diagram:
-\begin{xymspec}
-\begin{picture}(600,1000)(0,0)
-\put(0,0){\threeheterohi[]{1==1;2==2;3==3}{%
-1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);%
-3Sb==3Sb(r);3Sa==3Sa(r)}}
-\put(0,0){\circle{80}}
-\put(400,240){\circle{80}}
-\put(300,150){a}
-\put(450,320){b}
-\put(300,450){c}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (400,240) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
- \threeheterohi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \threeheterohi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \threeheterohi{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
-\end{verbatim}
-produce the following structures:
-\begin{center}
- \threeheterohi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
- \threeheterohi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
- \threeheterohi{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
-\end{center}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Aliphatic Moieties}
-\subsection{Trigonal Units}
-
-In addition to the macros \verb/\rtrigonal/ and \verb/\ltrigonal/
-(see \XyMTeX book), macros for broader bond angles,
-\verb/\Rtrigonal/ and \verb/\Ltrigonal/, are
-added to the \textsf{aliphat} package (\textsf{aliphat.sty}).
-The formats of these commands are as follows:
-\begin{verbatim}
- \Rtrigonal[AUXLIST]{SUBSLIST}
- \Ltrigonal[AUXLIST]{SUBSLIST}
-\end{verbatim}
-% *************************
-% * trigonal unit (right) *
-% *************************
-%
-% 3
-% /
-% /
-% 1 --- 0 120 0 <== the original point
-% `
-% `
-% 2
-% ************************
-% * trigonal unit (left) *
-% ************************
-%
-% 2
-% `
-% `
-% 120 0 --- 1 0 <== the original point
-% /
-% /
-% 3
-
-The bond angles of 2--0--3 are 120$^{\circ}$ in the trigonal units
-printed with these commands. The arguments AUXLIST and SUBSLIST are
-the same as those of \verb/\tetrahedral/.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
-\Rtrigonal{0==C;1D==O;2==Cl;3==F}\qquad
-\Ltrigonal{0==C;1D==O;2==Cl;3==F}
-\end{verbatim}
-produce the following structures:
-\begin{center}
-\Rtrigonal{0==C;1D==O;2==Cl;3==F}\qquad
-\Ltrigonal{0==C;1D==O;2==Cl;3==F}
-\end{center}
-
-\subsection{Ethylenes}
-
-The macro \verb/\Ethyleneh/ or \verb/\Ethylene/ is
-a braoder-angled counterpart of
-the macro \verb/\ethyleneh/ or \verb/\ethylene/ (see \XyMTeX book),
-which is used to draw ethylene derivatives with angles 120$^{\circ}$
-(\textsf{aliphat.sty}).
-The format of this command is as follows:
-\begin{verbatim}
- \Ethyleneh[BONDLIST]{ATOMLIST}{SUBSLIST}
- \Ethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-% *****************
-% * ethylene unit *
-% *****************
-%
-% The following numbering is adopted in this macro.
-%
-% 1 4
-% ` /
-% ` /
-% 120 (1)===(2) 120 (1) <== the original point
-% / `
-% / `
-% 2 3
-%
-%
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\begin{picture}(800,880)(0,0)
-\put(0,0){\Ethyleneh{1==1;2==2}{1==1;2==2;3==3;4==4;0==0}}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (300,300) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-The argument BONSLIST is used for giving the C--C bond.
-The argument ATOMLIST is used for giving central atoms.
-The argument SUBSLIST is
-the same as that of \verb/\tetrahedral/.
-
-\medskip
-\noindent
-Example:
-\begin{verbatim}
-\Ethyleneh{1==C;2==C}{1==F;2==Cl;3==H;4==Br}\qquad
-\Ethyleneh{1==C;2==C}{1==CH$_{3}$;2==H;3==CH$_{2}$OH;4==H}\par
-\Ethyleneh{1==C;2==N}{1==Ph;2==Ph;3==OH}\qquad
-\Ethyleneh[t{2+}]{1==C;2==N}{1==CH$_{3}$;2==CH$_{3}$;3==H}
-\end{verbatim}
-produce the following structures:
-\begin{center}
-\Ethyleneh{1==C;2==C}{1==F;2==Cl;3==H;4==Br}\qquad
-\Ethyleneh{1==C;2==C}{1==CH$_{3}$;2==H;3==CH$_{2}$OH;4==H}\par
-\Ethyleneh{1==C;2==N}{1==Ph;2==Ph;3==OH}\qquad
-\Ethyleneh[t{2+}]{1==C;2==N}{1==CH$_{3}$;2==CH$_{3}$;3==H}
-\end{center}
-
-A butadiene derivative,
-\begin{center}
-\Ethyleneh{1==C;2==C}{1==F;2==Cl;4==Br;%
-3==\Ethyleneh{1==C;2==C}{1==(yl);2==H;3==H;4==H}}
-\vspace*{1cm}
-\end{center}
-can be drawn by the code,
-\begin{verbatim}
-\Ethyleneh{1==C;2==C}{1==F;2==Cl;4==Br;%
-3==\Ethyleneh{1==C;2==C}{1==(yl);2==H;3==H;4==H}}
-\end{verbatim}
-
-
-\chapter{Zigzag Polymethylene Skeletons}
-
-\section{Dimethylenes}
-
-The macro \verb/\dimethylene/ has two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}):
-%
-% \begin{verbatim}
-%
-% bbb
-% 2
-% a / (or uppercase letters)
-% /
-% 1
-% aaa
-% \end{verbatim}
-%
-\begin{verbatim}
- \dimethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The BONDLIST argument contains one character a or A,
-each of which indicates the presence of an inner (endo-chain) double
-bond on the corresponding position. A lowercase letter is used
-to typeset a double bond at a lower-side of an outer skeletal bond,
-while an uppercase letter typesets a double bond at a upper-side of
-an outer skeletal bond
-(Note that the option `A' represents an aromatic circle in
- commands \verb/\sixheterov/ etc. ).
-The ATOMLIST and SUBSLIST arguments follow
-the conventions of the \XyMTeX{} system.
-
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\begin{picture}(500,500)(0,0)
-\put(0,0){\dimethylene{1==1;2==2}{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb}}
-\put(100,250){a}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-Lowercase vs. uppercase letters (`a' vs. `A') in the BONDLIST of
-the \verb/\dimethylene/ command designate the position of
-an bond added to the bond `a', as shown in the code,
-\begin{verbatim}
-\dimethylene[a]{}{1W==\bzdrv{3==(yl)};1==Cl;2W==H;2==F}
-\hskip2cm
-\bzdrv{3==\dimethylene[A]{}{1W==(yl);1==Cl;2W==H;2==F}}
-\end{verbatim}
-which typesets the following formulas:
-\begin{center}
-\dimethylene[a]{}{1W==\bzdrv{3==(yl)};1==Cl;2W==H;2==F}
-\hskip2cm
-\bzdrv{3==\dimethylene[A]{}{1W==(yl);1==Cl;2W==H;2==F}}
-\end{center}
-
-In addition to the standard bond modifiers
-listed in Table \ref{tt:200a},
-the terminal positions of the \verb/\dimethylene/ command
-can take a bond modifier `W'.
-For example, the code,
-\begin{verbatim}
-\dimethylene{1==S;2==S}{1W==H;2W==H}
-\hskip4cm
-\dimethylene{1==S;2==S}{1W==\bzdrv{3==(yl)};2W==H}
-\hskip1cm
-\bzdrv{3==\dimethylene{1==S;2==S}{1W==(yl);2W==H}}
-\end{verbatim}
-generates the following formulas:
-\begin{center}
-\dimethylene{1==S;2==S}{1W==H;2W==H}
-\hskip4cm
-\dimethylene{1==S;2==S}{1W==\bzdrv{3==(yl)};2W==H}
-\hskip1cm
-\bzdrv{3==\dimethylene{1==S;2==S}{1W==(yl);2W==H}}
-\end{center}
-where the ATOMLIST is used to set two sulfur atoms in
-the dimethylene chain.
-
-The macro \verb/\dimethylenei/ is the inverse counterpart of
-\verb/\dimethylene/, where arguments ATOMLIST, SUBSLIST, and
-BONDLIST take such common formats as found in the
-definition of the latter (\textsf{methylen.sty}):
-\begin{verbatim}
- \dimethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\begin{picture}(500,500)(0,0)
-\put(0,0){\dimethylenei{1==1;2==2}{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb}}
-\put(150,280){a}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-Note that the coodinate of position no.~1 is (50, 283),
-where 180 + 103 = 283.
-The following example shows a specification of the SUBSLIST.
-\begin{verbatim}
-\dimethylenei{}{1W==R$^{\prime}$;2W==R$^{\prime}$;1D==O;2==OH}
-\hskip3cm
-\dimethylenei{}{1W==R$^{\prime}$;%
-2Sa==R$^{\prime}$;2Sb==R$^{\prime\prime}$;1D==O;2W==OH}
-\end{verbatim}
-
-\begin{center}
-\dimethylenei{}{1W==R$^{\prime}$;2W==R$^{\prime}$;1D==O;2==OH}
-\hskip3cm
-\dimethylenei{}{1W==R$^{\prime}$;%
-2Sa==R$^{\prime}$;2Sb==R$^{\prime\prime}$;1D==O;2W==OH}
-\end{center}
-
-\section{Trimethylenes}
-
-The macros \verb/\trimethylene/ and \verb/\trimethylenei/
-and have two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}).
-%
-% \begin{verbatim}
-%
-% bbb
-% 2
-% a / ` b (or uppercase letters)
-% / `
-% 1 3
-% aaa ccc
-% \end{verbatim}
-%
-%
-\begin{verbatim}
- \trimethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
- \trimethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\begin{picture}(600,500)(0,0)
-\put(0,0){\trimethylene{1==1;2==2;3==3}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa}}
-\put(100,250){a}
-\put(300,250){b}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\hskip2cm
-\begin{picture}(600,500)(0,0)
-\put(0,0){\trimethylenei{1==1;2==2;3==3}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa}}
-\put(150,250){a}
-\put(250,250){b}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\end{xymspec}
-
-\vskip1cm
-\noindent
-Examples:
-\begin{verbatim}
-\trimethylene[b]{}{1W==R$^{1}$;1==OH;2==R$^{2}$}
-\hskip2cm
-\trimethylene[a]{}{1W==R$^{1}$;2==R$^{2}$;3W==CHO}
-\hskip2cm
-\trimethylene[B]{}{2==\null;3W==COOEt;3==Br}
-\end{verbatim}
-\begin{center}
-\trimethylene[b]{}{1W==R$^{1}$;1==OH;2==R$^{2}$}
-\hskip2cm
-\trimethylene[a]{}{1W==R$^{1}$;2==R$^{2}$;3W==CHO}
-\hskip2cm
-\trimethylene[B]{}{2==\null;3W==COOEt;3==Br}
-\end{center}
-
-\vskip1cm
-\begin{verbatim}
-\trimethylenei{}{1W==\bzdrv{2==(yl);1==COOH;5==HO;6==HO};%
-3W==CHO;3SA==H;3SB==Me}
-\end{verbatim}
-\begin{center}
-\trimethylenei{}{1W==\bzdrv{2==(yl);1==COOH;5==HO;6==HO};%
-3W==CHO;3SA==H;3SB==Me}
-
-\vspace*{1cm}
-\end{center}
-
-\section{Tetramethylenes}
-
-The macros \verb/\tetramethylene/ and \verb/\tetramethylenei/
-have two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}).
-\begin{verbatim}
- \tetramethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
- \tetramethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\vspace*{.5cm}
-\begin{picture}(600,500)(0,0)
-\put(0,0){\tetramethylene{1==1;2==2;3==3;4==4}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;%
-4Sb==\raise10pt\hbox{4Sb}}}
-\put(250,250){a}
-\put(450,250){b}
-\put(600,250){c}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\hskip3cm
-\begin{picture}(600,500)(0,0)
-\put(0,0){\tetramethylenei{1==1;2==2;3==3;4==4}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;%
-4Sb==\lower10pt\hbox{4Sb}}}
-\put(280,250){a}
-\put(400,250){b}
-\put(650,250){c}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-
-\vspace*{.5cm}
-\end{xymspec}
-
-\vskip1cm
-\noindent
-Examples:
-\begin{verbatim}
-\tetramethylenei{}{1W==Cl;1D==O;2B==Br;4W==Cl}
-\end{verbatim}
-\begin{center}
-\tetramethylenei{}{1W==Cl;1D==O;2B==Br;4W==Cl}
-
-\vspace*{.5cm}
-\end{center}
-
-
-\begin{verbatim}
-\tetramethylene{}{1W==TBDMS-O;2D==\null;3B==OH;%
-4W==\cyclohexanev[e]{6==(yl);3B==\null}}
-\end{verbatim}
-\begin{center}
-\tetramethylene{}{1W==TBDMS-O;2D==\null;3B==OH;%
-4W==\cyclohexanev[e]{6==(yl);3B==\null}}
-
-\vspace*{1cm}
-\end{center}
-
-\begin{verbatim}
-\tetramethylene[b]{}{1W==\bzdrv{5==\null;3==(yl)};4W==OH}
-\end{verbatim}
-\begin{center}
-\vspace*{.5cm}
-\tetramethylene[b]{}{1W==\bzdrv{5==\null;3==(yl)};4W==OH}
-\vspace*{1cm}
-\end{center}
-
-\section{Pentamethylenes}
-
-The macros \verb/\pentamethylene/ and \verb/\pentamethylenei/
-have two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}).
-\begin{verbatim}
- \pentamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
- \pentamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\vspace*{.5cm}
-\begin{picture}(600,500)(0,0)
-\put(0,0){\pentamethylene{1==1;2==2;3==3;4==4;5==5}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb}%
-}}
-\put(250,250){a}
-\put(450,250){b}
-\put(600,250){c}
-\put(800,250){d}
-\end{picture}
-\qquad\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\hskip2cm
-\begin{picture}(600,500)(0,0)
-\put(0,0){\pentamethylenei{1==1;2==2;3==3;4==4;5==5}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb}%
-}}
-\put(280,250){a}
-\put(400,250){b}
-\put(650,250){c}
-\put(750,250){d}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-
-\vspace*{.5cm}
-\end{xymspec}
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\pentamethylene{}{1W==AcO;2B==\null;4B==\null;5W==OH}
-\end{verbatim}
-\begin{center}
-\pentamethylene{}{1W==AcO;2B==\null;4B==\null;5W==OH}
-\end{center}
-
-\begin{verbatim}
-\pentamethylenei{}{1W==\fiveheterovi{2==N;5==O}{1D==O;2==(yl);3B==Bn};%
-1D==O;2A==OMe;3A==OH;5W==OTBDMS}
-\end{verbatim}
-\begin{center}
-\vspace*{.5cm}
-\pentamethylenei{}{1W==\fiveheterovi{2==N;5==O}{1D==O;2==(yl);3B==Bn};%
-1D==O;2A==OMe;3A==OH;5W==OTBDMS}
-
-\vspace*{.5cm}
-\end{center}
-
-
-\begin{verbatim}
-\pentamethylenei{1==S}{1W==\bzdrv{2==(yl);5==O$_{2}$N};%
-1D==O;3==Cl;5==COO$^{-}$;5W==NH$_{3}^{+}$}
-\end{verbatim}
-\begin{center}
-\vspace*{.5cm}
-\pentamethylenei{1==S}{1W==\bzdrv{2==(yl);5==O$_{2}$N};%
-1D==O;3==Cl;5==COO$^{-}$;5W==NH$_{3}^{+}$}
-
-\vspace*{.5cm}
-\end{center}
-
-\section{Hexamethylenes}
-
-The macros \verb/\hexamethylene/ and \verb/\hexamethylenei/
-have two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}).
-\begin{verbatim}
- \hexamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
- \hexamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\vspace*{.5cm}
-\begin{picture}(800,500)(0,0)
-\put(0,0){\hexamethylene{1==1;2==2;3==3;4==4;5==5;6==6}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb}%
-}}
-\put(250,250){a}
-\put(450,250){b}
-\put(600,250){c}
-\put(800,250){d}
-\put(950,250){e}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\hskip1cm
-\begin{picture}(850,500)(0,0)
-\put(0,0){\hexamethylenei{1==1;2==2;3==3;4==4;5==5;6==6}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb}%
-}}
-\put(280,250){a}
-\put(400,250){b}
-\put(650,250){c}
-\put(750,250){d}
-\put(1000,250){e}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-
-\vspace*{.5cm}
-\end{xymspec}
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\hexamethylene{}{2==\null;4D==O;6D==O;6W==OEt}
-\end{verbatim}
-\begin{center}
-\hexamethylene{}{2==\null;4D==O;6D==O;6W==OEt}
-\end{center}
-
-\begin{verbatim}
-\hexamethylene[a]{}{4B==OH;5B==NHBoc;6W==OTBDPS}
-\end{verbatim}
-\begin{center}
-\hexamethylene[a]{}{4B==OH;5B==NHBoc;6W==OTBDPS}
-\end{center}
-
-\begin{verbatim}
-\hexamethylene{}{1W==PhSO$_{2}$;1B==OMe;2A==OH;5D==\null;6W==SiMe$_{3}$}
-\end{verbatim}
-\begin{center}
-\hexamethylene{}{1W==PhSO$_{2}$;1B==OMe;2A==OH;5D==\null;6W==SiMe$_{3}$}
-\end{center}
-
-\begin{verbatim}
-\hexamethylenei[a]{}{1W==Ph;3B==\null;4A==OTBS;6D==O;6W==H}
-\end{verbatim}
-\begin{center}
-\hexamethylenei[a]{}{1W==Ph;3B==\null;4A==OTBS;6D==O;6W==H}
-\end{center}
-
-\section{Heptamethylenes}
-
-The macros \verb/\heptamethylene/ and \verb/\heptamethylenei/
-have two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}).
-\begin{verbatim}
- \heptamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
- \heptamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\vspace*{.5cm}
-\begin{picture}(1000,500)(0,0)
-\put(0,0){\heptamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
-7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb}%
-}}
-\put(250,250){a}
-\put(450,250){b}
-\put(600,250){c}
-\put(800,250){d}
-\put(950,250){e}
-\put(1150,250){f}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\hskip1cm
-\begin{picture}(1050,500)(0,0)
-\put(0,0){\heptamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
-7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb}%
-}}
-\put(280,250){a}
-\put(400,250){b}
-\put(650,250){c}
-\put(750,250){d}
-\put(1000,250){e}
-\put(1100,250){f}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-
-\vspace*{.5cm}
-\end{xymspec}
-
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\heptamethylene[a]{}{1W==\cyclopentanevi[b]{3==(yl);5Sa==\null;5Sb==\null};%
-5D==O;6D==N$_{2}$}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\heptamethylene[a]{}{1W==\cyclopentanevi[b]{3==(yl);5Sa==\null;5Sb==\null};%
-5D==O;6D==N$_{2}$}
-
-\vspace*{1cm}
-\end{center}
-
-
-\begin{verbatim}
-\heptamethylenei{}{1W==\bzdrv{1==COOH;2==(yl);5==HO;6==HO};%
-3B==Me;4B==OH;5A==Me;6D==O;7A==Et;%
-7W==\fiveheterov{1==O}{5==(yl);5SB==H;4GB==Me;2GA==Et;%
-2Su==\sixheterovi{1==O}{6==(yl);6FA==H;3SB==OH;3SA==Et;2A==Me}}}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\heptamethylenei{}{1W==\bzdrv{1==COOH;2==(yl);5==HO;6==HO};%
-3B==Me;4B==OH;5A==Me;6D==O;7A==Et;%
-7W==\fiveheterov{1==O}{5==(yl);5SB==H;4GB==Me;2GA==Et;%
-2Su==\sixheterovi{1==O}{6==(yl);6FA==H;3SB==OH;3SA==Et;2A==Me}}}
-
-\vspace*{1cm}
-\end{center}
-
-
-\section{Octamethylenes}
-
-The macros \verb/\octamethylene/ and \verb/\octamethylenei/
-have two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}).
-\begin{verbatim}
- \octamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
- \octamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\vspace*{.5cm}
-\begin{picture}(1300,700)(0,0)
-\put(0,0){\octamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
-7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};%
-8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb}%
-}}
-\put(250,250){a}
-\put(450,250){b}
-\put(600,250){c}
-\put(800,250){d}
-\put(950,250){e}
-\put(1150,250){f}
-\put(1250,250){g}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\par
-\begin{picture}(1300,700)(0,0)
-\put(0,0){\octamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
-7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};%
-8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb}%
-}}
-\put(280,250){a}
-\put(400,250){b}
-\put(650,250){c}
-\put(750,250){d}
-\put(1000,250){e}
-\put(1100,250){f}
-\put(1300,250){g}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-
-\vspace*{.5cm}
-\end{xymspec}
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\octamethylene[eg]{}{1W==HOHN;1D==O;4B==OBn}
-\end{verbatim}
-\begin{center}
-\octamethylene[eg]{}{1W==HOHN;1D==O;4B==OBn}
-\end{center}
-
-
-\begin{verbatim}
-\octamethylenei[af]{}{1W==Ph;3B==\null;4A==OH;8D==O;%
-8W==\ryl(4==NH){%
-5==\tetramethylene{3==O}{1==(yl);2D==O;4W==CCl$_{3}$;%
-1SA==\ryl{8==\bzdrv{1==(yl);3==Cl;4==OMe}}}}}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\octamethylenei[af]{}{1W==Ph;3B==\null;4A==OH;8D==O;%
-8W==\ryl(4==NH){%
-5==\tetramethylene{3==O}{1==(yl);2D==O;4W==CCl$_{3}$;%
-1SA==\ryl{8==\bzdrv{1==(yl);3==Cl;4==OMe}}}}}
-
-\vspace*{2cm}
-\end{center}
-
-
-\section{Nonamethylenes}
-
-The macros \verb/\nonamethylene/ and \verb/\nonamethylenei/
-have two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}).
-\begin{verbatim}
- \nonamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
- \nonamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\vspace*{.5cm}
-\begin{picture}(1500,700)(0,0)
-\put(0,0){\nonamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8;9==9}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
-7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};%
-8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb};%
-9Sa==9Sa;9Sb==\lower10pt\hbox{9Sb}%
-}}
-\put(250,250){a}
-\put(450,250){b}
-\put(600,250){c}
-\put(800,250){d}
-\put(950,250){e}
-\put(1150,250){f}
-\put(1250,250){g}
-\put(1450,250){h}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\par
-\begin{picture}(1500,700)(0,0)
-\put(0,0){\nonamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8;9==9}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
-7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};%
-8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb};%
-9Sa==9Sa;9Sb==\raise10pt\hbox{9Sb}%
-}}
-\put(280,250){a}
-\put(400,250){b}
-\put(650,250){c}
-\put(750,250){d}
-\put(1000,250){e}
-\put(1100,250){f}
-\put(1300,250){g}
-\put(1450,250){h}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-
-\vspace*{.5cm}
-\end{xymspec}
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\nonamethylene[a]{}{6D==O;9W==COOEt;9==COOEt}
-\end{verbatim}
-\begin{center}
-\nonamethylene[a]{}{6D==O;9W==COOEt;9==COOEt}
-\end{center}
-
-\begin{verbatim}
-\nonamethylenei[a]{}{1W==Ph;4SB==\null;4SA==H;8==\null}
-\end{verbatim}
-\begin{center}
-\nonamethylenei[a]{}{1W==Ph;4SB==\null;4SA==H;8==\null}
-\end{center}
-
-
-\section{Decamethylenes}
-
-The macros \verb/\decamethylene/ and \verb/\decamethylenei/
-have two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}).
-\begin{verbatim}
- \decamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
- \decamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\vspace*{.5cm}
-\begin{picture}(1700,700)(0,0)
-\put(0,0){\decamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;%
-8==8;9==9;{{10}}==10}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
-7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};%
-8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb};%
-9Sa==9Sa;9Sb==\lower10pt\hbox{9Sb};%
-{10}Sa==10Sa;{10}Sb==\raise10pt\hbox{10Sb}%
-}}
-\put(250,250){a}
-\put(450,250){b}
-\put(600,250){c}
-\put(800,250){d}
-\put(950,250){e}
-\put(1150,250){f}
-\put(1250,250){g}
-\put(1450,250){h}
-\put(1650,250){i}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\par
-\begin{picture}(1700,700)(0,0)
-\put(0,0){\decamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;%
-8==8;9==9;{{10}}==10}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
-4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
-5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
-6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
-7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};%
-8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb};%
-9Sa==9Sa;9Sb==\raise10pt\hbox{9Sb};%
-{10}Sa==10Sa;{10}Sb==\lower10pt\hbox{10Sb}%
-}}
-\put(280,250){a}
-\put(400,250){b}
-\put(650,250){c}
-\put(750,250){d}
-\put(1000,250){e}
-\put(1100,250){f}
-\put(1300,250){g}
-\put(1450,250){h}
-\put(1650,250){i}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-
-\vspace*{.5cm}
-\end{xymspec}
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\decamethylene[acf]{}{9==OH}
-\end{verbatim}
-\begin{center}
-\decamethylene[acf]{}{9==OH}
-\end{center}
-
-\begin{verbatim}
-\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
-9B==\null;{10}D==O;%
-{10}W==\ryl(4==O){5==\dimethylene{}{1==(yl);2D==O;2W==OMe}}}
-\end{verbatim}
-\begin{center}
-\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
-9B==\null;{10}D==O;%
-{10}W==\ryl(4==O){5==\dimethylene{}{1==(yl);2D==O;2W==OMe}}}
-\end{center}
-
-\begin{verbatim}
-\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
-9B==\null;{10}D==O;%
-{10}W==\trimethylenei{1==O}{1==(yl);3D==O;3W==OMe}}
-\end{verbatim}
-\begin{center}
-\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
-9B==\null;{10}D==O;%
-{10}W==\trimethylenei{1==O}{1==(yl);3D==O;3W==OMe}}
-\end{center}
-
-\section{Longer Polymethylene Chains}
-
-A polymethylene chain longer than ten carbons
-should be written by combining two or more units
-selected from the above-mentioned di- to deca-methylenes.
-
-To do this task, we regard one unit
-as a substituent of another unit. In this method,
-the code for the former unit is written in the
-SUBSLIST of the code for the latter. For example, the code,
-\begin{verbatim}
-\decamethylene{}{9D==\null;%
-{10}W==\pentamethylene{}{1==(yl);3==\null;4==OBz}}
-\end{verbatim}
-generates the following formula:
-\begin{center}
-\decamethylene{}{9D==\null;%
-{10}W==\pentamethylene{}{1==(yl);3==\null;4==OBz}}
-\end{center}
-Alternatively, we regard one unit as a
-replacement part of another unit, where
-the code for the former unit is written in the
-BONDLIST of the code for the latter (see spiro compounds).
-The same formula with slightly different appearance
-can be typeset by the code,
-\begin{verbatim}
-\decamethylene{{10}s==\hexamethylenei{}{1==(yl);4==\null;5==OBz}%
-}{9D==\null}
-\end{verbatim}
-which gives
-\begin{center}
-\decamethylene{{10}s==\hexamethylenei{}{1==(yl);4==\null;5==OBz}%
-}{9D==\null}
-\end{center}
-
-\section{Cisoid Tetramethylenes}
-
-The macros \verb/\tetramethylenecup/ and \verb/\tetramethylenecap/
-have two arguments ATOMLIST and SUBSLIST
-as well as an optional argument BONDLIST (\textsf{methylen.sty}).
-\begin{verbatim}
- \tetramethylenecup[BONDLIST]{ATOMLIST}{SUBSLIST}
- \tetramethylenecap[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-The following diagram shows the numbering
-for designating substitution positions:
-\begin{xymspec}
-\vspace*{.5cm}
-\begin{picture}(600,500)(0,0)
-\put(0,0){\tetramethylenecup{1==1;2==2;3==3;4==4}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;4Sb==4Sb}}
-\put(300,250){a}
-\put(450,200){b}
-\put(600,250){c}
-\end{picture}
-\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-\hskip3cm
-\begin{picture}(600,500)(0,0)
-\put(0,0){\tetramethylenecap{1==1;2==2;3==3;4==4}%
-{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
-3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;4Sb==4Sb}}
-\put(200,250){a}
-\put(500,150){b}
-\put(650,250){c}
-\end{picture}
-\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
- $\bullet$: (\the\noshift,\the\noshift)}}
-
-\vspace*{.5cm}
-\end{xymspec}
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\tetramethylenecap[b]{1s==\dimethylenei{}{1W==HO;2==(yl)};%
-4s==\trimethylene{}{3W==CN;1==(yl)}}{}
-\end{verbatim}
-\begin{center}
-\tetramethylenecap[b]{1s==\dimethylenei{}{1W==HO;2==(yl)};%
-4s==\trimethylene{}{3W==CN;1==(yl)}}{}
-\end{center}
-
-\begin{verbatim}
-\cyclopentanevi{1D==O;4A==HO;%
-2A==\tetramethylenecup[b]{%
-4s==\trimethylenei{}{1==(yl);3W==COOMe}}{1==(yl)};%
-3B==\trimethylene[a]{}{1==(yl);3A==OH;3W==C$_{5}$H$_{11}$}}
-\end{verbatim}
-\begin{center}
-\cyclopentanevi{1D==O;4A==HO;%
-2A==\tetramethylenecup[b]{%
-4s==\trimethylenei{}{1==(yl);3W==COOMe}}{1==(yl)};%
-3B==\trimethylene[a]{}{1==(yl);3A==OH;3W==C$_{5}$H$_{11}$}}
-\end{center}
-
-\section{Ring Fusion to Polymethylenes}
-
-The BONDLIST of each ``methylene'' command can accept bond fusion.
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\nonamethylene[{h\threefusehi({cA}){3==O}{}{a}}]{}{1W==Me;1A==OH}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\nonamethylene[{h\threefusehi({cA}){3==O}{}{a}}]{}{1W==Me;1A==OH}
-
-\vspace*{1cm}
-\end{center}
-
-\begin{verbatim}
-\tetramethylenecup[{b\threefusev({aB}{cB}){1==O}{}{B}}]%
-{}{1D==O;1W==H$_{2}$N;4D==O;4W==nC$_{8}$H$_{17}$}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\tetramethylenecup[{b\threefusev({aB}{cB}){1==O}{}{B}}]%
-{}{1D==O;1W==H$_{2}$N;4D==O;4W==nC$_{8}$H$_{17}$}
-
-\vspace*{1cm}
-\end{center}
-
-
-\begin{verbatim}
-\pentamethylenei[{c\threefusehi({bA}{cA}){3==O}{}{a}}]{}{1W==Ph;5W==OH}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\pentamethylenei[{c\threefusehi({bA}{cA}){3==O}{}{a}}]{}{1W==Ph;5W==OH}
-
-\vspace*{1cm}
-\end{center}
-
-
-\section{Ring Replacement to Polymethylenes}
-
-
-The ATOMLIST of each ``methylene'' command can accept atom or
-ring replacement.
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\trimethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{1W==PhSO$_{2}$;3W==R}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\trimethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{1W==PhSO$_{2}$;3W==R}
-
-\vspace*{1cm}
-\end{center}
-
-
-\begin{verbatim}
-\tetramethylenecup[b]{%
-1s==\nonamethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{9==(yl)};%
-4s==\ryl{5A==\sixheterovi{1==N}{1==Bn;%
-2B==\ryl{8==OBn};3A==OBn;6==(yl)}}}{}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\tetramethylenecup[b]{%
-1s==\nonamethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{9==(yl)};%
-4s==\ryl{5A==\sixheterovi{1==N}{1==Bn;%
-2B==\ryl{8==OBn};3A==OBn;6==(yl)}}}{}
-
-\vspace*{1cm}
-\end{center}
-
-\begin{verbatim}
-\tetramethylene{%
-2s==\sixheterovi{2==O;6==O}{4Sa==\null;4Sb==\null;1==(yl)};%
-4s==\ryl{5B==\cyclohexanev[d]{6==(yl);1A==\null;%
-5==\Utrigonal{0==C;1D==O;2==(yl);3==H}}}}{}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\tetramethylene{%
-2s==\sixheterovi{2==O;6==O}{4Sa==\null;4Sb==\null;1==(yl)};%
-4s==\ryl{5B==\cyclohexanev[d]{6==(yl);1A==\null;%
-5==\Utrigonal{0==C;1D==O;2==(yl);3==H}}}}{}
-
-\vspace*{1cm}
-\end{center}
-
-\section{Branched Chains}
-
-Branched chains can be drawn by using a ``methylene'' command
-with the ``yl''-function.
-
-\vskip1cm
-\noindent
-Examples:\nobreak
-\begin{verbatim}
-\decamethylene[bf]{}{%
-2==\dimethylene{}{1==(yl)};6==\dimethylene{}{1==(yl)};%
-{10}W==OH;{{10}}==\null}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\decamethylene[bf]{}{%
-2==\dimethylene{}{1==(yl)};6==\dimethylene{}{1==(yl)};%
-{10}W==OH;{{10}}==\null}
-
-\vspace*{1cm}
-\end{center}
-
-\begin{verbatim}
-\tetramethylene{}{1W==BuO;1D==O;4W==OTBDPS;%
-2==\dimethylene{}{1==(yl);2D==O;2W==H}}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\tetramethylene{}{1W==BuO;1D==O;4W==OTBDPS;%
-2==\dimethylene{}{1==(yl);2D==O;2W==H}}
-
-\vspace*{1cm}
-\end{center}
-
-
-\begin{verbatim}
-\octamethylene[bd]{}{1W==MEMO;%
-6==\tetramethylenei[a]{}{4==(yl);1W==EtOCO}}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\octamethylene[bd]{}{1W==MEMO;%
-6==\tetramethylenei[a]{}{4==(yl);1W==EtOCO}}
-
-\vspace*{1cm}
-\end{center}
-
-
-\chapter{Enhanced Functions of Commands for General Use}
-
-\section{Expanded Format}
-
-Commands for general use, e.g. \verb/\sixheterov/, have originally
-taken a comman format:
-\begin{verbatim}
-\genCOM[BONDLIST]{ATOMLIST}{SUBSLIST}
-\end{verbatim}
-where \verb/\genCOM/ represents a command name such as
-\verb/\sixheterov/. In \XyMTeX{} version 2.00,
-we add a top optional argument SKBONDLIST
-to treat stereochemical information as well as
-an end optional argument OMIT to treat a bond-deleted skeleton.
-Thus, the expanded format of each command for general use
-is represented by
-\begin{verbatim}
-\genCOM(SKBONDLIST)[BONDLIST]{ATOMLIST}{SUBSLIST}[OMIT]
-\end{verbatim}
-The argument SKBONDLIST contains pairs of two alphabets in braces,
-where each pair consists of a bond specifier (a lowercase letter)
-and an uppercase letter (A or B).
-The letter A represents an $\alpha$ (downward) bond,
-while B represents a $\beta$ (upward) bond. For example,
-an SKBONDLIST, \verb/({aA}{cB})/, represents that
-bond `a' is an $\alpha$ bond in a dotted form and
-that bond `c' is a $\beta$ bond in a boldfaced form.
-The argument OMIT is a list of bond specifiers, each of
-which designates a bond to be deleted. As a matter of course,
-SKBONDLIST and OMIT take no common bond specifiers.
-
-\section{Boldfaced and Dotted Bonds}
-
-The following example shows that
-the \verb/\sixheterov/ command takes an optional SKBONDLIST,
-\verb/({eB})/, which typesets a boldfaced bond at `e' in
-the resulting tetrahydropyran ring.
-\begin{verbatim}
-\sixheterov({eB}){6==O}{1D==O;2A==\null;4A==\null;%
-5==\tetramethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;4==(yl)}}
-\end{verbatim}
-\begin{center}
-\sixheterov({eB}){6==O}{1D==O;2A==\null;4A==\null;%
-5==\tetramethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;4==(yl)}}
-\end{center}
-This is an example of the substitution technique in which
-the side-chain is based on \verb/\tetramethylenei/ written in the
-SUBSLIST of the outer \verb/\sixheterov/ command.
-
-The same structural formula can alternatively drawn by
-means of the replacement technique, in which
-the BONDLIST of the \verb/\sixheterov/ command is used
-for specifying the side-chain. Thus, the code,
-\begin{verbatim}
-\sixheterov({eB}){6==O;%
-5s==\pentamethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;5==(yl)}%
-}{1D==O;2A==\null;4A==\null}
-\end{verbatim}
-generates the following formula:
-\begin{center}
-\sixheterov({eB}){6==O;%
-5s==\pentamethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;5==(yl)}%
-}{1D==O;2A==\null;4A==\null}
-\end{center}
-
-We have further examples in which the \verb/\sixheterov/ command
-takes an optional SKBONDLIST.
-The following two examples show the comparison between
-the substitution and the replacement technique,
-giving formulas of chemically equivalence with
-slightly different bond lengthes.
-\begin{verbatim}
-\sixheterov({bA}{eB}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
-6==\hexamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;6==(yl)};
-2==\hexamethylenei[bd]{}{1==(yl);1B==Me;5==COOMe}}
-\end{verbatim}
-\begin{center}
-\sixheterov({bA}{eB}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
-6==\hexamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;6==(yl)};
-2==\hexamethylenei[bd]{}{1==(yl);1B==Me;5==COOMe}}
-\end{center}
-
-
-\begin{verbatim}
-\sixheterov({bA}{eB}){3==O;5==O;%
-6s==\heptamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;7==(yl)};
-2s==\heptamethylene[ce]{}{1==(yl);2B==Me;6==COOMe}%
-}{1A==Me;4Sa==\null;4Sb==\null}
-\end{verbatim}
-\begin{center}
-\sixheterov({bA}{eB}){3==O;5==O;%
-6s==\heptamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;7==(yl)};
-2s==\heptamethylene[ce]{}{1==(yl);2B==Me;6==COOMe}%
-}{1A==Me;4Sa==\null;4Sb==\null}
-\end{center}
-
-The following structure shows the use of SKBONDLIST in
-drawing a spiro ring.
-
-\begin{verbatim}
-\sixheterov[be]{%
-1s==\fiveheterov({aA}{eB}){4==N}%
-{4==PhCH$_{2}$OCO;3SB==H;3SA==COOCH$_{2}$Ph;5D==O;1==(yl)}%
-}{4D==O}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\sixheterov[be]{%
-1s==\fiveheterov({aA}{eB}){4==N}%
-{4==PhCH$_{2}$OCO;3SB==H;3SA==COOCH$_{2}$Ph;5D==O;1==(yl)}%
-}{4D==O}
-\end{center}
-
-\section{Bond Deletion}
-
-The OMIT argument of each command for general use is used
-to draw a large ring. The following example is
-a simple case in which one bond is deleted:
-\begin{verbatim}
-\decaheterov{9==O}{4==O;8D==O;5==CH$_{3}$}[k]
-\end{verbatim}
-\begin{center}
-\decaheterov{9==O}{4==O;8D==O;5==CH$_{3}$}[k]
-\end{center}
-
-The absence and presence of the OMIT argument
-give different formulas as follows.
-\begin{verbatim}
-\decaheterov[{k\threefuseh{}{}{b}}]{}{}
-\decaheterov[{k\threefuseh{}{}{b}}]{}{}[k]
-\end{verbatim}
-\begin{center}
-\decaheterov[{k\threefuseh{}{}{b}}]{}{}
-\decaheterov[{k\threefuseh{}{}{b}}]{}{}[k]
-\end{center}
-
-A complicated case contains a ring fusion as follows.
-First, the code
-\begin{verbatim}
-\decaheterov[cegi]{2==\null}{6==MeO;8==OMe;1D==O}[b]
-\end{verbatim}
-generates the follwing formula:
-\begin{center}
-\decaheterov[cegi]{2==\null}{6==MeO;8==OMe;1D==O}[b]
-\end{center}
-where \verb/[b]/ indicates the deletion of bond `b'.
-A similar mechanism is also available in a fusing unit,
-\verb/\sixunitv/. The code,
-\begin{verbatim}
-\sixfusev{6==O}{}{E}[b]
-\end{verbatim}
-generates a formula:
-\begin{center}
-\sixfusev{6==O}{}{E}[b]
-
-\vspace*{2cm}
-\end{center}
-where bond `e' is deleted by means of the FUSE argument (E)
-and bond `b' is deleted by means of the OMIT argument (b).
-Finally, we have the structural formula of zearalenone:
-\begin{verbatim}
-\decaheterov[cegi%
-{b\sixfusev[%
-{b\sixfusev{}{3D==O}{E}}%
-]{6==O}{}{E}[b]}%
-]{2==\null%
-}{6==MeO;8==OMe;1D==O}[b]
-\end{verbatim}
-\begin{center}
-\decaheterov[cegi%
-{b\sixfusev[%
-{b\sixfusev{}{3D==O}{E}}%
-]{6==O}{}{E}[b]}%
-]{2==\null%
-}{6==MeO;8==OMe;1D==O}[b]
-\end{center}
-
-Intermediates for steroid synthesis via intermolecular
-cycloadditions of $o$-quinodimethane derivatives
-(Kametani, et al. {\em J. Org. Chem.}, 1980, {\bf 45}, 2204;
-Grieco, et al. {\em J. Org. Chem.}, 1980, {\bf 45}, 2247)
-can be drawn by the bond deletion of \verb/\decaheterov/ and
-\verb/\nonaheterov/.
-\begin{verbatim}
-\decaheterov({jA}{dB}){%
-2s==\fourhetero[{b\sixfusev[ace]{}{2==OMe}{e}}]%
-{}{1==(yl)}%
-}{6B==HO;9A==H;{10}B==\null;1D==\null}[a]
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\decaheterov({jA}{dB}){%
-2s==\fourhetero[{b\sixfusev[ace]{}{2==OMe}{e}}]%
-{}{1==(yl)}%
-}{6B==HO;9A==H;{10}B==\null;1D==\null}[a]
-\end{center}
-
-
-\begin{verbatim}
-\nonaheterov({dA}{hB}){%
-6s==\fourhetero[%
-{d\sixfusev[bdf]{}{5==MeO}{b}}]%
-{}{3==(yl)}%
-}{3B==OH;8B==\null;7D==\null;9A==H}[g]
-\end{verbatim}
-\begin{center}
-\nonaheterov({dA}{hB}){%
-6s==\fourhetero[%
-{d\sixfusev[bdf]{}{5==MeO}{b}}]%
-{}{3==(yl)}%
-}{3B==OH;8B==\null;7D==\null;9A==H}[g]
-
-\vspace*{1cm}
-\end{center}
-
-A remarkable merit of using a skeleton with deleted bonds
-appears in drawing a starting compound with an acyclic part
-along with the resulting product via cyclization,
-since their codes are akin to each other.
-\begin{verbatim}
-\decaheterov[{4+}%
-{c\fivefusevi[e]{5==\null}{4D==O}{E}}%
-]{4==N}{1D==\null;9B==H;{10}B==H}[ab]
-\hskip2cm
-\decaheterov[%
-{c\fivefusevi{5==\null}{4D==O}{E}}%
-]{4==N}{1B==OCHO;9B==H;{10}B==H;3FA==H}
-\end{verbatim}
-\begin{center}
-\decaheterov[{4+}%
-{c\fivefusevi[e]{5==\null}{4D==O}{E}}%
-]{4==N}{1D==\null;9B==H;{10}B==H}[ab]
-\hskip2cm
-\decaheterov[%
-{c\fivefusevi{5==\null}{4D==O}{E}}%
-]{4==N}{1B==OCHO;9B==H;{10}B==H;3FA==H}
-
-\vspace*{1cm}
-\end{center}
-The latter compound was obtained by
-the cyclization of the former
-(D. J. Hart, et al., {\em J. Am. Chem. Soc.}, 1980, {\bf 102},
-397).
-
-Some polymethylene chains are drawn in a folded form.
-The bond-deletion technique can be applied to
-drawing such folded formulas.
-
-\begin{verbatim}
-\sixheterov{%
-3s==\fiveheterovi{1==O;4==O}{5==(yl)};%
-6s==\dimethylenei{}{1D==\null;2==(yl)};%
-5s==\trimethylenei{}{1W==EtO;1D==O;3==(yl)}%
-}{}[e]
-\end{verbatim}
-\begin{center}
-\sixheterov{%
-3s==\fiveheterovi{1==O;4==O}{5==(yl)};%
-6s==\dimethylenei{}{1D==\null;2==(yl)};%
-5s==\trimethylenei{}{1W==EtO;1D==O;3==(yl)}%
-}{}[e]
-\end{center}
-
-The following formula, which is an intermediate for
-synthesizing steroid skeletons, can also been
-drawn by this technique.
-
-\begin{verbatim}
-\decaheterov[k%
-{f\fivefusevi{2==\null;5==O}{}{A}}%
-{a\sixfusev[d%
-{b\fivefusevi[d%
-{a\sixfusev{%
-3s==\trimethylenei[a]{}{1==(yl);2==\null}%
-}{6==\null}{D}[c]}%
-]{}{}{D}}%
-]{}{3G==\null}{D}[c]}%
-]{5==O}{{10}Sb==\null;2G==\null}[ej]
-\end{verbatim}
-\begin{center}
-\vspace*{2cm}
-\decaheterov[k%
-{f\fivefusevi{2==\null;5==O}{}{A}}%
-{a\sixfusev[d%
-{b\fivefusevi[d%
-{a\sixfusev{%
-3s==\trimethylenei[a]{}{1==(yl);2==\null}%
-}{6==\null}{D}[c]}%
-]{}{}{D}}%
-]{}{3G==\null}{D}[c]}%
-]{5==O}{{10}Sb==\null;2G==\null}[ej]
-\end{center}
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Enhanced Functions of Commands for Ring Fusion}
-
-\section{Expanded Format}
-
-Commands for ring fusion, e.g. \verb/\sixfusev/, have originally
-taken a comman format (version 1.02 not released):
-\begin{verbatim}
-\fuseCOM[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where \verb/\fuseCOM/ represents a command name such as
-\verb/\sixfusev/. In \XyMTeX{} version 2.00,
-we add a top optional argument SKBONDLIST
-to treat stereochemical information as well as
-an end optional argument OMIT to treat a bond-deleted skeleton.
-Thus, the expanded format of each command for general use
-is represented by
-\begin{verbatim}
-\fuseCOM(SKBONDLIST)[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}[OMIT]
-\end{verbatim}
-The argument SKBONDLIST contains pairs of two alphabets in braces,
-where (1) each pair consists of a bond specifier (a lowercase letter)
-and an uppercase letter (A or B); and (2) the letter A represents
-an $\alpha$ (downward) bond,
-while B represents a $\beta$ (upward) bond.
-The argument OMIT is a list of bond specifiers, each of
-which designates a bond to be deleted. As a matter of course,
-SKBONDLIST takes no common bond specifiers with FUSE and OMIT.
-
-\section{Boldfaced and Dotted Bonds}
-
-The first example shows that the command
-\verb/\fivefusev/ with a SKBONDLIST
-generates a formula with dotted bonds at fused positions.
-\begin{verbatim}
-\nonaheterov[%
-{e\fivefusev({bA}{eA}){5==O}{3B==\null;4D==O}{A}}%
-]{1==N}{1==COOMe;8A==H;9B==H;%
-6B==\trimethylene[a]{}{3==(yl)};%
-7A==\dimethylene{}{2==(yl);1==OH}}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\nonaheterov[%
-{e\fivefusev({bA}{eA}){5==O}{3B==\null;4D==O}{A}}%
-]{1==N}{1==COOMe;8A==H;9B==H;%
-6B==\trimethylene[a]{}{3==(yl)};%
-7A==\dimethylene{}{2==(yl);1==OH}}
-
-\vspace*{1cm}
-\end{center}
-
-The next example shows the use of the SKBONDLISTS of
-\verb/\threefuseh/ and \verb/\fivefusevi/
-to indicate stereochemical information.
-\begin{verbatim}
-\sixheterov[%
-{b\threefuseh({aA}{cA}){1==O}{}{B}}%
-{d\fivefusevi({bB}{eB}){3==N;5==O}{3==BOM;4D==O}{A}}%
-]{1==O}{6A==PMPO-CH$_{2}$}
-\end{verbatim}
-\begin{center}
-\sixheterov[%
-{b\threefuseh({aA}{cA}){1==O}{}{B}}%
-{d\fivefusevi({bB}{eB}){3==N;5==O}{3==BOM;4D==O}{A}}%
-]{1==O}{6A==PMPO-CH$_{2}$}
-\end{center}
-
-\section{Bond Deletion}
-\subsection{Larger Rings from Two or More Three-Membered Rings}
-To draw a fused four-membered ring, we can
-use two \verb/\threefuseh(i)/ commands in a nested fashion.
-Four example, the code
-\begin{verbatim}
-\threefusehi[{b\threefuseh{1==O}{}{b}}]{}{}{c}[b]%
-\end{verbatim}
-generates a four-membered unit:
-\begin{center}
-\threefusehi[{b\threefuseh{1==O}{}{b}}]{}{}{c}[b]%
-
-\vspace*{1cm}
-\end{center}
-The resulting unit is used to draw a four-membered
-fused ring, as shown below:
-\begin{verbatim}
-\sixheterov[%
-{c\threefusehi[{b\threefuseh{1==O}{}{b}}%
-]{}{}{c}[b]}%
-]{}{}
-\end{verbatim}
-\begin{center}
-\sixheterov[%
-{c\threefusehi[{b\threefuseh{1==O}{}{b}}%
-]{}{}{c}[b]}%
-]{}{}
-\end{center}
-
-In a similar way,
-a five-membered fusing usit can be drawn
-by combining three \verb/\threefuseh(i)/ commands,
-as shown in the following example:
-\begin{verbatim}
-\decaheterov[%
-{d\threefuseh[%
-{a\threefusehi[%
-{a\threefuseh{1==\null;3==\null}{2D==O}{c}}%
-]{2==O;1==\null}{}{c}[a]}%
-]{2==O}{}{C}[a]}%
-]{}{}
-\end{verbatim}
-\begin{center}
-\decaheterov[%
-{d\threefuseh[%
-{a\threefusehi[%
-{a\threefuseh{1==\null;3==\null}{2D==O}{c}}%
-]{2==O;1==\null}{}{c}[a]}%
-]{2==O}{}{C}[a]}%
-]{}{}
-
-\vspace*{1cm}
-\end{center}
-
-\subsection{Further Rings}
-
-A six-membered ring fused by a four-membered unit
-gives an eight-membered ring as follows:
-\begin{verbatim}
-\sixheterov[{b\fourfuse{}{}{d}}]{}{}[b]
-\end{verbatim}
-\begin{center}
-\sixheterov[{b\fourfuse{}{}{d}}]{}{}[b]
-\end{center}
-The bond `b' of the four-membered unit in
-the resulting ring is deleted and used
-as an acceptor ring of a six-membered fusing
-unit. Then, we have a twelve-membered ring:
-\begin{verbatim}
-\sixheterov[{b\fourfuse[{b\sixfusev{}{}{e}}]{}{}{d}[b]}]{}{}[b]
-\end{verbatim}
-\begin{center}
-\sixheterov[{b\fourfuse[{b\sixfusev{}{}{e}}]{}{}{d}[b]}]{}{}[b]
-\end{center}
-After applying the bond-deletion technique to the
-twelve-membered ring, this is used as an acceptor of
-a five-membered fusing unit. Then we have a
-fifteen-membered ring:
-\begin{verbatim}
-\sixheterov[{b\fourfuse[{b\sixfusev[%
-{b\fivefusev{}{}{d}}%
-]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
-\end{verbatim}
-\begin{center}
-\sixheterov[{b\fourfuse[{b\sixfusev[%
-{b\fivefusev{}{}{d}}%
-]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
-\end{center}
-A further fusion of a six-membered unit gives
-a ninteen-membered ring:
-\begin{verbatim}
-\sixheterov[{b\fourfuse[{b\sixfusev[%
-{b\fivefusev[%
-{a\sixfusev{}{}{f}}%
-]{}{}{d}[a]}%
-]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
-\end{verbatim}
-\begin{center}
-\sixheterov[{b\fourfuse[{b\sixfusev[%
-{b\fivefusev[%
-{a\sixfusev{}{}{f}}%
-]{}{}{d}[a]}%
-]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
-\end{center}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\chapter{Reaction Schemes}
-\section{Compound Numbers}
-
-\begingroup
-%%%%%%%%%%%%%%%
-\makeatletter
-\def\DeclareMathVersion#1{}
-\def\SetSymbolFont#1#2#3#4#5#6{}
-\@@input chemist.sty
-\makeatother
-%%%%%%%%%%%%%%%
-
-The XyMcompd environment has two functions:
-\begin{enumerate}
-\itemsep=0pt \parskip=0pt
-\item for giving a compound number and specifying a reference key and
-\item for specifyin the size of a domain to draw a structural formula.
-\end{enumerate}
-For example, the code:
-\begin{verbatim}
-\begin{XyMcompd}(400,750)(220,200){cPhCL}{}
-\bzdrv{1==Cl}
-\end{XyMcompd}
-\end{verbatim}
-produces the following formula,
-\begin{center}
-\begin{XyMcompd}(400,750)(220,200){cPhCL}{}
-\bzdrv{1==Cl}
-\end{XyMcompd}
-\end{center}
-The compound number (\cref{cPhCL}) can be referred to
-by designating \verb/\cref{cPhCL}/.
-The code \verb/(400,750)/ specifies the size of
-the drawing domain and the code \verb/(220,200)/ represents
-x- and y-shift values.
-When the XyMcompd environment is
-surrounded by a frame generated by the \verb/\fbox/ command,
-we obtain the following diagram:
-\begin{center}
-\fbox{%
-\begin{XyMcompd}(400,750)(220,200){c1PhCL}{}
-\bzdrv{1==Cl}
-\end{XyMcompd}}
-\end{center}
-The original \verb/\bzdrv/ command
-has a domain to accomodate substituents as follows:
-\begin{center}
-\fbox{\bzdrv{1==Cl}}
-\end{center}
-If such adjustment and cross-reference are unnecessary,
-we write the code:
-\begin{verbatim}
-\begin{XyMcompd}(,)(,){}{}
-\sixheterov{1==S;4==S}{}
-\end{XyMcompd}
-\end{verbatim}
-Thereby, we obtain the formula of the original
-specification:
-\begin{center}
-\begin{XyMcompd}(,)(,){}{}
-\sixheterov{1==S;4==S}{}
-\end{XyMcompd}
-\end{center}
-which is the same formula generated by the code:
-\begin{verbatim}
-\sixheterov{1==S;4==S}{}
-\end{verbatim}
-The last argument of the XyMcompd environment is
-to specify the subnumber of a compound number.
-For example, the code:
-\begin{verbatim}
-\begin{XyMcompd}(400,750)(220,200){PhF}{a}
-\bzdrv{1==F}
-\end{XyMcompd}
-\end{verbatim}
-produces the following formula,
-\begin{center}
-\begin{XyMcompd}(400,750)(220,200){PhF}{a}
-\bzdrv{1==F}
-\end{XyMcompd}
-\end{center}
-
-Derivatives of a compound
-numbered in the XyMderiv environment
-are designated by
-subnumbering using a \verb/\derivlist/ command
-in the XyMderiv environment.
-For example, the code:
-\begin{verbatim}
-\begin{XyMderiv}
-\begin{XyMcompd}(400,750)(220,200){PhX}{}
-\bzdrv{1==X}
-\end{XyMcompd}
-\derivlist{X = Cl;X = NO$_{2}$;X = F}
-\end{XyMderiv}
-\end{verbatim}
-produces the following formula:
-\begin{center}
-\begin{XyMderiv}
-\begin{XyMcompd}(400,750)(220,200){PhX}{}
-\bzdrv{1==X}
-\end{XyMcompd}
-\derivlist{X = Cl;X = NO$_{2}$;X = F}
-\end{XyMderiv}
-\end{center}
-
-\section{Reaction Arrows}
-
-In addition of the reaction arrows described in
-Ref.\ \cite{fujita2}, we have added
-further reaction arrows shown in Fig.\ \ref{FFA1KKKR}.
-They are defined in the package {\sf chemist.sty}.
-Each arrow command is the following format:
-\begin{verbatim}
-\ARROWNAME[xshift]{yshift}{length}{itemover}{itemunder}
-\end{verbatim}
-where \verb/\ARROWNAME/ represents a command name;
-\verb/xshift/ is an optional argument to show a
-horizontal adjustment value;
-\verb/yshift/ is an argument to show a vertical adjustment value;
-\verb/length/ is an argument to desiginate the length of the arrow;
-and the arguments
-\verb/itemover/ and \verb/itemunder/
-represent items placed over and under the arrow.
-The name (\verb/\ARROWNAME/) of each reaction arrow take the format of
-\verb/\react/$\ldots$\verb/arrow/ in which $\ldots$
-is selected from the following list:
-r = right arrow, l = left arrow, lr = leftright arrow,
-d = down arrow, u = up arrow, du = down up arrow,
-eq = equilibium arrow, veq = vertical equiliblium arrow,
-deq = down equiliblium arrow, leq = up equilibium arrow,
-dlr = down leftright arrow, ulr = up leftright arrow,
-sw = southwest arrow, se = southeast arrow,
-nw = northwest arrow, and ne = northeast arrow.
-
-\begin{figure}
-\begin{center}
-\begin{center}\begin{tabular}{ccccccccc}
-(r) &
-\hskip0\unitlength
-\reactrarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(l) &
-\hskip0\unitlength
-\reactlarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(d) &
-\hskip0\unitlength
-\reactdarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(u) &
-\hskip0\unitlength
-\reactuarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(sw) &
-\hskip0\unitlength
-\reactswarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(se)&
-\hskip0\unitlength
-\reactsearrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(nw) &
-\hskip0\unitlength
-\reactnwarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ne) &
-\hskip0\unitlength
-\reactnearrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(du)&
-\hskip0\unitlength
-\reactduarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(lr) &
-\hskip0\unitlength
-\reactlrarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ulr)&
-\hskip0\unitlength
-\reactulrarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(dlr)&
-\hskip0\unitlength
-\reactdlrarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(eq) &
-\hskip0\unitlength
-\reacteqarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ueq) &
-\hskip0\unitlength
-\reactueqarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(deq)&
-\hskip0\unitlength
-\reactdeqarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(veq) &
-\hskip0\unitlength
-\reactveqarrow{0\unitlength}{400\unitlength}
-{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\\end{tabular}\end{center}\end{center}
-\def\tblref{FFA1KKKR}
-\caption{Reaction arrows of various types}
-\label{\expandafter\tblref}
-\end{figure}
-
-\section{Display Formulas and Tabular Schemes}
-
-Display formulas containing structural formulas and
-reaction arrows are
-drawn by using the equation environment of \LaTeX{} or
-the chemeqn environment of the {\sf chemist} package.
-For example, the code,
-\begin{verbatim}
-\begin{equation}\label{EQ1}
-\begin{XyMcompd}(400,750)(220,200){BPHOH}{}
-\bzdrv{1==OH}
-\end{XyMcompd}
-\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
-{CH\mbox{$_{3}$}OH\\}{HCl\\}
-\begin{XyMcompd}(400,750)(220,200){PHOME}{}
-\bzdrv{1==OCH\mbox{$_{3}$}}
-\end{XyMcompd}
-\end{equation}
-\end{verbatim}
-produces the following display formula:
-\begin{equation}\label{EQ1}
-\begin{XyMcompd}(400,750)(220,200){AAPHOH}{}
-\bzdrv{1==OH}
-\end{XyMcompd}
-\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
-{CH\mbox{$_{3}$}OH\\}{HCl\\}
-\begin{XyMcompd}(400,750)(220,200){PHOME}{}
-\bzdrv{1==OCH\mbox{$_{3}$}}
-\end{XyMcompd}
-\end{equation}
-
-Tabular schemes containing structural formulas and
-reaction arrows are drawn by using
-the XyMtab environment of the {\sf chemist} package.
-For example, the code,
-\begin{verbatim}
-\begin{XyMtab}{cccccc}
-\begin{XyMcompd}(400,750)(220,200){AAPHCL}{}
-\bzdrv{{1}==Cl;}
-\end{XyMcompd}
-&
-\reactrarrow[10\unitlength]{60\unitlength}{600\unitlength}
-{\strut{}H\mbox{$_{2}$}O\\}{\strut{}High press.\\}&
-%
-\begin{XyMcompd}(400,750)(220,200){AAPHOH}{}
-\bzdrv{{1}==OH;}
-\end{XyMcompd}
-&
-\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
-{\strut{}CH\mbox{$_{3}$}I\\}{\strut{}NaOH\\}&
-%
-\begin{XyMcompd}(400,750)(220,200){AAPHOME}{}
-\bzdrv{{1}==OCH\mbox{$_{3}$};}
-\end{XyMcompd}
-%
-&\\&&&
-\reactswarrow[0\unitlength]{300\unitlength}{400\unitlength}
-{\strut{}HNO\mbox{$_{3}$}\\}{\strut{}}&
-%
-\begin{XyMcompd}(400,850)(220,0){APHNO2}{}
-\bzdrv{{1}==OH;{4}==NO\mbox{$_{2}$};}
-\end{XyMcompd}
-&\\
-\end{XyMtab}
-\end{verbatim}
-generates a tabular scheme as follows:
-\begin{XyMtab}{cccccc}
-\begin{XyMcompd}(400,750)(220,200){AAPHCL}{}
-\bzdrv{{1}==Cl;}
-\end{XyMcompd}
-&
-\reactrarrow[10\unitlength]{60\unitlength}{600\unitlength}
-{\strut{}H\mbox{$_{2}$}O\\}{\strut{}High press.\\}&
-%
-\begin{XyMcompd}(400,750)(220,200){AAPHOH}{}
-\bzdrv{{1}==OH;}
-\end{XyMcompd}
-&
-\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
-{\strut{}CH\mbox{$_{3}$}I\\}{\strut{}NaOH\\}&
-%
-\begin{XyMcompd}(400,750)(220,200){AAPHOME}{}
-\bzdrv{{1}==OCH\mbox{$_{3}$};}
-\end{XyMcompd}
-%
-&\\&&&
-\reactswarrow[0\unitlength]{300\unitlength}{400\unitlength}
-{\strut{}HNO\mbox{$_{3}$}\\}{\strut{}}&
-%
-\begin{XyMcompd}(400,850)(220,0){APHNO2}{}
-\bzdrv{{1}==OH;{4}==NO\mbox{$_{2}$};}
-\end{XyMcompd}
-&\\
-\end{XyMtab}
-
-
-\endgroup
-
-
-
-
-\begin{thebibliography}{99}
-
-\bibitem{fujita2a} NIFTY-Serve achives,
-FPRINT library No. 7, Item Nos. 201, 202, 204.
-\bibitem{fujita2b} CTAN,
-tex-archive/macros/latex209/contrib/xymtex/.
-\bibitem{fujita1} Fujita S., ``Typesetting structural formulas with
-the text formatter \TeX{}/\LaTeX{}'',
-{\em Comput. Chem.}, {\bf 18}, 109 (1994).
-\bibitem{fujita1a} Fujita S., ``\XyMTeX{} for Drawing Chemical
-Structural Formulas'',
-{\em TUGboat}, {\bf 16} (1), 80 (1995).
-\bibitem{lamport2}
-Lamport L., {\em \LaTeX{}. A document Preparation System},
-2nd ed. for \LaTeXe{}, Addison-Wesley, Reading (1994).
-See also
-Lamport L., {\em \LaTeX{}. A document Preparation System},
-Addison-Wesley, Reading (1986).
-\bibitem{goossens}
-Goossens, M., Mittelbach, F., \& Samarin, A.,
-{\em The \LaTeX{} Companion},
-Addison-Wesley, Reading (1994).
-\bibitem{fujita2c} NIFTY-Serve achives,
-FPRINT library No. 7, Item Nos. 385, 386.
-\bibitem{fujita2d}
-http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html
-\bibitem{XyMTeXbook}
-Fujita, S., {\em \XyMTeX{}---Typesetting Chemical Structural
-Formulas}, Addison-Wesley, Tokyo (1997).
-The book title is abbreviated as ``\XyMTeX book'' in
-the present manual.
-\bibitem{knuth}
-For the \TeX{} system, see
- Knuth D. E., {\em The \TeX{}book},
-Addison-Wesley, Reading (1984).
-\bibitem{haas}
-For the Chem\TeX{} macros, see
- Haas R. T. \& O'Kane K. C., {\em Comput. Chem.}, {\bf 11}, 251 (1987).
-\bibitem{ramek}
-For drawing chemical formulas by \TeX{}, see
-Ramek, M., in Clark, M. (ed), \TeX: Applications, Uses, Methods,
-Ellis Horwood, London (1990), p. 277.
-\bibitem{fujita2}
-For chemical application of the \LaTeX{} system, see
-Fujita S., {\em Kagakusha-Seikagakusha no tame no
-\LaTeX{} (\LaTeX{} for Chemists and Biochemists)},
-Tokyo Kagaku Dozin, Tokyo (1993).
-\bibitem{podar}
-For epic macros, see
-Podar S., ``Enhancements to the picture environment
-of \LaTeX{}'', Manual for Version 1.2 dated July 14, 1986.
-\bibitem{graphic}
-For graphic applications of \TeX{}, \LaTeX{} and relevant systems,
-see Goossens, M., Rahtz, S., \& Mittelbach, F.,
-{\em \LaTeX{} Graphics Companion},
-Addison Wesley Longman, Reading (1997).
-\end{thebibliography}
-
-\endinput
-
-\begin{verbatim}
-\end{verbatim}
-\begin{center}
-\end{center}
-
- \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/xymtex/xymman.sty b/Master/texmf-dist/doc/latex/xymtex/xymman.sty
deleted file mode 100644
index efe164c419e..00000000000
--- a/Master/texmf-dist/doc/latex/xymtex/xymman.sty
+++ /dev/null
@@ -1,63 +0,0 @@
-% xymman.sty 23-Nov-93 Shinsaku Fujita
-% For XyMTeX document
-% Copyright (C) 1993 by Shinsaku Fujita, all rights reserved.
-% This style file is created for submitting a manuscript to
-% Journal of the American Chemical Society.
-% This style file is to be contained in the ``chemist'' directory
-% which is an input directory for TeX.
-% Copying of this file is authorized only if either
-% (1) you make absolutely no changes to your copy, including name and
-% directory name
-% (2) if you do make changes,
-% (a) you name it something other than the names included in the
-% ``chemist'' directory and
-% (b) you acknowledge the original name.
-% This restriction ensures that all standard styles are identical.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\def\j@urnalname{xymman}
-\def\versi@ndate{November 24, 1993}
-\def\versi@nno{ver1.00}
-\def\copyrighth@lder{SF} % Shinsaku Fujita
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\typeout{Option Style `\j@urnalname' (\versi@nno) <\versi@ndate>\space
-[\copyrighth@lder]}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\textwidth=16cm
-\textheight=22cm
-\topmargin-.3in
-\oddsidemargin=-0.1cm
-\evensidemargin=-0.1cm
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\def\markleft#1{{\let\protect\noexpand
- \let\label\relax \let\index\relax
- \expandafter\@markleft\@themark
- {#1}\mark{\@themark}}%
- \if@nobreak\ifvmode\nobreak\fi\fi}
-\def\@markleft#1#2#3{\gdef\@themark{{#3}{#2}}}
-\def\LEFTmark{\expandafter\@leftmark\botmark}
-%
-\def\ps@headings{\let\@mkboth\markboth
-\def\@oddfoot{}\def\@evenfoot{}
-\def\@evenhead{\underline{%
-\hbox to\textwidth{\rm \thepage\hfil \sl\LEFTmark}}}%
-\def\@oddhead{\underline{\hbox to\textwidth{%
-\vphantom{\TeX}\sl\rightmark\hfil\rm\thepage}}}%
-\def\chaptermark##1{\markboth {FUJITA S.: \protect\XyMTeX{}}%
-{\uppercase{\ifnum \c@secnumdepth>\m@ne%
- \@chapapp\ \thechapter. \ \fi ##1}}}%
-\def\sectionmark##1{\markleft{FUJITA Shinsaku: \protect\XyMTeX{}}}}
-\ps@headings
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\@ifundefined{XyMTeX}{\def\UPSILON{\char'7}%
-\def\XyM{X\kern-.30em\smash{\raise.50ex\hbox{\UPSILON}}\kern-.30em{M}}%
-\def\XyMTeX{\XyM\kern-.1em\TeX}}{}%
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\newenvironment{xymspec}{\begin{center}\begingroup\origpttrue}%
-{\endgroup\end{center}}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\@ifundefined{shiftii}{%
-\newcount\shiftii
-\newcount\shifti
-\newcount\noshift
-\noshift=0 \shiftii=400 \shifti=240\relax}{}
- \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/xymtex/xymtex2.doc b/Master/texmf-dist/doc/latex/xymtex/xymtex2.doc
deleted file mode 100644
index 91a2b797172..00000000000
--- a/Master/texmf-dist/doc/latex/xymtex/xymtex2.doc
+++ /dev/null
@@ -1,94 +0,0 @@
-xymtex2.doc
-On-line document for XyMTeX in English
-Copyright (C) 1993, 1996, 1998 by Shinsak Fujita. All rights reserved.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-renamed and revised: xymtex1.doc
-Copyright (C) 1993, 1996 by Shinsak Fujita. All rights reserved.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-`XyMTeX' is a macro package for drawing chemical structural formulas.
-
-(1) Setting up
-
- This package has been frozen with LHA. Let the frozen package
- (xymtex2.lzh) be placed in the b: directory. To melt the frozen package
- in the a:\tex directory, please input the following statement in the
- command line of your display.
-
- a:\tex>lha x b:\xymtex2
-
- Thereby, the directory <\xymtex> is automatically created as the
- subdirectory of the a:\tex directory; and the following hierarchy of
- directories and files is generated.
-
- a---\tex---\xymtex --- hetaromh.sty, hetarom.sty, ccycle.sty,
- | | | chemstr.sty, carom.sty, lowcycl.sty, aliphat.sty,
- | hcycle.sty, locant.sty, polymers.sty, chemist.sty
- | methylen.sty, fusering.sty
- |
- | (dtx files)
- |
- |--\drvdvi---drv files, dvi files
- |
- |--\doc200--- xymtx200.tex, xymtx200.dvi,
- | xymyl.tex, xymadd.tex
- | (other files for the document preparation)
- |
- |---xymtex2.doc (this document)
- |
- |---xymtex2.jpn (on-line document in Japanes)
- |
- |---readme2.doc (notes in English)
- |
- |---readme2.jpn (notes in Japanese)
-
- The package (sty) files in the \xymtex directory contains the macro
- codes of XymTeX commands. The specification of XyMTeX commands and
- examples of using these commands are included in the xymtex.dvi file of
- the \doc directory.
-
- The xymtx200.dvi file is a dvi file that is a manual for utilizing
- XyMTeX (about 100 pages). The processed dvi file can be obtained in the same
- directory of this distribution. It can be printed with an appropriate
- printer driver (lips3dvi, dviprt, or others) and can be displayed with an
- appropriate previewer (dviout, etc.).
-
- The xymtx200.tex is the main file of the manuscript for creating the
- xymtx200.dvi. The other tex files in the \doc200 directory are input files
- which are read by the main file.
-
-(2) Designating a serach path
-
- In order to set a search path for using XyMTeX, please add the directory
- name to the TEXINPUTS line in \texmf.cnf, which is stored in the
- \tex\texmf\web2c directory (for a standard distribution of LaTeX2e).
- For example, you add
-
- platex2e_inputs = .;$TEXMF/tex/platex2e//;$TEXMF/tex/latex2e//;
- $TEXMF/tex//;a:/tex/inputs//;
- a:/tex/chem//;a:/tex/xymtex//;a:/tex/opsty//
- ~~~~~~~~~~~~~~~ <---- to be added
-
-(3) Writing your manuscript
-
- Each command of XyMTeX can be used if you add the name of the
- corresponding style file to the option list at the top of your
- manuscript file, e.g.
-
- \documentclass{article}
- \usepackage{epic,hetarom,hetaromh}
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- where the underlined names are XyMTeX package files containing your
- requisite commands. If all of the XyMTeX commands are required,
- the short-cut declaration
-
- \documentclass{article}
- \usepackage{xymtex}
-
- can be used for simplicity.
-
-(4) Running LaTeX2e or pLaTeX2e
-
- You should use XyMTeX commands within LaTeX.
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(END)
- \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/xymtex/xymtx200.dvi b/Master/texmf-dist/doc/latex/xymtex/xymtx200.dvi
deleted file mode 100644
index c9b596e907e..00000000000
--- a/Master/texmf-dist/doc/latex/xymtex/xymtx200.dvi
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/xymtex/xymtx200.tex b/Master/texmf-dist/doc/latex/xymtex/xymtx200.tex
deleted file mode 100644
index fd7de31385c..00000000000
--- a/Master/texmf-dist/doc/latex/xymtex/xymtx200.tex
+++ /dev/null
@@ -1,56 +0,0 @@
-%xymtx200.tex
-%Copyright (C) 1998, Shinsaku Fujita, All rights reserved.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%This file is a part of xymtx200.tex that is the manual of the macro
-%package `XyMTeX' for drawing chemical structural formulas.
-%This file is not permitted to be translated into Japanese and any other
-%languages.
-\typeout{``xymtx200.tex''---
-This file is a part of xymtex.tex that is the manual of the macro %
-package `XyMTeX'. 1998/12/25 S. Fujita}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\documentclass{book}
-%\usepackage{xymtex}
-\usepackage{carom}
-\usepackage{hetaromh}
-\usepackage{aliphat}
-\usepackage{hcycle}
-\usepackage{fusering}
-\usepackage{methylen}
-\usepackage{locant}
-\usepackage{lowcycle}
-\usepackage{epic}
-\usepackage{xymman}
-%
-\begin{document}
-\mbox{}
-\thispagestyle{empty}
-\vfill
-\begin{center}
-{\LARGE\bfseries \protect\XyMTeX{} for
-Typesetting Chemical Structural Formulas.
-Enhanced Functions for Version 2.00}
-
-\vspace*{2cm}
-{\Large\bfseries Shinsaku Fujita}
-
-\vspace*{1cm}
-Department of Chemistry and Materials Technology, \\
-Kyoto Institute of Technology, \\
-Matsugasaki, Sakyoku, Kyoto, 606 Japan
-\par\vspace*{1cm}
-December 25, 1998 (Version 2.00) \\
-(revised March 20, 1999)
-\end{center}
-\vfill\mbox{}
-%
-\newpage
-\tableofcontents
-%
-\input{xymyl}
-\input{xymadd}
-
-\end{document}
-
-
- \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/xymtex/xymyl.tex b/Master/texmf-dist/doc/latex/xymtex/xymyl.tex
deleted file mode 100644
index daae2314c7d..00000000000
--- a/Master/texmf-dist/doc/latex/xymtex/xymyl.tex
+++ /dev/null
@@ -1,2900 +0,0 @@
-%xymyl.tex
-%Copyright (C) 1998, Shinsaku Fujita, All rights reserved.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%This file is a part of xymtx200.tex that is the manual of the macro
-%package `XyMTeX' (version 2.00) for drawing chemical structural formulas.
-%This file is not permitted to be translated into Japanese and any other
-%languages.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Introduction}
-
-\section{History}
-\subsection{Version 1.00 (1993)}
-
-The first version of the \XyMTeX{} system (version 1.00, 1993)
-with a detailed on-line manual
-has been depositted to NIFTY-Serve archives (FPRINT library No.\ 7)
-by the author\cite{fujita2a} and to the CTAN by volunteers\cite{fujita2b}.
-The articles on the construction and usage of \XyMTeX{} have appeared in
-Ref. \cite{fujita1,fujita1a}.
-Although the packages (style files) of the \XyMTeX{} system have
-originally aimed at using under
-the \LaTeX{}2.09 system, they also work effectively
-under the \LaTeXe{} system \cite{lamport2,goossens} without any changes. Thus,
-what you have to do is to rewrite a top statement for \LaTeX{}2.09 such as
-\begin{verbatim}
-\documentstyle[epic,carom,hetarom]{article}
-\end{verbatim}
-into the counterpart for \LaTeXe{}, {\em e.g.},
-\begin{verbatim}
-\documentclass{article}
-\usepackage{epic,carom,hetarom}
-\end{verbatim}
-
-\subsection{Version 1.01 (1996)}
-
-The Version 1.01 of the \XyMTeX{} system has been released in 1996,
-when the system with a detailed on-line manual
-was depositted to NIFTY-Serve archives (FPRINT library No.\ 7)
-by the author \cite{fujita2c}. The system is now available
-from Fujita's homepage \cite{fujita2d} via internet
-or from a CD-ROM that is attached to the referece manual published
-in 1997 \cite{XyMTeXbook}.\footnote{%
-The basic items described in the \XyMTeX book are
-common and applied also in Version 2.00.
-Please refer to the \XyMTeX book, when
-they are used without explanations in this manual.}
-
-The purpose of version 1.01 is
-the updating of \XyMTeX{} to meet the \LaTeXe{} way of
-preparing packages (option style files).
-The following items have
-been revised or added for encouraging the \XyMTeX{} users
-to write articles of chemical fields.
-
-\begin{enumerate}
-\item Each of the old sty files of \XyMTeX{} has been rewritten
-into a dtx file, from which we have prepared a new sty file by using
-the {\sf docstrip} utility of \LaTeXe.
-If you want to obtain the document of each source
-file, you may apply \LaTeXe{} to the corresponding drv file, which
-has also been prepared from the dtx file by using the {\sf docstrip}
-utility.
-\item Macros for drawing chair-form cyclohexanes and
-for drawing adamantanes of an alternative type have been added.
-\item Macros for drawing polymers have been added.
-\item The package {\sf chemist.sty}, which was originally
-prepared for \cite{fujita2}, has been rewritten into a dtx file and
-added to \XyMTeX{} as a new component. This package enables us
-to use various functions such as
- \begin{enumerate}
- \item the numbering and cross-reference
- of chemical compounds and derivatives,
- \item various arrows of fixed and flexible length for chemical equations,
- \item `chem' version and chemical environments for describing
- chemical equations, and
- \item various box-preparing macros for chemical or general use.
- \end{enumerate}
-\end{enumerate}
-
-\subsection{Version 1.02 (1998, not released)}
-
-The Version 1.02 of \XyMTeX{} has been devoted to the
-development of the nested-substitution method,
-which simplifies the coding of \XyMTeX{} commands.
-In \XyMTeX{} version 1.01, each subsitituent is assumed to be rather small
-so that it can be specified by means of a substitution list ``SUBSLIST''.
-For example, 1-fluorobenzene,
-\begin{center}
-\bzdrh{4==F}
-\end{center}
-is drawn by the following code:
-\begin{verbatim}
-\bzdrh{4==F}
-\end{verbatim}
-To draw a substituent with a complicated structure,
-a designation of the same line produces an insufficient result.
-Thus, if we simply write the code
-\begin{verbatim}
-\bzdrh{4==\bzdrh{}}
-\end{verbatim}
-to draw a biphenyl structure,
-we have a separate structure as follows:
-
-\vskip1.5\baselineskip
-\begin{center}
-\bzdrh{4==\bzdrh{}}
-\end{center}
-
-Within the scope of \XyMTeX version 1.01,
-such a substituent with a complicated structure
-can be treated by three distinct methods
-(see Chapters 14 and 15 of \XyMTeX book).
-
-\begin{enumerate}
-\item(Method I)
-When we write a code \verb/\bzdrh{4==}\bzdrh{}/
-to draw a biphenyl structure,
-we obtain an insufficient result such as
-\begin{center}
-\bzdrh{4==}\bzdrh{}
-\end{center}
-since each command has an area to draw its target sturucture.
-To remedy this situation, we can write
-\begin{verbatim}
-\bzdrh{4==}\kern-33pt\bzdrh{}
-\end{verbatim}
-Then, we obtain the following structure:
-\begin{center}
-\bzdrh{4==}\kern-33pt\bzdrh{}
-\end{center}
-However, a more complicated adjustment is
-necessary to apply this method to a case in which
-the components of a structual formula are not linearly aligned.
-\item (Method II)
-We can carry out the same task by using
-the \LaTeX{} picture einvironment.
-The code
-\begin{verbatim}
-\begin{picture}(1400,700)(0,0)
-\put(0,0){\bzdrh{4==}}
-\put(546,0){\bzdrh{}}
-\end{picture}
-\end{verbatim}
-produces the following structure:
-\begin{center}
-\begin{picture}(1400,700)(0,0)
-\put(0,0){\bzdrh{4==}}
-\put(546,0){\bzdrh{}}
-\end{picture}
-\end{center}
-This method realizes such a complicated adustment as mentioned above,
-since the \verb/\put/ is capable of putting components at arbitrary positions.
-\item (Method III)
-In a further method of drawing the biphenyl structure,
-one phenyl group is regarded as a substituent of the other phenyl.
-These two parts can be combined by writing a code,
-\begin{verbatim}
-\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{}}}
-\end{verbatim}
-in which the commands \verb/\kern/ (for horizontal adjustment) and
-\verb/\lower/ (for vertical adjustment) are used to adjust the
-substitution site. Thereby, we have
-\begin{center}
-\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{}}}
-\end{center}
-This method has a disadvantage of calculating
-adjustment values manually for every formula to be drawn.
-\end{enumerate}
-
-These three methods are useful for drawing complicated structure.
-However, they have an essential disadvantage: their codes give
-no, or at most partial, connectivity data between parts to be combined, though
-such parts appear to be combined as a picture.
-For example, the code
-\begin{verbatim}
-\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==Cl}}}
-\end{verbatim}
-producing
-\begin{center}
-\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==Cl}}}
-\end{center}
-has no connectivity data at the meta position to the chlorine
-atom of the scecond benzene ring.
-
-As clarified by the discussion in the preceding paragraphs,
-the \XyMTeX{} system should have a function to place
-substituents at appropriate sites without complex designation,
-where connectivity data are maintained during the process
-of drawing.
-The target of \XyMTeX{} Version 1.02 is to treat nested
-substitution with the automatic adjustment of subsitution sites
-(named as the nested-substitution method).
-Concretely speaking, for example,
-such a code as
-\begin{verbatim}
-\bzdrh{1==F;4==\bzdrh{1==(yl);3==Cl}}
-\end{verbatim}
-directly produces
-\begin{center}
-\bzdrh{1==F;4==\bzdrh{1==(yl);3==Cl}}
-\end{center}
-where the code shows that the second benzene ring is
-linked to the para position of the first benzene ring
-at the meta position to the chlorine atom.
-Thus the target accomplished by the ``yl''-function,
-as shown in this code.
-
-\section{Version 2.00 (1998)}
-
-The ``yl''-function developed in \XyMTeX{} Version 1.02
-is regarded as a modification of SUSBLISTs.
-As an extention of this mothodology,
-BONDLISTs can be modified to treat ring fusion,
-since each ring fusion is considered to be a kind of
-substitution on a bond. In addition,
-ATOMLIST can also be used to
-treat spiro rings, since each spiro ring
-is a kind of atom replacement at an appropriate vertex.
-
-To expand the scope of the \XyMTeX{} system,
-we introduce several new functions as follows.
-\begin{enumerate}
-\item Several bond modifiers are added to draw
-alternative up- and down-bonds as well as
-to treat ring fusion.
-\item The ``yl''-function for SUBSLISTs is further improved.
-The commands \verb/\ryl/ and \verb/\lyl/ are
-prepared to typeset intervening moieties.
-\item Ring fusion is treated by adding a fusing unit to
-the BONDLIST of each command.
-\item Several fusing units (three- to six-membered units)
-are developed (fusering.sty).
-\item A new function for typesetting a spiro ring is
-introduced in each command for general use.
-A spiro ring is treated by ring-replacement technique,
-where the corresponding code is
-written in the ATOMLIST of each command.
-\item Commands for typeseting zigzag polymethylenes are
-developed (methylen.sty).
-\item Commands for drawing six-six fused carbocycles
-and heterocycles are added.
-\item An optional argument SKBONDLIST is added to
-each command of general use for drawing
-boldfaced and dotted skeletal bonds.
-\item An optional argument OMIT is added to
-each command of general use for drawing related
-skeletons by bond deletion.
-\end{enumerate}
-
-The \XyMTeX{} system (version 2.00) consists of package files
-listed in Table \ref{tt:200a1}.
-The package file `\textsf{chemstr.sty}' is the basic file
-that is automatically read within any other package file of \XyMTeX{}.
-It contains macros for internal use, {\em e.g.},
-common commands for bond-setting and atom-setting.
-The other package files contain macros for users.
-These files are designed to work not only as packages for \LaTeXe
-but also as option style files for \LaTeX{}2.09 (native mode).
-\begin{table}[hpbt]
-\caption{Package Files of \protect\XyMTeX{}}
-\label{tt:200a1}
-\begin{center}
-\begin{tabular}{lp{10cm}}
-\hline
-package name & \multicolumn{1}{c}{included functions} \\
-\hline
-\textsf{aliphat.sty}
- & macros for drawing aliphatic compounds \\
-\textsf{carom.sty}
- & macros for drawing vertical and horizontal types
- of carbocyclic compounds \\
-\textsf{lowcycle.sty}
- & macros for drawing five-or-less-membered carbocyles. \\
-\textsf{ccycle.sty}
- & macros for drawing bicyclic compounds etc. \\
-\textsf{hetarom.sty}
- & macros for drawing vertical types of heterocyclic compounds \\
-\textsf{hetaromh.sty}
- & macros for drawing horizontal types of heterocyclic compounds \\
-\textsf{hcycle.sty}
- & macros for drawing pyranose and furanose derivatives \\
-\textsf{chemstr.sty}
- & basic commands for atom- and bond-typesetting \\
-\textsf{locant.sty}
- & commands for printing locant numeres \\
-\textsf{polymers.sty}
- & commands for drawing polymers \\
-\textsf{fusering.sty}
- & commands for drawing units for ring fusion \\
-\textsf{methylen.sty}
- & commands for drawing zigzag polymethylene chains \\
-\textsf{xymtex.sty}
- & a package for calling all package files \\
-\textsf{chemist.sty}
- & commands for using `chem' version and chemical environments \\
-\hline
-\end{tabular}
-\end{center}
-\end{table}
-
-The use of \textsf{xymtex.sty} calling all package files
-may sometimes cause the ``\TeX{} capacity exceeded'' error.
-In this case, you should call necessary packages distinctly
-by using the \verb/\usepackage/ command.
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Bond Modifiers Added}
-
-\section{Alternative Bond Modifiers for Up and Down Bonds}
-
-In addition to the original bond modifiers (see the \XyMTeX book),
-the present version of \XyMTeX{}
-provides us with several bond modifiers that can be used
-in the argument SUBSLIST of each \XyMTeX{} command.
-These modifiers are listed in Table \ref{tt:200a}
-along with the original bond modifiers.
-
-\begin{table}
-\caption{Locant numbering and bond modifiers for SUBSLIST}
-\label{tt:200a}
-\begin{center}
-\begin{tabular}{lp{12cm}}
-\hline
-Bond Modifiers & \multicolumn{1}{c}{Printed structures} \\
-\hline
-\multicolumn{2}{l}{\bfseries Original Bond Modifiers} \\
- $n$ or $n$S & exocyclic single bond at $n$-atom \\
- $n$D & exocyclic double bond at $n$-atom \\
- $n$A & alpha single bond at $n$-atom \\
- $n$B & beta single bond at $n$-atom \\
- $n$Sa & alpha (not specified) single bond at $n$-atom \\
- $n$Sb & beta (not specified) single bond at $n$-atom \\
- $n$SA & alpha single bond at $n$-atom (dotted line) \\
- $n$SB & beta single bond at $n$-atom (boldface) \\
-\hline
-\multicolumn{2}{l}{\bfseries Bond Modifiers Added} \\
- $n$Sd & alpha single bond at $n$-atom (dotted line)
- with an alternative direction to $n$SA \\
- $n$Su & beta single bond at $n$-atom (boldface)
- with an alternative direction to $n$SB \\
- $n$FA & alpha single bond at $n$-atom (dotted line)
- for ring fusion \\
- $n$FB & beta single bond at $n$-atom (boldface)
- for ring fusion \\
- $n$GA & alpha single bond at $n$-atom (dotted line)
- for the other ring fusion \\
- $n$GB & beta single bond at $n$-atom (boldface)
- for the other ring fusion \\
-\hline
-\end{tabular}
-\end{center}
-\end{table}
-
-The added bond modifiers, `Sd' (d for down) and `Su' (u for up), designate
-$\alpha$- and $\beta$-bonds in such an exchanged
-manner as the original bond modifiers, `SA' and `SB' designate.
-Figure \ref{ff:200a} shows the comparison between
-the added bond modifiers and the original ones
-by using a cyclohexane skeleton (\verb/\cyclohexanev/).
-
-\begin{figure}[h]
-\begin{center}
-\cyclohexanev{1Sd==1Sd;1Su==1Su;%
-2Sd==2Sd;2Su==2Su;3Sd==3Sd;3Su==3Su;%
-4Sd==4Sd;4Su==4Su;5Sd==5Sd;5Su==5Su;%
-6Sd==6Sd;6Su==6Su} \qquad\qquad
-\cyclohexanev{1SA==1SA;1SB==1SB;%
-2SA==2SA;2SB==2SB;3SA==3SA;3SB==3SB;%
-4SA==4SA;4SB==4SB;5SA==5SA;5SB==5SB;%
-6SA==6SA;6SB==6SB}
-\caption{Bond Modifiers for $\alpha$- and $\beta$-Bonds}
-\label{ff:200a}
-\end{center}
-\end{figure}
-
-\section{Bond Modifiers for Ring Fusion}
-
-In the present verstion (2.00), we have added a new function for ring fusion.
-Since the function requires bond modifiers
-for desiginating substitution at such fused positions,
-we have added the modifiers, `FA', `FB', `GA', and `GB'.
-These modifiers are illustrated in Figure \ref{ff:200b}
-
-
-\begin{figure}
-\begin{center}
-\cyclohexanev{1FA==1FA;1GB==1GB;3FA==3FA;3GB==3GB;5FA==5FA;5GB==5GB}
-\qquad\qquad
-\cyclohexanev{1FB==1FB;1GA==1GA;3FB==3FB;3GA==3GS;5FB==5FB;5GA==5GA}
-
-
-\cyclohexanev{2FA==2FA;2GB==2GB;4FA==4FA;4GB==4GB;6FA==6FA;6GB==6GB}
-\qquad\qquad
-\cyclohexanev{2FB==2FB;2GA==2GA;4FB==4FB;4GA==4GA;6FB==6FB;6GA==6GA}
-\caption{Bond Modifiers for Ring Fusion}
-\label{ff:200b}
-\end{center}
-\end{figure}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Nested-Substituent Method}
-
-\section{Introduction}
-
-Chapter 14 (Combining Structures)
-and Chapter 15 (Large Substituents) of the \XyMTeX book
-have described several techniques to draw complicated formulas.
-Among them, the nested-substituent method is most promising.
-For example, the code
-\begin{verbatim}
-\bzdrh{1==Cl;4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==F}}}
-\end{verbatim}
-gives a combined structure,
-\begin{center}
-\bzdrh{1==Cl;4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==F}}}
-\end{center}
-Although the code shows the connectivity between the two phenyl
-groups, the following disadvantages remain:
-\begin{enumerate}
-\item The code contains no data indicating that the connection site
-is the meta-position concerning the fluorine atom.
-\item The commands \verb/\kern/ (for horizontal adjustment) and
-\verb/\lower/ (for vertical adjustment) are necessary to adjust the
-subsitutution site.
-\end{enumerate}
-
-As clarified by the above examples, the main target of \XyMTeX{}
-Version 2.00 is to extend the nested-substituent method
-so that it provides a function of indicating full connectivity data
-as well as a function of
-automatical adjustment without using such commands
-as \verb/\kern/ and \verb/\lower/.
-
-\section{``yl''-Functions}
-
-In \XyMTeX{} Version 2.00, the ``yl''-function is
-added so as to improve the nested-subsituent method.
-Thereby, any structure drawn by a \XyMTeX{}
-command (except a few special commands)
-can be converted into the corresponding substituent
-by adding the code \verb/(yl)/ with a locant number.
-The resulting code for the substituent can be added
-to the SUBSLIST of any other command for
-drawing a mother skeleton, where the final code
-contains the full connectivity data of the combined structure.
-For example, the code
-\begin{verbatim}
-\bzdrh{1==Cl;4==\bzdrh{1==(yl);3==F}}
-\end{verbatim}
-typesets the following structure,
-\begin{center}
-\bzdrh{1==Cl;4==\bzdrh{1==(yl);3==F}}
-\end{center}
-Thus, fluorobenzene produced by the command \verb/\bzdrh{3==F}/
-is converted into a subsituent, i.e. 3-fluorophenyl,
-by adding the code \verb/(yl)/, as shown in the
-code, \verb/\bzdrh{1==(yl);3==F}/. Then, the resulting code
-is added to the SUBSLIST of another command \verb/\bzdrh/.
-
-The connectivity at the meta-position is
-represented by the statement \verb/1==(yl)/ of
-the innner code \verb/\bzdrh{1==(yl);3==F}/.
-Note that the inner code \verb/\bzdrh{1==(yl);3==F}/ produces
-a substituent with no height and no width and that
-the reference point of the substituent is shifted to
-the point no.~1 by the (yl)-statement in order to
-link to the mother structure (the phenyl group
-produced by the code \verb/\bzdrh{1==Cl;4=={...}}/).
-
-The shift of a reference point becomes clear when
-we examine a formula,
-\begin{center}
-\vspace*{2cm}
-\bzdrh{1==Cl;3==\bzdrh{6==(yl);3==F}}
-\end{center}
-generated by the code,
-\begin{verbatim}
-\bzdrh{1==Cl;3==\bzdrh{6==(yl);3==F}}
-\end{verbatim}
-The original structure of the substituent with no ``yl'' function
-is found to be
-\begin{center}
-\begin{picture}(700,800)(0,0)
-\put(0,0){\bzdrh{3==F}}
-\put(0,0){\circle*{50}}
-\end{picture}
-\end{center}
-as generated by the code
-\begin{verbatim}
-\begin{picture}(700,800)(0,0)
-\put(0,0){\bzdrh{3==F}}
-\put(0,0){\circle*{50}}
-\end{picture}
-\end{verbatim}
-where the solid circle is the reference point.
-The picture shown above
-indicates that the reference point
-is different from any vertices of the benzene ring.
-On the other hand, the code with a ``yl''-function,
-\begin{verbatim}
-\begin{picture}(700,800)(0,-200)
-\put(0,0){\bzdrh{6==(yl);3==F}}
-\put(0,0){\circle*{50}}
-\end{picture}
-\end{verbatim}
-typesets the following structure,
-\begin{center}
-\begin{picture}(700,800)(0,-200)
-\put(0,0){\bzdrh{6==(yl);3==F}}
-\put(0,0){\circle*{50}}
-\end{picture}
-\end{center}
-The picture shown above
-indicates that the reference point is shifted to the position
-no.~6 of the benzene ring.
-
-The code \verb/\bzdrh{1==(yl);3==F}/ producing the substituent
-can be used in the argument of any structure-drawing command
-of \XyMTeX{}. The following example is the one
-in which it is placed in the argument of a command \verb/\bzdrv/.
-Thus, the code
-\begin{verbatim}
-\bzdrv{1==Cl;3==\bzdrh{1==(yl);3==F}}
-\end{verbatim}
-typesets the following structure,
-\begin{center}
-\bzdrv{1==Cl;3==\bzdrh{1==(yl);3==F}}
-\end{center}
-
-The structural formula of 1-chloro-4-morphorinobenzene
-can be drawn in two different ways. The codes,
-\begin{verbatim}
-\bzdrh{1==Cl;4==\sixheteroh[]{1==N;4==O}{1==(yl)}}
-\hskip 6cm
-\sixheteroh[]{1==N;4==O}{1==\bzdrh{1==Cl;4==(yl)}}
-\end{verbatim}
-produce the following formulas:
-\begin{center}
-\bzdrh{1==Cl;4==\sixheteroh[]{1==N;4==O}{1==(yl)}}
-\hskip 6cm
-\sixheteroh[]{1==N;4==O}{1==\bzdrh{1==Cl;4==(yl)}}
-\end{center}
-In the former code,
-the morphorino group is regareded as a substituent,
-as the name ``1-chloro-4-morphori\-nobenzene'' indicates.
-On the other hand, the chlorophenyl group
-is considered to be a substituent in the latter code
-so as to correspond to the name ``N-(4-chlorophenyl)morphorine''.
-
-The ``yl''-function is quite versatile, as indicated by the code,
-\begin{verbatim}
-\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;%
-5==\bzdrv{3==OMe;4==OMe;6==Br;1==(yl)}}
-\end{verbatim}
-producing the following structure:
-\begin{center}
-\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;%
-5==\bzdrv{3==OMe;4==OMe;6==Br;1==(yl)}}
-\end{center}
-\par\vskip2cm
-\noindent
-where the substituted phenyl group is regarded as a substituent.
-An opposite view can be realized by the code
-\begin{verbatim}
-\bzdrv{3==OMe;4==OMe;6==Br;%
-1==\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;5==(yl)}}
-\end{verbatim}
-which typesets the same structure:
-\vskip2cm
-\begin{center}
-\bzdrv{3==OMe;4==OMe;6==Br;%
-1==\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;5==(yl)}}
-\end{center}
-where the moiety drawn by the command \verb/\decaheterov/ is
-regarded as a substituent.
-
-Two or more substituents generated by the ``yl''-function
-can be introduced into an ATOMLIST. For example,
-\begin{verbatim}
-\bzdrh{1==\bzdrh{4==(yl)};4==\bzdrh{1==(yl);3==F}}
-\end{verbatim}
-typesets the following structure,
-\begin{center}
-\bzdrh{1==\bzdrh{4==(yl)};4==\bzdrh{1==(yl);3==F}}
-\end{center}
-
-The structural formula of hexaphenylbenzene can be
-drawn by this technique. Thus the code,
-\begin{verbatim}
-\bzdrv{1==\bzdrv{4==(yl)};%
-2==\bzdrv{5==(yl)};3==\bzdrv{6==(yl)};%
-4==\bzdrv{1==(yl)};5==\bzdrv{2==(yl)};%
-6==\bzdrv{3==(yl)}}
-\end{verbatim}
-generates the following formula:
-\begin{center}
-\vspace*{1cm}
-\bzdrv{1==\bzdrv{4==(yl)};%
-2==\bzdrv{5==(yl)};3==\bzdrv{6==(yl)};%
-4==\bzdrv{1==(yl)};5==\bzdrv{2==(yl)};%
-6==\bzdrv{3==(yl)}}
-
-\vspace*{1cm}
-\end{center}
-
-\section{Nested ``yl''-functions}
-
-Two or more ``yl''-functions can be nested.
-For example, a structure
-\begin{center}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)}}
-\end{center}
-depicted by the code,
-\begin{verbatim}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)}}
-\end{verbatim}
-can be converted into a substituent by adding
-``yl''-function, as shown in the following code:
-\begin{verbatim}
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}
-\end{verbatim}
-Then this substituent is nested in the SUBSLIST of
-the command \verb/\cyclohexaneh/ to give a code,
-\begin{verbatim}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-Thereby we have the structural formula of
-benzoylcyclohexane:
-\begin{center}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{center}
-
-The resulting structure can be further converted into
-a substituent by adding ``yl''-function. The
-following example shows that the substituent is
-linked to the 4-position of a naphthol ring:
-\begin{center}
-\naphdrh{1==HO;4==%
-\cyclohexaneh[]{1==(yl);4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}}
-\end{center}
-which is typeset by the triply nested code:
-\begin{verbatim}
-\naphdrh{1==HO;4==%
-\cyclohexaneh[]{1==(yl);4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}}
-\end{verbatim}
-The same structural formula can be drawn by regarding
-the 1-naphthol-4-yl group and the benzoyl group as
-substituents, as shown in the following code:
-\begin{verbatim}
-\cyclohexaneh[]{%
-1==\naphdrh{1==HO;4==(yl)};%
-4==\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-Accordingly, we have
-\begin{center}
-\cyclohexaneh[]{%
-1==\naphdrh{1==HO;4==(yl)};%
-4==\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{center}
-
-\bigskip
-The structure of benzoylcyclohexane can also be drawn by considering
-the \verb/\tetrahedral/ moiety as a mother skeleton,
-as shown in the code:
-\begin{verbatim}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
-\end{verbatim}
-Thereby, we have the formula,
-\begin{center}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
-\end{center}
-which shows that
-two or more substituents produced by the ``yl''-function
-can be written in a SUBSLIST.
-This treatment corresponds to the alternative name of
-benzoylcyclohexane, i.e., cyclohexyl phenyl ketone,
-since the codes \verb/\cyclohexaneh{4==(yl)}/ and
-\verb/\bzdrh{1==(yl)}/ represent
-a cyclohexyl and a phenyl group, respectively.
-
-Although
-the resulting structure cannot be used as a substituent concerning
-the cyclohexane ring, the SUBSLIST of the command \verb/\cyclohexaneh/
-is capable of accomodating the substituent \verb/\naphdrh{1==HO;4==(yl)}/
-to give
-\begin{verbatim}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};%
-2==\cyclohexaneh[]{4==(yl);1==\naphdrh{1==HO;4==(yl)}}}
-\end{verbatim}
-which typesets the same structural formula:
-\begin{center}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};%
-2==\cyclohexaneh[]{4==(yl);1==\naphdrh{1==HO;4==(yl)}}}
-
-\vspace*{1cm}
-\end{center}
-
-
-The formula,
-\begin{center}
-\vspace*{2cm}
-\bzdrv{%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl)}};%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl)}};%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl)}};%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl)}};%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl)}};%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl)}}}
-
-\vspace*{2cm}
-\end{center}
-illustrates the more complicated structure of a code
-with nested ``yl''-functions:
-\begin{verbatim}
-\bzdrv{%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl)}};%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl)}};%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl)}};%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl)}};%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl)}};%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl)}}}
-\end{verbatim}
-
-To simplify the coding, we define a macro
-drawing a biphenyl unit as follows:
-\begin{verbatim}
-\def\biph#1#2#3{\bzdrv{#1==(yl);#2==\bzdrv{#3==(yl)}}}
-\end{verbatim}
-Then, this macro is used in the SUBSLIST of \verb/\bzdrv/
-to give the code,
-\begin{verbatim}
-\bzdrv{%
-1==\biph{4}{2}{5};%
-2==\biph{5}{3}{6};%
-3==\biph{6}{4}{1};%
-4==\biph{1}{5}{2};%
-5==\biph{2}{6}{3};%
-6==\biph{3}{1}{4}}
-\end{verbatim}
-Thereby, we have
-\begin{center}
-\vspace*{2cm}
-\def\biph#1#2#3{\bzdrv{#1==(yl);#2==\bzdrv{#3==(yl)}}}
-\bzdrv{%
-1==\biph{4}{2}{5};%
-2==\biph{5}{3}{6};%
-3==\biph{6}{4}{1};%
-4==\biph{1}{5}{2};%
-5==\biph{2}{6}{3};%
-6==\biph{3}{1}{4}}
-
-\vspace*{2cm}
-\end{center}
-
-A more complex nested code,
-
-\begin{verbatim}
-\vspace*{8cm}
-\bzdrv{%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl)}}}}}}}}}};%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl)}}}}}}}}}};%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl)}}}}}}}}}};%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl)}}}}}}}}}};%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl)}}}}}}}}}};%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl)}}}}}}}}}}}
-\end{verbatim}
-produces the following formula:
-
-\clearpage%to avoid ! TeX capacity exceeded
-
-\begin{center}
-\vspace*{8cm}
-\bzdrv{%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl)}%
-}}}%
-}}}%
-}}};%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl)}%
-}}}%
-}}}%
-}}};%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl)}%
-}}}%
-}}}%
-}}};%
-4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl)}%
-}}}%
-}}}%
-}}};%
-5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);%
-1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl)}%
-}}}%
-}}}%
-}}};%
-6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);%
-2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
-3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
-4==\bzdrv{1==(yl)}%
-}}}%
-}}}%
-}}}}
-\end{center}
-
-\clearpage
-
-The code to draw this structural formula is
-too complicated to cause the ``\TeX{} capacity exceeded'' error.
-To avoid the error, we use \verb/\clearpage/ commands before
-and after the output of the formula.
-In addition, we call only necessary packages
-to treat this cocument without the use of \textsf{xymtex.sty}
-calling all package files.
-
-\section{Remarks}
-\subsection{Drawing Domains}
-Substituents produced by the ``yl''-function have no dimensions.
-For example, benzoylcyclohexane
-\begin{center}
-\fbox{%
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-}
-\end{center}
-produced by the code
-\begin{verbatim}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-has a drawing domain around the cyclohexane mother skeleton,
-as encircled by a frame. Since the bezoyl moiety occupies no area,
-it may be superimposed on other contexts
-so as to require some space adjustments.
-For example, the above code duplicated without
-any space adjustment,
-\begin{verbatim}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-\end{verbatim}
-gives an insufficient result:
-\begin{center}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-\end{center}
-This superposition can be avoided by a horizontal spacing. Thus
-the code
-\begin{verbatim}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\hskip2cm
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-\end{verbatim}
-typesets improved formulas:
-\begin{center}
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\hskip2cm
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
-\end{center}
-
-If a more thorough adjustment is required,
-a formula should be placed in a \LaTeX{} picture environment
-as follows.
-\begin{verbatim}
-\begin{picture}(1600,900)(0,0)
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{picture}
-\end{verbatim}
-This code produces
-\begin{center}
-\fbox{%
-\begin{picture}(1600,900)(0,0)
-\cyclohexaneh[]{4==%
-\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
-\end{picture}
-}
-\end{center}
-where a frame is added by means of a \verb/\fbox/ command.
-
-A drawing domain around a formula depends upon a mother skeleton
-selected. For example, the formula of benzoylcyclohexane at the top
-of this section has a drawing domain shown by the frame, since
-a \verb/\cyclohexaneh/ is selected as a mother skeleton.
-On the other hand, the alternative formula
-of benzoylcyclohexane depicted by the code,
-\begin{verbatim}
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
-\end{verbatim}
-has a drawing domain due to the \verb/\tetrahedral/ skeleton.
-Thus, the code gives the following output:
-\begin{center}
-\fbox{%
-\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
-}
-\end{center}
-where the frame indicates such a drawing domain,
-when an \verb/\fbox/ command is used around
-the \verb/\tetrahedral/ command.
-The domain shown by the frame (due to \verb/\fbox/) is equal to
-any domain based on the simple use of the \verb/\tetrahedral/ command
-(without using the ``yl''-function).
-For example, compare the above frame with the one
-appearing in the formula,
-\begin{center}
-\fbox{\tetrahedral{0==C;1D==O;4==Cl;2==Cl}}
-\end{center}
-depicted by the code,
-\begin{verbatim}
-\fbox{\tetrahedral{0==C;1D==O;4==Cl;2==Cl}}
-\end{verbatim}
-
-\subsection{Reference Points}
-
-Each \XyMTeX{} command for drawing a mother skeleton
-has its reference point and its inner reference point.
-These points can be printed out by switching
-\verb/\origpt/ on. For example, the code
-\begin{verbatim}
-{
-\origpttrue
-\cyclohexanev{}
-}
-\end{verbatim}
-generates the diagram:
-\begin{center}
-{
-\origpttrue
-\cyclohexanev{}
-}
-\end{center}
-where the solid circle indicates the reference point (0,0) and
-the open circle indicates the inner reference point (400,240).
-The values of cooridates are output on a display and in a log file:
-\begin{verbatim}
-command `sixheterov' origin: (0,0) ---> (400,240)
-\end{verbatim}
-since \verb/\cyclohexanev/ is based on \verb/\sixheterov/.
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Linking Units}
-
-The commands \verb/\ryl/ and \verb/\lyl/ described
-in this chapter are added to
-the {\sf chemstr} package (file name: chemstr.sty).
-The \verb/\divalenth/ command is added to
-the {\sf aliphat} package (file name: aliphat.sty).
-
-\section{$\backslash$ryl command}.
-
-The ``yl''-function provides us with
-a tool to generate a substituent that
-is linked {\itshape directly} to a substitution site
-of a mother skeleton. There are, however,
-many cases in which a substituent
-is linked to a substitution site by an intervening unit
-(e.g., O, SO$_{2}$ and NH).
-The command \verb/\ryl/ is used to
-generate a right-hand substituent with a linking unit.
-For example, the code
-\begin{verbatim}
-\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}
-\end{verbatim}
-produces a benzenesulfonamido substituent,
-\bigskip
-\begin{center}
-\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}
-
-\vspace*{1cm}
-\end{center}
-The resulting unit is added to the SUBSLIST of
-a command for drawing a skeletal command.
-For example, the code
-\begin{verbatim}
-\bzdrh{3==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-generates the following formula:
-\begin{center}
-\vspace*{1cm}
-\bzdrh{3==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}}
-\end{center}
-
-The \verb/\ryl/ command takes two arguments.
-\begin{verbatim}
-\ryl(LINK){GROUP}
-\end{verbatim}
-The first argument LINK in the parentheses indicates
-an intervening unit with an integer showing
-the slope of a left incidental bond.
-For example, the number 5 of the code \verb/5==NH--SO$_{2}$/
-shown above represents that the left terminal is to be linked
-through $(-5,-3)$ bond, though the linking bond
-is not typeset by the \verb/\ryl/ command only.
-The slopes of the linking bonds are designated by
-integers between 0 and 8:
-\begin{center}
-\begin{tabular}{cc|cc|cc}
-0 & $(0,1)$ & 1 & $(-3,5)$ & 2 & $(-1,1)$ \\
-3 & $(-5,3)$ & 4 & $(-1,0)$ & 5 & $(-5,-3)$ \\
-6 & $(-1,-1)$ & 7 & $(-3,-5)$ & 8 & $(0,-1)$ \\
-\end{tabular}
-\end{center}
-
-The second argument GROUP of \verb/\ryl/ is
-a substituent produced by a ``yl''-function,
-where a number before a delimiter (==) indicates
-the slope of a right incidental bond.
-For example, the number 4 of the code
-\verb/4==\bzdrh{1==(yl)}/ shown above
-represents that the right terminal is to be linked
-through $(1,0)$ bond to the benzene ring generated by
-the \verb/\bzdrh/ command.
-The slopes of the linking bonds are designated by
-integers between 0 and 8:
-\begin{center}
-\begin{tabular}{cc|cc|cc}
-0 & $(0,1)$ & 1 & $(3,5)$ & 2 & $(1,1)$ \\
-3 & $(5,3)$ & 4 & $(1,0)$ & 5 & $(5,-3)$ \\
-6 & $(1,-1)$ & 7 & $(3,-5)$ & 8 & $(0,-1)$ \\
-\end{tabular}
-\end{center}
-
-To illustrate linking bonds with various slopes,
-the code
-\begin{verbatim}
-\cyclohexanev[]{%
-1==\ryl(8==NH--SO$_{2}$){1==\bzdrh{6==(yl)}};
-2==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
-3==\ryl(3==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
-4==\ryl(0==NH--SO$_{2}$){7==\bzdrh{2==(yl)}}}
-\end{verbatim}
-is written to give
-
-\vspace*{2cm}
-\begin{center}
-\cyclohexanev[]{%
-1==\ryl(8==NH--SO$_{2}$){1==\bzdrh{6==(yl)}};
-2==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
-3==\ryl(3==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
-4==\ryl(0==NH--SO$_{2}$){7==\bzdrh{2==(yl)}}}
-\end{center}
-\vspace*{2cm}
-
-Other examples are drawn by the code
-\begin{verbatim}
-\cyclohexaneh[]{%
-3==\ryl(7==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
-5==\ryl(1==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
-4==\ryl(4==NH--SO$_{2}$--NH){4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-giving
-\vspace*{1cm}
-\begin{center}
-\cyclohexaneh[]{%
-3==\ryl(7==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
-5==\ryl(1==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
-4==\ryl(4==NH--SO$_{2}$--NH){4==\bzdrh{1==(yl)}}}
-\end{center}
-\vspace*{1cm}
-
-The first argument in the parentheses of the
-command \verb/\ryl/ contains a string of letters
-after an intermediate delimiter ==, where
-a left linking site is shifted according to the
-length of the letter string.
-The above formula shows such an example
-as having NH--SO$_{2}$--NH.
-
-
-The following examples compare the
-``yl''-function with the \verb/\ryl/ command.
-\begin{verbatim}
-\cyclohexaneh{4==\bzdrh{1==(yl)}}
-\hskip2cm
-\cyclohexaneh{4==\ryl(4==O){4==\bzdrh{1==(yl)}}}
-\end{verbatim}
-
-\begin{center}
-\cyclohexaneh{4==\bzdrh{1==(yl)}}
-\hskip2cm
-\cyclohexaneh{4==\ryl(4==O){4==\bzdrh{1==(yl)}}}
-\end{center}
-
-The compound {\bfseries 21}
-on page 299 of the \XyMTeX book
-%``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)
-can be alternatively drawn by using
-the \verb/\ryl/ command, as shown in the code:
-\begin{verbatim}
-\fiveheterov[d]{1==N;5==N}{4==NC;1==\bzdrv{1==(yl)};2D==O;%
-3D==\ryl(5==N-NH){4==\bzdrh{1==(yl);2==\lmoiety{MeO};5==SO$_{2}$Cl}}}
-\end{verbatim}
-which typeset the following formula:
-\begin{center}
-\vspace*{1cm}
-\fiveheterov[d]{1==N;5==N}{4==NC;1==\bzdrv{1==(yl)};2D==O;%
-3D==\ryl(5==N-NH){4==\bzdrh{1==(yl);2==\lmoiety{MeO};5==SO$_{2}$Cl}}}
-
-\vspace*{2cm}
-\end{center}
-
-The first argument of the \verb/\ryl/ is optional; i.e., it can be
-omitted. Such an omitted case is useful to draw a methylene as
-a vertex. For example, a methylene is represented as
-a character string ``CH$_{2}$'', as shown in the formula,
-\begin{center}
-\sixheterov[d]{2==S}{5==\null;%
-3==\ryl(3==CH$_{2}$){3==\sixheterov[d]{2==S}{5==(yl)}}}
-\end{center}
-This formula is generated by the code,
-\begin{verbatim}
-\sixheterov[d]{2==S}{5==\null;%
-3==\ryl(3==CH$_{2}$){3==\sixheterov[d]{2==S}{5==(yl)}}}
-\end{verbatim}
-where the \verb/\ryl/ command takes an optional argument
-in parentheses to draw CH$_{2}$ exciplicitly.
-Such a methylene can alternatively be represented as a simple vertex,
-as shown in the formula,
-\begin{center}
-\sixheterov[d]{2==S}{5==\null;%
-3==\ryl{3==\sixheterov[d]{2==S}{5==(yl)}}}
-\end{center}
-This formula is generated by the code,
-\begin{verbatim}
-\sixheterov[d]{2==S}{5==\null;%
-3==\ryl{3==\sixheterov[d]{2==S}{5==(yl)}}}
-\end{verbatim}
-where the \verb/\ryl/ command takes no optional argument.
-
-The second argument of the \verb/\ryl/ command can
-accomodate substituents other than a substituent
-generated by the ``yl'' function. For example,
-the inner code \verb/\ryl{0A==Me;...}/ in the code,
-\begin{verbatim}
-\sixheterov({bB}{eA}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
-6==\pentamethylenei[a]{}{4B==OH;5B==Me;5==(yl)};%
-2==\ryl{0A==Me;5==\sixheterov({eA}){3==O;5==O}{6==(yl);1B==Me;%
-4Sa==\null;4Sb==\null}}}
-\end{verbatim}
-represents a methyl group on a vertex due to the command \verb/\ryl/.
-Thereby, we have
-\begin{center}
-\vspace*{1cm}
-\sixheterov({bB}{eA}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
-6==\pentamethylenei[a]{}{4B==OH;5B==Me;5==(yl)};%
-2==\ryl{0A==Me;5==\sixheterov({eA}){3==O;5==O}{6==(yl);1B==Me;%
-4Sa==\null;4Sb==\null}}}
-
-\vspace*{1cm}
-\end{center}
-
-
-
-\section{$\backslash$lyl command}
-
-The command \verb/\lyl/ is the left-hand
-counterpart of the command \verb/\ryl/.
-\begin{verbatim}
-\lyl(LINK){GROUP}
-\end{verbatim}
-The slopes of the linking bonds
-concerning the right terminal are designated by
-integers between 0 and 8:
-\begin{center}
-\begin{tabular}{cc|cc|cc}
-0 & $(0,1)$ & 1 & $(3,5)$ & 2 & $(1,1)$ \\
-3 & $(5,3)$ & 4 & $(1,0)$ & 5 & $(5,-3)$ \\
-6 & $(1,-1)$ & 7 & $(3,-5)$ & 8 & $(0,-1)$ \\
-\end{tabular}
-\end{center}
-The slopes of the linking bonds concerning
-the left terminal are designated by
-integers between 0 and 8:
-\begin{center}
-\begin{tabular}{cc|cc|cc}
-0 & $(0,1)$ & 1 & $(-3,5)$ & 2 & $(-1,1)$ \\
-3 & $(-5,3)$ & 4 & $(-1,0)$ & 5 & $(-5,-3)$ \\
-6 & $(-1,-1)$ & 7 & $(-3,-5)$ & 8 & $(0,-1)$ \\
-\end{tabular}
-\end{center}
-
-To illustrate linking bonds with various slopes,
-the code
-\begin{verbatim}
-\cyclohexanev[]{%
-1==\lyl(8==SO$_{2}$--HN){1==\bzdrh{5==(yl)}};%
-6==\lyl(5==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-5==\lyl(3==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-4==\lyl(0==SO$_{2}$--HN){7==\bzdrh{3==(yl)}}}
-\end{verbatim}
-is written to give
-
-
-\vspace*{2cm}
-\begin{center}
-\cyclohexanev[]{%
-1==\lyl(8==SO$_{2}$--HN){1==\bzdrh{5==(yl)}};%
-6==\lyl(5==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-5==\lyl(3==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-4==\lyl(0==SO$_{2}$--HN){7==\bzdrh{3==(yl)}}}
-\end{center}
-\vspace*{2cm}
-
-Other examples are drawn by the code
-\begin{verbatim}
-\cyclohexaneh[]{%
-2==\lyl(7==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};
-6==\lyl(1==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-1==\lyl(4==NH--SO$_{2}$--HN){4==\bzdrh{4==(yl)}}}
-\end{verbatim}
-giving
-\vspace*{1cm}
-\begin{center}
-\cyclohexaneh[]{%
-2==\lyl(7==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};
-6==\lyl(1==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
-1==\lyl(4==NH--SO$_{2}$--NH){4==\bzdrh{4==(yl)}}}
-\end{center}
-\vspace*{1cm}
-
-The first argument in the parentheses of the
-command \verb/\lyl/ contains a string of letters
-after an intermediate delimiter ==, where
-a left linking site is shifted according to the
-length of the letter string.
-The above formula shows such an example
-as having NH--SO$_{2}$--NH.
-
-The structural formula of adonitoxin,
-which has once been depicted in a different way
-in Chapter 15 of the \XyMTeX book
-%``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)
-can be obtained by the code,
-\begin{verbatim}
-\steroid{{{10}}==\lmoiety{OHC};{{14}}==OH;%
-{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
-{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)};%
-3==\lyl(3==O){8==%
-\pyranose{1Sb==(yl);1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
-4Sa==H;5Sb==H;5Sa==CH$_{3}$}}}
-\end{verbatim}
-
-\begin{quotation}
-\vspace*{1cm}
-\hspace*{4cm}
-\steroid{{{10}}==\lmoiety{OHC};{{14}}==OH;%
-{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
-{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)};%
-3==\lyl(3==O){8==%
-\pyranose{1Sb==(yl);1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
-4Sa==H;5Sb==H;5Sa==CH$_{3}$}}}
-\end{quotation}
-
-\vskip1cm
-
-
-\section{Nested $\backslash$ryl and $\backslash$lyl commands}
-
-Two or more \verb/\ryl/ and \verb/\lyl/ commands can be nested.
-Let us illustrate nesting processes by drawing a cyan
-dye releaser, which has once been depicted in different ways
-(see Chapters 14 and 15 of the \XyMTeX book).
-%in ``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)).
-
-\vspace*{1cm}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
-5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}}
-
-\vskip3cm
-First, the code
-\begin{verbatim}
-\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\null}}
-\end{verbatim}
-generates a substituent:
-\begin{quotation}
-\vspace*{1cm}
-\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\null}}
-
-\vspace*{1cm}
-\end{quotation}
-in which the command \verb/\null/ is used to show a further
-substitution site. The resulting substituent is
-nested in the SUBSLIT of another \verb/\bzdrv/ command
-as shown in the code:
-\begin{verbatim}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\null}}}
-\end{verbatim}
-Thereby we have
-\begin{quotation}
-\vskip1cm
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\null}}}
-\end{quotation}
-
-\vskip1cm \noindent
-The inner code \verb/5==\null/ is replaced by a further
-code of substitution:
-\begin{verbatim}
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);5==\null}}%
-\end{verbatim}
-to give a code,
-\begin{verbatim}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);5==\null}}%
-}}}
-\end{verbatim}
-This code generates the following structure (Formula A):
-\begin{quotation}
-\vskip1cm
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
-5==\null}}}}}
-\end{quotation}
-
-\vskip1cm
-Another substituent is typeset by the code,
-\begin{verbatim}
-\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}
-\end{verbatim}
-Then, we have a substituent (Formula B):
-\begin{quotation}
-\vskip1cm
-\hspace*{4cm}\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}
-\end{quotation}
-
-\vspace{3cm}
-Finally, the inner code \verb/5==\null/ for Formula A is replaced
-by the code for Formula B
-in order to combine Formula A with Formula B.
-Then we obtain a code represented by
-\begin{verbatim}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
-5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}}
-\end{verbatim}
-Thereby, we have a target formula:
-
-\vspace*{1cm}
-\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
-2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
-5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
-5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
-8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}}
-
-\vskip3cm
-
-The structural formula of adonitoxin,
-which has benn drawn by considering the steroid nucleus to be
-a mother skeleton in the preceding subsection,
-can be alternatively drawn by nesting
-a ``yl''-function and a \verb/\ryl/ command.
-In this case, the pyranose ring is regarded as a mother skeleton.
-Thus, the code
-\begin{verbatim}
-\pyranose{1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
-4Sa==H;5Sb==H;5Sa==CH$_{3}$;%
-1Sb==\ryl(8==O){3==%
-\steroid{3==(yl);{{10}}==\lmoiety{OHC};{{14}}==OH;%
-{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
-{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)}}}}
-\end{verbatim}
-typesets the following formula:
-\begin{quotation}
-\vspace*{4cm}
-\pyranose{1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
-4Sa==H;5Sb==H;5Sa==CH$_{3}$;%
-1Sb==\ryl(8==O){3==%
-\steroid{3==(yl);{{10}}==\lmoiety{OHC};{{14}}==OH;%
-{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
-{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)}}}}
-\end{quotation}
-
-\section{$\backslash$divalenth command}
-
-The command \verb/\divalenth/ generates a divalent skeleton
-with variable length.
-\begin{verbatim}
-\divalenth{GROUP}{SUBSLIST}
-\end{verbatim}
-The divalent skeleton is given by
-a string of alphabets in the GROUP argument.
-The locant number in the GROUP argument is fixed to be zero.
-For example, the code
-\begin{verbatim}
-\divalenth{0==NHCONH}{1==CH$_{3}$;2==CH$_{3}$}
-\end{verbatim}
-generates a linear formula:
-\begin{center}
-\divalenth{0==NHCONH}{1==CH$_{3}$;2==CH$_{3}$}
-\end{center}
-
-4,4$^{\prime}$-Methylenedibenzoic acid can be drawn in the same line.
-The code
-\begin{verbatim}
-\divalenth{0==CH$_{2}$}{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
-\end{verbatim}
-generates
-\begin{center}
-\divalenth{0==CH$_{2}$}{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
-\end{center}
-
-In place of the CH$_{2}$ unit described in the preceding example,
-we introduce the O--CH$_{2}$--O unit so as to give
-4,4$^{\prime}$-methylenedioxydibenzoic acid. The structurel formula
-can be drawn to be
-\begin{center}
-\divalenth{0==O--CH$_{2}$--O}%
-{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
-\end{center}
-by means of the code:
-\begin{verbatim}
-\divalenth{0==O--CH$_{2}$--O}%
-{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
-\end{verbatim}
-Note that the starting point of the moiety
-generated by the code \verb/2==\bzdrh{1==(yl);4==COOH}/ is
-automatically shifted so as to accomodate the O--CH$_{2}$--O unit.
-
-
-An additional example of the use of the \verb/\divalenth/ command
-is the drawing of
-1,6$^{\prime}$-ureylenedi-2-naphthalenesulfonic acid
-\begin{quotation}
-\vspace*{2cm}\hspace*{4cm}
-\divalenth{0==NH--CO--NH}%
-{1==\naphdrh{4==(yl);3==SO$_{3}$H};2==\naphdrv{6==(yl);2==SO$_{3}$H}}
-
-\vspace*{2cm}
-\end{quotation}
-by means of the code
-\begin{verbatim}
-\divalenth{0==NH--CO--NH}%
-{1==\naphdrh{4==(yl);3==SO$_{3}$H};2==\naphdrv{6==(yl);2==SO$_{3}$H}}
-\end{verbatim}
-
-
-$p$-[2-($m$-Carboxyphenoxy)ethyl]benzoic acid is
-drawn by the code
-\begin{verbatim}
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}%
-{1==\bzdrh{4==(yl);6==COOH};2==\bzdrh{1==(yl);4==COOH}}
-\end{verbatim}
-which generates a formula:
-\begin{center}
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}%
-{1==\bzdrh{4==(yl);6==COOH};2==\bzdrh{1==(yl);4==COOH}}
-
-\vspace*{1cm}
-\end{center}
-The same structure can be depicted by applying
-the ``yl''-function to the \verb/\divalenth/ command.
-The code
-\begin{verbatim}
-\bzdrh{6==COOH;4==%
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
-\end{verbatim}
-generates the same formula:
-\begin{center}
-\bzdrh{6==COOH;4==%
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
-
-\vspace*{1cm}
-\end{center}
-This type of usage gives an equivalent function of
-the command \verb/\ryl/ or \verb/\lyl/. Compare this with
-an example using the \verb/\ryl/ command:
-\begin{verbatim}
-\bzdrh{6==COOH;4==%
-\ryl(4==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
-\end{verbatim}
-This code gives the same formula:
-\begin{center}
-\bzdrh{6==COOH;4==%
-\ryl(4==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
-\end{center}
-
-\section{Remarks}
-
-The use of \verb/\divalenth/ with a ``yl''-function has
-no means of adjusting the left-hand point of linking.
-For example, the code,
-\begin{verbatim}
-\bzdrv{2==COOH;4==%
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
-\end{verbatim}
-give an insufficient formula:
-\begin{center}
-\bzdrv{2==COOH;4==%
-\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
-
-\vspace*{1cm}
-\end{center}
-where the left-hand point of linking should be shifted to
-a more appropiate direction. On the other hand,
-the \verb/\ryl/ (or \verb/\lyl/) command can correctly
-specify the left-hand point of linking. Thus the code,
-\begin{verbatim}
-\bzdrv{2==COOH;4==%
-\ryl(0==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
-\end{verbatim}
-typesets a formula:
-\begin{center}
-\bzdrv{2==COOH;4==%
-\ryl(0==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
-
-\vspace*{1cm}
-\end{center}
-where the code \verb/0==O--CH$_{2}$--CH$_{2}$/ specifies
-the left-hand terminal of the unit O--CH$_{2}$--CH$_{2}$
-is linked at the upper point of the oxygen atom.
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Ring Fusion}
-
-\section{Ring Fusion on Carbocyclic Compounds}
-\subsection{Designation of Fused Bonds}
-
-A unit to be fused is written in the BONDLIST of a command with
-a bond specifier (a lowercase or uppercase alphabet).
-For example, the code
-\begin{verbatim}
-\hanthracenev[{A\sixfusev{}{}{d}}]{}
-\end{verbatim}
-gives a perhydroanthracene with a fused six-membered ring
-at the bond `a' of the perhydroanthracene nucleus:
-\begin{quotation}
-\vskip1cm
-\hanthracenev[{A\sixfusev{}{}{d}}]{}
-\end{quotation}
-The letter `A' of the code
-\verb/{A\sixfusev{}{}{d}}/ is a bond specifier that represents
-the older terminal of the bond `a' of the
-perhydroanthracene nucleus
-(For the designation of the bonds of perhydroanthracene,
-see Chapter 5 of the \XyMTeX book.%
-%``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997).%
-\footnote{%
-The word `older' or `younger' is concerned with the order of numbering
-of vertices. For a six-membered ring, the numbering
-1---2---3---4---5---6---1 shows that
-the terminal 1 of the
-bond `a' (1---2) is youger, while the terminal 2 of the bond
-`a' is older. It should be noted that the terminal 6 of the
-bond `f' (6---1) is youger, while the terminal 1 of the bond
-`f' is older.}
-Note that the younger
-terminal of the bond `a' is designated by the letter `a'.
-On the other hand,
-the code \verb/\sixfusev{}{}{d}/ of \verb/{A\sixfusev{}{}{d}}/
-in the BONDLIST represents the fused six-membered ring
-with the bond `d' omitted. The letter `d' indicates
-that the fusing point of the unit is the youger terminal
-of the omitted bond `d'. If the the fusing point of the unit
-is the other (older) terminal, the
-corresponding uppercase letter `D' should be used.
-
-Accordingly, the same formula can be drawn by the
-code exchanging uppercase and lowercase letters,
-\begin{verbatim}
-\hanthracenev[{a\sixfusev{}{}{D}}]{}
-\end{verbatim}
-Thereby, we have
-\begin{quotation}
-\vskip1cm
-\hanthracenev[{a\sixfusev{}{}{D}}]{}
-\end{quotation}
-
-Two or more rings can be fused. For example,
-the code
-\begin{verbatim}
-\hanthracenev[{A\sixfusev{}{}{d}}{C\sixfusev{}{}{f}}]{}
-\end{verbatim}
-generates a formula with two fused rings at the
-bonds `a' and `c' of a perhydroanthracene nucleus.
-\begin{quotation}
-\vskip1cm
-\hanthracenev[{A\sixfusev{}{}{d}}{C\sixfusev{}{}{f}}]{}
-
-\vskip1cm
-\end{quotation}
-
-The BONDLIST can accomodates usual bond specifiers without
-a fusing unit in order to designate inner double bonds.
-For example, the code
-\begin{verbatim}
-\hanthracenev[aco{A\sixfusev[a]{}{}{d}}]{}
-\end{verbatim}
-gives a hydroanthracene that have inner double bonds
-as well as a fused six-membered ring:
-\begin{quotation}
-\vskip1cm
-\hanthracenev[aco{A\sixfusev[a]{}{}{d}}]{}
-\end{quotation}
-Note that the command \verb/\sixfusev/ can take
-an optional argument to designate inner double bonds,
-as shown by the code \verb/\sixfusev[a]{}{}{d}/.
-
-In order to specify substituents in addition,
-we can use the SUBSLIST of the command \verb/\hanthracenev/ as well
-as the one of the command \verb/\sixfusev/. For example, the code
-\begin{verbatim}
-\hanthracenev[aco{A\sixfusev[a]{}{1==F;2==Cl}{d}}]{5==OH;6==HO}
-\end{verbatim}
-gives a hydroanthracene having additional substituents:
-\begin{quotation}
-\vspace*{1cm}
-\hanthracenev[aco{A\sixfusev[a]{}{1==F;2==Cl}{d}}]{5==OH;6==HO}
-\end{quotation}
-
-The compound {\bfseries 13} on page 294
-(Chapter IV-4) of the \XyMTeX book
-%``\XyMTeX{}---Typesetting Chemical
-%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)
-can alternatively be drawn by applying the
-present technique. Thus, the code
-\begin{verbatim}
-\hanthracenev[achjop{b\sixfusev{}{2==R}{E}}]{%
-1==OCH$_{3}$;4==OH;{10}D==O;%
-9==\lyl(8==C\rlap{O}){4==CH$_{3}$O}}
-\end{verbatim}
-gives the following formula:
-\begin{quotation}
-\hanthracenev[achjop{b\sixfusev{}{2==R}{E}}]{%
-1==OCH$_{3}$;4==OH;{10}D==O;%
-9==\lyl(8==C\rlap{O}){4==CH$_{3}$O}}
-\end{quotation}
-
-
-\section{Ring Fusion on Heterocyclic Compounds}
-
-The methodology of ring fusion for heterocyclic compounds
-is the same as described for carbocyclic compounds.
-Thus, a unit to be fused is written in the BONDLIST of
-a command with a bond specifier (a lowercase or uppercase alphabet).
-For example, the code
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[ac]{}{}{e}}]{1==N}{1==H}
-\end{verbatim}
-gives the structural formula of carbazole:
-\begin{quotation}
-\nonaheterov[begj{b\sixfusev[ac]{}{}{e}}]{1==N}{1==H}
-\end{quotation}
-which is depicted by attaching a six-membered ring
-(\verb/\sixfusev[ac]{}{}{e}}/)
-to the bond `b' of an indole nucleus.
-
-Let us consider the substitution of a carbon atom
-with a nitrogen atom at one of the fused positions
-in the above compound, as shown by the following formula:
-\begin{quotation}
-\nonaheterov[begj{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{1==H}
-\end{quotation}
-This formula is obtained by writing the code:
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{1==H}
-\end{verbatim}
-where the code \verb/6==\null/ in the ATOMLIST of
-\verb/\sixfusev/ (for the fused six-membered ring)
-and the code \verb/3==N/ in the ATOMLIST of
-\verb/\nonaheterov/ produces the nitrogen
-atom at the fused position.
-The specification of the nitrogen atom
-is also available by exchanging \verb/\null/ and \verb/N/.
-Thus the code
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[ac]{6==N}{}{e}}]{1==N;3==\null}{1==H}
-\end{verbatim}
-gives the same structural formula:
-\begin{quotation}
-\nonaheterov[begj{b\sixfusev[ac]{6==N}{}{e}}]{1==N;3==\null}{1==H}
-\end{quotation}
-
-The ring fusion at the bond `a' of perhydroindole
-is represented by the code
-\begin{verbatim}
-\nonaheterov[{a\sixfusev{6==\null}{}{f}}]{1==N}{}
-\end{verbatim}
-which gives a heterocycle:
-\begin{quotation}
-\nonaheterov[{a\sixfusev{6==\null}{}{f}}]{1==N}{}
-\end{quotation}
-
-
-
-Benz[{\itshape h}]isoquinoline,
-\begin{quotation}
-\vspace*{1cm}
-\decaheterovt[acfhk{h\sixfusev[df]{}{}{B}}]{2==N}{}
-\end{quotation}
-can be typset by the code,
-\begin{verbatim}
-\decaheterovt[acfhk{h\sixfusev[df]{}{}{B}}]{2==N}{}
-\end{verbatim}
-in which the bond specifier `h' corresponds to
-the {\itshape h} of the IUPAC name.
-Note that the IUPAC name regards the structure as
-an isoquinoline (drawn by \verb/\decaheterovt/) fused by a benzo moiety.
-The same structure
-can be drawn by the alternative code:
-\begin{verbatim}
-\decaheterov[acfhk{a\sixfusev[bf]{1==N}{}{D}}]{}{}
-\end{verbatim}
-which regards the structure as a naphthalene (drawn by
-\verb/\decaheterov/) with
-a fused heterocycle. Thereby, we have
- \begin{quotation}
-\vspace*{1cm}
-\decaheterov[acfhk{a\sixfusev[bf]{1==N}{}{D}}]{}{}
-\end{quotation}
-
-\section{Neted Ring Fusion}
-
-The \verb/\sixfusev/ command is capable of
-accomodating another \verb/\sixfusev/ command in
-a nested fashion. By this technique,
-the carbazole structure can take a further
-fused ring so as to produce the structural formula
-of 7{\itshape H}-pyrazino[2,3-{\itshape c}]carbaozole.
-Thus, the code,
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[%
-ac{a\sixfusev[bf]{6==N;3==N}{}{D}}]{}{}{e}}]{1==N}{1==H}
-\end{verbatim}
-gives the structural formula of the fused heterocycle:
-\begin{quotation}
-\vspace*{1cm}
-\nonaheterov[begj{b\sixfusev[%
-ac{a\sixfusev[bf]{6==N;3==N}{}{D}}]{}{}{e}}]{1==N}{1==H}
-\end{quotation}
-which is depicted by attaching a six-membered ring
-(\verb/\sixfusev[ac]{}{}{e}}/)
-to the bond `b' of an indole nucleus.
-
-The structural formula of
-pyrido[1$^{\prime}$,2$^{\prime}$:1,2]imidazo[4,5-{\itshape b}]quinoxaline,
-\begin{center}
-\nonaheterov[adh%
-{b\sixfusev[ac]{6==\null}{}{e}}%
-{f\sixfusev[ace]{}{}{b}}]{1==N;3==N;4==N;7==N}{}
-\end{center}
-is generated by the code,
-\begin{verbatim}
-\nonaheterov[adh%
-{b\sixfusev[ac]{6==\null}{}{e}}%
-{f\sixfusev[ace]{}{}{b}}]{1==N;3==N;4==N;7==N}{}
-\end{verbatim}
-Since this code is intended to contain no nested ring fusion,
-the order of structure construction is different
-from that of the IUPAC name.
-
-The IUPAC name,
-pyrido[1$^{\prime}$,2$^{\prime}$:1,2]imidazo[4,5-{\itshape b}]quinoxaline,
-corresponds to a quinaxaline with a fused five-membered ring (an imidazo
-moiety) which is in turn fused by a six-membered ring (a pyrido moiety).
-The order of constructing the IUPAC name is realized in the code
-with nested ring fusion,
-\begin{verbatim}
-\decaheterov[acegi%
-{b\fivefusev[a{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{}{d}}]
-{1==N;4==N}{}
-\end{verbatim}
-which produces the same structure,
-\begin{center}
-\decaheterov[acegi%
-{b\fivefusev[a{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{}{d}}]
-{1==N;4==N}{}
-\end{center}
-
-Note that the indicators `1$^{\prime}$,2$^{\prime}$' and `1,2'of
-the locant [1$^{\prime}$,2$^{\prime}$:1,2] in the IUPAC name
-correspond respectively to the
-bond specifiers , `E' and `b', appeared in the code,
-\verb/{b\sixfusev[ac]{6==\null}{}{E}}/.
-On the other hand, the indicators,
-`4,5' and `{\itshape b}' of of the locant [4,5-{\itshape b}]
-are respectively associated with
-the specifiers, `d' and `b', appeared in the code,
-\verb/{b\fivefusev[...]{1==N;3==N}{}{d}}/.
-
-An alkaloid with a coryanthe skeleton
-(R. T. Brown and C. L. Chapple, {\itshape Chem. Commun.},
-1973, 887) can be typeset by the code with nested fusion,
-\begin{verbatim}
-\nonaheterov[begj{b\sixfusev[%
-{c\sixfusev{1==\null}{3SB==H;3SA==Et;%
-4GA==H;%
-4B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}{F}}]%
-{3==N}{4GB==H;2B==COOMe}{e}}]{1==N}{1==H}
-\end{verbatim}
-where a six-five ring drawn by the command \verb/\nonaheterov/
-is regarded as a mother skeleton. Thus, we have
-\begin{quotation}
-\nonaheterov[begj{b\sixfusev[%
-{c\sixfusev{1==\null}{3SB==H;3SA==Et;%
-4GA==H;%
-4B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}{F}}]%
-{3==N}{4GB==H;2B==COOMe}{e}}]{1==N}{1==H}
-\vspace*{2cm}
-\end{quotation}
-For the command \verb/\dimethylenei/, see the chapter at issue.
-
-When a six-six ring drawn by the command \verb/\decaheterovb/
-is regarded as a mother skeleton, as shown in the code with
-another nested ring fusion,
-\begin{verbatim}
-\decaheterovb[f{f\fivefusev[d{d\sixfusev[df]{}{}{b}}]%
-{1==N}{1==H}{b}}]{8a==N}{9B==H;2SA==Et;2SB==H;8B==COOMe;%
-3GA==H;%
-3B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}
-\end{verbatim}
-we find another way of drawing the same structural formula,
-\begin{center}
-\decaheterovb[f{f\fivefusev[d{d\sixfusev[df]{}{}{b}}]%
-{1==N}{1==H}{b}}]{8a==N}{9B==H;2SA==Et;2SB==H;8B==COOMe;%
-3GA==H;%
-3B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}
-
-\vspace*{1cm}
-\end{center}
-
-The following example shows a code with complicated
-nested structure:
-\begin{verbatim}
-\cyclohexanev[%
-{a\sixfusev[{b\sixfusev[{c\sixfusev[{c\sixfusev[%
-{d\sixfusev[{d\sixfusev[{d\sixfusev[%
-{e\sixfusev[{e\sixfusev[{e\sixfusev[{e\sixfusev[%
-{f\sixfusev[{f\sixfusev[]{}{}{C}}]{}{}{C}}%
-]{}{}{B}}]{}{}{B}}]{}{}{B}}]{}{}{B}}%
-]{}{}{A}}]{}{}{A}}]{}{}{A}}]{}{}{F}}%
-]{}{}{F}}]{}{}{E}}]{}{}{D}}%
-{c\sixfusev[{d\sixfusev[{e\sixfusev[{e\sixfusev[%
-{f\sixfusev[{f\sixfusev[{f\sixfusev[%
-{a\sixfusev[{a\sixfusev[{a\sixfusev[{a\sixfusev[%
-{b\sixfusev[{b\sixfusev[]{}{}{E}}]{}{}{E}}%
-]{}{}{D}}]{}{}{D}}]{}{}{D}}]{}{}{D}}%
-]{}{}{C}}]{}{}{C}}]{}{}{C}}]{}{}{B}}%
-]{}{}{B}}]{}{}{A}}]{}{}{F}}%
-{e\sixfusev[{f\sixfusev[{a\sixfusev[{a\sixfusev[%
-{b\sixfusev[{b\sixfusev[{b\sixfusev[%
-{c\sixfusev[{c\sixfusev[{c\sixfusev[{c\sixfusev[%
-{d\sixfusev[{d\sixfusev[]{}{}{A}}]{}{}{A}}%
-]{}{}{F}}]{}{}{F}}]{}{}{F}}]{}{}{F}}%
-]{}{}{E}}]{}{}{E}}]{}{}{E}}]{}{}{D}}%
-]{}{}{D}}]{}{}{C}}]{}{}{B}}%
-]{}
-\end{verbatim}
-This code generates a multiply fused formula:
-
-\clearpage
-
-\begin{center}
-\vspace*{8cm}
-\cyclohexanev[%
-{a\sixfusev[{b\sixfusev[{c\sixfusev[{c\sixfusev[%
-{d\sixfusev[{d\sixfusev[{d\sixfusev[%
-{e\sixfusev[{e\sixfusev[{e\sixfusev[{e\sixfusev[%
-{f\sixfusev[{f\sixfusev[]{}{}{C}}]{}{}{C}}%
-]{}{}{B}}]{}{}{B}}]{}{}{B}}]{}{}{B}}%
-]{}{}{A}}]{}{}{A}}]{}{}{A}}%
-]{}{}{F}}%
-]{}{}{F}}]{}{}{E}}]{}{}{D}}%
-{c\sixfusev[{d\sixfusev[{e\sixfusev[{e\sixfusev[%
-{f\sixfusev[{f\sixfusev[{f\sixfusev[%
-{a\sixfusev[{a\sixfusev[{a\sixfusev[{a\sixfusev[%
-{b\sixfusev[{b\sixfusev[]{}{}{E}}]{}{}{E}}%
-]{}{}{D}}]{}{}{D}}]{}{}{D}}]{}{}{D}}%
-]{}{}{C}}]{}{}{C}}]{}{}{C}}%
-]{}{}{B}}%
-]{}{}{B}}]{}{}{A}}]{}{}{F}}%
-{e\sixfusev[{f\sixfusev[{a\sixfusev[{a\sixfusev[%
-{b\sixfusev[{b\sixfusev[{b\sixfusev[%
-{c\sixfusev[{c\sixfusev[{c\sixfusev[{c\sixfusev[%
-{d\sixfusev[{d\sixfusev[]{}{}{A}}]{}{}{A}}%
-]{}{}{F}}]{}{}{F}}]{}{}{F}}]{}{}{F}}%
-]{}{}{E}}]{}{}{E}}]{}{}{E}}%
-]{}{}{D}}%
-]{}{}{D}}]{}{}{C}}]{}{}{B}}%
-]{}
-\end{center}
-
-
-
-\clearpage
-
-
-
-\section{Remarks}
-
-\subsection{OPT Arguments}
-
-It should be noted that the OPT arguments of
-such commands as \verb/\bzdrv/, \verb/\naphdrv/,
-and \verb/\anthracenev/ cannot be used
-for the ring-fusion technique. In place of the OPT argument,
-the BONDLIST argument of the corresponding general
-command, e.g. \verb/\cyclohexanev/ or \verb/\sixheterov/
-correspoding to \verb/\bzdrv/,
-should be used for the purpose of ring fusion. .
-For example, a bezene ring of the formula,
-\begin{center}
-\vspace*{1cm}
-\cyclohexanev[ace{a\sixfusev{}{}{D}}]{}
-\end{center}
-should be drawn by using the \verb/\cyclohexanev/ command,
-as shown in the code:
-\begin{verbatim}
-\cyclohexanev[ace{a\sixfusev{}{}{D}}]{}
-\end{verbatim}
-
-\subsection{\protect\XyMTeX{} Warning}
-
-An incorrect result due to
-a wrong specification of a fused bond is
-notified by a \XyMTeX{} warning.
-For example, the code,
-\begin{verbatim}
-\hanthracenev[{a\sixfusev{}{}{d}}]{}
-\end{verbatim}
-gives a formula of wrong fusion:
-\begin{center}
-\vspace*{2cm}
-\hanthracenev[{a\sixfusev{}{}{d}}]{}
-\end{center}
-According to this wrong situation,
-a \XyMTeX{} warning appears in a display or in a log file, e.g.,
-\begin{verbatim}
- XyMTeX Warning: Mismatched fusion at bond `a, i, or other'
- on input line 1904
-\end{verbatim}
-There are two ways to correct the wrong fusion and,
-as a result, to avoid such a \XyMTeX{} warning.
-First, the code
-\begin{verbatim}
-\hanthracenev[{A\sixfusev{}{}{d}}]{}
-\end{verbatim}
-in which the acceptor bond specifier `a' is changed into `A',
-gives a correct result, as found in the top example of
-this chapter. Alternatively,
-the donor bond specifier `d' can be changed into `D'.
-Thus, the code,
-\begin{verbatim}
-\hanthracenev[{a\sixfusev{}{}{D}}]{}
-\end{verbatim}
-also typesets the second formula with correct fusion.
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Fusing Units}
-
-The commands described in this chapter are stored in
-the {\sf fusering} package (file name: fusering.sty).
-
-\section{Six-membered Fusing Units}
-\subsection{Vertical Units of Normal and Inverse Types}
-In \XyMTeX{} version 1.01, we can use \verb/\sixunitv/
-and \verb/\fiveunitv/ as building blocks, where
-one or more bonds can be omitted.
-In the present version, we prepare
-such commands as \verb/\sixfusev/ an \verb/\sixfusevi/,
-producing building blocks with only one deleted bond.
-These commands can be used in the BONDLIST of another
-command so as to give a fused structural formula,
-as described in the preceding chapter.
-The commands \verb/\sixfusev/ and \verb/\sixfusevi/ have formats
-represented by
-\begin{verbatim}
-\sixfusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\sixfusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--f)
-or the uppercase counterpart (A--F),
-each of which is a bond specifier representing one bond to be omitted.
-A lowercase character (a--f) represents the younger terminal of
-the omitted bond.
-The corresponding uppercase character (A--F) designates
-the other terminal of the bond to be omitted.
-The other arguments have the same formats as described
-in the general conventions (see \XyMTeX book).
-The locant numbers and the bond specifiers of
-the command \verb/\sixfusev/ correspond to
-those of the command \verb/\sixheterov/ (see \XyMTeX book).
-The command \verb/\sixfusevi/ is the inverse counterpart
-of \verb/\sixfusev/ and corresponds to the command \verb/\sixheterovi/.
-Moreover, the BONDLIST is capbable of
-accormodating the ring-fusion function described
-in the preseding chapter,
-the ATOMLIST can accomodate the spiro-ring function
-described afterward, and
-the SUBSLIST serves a method producing subsituents (``yl''-function)
-describe previously.
-
-For example, the last argument `F' of the \verb/\sixfusev/
-appearing in the code,
-\begin{verbatim}
-\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}
-\end{verbatim}
-results in the deletion of the bond `f' between atom no.~6 (youger
-teminal) and atom no.~1 (older terminal) from a hexagon,
-typesetting the following building block:
-\begin{center}
-\sixfusev[]{1==\null}{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}
-
-\vspace*{3cm}
-\end{center}
-where the reference point for superposition is
-the older terminal (i.e. atom no.~1) of the bond `f'.
-The code \verb/1==\null/ gives a vacancy at the position of atom no.~1.
-When the building block is used in the BONDLIST of
-the \verb/\decaheterov/, as shown in the code,
-\begin{verbatim}
-\decaheterov[fhk%
-{c\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
-\end{verbatim}
-we have the following structure,
-\begin{center}
-\decaheterov[fhk%
-{c\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
-\vspace*{2cm}
-\end{center}
-
-The last argument `F' of the \verb/\sixfusev/
-can be changed into `f', as found in the code,
-\begin{verbatim}
-\decaheterovi[fhk%
-{a\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{f}}]{2==N}{6==CH$_3$O;7==CH$_3$O}
-\end{verbatim}
-where we use \verb/\decaheterovi/ in place of
-\verb/\decaheterov/ for drawing the bicyclic mother skeleton.
-Thereby, we have the following structure,
-\begin{center}
-\decaheterovi[fhk%
-{a\sixfusev[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{f}}]{2==N}{6==CH$_3$O;7==CH$_3$O}
-\vspace*{2cm}
-\end{center}
-
-The vertically opposite formula can be drawn by the combination of
-\verb/\sixfusevi/ and \verb/\decaheterovi/ with no other changes
-of designation (in comparison with the first code of this
-section), i.e.
-\begin{verbatim}
-\decaheterovi[fhk%
-{c\sixfusevi[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
-\end{verbatim}
-Thereby we have
-\begin{center}
-\vspace*{2cm}
-\decaheterovi[fhk%
-{c\sixfusevi[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
-\end{center}
-
-\subsection{Horizontal Units of Normal and Inverse Types}
-
-For drawing horizontal fusing units,
-we can use the commands \verb/\sixfuseh/ and \verb/\sixfusehi/,
-which are represented by
-\begin{verbatim}
-\sixfuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\sixfusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-
-The horizontal formula of normal type related to the tricyclic
-formulas described in the preceding subsection
-can be drawn by the combination of
-\verb/\sixfuseh/ and \verb/\decaheteroh/ with few changes
-of designation (CH$_{3}$O to OCH$_{3}$), i.e.
-\begin{verbatim}
-\decaheteroh[fhk%
-{c\sixfuseh[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
-\end{verbatim}
-which typsets the following structure,
-\begin{center}
-\vspace*{1cm}
-\decaheteroh[fhk%
-{c\sixfuseh[]{1==\null}%
-{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
-\end{center}
-
-The horizontally opposite formula can be drawn by the combination of
-\verb/\sixfusehi/ and \verb/\decaheterohi/ with
-slight changes concerning the handedness of subsitutents, i.e.
-\begin{verbatim}
-\decaheterohi[fhk%
-{c\sixfusehi[]{1==\null}%
-{3==C$_2$H$_5$;4==C$_2$H$_5$OCOCH$_2$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
-\end{verbatim}
-Thereby we have
-\begin{center}
-\vspace*{1cm}
-\decaheterohi[fhk%
-{c\sixfusehi[]{1==\null}%
-{3==C$_2$H$_5$;4==C$_2$H$_5$OCOCH$_2$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
-\end{center}
-
-\section{Five-membered Fusing Units}
-\subsection{Vertical Units of Normal and Inverse Types}
-To obtain a vertical five-membered building block,
-we can use \verb/\fivefusev/ and \verb/\fivefusevi/:
-\begin{verbatim}
-\fivefusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\fivefusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--e)
-or the uppercase counterpart (A--E),
-each of which is a bond specifier representing one bond to be omitted.
-The other specifications have the same formats
-as found in the preceding section.
-
-The following example (left) gives the use of the \verb/\fivefusevi/
-command by itself, where its SUBSLIST contains some substituents:
-\begin{verbatim}
-\fivefusevi{4==O}{2D==;3D==O}{E} \hskip 3cm
-\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}
-\end{verbatim}
-\begin{center}
-%\vspace*{1cm}
-\fivefusevi{4==O}{2D==;3D==O}{E} \hskip 3cm
-\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}
-
-\vspace*{2cm}
-\end{center}
-To show hydrogen substitution at the fused positions, we
-add the designation of \verb/1GA==H;5GB==H/ to the
-SUBSLIST of the \verb/\fivefusevi/ command (right above).
-Then, the latter code is written in the BONDLIST of
-a command \verb/\decalinev/, as found in the code:
-\begin{verbatim}
-\decalinev[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]%
-{6D==O;5A==;0FB==;0GA==H}
-\end{verbatim}
-Thereby, we obtain
-\begin{center}
-\decalinev[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]%
-{6D==O;5A==;0FB==;0GA==H}
-
-\vspace*{1cm}
-\end{center}
-
-Fusing units such as \verb/\fivefusev/
-can be multiply nested in itself and in other types of fusing units.
-The following example shows such a trebly-nested case.
-\begin{verbatim}
-\decaheterovi[AB%
-{b\fivefusev[{a\sixfusev[ce%
-{c\sixfusev{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{verbatim}
-\begin{quotation}
-\decaheterovi[AB%
-{b\fivefusev[{a\sixfusev[ce%
-{c\sixfusev{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-
-\vspace*{2cm}
-\end{quotation}
-
-When all of the commands in the above code are
-changed into the inverse counterparts
-(\verb/\decaheterovi/ to \verb/\decaheterov/;
-\verb/\fivefusev/ and \verb/\fivefusevi/; and
-\verb/\sixfusev/ to \verb/\sixfusevi/),
-the code is transformed into another code,
-\begin{verbatim}
-\decaheterov[AB%
-{b\fivefusevi[{a\sixfusevi[ce%
-{c\sixfusevi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{verbatim}
-Thereby, we can obtain the formula of vertically inverse type.
-\begin{quotation}
-\vspace*{2cm}
-\decaheterov[AB%
-{b\fivefusevi[{a\sixfusevi[ce%
-{c\sixfusevi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{quotation}
-
-\subsection{Horizontal Units of Normal and Inverse Types}
-Horizontal five-membered building block are
-obtained by using \verb/\fivefuseh/ and \verb/\fivefusehi/:
-\begin{verbatim}
-\fivefuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\fivefusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--e)
-or the uppercase counterpart (A--E),
-each of which is a bond specifier representing one bond to be omitted.
-The other specifications have the same formats
-as found in the preceding section.
-
-The example given for \verb/\fivefusevi/ is
-changed into the one using the horizontal counterpart \verb/\fivefusehi/:
-\begin{verbatim}
-\decalineh[h{c\fivefusehi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]{5A==;6D==O}
-\end{verbatim}
-\begin{center}
-\vspace*{1cm}
-\decalineh[h{c\fivefusehi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]{5A==;6D==O}
-\end{center}
-Note that no changes of other designation are necessary except that
-\verb/\decalineh/ and \verb/\fivefusehi/ are used
-in place of the vertical counterpart described above.
-
-The multiply nested example described above for drawing
-a structure of vertical type can be changed into
-the corresponding one of horizontal type,
-if all of the commmands are changed into horizontal types
-(\verb/\decaheterovi/ to \verb/\decaheterohi/;
-\verb/\fivefusev/ to \verb/\fivefuseh/; and
-\verb/\sixfusev/ to \verb/\sixfuseh/).
-
-\begin{verbatim}
-\decaheterohi[AB%
-{b\fivefuseh[{a\sixfuseh[ce%
-{c\sixfuseh{3==O}{4D==O;5SB==OH;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{verbatim}
-\begin{quotation}
-\vspace*{2cm}\hspace*{4cm}
-\decaheterohi[AB%
-{b\fivefuseh[{a\sixfuseh[ce%
-{c\sixfuseh{3==O}{4D==O;5SB==OH;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{quotation}
-
-When all the commands in the above code are
-changed into the inverse counterparts
-(\verb/\decaheterohi/ to \verb/\decaheteroh/;
-\verb/\fivefuseh/ and \verb/\fivefusehi/; and
-\verb/\sixfuseh/ to \verb/\sixfusehi/),
-the code is transformed into another code,
-\begin{verbatim}
-\decaheteroh[AB%
-{b\fivefusehi[{a\sixfusehi[ce%
-{c\sixfusehi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{verbatim}
-Thereby, we can obtain the formula of horizontally inverse type.
-\begin{quotation}
-\vspace*{2cm}\hspace*{4cm}
-\decaheteroh[AB%
-{b\fivefusehi[{a\sixfusehi[ce%
-{c\sixfusehi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
-{2==N}{}{D}}]{1==N}{}
-\end{quotation}
-
-\section{Four-membered Fusing Units}
-
-To obtain a four-membered building block,
-we can use \verb/\fourfuse/:
-\begin{verbatim}
-\fourfuse[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--d)
-or the uppercase counterpart (A--D),
-each of which is a bond specifier representing one bond to be omitted.
-The assignment of characters (a to d) and locants (1 to 4)
-for the command \verb/\fourhetero/ is applied
-in the same way to this case.
-The other specifications have the same formats
-as those of the command \verb/\fourhetero/.
-
-For example, the code,
-\begin{verbatim}
-\sixheterov[{e\fourfuse{}{}{b}}]{}{}
-\sixheterov[{b\fourfuse{}{}{d}}]{}{}
-\sixheteroh[{b\fourfuse{}{}{a}}]{}{}
-\sixheteroh[{e\fourfuse{}{}{c}}]{}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheterov[{e\fourfuse{}{}{b}}]{}{}
-\sixheterov[{b\fourfuse{}{}{d}}]{}{}
-\sixheteroh[{b\fourfuse{}{}{a}}]{}{}
-\sixheteroh[{e\fourfuse{}{}{c}}]{}{}
-\end{center}
-
-A hetero atom at a fused position is designated in the ATOMLIST
-of \verb/\fourfuse/, which is associated the code \verb/\null/
-in the ATOMLIST of a command for drawing a mother skeleton.
-For example, the code
-\begin{verbatim}
-\sixheterov[{e\fourfuse{3==N}{}{b}}]{6==\null}{}
-\sixheterov[{b\fourfuse{4==N}{}{d}}]{2==\null}{}
-\sixheteroh[{b\fourfuse{2==N}{}{a}}]{3==\null}{}
-\sixheteroh[{e\fourfuse{3==N}{}{c}}]{5==\null}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheterov[{e\fourfuse{3==N}{}{b}}]{6==\null}{}
-\sixheterov[{b\fourfuse{4==N}{}{d}}]{2==\null}{}
-\sixheteroh[{b\fourfuse{2==N}{}{a}}]{3==\null}{}
-\sixheteroh[{e\fourfuse{3==N}{}{c}}]{5==\null}{}
-\end{center}
-
-Penicillin G can be drawn by using the \verb/\fourfuse/ command
-in the code,
-\begin{verbatim}
-\fiveheterovi[{d\fourfuse{2==\null}{1D==O;4Su==PhCH$_{2}$CONH;4Sd==H}{b}}]%
-{1==S;4==N}{2Sa==CH$_{3}$;2Sb==CH$_{3}$;3SA==COOH;3SB==H;5GA==H}
-\end{verbatim}
-which typeset the following formula:
-\begin{center}
-\fiveheterovi[{d\fourfuse{2==\null}{1D==O;4Su==PhCH$_{2}$CONH;4Sd==H}{b}}]%
-{1==S;4==N}{2Sa==CH$_{3}$;2Sb==CH$_{3}$;3SA==COOH;3SB==H;5GA==H}
-\end{center}
-
-\section{Three-membered Fusing Units}
-\subsection{Vertical Units of Normal and Inverse Types}
-To obtain three-membered building blocks of
-vertical type, we can use \verb/\threefusev/ and \verb/\threefusevi/:
-\begin{verbatim}
-\threefusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\threefusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--c)
-or the uppercase counterpart (A--C),
-each of which is a bond specifier representing one bond to be omitted.
-The assignment of characters (a to c) and locants (1 to 3)
-for the command \verb/\threeheterov/ or \verb/\threeheterovi/ is applied
-in the same way to this case.
-The other specifications have the same formats
-as those of the command \verb/\threeheterov/ or \verb/\threeheterovi/.
-
-For example, the code using \verb/\threefusev/,
-\begin{verbatim}
-\sixheteroh[{a\threefusev{}{}{a}}]{}{}
-\sixheteroh[{e\threefusev{}{}{b}}]{}{}
-\sixheteroh[{c\threefusev{}{}{c}}]{}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheteroh[{a\threefusev{}{}{a}}]{}{}
-\sixheteroh[{e\threefusev{}{}{b}}]{}{}
-\sixheteroh[{c\threefusev{}{}{c}}]{}{}
-\end{center}
-The use of the inverse type is shown in the code,
-\begin{verbatim}
-\sixheteroh[{F\threefusevi{}{}{a}}]{}{}
-\sixheteroh[{B\threefusevi{}{}{b}}]{}{}
-\sixheteroh[{D\threefusevi{}{}{c}}]{}{}
-\end{verbatim}
-which produces the following structural formulas.
-\begin{center}
-\sixheteroh[{F\threefusevi{}{}{a}}]{}{}
-\sixheteroh[{B\threefusevi{}{}{b}}]{}{}
-\sixheteroh[{D\threefusevi{}{}{c}}]{}{}
-\end{center}
-
-Hetero-atoms at fused positions can be typeset by designating
-ATOMLISTs. For example, the code,
-\begin{verbatim}
-\sixheteroh[{a\threefusev{1==N}{}{a}}]{1==\null}{}
-\sixheteroh[{e\threefusev{2==N}{}{b}}]{5==\null}{}
-\sixheteroh[{c\threefusev{3==N}{}{c}}]{3==\null}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheteroh[{a\threefusev{1==N}{}{a}}]{1==\null}{}
-\sixheteroh[{e\threefusev{2==N}{}{b}}]{5==\null}{}
-\sixheteroh[{c\threefusev{3==N}{}{c}}]{3==\null}{}
-\end{center}
-
-\subsection{Horizontal Units of Normal and Inverse Types}
-Three-membered building blocks of
-horizontal type can be obtained by using
-\verb/\threefuseh/ and \verb/\threefusehi/:
-\begin{verbatim}
-\threefuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\threefusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
-\end{verbatim}
-where the argument FUSE is an alphabetical character (a--c)
-or the uppercase counterpart (A--C),
-each of which is a bond specifier representing one bond to be omitted.
-The assignment of characters (a to c) and locants (1 to 3)
-for the command \verb/\threeheteroh/ or \verb/\threeheterohi/ is applied
-in the same way to this case.
-The other specifications have the same formats
-as those of the command \verb/\threeheteroh/ or \verb/\threeheterohi/.
-
-For example, the code using \verb/\threefuseh/,
-\begin{verbatim}
-\sixheterov[{F\threefuseh{}{}{a}}]{}{}
-\sixheterov[{B\threefuseh{}{}{b}}]{}{}
-\sixheterov[{D\threefuseh{}{}{c}}]{}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheterov[{F\threefuseh{}{}{a}}]{}{}
-\sixheterov[{B\threefuseh{}{}{b}}]{}{}
-\sixheterov[{D\threefuseh{}{}{c}}]{}{}
-\end{center}
-The use of the inverse type is shown in the code,
-\begin{verbatim}
-\sixheterov[{a\threefusehi{}{}{a}}]{}{}
-\sixheterov[{e\threefusehi{}{}{b}}]{}{}
-\sixheterov[{c\threefusehi{}{}{c}}]{}{}
-\end{verbatim}
-which produces the following structural formulas.
-\begin{center}
-\sixheterov[{a\threefusehi{}{}{a}}]{}{}
-\sixheterov[{e\threefusehi{}{}{b}}]{}{}
-\sixheterov[{c\threefusehi{}{}{c}}]{}{}
-\end{center}
-
-Hetero-atoms at fused positions can be typeset by designating
-ATOMLISTs. For example, the code,
-\begin{verbatim}
-\sixheterov[{F\threefuseh{1==N}{}{a}}]{1==\null}{}
-\sixheterov[{B\threefuseh{2==N}{}{b}}]{3==\null}{}
-\sixheterov[{D\threefuseh{3==N}{}{c}}]{5==\null}{}
-\end{verbatim}
-produces the following structural formulas.
-\begin{center}
-\sixheterov[{F\threefuseh{1==N}{}{a}}]{1==\null}{}
-\sixheterov[{B\threefuseh{2==N}{}{b}}]{3==\null}{}
-\sixheterov[{D\threefuseh{3==N}{}{c}}]{5==\null}{}
-\end{center}
-
-An aziridine derivative,
-\begin{center}
-\sixheterov[{B\threefuseh{1==N}{1==COOC$_{2}$H$_{5}$}{b}}]{}{}
-\end{center}
-can be drawn by the code,
-\begin{verbatim}
-\sixheterov[{B\threefuseh{1==N}{1==COOC$_{2}$H$_{5}$}{b}}]{}{}
-\end{verbatim}
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Spiro Rings}
-\section{General Conventions for Spiro-Ring Attachment}
-
-There are several ways for naming spiro compounds
-in the light of the IUPAC nomenclature.
-Rule A-41.4 allows us to use such a name as
-spiro[cyclopentane-1,1$^{\prime}$-indene]
-for representing the following structure:
-\begin{center}
-\vspace*{1cm}
-\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{}
-\end{center}
-The same structure is named indene-1-spiro-1$^{\prime}$-cyclohexane
-in terms of Rule A-42.1.
-Spiro[5.5]undecane, the name due to Rule A-41.1 and A-41.2,
-is alternatively referred to as
-cyclohexanespirocyclohexane in terms of Rule A-42.1:
-\begin{center}
-\vspace*{1cm}
-\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{}
-\end{center}
-where the `cyclohexanespiro' shows the replacement of a
-carbon atom in a cyclohexne by another cyclohexane ring.
-These rules essentially have the same methodology as the
-IUPAC replacement nomenclature, e.g.,
-oxacyclohexane (more formally, oxane or tetrahydropyran)
-for the formula
-\begin{center}
-\sixheterov[]{1==O}{}
-\end{center}
-generated by the code,
-\begin{verbatim}
-\sixheterov[]{1==O}{}
-\end{verbatim}
-where the prefix `oxa' shows the replacement of a
-carbon atom with an oxygen atom.
-Obviously, the prefix `cyclohexanespiro' of the name
-`cyclohexanespirocyclohexane' is akin to
-the prefix `oxa' of the name `oxacyclohexane' or `oxane'
-from the viewpoint of the construction of names.
-Since the unit due to the latter prefix is designated by
-the \verb/1==O/ involved in the ATOMLIST,
-the former prefix can be treated in the same way.
-Hence, spiro compounds are drawn as follows:
-\begin{enumerate}
-\item
-\XyMTeX{} regards a spiro ring
-as a unit for the IUPAC replacement nomenclature,
-which is generated from an appropriate structure by ``yl''-function.
-\item the code of the unit due to the ``yl''-function is added to
-the ATOMLIST of a mother skeleton.
-\end{enumerate}
-
-Spiro[5.5]undecane is regarded as `cyclohexana'-cyclohexane
-(more formally, `cyclohexanespiro'-cyclo\-hexane),
-as found in the code,
-\begin{verbatim}
-\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{}
-\end{verbatim}
-where the code
-\verb/\sixheterov[]{}{4==(yl)}/ produced by the ``yl''-function
-corresponds to the suffix `cyclohexana' and
-is written in the ATOMLIST of the outer \verb/sixheterov/ command.
-Thereby, we can obtain
-\begin{center}
-\vspace*{1cm}
-\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{}
-\end{center}
-
-Note that the atom modifier `s' in the code
-\verb/1s==\sixheterov[]{}{4==(yl)}/ represents no
-hetero-atom at the spiro position.
-When a hetero-atom is present at the spiro position,
-an atom modifier `h' is used in place of `s'.
-For example, the code
-\begin{verbatim}
-\sixheterov[]{1h==\sixheterov[]{4==N}{4==(yl)}}{}
-\end{verbatim}
-typeset the following formula:
-\begin{center}
-\vspace*{1cm}
-\sixheterov[]{1h==\sixheterov[]{4==N}{4==(yl)}}{}
-\end{center}
-
-It should be noted that the absence of such atom
-modifiers represents a usual replacement by
-a hetero atom, as found in the formula of
-oxane shown above or in the one of
-thiacyclohexane (tetrahydrothiane):
-\begin{center}
-\sixheterov[]{1==S}{}
-\end{center}
-generated by the code,
-\begin{verbatim}
-\sixheterov[]{1==S}{}
-\end{verbatim}
-
-\section{Several Examples}
-
-Spiro[cyclopentane-1,1$^{\prime}$-indene] described above
-can be drawn in two ways:
-\begin{center}
-\vspace*{1cm}
-\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{}
-\fiveheterov{1s==\nonaheterovi[begj]{}{1==(yl)}}{}
-
-\vspace*{1cm}
-\end{center}
-where we use two different codes:
-\begin{verbatim}
-\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{}
-\fiveheterov{1s==\nonaheterovi[begj]{}{1==(yl)}}{}
-\end{verbatim}
-which correspond to
-`cyclohexane-1-spiro-1$^{\prime}$-indene' and
-`indene-1-spiro-1$^{\prime}$-cyclohexane' (formal),
-respectively.
-
-A spiro dienone
-\begin{center}
-\vspace*{1cm}
-\sixheterov[be]{%
-1s==\fiveheterov{4==N}{1==(yl);3SB==H;3SA==COOCH$_{2}$Ph;%
-4==PhCH$_{2}$OCO;5D==O}}{4D==O}
-\end{center}
-can be drawn by writing a code,
-\begin{verbatim}
-\sixheterov[be]{%
-1s==\fiveheterov{4==N}{1==(yl);3SB==H;3SA==COOCH$_{2}$Ph;%
-4==PhCH$_{2}$OCO;5D==O}}{4D==O}
-\end{verbatim}
-
-1-Azaspiro[5.5]undecene
-which is the skeleton present in histrionicotoxin
-(Tetrahedron Lett., 1981, {\bf 22}, 2247)
-\begin{center}
-\sixheterov[]{1==N;6s==\cyclohexanev[a]{3==(yl)}}{1==CH$_{2}$Ph}
-\end{center}
-can be drawn by the code,
-\begin{verbatim}
-\sixheterov[]{1==N;6s==\cyclohexanev[a]{3==(yl)}}{1==CH$_{2}$Ph}
-\end{verbatim}
-
-The following example shows a case
-to which both ring fusion and spiro attachment are applied.
-The code,
-\begin{verbatim}
-\decaheterov[fhk%
-{g\fivefusev{1==O;4==O}{}{b}}%
-]{1s==\cyclohexanev[be]{1D==O;4==(yl)}}{}
-\end{verbatim}
-gives the following formula:
-\begin{center}
-\vspace*{2cm}
-\decaheterov[fhk%
-{g\fivefusev{1==O;4==O}{}{b}}%
-]{1s==\cyclohexanev[be]{1D==O;4==(yl)}}{}
-\end{center}
-
-A 1,3-dioxolane derivative
-\begin{center}
-\fiveheterov{2==O;5==O;%
-1s==\trimethylenei{}{3==(yl);1W==PhSO$_{2}$;3W==R}}{}%
-\end{center}
-can be drawn by the code,
-\begin{verbatim}
-\fiveheterov{2==O;5==O;1s==\trimethylenei{}{3==(yl);1W==PhSO$_{2}$;3W==R}}{}%
-\end{verbatim}
-The same compound is also drawn by usual techniques
-as follows:
-\begin{verbatim}
-\fiveheterov{2==O;5==O}{1Sb==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1Sa==R}
-\end{verbatim}
-\begin{center}
-\fiveheterov{2==O;5==O}{1Sb==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1Sa==R}
-\end{center}
-
-\begin{verbatim}
-\fiveheterov{2==O;5==O}{1G==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1F==R}
-\end{verbatim}
-\begin{center}
-\fiveheterov{2==O;5==O}{1G==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1F==R}
-\end{center}
-
-1,2,3,4-Tetrahydroquinoline-4-spiro-4$^{\prime}$-piperidine,
-\begin{quotation}
-\vspace*{2cm}
-\decaheterovi[fhk]{1==N;4s==\sixheterov[]{1==N}{4==(yl);1==H}}{1==H}
-\end{quotation}
-can be drawn by writing a code,
-\begin{verbatim}
-\decaheterovi[fhk]{1==N;4s==\sixheterov[]{1==N}{4==(yl);1==H}}{1==H}
-\end{verbatim}
-
-3,3$^{\prime}$-Spirobi[3{\it H}-indole],
-\begin{quotation}
-\vspace*{1cm}
-\nonaheterovi[begj]{3==N;%
-1s==\fiveheterov[bd{b\sixfusev[ac]{}{}{e}}]{4==N}{1==(yl)}}{}
-\end{quotation}
-is typeset by the code,
-\begin{verbatim}
-\nonaheterovi[begj]{3==N;%
-1s==\fiveheterov[bd{b\sixfusev[ac]{}{}{e}}]{4==N}{1==(yl)}}{}
-\end{verbatim}
-
-The code,
-\begin{verbatim}
-\sixheterov[]{1s==\fiveheterov{2==O;5==O}{1==(yl)}}{%
-5==\threeheteroh{1==O}{3Sb==Me$_{3}$Si;3==(yl)}}
-\end{verbatim}
-typesets the following structure:
-\begin{center}
-\vspace*{1cm}
-\sixheterov[]{1s==\fiveheterov{2==O;5==O}{1==(yl)}}{%
-5==\threeheteroh{1==O}{3Sb==Me$_{3}$Si;3==(yl)}}
-\end{center}
-
-A spiro intermediate during spiro annelation
-(T.\ S.\ T.\ Wang, {\em Tetrahedron Lett.}, 1975, 1637),
-\begin{quotation}
-\vspace*{1cm}
-\nonaheterov[aA]{1==N;%
-3s==\decaheterovb[B]{8==N}{5==(yl);8==\dimethylenei{}{1D==O;1==(yl)}}}{}
-\end{quotation}
-can be drawn by the code,
-\begin{verbatim}
-\nonaheterov[aA]{1==N;%
-3s==\decaheterovb[B]{8==N}{5==(yl);8==\dimethylenei{}{1D==O;1==(yl)}}}{}
-\end{verbatim}
-
-A lactone intermediate containing a protected ketone
-(A. Grieco and M. Nishizawa, {\em Chem. Commun.}, 1976, 582),
-\begin{center}
-\decaheterov[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2B==;3D==O}{E}}]{%
-6s==\fiveheterovi{1==O;3==O}{2==(yl)}}{5A==;{10}B==;9A==H}
-
-\vspace*{1cm}
-\end{center}
-is drawn by the code,
-\begin{verbatim}
-\decaheterov[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2B==;3D==O}{E}}]{%
-6s==\fiveheterovi{1==O;3==O}{2==(yl)}}{5A==;{10}B==;9A==H}
-\end{verbatim}
-
-\section{Multi-Spiro Derivatives}
-
-Multi-sipro derivatives are drawn by nesting spiro function.
-For example, cyclohexanespirocyclopentane-3$^{\prime}$-%
-spirocyclohexane (Rule A-42.4),
-\begin{center}
-\sixheteroh[]{4s==\fiveheterov{%
-2s==\sixheteroh[]{}{1==(yl)}}{5==(yl)}}{}
-\end{center}
-is typeset by the code,
-\begin{verbatim}
-\sixheteroh[]{4s==\fiveheterov{%
-2s==\sixheteroh[]{}{1==(yl)}}{5==(yl)}}{}
-\end{verbatim}
-When \verb/\fiveheterov/ is a mother skeleton,
-such a nested command is unnecessary:
-\begin{verbatim}
-\fiveheterov{2s==\sixheteroh[]{}{1==(yl)};%
-5s==\sixheteroh[]{}{4==(yl)}}{}
-\end{verbatim}
-\begin{center}
-\fiveheterov{2s==\sixheteroh[]{}{1==(yl)};%
-5s==\sixheteroh[]{}{4==(yl)}}{}
-\end{center}
-
-The name (Rule A-42.4),
-fluorene-9-spiro-1$^{\prime}$-cyclohexane-4$^{\prime}$-%
-spiro-1$^{\prime}$-indene, corresponds to the code,
-\begin{verbatim}
-\nonaheterovi[begj{b\sixfusev[ac]{}{}{E}}]{%
-1s==\sixheterov[]{1s==\nonaheterov[begj]{}{1==(yl)}}{4==(yl)}}{}
-\end{verbatim}
-which gives
-\begin{quotation}
-\vspace*{2cm}
-\nonaheterovi[begj{b\sixfusev[ac]{}{}{E}}]{%
-1s==\sixheterov[]{1s==\nonaheterov[begj]{}{1==(yl)}}{4==(yl)}}{}
-\end{quotation}
-
-
-\section{Atom Replacement}
-
-The ATOMLIST of each command is capable of
-accommodating a group if a sufficient space is available.
-For example, compare two codes,
-\begin{verbatim}
-\sixheteroh{4==NCOOEt}{}
-\hskip 2cm
-\sixheteroh{4==N}{4==COOEt}
-\end{verbatim}
-generating formulas equivalent chemically to each other:
-\begin{center}
-\sixheteroh{4==NCOOEt}{}
-\hskip 2cm
-\sixheteroh{4==N}{4==COOEt}
-\end{center}
-Note that the former example uses an ATOMLIST and
-the latter uses an SUBSLIST for describing substituents.
-
-Even when no such space is available, the use of
-a command, \verb/\upnobond/ or \verb/\downnobond/,
-give a solution (see \XyMTeX book pages 259--260).
-Compare the following formulas,
-\begin{center}
-\sixheterov{4==\downnobond{N}{COOEt}}{}
-\sixheterov{4==N}{4==COOEt}
-\sixheterov{1==\upnobond{N}{COOEt}}{}
-\sixheterov{1==N}{1==COOEt}
-\end{center}
-generated by the code,
-\begin{verbatim}
-\sixheterov{4==\downnobond{N}{COOEt}}{}
-\sixheterov{4==N}{4==COOEt}
-\sixheterov{1==\upnobond{N}{COOEt}}{}
-\sixheterov{1==N}{1==COOEt}
-\end{verbatim}
-
-These examples show that a substituent (e.g. NCOOEt) can
-be regarded as a component for atom replacement using a ATOMLIST.
-This methodology can be applied to a case in which
-such a substituent is generated by the ``yl''-function or
-by such a linking command as \verb/\ryl/ or \verb/\lyl/.
-The following example shows the use the \verb/\ryl/ command
-in the ATOMLIST of \verb/\sixheteroh/.
-\begin{verbatim}
-\sixheteroh{4h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{3h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{4h==\ryl(0==N){8==\bzdrv{1==(yl)}}}{}
-\end{verbatim}
-\begin{center}
-\sixheteroh{4h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{3h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{4h==\ryl(0==N){8==\bzdrv{1==(yl)}}}{}
-
-\vspace*{1cm}
-\end{center}
-
-A bond bewtween a COO unit and a phenyl group is frequently
-omitted. For this purpose, we use command \verb/\ayl/
-defined as
-\begin{verbatim}
-\makeatletter
-\def\ayl{\@ifnextchar({\@ayl@}{\@ayl@(10,40)}}
-\def\@ayl@(#1,#2)#3{%
-\begingroup\yl@xdiff=0 \yl@ydiff=0%
-\kern#1\unitlength\raise#2\unitlength\hbox to0pt{#3\hss}%
-\endgroup}
-\makeatother
-\end{verbatim}
-Thereby, we have the following examples.
-\begin{verbatim}
-\sixheteroh{4==NCOO\ayl{\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{3==NCOO\ayl{\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{4==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
-\end{verbatim}
-\begin{center}
-\sixheteroh{4==NCOO\ayl{\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{3==NCOO\ayl{\bzdrh{1==(yl)}}}{}
-\hskip2cm
-\sixheterov{4==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
-\end{center}
-
-\begin{verbatim}
-\tetramethylene[a]{3==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
-\hskip2cm
-\tetramethylene[a]{3==N}{3==COO\ayl{\bzdrh{1==(yl)}}}
-\end{verbatim}
-\begin{center}
-\tetramethylene[a]{3==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
-\hskip2cm
-\tetramethylene[a]{3==N}{3==COO\ayl{\bzdrh{1==(yl)}}}
-\end{center}
-
-
-\endinput
-
-
-\begin{verbatim}
-\end{verbatim}
-\begin{center}
-\end{center}
-
-
-\begin{verbatim}
-\end{verbatim}
-\begin{quotation}
-\end{quotation}
-
- \ No newline at end of file