diff options
author | Karl Berry <karl@freefriends.org> | 2021-04-27 12:58:55 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2021-04-27 12:58:55 +0000 |
commit | 1f3f8f2f09e41e60169435266645008a4407f650 (patch) | |
tree | b131f951fe6574654294681e968e6691072c6f46 /Master/texmf-dist/doc/latex/profcollege | |
parent | 56887973b56bae72759bb0b0bf0d2e378810946b (diff) |
profcollege runtime
git-svn-id: svn://tug.org/texlive/trunk@58995 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/profcollege')
6 files changed, 0 insertions, 1593 deletions
diff --git a/Master/texmf-dist/doc/latex/profcollege/PfCEquationComposition2.tex b/Master/texmf-dist/doc/latex/profcollege/PfCEquationComposition2.tex deleted file mode 100644 index 38493f89966..00000000000 --- a/Master/texmf-dist/doc/latex/profcollege/PfCEquationComposition2.tex +++ /dev/null @@ -1,275 +0,0 @@ -% Licence : Released under the LaTeX Project Public License v1.3c -% or later, see http://www.latex-project.org/lppl.txtf -\newcommand{\EquaDeuxComposition}[5][]{%type ax+b=d ou b=cx+d$ - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide - \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3} - \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d - \EquaBase[#1]{#2}{}{}{#5}% - }{%ax+b=d$ Ici - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} - \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{%ICI ? - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. - }{} - } - } - \fi -} - -\newcommand{\EquaTroisComposition}[5][]{%ax+b=cx ou ax=cx+d - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 - \ifx\bla#5\bla% - %% paramètre oublié - \else - \EquaTroisComposition[#1]{#4}{#5}{#2}{}% - \fi - \else - \xintifboolexpr{#2=0}{%b=cx - \EquaBase[#1]{#4}{}{}{#3} - }{% - \xintifboolexpr{#4=0}{%ax+b=0 - \EquaDeuxComposition[#1]{#2}{#3}{}{0} - }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% - {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% - }% - }{%% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} - \begin{align*} - \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ - \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{0}\tikzmark{F-\theNbequa}\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{0-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} - \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% - }% - }% - }% - }% - \fi -}% - - -\newcommand{\ResolEquationComposition}[5][]{% - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }% - {%0x+b=cx+d$ - \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3}% - }% - }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d - \EquaDeuxComposition[#1]{#2}{#3}{}{#5}% - } - {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx - \EquaTroisComposition[#1]{#2}{0}{#4}{}% - }% - {%ax=cx+d - \EquaTroisComposition[#1]{#4}{#5}{#2}{}% - }% - }% - {\xintifboolexpr{#5=0}{%ax+b=cx - \EquaTroisComposition[#1]{#2}{#3}{#4}{}% - }% - {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% - {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% - }% - }{ - %% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} - \begin{align*} - \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{F-\theNbequa}\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}% - \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ - \mathcolor{Ccompo}{\num{\fpeval{#3-#5}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{}% - }% - }% - }% - }% - }% - }% -}%
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/profcollege/PfCEquationLaurent1.tex b/Master/texmf-dist/doc/latex/profcollege/PfCEquationLaurent1.tex deleted file mode 100644 index 8bce1eb7c80..00000000000 --- a/Master/texmf-dist/doc/latex/profcollege/PfCEquationLaurent1.tex +++ /dev/null @@ -1,226 +0,0 @@ -% Licence : Released under the LaTeX Project Public License v1.3c -% or later, see http://www.latex-project.org/lppl.txtf -\newcommand{\EquaBaseLaurent}[5][]{%type ax=d ou b=cx - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#2\bla%on teste si le paramètre #2 est vide: - % si oui, on est dans le cas b=cx. Eh bien on échange :) - % Mais attention si les deux paramètres a et c sont vides... - \EquaBase[#1]{#4}{}{}{#3} - \else - % si non, on est dans le cas ax=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#5=0}{% - L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% - }{%\else - \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else - \begin{align*}% - \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{#2}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{#2}}}}&=\xintifboolexpr{#2=1}{\num{#5}}{\color{Cdecomp}\frac{\color{black}\num{#5}}{\num{#2}}} - \xintifboolexpr{#2=1}{}{\\\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{#5}{#2}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\ - }{} - }{} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% - }{} - } - } - \fi -} - -\newcommand{\EquaDeuxLaurent}[5][]{%type ax+b=d ou b=cx+d$ - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide - \EquaDeuxLaurent[#1]{#4}{#5}{#2}{#3} - \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d - \EquaBaseLaurent[#1]{#2}{}{}{#5}% - }{%ax+b=d$ Ici - \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\num{#5}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ - \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}%\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. - }{} - } - } -} - -\newcommand{\EquaTroisLaurent}[5][]{%ax+b=cx ou ax=cx+d - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 - \ifx\bla#5\bla% - %% paramètre oublié - \else - \EquaTroisLaurent[#1]{#4}{#5}{#2}{}% - \fi - \else - \xintifboolexpr{#2=0}{%b=cx - \EquaBaseLaurent[#1]{#4}{}{}{#3} - }{% - \xintifboolexpr{#4=0}{%ax+b=0 - \EquaDeuxLaurent[#1]{#2}{#3}{}{0} - }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% - {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% - }% - }{%% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c - \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}\\ - \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} - }{%ax+b=cx avec a<c % Autre cas délicat - \begin{align*}% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\\ - \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=0\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% - }% - }% - }% - }% - \fi -}% - -\newcommand{\ResolEquationLaurent}[5][]{% - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }% - {%0x+b=cx+d - \EquaDeuxLaurent[#1]{#4}{#5}{}{#3}% - }% - }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d - \EquaDeuxLaurent[#1]{#2}{#3}{}{#5}% - } - {%ax+b=cx+d - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx - \EquaTroisLaurent[#1]{#2}{0}{#4}{}% - }% - {%ax=cx+d - \EquaTroisLaurent[#1]{#4}{#5}{#2}{}% - }% - }% - {\xintifboolexpr{#5=0}{%ax+b=cx - \EquaTroisLaurent[#1]{#2}{#3}{#4}{}% - }% - {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% - {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% - }% - }{%% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c - \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ - \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \begin{align*}% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}% - &=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText} - \\ - \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{}% - }% - }% - }% - }% - }% - }% -}%
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/profcollege/PfCEquationPose1.tex b/Master/texmf-dist/doc/latex/profcollege/PfCEquationPose1.tex deleted file mode 100644 index 1137140d28a..00000000000 --- a/Master/texmf-dist/doc/latex/profcollege/PfCEquationPose1.tex +++ /dev/null @@ -1,246 +0,0 @@ -% Licence : Released under the LaTeX Project Public License v1.3c -% or later, see http://www.latex-project.org/lppl.txtf -\newcommand{\EquaBaseL}[5][]{%type ax=d ou b=cx - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#2\bla%on teste si le paramètre #2 est vide: - % si oui, on est dans le cas b=cx. Eh bien on échange :) - % Mais attention si les deux paramètres a et c sont vides... - \EquaBaseL[#1]{#4}{}{}{#3} - \else - % si non, on est dans le cas ax=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#5=0}{% - L'équation $0\useKV[ClesEquation]{Lettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% - }{%\else - \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else - \begin{align*}% - \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\ - \xintifboolexpr{#2=1}{}{% - \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\} - \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{#5}{#2}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\ - }{} - }{} - %\ifboolKV[ClesEquation]{Fleches}{% - %\stepcounter{Nbequa}}% - %{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{} - %} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% - }{} - } - } - \fi -} - -\newcommand{\EquaDeuxL}[5][]{%type ax+b=d ou b=cx+d$ - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide - \EquaDeuxL[#1]{#4}{#5}{#2}{#3} - \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d - \EquaBaseL[#1]{#2}{}{}{#5}% - }{%ax+b=d$ Ici - \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ - \phantom{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\ - \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{% - \\\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}% - }{}%\\ - }{} - }{} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. - }{} - } - } - \fi -} - -\newcommand{\EquaTroisL}[5][]{%ax+b=cx ou ax=cx+d - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 - \ifx\bla#5\bla% - %% paramètre oublié - \else - \EquaTroisL[#1]{#4}{#5}{#2}{}% - \fi - \else - \xintifboolexpr{#2=0}{%b=cx - \EquaBaseL[#1]{#4}{}{}{#3} - }{% - \xintifboolexpr{#4=0}{%ax+b=0 - \EquaDeuxL[#1]{#2}{#3}{}{0} - }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% - {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% - }% - }{%% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c - \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ - \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ - \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ - \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\ - \xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ - \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\% - \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}%\\ - }{} - }{} - }{} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \begin{align*}% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ - \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ - \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ - \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\% - \SSimplifie{\Coeffb}{\Coeffa}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ - }{} - }{} - }{} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% - }% - }% - }% - }% - \fi - }%\\ - % \\ - -\newcommand{\ResolEquationL}[5][]{% - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }% - {%0x+b=cx+d$ - \EquaDeuxL[#1]{#4}{#5}{}{#3}% - }% - }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d - \EquaDeuxL[#1]{#2}{#3}{}{#5}% - } - {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx - \EquaTroisL[#1]{#2}{0}{#4}{}% - }% - {%ax=cx+d - \EquaTroisL[#1]{#4}{#5}{#2}{}% - }% - }% - {\xintifboolexpr{#5=0}{%ax+b=cx - \EquaTroisL[#1]{#2}{#3}{#4}{}% - }% - {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% - {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% - }% - }{ - %% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c - \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{\phantom{{}={}}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ - \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{\phantom{{}+{}}\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{{}={}\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\ - \xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{\Coeffb>0}{\phantom{{}+{}}\num{\Coeffb}}{{}-{}\num{\fpeval{0-\Coeffb}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ - \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\% - \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\SSimplifie{\Coeffb}{\Coeffa}%\\ - }{} - }{} - }{} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \begin{align*}% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\xintifboolexpr{#4<0}{\phantom{={}}}{}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ - \xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{{}-{}\num{#5}}{{}+{}\num{\fpeval{0-#5}}}}&\phantom{{}={}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\ - \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\xintifboolexpr{\Coeffa<0}{\phantom{{}={}}}{\phantom{=}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ - \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\ - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ - }{} - }{} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{}% - }% - }% - }% - }% - }% - }% -}% diff --git a/Master/texmf-dist/doc/latex/profcollege/PfCEquationSoustraction2.tex b/Master/texmf-dist/doc/latex/profcollege/PfCEquationSoustraction2.tex deleted file mode 100644 index f3ffd9453dc..00000000000 --- a/Master/texmf-dist/doc/latex/profcollege/PfCEquationSoustraction2.tex +++ /dev/null @@ -1,345 +0,0 @@ -% Licence : Released under the LaTeX Project Public License v1.3c -% or later, see http://www.latex-project.org/lppl.txtf -\newcommand{\EquaBase}[5][]{%type ax=d ou b=cx - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#2\bla%on teste si le paramètre #2 est vide: - % si oui, on est dans le cas b=cx. Eh bien on échange :) - % Mais attention si les deux paramètres a et c sont vides... - \EquaBase[#1]{#4}{}{}{#3} - \else - % si non, on est dans le cas ax=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#5=0}{% - L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% - }{%\else - \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else - \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\tikzmark{C-\theNbequa}\\ - \tikzmark{B-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}\tikzmark{D-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% - \rightcomment{C-\theNbequa}{D-\theNbequa}{D-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% - }{% - \ifboolKV[ClesEquation]{FlecheDiv}{% - \Leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% - \Rightcomment{C-\theNbequa}{D-\theNbequa}{D-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% - }{}% - }%% - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{#5}{#2}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\ - }{} - }{} - \ifboolKV[ClesEquation]{Fleches}{% - \stepcounter{Nbequa}}% - {\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{} - } - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% - }{} - } - } - \fi -} - -\newcommand{\EquaDeuxSoustraction}[5][]{%type ax+b=d ou b=cx+d$ - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide - \EquaDeuxSoustraction[#1]{#4}{#5}{#2}{#3} - \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d - \EquaBase[#1]{#2}{}{}{#5}% - }{%ax+b=d$ Ici - \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\ - \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - }{}% - \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa} - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{} - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{%ICI ? - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. - }{} - } - } - \fi -} - -\newcommand{\EquaTroisSoustraction}[5][]{%ax+b=cx ou ax=cx+d - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 - \ifx\bla#5\bla% - %% paramètre oublié - \else - \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}% - \fi - \else - \xintifboolexpr{#2=0}{%b=cx - \EquaBase[#1]{#4}{}{}{#3} - }{% - \xintifboolexpr{#4=0}{%ax+b=0 - \EquaDeuxSoustraction[#1]{#2}{#3}{}{0} - }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% - {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% - }% - }{%% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c - \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ - \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ - }{} - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\ - \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=0\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\ - }{}% - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - %eric - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{} - % eric - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ - \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ - }{} - \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - }{} - % eric - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{} - % eric - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% - }% - }% - }% - }% - \fi - }% - - -\newcommand{\ResolEquationSoustraction}[5][]{% - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }% - {%0x+b=cx+d$ - \EquaDeuxSoustraction[#1]{#4}{#5}{}{#3}% - }% - }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d - \EquaDeuxSoustraction[#1]{#2}{#3}{}{#5}% - } - {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx - \EquaTroisSoustraction[#1]{#2}{0}{#4}{}% - }% - {%ax=cx+d - \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}% - }% - }% - {\xintifboolexpr{#5=0}{%ax+b=cx - \EquaTroisSoustraction[#1]{#2}{#3}{#4}{}% - }% - {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% - {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% - }% - }{ - %% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c - \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - }{} - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\\ - \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - }{}% - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - % eric - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{} - % eric - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - }{} - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ - \ifboolKV[ClesEquation]{Decomposition}{% - \num{#3}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\ - }{}% - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ - % eric - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{} - % eric - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{}% - }% - }% - }% - }% - }% - }% -}% - - diff --git a/Master/texmf-dist/doc/latex/profcollege/PfCEquationSymbole1.tex b/Master/texmf-dist/doc/latex/profcollege/PfCEquationSymbole1.tex deleted file mode 100644 index 3cc345c5242..00000000000 --- a/Master/texmf-dist/doc/latex/profcollege/PfCEquationSymbole1.tex +++ /dev/null @@ -1,225 +0,0 @@ -% Licence : Released under the LaTeX Project Public License v1.3c -% or later, see http://www.latex-project.org/lppl.txtf -\newcommand{\EquaBaseSymbole}[5][]{%type ax=d ou b=cx - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false} - \ifx\bla#2\bla%on teste si le paramètre #2 est vide: - % si oui, on est dans le cas b=cx. Eh bien on échange :) - % Mais attention si les deux paramètres a et c sont vides... - \ifx\bla#4\bla - %% il manque un paramètre - \else - \EquaBaseSymbole[#1]{#4}{}{}{#3} - \fi - \else - % si non, on est dans le cas ax=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#5=0}{% - L'équation $0\times\useKV[ClesEquation]{Lettre}=0$ a une infinité de solutions.}{L'équation $0\times\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% - }{%\else - \xintifboolexpr{#5=0}{L'équation $\num{#2}\times\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else - \begin{align*}% - \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\ - \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{#5}{#2}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\ - }{} - }{} - \end{align*} - } - } - \fi -} - -\newcommand{\EquaDeuxSymbole}[5][]{%type ax+b=d ou b=cx+d$ - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false} - \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide - \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3} - \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d - \EquaBaseSymbole[#1]{#2}{}{}{#5}% - }{%ax+b=d$ Ici - \begin{align*} - \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ - \ifboolKV[ClesEquation]{Bloc}{\Fdash{$\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\}{}% - \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \\ - \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \end{align*} - } - } - \fi -} - -\newcommand{\EquaTroisSymbole}[5][]{%ax+b=cx ou ax=cx+d - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false} - \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 - \ifx\bla#5\bla% - %% paramètre oublié - \else - \EquaTroisSymbole[#1]{#4}{#5}{#2}{}% - \fi - \else - \xintifboolexpr{#2=0}{%b=cx - \EquaBaseSymbole[#1]{#4}{}{}{#3} - }{% - \xintifboolexpr{#4=0}{%ax+b=0 - \EquaDeuxSymbole[#1]{#2}{#3}{}{0} - }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% - {%ax+b=ax - L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% - }% - }{%% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c - \begin{align*} - \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\\ - \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#4-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#2-#4}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\\ - \xdef\Coeffa{\fpeval{#2-#4}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ - \ifboolKV[ClesEquation]{Bloc}{\Fdash{\mathcolor{Csymbole}{$\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\}{} - \xdef\Coeffb{\fpeval{0-#3}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \end{align*} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \begin{align*}% - \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\\ - \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#4-#2}}{+\useKV[ClesEquation]{Lettre}}\\ - \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}% \\ - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ - }{} - }{} - } - \end{align*} - }% - }% - }% - }% - \fi - }% - - -\newcommand{\ResolEquationSymbole}[5][]{% - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false} - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }% - {%0x+b=cx+d$ - \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3}% - }% - }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d - \EquaDeuxSymbole[#1]{#2}{#3}{}{#5}% - } - {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx - \EquaTroisSymbole[#1]{#2}{0}{#4}{}% - }% - {%ax=cx+d - \EquaTroisSymbole[#1]{#4}{#5}{#2}{}% - }% - }% - {\xintifboolexpr{#5=0}{%ax+b=cx - \EquaTroisSymbole[#1]{#2}{#3}{#4}{}% - }% - {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% - {%b<>d - L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% - }% - }{ - %% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c - \begin{align*} - \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#4-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#2-#4}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \xdef\Coeffa{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ - \ifboolKV[ClesEquation]{Bloc}{% - \Fdash{$\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ - }{}% - \xdef\Coeffb{\fpeval{#5-#3}}\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \end{align*} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \begin{align*}% - \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#4-#2}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \xdef\Coeffa{\fpeval{#4-#2}}\num{#3}&=\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \ifboolKV[ClesEquation]{Bloc}{% - \num{#3}&=\Fdash{$\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - }{}% - \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}%\\ - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\ - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ - }{} - }{} - } - \end{align*} - }% - }% - }% - }% - }% - }% -}% - - diff --git a/Master/texmf-dist/doc/latex/profcollege/PfCEquationTerme1.tex b/Master/texmf-dist/doc/latex/profcollege/PfCEquationTerme1.tex deleted file mode 100644 index 3b4cc18f275..00000000000 --- a/Master/texmf-dist/doc/latex/profcollege/PfCEquationTerme1.tex +++ /dev/null @@ -1,276 +0,0 @@ -% Licence : Released under the LaTeX Project Public License v1.3c -% or later, see http://www.latex-project.org/lppl.txtf -\newcommand{\EquaDeuxTerme}[5][]{%type ax+b=d ou b=cx+d$ - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide - \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3} - \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d - \EquaBase[#1]{#2}{}{}{#5}% - }{%ax+b=d$ Ici - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} - \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{% - }{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{%ICI ? - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. - }{} - } - } - \fi -} - -\newcommand{\EquaTroisTerme}[5][]{%ax+b=cx ou ax=cx+d - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5 - \ifx\bla#5\bla% - %% paramètre oublié - \else - \EquaTroisTerme[#1]{#4}{#5}{#2}{}% - \fi - \else - \xintifboolexpr{#2=0}{%b=cx - \EquaBase[#1]{#4}{}{}{#3} - }{% - \xintifboolexpr{#4=0}{%ax+b=0 - \EquaDeuxTerme[#1]{#2}{#3}{}{0} - }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% - {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% - }% - }{%% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} - \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=0\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} - \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% - }% - }% - }% - }% - \fi - }% - -\newcommand{\ResolEquationTerme}[5][]{% - \useKVdefault[ClesEquation]% - \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% - {%b<>d - L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% - }% - }% - {%0x+b=cx+d$ - \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3}% - }% - }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d - \EquaDeuxTerme[#1]{#2}{#3}{}{#5}% - } - {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx - \EquaTroisTerme[#1]{#2}{0}{#4}{}% - }% - {%ax=cx+d - \EquaTroisTerme[#1]{#4}{#5}{#2}{}% - }% - }% - {\xintifboolexpr{#5=0}{%ax+b=cx - \EquaTroisTerme[#1]{#2}{#3}{#4}{}% - }% - {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% - {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% - }% - }{ - %% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} - \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#5>0}{\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\tikzmark{F-\theNbequa}\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{} - }{%ax+b=cx+d avec a<c % Autre cas délicat - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} - \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ - \num{#3}\mathcolor{Cterme}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% - \SSimpliTest{\Coeffb}{\Coeffa}% - \ifboolKV[ClesEquation]{Simplification}{% - \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\ - }{} - }{} - } - \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} - \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% - }{}% - }% - }% - }% - }% - }% - }% -}% - - |