summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-moire/examples/psGlassPattern.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2018-11-15 22:21:11 +0000
committerKarl Berry <karl@freefriends.org>2018-11-15 22:21:11 +0000
commite63759bc8ac77f2a41375c1f4b0ad538d4da86b0 (patch)
treeae016be60fa150364202593212f6a21828587a55 /Master/texmf-dist/doc/generic/pst-moire/examples/psGlassPattern.tex
parent2f440ca3dc3a3aa309df9143dfe3ce0c8cc29e7a (diff)
pst-moire (15nov18)
git-svn-id: svn://tug.org/texlive/trunk@49167 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-moire/examples/psGlassPattern.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-moire/examples/psGlassPattern.tex38
1 files changed, 38 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-moire/examples/psGlassPattern.tex b/Master/texmf-dist/doc/generic/pst-moire/examples/psGlassPattern.tex
new file mode 100644
index 00000000000..cea77b6da90
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-moire/examples/psGlassPattern.tex
@@ -0,0 +1,38 @@
+\documentclass{article}
+\usepackage[a4paper,margin=2cm]{geometry}
+\usepackage{pst-moire}
+\begin{document}
+% la couleur des points du premier calque est choisie avec [linecolor=...]
+% la couleur des points du second calque est choisie avec [fillcolor=...]
+% function : variable = t
+% layer=true : 2 layers displayed , false=> layer 1 only
+Problem page 100 : "\emph{The Theory of the Moire Phenomenon}" Volume II, by I. Amidror, published by Springer,
+
+\textbf{3-18 }\emph{Synthesis of a layer superposition having a predefined fixed locus.}
+
+\begin{quote}\itshape
+``Design layer transformations $\mathbf{g}_1(x,y)$ and $\mathbf{g}_2(x,y)$ that will produce in the superposition of two initially identical random screens a fixed locus consisting of a star-like curve that surrounds the origin as shown in the figure on the front cover of this book. Hint: In this case, you may consider a top-opened conic surface having star-like level lines, such as $z=r(1+0.5\cos5\theta)$, or, possibly, $z=r/(1+0.5\cos5\theta)$, which gives a slightly different star. You may adjust the orientation of the star by replacing $\cos$ by $\sin$ or by $-\sin$, as seems suitable. In order to have this surface intersect the $x,y$ plane along a star, you need to lower it by some constant $z_0$: $z=r(1+0.5\cos5\theta)-z_0$. But if you wish to obtain a more complex surface that intersects the $x,y$ plane on a family of concentric stars, you may consider a surface such as: $z=\sin(r(1+0.5\cos5\theta))$.''
+\end{quote}
+
+\begin{pspicture}(-8,-8)(8,8)
+\psframe*[linecolor=orange](-8,-8)(8,8)
+% z=5*r*(1-0.5*sin(5*t*Pi/180))-2.5
+\psGlassPattern[linecolor=red]
+\end{pspicture}
+
+\begin{pspicture}(-8,-8)(8,8)
+\psframe*[linecolor=red](-8,-8)(8,8)
+% in algebraic notation
+% t in degrees, argument sin and cos in radians
+% convert *Pi/180
+\psGlassPattern[unit=0.75,dotsize=1pt,dotstyle=square,linecolor={[rgb]{0 0 0.5}},algebraic,function=5*r*(1-0.5*cos(7*t*Pi/180))-2.5]
+\end{pspicture}
+
+\begin{pspicture}(-9,-9)(9,9)
+\psframe*[linecolor=cyan](-9,-9)(9,9)
+% in algebraic notation
+% t in degrees, argument sin and cos in radians
+% convert *Pi/180
+\psGlassPattern[unit=1.1,dotsize=1pt,dotstyle=square*,linecolor=black,fillcolor=cyan,algebraic,function=5*r/(1-0.75*sin(5*t*Pi/180))-2.5]% ,layers=false
+\end{pspicture}
+\end{document}