summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2019-11-21 21:48:21 +0000
committerKarl Berry <karl@freefriends.org>2019-11-21 21:48:21 +0000
commit396174ed6ea505d76b57ac8aba822b30ad934685 (patch)
tree87d482ca0cf9ecc051bf255ea07a301ddb2ab431 /Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex
parent74f3b3ab5f722bd2fe871a67387802bf821aaf6c (diff)
newcomputermodern (21nov19)
git-svn-id: svn://tug.org/texlive/trunk@52877 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex')
-rw-r--r--Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex172
1 files changed, 172 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex
new file mode 100644
index 00000000000..a461d165f37
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex
@@ -0,0 +1,172 @@
+\documentclass{article}
+\pagestyle{empty}
+\usepackage{xgreek,graphicx}
+
+\usepackage{fontspec}
+\usepackage{unicode-math}
+
+\RequirePackage{fontspec}
+\RequirePackage{unicode-math}
+\setmainfont[%
+ItalicFont=NewCM10-Italic.otf,%
+BoldFont=NewCM10-Bold.otf,%
+BoldItalicFont=NewCM10-BoldItalic.otf,%
+SmallCapsFeatures={Numbers=OldStyle}]{NewCM10-Regular.otf}
+
+\setsansfont[%
+ItalicFont=NewCMSans10-Oblique.otf,%
+BoldFont=NewCMSans10-Bold.otf,%
+BoldItalicFont=NewCMSans10-BoldOblique.otf,%
+SmallCapsFeatures={Numbers=OldStyle}]{NewCMSans10-Regular.otf}
+
+\setmonofont[ItalicFont=NewCMMono10-Italic.otf,%
+BoldFont=NewCMMono10-Bold.otf,%
+BoldItalicFont=NewCMMono10-BoldOblique.otf,%
+SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Regular.otf}
+
+\setmathfont{NewCMMath-Regular.otf}
+
+\newcommand{\tttextsc}[1]{{\ttscshape#1}}
+
+\newtheorem{theorem}{Theorem}
+\newtheorem{theoremg}[theorem]{Θεώρημα}
+\newtheorem{theoremr}[theorem]{теорема}
+
+\begin{document}
+
+\begin{theorem}[Dominated convergence of Lebesgue]
+Assume that $g$ is an
+in\-te\-grable func\-tion defined on the measurable set $E$ and hat
+ $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+ $|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
+ then $$\lim_{n\to\infty}\int f_n=\int f.$$
+\end{theorem}
+\textsc{Proof}: The function $g-f_n$ is non-negative and thus from Fatou lemma
+we have that $\int(g-f)\leq\liminf\int(g-f_n)$. Since $|f|\leq g$ and
+$|f_n|\leq g$ the functions $f$ and $f_n$ are integrable and we have
+$$\int g-\int f\leq \int g-\limsup\int f_n,$$ so
+$$\int f\geq \limsup \int f_n.$$
+
+\begin{theoremg}[Κυριαρχημένης σύγκλισης του Lebesgue]
+ Έστω ότι
+η $g$ είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο
+$E$ και η $(f_n)_{n\in\mathbb N}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε
+$|f_n| ≤ g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση $f$
+ώστε η $(f_n)_{n\in\mathbb N}$ να
+τείνει στην $f$ σχεδόν παντού. Τότε
+$$\lim \int f_n =\int f.$$
+\end{theoremg}
+\textsc{Απόδειξη}: Η συνάρτηση $g − f_n$ είναι μη αρνητική και άρα από
+το Λήμμα του Fatou ισχύει
+$\int (f-g) ≤ \liminf \int (g-f_n)$. Επειδή
+$|f| ≤ g$ και $|f_n| ≤g$ οι $f$ και $f_n$ είναι ολοκληρώσιμες, έχουμε
+$$\int g −\int f ≤ \int g − \limsup\int f_n,$$
+άρα
+$$\int f\geq \limsup \int f_n.$$
+
+(Russian translated by Google (probably erratic), hyphenation not enabled):
+
+
+\begin{theoremr}
+Предположим, что $g$ является
+интегрируемая функция, определенная на измеримом множестве $E$ и
+$(f_n)_{n\in\mathbb N}$ представляет собой последовательность измеримой функции, так что
+ $|f_n|\leq g$. Если $f$ является функцией, так что $f_n\to f$ почти везде
+ тогда
+$$\lim \int f_n =\int f.$$
+\end{theoremr}
+
+\newpage
+
+\sffamily
+
+\begin{theorem}[Dominated convergence of Lebesgue]
+Assume that $g$ is an
+in\-te\-grable func\-tion defined on the measurable set $E$ and hat
+ $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+ $|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
+ then $$\lim_{n\to\infty}\int f_n=\int f.$$
+\end{theorem}
+\textsc{Proof}: The function $g-f_n$ is non-negative and thus from Fatou lemma
+we have that $\int(g-f)\leq\liminf\int(g-f_n)$. Since $|f|\leq g$ and
+$|f_n|\leq g$ the functions $f$ and $f_n$ are integrable and we have
+$$\int g-\int f\leq \int g-\limsup\int f_n,$$ so
+$$\int f\geq \limsup \int f_n.$$
+
+\begin{theoremg}[Κυριαρχημένης σύγκλισης του Lebesgue]
+ Έστω ότι
+η $g$ είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο
+$E$ και η $(f_n)_{n\in\mathbb N}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε
+$|f_n| ≤ g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση $f$
+ώστε η $(f_n)_{n\in\mathbb N}$ να
+τείνει στην $f$ σχεδόν παντού. Τότε
+$$\lim \int f_n =\int f.$$
+\end{theoremg}
+\textsc{Απόδειξη}: Η συνάρτηση $g − f_n$ είναι μη αρνητική και άρα από
+το Λήμμα του Fatou ισχύει
+$\int (f-g) ≤ \liminf \int (g-f_n)$. Επειδή
+$|f| ≤ g$ και $|f_n| ≤g$ οι $f$ και $f_n$ είναι ολοκληρώσιμες, έχουμε
+$$\int g −\int f ≤ \int g − \limsup\int f_n,$$
+άρα
+$$\int f\geq \limsup \int f_n.$$
+
+(Russian translated by Google (probably erratic), hyphenation not enabled):
+
+
+\begin{theoremr}
+Предположим, что $g$ является
+интегрируемая функция, определенная на измеримом множестве $E$ и
+$(f_n)_{n\in\mathbb N}$ представляет собой последовательность измеримой функции, так что
+ $|f_n|\leq g$. Если $f$ является функцией, так что $f_n\to f$ почти везде
+ тогда
+$$\lim \int f_n =\int f.$$
+\end{theoremr}
+
+\newpage
+
+\ttfamily
+
+\begin{theorem}[Dominated convergence of Lebesgue]
+Assume that $g$ is an
+in\-te\-grable func\-tion defined on the measurable set $E$ and hat
+ $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+ $|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
+ then $$\lim_{n\to\infty}\int f_n=\int f.$$
+\end{theorem}
+\textsc{Proof}: The function $g-f_n$ is non-negative and thus from Fatou lemma
+we have that $\int(g-f)\leq\liminf\int(g-f_n)$. Since $|f|\leq g$ and
+$|f_n|\leq g$ the functions $f$ and $f_n$ are integrable and we have
+$$\int g-\int f\leq \int g-\limsup\int f_n,$$ so
+$$\int f\geq \limsup \int f_n.$$
+
+\begin{theoremg}[Κυριαρχημένης σύγκλισης του Lebesgue]
+ Έστω ότι
+η $g$ είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο
+$E$ και η $(f_n)_{n\in\mathbb N}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε
+$|f_n| ≤ g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση $f$
+ώστε η $(f_n)_{n\in\mathbb N}$ να
+τείνει στην $f$ σχεδόν παντού. Τότε
+$$\lim \int f_n =\int f.$$
+\end{theoremg}
+\textsc{Απόδειξη}: Η συνάρτηση $g − f_n$ είναι μη αρνητική και άρα από
+το Λήμμα του Fatou ισχύει
+$\int (f-g) ≤ \liminf \int (g-f_n)$. Επειδή
+$|f| ≤ g$ και $|f_n| ≤g$ οι $f$ και $f_n$ είναι ολοκληρώσιμες, έχουμε
+$$\int g −\int f ≤ \int g − \limsup\int f_n,$$
+άρα
+$$\int f\geq \limsup \int f_n.$$
+
+(Russian translated by Google (probably erratic), hyphenation not enabled):
+
+
+\begin{theoremr}
+Предположим, что $g$ является
+интегрируемая функция, определенная на измеримом множестве $E$ и
+$(f_n)_{n\in\mathbb N}$ представляет собой последовательность измеримой функции, так что
+ $|f_n|\leq g$. Если $f$ является функцией, так что $f_n\to f$ почти везде
+ тогда
+$$\lim \int f_n =\int f.$$
+\end{theoremr}
+
+
+\end{document}