summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2018-07-23 21:08:11 +0000
committerKarl Berry <karl@freefriends.org>2018-07-23 21:08:11 +0000
commited56f9c0b08fdf285ff4843816e8c288a1e6c9c2 (patch)
treea21428180397f571a7a85fe92140e07420f0f778
parent1e9c91674124fe8a6274515c661e0ee5e0582bf4 (diff)
bezierplot (23jul18)
git-svn-id: svn://tug.org/texlive/trunk@48259 c570f23f-e606-0410-a88d-b1316a301751
-rw-r--r--Master/texmf-dist/doc/lualatex/bezierplot/README2
-rw-r--r--Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdfbin251324 -> 251792 bytes
-rw-r--r--Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex38
-rwxr-xr-xMaster/texmf-dist/tex/lualatex/bezierplot/bezierplot.lua756
-rw-r--r--Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.sty10
5 files changed, 458 insertions, 348 deletions
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/README b/Master/texmf-dist/doc/lualatex/bezierplot/README
index 38e4cb3e782..8b004c0a208 100644
--- a/Master/texmf-dist/doc/lualatex/bezierplot/README
+++ b/Master/texmf-dist/doc/lualatex/bezierplot/README
@@ -8,7 +8,7 @@ points such as extreme points and inflection points and reduces the
number of used points.
VERSION:
-1.1 2018-06-10
+1.2 2018-07-23
LICENSE:
The package and the program are distributed on CTAN under the terms of
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf
index 84cdd36dd4b..a62218abbf3 100644
--- a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf
+++ b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex
index d9efe21ee8e..680d72dfdbb 100644
--- a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex
+++ b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex
@@ -28,9 +28,9 @@ Given a smooth function, \texttt{bezierplot} returns a smooth bezier path writte
The following example will show a comparison of \textsc{gnuplot} with \verb|bezierplot| for the function $y=\sqrt{x}$ for $0\leq x \leq 5$:
\begin{center}
\begin{tikzpicture}[scale=1.4]
- \draw (0,0) .. controls (0,0.745) and (1.667,1.491) .. (5,2.236);
+ \draw (0,0) .. controls (0,0.7454) and (1.6667,1.4907) .. (5,2.2361);
\draw (0,0) circle(.02) -- (0,0.745) circle( .02);
- \draw (1.667,1.491) circle(.02) -- (5,2.236) circle( .02);
+ \draw (1.6667,1.4907) circle(.02) -- (5,2.2361) circle( .02);
\draw (2.5,.5) node[above]{\verb|bezierplot|};
\begin{scope}[shift={(5.2,0)}]
\draw[domain=0:5,samples=51] plot function{x**0.5};
@@ -68,11 +68,11 @@ The \texttt{bezierplot} package is loaded with \verb|\usepackage{bezierplot}|. T
\end{center}
\end{multicols}
\noindent
-The command \verb|\bezierplot| has 4 optional arguments in the sense of
+The command \verb|\bezierplot| has 6 optional arguments in the sense of
\begin{center}
- \verb|\bezierplot[XMIN][XMAX][YMIN][YMAX]{FUNCTION}|
+ \verb|\bezierplot[XMIN][XMAX][YMIN][YMAX][SAMPLES]{FUNCTION}|
\end{center}
-The defaults are \verb|XMIN| = \verb|YMIN| $= -5$ and \verb|XMAX| = \verb|YMAX| $= 5$.
+The defaults are \verb|XMIN| = \verb|YMIN| $= -5$, \verb|XMAX| = \verb|YMAX| $= 5$ and \verb|SAMPLES| $= 0$ (this will set as few samples as possible).
\begin{center}
\begin{tikzpicture}[scale=.7]
\draw \bezierplot[-1][2]{x^2};
@@ -116,17 +116,17 @@ lua bezierplot.lua "3*x^0.8+2"
\end{verbatim}
will return
\begin{verbatim}
-(0,2) .. controls (0.03,2.282) and (0.268,3.244) .. (1,5)
+(0,2) .. controls (0.0168,2.1905) and (0.2073,3.0978) .. (1.0004,5.001)
\end{verbatim}
-You can set the window of the graph as follows:
+You can set the window of the graph and the number of samples as follows:
\begin{verbatim}
-lua bezierplot.lua "FUNCTION" XMIN XMAX YMIN YMAX
+lua bezierplot.lua "FUNCTION" XMIN XMAX YMIN YMAX SAMPLES
\end{verbatim}
e.g.
\begin{verbatim}
-lua bezierplot.lua "FUNCTION" 0 1 -3 2.5
+lua bezierplot.lua "FUNCTION" 0 1 -3 2.5 201
\end{verbatim}
-will set $0\leq x\leq 1$ and $-3\leq y\leq 2.5$. You may also omit the $y$--range, hence
+will set $0\leq x\leq 1$ and $-3\leq y\leq 2.5$ and $201$ equidistant samples. You may also omit the $y$--range, hence
\begin{verbatim}
lua bezierplot.lua "FUNCTION" 0 1
\end{verbatim}
@@ -134,6 +134,18 @@ will set $0\leq x\leq 1$ and leave the default $-5\leq y\leq 5$. The variables \
\begin{verbatim}
lua bezierplot.lua "sin(x)" -pi pi
\end{verbatim}
+You may use \verb|huge| for $\infty$:
+\begin{verbatim}
+lua bezierplot "1/x" 0 1 0 huge
+\end{verbatim}
+As \verb|huge| is very huge and \verb|bezierplot| uses recursive calls for nontrivial functions and non--fixed samples, this can last very long:
+\begin{verbatim}
+lua bezierplot "1/x" -5 5 -huge huge
+\end{verbatim}
+But if you set fixed samples, it will be fast again (as this does not use recursive calls):
+\begin{verbatim}
+lua bezierplot "1/x" -5 5 -huge huge 100
+\end{verbatim}
\subsection{Notation Of Functions}
The function term given to \verb|bezierplot| must contain at most one variable: $x$. E.g. \verb|"2.3*(x-1)^2-3"|. You must not omit \verb|*| operators:
\begin{center}
@@ -153,15 +165,19 @@ The following functions and constants are possible:
\verb|cbrt| & cube root $\sqrt[3]{\quad}$ that works for negative numbers, too\\
\verb|cos| & cosine for angles in radians\\
\verb|exp| & the exponential function $e^{(\;)}$\\
+ \verb|huge| & the numerical $\infty$\\
\verb|e| & the euler constant $e=\mathrm{exp}(1)$\\
\verb|log| & the natural logarithm $\mathrm{log}_e(\;)$\\
\verb|pi| & Archimedes’ constant $\pi\approx 3.14$\\
\verb|sgn| & sign function\\
\verb|sin| & sine for angles in radians\\
\verb|sqrt| & square root $\sqrt{\quad}$\\
- \verb|tan| & tangent for angles in radians\\
+ \verb|tan| & tangent for angles in radians
\end{tabular}
\end{center}
+%
+\newpage
+%
\section{Examples of \texttt{bezierplot} in Comparison with \textsc{gnuplot}}
The following graphs are drawn with \texttt{bezierplot} (black) and \textsc{gnuplot} (red). \textsc{gnuplot} used 1000 samples per example. The functions are given below the pictures (left: bezierplot, right: \textsc{gnuplot}).
\begin{multicols}{3}
diff --git a/Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.lua b/Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.lua
index 8cc414f278d..12574c6eef0 100755
--- a/Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.lua
+++ b/Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.lua
@@ -1,6 +1,6 @@
#!/usr/bin/env lua
-- Linus Romer, published 2018 under LPPL Version 1.3c
--- version 1.1 2018-06-10
+-- version 1.2 2018-07-23
abs = math.abs
acos = math.acos
asin = math.asin
@@ -13,6 +13,7 @@ pi = math.pi
sin = math.sin
sqrt = math.sqrt
tan = math.tan
+huge = math.huge
-- cube root defined for all real numbers x
function cbrt(x)
@@ -42,15 +43,30 @@ local function round(num, decimals)
end
end
+-- check if a point (x,y) satisfies xmin <= x <= xmax and ymin <= < <= ymax
+local function is_in_window(x,y,xmin,xmax,ymin,ymax)
+ if x >= xmin and x <= xmax and y >= ymin and y <= ymax then
+ return true
+ else
+ return false
+ end
+end
+
+local function evaluate(s)
+ local tempfunc = assert(load("return " .. s))
+ return tempfunc()
+end
+
+
-- 5-stencil method
-- return from a graph from f in the form {{x,y},...}
--- the derivatives in form {{x,y,dy/dx,ddy/ddx},...}
+-- the derivatives in form {{x,y,dy/dx,ddy/ddx,extrema,inflection},...}
local function diffgraph(func,graph,h)
local dgraph = {}
local l = #graph
if l < 4 then -- this is not worth the pain...
for i = 1, l do
- table.insert(dgraph,{graph[i][1],graph[i][2],0,0})
+ table.insert(dgraph,{graph[i][1],graph[i][2],0,0,0,0})
end
else
local yh = func(graph[1][1]-h)
@@ -149,6 +165,68 @@ local function diffgraph(func,graph,h)
return dgraph
end
+-- simplified diffgraph function, the function is derived only once
+-- return from a graph from f in the form {{x,y},...}
+-- the derivatives in form {{x,y,dy/dx},...}
+-- we start with index 1 and then always jump indexjump to the next
+-- index
+local function diffgraphsimple(func,graph,h,indexjump)
+ local dgraph = {}
+ local l = math.floor((#graph-1)/indexjump)*indexjump+1
+ if l < 2 then -- this is not worth the pain...
+ dgraph = {graph[1][1],graph[1][2],0}
+ else
+ local yh = func(graph[1][1]-h)
+ local yhh = func(graph[1][1]-2*h)
+ if yhh > -math.huge and yhh < math.huge -- if defined at all
+ and yh > -math.huge and yh < math.huge then
+ dgraph[1] = {graph[1][1],graph[1][2],
+ (yhh-8*yh+8*graph[2][2]-graph[3][2])/(12*h)}
+ else -- take neighbour values
+ dgraph[1] = {graph[1][1],graph[1][2],
+ (graph[1][2]-8*graph[2][2]+8*graph[4][2]-graph[5][2])
+ /(12*h)}
+ end
+ for i = 1+indexjump, l-1, indexjump do
+ table.insert(dgraph,{graph[i][1],graph[i][2],
+ (graph[i-2][2]-8*graph[i-1][2]+8*graph[i+1][2]-graph[i+2][2])
+ /(12*h)})
+ end
+ yh = func(graph[l][1]+h)
+ yhh = func(graph[l][1]+2*h)
+ if yhh > -math.huge and yhh < math.huge -- if defined at all
+ and yh > -math.huge and yh < math.huge then
+
+ table.insert(dgraph,{graph[l][1],graph[l][2],
+ (graph[l-2][2]-8*graph[l-1][2]+8*yh-yhh)/(12*h)})
+ else
+ -- take neighbour values
+ table.insert(dgraph,{graph[l][1],graph[l][2],
+ (graph[l-4][2]-8*graph[l-3][2]+8*graph[l-1][2]-graph[l][2])
+ /(12*h)})
+ end
+ end
+ return dgraph
+end
+
+-- diffgraph for cubic function ax^3+bx^2+cx+d
+-- returns the derivatives in form {{x,y,dy/dx,ddy/ddx},...}
+-- if isinverse = true then the coordinates will be inversed
+local function diffgraphcubic(graph,a,b,c,d,isinverse)
+ local dgraph = {}
+ local l = #graph
+ for i = 1, l do
+ if isinverse then
+ dgraph[#dgraph+1] = {graph[i][2],graph[i][1],c
+ +graph[i][2]*(2*b+3*a*graph[i][2]),6*a*graph[i][2]+2*b}
+ else
+ dgraph[#dgraph+1] = {graph[i][1],graph[i][2],c
+ +graph[i][1]*(2*b+3*a*graph[i][1]),6*a*graph[i][1]+2*b}
+ end
+ end
+ return dgraph
+end
+
-- checks for 100 x, if the function given by funcstring
-- fits the graph g (up to maxerror) after filling in
-- the parameters a, b, c, d
@@ -283,94 +361,6 @@ local function parameters_affine(xp,yp,xq,yq)
return a, b
end
--- returns true iff the function is of type f(x)=a*x^3+b*x^2+c*x+d
--- a, b, c, d being real numbers
-local function is_cubic(graph,maxerror)
- local l = #graph
- if l < 2 then
- return false
- else
- local a, b, c, d = parameters_cubic(graph[1][1],graph[1][2],
- graph[math.floor(l/3)][1],graph[math.floor(l/3)][2],
- graph[math.floor(2*l/3)][1],graph[math.floor(2*l/3)][2],
- graph[l][1],graph[l][2])
- return do_parameters_fit(a,b,c,d,"a*x^3+b*x^2+c*x+d",graph,
- maxerror,false)
- end
-end
-
--- returns true iff the function is of type f(x)=a*x^3+b*x^2+c*x+d
--- a, b, c, d being real numbers
--- this takes several graph parts
--- the idea is to have a possibility to avoid tan(x)
-local function are_cubic(graphs,maxerror)
- if is_cubic(graphs[1],maxerror) then
- if #graphs < 2 then
- return true
- else -- check for the next part
- local a, b, c, d = parameters_cubic(graphs[1][1][1],
- graphs[1][1][2],graphs[1][math.floor(l/3)][1],
- graphs[1][math.floor(l/3)][2],
- graphs[1][math.floor(2*l/3)][1],
- graphs[1][math.floor(2*l/3)][2],
- graphs[1][l][1],graphs[1][l][2])
- return do_parameters_fit(a,b,c,d,"a*x^3+b*x^2+c*x+d",
- graphs[2],maxerror,false)
- end
- else
- return false
- end
-end
-
--- returns true iff the inverse function is of type
--- f(x)=a*x^3+b*x^2+c*x+d
--- a, b, c, d being real numbers
-local function is_cuberoot(graph,maxerror)
- local l = #graph
- if l < 2 then
- return false
- else
- local a, b, c, d = parameters_cubic(graph[1][2],graph[1][1],
- graph[math.floor(l/3)][2],graph[math.floor(l/3)][1],
- graph[math.floor(2*l/3)][2],graph[math.floor(2*l/3)][1],
- graph[l][2],graph[l][1])
- return do_parameters_fit(a,b,c,d,"a*x^3+b*x^2+c*x+d",graph,
- maxerror,true)
- end
-end
-
--- returns true iff the function is of type f(x)=a*x^3+b*x^2+c*x+d
--- a, b, c, d being real numbers
--- this takes several graph parts
--- the idea is to have a possibility to avoid tan(x)
-local function are_cuberoot(graphs,maxerror)
- if is_cuberoot(graphs[1],maxerror) then
- if #graphs < 2 then
- return true
- else -- check for the next part
- local a, b, c, d = parameters_cubic(graphs[1][1][2],
- graphs[1][1][1],graphs[1][math.floor(l/3)][2],
- graphs[1][math.floor(l/3)][1],
- graphs[1][math.floor(2*l/3)][2],
- graphs[1][math.floor(2*l/3)][1],
- graphs[1][l][2],graphs[1][l][1])
- return do_parameters_fit(a,b,c,d,"a*x^3+b*x^2+c*x+d",
- graphs[2],maxerror,true)
- end
- else
- return false
- end
-end
-
--- returns true iff function is of type f(x)=a*x+b
--- a, b being real numbers
-local function is_affine(graph,maxerror)
- l = #graph
- local a, b = parameters_affine(graph[1][1],graph[1][2],
- graph[l][1],graph[l][2])
- return do_parameters_fit(a,b,0,0,"a*x+b",graph,maxerror,false)
-end
-
-- what is the sum of the squared error
-- when comparing the bezier path
-- p.. control q and r .. s
@@ -378,7 +368,7 @@ end
-- (looking at the points at roughly t=.33 and t=.67)
local function squareerror(f,g,starti,endi,qx,qy,rx,ry)
local result = 0
- for t = .33, .7, .34 do
+ for t = .1, .9, .1 do
x = (1-t)^3*g[starti][1]+3*t*(1-t)^2*qx+3*t^2*(1-t)*rx+t^3*g[endi][1]
y = (1-t)^3*g[starti][2]+3*t*(1-t)^2*qy+3*t^2*(1-t)*ry+t^3*g[endi][2]
result = result + (y-f(x))^2
@@ -389,7 +379,7 @@ end
-- converts a table with bezier point information
-- to a string with rounded values
-- the path is reversed, if rev is true
--- e.g. if b = {{0,1},{2,3,4,5,6,7},{8,9,10,11,12,13}}
+-- e.g. if bezierpoints = {{0,1},{2,3,4,5,6,7},{8,9,10,11,12,13}}
-- then
-- (0,1) .. controls (2,3) and (4,5) .. (6,7) .. controls
-- (8,9) and (10,11) .. (12,13)
@@ -399,50 +389,68 @@ end
-- NO: 0 1 \\ 6 7 \\ 2 3 \\ 4 5 \\ \\ 6 7 \\ 12 13 \\ 8 9 \\ 10 11 \\
-- As pgfplots does not connect the bezier segments
-- reverse paths are not implemented
-local function beziertabletostring(b,rndx,rndy,rev,notation)
+local function beziertabletostring(bezierpoints,rndx,rndy,rev,notation)
local bezierstring = ""
+ local b = {{round(bezierpoints[1][1],rndx),round(bezierpoints[1][2],rndy)}} -- rounded and then
+ -- reduced points (if identical after rounding)
+ -- rounding
+ for i = 2, #bezierpoints do
+ -- check if x--coordinates are identical
+ if round(bezierpoints[i][#bezierpoints[i]-1],rndx) ~= b[#b][#b[#b]-1] then
+ b[#b+1] = {}
+ for j = 1, #bezierpoints[i] do
+ if j % 2 == 0 then -- x coordinate
+ b[#b][j] = round(bezierpoints[i][j],rndx)
+ else
+ b[#b][j] = round(bezierpoints[i][j],rndy)
+ end
+ end
+ end
+ end
if #b > 1 then -- if not empty or single point
- if #b == 2 and #b[2] == 2 then -- straight line
+ -- check if bezierstring contains only straight lines
+ local onlystraightlines = true
+ for i = 1, #b do
+ if #b[i] > 2 then
+ onlystraightlines = false
+ break
+ end
+ end
+ if onlystraightlines then
if rev then
- bezierstring = "(" .. round(b[2][1],rndx) .. ","
- .. round(b[2][2],rndy) ..")"
- .. " -- (" .. round(b[1][1],rndx) .. ","
- .. round(b[1][2],rndy) ..")"
+ bezierstring = "(" .. b[#b][1] .. "," .. b[#b][2] ..")"
+ for i = #b-1, 1, -1 do
+ bezierstring = bezierstring ..
+ " -- (" .. b[i][1] .. "," .. b[i][2] ..")"
+ end
else
if notation == "pgfplots" then
bezierstring = "\\addplot coordinates {("
- .. round(b[1][1],rndx) .. ","
- .. round(b[1][2],rndy) .. ") ("
- .. round(b[2][1],rndx) .. ","
- .. round(b[2][2],rndy) .. ") ("
- .. round(b[1][1],rndx) .. ","
- .. round(b[1][2],rndy) .. ") ("
- .. round(b[2][1],rndx) .. ","
- .. round(b[2][2],rndy) .. ") }"
+ .. b[1][1] .. "," .. b[1][2] .. ") ("
+ .. b[2][1] .. "," .. b[2][2] .. ") ("
+ .. b[1][1] .. "," .. b[1][2] .. ") ("
+ .. b[2][1] .. "," .. b[2][2] .. ") }"
else -- notation = tikz
- bezierstring = "(" .. round(b[1][1],rndx) .. ","
- .. round(b[1][2],rndy) ..")"
- .. " -- (" .. round(b[2][1],rndx) .. ","
- .. round(b[2][2],rndy) ..")"
+ bezierstring = "(" .. b[1][1] .. "," .. b[1][2] ..")"
+ for i = 2, #b do
+ bezierstring = bezierstring ..
+ " -- (" .. b[i][1] .. "," .. b[i][2] ..")"
+ end
end
end
else
if rev then
- bezierstring = "(" .. round(b[#b][#b[#b]-1],rndx) .. ","
- .. round(b[#b][#b[#b]],rndy) ..")" -- initial point
+ bezierstring = "(" .. b[#b][#b[#b]-1] .. ","
+ .. b[#b][#b[#b]] ..")" -- initial point
for i = #b, 2, -1 do
if #b[i] >= 6 then -- cubic bezier spline
bezierstring = bezierstring .. " .. controls ("
- .. round(b[i][3],rndx) .. ","
- .. round(b[i][4],rndy) ..") and ("
- .. round(b[i][1],rndx) .. ","
- .. round(b[i][2],rndy) .. ") .. ("
- .. round(b[i-1][#b[i-1]-1],rndx) .. ","
- .. round(b[i-1][#b[i-1]],rndy)..")"
+ .. b[i][3] .. "," .. b[i][4] ..") and ("
+ .. b[i][1] .. "," .. b[i][2] .. ") .. ("
+ .. b[i-1][#b[i-1]-1] .. "," .. b[i-1][#b[i-1]]..")"
else
bezierstring = bezierstring .. " ("
- .. round(b[i-1][#b[i-1]-1],rndx) .. ","
- .. round(b[i-1][#b[i-1]],rndy) ..")"
+ .. b[i-1][#b[i-1]-1] .. "," .. b[i-1][#b[i-1]] ..")"
end
end
else
@@ -451,33 +459,25 @@ local function beziertabletostring(b,rndx,rndy,rev,notation)
for i = 1, #b-1 do
if #b[i+1] >= 6 then -- cubic bezier spline
bezierstring = bezierstring .. "("
- .. round(b[i][#b[i]-1],rndx) .. ","
- .. round(b[i][#b[i]],rndy) .. ") ("
- .. round(b[i+1][5],rndx) .. ","
- .. round(b[i+1][6],rndy) .. ") ("
- .. round(b[i+1][1],rndx) .. ","
- .. round(b[i+1][2],rndy) .. ") ("
- .. round(b[i+1][3],rndx) .. ","
- .. round(b[i+1][4],rndy) .. ") "
+ .. b[i][#b[i]-1] .. "," .. b[i][#b[i]] .. ") ("
+ .. b[i+1][5] .. "," .. b[i+1][6] .. ") ("
+ .. b[i+1][1] .. "," .. b[i+1][2] .. ") ("
+ .. b[i+1][3] .. "," .. b[i+1][4] .. ") "
end
end
bezierstring = bezierstring .. "}"
else -- notation = tikz
- bezierstring = "(" .. round(b[1][1],rndx) .. ","
- .. round(b[1][2],rndy) ..")" -- initial point
+ bezierstring = "(" .. b[1][1] .. ","
+ .. b[1][2] ..")" -- initial point
for i = 2, #b do
if #b[i] >= 6 then -- cubic bezier spline
bezierstring = bezierstring .. " .. controls ("
- .. round(b[i][1],rndx) .. ","
- .. round(b[i][2],rndy) ..") and ("
- .. round(b[i][3],rndx) .. ","
- .. round(b[i][4],rndy) .. ") .. ("
- .. round(b[i][5],rndx) .. ","
- .. round(b[i][6],rndy)..")"
+ .. b[i][1] .. "," .. b[i][2] ..") and ("
+ .. b[i][3] .. "," .. b[i][4] .. ") .. ("
+ .. b[i][5] .. "," .. b[i][6]..")"
else
bezierstring = bezierstring .. " ("
- .. round(b[i][1],rndx) .. ","
- .. round(b[i][2],rndy) ..")"
+ .. b[i][1] .. "," .. b[i][2] ..")"
end
end
end
@@ -492,6 +492,7 @@ end
-- without extrema or inflection points inbetween
-- and try to approximate it with a cubic bezier curve
-- (round to rndx and rndy when printing)
+-- if maxerror <= 0, the function will not be recursive anymore
local function graphtobezierapprox(f,g,starti,endi,maxerror)
local px = g[starti][1]
local py = g[starti][2]
@@ -504,59 +505,64 @@ local function graphtobezierapprox(f,g,starti,endi,maxerror)
local cy = (dp * ((ds * px) - (ds * sx) - py + sy) / (dp - ds)) + py
-- now we slide q between p and c & r between s and c
-- and search for the best qx and best rx
- local qx = px+.05*(cx-px)
- local qy = py+.05*(cy-py)
- local rx = sx+.05*(cx-sx)
- local ry = sy+.05*(cy-sy)
+ local qx = px+.01*(cx-px)
+ local qy = py+.01*(cy-py)
+ local rx = sx+.01*(cx-sx)
+ local ry = sy+.01*(cy-sy)
local err = squareerror(f,g,starti,endi,qx,qy,rx,ry)
- for i = 2, 19 do
- for j = 2, 19 do
- xa = px+i*.05*(cx-px)
- ya = py+i*.05*(cy-py)
- xb = sx+j*.05*(cx-sx)
- yb = sy+j*.05*(cy-sy)
+ for i = 2, 99 do
+ for j = 2, 99 do
+ xa = px+i*.01*(cx-px)
+ ya = py+i*.01*(cy-py)
+ xb = sx+j*.01*(cx-sx)
+ yb = sy+j*.01*(cy-sy)
-- now check, if xa and xb fit better
- -- at roughly t=0.33 and t=0.66 for f(x)
-- than the last qx and rx did
-- (sum of squares must be smaller)
- if squareerror(f,g,starti,endi,xa,ya,xb,yb) < err then
+ local newerror = squareerror(f,g,starti,endi,xa,ya,xb,yb)
+ if newerror < err then
qx = xa
qy = ya
rx = xb
ry = yb
- err = squareerror(f,g,starti,endi,qx,qy,rx,ry)
+ err = newerror
end
end
end
- -- check if it is close enough: (recycling err, xa, ya)
- err = 0
- for t = .1, .9, .1 do
- xa = (1-t)^3*g[starti][1]+3*t*(1-t)^2*qx+3*t^2*(1-t)*rx+t^3*g[endi][1]
- ya = (1-t)^3*g[starti][2]+3*t*(1-t)^2*qy+3*t^2*(1-t)*ry+t^3*g[endi][2]
- if abs(ya-f(xa)) > err then
- err = abs(ya-f(xa))
- end
- end
- if err <= maxerror then
- return {qx,qy,rx,ry,sx,sy}
- else
- -- search for an intermediate point where the graph has the same
- -- slope as the line from the start point to the end point:
- local interindex = math.floor(.5*starti+.5*endi) -- will change
- for i = starti + 1, endi - 1 do
- if abs(g[i][3]-(g[endi][2]-g[starti][2])
- /(g[endi][1]-g[starti][1]))
- < abs(g[interindex][3]-(g[endi][2]-g[starti][2])
- /(g[endi][1]-g[starti][1])) then
- interindex = i
+ if maxerror > 0 then
+ -- check if it is close enough: (recycling err, xa, ya)
+ err = 0
+ for t = .1, .9, .1 do
+ xa = (1-t)^3*g[starti][1]+3*t*(1-t)^2*qx+3*t^2*(1-t)*rx+t^3*g[endi][1]
+ ya = (1-t)^3*g[starti][2]+3*t*(1-t)^2*qy+3*t^2*(1-t)*ry+t^3*g[endi][2]
+ if abs(ya-f(xa)) > err then
+ err = abs(ya-f(xa))
+ err = abs(ya-f(xa))
end
end
- local left = graphtobezierapprox(f,g,starti,interindex,maxerror)
- local right = graphtobezierapprox(f,g,interindex,endi,maxerror)
- for i=1, #right do --now append the right to the left:
- left[#left+1] = right[i]
+ if err <= maxerror then
+ return {qx,qy,rx,ry,sx,sy}
+ else
+ -- search for an intermediate point where the graph has the same
+ -- slope as the line from the start point to the end point:
+ local interindex = math.floor(.5*starti+.5*endi) -- will change
+ for i = starti + 1, endi - 1 do
+ if abs(g[i][3]-(g[endi][2]-g[starti][2])
+ /(g[endi][1]-g[starti][1]))
+ < abs(g[interindex][3]-(g[endi][2]-g[starti][2])
+ /(g[endi][1]-g[starti][1])) then
+ interindex = i
+ end
+ end
+ local left = graphtobezierapprox(f,g,starti,interindex,maxerror)
+ local right = graphtobezierapprox(f,g,interindex,endi,maxerror)
+ for i=1, #right do --now append the right to the left:
+ left[#left+1] = right[i]
+ end
+ return left
end
- return left
+ else
+ return {qx,qy,rx,ry,sx,sy}
end
end
@@ -591,31 +597,58 @@ local function printtable(t)
end
-- main function
-function bezierplot(functionstring,xmin,xmax,ymin,ymax,notation)
+function bezierplot(functionstring,xminstring,xmaxstring,yminstring,ymaxstring,samplesstring,notation)
local fstringreplaced = string.gsub(functionstring, "%*%*", "^")
local f = assert(load("local x = ...; return " .. fstringreplaced))
+ local xmin = evaluate(xminstring)
+ local xmax = evaluate(xmaxstring)
+ local ymin = evaluate(yminstring)
+ local ymax = evaluate(ymaxstring)
+ local samples = evaluate(samplesstring)
local isreverse = false
if xmin > xmax then
isreverse = true
+ elseif xmin == xmax then
+ xmax = xmin + 10
end
xmin, xmax = math.min(xmin,xmax), math.max(xmin,xmax)
- local xstep = (xmax-xmin)/20000
- -- the output of the x coordinates will be rounded to rndx digits
- local rndx = math.max(0,math.floor(4.5-log(xmax-xmin)/log(10)))
- local xerror = abs(xmax-xmin)/(100*10^rndx)
+ if ymin == ymax then
+ ymax = ymin + 10
+ end
ymin, ymax = math.min(ymin,ymax), math.max(ymin,ymax)
- -- the output of the x coordinates will be rounded to rndy digits
- local rndy = math.max(0,math.floor(4.5-log(ymax-ymin)/log(10)))
- local yerror = (ymax-ymin)/(100*10^rndy)
+ local xsteps = 50000
+ -- if samples < 2 the samples will be chosen as wisely as possible
+ local arbitrary_samples = true
+ if samples >= 2 then
+ arbitrary_samples = false
+ xsteps = (samples-1)*math.max(2,math.floor(xsteps/(samples-1)))
+ end
+ local xstep = (xmax-xmin)/xsteps
+ -- the output of the x coordinates will be rounded to rndx digits
+ local rndx = math.max(0,math.floor(5.5-log(xmax-xmin)/log(10)))
+ local xerror = abs(xmax-xmin)/(10^rndx)
+ -- the output of the y coordinates will be rounded to rndy digits
+ local rndy = math.max(0,math.floor(5.5-log(ymax-ymin)/log(10)))
+ local yerror = (ymax-ymin)/(10^rndy)
-- determine parts of the graph that are inside window
- local graphs = {}
+ local graphs = {} -- graph split to the connected parts
+ local graph = {} -- graphs concatenated (needed for function type)
local outside = true -- value is outside window
local i = 0
local j = 0
- for n = 0, 20000 do
- local x = xmin + n/20000*(xmax-xmin)
+ local yminreal -- determine the real minimimum of the y coord.
+ local ymaxreal -- just decring
+ local yminrealfound = false
+ local ymaxrealfound = false
+ for n = 0, xsteps do
+ local x = xmin + n/xsteps*(xmax-xmin)
+ if n == xsteps then
+ x = xmax
+ end
local y = f(x)
- if y >= ymin-yerror and y <= ymax+yerror then -- inside
+ if (y >= ymin-yerror and ymin ~= -huge or y > ymin and ymin == -huge)
+ and (y <= ymax+yerror and ymax ~= huge or y < ymax and ymax == huge)
+ then -- inside
if outside then -- if it was outside before
outside = false
j = 0
@@ -624,203 +657,264 @@ function bezierplot(functionstring,xmin,xmax,ymin,ymax,notation)
end
j = j + 1
graphs[i][j] = {x,y}
+ graph[#graph+1] = {x,y}
+ if not yminrealfound or yminrealfound and y < yminreal then
+ yminreal = y
+ yminrealfound = true
+ end
+ if not ymaxrealfound or ymaxrealfound and y > ymaxreal then
+ ymaxreal = y
+ ymaxrealfound = true
+ end
else
outside = true
end
end
-
+
+ -- some redefinitions
+ if #graph ~= 0 and yminreal ~= ymaxreal then
+ ymin = yminreal
+ ymax = ymaxreal
+ rndy = math.max(0,math.floor(5.5-log(ymax-ymin)/log(10)))
+ yerror = (ymax-ymin)/(10^rndy)
+ end
+
+ -- check for the function type (for this, we need the concatenated
+ -- parts of the graph)
+ -- go through the connected parts
local functiontype = "unknown"
+ local a, b, c, d -- possible function parameter
+ -- check for affine functions:
+ local l = #graph
+ a, b = parameters_affine(graph[1][1],graph[1][2],
+ graph[l][1],graph[l][2])
+ if do_parameters_fit(a,b,0,0,"a*x+b",graph,yerror,false) then
+ functiontype = "affine"
+ else -- check for cubic functions (includes quadratic functions)
+ a, b, c, d = parameters_cubic(graph[1][1],graph[1][2],
+ graph[math.floor(l/3)][1],graph[math.floor(l/3)][2],
+ graph[math.floor(2*l/3)][1],graph[math.floor(2*l/3)][2],
+ graph[l][1],graph[l][2])
+ if do_parameters_fit(a,b,c,d,"a*x^3+b*x^2+c*x+d",graph,
+ yerror,false) then
+ functiontype = "cubic"
+ else -- check for cuberoot functions (includes squareroots)
+ a, b, c, d = parameters_cubic(graph[1][2],graph[1][1],
+ graph[math.floor(l/3)][2],graph[math.floor(l/3)][1],
+ graph[math.floor(2*l/3)][2],graph[math.floor(2*l/3)][1],
+ graph[l][2],graph[l][1])
+ if do_parameters_fit(a,b,c,d,"a*x^3+b*x^2+c*x+d",graph,
+ xerror,true) then
+ functiontype = "cuberoot"
+ end
+ end
+ end
+
local bezierpoints = {}
-- the bezier path (0,1) .. controls
-- (2,3) and (4,5) .. (6,7) .. controls
-- (8,9) and (10,11) .. (12,13)
-- will be stored as
-- bezierpoints={{0,1},{2,3,4,5,6,7},{8,9,10,11,12,13}}
-
- -- go through the connected parts
- for part = 1, #graphs do
- local d = diffgraph(f,graphs[part],xstep)
- --for i = 1, #d do -- just for debugging
- -- print(d[i][1],d[i][2],d[i][3],d[i][4],d[i][5],d[i][6])
- --end
- -- check for type of function (only for the first part)
- if part == 1 then
- if is_affine(d,yerror) then
- functiontype = "affine"
- elseif are_cubic(graphs,yerror) then
- functiontype = "cubic"
- elseif are_cuberoot(graphs,xerror) then
- functiontype = "cuberoot"
+
+ if functiontype == "affine" then
+ if arbitrary_samples then
+ bezierpoints = {{graph[1][1],graph[1][2]},{graph[#graph][1],
+ graph[#graph][2]}}
+ else -- we can here savely assume that graphs has only one part,
+ -- therefore graphs[1]=graph
+ for i = 1, #graph, math.floor(xsteps/(samples-1)) do
+ bezierpoints[#bezierpoints+1] = {graph[i][1],graph[i][2]}
end
end
- if functiontype ~= "cuberoot" then -- start with initial point
- bezierpoints[#bezierpoints+1] = {round(d[1][1],rndx),
- round(d[1][2],rndy)}
- end
- if functiontype == "affine" then
- bezierpoints[#bezierpoints+1] = {round(d[#d][1],rndx),
- round(d[#d][2],rndy)}
- elseif functiontype == "cubic" then
- local startindex = 1
- local extremainbetween = false
- for k = 2, #d do
- if d[k][5] then -- extrema
- extremainbetween = true
- bezierpoints[#bezierpoints+1] = graphtobezier(d,
- startindex,k,false)
- startindex = k
+ elseif functiontype == "cubic" then
+ local extrema_inflections = {} -- store the extrema and
+ -- inflection points for arbitrary samples
+ if arbitrary_samples then
+ if math.abs(a) < yerror*1e-10 then -- quadratic case (one extremum)
+ if is_in_window(-c/(2*b),(-c^2+4*b*d)/(4*b),xmin,xmax,
+ ymin,ymax) then
+ extrema_inflections = {{-c/(2*b),(-c^2+4*b*d)/(4*b)}}
+ end
+ else -- cubic case (two extrema and one inflection point)
+ -- we order the points with the help of sgn
+ -- check for first extrema
+ if is_in_window((-sgn(a)*sqrt(-3*a*c+b^2)-b)/(3*a),
+ (2*b^3+27*a^2*d-9*a*b*c+sqrt(b^2-3*a*c)*sgn(a)*
+ (2*b^2-6*a*c))/(27*a^2),xmin,xmax,ymin,ymax) then
+ extrema_inflections[#extrema_inflections+1] =
+ {(-sgn(a)*sqrt(-3*a*c+b^2)-b)/(3*a),(2*b^3+27*a^2*d-
+ 9*a*b*c+sqrt(b^2-3*a*c)*sgn(a)*(2*b^2-6*a*c))/(27*a^2)}
+ end
+ -- check for inflection point (has to be inbetween)
+ if is_in_window(-b/(3*a),(2*b^3+27*a^2*d-9*a*b*c)
+ /(27*a^2),xmin,xmax,ymin,ymax) then
+ extrema_inflections[#extrema_inflections+1]={-b/(3*a),
+ (2*b^3+27*a^2*d-9*a*b*c)/(27*a^2)}
+ end
+ -- check for second extrema
+ if is_in_window((sgn(a)*sqrt(-3*a*c+b^2)-b)/(3*a),
+ (2*b^3+27*a^2*d-9*a*b*c+sqrt(b^2-3*a*c)*sgn(a)*
+ (-2*b^2+6*a*c))/(27*a^2),xmin,xmax,ymin,ymax) then
+ extrema_inflections[#extrema_inflections+1] =
+ {(sgn(a)*sqrt(-3*a*c+b^2)-b)/(3*a),(2*b^3+27*a^2*d-
+ 9*a*b*c+sqrt(b^2-3*a*c)*sgn(a)*(-2*b^2+6*a*c))/(27*a^2)}
end
end
- if not extremainbetween then
- for k = 2, #d do
- if d[k][6] then -- inflection point
- -- check, if the controlpoints are outside
- -- of the bounding box defined by the vertices
- -- (d[1][1],d[1][2]) and (d[#d][1],d[#d][2])
- local qx = d[1][1]+(d[#d][1]-d[1][1])/3
- local rx = d[1][1]+2*(d[#d][1]-d[1][1])/3
- local qy = d[1][2]+(qx-d[1][1])*d[1][3]
- local ry = d[#d][2]+(rx-d[#d][1])*d[#d][3]
- if math.max(qy,ry) > ymax
- or math.min(qy,ry) < ymin then
- bezierpoints[#bezierpoints+1] = graphtobezier(
- d,startindex,k,false)
- startindex = k
- end
+ end
+ for part = 1, #graphs do
+ bezierpoints[#bezierpoints+1] = {graphs[part][1][1],
+ graphs[part][1][2]} -- initial points
+ local graphsamples = {}-- will be the graph reduced to the
+ -- samples (or the most important points)
+ local dg -- will be the differentiated graph
+ if arbitrary_samples then -- add extrema and inflection
+ -- points to the border points
+ graphsamples = {{graphs[part][1][1],
+ graphs[part][1][2]}}
+ for j = 1, #extrema_inflections do
+ if extrema_inflections[j][1] > math.min(
+ graphs[part][1][1] ,graphs[part][#graphs[part]][1])
+ and extrema_inflections[j][1] < math.max(
+ graphs[part][1][1] ,graphs[part][#graphs[part]][1])
+ then
+ graphsamples[#graphsamples+1] =
+ {extrema_inflections[j][1],
+ extrema_inflections[j][2]}
end
end
+ graphsamples[#graphsamples+1] =
+ {graphs[part][#graphs[part]][1],
+ graphs[part][#graphs[part]][2]}
+ else
+ for i = 1, #graphs[part], xsteps/(samples-1) do
+ graphsamples[#graphsamples+1] =
+ {graphs[part][i][1],graphs[part][i][2]}
+ end
end
- if startindex ~= #d then -- if no special points inbetween
- bezierpoints[#bezierpoints+1] = graphtobezier(d,
- startindex,#d,false)
+ dg = diffgraphcubic(graphsamples,a,b,c,d,false)
+ for i = 2, #dg do
+ bezierpoints[#bezierpoints+1] = graphtobezier(dg,i-1,i,false)
end
- elseif functiontype == "cuberoot" then
- -- we determine a, b, c, d and then
- -- get x' = 3ay^2+2by+c
- local a, b, c, dd = parameters_cubic(
- d[math.floor(.2*l)][2], d[math.floor(.2*l)][1],
- d[math.floor(.4*l)][2], d[math.floor(.4*l)][1],
- d[math.floor(.6*l)][2], d[math.floor(.6*l)][1],
- d[math.floor(.8*l)][2], d[math.floor(.8*l)][1])
- -- now recalculate the graph with the inverse function:
- -- we can increase the accuracy
- xstep = (ymax-ymin)/100000 -- inverse redefinition
- local finverse = assert(load("local x = ...; return "
- ..a.."*x^3+"..b.."*x^2+"..c.."*x+"..dd))
- local graphinverse = {}
- local i = 1
- for y = ymin, ymax, xstep do
- local x = finverse(y)
- if x > xmin and x < xmax -- inside
- and abs(y-f(x)) < (ymax-ymin)/(100*10^rndy) then
- graphinverse[i] = {y,x}
- i = i + 1
- end
+ end
+ elseif functiontype == "cuberoot" then
+ local inflection = {} -- store the inflection point
+ if arbitrary_samples and math.abs(a) ~= 0
+ and is_in_window((2*b^3+27*a^2*d-9*a*b*c)/(27*a^2),-b/(3*a),
+ xmin,xmax,ymin,ymax) then
+ inflection = {(2*b^3+27*a^2*d-9*a*b*c)/(27*a^2),-b/(3*a)}
+ end
+ -- (there cannot be more than one part)
+ bezierpoints[#bezierpoints+1] = {graphs[1][1][1],
+ graphs[1][1][2]} -- initial points
+ local graphsamples = {}-- will be the graph reduced to the
+ -- samples (or the most important points)
+ local dg -- will be the differentiated graph
+ if arbitrary_samples then -- add inflection point (if exis.)
+ graphsamples = {{graphs[1][1][1],
+ graphs[1][1][2]}}
+ if #inflection > 0 and inflection[1] > math.min(
+ graphs[1][1][1],graphs[1][#graphs[1]][1])
+ and inflection[1] < math.max(
+ graphs[1][1][1],graphs[1][#graphs[1]][1])
+ then
+ graphsamples[#graphsamples+1] =
+ {inflection[1],inflection[2]}
end
- d = diffgraph(finverse,graphinverse,xstep)
- bezierpoints[#bezierpoints+1] = {d[1][2],d[1][1]} -- initial point
- local startindex = 1
- for k = 2, #d do
- if d[k][6] then -- inflection point
- -- check, if the controlpoints are outside
- -- of the bounding box defined by the vertices
- -- (d[1][1],d[1][2]) and (d[#d][1],d[#d][2])
- local qx = d[1][1]+(d[#d][1]-d[1][1])/3
- local rx = d[1][1]+2*(d[#d][1]-d[1][1])/3
- local qy = d[1][2]+(qx-d[1][1])*d[1][3]
- local ry = d[#d][2]+(rx-d[#d][1])*d[#d][3]
- if math.max(qy,ry) > xmax
- or math.min(qy,ry) < xmin then
- bezierpoints[#bezierpoints+1] = graphtobezier(
- d,startindex,k,true)
+ graphsamples[#graphsamples+1] =
+ {graphs[1][#graphs[1]][1],
+ graphs[1][#graphs[1]][2]}
+ else
+ for i = 1, #graphs[1], xsteps/(samples-1) do
+ graphsamples[#graphsamples+1] =
+ {graphs[1][i][1],graphs[1][i][2]}
+ end
+ end
+ dg = diffgraphcubic(graphsamples,a,b,c,d,true)
+ for i = 2, #dg do
+ bezierpoints[#bezierpoints+1] = graphtobezier(dg,i-1,i,true)
+ end
+ else
+ ---------- generic case (no special function) ----------------
+ if arbitrary_samples then
+ -- go through the connected parts
+ for part = 1, #graphs do
+ local dg = diffgraph(f,graphs[part],xstep)
+ bezierpoints[#bezierpoints+1] = {dg[1][1],dg[1][2]}
+ local startindex = 1
+ for k = 2, #dg do
+ if dg[k][5] or dg[k][6] then -- extrema and inflection points
+ local tobeadded = graphtobezierapprox(
+ f,dg,startindex,k,10*yerror)
+ -- tobeadded may contain a multiple of 6 entries
+ -- e.g. {1,2,3,4,5,6,7,8,9,10,11,12}
+ for i = 1, math.floor(#tobeadded/6) do
+ bezierpoints[#bezierpoints+1] = {}
+ for j = 1, 6 do
+ bezierpoints[#bezierpoints][j] = tobeadded[(i-1)*6+j]
+ end
+ end
startindex = k
end
end
- end
- if startindex ~= #d then -- if no special points inbetween
- bezierpoints[#bezierpoints+1] = graphtobezier(d,
- startindex,#d,true)
- end
- else
- -- standard case (nothing special)
- local startindex = 1
- for k = 2, #d do
- if d[k][5] or d[k][6] then -- extrema and inflection points
- local tobeadded = graphtobezierapprox(
- f,d,startindex,k,(ymax-ymin)/(0.5*10^rndy))
+ if startindex ~= #dg then -- if no special points inbetween
+ local tobeadded = graphtobezierapprox(f,dg,
+ startindex,#dg,10*yerror)
-- tobeadded may contain a multiple of 6 entries
- -- e.g. {1,2,3,4,5,6,7,8,9,10,11,12}
+ -- e.g. {1,2,3,4,5,6,7,8,9,10,11,12}
for i = 1, math.floor(#tobeadded/6) do
bezierpoints[#bezierpoints+1] = {}
for j = 1, 6 do
bezierpoints[#bezierpoints][j] = tobeadded[(i-1)*6+j]
end
end
- startindex = k
end
end
- if startindex ~= #d then -- if no special points inbetween
- local tobeadded = graphtobezierapprox(f,d,
- startindex,#d,(ymax-ymin)/(0.5*10^rndy))
- -- tobeadded may contain a multiple of 6 entries
- -- e.g. {1,2,3,4,5,6,7,8,9,10,11,12}
- for i = 1, math.floor(#tobeadded/6) do
- bezierpoints[#bezierpoints+1] = {}
- for j = 1, 6 do
- bezierpoints[#bezierpoints][j] = tobeadded[(i-1)*6+j]
- end
+ else -- fixed samples in the generic case
+ -- go through the connected parts
+ for part = 1, #graphs do
+ local dg = diffgraphsimple(f,graphs[part],xstep,
+ math.floor(0.5+xsteps/(samples-1)))
+ bezierpoints[#bezierpoints+1] = {dg[1][1],dg[1][2]} -- initial points
+ for i = 2, #dg do
+ bezierpoints[#bezierpoints+1] = graphtobezier(dg,i-1,i,false)
end
end
end
end
- -- only for debugging:
- --for i = 1, #bezierpoints do
- -- for j = 1, #bezierpoints[i] do
- -- print(bezierpoints[i][j])
- -- end
- ---print("\n")
- --end
- return beziertabletostring(bezierpoints,rndx,rndy,isreverse,notation)
+ return beziertabletostring(bezierpoints,rndx,rndy,isreverse,notation)
end
-- main program --
if not pcall(debug.getlocal, 4, 1) then
+--if debug.getinfo(3) == nil then
if #arg >= 1 then
local xmin = -5
local xmax = 5
if #arg >= 2 then
- local tempfunc = assert(load("return " .. arg[2]))
- xmin = tempfunc()
+ xmin = arg[2]
end
if #arg >= 3 then
- if arg[3] == arg[2] then
- xmax = xmin + 10
- else
- local tempfunc = assert(load("return " .. arg[3]))
- xmax = tempfunc()
- end
+ xmax = arg[3]
end
local ymin = -5
local ymax = 5
if #arg >= 4 then
- local tempfunc = assert(load("return " .. arg[4]))
- ymin = tempfunc()
+ ymin = arg[4]
end
if #arg >= 5 then
- if arg[5] == arg[4] then
- ymax = ymin + 10
- else
- local tempfunc = assert(load("return " .. arg[5]))
- ymax = tempfunc()
- end
+ ymax = arg[5]
end
+ local samples = 0
if #arg >= 6 then
- notation = arg[6]
- else
- notation = "tikz"
+ samples = arg[6]
+ end
+ local notation = "tikz"
+ if #arg >= 7 then
+ notation = arg[7]
end
- print(bezierplot(arg[1],xmin,xmax,ymin,ymax,notation))
+ print(bezierplot(arg[1],xmin,xmax,ymin,ymax,samples,notation))
end
end
diff --git a/Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.sty b/Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.sty
index 26e76f0e25b..be4c89550e5 100644
--- a/Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.sty
+++ b/Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.sty
@@ -1,16 +1,16 @@
\NeedsTeXFormat{LaTeX2e}
-\ProvidesPackage{bezierplot}[2018/06/10 bezierplot]
+\ProvidesPackage{bezierplot}[2018/07/23 bezierplot]
\RequirePackage{xparse}
\RequirePackage{iftex}
\ifLuaTeX
\directlua{require("bezierplot")}
- \DeclareExpandableDocumentCommand{\xbezierplot}{O{-5} O{5} O{-5} O{5} O{tikz} m}{%
- \directlua{tex.sprint(bezierplot("#6",#1,#2,#3,#4,"#5"))}
+ \DeclareExpandableDocumentCommand{\xbezierplot}{O{-5} O{5} O{-5} O{5} O{0} O{tikz} m}{%
+ \directlua{tex.sprint(bezierplot("#7","#1","#2","#3","#4","#5","#6"))}
}
\else
\let\xpandblinpt\@@input
- \DeclareExpandableDocumentCommand{\xbezierplot}{O{-5} O{5} O{-5} O{5} O{tikz} m}{%
- \xpandblinpt|"bezierplot '#6' #1 #2 #3 #4 '#5'"
+ \DeclareExpandableDocumentCommand{\xbezierplot}{O{-5} O{5} O{-5} O{5} O{0} O{tikz} m}{%
+ \xpandblinpt|"bezierplot '#7' '#1' '#2' '#3' '#4' '#5' '#6'"
}
\fi
\providecommand\bezierplot{\romannumeral`\^^@\xbezierplot}