1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
|
% This file is part of web2w.
% Copyright 2017 Martin Ruckert
%
% web2w is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% web2w is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with web2w. If not, see <http://www.gnu.org/licenses/>.
%
% Martin Ruckert, Hochschule Muenchen, Lothstrasse 64, 80336 Muenchen
%
\input web2w.sty
%% defining how to display certain C identifiers
@s token int
@s symbol int
@s debug if
@s gubed if
@s stat if
@s tats if
@s init if
@s tini if
@s int8_t int
@s uint8_t int
@s int16_t int
@s uint16_t int
@s integer int
@s real float
@s repeat while
@s until while
@s bool int
\makeindex
\maketoc
\titletrue
\def\lastrevision{${}$Revision: 943 ${}$}
\def\lastdate{${}$Date: 2017-07-28 14:37:50 +0200 (Fri, 28 Jul 2017) ${}$}
\input titlepage.tex
\frontmatter
@
\plainsection{Preface}
This book describes a project to convert the \TeX\ source code\cite{Knuth:tex}
written by \index{Knuth, Donald E.}Donald E. Knuth
as a ``\WEB/''\cite{Knuth:lp} into a ``\cweb/''\cite{Knuth:cweb}.
\itemize
\item On December 9, 2016, I started to implement \web2w/ as a compiler for \WEB/ files
which is described below. The compiler, as compilers usually do, reads an input file
and continues to produce a parse tree.
The resulting parse tree
has two structures: a linear structure representing the
linear order of the input file and a tree structure
representing the embedded \Pascal/ program.
Then the embedded \Pascal/ program needs to be translated into an
equivalent \CEE/ program. And finally, the linear structure
of the parse tree will be used to output a \cweb/ file.
Small corrections on the resulting \cweb/ file are implemented by
a patch file\index{patch file}.
The overall goal is the generation of a
\.{ctex.w} file that is as close as possible to the \.{tex.web} input file,
and can be used to produce \.{ctex.tex} and \.{ctex.c} using the
standard tools \.{ctangle} and \.{cweave}.
The \TeX\ program can then be compiled from \.{ctex.c} and the \TeX\ documentation
can be generated from \.{ctex.tex} by \TeX\ itself.
This will simplify the tool chain necessary to generate \TeX\ from
its ``sources''.
\item On April 20, 2017, I was able to create the first ``hello world'' \.{dvi} file
with my newly generated \TeX\ program and with that, I had reached
version 0.1\index{version 0.1} of \web2w/.% revision 794
\item On April 26, 2017, I succeeded for the first time
to generate a program that would pass the trip test\index{trip test} and
therefore can be called \TeX.
This was then version 0.2\index{version 0.2} of \web2w/. % revision 808
While the program at this point was a ``correct implementation of \TeX'',
its form still needed further improvement.
For example, the sizes of arrays were computed
and occurred in the source as literal numbers. It would be appropriate
for source code that instead the expression defining the
array size were used to specify the array size\index{array size}.
The use of \&{return} statements
and the elimination of unused |end|
labels also asked for improvement.
\item On May 11, 2017, I completed version 0.3 of \web2w/. % revision 834
Numerous improvements were added by then: some concerning the presentation
of \web2w/ itself, others with the goal of generating better \cweb/ code for \TeX.
I decided then to freeze the improvement of the code for a while and
prepare this document for publication as a book.
\item On July 27, 2017, I completed version 0.4 of \web2w/, % revision 935
the first version that will be published as a book.
More improvements (and more versions) are still to come.
Of course, changes in the code part of \TeX\ will necessarily require
changes in the documentation part. These can, however, not result from
an automatic compilation. So the plan is to develop patch files\index{patch file}
that generate from the latest 0.$x$~versions\index{0.1 version+0.$x$~version}
improved 1.$y$~versions\index{1.y version+1.$y$~version}.
These versions will share
the same goal as version 0.$x$: producing a \cweb/ \TeX\ source file
that is as close as possible to the original web source
but with a documentation part of each section that reflects the changes
made in the code.
\item There is a long term goal that brought me to construct \.{web2w}
in the first place: I plan to derive from the \TeX\ sources
a new kind of \TeX\ that is influenced
by the means and necessities of current software and hardware.
The name for this new implementation will be \HINT/\index{HINT+\HINT/} which is,
in the usual Open Software naming schema, the acronym for
``\HINT/ is not \TeX''.
For example, \HINT/ will accept UTF-8 input files because this
is the defacto standard due to its use on the world wide web.
Further, the machine model will be a processor that can
efficiently handle 64-Bit values and has
access to large amounts of main memory (several GByte).
Last not least, I assume the availability of a good modern \CEE/
compiler and will leave optimizations to the compiler if possible.
The major change however will be the separation of the \TeX\ frontend\index{frontend}:
the processing of \.{.tex} files, from the \TeX\ backend\index{backend}:
the rendering of paragraphs and pages.
Let's look, for example, at ebooks\index{ebook}:
Current ebooks are of minor typographic quality. Just compiling
\TeX\ sources to a standard ebook format, for example epub, does
not work because a lot of information that is used by \TeX\ to
produce good looking pages is not available in these formats.
So I need to cut \TeX\ (or \HINT/) in two pieces: a frontend, that
reads \TeX\ input and a backend that renders pixel on a page.
The frontend will not know about the final page size because
the size of the output medium may change while we read---for
example by turning a mobile device from landscape to portrait
mode. On the other hand, the computational resources of the backend
are usually limited because a mobile device has a limited
supply of electrical energy. So we should do as much as we
can in the frontend and postpone what needs to be postponed
to the backend. In between front and back, we need a nice
new file format, that is compact and efficient, and transports
whatever information is necessary between both parts.
These are the possible next steps:
\itemize
\item As a first step, I will make a version of \TeX\ that produces a file listing all
the contributions and insertions that \TeX\ sends to the page builder\index{page builder}.
Let's call this a \.{.hint} file. This version of \TeX\ will become
the final frontend.
\item Next, I will use a second version of \TeX\ where I replace the
reading of \.{.tex} files by the reading of a \.{.hint} file and feeding
its content directly to the page builder. This version of \TeX\ will become
the final backend. Once done, I can test the equation
$\hbox{\TeX} =\hbox{\HINT/ frontend}+\hbox{\HINT/ backend}$.
\item
Next, I will replace the generation of dvi files in the backend
by directly displaying the results in a ``viewer''.
The ``viewer'' reads in a \.{.hint} file
and uses it to display one single page
at an arbitrary position. Using page up and page down buttons,
the viewer can be used to navigate in the \.{.hint} file.
At that point, it should be possible to change \.{vsize}\index{vsize+\.{vsize}} dynamically
in the viewer.
\item The hardest part will be the removal of \.{hsize}\index{hsize+\.{hsize}} dependencies
from the frontend and moving them to the backend. I am still not sure
how this will work out.
\item Once the author of a \TeX\ document can no longer
specify the final \.{hsize} and \.{vsize}, he or she would probably wish
to be able to write conditional text for different ranges of \.{hsize}
and \.{vsize}. So if the frontend encounters such tests it needs to include
all variants in its output file.
\item Last not least, most people use \LaTeX\index{LaTeX+\LaTeX}\ not plain \TeX.
Hence, if I want many people to use \HINT/, it should be able to
work with \LaTeX. As a first step,
I looked at $\epsilon$-\TeX\index{e-TeX+$\epsilon$-\TeX}, and my
cweb version of $\epsilon$-\TeX\ already passes the extended trip test\index{trip test} for
$\epsilon$-\TeX. But I am not sure what \LaTeX\ needs
beside the extensions of $\epsilon$-\TeX.
So if someone knows, please let me know.
\enditemize
Enough now of these fussy ideas about the future. Let's turn to the present
and the conversion of \TeX\ from \WEB/ to \cweb/.
\enditemize
\index{literate programming}
\index{Knuth, Donald E.}
\vskip 1cm
\noindent {\it San Luis Obispo, CA\hfil\break
June 27, 2017 \hfill Martin Ruckert}
\tableofcontent
\thefigindex
\makefigindex
\mainmatter
\section{Introduction}
\web2w/, the program that follows, was not written following an established
software engineering workflow as we teach it in our software
engineering classes. Instead the development of this program was driven by an ongoing
exploration of the problem at hand where the daily dose of success
or failure would determine the direction I would go on the next day.
This description of my program development approach sounds a bit like
``rapid prototyping''. But ``prototype'' implies the future existence of
a ``final'' version and I do not intend to produce such a ``final'' version.
Actually I have no intention to finish the prototype either,
and I might change it in the future in unpredictable ways.
I expect, however, that the speed of its further development will certainly
decrease as I move on to other problems.
Instead I have documented the development process
as a literate program\index{literate programming}: the pages
you are just reading. So in terms of literature, this is not an epic novel with
a carefully designed plot, but it's more like the diary of an explorer who sets out
to travel trough yet uncharted territories.
The territory ahead of me was the program \TeX\ written
by Donald E. Knuth\index{Knuth, Donald E.}
using the \WEB/\index{WEB+\WEB/}
language as a literate program. As such, it contains snippets of code in the programming
language \Pascal/---\Pascal/-H\index{Pascal H+\Pascal/-H} to be precise.
\Pascal/-H is Charles Hedrick's\index{Hedrick, Charles} modification of a compiler
for the DECsystem-10\index{DECsystem-10} that was originally developed at the
University of Hamburg\index{University of Hamburg}
(cf. \cite{GLN:pascal} see~\cite{Knuth:tex}).
So I could not expect to find a pure ``Standard Pascal''.
But then, the implementation of \TeX\ deliberately does not use the full set of
features that the language \Pascal/ has to offer in order to make
it easier to run \TeX\ on a
large variety of machines. At the beginning, it was unclear to me what problems
I would encounter with the subset of \Pascal/ that is actually used in \TeX.
Further, the problem was not the translation of \Pascal/ to \CEE/.
A program that does
this is available in the \TeX\ Live\index{TeX Live+\TeX\ Live}
project: \.{web2c}\cite{web2c} translates the \Pascal/
code that is produced using \.{tangle}\index{tangle+\.{tangle}}
from \.{tex.web} into \CEE/ code.
The \CEE/ code that is generated this way can, however, not be regarded
as human readable source code.
The following example might illustrate this: Figure~\figref{tex_code}
shows the \WEB/ code for the function |new_null_box|.
The result of translating it to \CEE/
by \.{web2c} can be seen in figure~\figref{tl_code}.
In contrast, figure~\figref{ctex_code} shows what \web2w/ will achieve.
\float{\line{\noindent
\fig{\includefig{tex_new_null_box}%
\caption{\WEB/ code for |new_null_box|}\label{tex_code}}%
\hfill
\fig{\includefig{ctex_new_null_box}%
\caption{\cweb/ code for |new_null_box|}\label{ctex_code}}\hfil}%
\par\bigskip
\fig{\includefig{tl_new_null_box}%
\caption{The \CEE/ code for |new_null_box| as generated by {\tt web2c}}\label{tl_code}}
}
It can be seen, that \.{web2c} has desugared the sweet code written by
Knuth to make it unpalatable to human beings, the only use you can
make of it is feeding it to a \CEE/ compiler. In contrast, \web2w/
tries to create source code that is as close to the original as
possible but still translates \Pascal/ to \CEE/. For example, note
the last statement in the |new_null_box| function: where \CEE/ has a
\&{return} statement, \Pascal/ assigns
the return value to the function
name. A simple translation, sufficient for a \CEE/ compiler, can just
replace the function name by ``\.{Result}'' (an identifier that is not
used in the implementation of \TeX) and add ``\.{return Result;}'' at
the end of the function (see figure~\figref{tl_code}). A translation
that strives to produce nice code should, however, avoid such ugly
code.
Let's look at another example\index{new character+|new_character|}:
\float{\line{\noindent
\fig{\includefig{tex_new_character}%
\caption{The \WEB/ code for |new_character|}\label{tex_new_character}}\hfil}%
\par\bigskip
\line{\noindent
\fig{\includefig{ctex_new_character}%
\caption{The \cweb/ code for |new_character|}\label{ctex_new_character}}\hfil}%
}%
In figure~\figref{tex_new_character} there is a ``\&{return}'' in the
innermost \&{if}. This ``\&{return}'' is actually a macro defined as ``|goto
exit|'', and ``|exit|'' is a numeric macro defined as ``|10|''. ``\&{return}''
is a reserved word in \CEE/ and ``|exit|'' is a function of the \CEE/
standard library, so something has to be done. The example also
illustrates the point that I can not always replace an assignment to
the function name by a \CEE/ return statement. Only if the assignment
is in a tail position\index{tail position}, that is a position
where the control-flow leads
directly to the end of the function body, it can be turned into a
return statement as happened in
figure~\figref{ctex_new_character}. Further, if all the goto
statements that lead to a given label have been eliminated, as it is the
case here, the label can be eliminated as well.
In figure~\figref{ctex_new_character} there is no ``|exit:|''
preceding the final ``\.{\RB}''.
Another seemingly small problem is the different use of semicolons\index{semicolon} in
\CEE/ and \Pascal/. While in \CEE/ a semicolon follows an expression
to make it into a statement, in \Pascal/ the semicolon connects two
statements into a statement sequence. For example, if an assignment
precedes an ``\&{else}'', in \Pascal/ you have ``\.{x:=0 else}'' where as in
\CEE/ you have ``\.{x=0; else}''; no additional semicolon is needed if
a compound statement precedes the ``\&{else}''. When converting
\.{tex.web}, a total of 1119~semicolons need to be inserted at the right
places. Speaking of the right place: Consider the following \WEB/
code:
\medskip
\nointerlineskip
\vbox{\includefig{tex_cant_happen}}
\nointerlineskip
\medskip
\noindent
Where should the semicolon\index{semicolon} go? Directly preceding the ``\&{else}''?
Probably not! Alternatively, I can start the search for the right
place to insert the semicolon with the assignment. But this does not
work either: the assignment\index{assignment} can be spread over several macros or
modules which can be used multiple times; so the right place to insert
a semicolon in one instance can be the wrong place in another
instance. \web2w/ places the semicolon correctly behind the
assignment like this:
\medskip
\nointerlineskip
\vbox{\includefig{ctex_cant_happen}}
\nointerlineskip
\medskip\noindent
But look what happened to the string\index{string} |"???"|.
Strings enclosed in \CEE/-like double quotes\index{double quote} receive a special
treatment by \.{tangle}\index{tangle+\.{tangle}}:
the strings are collected in a string pool\index{string pool}
file and replaced by string numbers in the \Pascal/ source. No such
mechanism is available in \.{ctangle}. My first attempt was to replace
the string handling of \TeX\ and keep the \CEE/-like strings in the
source code. \TeX s string pool\index{string pool} is, however, hardwired into the
program and is used not only for static strings but also for strings
created at runtime, for example the names of control sequences\index{control sequence}.
So I tried a hybrid approach: keeping strings that are used only for output
(error messages for example) and translating other strings to string
numbers. There are different places where the translation of a string like
|"Maybe you should try asking a human?"| to a number like |283| can take place.
\enumerate
\item One could add a function |s| to do the translation at runtime and then write
|s("Maybe you should try asking a human?")|. The advantage is simplicity and readability;
the disadvantage is the overhead in time and space (the string will exist twice:
as a static string
and as a copy in the string pool).
\item One could use the \CEE/ preprocessor to do the job. For
example, I could generate a macro {\it Maybe\_you\_should\_try\_asking\_a\_human0x63\/}
that is defined as 283 and a second macro
{\it str\_283\/} for the string itself. Then, I can replace the occurrence of
the string in the source by the macro name that mimics the string
content and initialize the |str_pool| and |str_start| array using
the other macro.
\item As a third variation used below, one can use the module
expansion mechanism of \.{ctangle}. I generate for each string a
module, in the above example named \PB{$\X1234:\PB{\.{"Maybe\ you\
should\ try\ asking\ a\ human?"}}\X$}, that will expand to the correct
number, here |283|. And as in the previous method use a macro
|str_283| to initialize |str_pool| and |str_start|. The advantage
is the greater flexibility and the nicer looking replacements for
strings, because module names can use the full character set.
(Imagine replacing |"???"| by {\it \_0x630x630x63\/}.)
\endenumerate
In retrospect, after seeing how nice method 3 works, I ponder if I
should have decided to avoid the hybrid approach and use approach 3
for all strings. It would have reduced the amount of changes to the
source file considerably. I further think that approach 1 has its
merits too. The overhead in space is just a few thousand byte and the
overhead in time is incurred only when the strings are actually needed
which is mostly during a run of \.{initex} and while generating output
(which is slow anyway).
A mayor difference between \Pascal/ and \CEE/ is the use of
subrange types\index{subrange type}.
Subrange types are used to specify the range of valid
indices when defining arrays. While most arrays\index{array}
used in \TeX\ start with index zero,
not all do. In the first case, they can be implemented as \CEE/ arrays
which always start at index zero; in the latter case, I define a zero
based array having the right size, adding a ``0'' to the name. Then, I
define a constant pointer initialized by the address of the zero based
array plus/minus a suitable offset so that I can use this pointer as
a replacement for the \Pascal/ array.
When subrange types are used to define variables, I replace subrange
types by the next largest \CEE/ standard integer type as defined in
\.{stdint.h} which works most of the time. Consider the code
\medskip
\nointerlineskip
\vbox{\includefig{tex_print_totals}}
\nointerlineskip
\medskip\noindent
where ${}\\{nest\_size}\K{}$\T{40}.
Translating this to
\medskip
\nointerlineskip
\vbox{\includefig{ctex_print_totals}}
\nointerlineskip
\medskip\noindent
would result in an infinite loop because |p| would never become less
than zero; instead it would wrap around. So in this (and 21 similar
cases), I declare the variables used in
for-loops\index{for+\&{for}} to be of type \&{int}.
I will not go into further details of the translation process as you
will find all the information in what follows below. Instead, I will
take a step back now and give you the big picture, looking back at the
journey that took me to this point.
The program \web2w/ works in three phases: First I run the input file
\.{tex.web} through a scanner\index{scanner} producing
tokens (see section~\secref{scanner}). The pattern matching
is done using \.{flex}\index{flex+\.{flex}}, the action code consists of
macros described here. The tokens form a doubly linked list, so that later I can
traverse the source file forward and backward. During scanning,
information is gathered and stored about macros, identifiers, and
modules. In addition, every token has a |link| field which is used to
connect related tokens. For example, I link an opening parenthesis
to the matching closing parenthesis, and the start of a comment to the
end of the comment.
After scanning comes parsing\index{parsing}. The parser is generated
using \.{bison}\index{bison+\.{bison}}
from a modified \Pascal/ grammar (see section~\secref{parser}).
To run the parser, I need to feed
it with tokens, rearranged in the order that \.{tangle}\index{tangle+\.{tangle}}
would produce, expanding macros and modules as I go. While parsing, I gather
information about the \Pascal/ code. At the beginning, I tended to use
this information immediately to rearrange the token sequence just
parsed. Later, I learned the hard way (modules that were modified on
the first encounter would later be feed to the parser in the modified
form) that it is better to leave the token sequence untouched and just
annotate it with information needed to transform it during the next stage.
A technique that proved to be very useful is connecting the key tokens
of a \Pascal/ structure using the |link| field. For example, connecting
a ``\&{case}'' token with its ``\&{do}'' token makes it easy to place
the expression that is between these tokens, without knowing anything about
its actual structure, between `` \&{switch} ('' and
``)''. The final stage is the generation of \cweb/
output. Here the token sequence is traversed a third time, this time
again in input file order. This time, the traversal will stop at the warning signs put
up during the first two passes, use the information gathered so far,
and rewrite the token sequence as gentle and respectful as possible
from \Pascal/ to \CEE/.
Et voil\`a! \.{tex.w} is ready---almost at least. I apply a last patch
file\index{patch file}, for instance to adapt documentation reliant
on \.{webmac.tex}\index{webmac tex+\.{webmac.tex}}
so that it works with \.{cwebmac.tex}\index{cwebmac tex+\.{cwebmac.tex}},
or I make small changes that do not deserve a more general treatment.
The final file is then called \.{ctex.w} from
which I obtain \.{ctex.c} and \.{ctex.tex} simply by applying
\.{ctangle} and \.{cweave}. Using ``\.{gcc ctex.c -o ctex}'' I get a
running \.{ctex}. Running ``\.{ctex ctex.tex}'' to get \.{ctex.dvi} is
then just a tiny step away: it is necessary to set up format and font metric
files. The details on how to do that and run (and pass) the infamous
trip test\index{trip test} are described in section~\secref{triptest}.
\section{Converting \WEB/ to \cweb/}
\web2w/ is implemented by a \CEE/ code file\index{web2w.c+\.{web2w.c}}:
@c
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "web2w.h"
#include "pascal.tab.h"
@<internal declarations@>@;
@<global variables@>@;
@<functions@>@;
int @!main(int argc, char *argv[])
{ @<process the command line@>@;
@<read the \WEB/@>@;
@<parse \Pascal/@>@;
@<generate \cweb/ output@>@;
@<show summary@>@;
return 0;
}
@
I also create the header file \.{web2w.h}\index{web2w.h+\.{web2w.h}}
included in the above \CEE/ file.
It contains the external declarations and is used to share constants, macros,
types, variables, and functions with other \CEE/ files.
@(web2w.h@>=
@<external declarations@>
@
\section{Reading the \WEB/}
When I read the \WEB/, I split it into a list of tokens\index{token};
this process is called ``scanning''.\index{scanner}
I use \.{flex}\index{flex+\.{flex}} (the free counterpart
of \.{lex}\index{lex+\.{lex}}) to generate the function
|wwlex| from the file \.{web.l}\index{web.l+\.{web.l}}.
@<internal declarations@>=
extern int wwlex(void); /* the scanner */
extern FILE *wwin; /* the scanners input file */
extern FILE *wwout; /* the scanners needs an output file */@/@,
@
@
Using this function, I can read the \WEB/ and produce a token list.
@<read the \WEB/@>=
@<initialize token list@>@;
wwlex();
@<finalize token list@>@;
@
Reading the \WEB/ results in a list of tokens as used by
\.{tangle}\index{tangle+\.{tangle}} or \.{weave}.
At this point, I do not need to extract the structure of the \Pascal/
program contained in the \WEB/. This is left for a later stage.
I need to extract the \WEB/ specific structure: text in limbo\index{limbo} followed
by modules\index{module}; modules starting with \TeX\ text followed optionally by
definitions and \Pascal/ code. Aside from this general structure,
I will later need to translate the \WEB/ specific control sequences
(starting with @@) by \cweb/ specific control sequences.
The scanner identifies tokens by
matching the input against regular expressions\index{regular expression} and
executing \CEE/ code if a match is found.
The lex file \.{web.l}\index{web.l+\.{web.l}} is not a literate program
since it's not a \CEE/ file;
it is given verbatim in section~\secref{scanner}.
The functions and macros used in the action parts
inside the file, however, are described below.
\subsection{Scanning the \WEB/}
The scanner\index{scanner} is written following the \WEB/\index{WEB+\WEB/}
User Manual\cite{Knuth:WEB}.
It has three main modes: the |INITIAL| mode (or |TEX| mode),
the |MIDDLE| mode, and the |PASCAL| mode;
and three special modes |DEFINITION|, |FORMAT|, and |NAME|.
@<external declarations@>=
#define @!TEX INITIAL
@
The scanner starts out in |TEX| mode scanning the part of the file
that is ``in limbo''\index{limbo} and then switches back and forth between |TEX|
mode, |MIDDLE| mode, and |PASCAL| mode, occasionally taking a detour
through |DEFINITION|, |FORMAT|, or |NAME| mode.
While scanning in |TEX| mode, I need to deal with a few
special characters: the character ``\.{@@}'', because
it introduces special web commands and might introduce a change into
\Pascal/ mode; the ``\.{\VB}'' character, because it starts \Pascal/ mode;
and the ``\.{\LB}'' and ``\.{\RB}'' characters , which are
used for grouping while in \TeX\ mode. Unfortunately, these same characters
also start and end comments while in \Pascal/ mode. So finding a ``\.{\}}''
in |TEX| mode might be the end of a group or the end of a comment.
Everything else is just considered plain text. Text may also contain the
``\.{@@}'', ``\.{\VB}'', ``\.{\LB}'', and ``\.{\RB}'' characters if these
are preceded by a backslash\index{backslash}.
In |PASCAL| mode, I match the tokens needed to
build the \Pascal/ parse tree. These are different---and
far more numerous---than what I need for the \TeX\ part which
my translator will not touch at all. The |MIDDLE| mode is a
restricted |PASCAL| mode that does not allow module names. Instead,
a module name terminates |MIDDLE| mode and starts a new module.
The |DEFINITION| mode is used to scan the initial part of a macro
definition; the |FORMAT| mode is a simplified version of the
|DEFINITION| mode used for format definitions; and the |NAME| mode is
used to scan module names.
In |PASCAL| mode, I ignore most spaces and match the usual \Pascal/ tokens.
The main work is left to the \Pascal/ parser.
The switching between the scanning modes is supported by a
stack\index{stack} (see section~\secref{linking})
because it may involve nested structures. For example inside
\Pascal/, a comment contains \TeX\ code and inside \TeX\ code whatever
comes between two ``\.{\VB}'' characters is considered \Pascal/ code.
A scanner produced by \.{flex}\index{flex+\.{flex}} is very fast,
but by itself not capable of tracking
nested structures.
\subsection{Tokens}
The parser creates a representation of the \WEB/ file as a list
of tokens\index{token}. Later the parser will build a parse tree with tokens
as leaf nodes. Because \CEE/ lacks object orientation,
I define |token| as a |union| of leaf nodes\index{leaf node}
and internal nodes\index{internal node}
of the tree. All instances of the type defined this way share
a common |tag| field as a replacement for the class information.
Every token has a pointer to the |next| token,
a pointer the |previous| token,
a |link| field to connect related tokens, and an |up| pointer
pointing from the leafs upwards and from internal
nodes upwards until reaching the root node.
@<external declarations@>=
typedef struct token {
int tag;
struct token *next, *previous, *link, *up;
union {
@<leaf node@>;
@<internal node@>;
};
} @!token;
@
Leaf nodes also contain a sequence number\index{sequence number}, enumerating stretches
of contiguous \Pascal/ code, and for debugging\index{debugging} purposes,
a line number\index{line number} field.
There is some more token specific information, that will be explained
as needed.
@<leaf node@>=
struct {
int @!sequenceno;
int @!lineno;
@<token specific info@>
}
@
As a first example for token specific information,
I note that most tokens have a |text| field that contains the textual
representation of the token.
@<token specific info@>=
char *text;
@
The assignment of the |tag| numbers is mostly arbitrary.
The file \.{pascal.y} lists all possible tags and gives them
symbolic names which are shown using small caps in the following.
The function |tagname|, defined in \.{pascal.y}\index{pascal.y+\.{pascal.y}},
is responsible for converting the tag numbers back into readable strings.
@<external declarations@>=
extern const char *tagname(int tag);
@
Because I do not deallocate tokens, I can simply allocate them from
a token array using the function |new_token|.
@<internal declarations@>=
#define MAX_TOKEN_MEM 250000
@
@<global variables@>=
static token token_mem[MAX_TOKEN_MEM]= {{0}};
static int free_tokens=MAX_TOKEN_MEM;
@
@<show summary@>=
DBG(dbgbasic,"free tokens = %d\n",free_tokens);
@
@<functions@>=
static token *new_token(int tag)
{ token *n;
if (free_tokens>0) n=&token_mem[--free_tokens];
else ERROR("token mem overflow");
n->lineno=wwlineno;
n->sequenceno=sequenceno;
n->tag=tag;
return n;
}
@
The value of |wwlineno|, the current line number, is maintained automatically
by the code generated from \.{web.l}\index{web.l+\.{web.l}}.
@<external declarations@>=
extern int wwlineno;
@
The value of |sequenceno| is taken from a global variable.
@<global variables@>=
int sequenceno=0;
@
I increment this variable as part of the scanner actions using the macro |SEQ|.
@<external declarations@>=
extern int sequenceno;
#define SEQ @[(sequenceno++)@]
@
The following function is used in the parser to verify that two tokens |t| and |s|
belong to the same token sequence.
@<external declarations@>=
void seq(token *t, token*s);
@
@<functions@>=
void seq(token *t, token*s)
{ CHECK(t->sequenceno==s->sequenceno,
"tokens in line %d and %d belong to different code sequences",t->lineno,s->lineno);
}
@
The list of tokens is created by the function |add_token|.
@<external declarations@>=
extern token *add_token(int tag);
@
The function creates a new token and adds it to the
global list of all tokens maintaining two pointers,
one to the first and one to the last token of the list.
@<global variables@>=
static token *first_token;
token *last_token;
@
@<external declarations@>=
extern token *last_token;
@
I initialize the list of tokens by creating a |HEAD| token, and make it the
first and last token of the list.
@<initialize token list@>=
first_token=last_token=new_token(HEAD);
first_token->text="";
@
@<functions@>=
token *add_token(int tag)
{ token *n=new_token(tag);
last_token->next=n;
n->previous=last_token;
last_token=n;
return n;
}
@
\subsection{Scanner actions}
Now I am ready to explain scanner actions\index{scanner action}.
Let's start with the most
simple cases. There are quite a few tokens, that are just added to
the token list and have a fixed literal string as textual
representation. I use the macro |TOK| to do this. Making |TOK| an
external declaration will write its definition into the file
\.{web2w.h}\index{web2w.h+\.{web2w.h}} which will be
included by \.{web.l}\index{web.l+\.{web.l}}.
@<external declarations@>=
#define TOK(string,tag) (add_token(tag)->text=string)
@
Another class of simple tokens are those that have a varying textual
representation which is defined by the string found in the input file.
The variable |wwtext| points to this input string after it was matched
against the regular expression\index{regular expression}.
Since these strings are not persistent,
I need to use the string handling function |copy_string| before I can
store them in the tokens |text| field.
The macro |COPY| can be used together with |TOK| to achieve the desired effect.
@<external declarations@>=
#define COPY @[copy_string(wwtext)@]
@
The last class of tokens that I discuss before I turn my attention
to the functions that actually do the string-handling are the tokens
where the textual representation is build up in small increments.
Three macros are used to perform the desired operations: |BOS| (Begin of String)
is used to start a new string, |ADD| adds characters to the current string,
and |EOS| (End of String) is used to complete
the definition of the string.
@<external declarations@>=
#define BOS @[new_string()@]
#define ADD @[add_string(wwtext)@]
#define EOS @[(string_length()>0?TOK(end_string(),TEXT):0)@]
@
More string handling functions are used to define these macros and
it is time to explain the string handling in more detail.
\subsection{Strings}
In this section, I define the following functions:\index{string}
@<external declarations@>=
extern char *new_string(void); /* start a new string */
extern void add_string(char *str); /* add characters to the string */
extern char *end_string(void); /* finish the string */
extern char *copy_string(char *str); /* all of the above */
extern int string_length(void); /* the length of the string */@\@,
@
I use a character array called |string_mem|
to store these strings. Strings in the |string_mem| are never
deallocated, so memory management is simple.
When the scanner has identified a string, it will add it to the
current string using |add_string|. The scanner can then decide
when to start a new string by calling |new_string| and when the string is
ready for permanent storage by calling |end_string|.
|string_length| returns the length of the current string.
Some statistics: \.{tex.web} contains
11195 Strings with an average of 46.6 characters
per string and a maximum of 5234 characters (the text in limbo);
the second largest string has 1891 characters.
The total number of characters in all strings is 516646.
(Scanning \.{etex.web} will require even more string memory.)
@<internal declarations@>=
#define MAX_STRING_MEM 800000
@
@<global variables@>=
static char string_mem[MAX_STRING_MEM];
static int free_strings = MAX_STRING_MEM;
static int current_string= 0;
@
@<show summary@>=
DBG(dbgbasic,"free strings = %d\n",free_strings);
@
The string currently under construction is identified by
the position of its first character, the |current_string|,
and its last character |MAX_STRING_MEM-free_strings|.
@<functions@>=
char *new_string(void)
{ current_string= MAX_STRING_MEM-free_strings;
return string_mem+current_string;
}
void add_string(char *str)
{ while (free_strings>0)
{ if (*str!=0)
string_mem[MAX_STRING_MEM-free_strings--]=*str++;
else
return;
}
ERROR("String mem overflow");
}
char *end_string(void)
{ char *str=string_mem+current_string;
if (free_strings>0)
string_mem[MAX_STRING_MEM-free_strings--]=0;
else
ERROR("String mem overflow");
current_string= MAX_STRING_MEM-free_strings;
return str;
}
char *copy_string(char *str)
{@+ new_string();
add_string(str);
return end_string();@+
}
int string_length(void)
{@+return (MAX_STRING_MEM-free_strings)- current_string;@+}
@
\subsection{Identifiers}
To be able to parse the embedded \Pascal/ code,
I need to take special care of identifiers\index{identifier}. I keep
information related to identifiers in a table, called the |symbol_table|.
The table is accessed by the string representing the identifier
as a key and it returns a pointer to the table entry, called a |symbol|.
@<external declarations@>=
typedef struct symbol {
char *name;
int tag;
int obsolete;
int for_ctrl;
int value;
struct symbol *link;
token *type;
token *eq;
} symbol;
extern int get_sym_no(char *name);
extern symbol *symbol_table[];
@
@<internal declarations@>=
#define MAX_SYMBOL_TABLE 6007 /* or 4001 4999, a prime */
#define MAX_SYMBOLS 5200 /* must be less than |MAX_SYMBOL_TABLE| */
@
@<global variables@>=
symbol *symbol_table[MAX_SYMBOL_TABLE]= {NULL};
static symbol symbols[MAX_SYMBOLS]= {{0}};
static int free_symbols=MAX_SYMBOLS;
@
@<show summary@>=
DBG(dbgbasic,"free symbols = %d\n",free_symbols);
@
I organize the symbol table as a hash table\index{hash table}
using double hashing\index{double hashing}
as described in~\cite{Knuth:TAOCP}, Chapter 6.4.
@<functions@>=
static int symbol_hash(char *name)
{ int hash=0;
while (*name!=0)
hash=hash + (*(name++)^0x9E);
return hash;
}
static symbol *new_symbol(void)
{ CHECK(free_symbols>0,"Symbol table overflow");
free_symbols--;
return symbols+free_symbols;
}
int get_sym_no(char *name)
{ int i,c;
i = symbol_hash(name)%MAX_SYMBOL_TABLE;
if (symbol_table[i]!=NULL)
{ if (strcmp(symbol_table[i]->name,name)==0)
return i;
if (i==0) c=1; else c = MAX_SYMBOL_TABLE-i;
while (true)
{ i=i-c;
if (i<0) i=i+MAX_SYMBOL_TABLE;
if (symbol_table[i]==NULL) break;
if (strcmp(symbol_table[i]->name,name)==0)
return i;
}
}
symbol_table[i]=new_symbol();
symbol_table[i]->name=new_string(); add_string(name); end_string();
symbol_table[i]->tag=ID;
return i;
}
@
The pointer into the symbol table can be stored inside the token
in two ways: as an index into the |symbol_table| or as a direct pointer
to the |symbol| structure. While scanning the \WEB/, I will assign
the symbol number(|sym_no|), and while parsing \Pascal/, I will replace the
symbol number by the symbol pointer (|sym_ptr|). This is necessary, because I
will need to distinguish between various local symbols\index{local symbol}
with the same name; these have only a single entry in the symbol table but
the pointers will point to different |symbol| structures.
@<token specific info@>=
int sym_no;
struct symbol *sym_ptr;
@
\noindent
This leads to the following macros:
@<external declarations@>=
#define SYM_PTR(name) @[symbol_table[get_sym_no(name)]@]
#define SYMBOL {@+int s=get_sym_no(yytext);@+add_token(symbol_table[s]->tag)->sym_no=s;@+}
#define SYM(t) @[(symbol_table[(t)->sym_no])@]
@
\noindent
It's easy to convert such a token back to a string.
@<convert token |t| to a string@>=
case ID: case PID: case PCONSTID:
case PARRAYFILETYPEID: case PARRAYFILEID:
case PFUNCID: case PPROCID:
case PDEFVARID: case PDEFPARAMID: case PDEFREFID: case PDEFCONSTID:
case PDEFTYPEID: case PDEFTYPESUBID: case PDEFFUNCID: case CREFID:
case NMACRO: case OMACRO: case PMACRO:@/
return SYM(t)->name;
@
In \TeX, like in most programs, I encounter two kinds of symbols:
global\index{global symbol} and local symbols\index{local symbol}.
While scanning, every symbol that I
encounter gets entered into the global symbol table. While parsing, I
will discover, that the variable |f| is a file variable in one
function and an integer variable in another function. The two
occurrences of |f| have different scope\index{scope}. So I want to link different
occurrences of |f| to different entries in the symbol table.
I use the function |localize| to create a local version of a symbol.
@<external declarations@>=
extern void localize(token *t);
@
To open a new scope, I use the function |scope_open|; to close it again, I
use the function |scope_close|.
@<external declarations@>=
extern void scope_open(void);
extern void scope_close(void);
@
These functions use a small array holding all the symbol numbers of
currently local symbols and another array to hold pointers to the global
symbols of the same name.
@<global variables@>=
#define MAX_LOCALS 50
static int locals[MAX_LOCALS];
static symbol *globals[MAX_LOCALS];
static int free_locals=MAX_LOCALS;
@
@<functions@>=
void scope_open(void)
{
CHECK(free_locals==MAX_LOCALS,"Opening a new scope without closing the previous one");
}
void scope_close(void)
{ int i;
for (i=free_locals; i<MAX_LOCALS; i++)
symbol_table[locals[i]]=globals[i];
free_locals=MAX_LOCALS;
}
@
To localize a symbol, I create a new one and enter it, after
saving the global symbol, into the symbol table.
@<functions@>=
void localize(token *t)
{ int sym_no=t->sym_no;
symbol *l, *g;
l=new_symbol();
g=symbol_table[sym_no];
l->name=g->name;
l->tag=g->tag;
l->eq=g->eq;
symbol_table[sym_no]=l;
CHECK(free_locals>0,"Overflow of local symbols in line %d",t->lineno);
free_locals--;
locals[free_locals]=sym_no;
globals[free_locals]=g;
t->sym_ptr=l;
}
@
\subsection{Linking related tokens}
\label{linking}%
So far I have considered the \WEB/ file as one long flat list of
tokens.\index{related token}
As already mentioned above, the file has, however, also a nested structure:
For example, each ``\.{\LB}'' token is related to a ``\.{\RB}'' token
that ends either a \TeX\ group or a \Pascal/ comment.
While scanning, I will need to know about this structure because it
is necessary to do a correct switching of modes. Hence, I use the |link| field
to connect the first token to the later token. This information
is also useful at later stages, for example when I expand macros.
The following table gives a list of related tokens.
\center{\table{List of linked tokens}{%
&Left &Right &Mode & Comment\hfill\cr
\noalign{\hrule}
&\.{(} & \.{)} & |PASCAL|/|PASCAL|& needed for macro expansion\index{macro expansion}\hfill\cr
&\.{\{} & \.{\}} & |PASCAL|/|TEX|/|PASCAL| & comments\index{comment} \hfill\cr
&\.{\{} & \.{\}} & |MIDDLE|/|TEX|/|MIDDLE| & comments \hfill\cr
&\.{\{} & \.{\}} & |TEX|/|TEX| & grouping\hfill\cr
& \.{\VB}& \.{\VB} & |TEX|/|PASCAL|/|TEX| & typesetting code\hfill\cr
&\.{@@<} & \.{@@>} & & module names\hfill\cr
& \.{=} & & & begin of \Pascal/\hfill\cr
& \.{==} & & & begin of \Pascal/\hfill\cr
& & \.{@@ } & |PASCAL| & \hfill end of \Pascal/\cr
& & \.{@@*} & |PASCAL| & \hfill end of \Pascal/\cr
& & \.{@@d} & |PASCAL| & \hfill end of \Pascal/\cr
& & \.{@@f} & |PASCAL| & \hfill end of \Pascal/\cr
& & \.{@@p} & |PASCAL| & \hfill end of \Pascal/\cr
& \.{"} & \.{"} & & list of \WEB/ strings\index{string}\hfill\cr
&\.{@@>=} &\.{@@>=} & & continuation of module\index{module}\hfill\cr
& \.{@@p}& \.{@@p} & & continuation of program\index{program}\hfill\cr
}\label{Linked}}
To track the nesting of structures, I need a stack\index{stack}:
@<global variables@>=
#define MAX_WWSTACK 200
static token *wwstack[MAX_WWSTACK]={0};
static int wwsp = 0;
@
I define the functions |ww_push| and |ww_pop| to
operate on the stack. When popping a token, I keep the nesting information
by linking it to its matching token.
The function |ww_is| can be used to test the |tag| of the token
on top of the stack.
@<external declarations@>=
extern void ww_push(token *t);
extern token *ww_pop(token *t);
extern int ww_is(int tag);
@
@<functions@>=
void ww_push(token *left)
{ CHECK(wwsp<MAX_WWSTACK,"WW stack overflow");
DBG(dbglink,"Pushing[%d]:",wwsp); if (left!=NULL) DBG(dbglink,THE_TOKEN(left));
wwstack[wwsp++]=left;
}
token *ww_pop(token *right)
{ token *left;
CHECK(wwsp>0,"Mode stack underflow");
left=wwstack[--wwsp];
if (left!=NULL) left->link=right;
DBG(dbglink,"Popping[%d]:",wwsp); if (left!=NULL) DBG(dbglink,THE_TOKEN(left));
return left;
}
int ww_is(int tag)
{ return wwsp>0 && wwstack[wwsp-1]!=NULL && wwstack[wwsp-1]->tag==tag;
}
@
Using the stack\index{stack},
I can now also distinguish the use of ``\.{\LB}'' and ``\.{\RB}''
as a grouping\index{grouping}
construct in \TeX\ from the use of starting and ending comments\index{comment}
in \Pascal/. When I encounter ``\.{\LB}'' in |TEX| mode, it introduces a new level of
grouping and I do not create a new token.
Instead I push |NULL| on the stack.
When I encounter ``\.{\LB}'' in |PASCAL| mode, however, it is the start of a comment;
I create a token and push it.
When I encounter the matching ``\.{\RB}'', I am always in |TEX| mode.
I pop the stack and test the value:
If it was |NULL|, I can continue in |TEX| mode because it was a grouping character;
if it was not |NULL|, it is the end of a comment. I create a token for it and
continue in |PASCAL| mode.
@<external declarations@>=
#define PUSH @[ww_push(last_token)@]
#define PUSH_NULL @[ww_push(NULL)@]
#define POP @[ww_pop(last_token)@]
#define POP_NULL @[(ADD, POP)@]
#define POP_MLEFT @[(EOS, TOK("}",RIGHT), BEGIN(MIDDLE), POP)@]
#define POP_PLEFT @[(EOS, TOK("}",RIGHT), BEGIN(PASCAL), POP)@]
#define POP_LEFT @[(ww_is(MLEFT)? POP_MLEFT : (ww_is(PLEFT)? POP_PLEFT: POP_NULL))@]
@
Besides linking matching tokens, the |link| field can also be used
to build linear list of related token. One example for such a list
is the list of \WEB/ strings\index{string}.
The program \.{tangle}\index{tangle+\.{tangle}}, converting a
\WEB/ to \Pascal/, creates a string pool\index{string pool} file. This mechanism is
no longer available in \.{ctangle} so I have to implement an alternative
(see section~\secref{stringpool} on replacing the \TeX\ string pool).
Here I take the first step and collect all the strings that occur
in the \WEB/ in one linked list. For this purpose, I use
a pointer to the |first_string|, and a pointer to the link field
of the |last_string|. The macro |WWSTRING| is used in the scanner and
adds the new string token to this list.
@<external declarations@>=
extern void wwstring(char *wwtext);
#define WWSTRING @[wwstring(wwtext)@]
@
@<functions@>=
void wwstring(char *wwtext)
{ token *t=add_token(STRING);
t->sym_no=get_sym_no(wwtext);
t->text=SYM(t)->name;
*last_string=t;
last_string=&(t->link);
}
@
To make this work, it is sufficient to initialize the two pointers
appropriately.
@<global variables@>=
static token *first_string=NULL, **last_string=&first_string;
@
\subsection{Module names}
I need to maintain information for each module\index{module}. I keep
this information in a table, called the module table\index{module table}.
The table is accessed by the string representing the module name\index{module name}
as a key. This sounds very similar to what I did for identifiers,
there is, however, one main difference:
Modules are sometimes referenced by incomplete module names\index{incomplete module name}
that end with an ellipsis\index{ellipsis} ($\ldots$).
These incomplete module names may not even be valid \TeX\ code.
For this reason, I use a binary search tree\index{binary search tree}
to map module names to modules.
The first thing I need, therefore, is a function to compare two module names.
The function |module_cmp(n,m)| will compare the name of |n| to the name of |m|;
it returns a negative value if $|n| < |m|$; zero if $|n|=|m|$; and a positive
value if $|n|>|m|$. |m| is always a full module name, |n| might end abruptly
with an ellipsis.
@<functions@>=
static int module_name_cmp(token *n, token *m)
{ n=n->next;@+ m=m->next; /* advance from ``\.{@@<}'' to the name */
if (n->next->tag==ELIPSIS)
return strncmp(n->text,m->text,strlen(n->text));
else
return strcmp(n->text,m->text);
}
@
I organize the module table as a binary tree and allocate new modules from
a large array.
@<internal declarations@>=
#define MAX_MODULE_TABLE 1009 /* or 1009, 1231, 2017, 3001, a prime */
@
@<global variables@>=
static module module_table[MAX_MODULE_TABLE]= {{0}};
static int free_modules=MAX_MODULE_TABLE;
static module *module_root=NULL;
@
@<external declarations@>=
typedef struct module {
token *atless;
token *atgreater;
struct module *left,*right;
} module;
extern void add_module(token *atless);
extern module *find_module(token *atless);
@
@<show summary@>=
DBG(dbgbasic,"free modules = %d\n",free_modules);
@
To look up a module in the module table
I use the function |find_module|. It returns a pointer to the module
given the pointer to the ``\.{@@<}'' token that starts the module
name. The function will allocate a new module if needed.
@<functions@>=
module *find_module(token *atless)
{ module **m=&module_root;
while (*m!=NULL)
{int d = module_name_cmp(atless, (*m)->atless);
if (d==0)
return *m;
else if (d<0) m=&((*m)->left);
else m=&((*m)->right);
}
CHECK(free_modules>0,"Module table overflow");
*m= module_table+MAX_MODULE_TABLE-free_modules--;
(*m)->atless=atless;
return *m;
}
@
Because modules can be defined in multiple installments,
I link together the closing ``\.{@@>}'' tokens.
This is done by calling the function |add_module| whenever
I find the two tokens ``\.{@@>=}''.
@<functions@>=
void add_module(token *atless)
{ module *m=find_module(atless);
token *atgreater = m->atgreater;
if (atgreater==NULL)
m->atgreater=atless->link;
else
{ while (atgreater->link!=NULL) atgreater=atgreater->link;
atgreater->link=atless->link;
}
}
@
Next I consider the problem of scanning module names. The name of a
module starts after a ``\.{@@<}'' token. If this token shows up, I have
to do some preparations depending on the current mode: If I am in
|TEX| mode, I need to terminate the current |TEXT| token; if I am
in |MIDDLE| mode, I pop the stack and terminate the macro or format
definition I were just scanning;
no special preparation is needed if I am in |PASCAL| mode. Then I
push the ``\.{@@<}'' token on the stack, start a new |TEXT| token, and
switch to |NAME| mode. When I encounter the matching ``\.{@@>}'' or
``\.{@@>=}'' token, I add the module to the module table---calling
|find_module| to cover the case that this is the first and only
complete occurrence of the module name.
@<external declarations@>=
#define AT_GREATER_EQ @[TOK("@@>",ATGREATER), add_module(POP), TOK("=",EQ), PUSH, SEQ@]
#define AT_GREATER @[TOK("@@>",ATGREATER), find_module(POP)@]
@
You may have noticed that the above |AT_GREATER_EQ| macro pushes the
|EQ| token on the stack. I match this token up with the token that
ends the \Pascal/ code following the equal sign. As you will see
below, I do the same for macro definitions.
Further, I link all the unnamed modules together using the ``\.{@@p}''
tokens. I add an extra |EQ| token to match the convention that I
have established for named modules.
@<external declarations@>=
extern token *program;
#define PROGRAM @[(program->link=last_token,program=last_token),TOK("",EQ)@]
@
\noindent
I use the first token as list head.
@<global variables@>=
token *program;
@
@<initialize token list@>=
program=first_token;
@
\subsection{Definitions}
In a \WEB/ file, the token ``\.{@@d}'' introduces the definition\index{definition}
of a numeric constants or a macro with or without parameter.
When the scanner encounters such a token, it enters the |DEFINITION| mode.
The first token in |DEFINITION| mode is an identifier which will be
stored in the symbol table\index{symbol table}.
Then follows an optional macro parameter\index{macro parameter}
``\.{(\#)}''; after the single or double equal sign, the scanner\index{scanner} switches
to |MIDDLE| mode, not without pushing the equal sign on the stack\index{stack} to
be matched against the first token after the following \Pascal/ code.
After scanning an ``\.{=}'' token, I know that a numeric macro\index{numeric macro}
is following, and I record this fact
by changing the |tag| of the identifier\index{identifier} in the token\index{token}
and in the symbol table\index{symbol table}.
@<external declarations@>=
#define CHGTAG(t,x) @[((t)->tag=(x))@]
#define CHGID(t,x) @[(SYM(t)->tag=(x))
#define CHGTYPE(t,x) @[(SYM(t)->type=(x))
#define CHGVALUE(t,x) @[(SYM(t)->value=(x))
#define CHGTEXT(t,x) @[((t)->text=(x))@]
@
After scanning an ``\.{==}'' token, I know that I have either an
ordinary macro\index{ordinary macro} or a parametrized macro\index{parametrized macro}.
A |PARAM| token tells the difference.
@<functions@>=
void def_macro(token *eq, int tag)
{ token *id;
if (eq->previous->tag==PARAM)
{ id = eq->previous->previous;
tag=PMACRO;
}
else
{ id = eq->previous;
}
CHGTAG(id,tag);
CHGID(id,tag);
SYM(id)->eq=eq;
DBG(dbgexpand,"Defining %s: %s\n", tagname(tag),SYM(id)->name);
}
@
@<external declarations@>=
extern void def_macro(token *eq, int tag);
#define DEF_MACRO(tag) @[def_macro(last_token,tag),SEQ@]
@
Similar, the token ``\.{@@f}'' introduces a format
specification\index{format specification} switching the
scanner\index{scanner} to |FORMAT| mode. It then scans tokens until the first newline
character brings the scanner back to |MIDDLE| mode.
\subsection{Finishing the token list}
When the scanner is done, I terminate the token list with two
end of file\index{end of file} tokens: one for \Pascal/ and one for the \WEB/.
@<finalize token list@>=
TOK("",ATP);@+ PROGRAM;@+ PUSH;@+ TOK("",PEOF);@+ TOK("",WEBEOF);@+ POP;
@
At this point I might want to have a complete list of all tokens and
identifiers for debugging\index{debugging} purposes.
@<finalize token list@>=
if (debugflags&dbgtoken)
{ token *t=first_token;
while (t!=NULL)@+ {@+MESSAGE(THE_TOKEN(t));@+t=t->next;@+}
}
if (debugflags&dbgid)
{ int i;
for (i=free_symbols; i < MAX_SYMBOLS; i++)
MESSAGE("symbol[%d]=%s\n",i,symbols[i].name);
}
@
\section{Parsing Pascal}
%bug reported: subrange types have the form constant..constant;
%\TeX\ uses constant..constant-1
%in line 5499
\index{parsing}
I use \.{bison}\index{bison+\.{bison}} (the free replacement
of \.{yacc}\index{yacc+\.{yacc}}) to implement the
parser\index{parser}.
Fortunately \TeX\ does not use the full \Pascal/\index{Pascal+\Pascal/}
language, so the parser can be simpler. Further, I do not need to generate code,
but just analyze the \Pascal/ programs for the purpose of finding
those constructions where \Pascal/ differs from \CEE/ and need a
conversion. If I discover such an instance, I change the tags of
the affected tokens, set the |link| field to connect related tokens,
or even construct a parse tree and link to it using the |up| field.
In a next sweep over the token list in
section~\secref{writing}, these changed tokens will help us make the
appropriate transformations. But before I can do this, I need to
feed the parser with the proper tokens, but not in the order I find
them in the \WEB/ file. I have to ``tangle''\index{tangle+\.{tangle}} them
to get them into \Pascal/ program order. The function that is supposed
to deliver the tangled tokens is called |pplex|. In addition, the parser
expects a function |pperror| to produce error messages\index{error message}.
@<external declarations@>=
extern int pplex(void);
extern void pperror(const char *message);
@
The function |pperror| is very simple:
@<functions@>=
void pperror(const char *message)
{ ERROR("Parse error line %d: %s",pplval->lineno,message);@+}
@
\subsection{Generating the sequence of \Pascal/ tokens}
Primarily, the \Pascal/\index{Pascal+\Pascal/} tokens\index{token} come from the
unnamed modules\index{unnamed module} and then
from expanding module names\index{module name} and macros\index{macro}.
Because modules and macros
may reference other modules and macros, I will need a stack\index{stack} to keep
track of where to continue expansion when I have reached the end of
the current expansion.
@<global variables@>=
#define MAX_PPSTACK 40
static struct {
token *next,*end,*link;
int environment;
token *parameter;
} pp_stack[MAX_PPSTACK];
static int pp_sp=MAX_PPSTACK;
@
In each stack\index{stack} entry, the pointers |next| and |end| point to
the next and past the last
token of the current replacement text\index{replacement text}.
In the case of modules, where
the replacement text for the module name might be defined in multiple
installments, the |link| pointer is used to point to the continuation
of the current replacement text.
In the |parameter| field, I store the pointer to the ``\.{(}'' token
preceding the parameter\index{parameter} of a
parametrized macro\index{parametrized macro}; it provides us
conveniently with a pointer to the parameter text with its |next|
pointer and with its |link| pointer to the ``\.{)}'' token a pointer
directly to the |end| of the parameter text. When I expand the
parameter text of a parametrized macro, I need the |environment|
variable. It points down the stack to the stack entry that contains
the macro call. This is the place where I will find the replacement
for a ``\.{\#}'' token that might occur in the parameter text of
nested parametrized macros.
The function |pp_push| will store the required information on the
stack. Instead of passing the |next| and |end| pointer separately, I
pass a pointer to the ``\.{=}'' token from the macro or module
definition. This token conveniently contains both pointers. The
function then advances the stack pointer, initializes the new stack\index{stack}
entry, and returns the pointer to the first token of the replacement.
|pp_pop| will pop the stack and again return the pointer to the next
token.
@<functions@>=
token *pp_push(token *link, token *eq, int environment, token*parameter)
{ CHECK(pp_sp>0,"Pascal lexer stack overflow");
pp_sp--;
pp_stack[pp_sp].link=link;
pp_stack[pp_sp].next=eq->next;
pp_stack[pp_sp].end=eq->link;
pp_stack[pp_sp].environment=environment;
pp_stack[pp_sp].parameter=parameter;
DBG(dbgexpand,"Push pplex[%d]: ", MAX_PPSTACK-pp_sp); DBGTOKS(dbgexpand,eq->next,eq->link);
return pp_stack[pp_sp].next;
}
token *pp_pop(void)
{ CHECK(pp_sp<MAX_PPSTACK,"Pascal Lexer stack underflow");
pp_sp++;
DBG(dbgexpand,"Pop pplex[%d]: ", MAX_PPSTACK-pp_sp);
DBGTOKS(dbgexpand,pp_stack[pp_sp].next,pp_stack[pp_sp].end);
return pp_stack[pp_sp].next;
}
@
The function |pplex| is what I write next. In an "endless" loop, I
read the next token from the stack\index{stack} just described, popping and pushing the
stack as necessary. If I find a \Pascal/ token---it has
a |tag| value greater than |FIRST_PASCAL_TOKEN|---I can
return its |tag| immediately to the parser. \WEB/ tokens receive
special treatment. When I deliver a token to the parser, |pplval|,
the semantic value\index{semantic value} of the token, is the token pointer itself.
@<functions@>=
int pplex(void)
{ token *t;
int tag;
t=pp_stack[pp_sp].next;
while (true)
{
if (t==pp_stack[pp_sp].end)
{ @<process the end of a code segment@>@;
continue;
}
tag = t->tag;
tag_known:
if (tag>FIRST_PASCAL_TOKEN)
{
pp_stack[pp_sp].next=t->next;
goto found;
}
else
{ switch (tag)
{ @<special treatment for \WEB/ tokens@>@;
default:
ERROR("Unexpected token in pplex:" THE_TOKEN(t));
}
}
}
found:@/
DBG(dbgpascal,"pplex: %s->\t",tagname(tag));
DBG(dbgpascal,THE_TOKEN(t));
if (pascal!=NULL) fprintf(pascal,"%s ",token2string(t));
pplval=t;
return tag;
}
@
\subsection{Simple cases for the parser}
Now let's look at all the \WEB/ tokens and
what |pplex| should to do with them.
Quite a lot of them can be simply skipped:
@<special treatment for \WEB/ tokens@>=
case NL:
case INDENT:
if (pascal!=NULL) fprintf(pascal,"%s",token2string(t));
case METACOMMENT:
case ATT:
case ATEX:
case ATQM:
case ATPLUS:
case ATSLASH:
case ATBACKSLASH:
case ATBAR:
case ATHASH:
case ATCOMMA:
case ATINDEX:
case ATINDEXTT:
case ATINDEX9:
case ATAND:
case ATSEMICOLON:
case ATLEFT:
case ATRIGHT:@/
t=t->next;
continue;
@
Comments\index{comment} can be skipped in a single step:
@<special treatment for \WEB/ tokens@>=
case MLEFT:
case PLEFT:
t=t->link->next;
continue;
@
The \Pascal/ end-of-file\index{end of file} token is passed to the
parser which then should terminate.
@<special treatment for \WEB/ tokens@>=
case PEOF:
pp_stack[pp_sp].next=t->next;
goto found;
@
Simple is also the translation of octal\index{octal constant}
or hexadecimal\index{hexadecimal constant} constants
and single character strings: I translate them as \Pascal/ integers.
The token ``\.{@@\$}'', it's the string pool\index{string pool}
checksum\index{string pool checksum}, is an integer as well.
@<special treatment for \WEB/ tokens@>=
case ATDOLLAR:
case OCTAL:
case HEX:
case CHAR:
pp_stack[pp_sp].next=t->next;
tag=PINTEGER;
goto found;
@
The last simple case are identifiers\index{identifier}. For identifiers, I find the
correct tag in the symbol table which is maintained by the parser. At
this point, I give tokens that still have the |tag==ID| the default
tag |PID| and link tokens to the actual symbol structure, which might
be local\index{local symbol} or global\index{global symbol}.
@<special treatment for \WEB/ tokens@>=
case ID:
{ symbol *s=SYM(t);
tag=s->tag;
if (tag==ID)
tag=s->tag=PID;
t->sym_ptr=s;
t->tag=tag;
goto tag_known;
}
@
\subsection{The macros {\bf debug}, {\bf gubed}, and friends}
\TeX\ does some special trickery with the pseudo keywords \&{debug},
\&{gubed}, \&{init}, \&{tini}, \&{stat}, and \&{tats}. These identifiers are
used to generate different versions of \TeX\ for debugging\index{debugging},
initialization\index{initialization}, and gathering of statistics\index{statistics}.
The natural way to do
this in \CEE/ is the use of |#ifdef|\dots|#endif|. It is however not
possible in \CEE/ to define a macro like ``|#define debug|\quad|#ifdef
DEBUG|'' because the \CEE/ preprocessor\index{preprocessor} performs a simple one-pass
replacement on the source code. So macros are expanded and the
expansion is not expanded a second time.
It would be possible to define a module \X123:\.{debug}\X\ that
\.{ctangle} expands to ``\hbox{|#ifdef DEBUG|}'' before the \CEE/
preprocessor sees it; the other possibility is to do the expansion
right now in \web2w/. The latter possibility is simple, so I do it
here, but it affects the visual appearance of the converted code to
its disadvantage.
There are further possibilities too: I could redefine the macro as
``|#define debug|\quad|if (Debug) {|'' making it plain \CEE/
code. Then the compiler would insert or optimize away the code in
question depending on whether I say ``|#define Debug @, 1|'' or
``|#define Debug @, 0|''. The \&{stat}\dots\&{tats} brackets are however
often used to enclose variable- or function-definitions where an ``|if
(Debug) {|'' would not work.
There are, however, also instances where the ``|#ifdef DEBUG|''
approach does not work. For instance, |debug|\dots|gubed| is used
inside the macro |succumb|. Fortunately there are only a few of these
instances and I deal with them in the patch file\index{patch file}.
As far as the parser is concerned, I just skip these tokens.
@<special treatment for \WEB/ tokens@>=
case WDEBUG:
case WGUBED:
case WINIT:
case WTINI:
case WSTAT:
case WTATS:
t=t->next;
continue;
@
Later, I get them back into the \cweb/ file using the following code.
It takes care not to replace the special keywords when they are
enclosed between vertical bars and are only part of the descriptive text.
@<convert |t| from \WEB/ to \cweb/@>=
case WDEBUG:
if (t->previous->tag==BAR)
wputs(t->text);
else
{ if (column!=0) wput('\n');
wputs("#ifdef @@!DEBUG\n");
}
t=t->next;@+break;
case WINIT:
if (t->previous->tag==BAR)
wputs(t->text);
else
{ if (column!=0) wput('\n');
wputs("#ifdef @@!INIT\n");
}
t=t->next;@+break;
case WSTAT:
if (t->previous->tag==BAR)
wputs(t->text);
else
{
if (column!=0) wput('\n');
wputs("#ifdef @@!STAT\n");
}
t=t->next;@+break;
case WGUBED:
case WTINI:
case WTATS:
if (t->previous->tag==BAR)
wputs(t->text);
else
{ if (column!=0) wput('\n');
wputs("#endif\n");
}
t=t->next;
if (t->tag==ATPLUS||t->tag==ATSLASH) t=t->next;
if (t->tag==NL) t=t->next;
break;
@
I ignore ``\.{@@+}'' tokens that precede \&{debug} and friends, because
their replacement should always start on the beginning of a line.
@<convert |t| from \WEB/ to \cweb/@>=
case ATPLUS:
t=t->next;
if (!following_directive(t))
wputs("@@+");
else
DBG(dbgcweb,"Eliminating @@+ in line %d\n",t->lineno);
@+break;
@
Because they also occur in format definitions, I mark the identifiers as
obsolete\index{obsolete}.
@<finalize token list@>=
SYM_PTR("debug")->obsolete=1;
SYM_PTR("gubed")->obsolete=1;
SYM_PTR("stat")->obsolete=1;
SYM_PTR("tats")->obsolete=1;
SYM_PTR("init")->obsolete=1;
SYM_PTR("tini")->obsolete=1;
@
\subsection{Parsing numerical constants}
I do not expand numerical macros\index{numerical macro},
instead I expand the \Pascal/
grammar to handle |NMACRO| tokens. This is also the right place to
switch numeric macros from symbol numbers to symbol pointers. For each
use of the token, I increment its |value| field in the symbol
table. This will allow us later to eliminate definitions that are no
longer used. The handling of \WEB/ strings is similar.
@<special treatment for \WEB/ tokens@>=
case NMACRO:
t->sym_ptr=SYM(t);
if (t->sym_ptr->eq->next->tag==STRING)
{token *s= t->sym_ptr->eq->next;
s->sym_ptr=SYM(s);
s->sym_ptr->value++;
DBG(dbgstring,"Using numeric macro %s (%d) in line %d\n",
s->sym_ptr->name,s->sym_ptr->value,t->lineno);
}
pp_stack[pp_sp].next=t->next;
goto found;
case STRING:
t->sym_ptr=SYM(t);
t->sym_ptr->value++;
DBG(dbgstring,"Using string %s (%d) in line %d\n",
t->sym_ptr->name,t->sym_ptr->value,t->lineno);
pp_stack[pp_sp].next=t->next;
goto found;
@
Occasionally, I will need the ability to determine the value of a token
that the \Pascal/ parser considers an integer.
The function |getval| will return this value.
@<external declarations@>=
extern int getval(token *t);
@
@<functions@>=
int getval(token *t)
{ int n=0;
switch (t->tag)
{ case ATDOLLAR: n=0;@+ break;
case PINTEGER: n =strtol(t->text,NULL,10);@+ break;
case NMACRO:
t = SYM(t)->eq;
CHECK(t->tag==EQEQ, "= expected in numeric macro in line %d",t->lineno);
t = t->next;
if (t->tag==PMINUS) {t=t->next; n=-getval(t);}
else n=getval(t);
while (true)
{ if (t->next->tag==PPLUS)
{ t=t->next->next; n=n+getval(t); }
else if (t->next->tag==PMINUS)
{ t=t->next->next; n=n-getval(t); }
else break;
}
break;
case OCTAL: n=strtol(t->text+2,NULL,8);@+ break;
case HEX: n=strtol(t->text+2,NULL,16);@+ break;
case CHAR: n=(int)(unsigned char)t->text[1];@+ break;
case PCONSTID: n=SYM(t)->value;@+ break;
default: ERROR("Unable to get value for tag %s in line %d",TAG(t),t->lineno);
}
return n;
}
@
Notice that I assume that tokens which are tagged as constant
identifiers are expected to have a value stored in the symbol table. We
write this value using the macro |SETVAL|.
@<external declarations@>=
#define SETVAL(t,val) @[SYM(t)->value=val@]
@
\subsection{Expanding module names and macros}
\index{macro expansion}\index{module name expansion}
Now let's turn to the more complicated operations, for example the
expansion of module names. I know that I hit a module name\index{module name}
when I encounter an ``\.{@@<}'' token. At this point, I advance
the current token pointer past the end of the module name, look up
the module in the module table, and push its first code segment.
@<special treatment for \WEB/ tokens@>=
case ATLESS:
{ token *eq, *atgreater;
atgreater = find_module(t)->atgreater;
CHECK(atgreater!=NULL,"Undefined module @@<%s ...@@> in line %d",
token2string(t->next),t->lineno);
DBG(dbgexpand,"Expanding module @@<%s@@> in line %d\n",
token2string(t->next),t->lineno);
eq=atgreater->next;
pp_stack[pp_sp].next=t->link->next;
t=pp_push(atgreater->link,eq,0,NULL);
continue;
}
@
When I reach the end of the code segment, I can check the link field
to find its continuation.
@<process the end of a code segment@>=
token *link=pp_stack[pp_sp].link;
if (link!=NULL)
{ token *eq;
eq=link->next;
link=link->link;
pp_pop();
t=pp_push(link,eq,0,NULL);
}
else
t=pp_pop();
@
Slightly simpler are ordinary macros\index{ordinary macro}.
@<special treatment for \WEB/ tokens@>=
case OMACRO:
{ token *eq;
eq=SYM(t)->eq;
pp_stack[pp_sp].next=t->next;
DBG(dbgexpand,"Expanding ordinary macro %s in line %d\n",token2string(t),t->lineno);
t=pp_push(NULL,eq,0,NULL);
continue;
}
@
There are a few macros, that are special\index{special macro}; I do not want to expand
them but instead generate special tokens in \.{web.l}\index{web.l+\.{web.l}} and expand the
\Pascal/ grammar to cope with them directly. It remains, however, to
mark them as obsolete\index{obsolete} to remove the macro definitions form the \cweb/
output.
@<finalize token list@>=
SYM_PTR("return")->obsolete=1;
SYM_PTR("endcases")->obsolete=1;
SYM_PTR("othercases")->obsolete=1;
SYM_PTR("mtype")->obsolete=1;
SYM_PTR("final_end")->obsolete=1;
@
\subsection{Expanding macros with parameters}
Now I come to the most complex case: parametrized macros\index{parametrized macro}.
When the \WEB/ invokes a parametrized macro as part of the \Pascal/ code, the macro
identifier is followed by a ``\.{(}'' token, the parameter tokens, and
a matching ``\.{)}'' token. The \WEB/ scanner has also set the |link|
field of the ``\.{(}'' token to point to the ``\.{)}'' token. The
replacement text for the macro is found in the same way as for
ordinary macros above. The replacement text, however, may now contain
a ``\.{\#}'' token, asking for another replacement by the parameter
tokens. The whole process can be nested because the parameter tokens
may again contain a ``\.{\#}'' token. Hence, I need to store the
parameter tokens on the stack as well as a reference to the enclosing
environment\index{environment}. I store a reference to the ``\.{(}''
token on the stack\index{stack},
because from it, I can get the first token and the last token of the
replacement text\index{replacement text}.
I can write now the code to expand a parametrized macro. To cope
with cases like \.{font(x)}, \.{font == type} and
\.{type(\#)=mem[\#]}, I call |pplex| to find the opening parenthesis
before pushing the macro expansion and its parameter.
(Note: I expand \.{font} as an ordinary macro; then find \.{type}
which is a parametrized macro and end up in the ``|case PMACRO:|''
below. The ``\.{(}'' token is not the next token after \.{type}
because I am still expanding \.{font}. Calling |pplex| will reach
the end of the expansion, pop the stack, and then find the ``\.{(}''
token.)
@<special treatment for \WEB/ tokens@>=
case PMACRO:
{ token *open,*eq;
int popen;
DBG(dbgexpand,"Expanding parameter macro %s in line %d\n",
token2string(t),t->lineno);
eq=SYM(t)->eq;
pp_stack[pp_sp].next=t->next;
popen=pplex();
CHECK(popen==POPEN,"expected ( after macro with parameter");
open=pplval;
pp_stack[pp_sp].next=open->link->next;
@<count macro parameters@>@;
t=pp_push(NULL,eq,pp_sp,open);
continue;
}
@
While traversing the replacement text, I may find a ``\.{\#}'' token.
In this case, I find on the |pp_stack| the pointer to the |parameter| and,
in case the |parameter| contains again a ``\.{\#}'' token, its |environment|.
@<special treatment for \WEB/ tokens@>=
case HASH:
{ token *parameter=pp_stack[pp_sp].parameter;
int environment=pp_stack[pp_sp].environment;
pp_stack[pp_sp].next=t->next;
t=pp_push(NULL,parameter,pp_stack[environment].environment,
pp_stack[environment].parameter);
continue;
}
@
\subsection{The function |ppparse|}
The function |ppparse| is implemented in the
file \.{pascal.y}\index{pascal.y+\.{pascal.y}}
which must be processed by \.{bison}\index{bison+\.{bison}}
(the free version of \.{yacc}\index{yacc+\.{yacc}})
to produce \.{pascal.tab.c}\index{pascal tab c+\.{pascal.tab.c}}
and \.{pascal.tab.h}\index{pascal tab h+\.{pascal.tab.h}}.
The former contains the definition of the parser function |ppparse|
which I call after initializing the |pp_stack| in preparation
for the first call to |pplex|.
@<parse \Pascal/@>=
program=first_token->link;
pp_push(program->link, program->next, 0, NULL);
ppparse();
@
The function |ppparse| occasionally builds a parse tree\index{parse tree}
out of internal nodes\index{internal node} for the \Pascal/ program;
this parse tree is then used to accomplish the transformations
needed to turn the \Pascal/ code into \CEE/ code.
@<internal node@>=
struct {
int value;
}
@
Internal nodes are constructed using the function |join|.
@<external declarations@>=
token *join(int tag, token *left, token *right, int value);
@
@<functions@>=
token *join(int tag, token *left, token *right, int value)
{ token *n=new_token(tag);
n->previous=left;
n->next=right;
n->value = value;
DBG(dbgjoin,"tree: "); DBGTREE(dbgjoin,n);
return n;
}
@
\section{Writing the \cweb/}
\label{writing}%
\subsection{\cweb/ output routines}
\index{output routine}The basic function to write the \cweb/ file is the function |wprint|,
along with its simpler cousins |wput| and |wputs|, and the more
specialized member of the family |wputi|. While most of the work of
converting the visual representation of tokens to \cweb/ is left to
the function |token2string|, the basic functions take care of
inserting spaces\index{space} after a comma\index{comma} and to prevent adjacent tokens from
running together.
The variables |alfanum| and |comma| indicate that the last character
written was alphanumeric or a comma; the variable |column| counts the
characters on the current line.
@<global variables@>=
static int alfanum=0;
static int comma=0;
static int column=0;
@
@<functions@>=
static void wput(char c)
{ fputc(c,w);
alfanum = isalnum(c);
comma = c==',';
if (c=='\n') column=0;@+ else column++;
}
static void wputs(char *str)
{ while (*str!=0) wput(*str++);
}
static void wputi(int i)
{ if (alfanum || comma) fputc(' ',w),column++;
column+=fprintf(w,"%d",i);
alfanum=true;
comma=false;
}
static void wprint(char *str)
{ if ((alfanum || comma) && isalnum(str[0])) fputc(' ',w);
wputs(str);
}
@
Most tokens have their string representation stored in the |info.text| field,
so I sketch the function |token2string| here and
describe the details of conversion later.
@<internal declarations@>=
static char *token2string(token *t);
@
@<functions@>=
static char *token2string(token *t)
{ CHECK(t!=NULL,"Unable to convert NULL token to a string");
switch (t->tag)
{ default:
if (t->text!=NULL)
return t->text;
else
return "";
@<convert token |t| to a string@>@;
}
}
@
\subsection{Traversing the \WEB/}
After these preparations, I am ready to traverse the list of tokens
again; this time not in \Pascal/ order but in the order given
in the \WEB/ file because I want the \cweb/ file to be as close as
possible to the original \WEB/ file.
The main loop can be performed by the function |wprint_to|. It
traverses the token list until a given |last_token| is found. Using
this function I can generate the whole \cweb/ file simply by starting
with the |first_token| and terminating with the |last_token|.
@<generate \cweb/ output@>=
wprint_to(first_token,last_token);
@
The function |wprint_to| delegates all the work to |wtoken| which in
turn uses |wprint| and |token2string| after converting the tokens from
\WEB/ to \cweb/ as necessary. Besides writing out the token, |wtoken|
also advances past the written token and returns a pointer to the
token immediately following it. The function |wtoken| will be called
recursively. For debugging\index{debugging} purposes, it maintains a counter of its
nesting |level|.
@<functions@>=
static token *wtoken(token *t)
{ static int level=0;
level++;
DBG(dbgcweb,"wtoken[%d] %s (%s) line %d\n",level,TAG(t),token2string(t),t->lineno);
switch(t->tag)
{ @<convert |t| from \WEB/ to \cweb/@>@;
default: wprint(token2string(t));@+ t=t->next;@+ break;
}
level--;
return t;
}
@
|wprint_to| is complemented by the function |wskip_to| which
suppresses the printing of tokens.
@<internal declarations@>=
static token *wprint_to(token *t, token *end);
static token *wskip_to(token *t, token *end);
@
@<functions@>=
static token *wprint_to(token *t, token *end)
{ while(t!=end)
t=wtoken(t);
return t;
}
static token *wskip_to(token *t, token *end)
{ while(t!=end)
t=t->next;
return t;
}
@
\subsection{Simple cases of conversion}
Quite a few tokens serve a syntactical purpose in \Pascal/ but are
simply ignored when generating \CEE/ code.
@<convert |t| from \WEB/ to \cweb/@>=
case CIGNORE: case PPROGRAM: case PLABEL: case PCONST: case PVAR:
case PPACKED: case POF: case ATQM: case ATBACKSLASH:@/
t=t->next;@+ break;
@
The parser will change a |tag| to |CIGNORE| by using the |IGN| macro.
@<external declarations@>=
#define IGN(t) @[((t)->tag=CIGNORE)@]
@
\TeX\ uses the control sequence ``\.{@@t\\2@@>}'' after ``{\bf
forward};''. It needs to be removed together with the forward
declaration, because it does confuse \cweb/.
@<convert |t| from \WEB/ to \cweb/@>=
case PFORWARD:
if (t->next->tag==PSEMICOLON) wput(';'),t=t->next->next;
else wprint("forward"),t=t->next;
if (t->tag==ATT) t=t->next;
break;
@
The meta-comments\index{meta-comment} of \WEB/ are translated to
plain \CEE/ comments\index{comment} if
they are just a single line and to \.{\#if 0}\dots\.{\#endif}
otherwise.
@<convert |t| from \WEB/ to \cweb/@>=
case METACOMMENT:
{ char *c;
wputs("/*");
for (c=t->text+2; c[0]!='@@' || c[1]!='}'; c++) wput(*c);
wputs("*/");
t=t->next;
}
break;
case ATLEFT:
if (column!=0) wput('\n');
wputs("#if 0\n");
t=t->next;@+break;
case ATRIGHT:
if (column!=0) wput('\n');
wputs("#endif\n");
t=t->next;@+break;
@
Some tokens just need a slight adjustment of their textual
representation. In other cases, the parser changes the tag of a
token, for example to |PSEMICOLON|, without changing the textual
representation of that token. All these tokens are listed below.
@<convert |t| from \WEB/ to \cweb/@>=
case PLEFT: case MLEFT: wputs(" /*");@+t=t->next;@+ break;
case RIGHT: wputs("*/ ");@+t=t->next;@+ break;
case PSEMICOLON: wputs(";");@+t=t->next;@+ break;
case PCOMMA: wputs(",");@+t=t->next;@+ break;
case PMOD: wput('%');@+t=t->next;@+ break;
case PDIV: wput('/');@+t=t->next;@+ break;
case PNIL: wprint("NULL");@+t=t->next;@+ break;
case POR: wputs("||");@+t=t->next;@+ break;
case PAND: wputs("&&");@+t=t->next;@+ break;
case PNOT: wputs("!");@+t=t->next;@+ break;
case PIF: wprint("if (");@+t=t->next;@+ break;
case PTHEN: wputs(") ");@+t=t->next;@+ break;
case PASSIGN: wput('=');@+t=t->next;@+ break;
case PNOTEQ: wputs("!=");@+t=t->next;@+ break;
case PEQ: wputs("==");@+t=t->next;@+ break;
case EQEQ: wput('\t');@+t=t->next;@+ break;
case OCTAL: wprint("0");@+ wputs(t->text+2);@+t=t->next;@+ break;
case HEX: wprint("0x");@+ wputs(t->text+2);@+t=t->next;@+ break;
case PTYPEINT: wprint("int");@+t=t->next;@+ break;
case PTYPEREAL: wprint("double");@+t=t->next;@+ break;
case PTYPEBOOL: wprint("bool");@+t=t->next;@+ break;
case PTYPECHAR: wprint("unsigned char");@+t=t->next;@+ break;
@
I convert ``\&{begin}'' to ``\.{\LB}''. In most cases, I want an ``\.{@@+}'' to
follow; except of course if a preprocessor directive is following.
@<convert |t| from \WEB/ to \cweb/@>=
case PBEGIN: wput('{'),t=t->next;
if (!following_directive(t)) wputs("@@+");
break;
@
@<internal declarations@>=
static bool following_directive(token *t);
@
@<functions@>=
static bool following_directive(token *t)
{ while (true)
if (WDEBUG<=t->tag && t->tag<=WGUBED) return true;
else if (t->tag==ATPLUS || t->tag==ATEX || t->tag==ATSEMICOLON ||
t->tag==NL || t->tag==INDENT) t=t->next;
else return false;
}
@
After the conversion, the \Pascal/ token ``\.{..}'' will
still occur in the file as part of code between vertical bars.
To make it print nicely in the \TeX\ output,
it is converted to an identifier, ``\.{dotdot}''\index{dotdot+\.{dotdot}}, that is
used nowhere else.
@<convert |t| from \WEB/ to \cweb/@>=
case PDOTDOT: wprint("dotdot");@+t=t->next;@+ break;
@
Using the patch file, I instruct \.{cweave} to treat this identifier in a special way
and print it like ``${}\mathrel{.\,.}{}$''.
\subsection{\Pascal/ division}
In some cases build-in functions\index{build-in function}
of \Pascal/ can be replaced by a
suitably defined macro in \CEE/. The most simple solution was to add
these definitions to the
module ``$\langle\,${\eightrm Compiler directives}$\,\rangle$'' using
the patch file\index{patch file}.
Using Macros instead of inline replacement has the advantage
that the visual appearance of the original code remains undisturbed.
A not so simple case is the \Pascal/ division\index{division}.
The \Pascal/ language has two different division\index{division} operators: ``{\bf
div}'' divides two integers and gives an integer result; it can be
replaced by ``|/|'' in the \CEE/ language. The \Pascal/ operator
``|/|'' divides |integer| and \&{real} values and converts both operands
to type \&{real} before doing so; replacing it simply by the \CEE/
operator ``|/|'' will give different results if both operands are
\&{integer} values because in this case \CEE/ will do an integer
division truncating the result. So expressions of the form ``|X / Y|''
should be replaced by ``|X / (double)(Y)|'' to force a
floating point division\index{floating point division} in \CEE/
% these are the instances of real division in \.{tex.web}:
%Pascal real division / in line 13032
%if total_stretch[o]<>0 then glue_set(r):=unfloat(x/total_stretch[o])
%
%Pascal real division / in line 13091
%if total_shrink[o]<>0 then glue_set(r):=unfloat((-x)/total_shrink[o])
%
%Pascal real division / in line 13223
%if total_stretch[o]<>0 then glue_set(r):=unfloat(x/total_stretch[o])
%
%Pascal real division / in line 13262
%if total_shrink[o]<>0 then glue_set(r):=unfloat((-x)/total_shrink[o])
%
%Pascal real division / in line 15929
% else glue_set(r):=unfloat((t-width(r))/glue_stretch(r));
%
%Pascal real division / in line 15936
% else glue_set(r):=unfloat((width(r)-t)/glue_shrink(r));
%
%Pascal real division / in line 15950
% else glue_set(r):=unfloat((t-height(r))/glue_stretch(r));
%
%Pascal real division / in line 15957
% else glue_set(r):=unfloat((height(r)-t)/glue_shrink(r));
%
%Pascal real division / in line 21484
% begin x:=x_height(f); s:=slant(f)/float_constant(65536);
%
%Pascal real division / in line 21513
%begin t:=slant(f)/float_constant(65536);
%
%Pascal real division / in line 21520
%delta:=round((w-a)/float_constant(2)+h*t-x*s);
Fortunately, all expressions in the denominator have the form
|total_stretch[o]|, |total_shrink[o]|, |glue_stretch(r)|,
|glue_shrink(r)|, or |float_constant(n)|. So no parentheses around
the denominator are required and inserting a simple |(double)| after
the |/| is sufficient. Further, the macro |float_constant| is already
a cast to \&{double}, so I can check for the corresponding identifier
and omit the extra cast.
@<global variables@>=
static int float_constant_no;
@
@<initialize token list@>=
float_constant_no=predefine("float_constant",ID,0);
@
@<convert |t| from \WEB/ to \cweb/@>=
case PSLASH:
wput('/');
if (t->next->tag!=PMACRO || t->next->sym_no!=float_constant_no)
{ wprint("(double)");
DBG(dbgslash,"Inserting (double) after / in line %d\n",t->lineno);
}
t=t->next;@+break;
@
\subsection{Identifiers}
Before I can look at the identifiers\index{identifier}, I have to consider the
``\.{@@!}'' token which can precede an identifier and will cause the
identifiers to appear underlined in the index\index{index}. The ``\.{@@!}'' token
needs a special treatment. When I convert \Pascal/ to \CEE/, I have
to rearrange the order of tokens and while I am doing so, a
``\.{@@!}'' token that precedes an identifier should stick to the
identifier and move with it. I accomplish this by suppressing the
output of the ``\.{@@!}'' token if it is followed by an identifier,
and insert it again when I output the identifier itself.
@<convert |t| from \WEB/ to \cweb/@>=
case ATEX:
t=t->next;
if (t->tag!=ID && t->tag!=PID && t->tag!=PFUNCID &&@/
t->tag!=PDEFVARID && t->tag!=PDEFPARAMID && t->tag!=PDEFTYPEID &&@/
t->tag!=OMACRO&& t->tag!=PMACRO && t->tag!=NMACRO &&@/
t->tag!=CINTDEF && t->tag!=CSTRDEF && t->tag!=PDIV &&@/
t->tag!=WDEBUG && t->tag!=WINIT && t->tag!=WSTAT)
{ wputs("@@!");
DBG(dbgbasic,"Tag after @@! is %s in line %d\n",tagname(t->tag), t->lineno);
}
break;
@
Identifier tokens are converted by using their name. I use a simple
function to do the name lookup and take care of adding the ``\.{@@!}''
token if necessary.
@<internal declarations@>=
static void wid(token *t);
@
@<functions@>=
void wid(token *t)
{ if (alfanum || comma) wput(' ');
if (t->previous->tag==ATEX) wputs("@@!");
wputs(SYM(t)->name);
}
@
I use this function like this:
@<convert |t| from \WEB/ to \cweb/@>=
case ID:
case PID:
case OMACRO:
case PMACRO:
case NMACRO:
wid(t);@+t=t->next;@+ break;
@
Some identifiers that \TeX\ uses are reserved words\index{reserved words}
in \CEE/ or loose their special meaning. So after I finish scanning the \WEB/, I
change the names of these identifiers.%
\index{xclause+\\{xclause}}%
\index{switch+\&{switch}}%
\index{continue+\&{continue}}%
\index{exit+\\{exit}}%
\index{free+\\{free}}%
\index{int+\&{int}}%
\index{remainder+\\{remainder}}%
@<finalize token list@>=
SYM_PTR("xclause")->name="else";
SYM_PTR("switch")->name="get_cur_chr";
SYM_PTR("continue")->name="resume";
SYM_PTR("exit")->name="end";
SYM_PTR("free")->name="is_free";
SYM_PTR("int")->name="i";
SYM_PTR("remainder")->name="rem";
@
A special case is the the field identifier |int|. It can not be used
in \CEE/ because it is a very common (if not the most common) reserved
word. I replace it with |i| which does not conflict with the
variable |i| because field names have their own name-space in \CEE/.
\subsection{Strings}
Pascal strings\index{string} need some more work. I translate them to characters or
\CEE/ strings. Note that the parser occasionally converts |STRING| or
|CHAR| tokens to |PSTRING| tokens.
@<convert |t| from \WEB/ to \cweb/@>=
case PCHAR:
{ char *str=t->text;
wput(' ');
wput('\''),str++;
if (str[0]=='\'') wputs("\\'");
else if (str[0]=='\\') wputs("\\\\");
else if (str[0]=='@@') wputs("@@@@");
else wput(str[0]);
wput('\'');
wput(' ');
}
t=t->next;@+
break;
case PSTRING:
{ char *str=t->text;
wput('"'),str++;
while (*str!=0)
{ if (str[0]=='\'' && str[1]=='\'') wput('\''),str++;
else if (str[0]=='"' && str[1]=='"') wputs("\\\""),str++;
else if (str[0]=='\\') wputs("\\\\");
else if (str[0]=='\'' && str[1]==0) wput('"');
else if (str[0]=='"' && str[1]==0) wput('"');
else if (str[0]=='"') wput('\\'), wput('"');
else wput(str[0]);
str++;
}
}
t=t->next;@+
break;
@
\subsection{Module names}
I have removed newlines and extra spaces from module names\index{module name};
now I have to insert newlines\index{newline} if the module names are too long.
@<convert |t| from \WEB/ to \cweb/@>=
case ATLESS:
wputs("@@<");
t=t->next;
CHECK(t->tag==TEXT,"Module name expected instead of %s in line %d",
token2string(t), t->lineno);
{ char *str=t->text;
do
if (str[0]=='@@' && str[1]==',')
str=str+2; /*control codes are forbidden in section names*/
else if (column>80 && isspace(*str)) wput('\n'),str++;
else wput(*str++);
while (*str!=0);
}
t=t->next;
if (t->tag==ELIPSIS) wputs("..."), t=t->next;
CHECK(t->tag==ATGREATER,"@@> expected instead of %s in line %d",
token2string(t), t->lineno);
wputs("@@>");
t=t->next;
if (t->tag==ATSLASH) wputs("@@;"),t=t->next;
else if (t->tag==PELSE ||
(t->tag==NL)) wputs("@@;");
break;
@
Note that I replace an ``\.{@@/}'' after the module name by an
``\.{@@;}'' Because in most places this is enough to cause the
requested new line and causes the correct indentation.
\subsection{Replacing the \WEB/ string pool file}
\label{stringpool}%
\WEB/ strings need more work because I have to replace the \WEB/
string pool\index{string pool} file. Before I start, I finish two easy cases. Single
character strings are replaced by \CEE/ character constants\index{character constant}. The
string pool checksum\index{string pool checksum} is simply replaced by zero,
because I will not use it.
@<convert |t| from \WEB/ to \cweb/@>=
case CHAR:
{ char c=t->text[1];
wput('\'');
if (c=='\'' || c=='\\') wput('\\');
wput(c);
wput('\'');
t=t->next;@+ break;
}
case ATDOLLAR: wputs("0");@+t=t->next;@+ break;
@
Of course it would be possible to generate suitable initializations
for the variables |str_pool| and |str_start| and replace each string
with its corresponding index in the |str_start| array. The goal of my
project is, however, to generate readable source code and
replacing for example |"Maybe you should try asking a human?"| by
|283| is not very readable. Instead, I will create for each string a
module, in the above example named \PB{$\X1234:\PB{\.{"Maybe you
should try asking} \.{a} \.{human?"}}\X$}, that will expand to the
correct number, here |283|.
@<convert |t| from \WEB/ to \cweb/@>=
case STRING:
{ @<convert some strings to macro names@>@;
else
{ wputs("@@[@@<|");@+wputs(SYM(t)->name);@+wputs("|@@>@@]");@+ }
t=t->next;@+ break;
}
@
There are some exceptions to the general rule, for example for the
empty string\index{empty string}.
I define an appropriate constant |empty_string| and
use it instead of a module (which would have a rather unsightly
name). More instances of this scheme follow below.
@<convert some strings to macro names@>=
if (t->sym_no==empty_string_no)
wprint("empty_string");
@
To define all the other new modules, I add some code at the very end
of the output file.
@<generate \cweb/ output@>=
wputs("\n@@ Appendix: Replacement of the string pool file.\n");
{ token *str_k;
int i, k;
@<generate definitions for the first 256 strings@>@;
for (str_k=first_string;str_k != NULL;str_k=str_k->link)
@<generate definition for string |k|@>@;
@<generate string pool initializations@>@;
}
@
The first 256 strings in the string pool\index{string pool}
are the printable replacements
for the single character strings for all character codes from 0 to 255.
@<generate definitions for the first 256 strings@>=
wputs("@@d str_0_255 ");
for (k=0;k<256;k++)
{ if ((k&0xF)==0) wputs("\t\"");
if ((@<Character |k| cannot be printed@>))
{ wputs("^^");
if (k<0100 && k+0100=='@@') wputs("@@@@");
else if (k<0100 && k+0100=='\\') wputs("\\\\");
else if (k < 0100) wput(k+0100);
else if (k<0200 && k-0100=='@@') wputs("@@@@");
else if (k < 0200) wput(k-0100);
#define HEXDIGIT(x) ((x)<10?((x)+'0'):((x)-10+'a'))
else wput(HEXDIGIT(k/16)),wput(HEXDIGIT(k%16));
}
else if (k=='"') wputs("\\\"");
else if (k=='\\') wputs("\\\\");
else if (k=='@@') wputs("@@@@");
else wput(k);
if ((k&0xF)==0xF) wputs("\"@@/\n");
}
wputs("@@d str_start_0_255");
i=0;
for (k=0;k<256;k++)
{ if ((k&0xF)==0) wput('\t');
wputi(i);
if ((@<Character |k| cannot be printed@>))
{ if (k < 0100) i=i+3;
else if (k < 0200) i=i+3;
else i=i+4;
}
else i=i+1;
wput(',');
if ((k&0xF)==0xF) wputs("@@/\n");
}
@
This condition is taken from \.{tex.web}:
@<Character |k| cannot be printed@>=
(k < ' ')||(k > '~')
@
@<generate definition for string |k|@>=
{ symbol *s=SYM(str_k);
if (s->value>0)
{ s->value=0;
wputs("@@ \n");
wputs("@@d str_"),wputi(k),wput(' '),wputs(s->name),wput('\n');
@<generate macros for some strings@>@;
else
wputs("@@<|"),wputs(s->name),wputs("|@@>=@@+"),wputi(k);
wput('\n');
k++;
}
}
@
There are, however, a few more exceptions to the general procedure.
Many of the \WEB/ strings are used simply for printing with
the procedure |print|. There is actually no need to enter all these
strings into the string pool\index{string pool}.
Instead I add a procedure |print_str|
that prints plain zero terminated \CEE/ strings.
Now I can convert the |STRING| argument of the procedure |print| to
a |PSTRING| by calling the following procedures in the parser.
@<external declarations@>=
extern void pstring_args(token *id, token *arg);
extern void pstring_assign(token *id, token *val);
@
The function |pstring_args| is called with the |id| of the
function. The |arg| token points to the argument list. A few other
functions just pass their arguments to |print|. By replacing their
call to |print| by a call to |print_str|, I can convert those
arguments as well. For example the function |overflow| expects two
arguments of which the first one is the |STRING| token. The other
functions are: |prompt_file_name|, |print_nl|, and |fatal_error|.
If a |STRING| token is found, its |value| in the symbol table is
decremented. This |value| counts the number of occurrences; if it
goes down to zero, the |STRING| token is no longer used and no module
needs to be generated for it.
@<functions@>=
static int convert_arg( token *arg)
{ if (arg->tag==STRING)
{ symbol *s=symbol_table[arg->sym_no];
s->value--;
DBG(dbgstring,"Eliminating string argument %s (%d) in line %d\n",s->name,s->value,arg->lineno);
arg->tag=PSTRING;
return 1;
}
else if (arg->tag==CHAR)
{ arg->tag=PSTRING;
return 1;
}
return 0;
}
void pstring_args(token *id, token *arg)
{ if (arg->tag==PCOLON || arg->tag==CREFID) return;
if (id->sym_no==overflow_no || id->sym_no==prompt_file_name_no )
{ CHECK(arg->tag==PCOMMA,"function should have two arguments in line %d",id->lineno);
convert_arg(arg->previous);
}
else if (id->sym_no==print_no)
{ if (convert_arg(arg)) id->sym_no=print_str_no;
}
else if ( id->sym_no==print_str_no
|| id->sym_no==print_nl_no
|| id->sym_no==fatal_error_no
)
convert_arg(arg);
}
@
The function |pstring_assign| is used when |STRING| tokens are
assigned to the variable |help_line|, which I redefine as a
variable containing character pointers instead of string numbers.
@<functions@>=
void pstring_assign(token *id, token *val)
{ if (id->tag==PID && ( id->sym_no==help_line_no || id->sym_no==max_reg_help_line_no))
{ SYM(val)->value--;
DBG(dbgstring,"Eliminating string assignment %s (%d) in line %d\n",
SYM(val)->name,SYM(val)->value,val->lineno);
val->tag=PSTRING;
}
else
DBG(dbgstring,"No string assignment %s (%d) in line %d\n",
SYM(val)->name,SYM(val)->value,val->lineno);
}
@
Note: |max_reg_help_line| is used in $\epsilon$-\TeX\index{e-TeX+$\epsilon$-\TeX}.
I have used these variables:
@<global variables@>=
int print_no, print_str_no, overflow_no, print_err_no,
print_nl_no, fatal_error_no, prompt_file_name_no,
help_line_no, empty_string_no, max_reg_help_line_no;
@
The variables are initialized like this:
@<functions@>=
int predefine(char *name, int tag, int value)
{ int sym_no= get_sym_no(name);
symbol *s= symbol_table[sym_no];
s->tag=tag;
s->value=value;
return sym_no;
}
@
@<initialize token list@>=
print_str_no=predefine("print_str",PPROCID,0);
empty_string_no=predefine("\"\"",PID,1);
help_line_no=predefine("help_line",ID,0);
print_no=predefine("print",PPROCID,0);
overflow_no=predefine("overflow",PPROCID,0);
print_err_no=predefine("print_err",PPROCID,0);
print_nl_no=predefine("print_nl",PPROCID,0);
fatal_error_no=predefine("fatal_error",PPROCID,0);
prompt_file_name_no=predefine("prompt_file_name",PPROCID,0);
max_reg_help_line_no=predefine("max_reg_help_line",ID,0);
@
There are still a few remaining problems.
First, |STRING| tokens occur occasionally as part of a
macro replacement text\index{replacement text}.
There I can not substitute a module name\index{module name} for them.
By having introduced the function |print_str|, some
of them are now plain \CEE/ strings:
|"pool size"| in line 1184 (|overflow|),
|"! "| in line 1750 (|print_nl|)
|"save size"| in line 5910 (|overflow|),
|"input stack size"| in line 6940 (|overflow|),
|"Font "| in line 10927 (|print_err|),
|" at "| in line 10930 (|print|),
|"pt"| in line 10930 (|print|),
|" scaled "| in line 10933 (|print|), and
|" plus "| in line 19250 (|print|).
Most other macros are numeric macros\index{numeric macro},
and I just generate these instead of module names:
|"TeXinputs:"| in line 9992 (|TEX_area|),
|"TeXfonts:"| in line 9994 (|TEX_font_area|),
|".fmt"| in line 10082 (|format_extension|),
the |empty_string| in line 10928, and
\.{"0234000122*}\)\.{4000133**3**344*}\)\.{0400400*0000}\)\.{00234000111*}\)\.{111111}\)\.{2341011"}
in line 15049 (|math_spacing|).
I have shown already some of the handling of the empty string\index{empty string};
the rest follows now:
@<convert some strings to macro names@>=
else@+ if (t->sym_no==TeXinputs_no) wprint("TEX_area");
else if (t->sym_no==TeXfonts_no) wprint("TEX_font_area");
else if (t->sym_no==fmt_no) wprint("format_extension");
else if (t->sym_no==math_spacing_no) wprint("math_spacing");
@
@<generate macros for some strings@>=
if (str_k->sym_no==empty_string_no) wputs("@@d empty_string "),wputi(k);
else if (str_k->sym_no==TeXinputs_no) wputs("@@d TEX_area "),wputi(k);
else if (str_k->sym_no==TeXfonts_no) wputs("@@d TEX_font_area "),wputi(k);
else if (str_k->sym_no==fmt_no) wputs("@@d format_extension "),wputi(k);
else if (str_k->sym_no==math_spacing_no) wputs("@@d math_spacing "),wputi(k);
@
@<global variables@>=
int TeXinputs_no, TeXfonts_no, fmt_no, math_spacing_no;
@
@<initialize token list@>=
TeXinputs_no=predefine("\"TeXinputs:\"",PID,0);
TeXfonts_no=predefine("\"TeXfonts:\"",PID,0);
fmt_no=predefine("\".fmt\"",PID,0);
math_spacing_no=predefine(
"\"0234000122*4000133**3**344*0400400*000000234000111*1111112341011\"",PID,1);
@
I am left with the macro |ensure_dvi_open|, containing
|".dvi"| in line 10284,\index{.dvi+\.{.dvi}}
|"file name for output"| in line 10286, and
|".dvi"| in line 10286,
which I simply turn into a module of the same name using the patch file\index{patch file}.
I conclude the generation of \cweb/ output by generating
initializations for the |str_pool| and |str_start| array.
@<generate string pool initializations@>=
wputs("\n@@ All the above strings together make up the string pool.\n"
"@@<|str_pool| initialization@@>=\n"
"str_0_255\n");
for (i=256; i<k;i++)
{ wputs("str_"),wputi(i);
if ((i&7)==7) wputs("@@/\n");@+ else wput(' ');
}
wputs("\n\n@@ @@<|str_start| initialization@@>=\n"
"str_start_0_255\n");
for (i=256; i<k;i++)
{ wputs("str_start_"),wputi(i),wput(',');
if ((i&3)==3) wput('\n');@+ else wput(' ');
}
wputs("str_start_"),wputi(k);
wputs("\n\n"@/
"@@ We still need to define the start locations of the strings.\n"@/
"@@<prepare for string pool initialization@@>=\n"@/
"typedef enum {\n"@/
"str_start_256=sizeof(str_0_255)-1,\n");
for (i=257; i<=k;i++)@/
wputs("str_start_"),wputi(i),wputs("=str_start_"),wputi(i-1),
wputs("+sizeof(str_"),wputi(i-1),wputs(")-1,@@/\n");
wputs("str_start_end } str_starts;\n"@/
"\n@@ @@<|pool_ptr| initialization@@>= str_start_"),wputi(k),wputs("\n"@/
"\n@@ @@<|str_ptr| initialization@@>= "), wputi(k), wput('\n');@/
@
\subsection{Macro and format declarations}
When I convert a macro\index{macro declaration}\index{format declaration},
I first check if the translation has made it
obsolete\index{obsolete} in which case I skip it. Otherwise, I output the initial
part of the macro declaration up to the equal sign. From here on, I
go different routes for the different types of declarations.
@<convert |t| from \WEB/ to \cweb/@>=
case ATD:
{ token *eq=t->next->next;
DBG(dbgcweb,"Macro definition in line %d\n",t->lineno);
if (SYM(t->next)->obsolete)
t= wskip_to(t, eq->link);
else
{ wputs("@@d "), t=t->next;@+
wprint(SYM(t)->name);
if (t->tag==NMACRO)
@<convert |NMACRO| from \WEB/ to \cweb/@>@;
else if (t->tag==OMACRO)
@<convert |OMACRO| from \WEB/ to \cweb/@>@;
else if (t->tag==PMACRO)
@<convert |PMACRO| from \WEB/ to \cweb/@>@;
else
ERROR("Macro name expected in line %d",t->lineno);
}
DBG(dbgcweb,"End Macro definition in line %d\n",t->lineno);
break;
}
case ATF:
{ token *eq=t->next->next;
DBG(dbgcweb,"Format definition in line %d\n",t->lineno);
if (SYM(t->next)->obsolete)
t= wskip_to(t, eq->link);
else
{ wputs("@@f "), t=t->next;@+
wprint(SYM(t)->name);
t=wprint_to(eq->next,eq->link);
}
break;
}
@
Ordinary parameterless macros\index{parameterless macro} map directly to \CEE/ style macros.
@<convert |OMACRO| from \WEB/ to \cweb/@>=
{ wput('\t');
t=eq->next;
}
@
\WEB/ features numeric macros\index{numeric macro} that are evaluated to a numeric value by
\WEB/ before they are inserted into the final \Pascal/ program. When
converting such macros to \CEE/ style macros, I have to make sure
that a replacement text containing operators is evaluated as one
expression. For example when \TeX\ defines
$|single_base|\equiv|active_base|+256$, where $|active_base|\equiv 1$,
then |print_esc(p-single_base)| should be evaluated as
|print_esc(p-(1+256))| not|print_esc(p-1+256)|. So I add an extra
pair of parentheses around the replacement text in case it contains a
plus sign or a minus sign.
@<convert |NMACRO| from \WEB/ to \cweb/@>=
{ int has_operators;
wput('\t');
has_operators=0;
for (t=eq->next;t!=eq->link && t->tag!=MLEFT && t->tag!=NL;t=t->next)
if (t->tag==PPLUS || t->tag==PMINUS) { has_operators=1;@+ break;@+}
if (has_operators) wput('(');
for (t=eq->next;t!=eq->link && t->tag!=MLEFT && t->tag!=NL;t=wtoken(t))
continue;
if (has_operators) wput(')');
}
@
Parametrized macros\index{parametrized macro} in \WEB/ can use any number of arguments.
In \CEE/, typical parametrized macros have a fixed number
of arguments, variadic macros\index{variadic macro} being the exception rather
than the rule. Therefore, I count the number of macro arguments
each time I expand a macro. Since \TeX\ uses macros with a
fixed number of arguments only for 1, 2, or 3 arguments,
I use the value 4, for variadic macros.
@<count macro parameters@>=
{ token *p; int count=1;
if (open->next->tag==HASH)
{ DBG(dbgmacro,"Counting %s parameters (#) in line %d\n", SYM(t)->name, t->lineno); }
else
{ for (p=open->next; p!=open->link; p=p->next)
if (p->tag==PCOMMA) count++;
else if (p->tag==POPEN) p=p->link;
if (SYM(t)->value==0) SYM(t)->value=count;
else if (SYM(t)->value!=count) SYM(t)->value=4;
DBG(dbgmacro,"Counting %s parameters %d line %d\n", SYM(t)->name,SYM(t)->value, t->lineno);
}
}
@
Now that I know the number of arguments,
I can construct the macro definition\index{macro definition}.
@<convert |PMACRO| from \WEB/ to \cweb/@>=
{ static char *params[4]={"X","X","X, Y","X, Y, Z"}; /* if I have no information, I assume 1 */
char *param;
eq=eq->next; /* account for the \.{(\#)} token */
if (SYM(t)->value>3)
{ param="...";@+ hash_str="__VA_ARGS__";@+}
else
hash_str=param=params[SYM(t)->value];
wput('('),wputs(param),wputs(")\t"), t=eq->next;
}
@
@<global variables@>=
static char *hash_str;
@
@<convert |t| from \WEB/ to \cweb/@>=
case HASH:
wprint(hash_str),t=t->next;@+break;
@
\subsection{Labels}
In \CEE/, labels\index{label} are identifiers and labels do not need a declaration.
So in the parser, I mark the tokens belonging to a
label declaration\index{label declaration}
with the tag |CIGNORE| and they will be ignored when the \cweb/ file
is written.
The tag |CLABEL| is used now to mark the labels when they are used.
In most cases the labels in \TeX\ are numeric macros. So I use the
name of the macro as the name of the |CLABEL| token and mark the
definition of the numeric macro\index{numeric macro} as obsolete\index{obsolete}
(Occasionally these label names are modified by adding an integer). In the rare cases where
the label is indeed an integer, I use the tag |CLABELN|. In this
case I add the prefix ``label'' to the numeric value to make it a
\CEE/ identifier. Further, I count the number of times a label is
used. Later transformation might render a label as unused and I can
remove also the target label. The whole bookkeeping is achieved by
calling the function |clabel| at appropriate places in the parser.
@<external declarations@>=
extern void clabel(token *t, int use);
@
@<functions@>=
void clabel(token *t, int use)
{
if (t->tag==NMACRO)
{ SYM(t)->obsolete=true;
SYM(t)->value+=use;
t->tag=CLABEL;
}
else if (t->tag==CLABEL)
SYM(t)->value+=use;
else if (t->tag==PRETURN)
SYM(t)->value+=use;
else
{ if (t->tag==PINTEGER)
t->tag=CLABELN;
return;
}
DBG(dbgstring,"Using label %s (%d) in line %d\n",SYM(t)->name,SYM(t)->value,t->lineno);
}
@
A very special case is the \&{return} macro of \TeX;
it is defined as |goto exit|\index{exit+\\{exit}}. I need to deal with it in a special
way, because it usually follows the assignment of a function return
value and therefore can be converted to a \CEE/ \&{return} statement.
In the scanner, I create the PRETURN token and set its symbol number to
the |exit| symbol.
@<external declarations@>=
extern int exit_no;
#define TOK_RETURN {token *t=add_token(PRETURN); t->sym_no=exit_no; }
@
@<global variables@>=
int exit_no;
@
@<initialize token list@>=
exit_no=get_sym_no("exit");
@
While parsing, I replace the symbol number\index{symbol number}
by the symbol pointer\index{symbol pointer}
to reflect local\index{local label} |exit| labels.
@<special treatment for \WEB/ tokens@>=
case PRETURN:
t->sym_ptr=SYM(t);
pp_stack[pp_sp].next=t->next;
goto found;
@
The output of the \CEE/-style labels is done with the following code.
In the case of a |CLABEL|, I check the use-count in |value| and
eliminate unused labels; I also check for a plus sign and a second
number (remember labels in \Pascal/ are numeric values) and if found
append the number to the label name.
@<convert |t| from \WEB/ to \cweb/@>=
case CLABEL:
if (t->sym_ptr->value<=0)
{ t=t->next;
if (t->tag==PPLUS)
t=t->next->next;
if (t->tag==PCOLON)
{ t=t->next;
if (t->tag==CSEMICOLON)
t=t->next;
}
}
else
{ wprint(SYM(t)->name); t=t->next;
if (t->tag==PPLUS)
{ t=t->next; wputs(t->text); t=t->next; }
}
break;
case CLABELN:
wprint("label"); wputs(t->text); t=t->next;
break;
case PEXIT:
wprint("exit(0)"); t=t->next;
break;
case PRETURN:
wprint("goto end"); t=t->next;
break;
@
\subsection{Constant declarations}
In \TeX\ there are only two types of
constant declarations\index{constant declaration}: integers
and strings. I also observe, that the integer declarations are
followed by at most one string declaration. While parsing, I change
the tag of the identifier getting defined to |CINTDEF| or |CSTRDEF|.
I convert the constant declarations into an
enumeration type\index{enumeration type} or a |const char *|.
@<convert |t| from \WEB/ to \cweb/@>=
case CINTDEF:
wputs("enum {@@+"), wid(t), wput('=');
t=wprint_to(t->link->next,t->link->link);
wputs("@@+};");
t=t->next;@+
break;
case CSTRDEF:
wprint("const char *"), wid(t);@+t=t->next;@+ break;
@
I have used above a technique that I will use often in the following
code. While parsing, I use the link filed of the tokens to connect
key tokens of a certain \Pascal/ constructions. Using these links, I
can find the different parts (including the intervening \WEB/ tokens)
and rearrange them as needed. Linking tokens is achieved with the
following macro which also checks that the link stays within the same
code sequence.
@<external declarations@>=
#define LNK(from,to) @[((from)?(seq((from),(to)),(from)->link=(to)):0)@]
@
\subsection{Variable declarations }
When I parse variable declarations\index{variable declaration}, I replace the |tag| of the first
variable identifier by |PDEFVARID| and link all the variables
following it together. The last variable is linked to the token
separating the identifier from the type\index{type}, a |PCOLON| token which the
parser has changed to a |CIGNORE| token. The former |PCOLON| token
itself is then linked to the |PSEMICOLON| that terminates the variable
declaration. In the special case of array variables, I have to
insert the variable identifiers inside the type definition. To
accomplish this, I set the global variable |varlist| to point to the
|PDEFVARID| token, and continue after printing the type with whatever
is left from this list. Note the special precautions taken to get the
type of variables right that are used to control
\&{for}-loops\index{for+\&{for}}; I deal
with this problem in section~\secref{forloop}.
@<internal declarations@>=
static token *varlist;
@
@<global variables@>=
static token *varlist=NULL;
@
Using this information I can convert the variable declaration.
@<convert |t| from \WEB/ to \cweb/@>=
case PDEFVARID:
{ token *type=t->link;
varlist=t;
DBG(dbgcweb,"Converting variable list in line %d\n",t->lineno);
while (type->tag==PID) type=type->link;
{ int replace=0;
@<decide whether to replace a subrange type for loop control variables@>@;
if (replace)
{ wprint("int");
DBG(dbgfor,"\tReplacing subrange type by int\n");
}
else
wprint_to(type,type->link);
}
DBG(dbgcweb,"Finished variable type in line %d\n",t->lineno);
if (varlist->tag== PDEFVARID)
{ wid(varlist); @+varlist=varlist->next;@+}
wprint_to(varlist,type);
t=type->link;
DBG(dbgcweb,"Finishing variable list in line %d\n",t->lineno);
break;
}
@
\subsection{Types}
\Pascal/ type declarations\index{type declaration} start with the
keyword \&{type}, then
follows a list of declarations each one starting with a
type identifier\index{type identifier}. While parsing \Pascal/,
I change the |tag| of the
identifier being defined to |PDEFTYPEID|. I link this token to the
first token of the type, and link the first token of the type to the
semicolon terminating the type. When I encounter these |tags| now a
second time, I can convert them into \CEE/ \&{typedef}'s.\index{typedef+\&{typedef}}
@<convert |t| from \WEB/ to \cweb/@>=
case PDEFTYPEID:
{ token @[*type_name=t@];
token @[*type=type_name->link@];
DBG(dbgcweb,"Defining type %s in line %d\n",token2string(t),t->lineno);
wprint("typedef ");
t=wprint_to(type,type->link);
wprint(token2string(type_name));
break;
}
@
The above code just uses |wprint_to| to print the type itself. Some
types need a little help to print correctly.
For instance, subrange types\index{subrange type} are converted
by changing the |PEQ| token after the new type
identifier to a |CTSUBRANGE| token, with an |up|-link to the parse tree
for the subrange. Since \CEE/ does not have this kind of subrange
types, I approximate them by the standard integer types found in
\.{stdint.h}\index{stdint.h+\.{stdint.h}}.
@<convert |t| from \WEB/ to \cweb/@>=
case CTSUBRANGE:
{ int lo = t->up->previous->value;
int hi = t->up->next->value;
DBG(dbgcweb,"Defining subrange type %d..%d\n",lo,hi);
if (lo<0 && INT8_MIN<=lo && hi <= INT8_MAX) wprint("int8_t");
else if (0<=lo && hi <= UINT8_MAX) wprint("uint8_t");
else if (lo<0 && INT16_MIN<=lo && hi <= INT16_MAX) wprint("int16_t");
else if (0<=lo && hi <= UINT16_MAX) wprint("uint16_t");
else if (lo<0 && INT32_MIN<=lo && hi <= INT32_MAX) wprint("int32_t");
else if (0<=lo && hi <= UINT32_MAX) wprint("uint32_t");
else ERROR("unable to convert subrange type %d..%d in line %d\n",lo,hi,t->lineno);
t= t->link;
break;
}
@
To set |up|-links in the parser, I use the following macro:
@<external declarations@>=
#define UP(from,to) @[((from)->up=(to))@]
@
Record types\index{record type} get converted into \CEE/
structures\index{structure type}; the variant parts\index{variant part}
of records become \CEE/ unions\index{union type}.
@<convert |t| from \WEB/ to \cweb/@>=
case PRECORD:
{ DBG(dbgcweb,"Converting record type in line %d\n",t->lineno);
wprint("struct { ");
t=wprint_to(t->next,t->link);
DBG(dbgcweb,"Finished record type in line %d\n",t->lineno);
wprint("} ");
break;
}
case CUNION:
{ DBG(dbgcweb,"Converting union type in line %d\n",t->lineno);
wprint("union { ");
t=wprint_to(t->next,t->link);
wprint("};");
DBG(dbgcweb,"Finished union type in line %d\n",t->lineno);
break;
}
@
The conversion of the field declarations\index{field declaration}
of a record type assumes that
the \Pascal/ parser has changed the first |PID| token to a |PDEFVARID|
token and linked it to the following |PCOLON| token; then linked the
|PCOLON| token to the |PSEMICOLON| or |PEND| token that follows the
type.
Arrays\index{array} also need special conversion. \Pascal/ arrays specify a
subrange type\index{subrange type} while \CEE/ arrays are always zero based and specify a
size. Common to both is the specification of an element type\index{element type}.
\TeX\ does not use named array types. Array types only occur in the
definition of variables.
I link the |PARRAY| token to the |PSQOPEN| token, which I link to
either the |PDOTDOT| token or the type identifier, which I link to
the |PSQCLOSE| token, which I link to the |POF| token, which is
finally linked to the |PSEMICOLON| following the element type.
%I link the |PARRAY| token to the |POF| token preceding the
%element type, and link the |POF| token to the |PSEMICOLON|
%following the element type.
The |up| pointer of the |PARRAY| token points to the parse tree for
the subrange of the index type\index{index type}.
@<convert |t| from \WEB/ to \cweb/@>=
case PARRAY:
if (t->up==NULL) /* happens for example code which is not part of the program */
wputs(t->text),t=t->next;
else
{ token *from=t->link;
token *index=from->link;
token *to=index->link;
token *element_type=to->link;
token *subrange=t->up;
int lo, hi, zero_based;
if (subrange->tag==PID) subrange=subrange->sym_ptr->type;
lo = subrange->previous->value;
hi = subrange->next->value;
zero_based=(subrange->previous->tag==PINTEGER && lo==0) ||
subrange->previous->tag==PTYPECHAR;
DBG(dbgarray,"Converting array[%d..%d] type in line %d\n",lo,hi,t->lineno);
t=wprint_to(element_type,element_type->link);
while (true)
{ CHECK(varlist!=NULL,"Nonempty variable list expected in line %d",
varlist->lineno);
DBG(dbgarray,"Generating array variable %s in line %d\n",
varlist->sym_ptr->name,varlist->lineno);
wid(varlist);
if (!zero_based) wput('0'); /* add a zero to the array name */
wput('[');@+@<generate array size@>@+wput(']');
if (!zero_based) /* now I need the array with the appropriate offset */
{ DBG(dbgarray,"Generating array pointer %s[%s=%d.. ] in line %d\n",
varlist->sym_ptr->name,token2string(from->next),lo,varlist->lineno);
wputs(", *const ");
wid(varlist);
wputs(" = ");
wid(varlist),wput('0');
@<generate array offset@>;
}
varlist=varlist->link;
if (varlist->tag==PDEFVARID || varlist->tag==PID) wput(','); else break;
}
DBG(dbgarray,"Finished array type in line %d\n",t->lineno);
}
break;
@
@<generate array size@>=
{ int hi,size;
hi=generate_constant(subrange->next,0,0);
size=generate_constant(subrange->previous,'-',hi);
size=size+1;
if (size<0) wput('-'), wputi(-size);
else if (size>0)
{ if (subrange->previous->tag!=PTYPECHAR &&
(subrange->previous->tag!=PINTEGER || subrange->next->tag!=PINTEGER)) wput('+');
wputi(size);
}
}
@
@<generate array offset@>=
{ int lo=generate_constant(subrange->previous,'-',0);
if (lo<0) wput('-'), wputi(-lo);
else if (lo>0) wput('+'), wputi(lo);
}
@
I use the following function to generate a symbolic expression for
the given parse tree representing a constant integer value. The
expression contains only plus or minus operators. Parentheses are
eliminated using the |sign| parameter. The function returns the
numeric value that needs to be printed after all the symbolic
constants, accumulating literal constants on its way.
@<functions@>=
int generate_constant(token *t, char sign, int value)
{ if (t->tag==PTYPECHAR || t->tag==PINTEGER)
{ if (sign=='-') return value-t->value; else return value+t->value; }
else if (t->tag==NMACRO || t->tag==PCONSTID)
{ if (sign != 0) wput(sign); wprint(token2string(t->previous));
return value;
}
if (t->tag==PPLUS)
{ if (t->previous!=NULL) value=generate_constant(t->previous,sign,value);
if (sign==0 ) sign='+';
return generate_constant(t->next,sign,value);
}
if (t->tag==PMINUS)
{ if (t->previous!=NULL) value=generate_constant(t->previous,sign,value);
if (sign==0|| sign=='+') sign='-'; else sign='+';
return generate_constant(t->next,sign,value);
}
else
ERROR("Unexpected tag %s while generating a constant expression in line %d",TAG(t),t->lineno);
}
@
@<internal declarations@>=
int generate_constant(token *t, char sign, int value);
@
\subsection{Files}
The \Pascal/ idea of a file\index{file}, let's say ``|fmt_file|: {\bf file of}
|memory_word|'', is a combination of two things: the file itself and
the file's buffer\index{file buffer} variable capable of holding one data item, in this
case one |memory_word|. In \CEE/, I can simulate such a \Pascal/ file
by a structure containing both: |FILE *f|, the file in the \CEE/
sense; and |memory_word@,d|, the data item.
@<convert |t| from \WEB/ to \cweb/@>=
case PFILE:
{ DBG(dbgcweb,"Converting file type in line %d\n",t->lineno);
wprint("struct {@@+FILE *f;@@+");
t=wprint_to(t->next,t->link);
wprint("@@,d;@@+} ");
DBG(dbgcweb,"Finished file type in line %d\n",t->lineno);
break;
}
@
As I will show in section~\secref{procedures}, it is also convenient
that \TeX\ always passes files, and only files, by reference\index{pass by reference} to
functions\index{function} or procedures\index{procedure}.
Now I can transcribe |get(fmt_file)| into
|fread(&fmt_file.d, sizeof(memory_word), 1, fmt_file.f)|.
%In the simpler case, where the data type is a single byte,
%I have for example |dvi_file.f=fgetc(dvi_file.f)|.
I put these ``rewrite rules'' as macros in the patch file\index{patch file};
it has the advantage that the rewriting does not disturb the visual
appearance of the program code.
Access to the file's buffer\index{file buffer} variable, in \Pascal/ written as {\it f\^}
becomes simply |f.d|.
@<convert |t| from \WEB/ to \cweb/@>=
case PUP: wputs(".d");@+t=t->next;@+ break;
@
\subsection{Structured statements}
Some of the structured statements\index{structured statement} are easy to convert.
For example the
\&{if} statement just needs an extra pair of parentheses around the
controlling expression. These small adjustment are made when dealing
with the |PIF| and |PTHEN| token. The \&{while} statement is similarly
simple, but the |PDO| token may also be part of a
\&{for}-loop\index{for+\&{for}}. So the
parser links the |PWHILE| token to the |PDO| token to insert the
parentheses.
@<convert |t| from \WEB/ to \cweb/@>=
case PWHILE:
wprint("while ");
if (t->link!=NULL){
wput('(');@+t=wprint_to(t->next,t->link);@+ wputs(") ");
}
t=t->next;@+ break;
@
Other structured statements need more work.
Let's start with the \Pascal/ \&{case} statement. Adding parentheses
around the controlling expression is not as simple, because I lack a
unique second keyword; instead I have a |POF| token which occurs at
various places and is usually ignored. So I link the |PCASE| token
to the corresponding |POF| token while parsing and generate
a \&{switch} statement.
@<convert |t| from \WEB/ to \cweb/@>=
case PCASE:
if (t->link==NULL)
{ wprint(t->text);@+t=t->next; }
else
{ wprint("switch (");@+
t=wprint_to(t->next, t->link);@+
wputs(") {");
}
break;
@
The case labels\index{case label} are converted while parsing.
While \Pascal/ requires a list of labels followed by a semicolon and a
statement, \CEE/ needs the keyword ``\&{case}'' preceding a single
label, a colon, and a statement list usually ending with ``|break;|''.
When faced with this problem, I tried a new strategy: inserting new tokens.
I insert a |CCASE| token before each \Pascal/ case label and replace
the |PCOMMA| between labels by a |CCOLON|. (While it worked quite well,
I still wished, I would have solved the problem without modifying
the token list).
To insert the |CCASE| tokens, the parser uses the function |winsert_after|.
@<external declarations@>=
extern token *winsert_after(token *t, int tag, char *text);
@
@<functions@>=
token *winsert_after(token *t, int tag, char *text)
{ token *n;
DBG(dbgcweb,"Inserting token %s after %s in line %d\n",
tagname(tag),TAG(t), t->lineno);
n = new_token(tag);
n->next=t->next;
n->next->previous=n;
n->previous=t;
t->next=n;
n->sequenceno=t->sequenceno;
n->lineno=t->lineno;
n->text=text;
return n;
}
@
Further, the parser replaces the semicolons separating the \Pascal/
case elements by a |CBREAK| token.
@<convert |t| from \WEB/ to \cweb/@>=
case CBREAK:
if (t->previous->tag!=PSEMICOLON && t->previous->tag!=CSEMICOLON
&&t->previous->tag!=PEND) wputs("@@;");
if (!dead_end(t->up,t->lineno)) wprint("@@+break;");
t=t->next;
break;
@
The semicolon\index{semicolon} that might be necessary before the ``\&{break}'' is inserted
using a general procedure described in section~\secref{semicolon}.
\TeX\ often terminates the statement following the case label with a
\&{goto} statement. In this case of course it looks silly to add a
\&{break} statement. I can test this by calling the |dead_end| function
@<external declarations@>=
int dead_end(token *t, int lineno);
@
@<functions@>=
int dead_end(token *t, int lineno)
{ DBG(dbgbreak,"Searching for dead end in line %d:\n",lineno);
while (true)
{ DBG(dbgbreak,"\t%s\n",TAG(t));
if (t->tag==PGOTO||t->tag==PEXIT||t->tag==CPROCRETURN) return true;
else if (t->tag==PCOLON) t=t->next;
else if (t->tag==PBEGIN) t=t->previous;
else if (t->tag==PSEMICOLON || t->tag==CCASE)
{ if (t->next->tag==CEMPTY) t=t->previous; else t=t->next; }
else return false;
}
}
@
The ``\&{others}'' label can be
replaced by ``\&{default}''.
@<convert |t| from \WEB/ to \cweb/@>=
case POTHERS:
wprint("default:");
t=t->next;
break;
@
I suspect that a {\sl case\_list\/}\index{case_list+{\sl case\_list\/}}
always ends with either a semicolon or
|POTHERS| without a semicolon. It could be better to generate also a
\&{break} statement at the end of the last
case element---especially if the
order of cases gets rearranged by rearranging or adding modules.
Finally I convert the \&{repeat}-\&{until} statement. The ``\&{repeat}''
becomes ``|do {|''\index{do+\&{do}}
and the ``\&{until}'' becomes ``|} while|''\index{while+\&{while}}.
All that is left is to enclose the expression following the ``\&{until}'' in a pair of
parentheses and add a |!|\index{"!+$\neg$} operator. The opening parenthesis follows
the ``\&{while}''; but where should the closing parenthesis's go? Here I
use the fact that in \TeX\ the condition after the ``\&{until}'' is either
followed directly by a semicolon\index{semicolon}, or by the start of a new section.
@<convert |t| from \WEB/ to \cweb/@>=
case PREPEAT: wprint("@@/do@@+{");@+ t=t->next;@+ break;
case PUNTIL:
{ int sequenceno, lineno;
token *end;
wputs("}@@+ while (!(");
sequenceno=t->sequenceno;
lineno=t->lineno;
end=t->next;
while(true)
{ if (end->tag==PSEMICOLON || end->tag==CSEMICOLON || end->tag==PELSE )
break;
else if (end->tag==ATSPACE)
{ while (true)
{ int tag=end->previous->tag;
if (tag>FIRST_PASCAL_TOKEN || tag==OMACRO || tag==NMACRO || tag==CHAR) break;
end=end->previous;
}
break;
}
end=end->next;
}
CHECK(sequenceno==end->sequenceno,"until: end of expression not found in line %d",lineno);
t=wprint_to(t->next, end);
wputs("))");
break;
}
@
\subsection{{\bf for}-loops}
\label{forloop}%
To convert the \&{for} statement, I link the |PFOR| token to the |PTO|
or |PDOWNTO| token respectively, which is then linked to the |PDO|
token. The rest seems simple but it hides a surprising difficulty.
@<convert |t| from \WEB/ to \cweb/@>=
case PFOR:
{ token *id=t->next;
token *to=t->link;
if (to==NULL) { wprint("for"); t=t->next; break; }
wprint("for (");
wprint_to(id,to);
wputs("; ");
wid(id);
if (to->tag==PTO) wputs("<=");
else if (to->tag==PDOWNTO) wputs(">=");
else ERROR("to or downto expected in line %d",to->lineno);
wprint_to(to->next,to->link);
wputs("; ");
wid(id);
if (to->tag==PTO) wputs("++");
else wputs("--");
wputs(") ");
t=to->link->next;
break;
}
@
The above code checks that there is actually a link to the |PTO|
token. This link will exist only if the \&{for}-loop\index{for+\&{for}}
was parsed as part of
the \Pascal/ program; it will not exists if the code segment was just
part of an explanation (see for example section 823). In this case, I
need to deal with the |PTO| and |PDO| separately.
Given a \Pascal/ variable ``{\bf var} |i:0..255;|''
the \&{for}-loop\index{for+\&{for}}
``|for i:=255| \&{downto} |0| \&{do}\dots'' will work as expected.
If I translate the variable definition to ``|uint8_t@, i;|''
the translated \&{for}-loop ``|for (i=255;i>=0;i--)|\dots''
will not terminate because the loop control variable will never
be smaller than 0, instead it will wrap around.
If the variable |i| is used in such a \&{for}-loop, I should
define it simply as ``|int i;|''.
The first step is the analysis of \&{for}-loops\index{for+\&{for}}
in the \Pascal/ parser.
To do so, I call the function |mark_for_variable| with three
parameters: |id|, the loop control variable; |lineno|, the line number
for debugging\index{debugging} purposes; |value|, the value of the limit terminating
the loop; and |direction|, indicating the type of loop. For the
|direction|, I distinguish three cases: |TO_LOOP|, |DOWNTO_LOOP|, and
loops where the loops limit is a variable (|VAR_LOOP|).
@<external declarations@>=
#define VAR_LOOP 0
#define TO_LOOP 1
#define DOWNTO_LOOP 2
@
The function then tries to decide whether the type of the for loop
control variable should be changed from a subrange type\index{subrange type}
to a plain integer.
If the limit controlling the loop is a variable, I can not ensure
(without reasoning about program semantics) that the limit will not
coincide with the limit of the subrange type of the control
variable. In this case I stay on the safe side and replace the
subrange type.
%It would probably also suffice, if I did
%this only for |uint8_t| or |int8_t| types.
If the limit controlling the loop is a constant, I check its value
and replace the type of the control variable only if the value
coincides with the upper (or lower) limit of the subrange type\index{subrange type} used
for the control variable. The comparison of the given loop limit with
the variables possible range limit is postponed until I generate the
variable declaration. For now, I just determine the minimum number of
|bits| needed for a suitable variable type.
@<functions@>=
void mark_for_variable(token *id, int lineno, int value, int direction)
{ int replace=0;
int bits=0;
if (direction==VAR_LOOP) replace=1;
else if (direction==DOWNTO_LOOP)
{ if (value>=0) bits=0; /* lower limit of all unsigned types */
else if (value > INT8_MIN) bits=6;
else if (value > INT16_MIN) bits=14;
else bits=15;
}
else /* |TO_LOOP| */
{ if (value < 0) bits=0;
else if (value < INT8_MAX) bits=6;
else if (value < UINT8_MAX) bits=7;
else if (value < INT16_MAX) bits=14;
else if (value < UINT16_MAX) bits=15;
else if (value < INT32_MAX) bits=31;
else bits=32;
}
SYM(id)->for_ctrl= FOR_CTRL_PACK(lineno,replace,direction,bits);
}
@
I pack the result of my analysis into the |for_ctrl| field of the
variables symbol table entry using the following macros.
@<external declarations@>=
extern void mark_for_variable(token *id, int lineno, int value, int direction);
#define FOR_CTRL_PACK(lineno,replace,direction,bits) \
((lineno<<16)|((replace&0x1)<<15)|((direction&0x3)<<13)|(bits&0x1FFF))
#define FOR_CTRL_LINE(X) (((X)>>16)&0xFFFF)
#define FOR_CTRL_REPLACE(X) (((X)>>15)&1)
#define FOR_CTRL_DIRECTION(X) (((X)>>13)&0x3)
#define FOR_CTRL_BITS(X) ((X)&0x1FFF)
@
%These are the lines:
%Subrange for marked variable k in line 1256
% Range 0 to 255, limit 32767 in line 1354
% limit is variable but always below 100, so OK
% This is OK, multiple replacement is OK
%
%Subrange for marked variable k in line 1709
% Range 0 to 500, limit 32767 in line 1715
% range is 0 to buf_size=500 but might be defined smaller or larger
% the limit is last-1 where I have always last<buf_size
% This is OK, replacement is OK
%
%Subrange for marked variable p in line 4390
% Range 0 to 40, limit 0 in line 4397
% the Range is 0 to nest_size which gives an uint8_t
% with a for loop down to 0
% var p:0..nest_size; {index into |nest|}
% This is NOT OK, lower limit = range, replacement OK
%
%Subrange for marked variable i in line 6867
% Range 0 to 500, limit 32767 in line 6916
% limit is j-1 where j is inside the buffer
% This is OK, replacement is OK
%
%Subrange for marked variable k in line 7579
% Range 0 to 500, limit 32767 in line 7587
% the limit is last-1 where I have always last<buf_size,
% This is OK, Limit > range(500)> 255, replacement is OK
%
%Subrange for marked variable k in line 10170
% Range 1 to 40, limit 32767 in line 10174
% range is 1..file_name_size
% var k:1..file_name_size; {index into |name_of_file|}
% the limit is name_length which might be equal to file_name_size
% limit > 255 > range
% this is NOT OK if file_name_size is 255, replacement is OK
%
%Subrange for marked variable k in line 10302
% Range 0 to 500, limit 32767 in line 10318
% Limit is l which can be as large as last-1
% This is OK, limit > range(500) > 2^16 > 2^8, replacement is OK
%
%Subrange for marked variable k in line 12668
% Range 0 to 9, limit 9 in line 12719
% This is OK, limit < 255, no replacement needed
%
%Subrange for marked variable fit_class in line 16380
% Range 0 to 3, limit 3 in line 16467
% This is OK, limit <255, no replacement needed
%
%Subrange for marked variable j in line 17645
% Range 0 to 65, limit 32767 in line 17657
% Here the limit is inside the array so less then 64
% This is OK, limit>255>64, replacement for multiple is OK
%
%Subrange for marked variable j in line 18248
% Range 0 to 64, limit 32767 in line 18308
% The limit n is less than 64
% This is OK, limit>255>64, replacement is OK
When I finally come to the place where I generate a variable
declaration, I can decide whether to replace a subrange type for loop
control variables. To do this I iterate over the list of variables
and if I find in the list one variable that requires replacement, I
change the type of the whole list (this is a bit more than necessary,
but it does no harm either).
@<decide whether to replace a subrange type for loop control variables@>=
{ token *subrange=NULL;
if (type->tag==CTSUBRANGE)
subrange=type->up;
else if (type->tag==CIGNORE && type->next->tag==PID &&
type->next->sym_ptr->type!=NULL && type->next->sym_ptr->type->tag==PDOTDOT)
subrange=type->next->sym_ptr->type; /* subrange type identifier */
if (subrange!=NULL)
{ token *id=t;
while (id!=type && !replace)
{ if (id->sym_ptr->for_ctrl!=0)
{ int lo = subrange->previous->value;
int hi = subrange->next->value;
int bits = FOR_CTRL_BITS(id->sym_ptr->for_ctrl);
int direction = FOR_CTRL_DIRECTION(id->sym_ptr->for_ctrl);
int lineno = FOR_CTRL_LINE(id->sym_ptr->for_ctrl);
replace = FOR_CTRL_REPLACE(id->sym_ptr->for_ctrl);
DBG(dbgfor,"Subrange for marked variable %s in line %d\n",
token2string(id),id->lineno);
DBG(dbgfor,"\tRange %d to %d, limit %d bits, direction %d in line %d\n",
lo,hi, bits, direction, lineno );
if (direction==DOWNTO_LOOP)
{ if (lo>=0 && bits==0) replace=true;
else if (lo<0 && INT8_MIN<=lo && hi <= INT8_MAX && bits>=7) replace=true;
else if (lo<0 && INT16_MIN<=lo && hi <= INT16_MAX && bits>=15) replace=true;
}
else if (direction==TO_LOOP)
{ if (lo<0 && INT8_MIN<=lo && hi <= INT8_MAX && bits>=7) replace=true;
else if (0<=lo && hi <= UINT8_MAX && bits>=8) replace=true;
else if (lo<0 && INT16_MIN<=lo && hi <= INT16_MAX && bits>=15) replace=true;
else if (0<=lo && hi <= UINT16_MAX && bits>=16) replace=true;
}
}
id=id->link;
}
}
}
@
\subsection{Semicolons}
\label{semicolon}%
In \CEE/, the semicolon\index{semicolon} is used to turn an expression, for example an
assignment\index{assignment}, into a statement; while in \Pascal/ semicolons are used to
separate statements in a statement sequence\index{statement sequence}.
This difference is important, because \CEE/ will need in certain cases, for example,
preceding an ``\&{else}'' or a ``\.{\RB}'' a semicolon, where \Pascal/ must not have one.
The simpler case is the semicolon that in \Pascal/ quite frequently
follows an \&{end}. In \CEE/ this semicolon often does no harm (it
indicates an empty statement\index{empty statement}), but looks kind of strange, in other
cases, for example following a procedure body, it must be eliminated.
So I test for it and eliminate it wherever I find it.
@<convert |t| from \WEB/ to \cweb/@>=
case PEND: wputs("} "),t=t->next;
if (t->tag==PSEMICOLON) t=t->next;
break;
@
Now let's turn to the more difficult case where \CEE/ needs a
semicolon and \Pascal/ does not have one: preceding an ``\&{else}'', at the
end of a {\sl case\_element}\index{case_element+{\sl case\_element}},
and at the end of a statement sequence
(preceding an ``\&{end}'' or ``\&{until}''). Adding a semicolon\index{semicolon}
directly before such an ``\&{else}'' would in many cases not look very nice.
For instance when the code preceding it is in a different module.
The semicolon should instead follow immediately after the last
preceding \Pascal/ token. I insert a |CSEMICOLON| token just there
using the function |wsemicolon|. The function has two parameters:
|t|, the token that might require a preceding semicolon; and |p|, the
pointer to the parse tree preceding the token pointed to by |t|.
I first check the parse tree whether a semicolon\index{semicolon} is indeed needed, and
if so, I search for the proper place to insert the semicolon. The
function |wneeds_semicolon| descends into the parse tree, finds its
rightmost statement, and determines whether it needs a semicolon. The
function |wback| searches backward to the earliest token that is
relevant for the \CEE/ parser.
The situation is slightly different for \.{ctangle}\index{ctangle+\.{ctangle}}.
Its pattern matching algorithm does not work good, if the material, for example
preceding an else, does not look like a statement, for example
because the closing semicolon is hidden in a module or a macro. In
these cases it is appropriate to insert a ``\.{@@;}'' token. I do
this by looking at the token preceding the ``\&{else}'', skipping over index
entries, newlines, indents and such stuff, until finding the end of a
module, or macro and insert the ``\.{@@;}'' there.
@<functions@>=
bool wneeds_semicolon(token *p)
{ while (p!=NULL)
{ switch (p->tag)
{ case PCASE: case PBEGIN: case CIGNORE: return false;
case PSEMICOLON:
case CCASE: case PELSE: p=p->next;@+ continue;
case PIF: case PWHILE: case PFOR: case PCOLON:@/ p=p->previous;@+ continue;
case PASSIGN: case PFUNCID: case PCALLID: case PREPEAT:
case PRETURN: case CRETURN: case CPROCRETURN:case PGOTO: case PEXIT: case CEMPTY:
default: return true;
}
}
return false;
}
static token * wback(token *t)
{ while (true)
{ CHECK(t->previous!=NULL,"Error searching backward");
t=t->previous;
switch (t->tag)
{ case PSEMICOLON: case CSEMICOLON: case PEND: return t;
case RIGHT: while (t->tag!=PLEFT && t->tag!=MLEFT) t=t->previous;
break;
case ATGREATER: case EQ: case HASH: case ATDOLLAR: case NMACRO: case OMACRO:
case OCTAL: case HEX: case CHAR: case STRING: case PRETURN: case CEMPTY:
return t;
case CIGNORE: continue;
default: break;
}
if (t->tag>FIRST_PASCAL_TOKEN)
return t;
}
}
void wsemicolon(token *p, token *t)
{ t=wback(t);
if (t->tag!= PSEMICOLON && t->tag!=CSEMICOLON && t->tag!=PEND)
{ if (wneeds_semicolon(p))
{ DBG(dbgsemicolon,"inserting ; in line %d\n",t->lineno);
if (t->next->tag==ATSEMICOLON)
{ t->next->tag=CSEMICOLON; t->next->text=";"; }
else
winsert_after(t,CSEMICOLON,";");
}
else if (t->next->tag!=ATSEMICOLON && t->next->tag!=PSEMICOLON)
{
DBG(dbgsemicolon,"inserting @@; in line %d\n",t->lineno);
winsert_after(t,ATSEMICOLON,"@@;");
}
}
}
@
In procedures, I eliminate a final ``|exit:|''
because I have replaced ``|goto exit|'' by ``\&{return}''.\index{goto+\&{goto}}
%It might be a good idea to classify the modules
%as statements or expressions and enclose the
% module names in \.{@@[...@@]} or add a trailing ``\.{@@;}''
@<functions@>=
void wend(token *p, token *t)
{ if (p->tag==PSEMICOLON && p->next->tag==PCOLON &&
p->next->next->tag==CEMPTY && p->next->previous->tag==CLABEL &&
p->next->previous->sym_no==exit_no)
{ token *label=p->next->previous;
DBG(dbgreturn,"Trailing exit: found preceding line %d\n",t->lineno);
label->tag=CIGNORE;
SYM(label)->value=-1000;
CHECK(label->next->tag==PCOLON,"Expected colon after label in line %d\n",label->lineno);
label->next->tag=CIGNORE;
p->next->tag=CIGNORE;
}
else
DBG(dbgreturn,"No trailing exit: found preceding line %d\n",t->lineno);
}
@
@<external declarations@>=
extern void wsemicolon(token *p, token *t);
extern void wend(token *p, token *t);
@
The inserted semicolons\index{semicolon} have the tag |CSEMICOLON|.
These tokens are printed
but---and this is new---hidden from the \Pascal/ parser. This idea might
be useful also for other inserted tokens.
@<convert token |t| to a string@>=
case CSEMICOLON:
return ";";
@
@<special treatment for \WEB/ tokens@>=
case CSEMICOLON:
t=t->next;@+
continue;
@
\subsection{Procedures}
\label{procedures}%
While parsing, I link the |PPROCEDURE| token to the |PSEMICOLON| or |POPEN| following
the procedure\index{procedure} name. The |PSEMICOLON|
following the heading is always changed to a |CIGNORE|.
@<convert |t| from \WEB/ to \cweb/@>=
case PPROCEDURE:
DBG(dbgcweb,"Converting procedure heading in line %d\n",t->lineno);
wprint("void");
t=wprint_to(t->next,t->link);
if (t->tag!=POPEN) wputs("(void)");
break;
@
The list of parameter\index{parameter} identifiers spans from the beginning parenthesis
that is pointed to by |t| to the closing parenthesis pointed to by
|t->link|. It is handled similar to a variable declaration\index{variable declaration}.
The type identifier\index{type identifier}, however, needs to be repeated
for each parameter in a list. The parser has converted the parameter identifiers to either
|PDEFPARAMID| or |PDEFREFID|, linked the identifiers together with the
final link pointing to the |PCOLON| preceding the type, and it linked
the |PCOLON| to the |PSEMICOLON| or |PCLOSE| following the type. This
information is sufficient to convert the parameter list\index{parameter list}.
@<convert |t| from \WEB/ to \cweb/@>=
case PDEFPARAMID:
case PDEFREFID:
{ token *varlist=t, *type=t->link;
DBG(dbgcweb,"Converting parameter list in line %d\n",t->lineno);
while (type->tag==PDEFPARAMID || type->tag==PDEFREFID) type=type->link;
while (true)
{ wprint_to(type,type->link);
if (varlist->tag==PDEFREFID) wputs(" *");
wid(varlist);
varlist=varlist->link;
if (varlist!=type) wput(',');
else break;
}
t=type->link;
DBG(dbgcweb,"Finishing parameter list in line %d\n",t->lineno);
break;
}
@
The parser changes the use of a reference\index{pass by reference} variable to a |CREFID|
token, and when I find one now, I dereference it.
@<convert |t| from \WEB/ to \cweb/@>=
case CREFID:
wputs("(*"), wid(t), wput(')');
t=t->next;@+
break;
@
Now consider a procedure call\index{procedure call}.
The most complex part about it is the
argument list\index{argument list}. If a procedure has no parameters, there is no
argument list in \Pascal/ but there is an empty argument list in
\CEE/. Further, the use of reference parameters\index{pass by reference} complicates the
processing. I need to add a ``|&|'' in front of a variable that is
passed by reference in \CEE/. To accomplish this, the parser
constructs for every procedure a |param_mask| and stores it in the
|value| field of the procedure identifiers entry in the symbol table\index{symbol table}.
A value of 1 means ``no parameter list''; all the other bits
correspond from left to right to up to 31 parameters; a bit is set if
the corresponding parameter is a reference parameter. I use these
definitions:
@<external declarations@>=
extern unsigned int param_mask, param_bit;
#define SIGN_BIT (~(((unsigned int)~0)>>1))
#define START_PARAM (param_mask=0,param_bit=SIGN_BIT)
#define NEXT_PARAM (param_bit=param_bit>>1,CHECK(param_bit!=0,"Too many parameters"))
#define REF_PARAM (param_mask=param_mask|param_bit)
@
@<global variables@>=
unsigned int param_mask, param_bit;
@
Due to forward declarations\index{forward declaration},
procedure calls\index{procedure call} can occur before the
procedure definition\index{procedure definition}.
Therefore I can not apply my knowledge about
reference parameters when I parse the procedure call, I have to wait
for the second pass, when I convert the \WEB/ to \cweb/. In \TeX\
the procedure identifier (for example |print|) can be a macro, so the
procedure identifier is not necessarily preceding the argument list\index{argument list}.
Hence I have to process the procedure identifier and the argument
list separately.
Let's start with the procedure identifier. When I find it, I check
for its |value|, and if the value indicates that there is an empty
argument list, I add it.
@<convert |t| from \WEB/ to \cweb/@>=
case PCALLID:
DBG(dbgcweb,"Converting call in line %d\n",t->lineno);
wid(t);
if (SYM(t)->value==1) wputs("()");
t=t->next;@+break;
@
At a possibly different place in the \WEB/ file, I will encounter the
|POPEN| token that starts the argument list. It is linked to the
corresponding |PCLOSE| token, and the parser takes care of setting its
|up| pointer to the corresponding |PCALLID| token if there are
reference parameters in the argument list.
@<convert |t| from \WEB/ to \cweb/@>=
case POPEN:
wput('(');
if (t->up==NULL || SYM(t->up)->value==0)
t=wprint_to(t->next,t->link);
else
{ int param_mask=SYM(t->up)->value;
token *close=t->link;
t=t->next;
if (param_mask<0) wput('&');
param_mask=param_mask<<1;
while(t!=close)
{ if (t->tag==PCOMMA)
{ wputs(", ");@+t=t->next;
if (param_mask<0) wput('&');
param_mask=param_mask<<1;
}
else
t=wtoken(t);
}
}
break;
@
\subsection{Functions}
Functions\index{function} are slightly more complicated than procedures because they
feature a return type\index{return type} and a return value\index{return value}.
Let's start with the
function header\index{function header}. To find the return type, the parser links the end of
the parameter list to the colon and the colon to the end of the return type.
@<convert |t| from \WEB/ to \cweb/@>=
case PFUNCTION:
{ token *param=t->link;
token *type;
DBG(dbgcweb,"Converting function heading in line %d\n",t->lineno);
if (param->tag==POPEN) type=param->link->link;
else type=param;
wprint_to(type, type->link);
wprint_to(t->next,t->link);
if (param->tag!=POPEN) wputs("(void)");
else wprint_to(param,param->link->next);
t=type->link;
break;
}
@
Functions in \Pascal/ return values by assigning them to the function
identifier somewhere within the body of the function. In contrast,
\CEE/ uses a return statement, which also terminates the execution of
the function immediately. The \&{return}\index{return+ \&{return}}
statement is equivalent to the
\Pascal/ assignment only if the assignment\index{assignment} is in
the tail position\index{tail position} of
the function. While parsing, I build a tree of the statements. This
tree is then searched for assignments to the function identifier\index{function identifier}
in tail positions and these assignments can be converted
to \&{return}
statements.
I start with a function that determines whether a part of the parse tree
is a ``tail'', that is it leads directly to the function return.
@<functions@>=
static bool wtail(token *t)
{ CHECK(t!=NULL,"Unexpected NULL token while searching for tail statements");
switch(t->tag)
{ case PSEMICOLON: case PELSE: case CCASE:
return wtail(t->next) && wtail(t->previous);
case PCOLON:
return wtail(t->next);
case PRETURN: case CIGNORE: case CEMPTY:
return true;
case PASSIGN: case PCALLID:
case PFUNCID: case CRETURN: case CPROCRETURN:
case PWHILE: case PREPEAT: case PFOR:
case PEXIT: case PGOTO:
return false;
case PBEGIN: case PIF: case PCASE:
return wtail(t->previous);
default: ERROR("Unexpected tag %s while searching for tail statements",TAG(t));
}
}
@
The function |wreturn| accomplishes the main task. It is called by the
parser, when it has completed the parsing of the function body with
parameter |t| pointing to the parse tree of the entire body. The
parameter |tail|, which tells us if the parse tree |t| is in a tail
position, is then set to true. The link parameter, pointing to a
possible |PRETURN| token, is |NULL|.
@<external declarations@>=
extern void wreturn(token *t, int tail, token *link);
@
The function |wreturn| calls itself recursively to find and convert
all instances where a \CEE/ return statement is appropriate. If I
convert the \TeX\ macro ``\&{return}'' to
a \CEE/ \&{return} statement, I decrement its
use-count. If at the end it is zero, I can omit the label {\it end}
marking the end of the function body.
@<functions@>=
void wreturn(token *t, int tail, token *link)
{ CHECK(t!=NULL,"Unexpected NULL token while searching for return statements");
switch(t->tag)
{ case PSEMICOLON:
if (t->next->tag==PRETURN)
wreturn(t->previous,true,t->next);
else
{ wreturn(t->next,tail, link);
if (wtail(t->next)) wreturn(t->previous, tail, link);
else wreturn(t->previous,false,NULL);
}
return;
case PCOLON:
wreturn(t->next, tail,link);
return;
case PASSIGN: case PCALLID:
case PRETURN: case PEXIT: case PGOTO: case CIGNORE: case CEMPTY:
return;
case PWHILE: case PREPEAT: case PFOR:
wreturn(t->previous, false,NULL); return;
case PELSE: case CCASE:
wreturn(t->next, tail,link); wreturn(t->previous, tail,link); return;
case PCASE: case PIF: case PBEGIN:
wreturn(t->previous, tail,link); return;
case PFUNCID:
if (tail)
{ DBG(dbgreturn,"Converting assignment to function in line %d\n",t->lineno);
t->tag=CRETURN; IGN(t->next);
if (link!=NULL)
{ link->sym_ptr->value--;
t->sym_ptr=link->sym_ptr;
IGN(link), IGN(link->next);
DBG(dbgreturn,"Eliminating label %s (%d) in line %d\n",
link->sym_ptr->name,link->sym_ptr->value,t->lineno);
}
}
return;
case CRETURN: /* this happened when the return; is inside a macro */
if (t->sym_ptr!=NULL) {
t->sym_ptr->value--;
DBG(dbgreturn,"Eliminating label %s (%d) in line %d\n",
t->sym_ptr->name,t->sym_ptr->value,t->lineno);
}
return;
default: ERROR("Unexpected tag %s in line %d"
" while searching for return statements",TAG(t), t->lineno);
}
}
@
After these precautions, there are only two functions left: |x_over_n|
in line 2273 and |xn_over_d| in line 2306.
These need a special local
variable matching the function name in the assignment and a trailing
\&{return} statement.
I have two global variables to hold the symbol numbers of the two function names.
@<external declarations@>=
extern int x_over_n, xn_over_d;
@
@<global variables@>=
int x_over_n, xn_over_d;
@
@<initialize token list@>=
x_over_n=get_sym_no("x_over_n");
xn_over_d=get_sym_no("xn_over_d");
@
While parsing, I check for these two function names and change the
initial |PBEGIN| to an |PFBEGIN| and the trailing |PEND| to |PFEND|,
setting the |sym_no| of these tokens to the symbol number of the
function name. Now I can generate the definition of a local variable
with the same name as the function (shadowing the function name) at
the beginning and a matching return statement at the end.
@<convert |t| from \WEB/ to \cweb/@>=
case PFBEGIN:
DBG(dbgcweb,"Adding scaled %s; in line %d\n",SYM(t)->name,t->lineno);
wprint("scaled");wid(t); wputs("; ");
t=t->next;
break;
case PFEND:
DBG(dbgcweb,"Adding return %s; in line %d\n",SYM(t)->name,t->lineno);
wprint("return");wid(t); wputs(";}");
t=t->next;
break;
@
While converting the token list, I check for |PFUNCID| and |CRETURN| tokens
@<convert |t| from \WEB/ to \cweb/@>=
case PFUNCID:
DBG(dbgcweb,"function %s in line %d assigns result variable\n",SYM(t)->name,t->lineno);
wid(t);
t=t->next;
break;
case CRETURN:
DBG(dbgcweb,"Converted function return %s in line %d\n",SYM(t)->name,t->lineno);
wprint("return");
t=t->next;
break;
case CPROCRETURN:
if (t->sym_ptr->value <=0) wprint("return");
else wprint("goto end");
t=t->next;
break;
@
\subsection{The |main| program}
While parsing the \Pascal/ program, I change the |PBEGIN| token
starting the main program\index{main program+\\{main} program}
to a |CMAIN| token. Now I replace it by the
heading of the main program. Similarly I deal with the |PEND| ending
the main program.
@<convert |t| from \WEB/ to \cweb/@>=
case CMAIN:@+ wprint("int main(void) {");@+t=t->next;@+ break;
case CMAINEND:@+ wprint("return 0; }");@+t=t->next;@+ break;
@
\section{Predefined symbols in Pascal}
I put predefine function- and
constant-names of \Pascal/ into the symbol table.
I~omit predefined symbols\index{predefined symbol}
that are not used in \TeX.
\index{put+\\{put}}%
\index{get+\\{get}}%
\index{reset+\\{reset}}%
\index{rewrite+\\{rewrite}}%
\index{abs+\\{abs}}%
\index{odd+\\{odd}}%
\index{eof+\\{eof}}%
\index{eoln+\\{eoln}}%
\index{round+\\{round}}%
\index{ord+\\{ord}}%
\index{chr+\\{chr}}%
\index{close+\\{close}}%
\index{read+\\{read}}%
\index{read_ln+\\{read_ln}}%
\index{write+\\{write}}%
\index{write_ln+\\{write_ln}}%
\index{break+\\{break}}%
\index{break_in+\\{break_in}}%
\index{erstat+\\{erstat}}%
\index{false+\\{false}}%
\index{true+\\{true}}%
@<initialize token list@>=
predefine("put",PPROCID,0);
predefine("get",PPROCID,0);
predefine("reset",PPROCID,0);
predefine("rewrite",PPROCID,0);
predefine("abs",PFUNCID,0);
predefine("odd",PFUNCID,0);
predefine("eof",PFUNCID,0);
predefine("eoln",PFUNCID,0);
predefine("round",PFUNCID,0);
predefine("ord",PFUNCID,0);
predefine("chr",PFUNCID,0);
predefine("close",PPROCID,0);
predefine("read",PPROCID,0);
predefine("read_ln",PPROCID,0);
predefine("write",PPROCID,0);
predefine("write_ln",PPROCID,0);
predefine("break",PPROCID,0);
predefine("break_in",PPROCID,0);
predefine("erstat",PFUNCID,0);
predefine("false",PCONSTID,0);
predefine("true",PCONSTID,1);
@
% also predefined but not needed for TeX
%predefine("type",PTYPE,0); /* type is redefined */
%predefine("text",PTYPEID,0); /* text is used as a macro */
%predefine("succ",PFUNCID,1);
%predefine("pred",PFUNCID,1);
%predefine("new",PPROCID,1);
%predefine("dispose",PPROCID,1);
%predefine("sqr",PFUNCID,1);
%predefine("sin",PFUNCID,1);
%predefine("cos",PFUNCID,1);
%predefine("exp",PFUNCID,1);
%predefine("ln",PFUNCID,1);
%predefine("sqrt",PFUNCID,1);
%predefine("arctan",PFUNCID,1);
%predefine("trunc",PFUNCID,1);
%predefine("readln",PPROCID,0);
%predefine("writeln",PPROCID,0);
%predefine("page",PPROCID,0);
%Some need to be translated to C directly
% OCTAL HEX ATDOLLAR ATLEFT ATRIGHT ATT ATEQ ATBACKSLASH
%More complicated are (possibly) the following
% ELIPSIS ATQM
\section{Processing the command line}
The |usage| function explains command line\index{command line}
parameters and options\index{option}\index{debugging}.
@<functions@>=
void usage(void)
{ fprintf(stderr,
"Usage: web2w [parameters] filename.web\n"@/
"Parameters:\n"@/
"\t -p \t generate a pascal output file\n"@/
"\t -o file \t specify an output file name\n"@/
"\t -l \t redirect stderr to a log file\n"@/
"\t -y \t generate a trace while parsing pascal\n"@/
"\t -d XX\t hexadecimal debug value. OR together these values:\n"@/
"\t \t \t XX=1 basic debugging\n"@/
"\t \t \t XX=2 flex debugging\n"@/
"\t \t \t XX=4 link debugging\n"@/
"\t \t \t XX=8 token debugging\n"@/
"\t \t \t XX=10 identifier debugging\n"@/
"\t \t \t XX=20 pascal tokens debugging\n"@/
"\t \t \t XX=40 expansion debugging\n"@/
"\t \t \t XX=80 bison debugging\n"@/
"\t \t \t XX=100 pascal parser debugging\n"@/
"\t \t \t XX=200 cweb debugging\n"@/
"\t \t \t XX=400 join debugging\n"@/
"\t \t \t XX=800 string pool debugging\n"@/
"\t \t \t XX=1000 for variables debugging\n"@/
"\t \t \t XX=2000 for real division debugging\n"@/
"\t \t \t XX=4000 for macro debugging\n"@/
"\t \t \t XX=8000 for array debugging\n"@/
"\t \t \t XX=10000 for return debugging\n"@/
"\t \t \t XX=20000 for semicolon debugging\n"@/
"\t \t \t XX=40000 for break debugging\n"@/
);
exit(1);
}
@
The different debug values are taken from an enumeration type.
@<external declarations@>=
typedef enum {dbgnone=0x0,
dbgbasic=0x1,
dbgflex=0x2,
dbglink=0x4,
dbgtoken=0x8,
dbgid=0x10,
dbgpascal=0x20,
dbgexpand=0x40,
dbgbison=0x80,
dbgparse=0x100,
dbgcweb=0x200,
dbgjoin=0x400,
dbgstring=0x800,
dbgfor=0x1000,
dbgslash=0x2000,
dbgmacro=0x4000,
dbgarray=0x8000,
dbgreturn=0x10000,
dbgsemicolon=0x20000,
dbgbreak=0x40000
} debugmode;
@
Processing the command line looks for options and then sets the
basename\index{basename}.
@<external declarations@>=
extern FILE *logfile;
extern int ww_flex_debug;
extern debugmode debugflags;
@
@<global variables@>=
#define MAX_NAME 256
static char basename[MAX_NAME];
static FILE *w=NULL;
static FILE *pascal=NULL;
FILE *logfile=NULL;
debugmode debugflags=dbgnone;
@
@<process the command line@>=
{ int mk_logfile=0, mk_pascal=0, baselength=0;
char *w_file_name=NULL;
ww_flex_debug=0;
ppdebug=0;
if (argc < 2) usage();
argv++; /* skip the program name */
while (*argv!=NULL)
{ if ((*argv)[0]=='-')
{ char option=(*argv)[1];
switch(option)
{ default: usage();
case 'p': mk_pascal=1; @+break;
case 'o': argv++;@+ w_file_name=*argv;@+ break;
case 'l': mk_logfile=1; @+break;
case 'y': ppdebug=1; @+break;
case 'd': @/
argv++; if (*argv==NULL) usage();
debugflags=strtol(*argv,NULL,16);
if (debugflags&dbgflex) ww_flex_debug=1;
if (debugflags&dbgbison) ppdebug=1;
break;
}
}
else
{ strncpy(basename,*argv,MAX_NAME-1);
baselength=strlen(basename)-4;
if (baselength<1 || strncmp(basename+baselength,".web",4)!=0) usage();
basename[baselength]=0;
if (*(argv+1)!=NULL) usage();
}
argv++;
}
@<open the files@>@;
}
@
After the command line has been processed, four file streams need to be opened:
|win|, the input file\index{input file};
|w|, the output file\index{output file};
|logfile|, if a log file\index{log file} is asked for;
and |pascal|, if the output of the pascal code is requested.
For technical reasons, the scanner generated by \.{flex} needs
an output file |wwout|. The log file is opened first because
this is the place where error messages\index{error message}
should go while the other files are opened.
@<open the files@>=
if (mk_logfile)
{ basename[baselength]=0;
strcat(basename,".log");
logfile=freopen(basename,"w",stderr);
if (logfile==NULL)
{ fprintf(stderr,"Unable to open logfile %s",basename);
logfile=stderr;
}
wwout=logfile;
}
else
{ logfile=stderr;
wwout=stderr;
}
basename[baselength]=0;
strcat(basename,".web");
wwin=fopen(basename,"r");
if (wwin==NULL) ERROR("Unable to open input file %s",basename);
if (w_file_name==NULL)
{ w_file_name=basename;
basename[baselength]=0;
strcat(basename,".w");
}
w=fopen(w_file_name,"w");
if (w==NULL) ERROR("Unable to open output file %s",w_file_name);
if (mk_pascal)
{ basename[baselength]=0;
strcat(basename,".pas");
pascal=fopen(basename,"w");
if (pascal==NULL) ERROR("Unable to open pascal file %s",basename);
}
@
\section{Error handling and debugging}
There is no good program without good error handling\index{error handling}\index{debugging}.
To print messages\index{message} or indicate errors I define the following macros:
@<external declarations@>=
#include <stdlib.h>
#include <stdio.h>
#define MESSAGE(...) @[(fprintf(logfile,__VA_ARGS__),fflush(logfile))@]
#define ERROR(...) (fprintf(logfile,"ERROR: "),\
MESSAGE(__VA_ARGS__),fprintf(logfile,"\n"),exit(1))
#define CHECK(condition,...) (!(condition)? ERROR(__VA_ARGS__):0)
@
To display the content of a token I can use |THE_TOKEN|.
@<external declarations@>=
#define THE_TOKEN(t) @["%d\t%d: %s\t[%s]\n",\
t->lineno,t->sequenceno,token2string(t),tagname(t->tag)@]
@
The amount of debugging\index{debugging} depends on the debugging flags.
@<external declarations@>=
#define DBG(flags,...) {@+if(debugflags & flags) MESSAGE(__VA_ARGS__);@+}
#define DBGTOKS(flags, from,to) { if (debugflags & flags) \
{ token *t=from; MESSAGE("<<");\
while (t!=to) { MESSAGE("%s",token2string(t)); t=t->next;}\
MESSAGE(">>\n"); }}
#define TAG(t) (t?tagname(t->tag):"NULL")
#define DBGTREE(flags,t) DBG(flags,"%s -> %s | %s | %d\n",TAG(t),\
TAG(t->previous),TAG(t->next),t->value)
@
\section{The scanner}
\label{scanner}%
{\index{scanner}\index{web.l+\.{web.l}}\small
\input web.l.tex
}
\section{The parser}
\label{parser}%
The following code is contained in the
file \.{pascal.y}\index{parser}\index{pascal.y+\.{pascal.y}}.
It represents a modified grammar\index{grammar} for the \Pascal/ language.
Here and throughout of this document,
terminal symbols\index{terminal symbols}, or tokens\index{token}, are shown using a small caps font;
for nonterminal symbols\index{nonterminal symbol}
I use a slanted font.
\medskip
{\small
\input pascal.y.tex
}
\section{Generating \TeX, Running \TeX, and Passing the Trip Test}
\label{triptest}%
Here I give a step by step instruction on how to get \TeX\ up and
running\index{running TeX+running \TeX}
and finally, how to pass Donald Knuth's trip test\index{trip test}.
I assume that you have a Unix/Linux system with a terminal window but other
operating systems might work as well as long as you have access to the internet (I need
files from \.{www.ctan.org}\index{CTAN}), an \.{unzip} program ( because packages on \.{www.ctan.org}
come in \.{.zip} files), and a \CEE/ compiler.
The recommended, short, and easy way is to start with the file \.{ctex.w}
the \cweb/ version of \.{tex.web}.
After all, this is the reason for the whole \web2w/ project:
to provide you with a \cweb/ version of \TeX\ that is much easier to use
than the original \WEB/ version of \TeX. But if you insist, there is also
a subsection below that explains how to get \web2w/ up and
running and use it to generate the \.{ctex.w} file.
\subsection{Generating \TeX}
\enumerate
\index{generating TeX+generating \TeX}
\item
\label{start}%
Download the \web2w/ package from \.{www.ctan.org} and
expand the files. Open a terminal window and navigate to
the root directory of the package. This directory will
be called the \.{web2w} directory in the following.
It contains a \.{Makefile} that contains most of the commands
that are explained in the following.
\item
In the \.{web2w} directory are the files
\.{ctex.c}\index{ctex.c+\.{ctex.c}} and \.{ctex.tex}\index{ctex.tex+\.{ctex.tex}}. If you
want to use them, go to step \enumref{compile}; if you want to build
them yourself, continue with the next step.
\item
\label{cweb1}%
\TeX\ and \web2w/ are written as literate programs. To use them,
you need the \.{cweb}\index{cweb+\.{cweb}} tools \.{ctangle}\index{ctangle+\.{ctangle}}
and \.{cweave}\index{cweave+\.{cweave}} that I build now.
Since the \TeX\ program is
a pretty big file, you can not use the standard configuration
even if you have \.{ctangle} and \.{cweave} already installed.
Now download the \.{cweb} package from \.{www.ctan.org} and expand
the files in the \.{web2w} directory creating the subdirectory \.{cweb}.
Change to this subdirectory and try \.{make}. If it builds \.{ctangle}
and \.{cweave} (using the preinstalled programs) skip the next step.
\item
\label{cweb2}%
If it complains that it can not find \.{ctangle} then it's trying
to bootstrap \.{ctangle} from \.{ctangle.w} without having \.{ctangle}
to begin with. Try \.{touch *.c} and try \.{make} again. This time it
should try to make \.{ctangle} from \.{ctangle.c} and \.{common.c},
running:
\.{cc -g -c -o ctangle.o ctangle.c}
\.{cc -g -DCWEBINPUTS="/usr/local/lib/cweb" -c common.c}
\.{cc -g -o ctangle ctangle.o common.o}
\noindent
Now you should have \.{ctangle}. Then building \.{cweave} should be no problem
by running \.{make}.
\item
\label{cweb3}%
Next I need to patch \.{ctangle.w}, \.{cweave.w}, and \.{common.w}
to enlarge the settings for various parameters. Change to the \.{cweb} subdirectory
and run the commands
\.{patch --verbose cweave.w ../cweave.patch}
\.{patch --verbose ctangle.w ../ctangle.patch}
\.{patch --verbose common.w ../common.patch}
\.{make}
\noindent
If you do not have the \.{patch} program, look at the patch files
and read them as instructions how to change the settings in
\.{ctangle.w}, \.{cweave.w}, and \.{common.w}; you can do these small changes easily
with any text editor yourself.
The final \.{make} should produce a new \.{ctangle} and \.{cweave} by running the
old \.{ctangle} on the new \.{ctangle.w}, \.{cweave.w}, and
\.{common.w}.
The \.{cweb} directory contains change files to adapt the programs to particular
operating systems and it might be a good idea to use them. On an Win32 machine, for
example, you might want to write
\.{./ctangle ctangle.w ctang-w32.ch}
\.{./ctangle cweave.w cweav-w32.ch}
\.{./ctangle common.w comm-w32.ch}
Then run the \CEE/ compiler again as in the previous step.
\item
\label{creating}%
Now you use your extra powerful \.{ctangle} and \.{cweave} from step~\enumref{cweb3},
return to the \.{web2w} directory,
and generate \.{ctex.c} and \.{ctex.tex} simply by running the
commands
\.{cweb/ctangle ctex.w}
\.{cweb/cweave ctex.w}
\item
\label{compile}%
Compiling\index{compiling} \.{ctex.c} is pretty easy: use the command
\.{cc ctex.c -lm -o ctex}
\noindent
The \.{-lm} tells it to link in the \CEE/ math library.
You may add other options like \.{-g} or \.{-O3} as you like.
What you have now is the virgin \TeX\ program (also called \.{VIRTEX}).
\item
If you have \TeX\ on your system, you can generate the documentation with the command
\.{tex ctex.tex} \quad or\quad \.{pdftex ctex.tex}.
\noindent
Otherwise, you will have to wait until step~\enumref{documentation}.
Note that the above commands will need the files \.{ctex.idx} and \.{ctex.scn}.
These are part of the \.{web2w} package and are produced as a side effect of
running \.{cweave} on \.{ctex.w}.
\advance\leftskip by-\parindent
\subsection{Running \TeX}
\advance\leftskip by\parindent
\item Producing ``Hello world!'' with \.{ctex}.\index{running TeX+running \TeX}
There are some differences between the plain \TeX\ that you have
generated now and the \TeX\ that you get if you install one of the
large and convenient \TeX\ distributions. First, there is no
sophisticated searching for font files, formats, and tex input files
(as usually provided by the \.{kpathsea} library), instead files are
looked up in the current directory or in the subdirectories
\.{TeXfonts}\index{TeXfonts+\.{TeXfonts}}, \.{TeXformats}\index{TeXformats+\.{TeXformats}},
and \.{TeXinputs}\index{TeXinputs+\.{TeXinputs}}. Second, the plain
\TeX\ that you have now does not come with preloadable format files,
you have to generate them first. So let's get started with populating
the subdirectories just mentioned with the necessary files from
the \.{www.ctan.org} archives.
The first file is the \.{plain.tex}\index{plain.tex+\.{plain.tex}} file.
You find it on \.{www.ctan.org}
in the \.{lib} subdirectory
of \.{systems/knuth/dist/}. This file defines the plain \TeX\ format; save it to
the \.{TeXinputs} subdirectory.
Now, do the same for the file \.{hyphen.tex}\index{hyphen.tex+\.{hyphen.tex}}
(same source same destination directory) containing basic hyphenation patterns.
\item Next, you need the \TeX\ font metric files\index{font metric file}.
Download the package ``\.{cm-tfm}---Metric files for the Computer Modern fonts''
from \.{www.ctan.org} and unpack the files in \.{tfm.zip} into the
\.{TeXfonts} subdirectory.
\item Now you need to create \.{cinitex}\index{cinitex+\.{cinitex}}, a special version of \TeX\ that is
able to initialize all its internal data structures and therefore does not depend
on format files; instead it can be used to create format files.
Special versions of \.{ctex} can be created by defining the \CEE/ macros \.{DEBUG},
\.{INIT}, or \.{STAT} on the command line. So (compare step~\enumref{compile}) run the command
\.{cc -DINIT ctex.c -lm -o cinitex}
\item Ready? Start \.{cinitex} and see what happens.
The dialog with \.{cinitex} should follow the
outline below. \TeX's output is shown in typewriter style, your input is shown in italics.
\.{This is TeX, Version 3.14159265 (HINT) (INITEX)}\par
\.{**}{\it plain}\par
\.{(TeXinputs/plain.tex Preloading the plain format: codes,}\par
\.{registers, parameters, fonts, more fonts, macros,}\par
\.{math definitions, output routines,}\par
\.{hyphenation (TeXinputs/hyphen.tex))}\par
\.{*}{\it Hello world!}\par
\.{}\par
\.{*}{\it $\backslash$end}\par
\.{[1]}\par
\.{Output written on plain.dvi (1 page, 224 bytes).}\par
\.{Transcript written on plain.log.}\par
\noindent
Well that's it. You should now have a file \.{plain.dvi} which you can open with any
run-of-the-mill dvi-viewer.
\item
\label{format}%
To do the same with the virgin \.{ctex} program, you need a \.{plain.fmt} file
which I produce next. Start \.{cinitex} again. This time your dialog should be as follows:
\.{This is TeX, Version 3.14159265 (HINT) (INITEX)}\par
\.{**}{\it plain $\backslash$dump}\par
\.{(TeXinputs/plain.tex Preloading the plain format: codes,}\par
\.{registers, parameters, fonts, more fonts, macros,}\par
\.{math definitions, output routines,}\par
\.{hyphenation (TeXinputs/hyphen.tex))}\par
\.{Beginning to dump on file plain.fmt}\par
\.{ (preloaded format=plain 1776.7.4)}\par
\.{1338 strings of total length 8447}\par
\.{4990 memory locations dumped; current usage is 110\AM4877}\par
\.{926 multiletter control sequences}\par
\.{\BS font\BS nullfont=nullfont}\par
{\medskip$\qquad\vcenter{\vdots}$\smallskip}
\.{\font\preloaded=manfnt}\par
\.{14707 words of font info for 50 preloaded fonts}\par
\.{14 hyphenation exceptions}\par
\.{Hyphenation trie of length 6075 has 181 ops out of 500}\par
\.{ 181 for language 0}\par
\.{No pages of output.}\par
\.{Transcript written on plain.log}\par
\noindent
Now you should have a file \.{plain.fmt}. Move it to the \.{TeXformats/} subdirectory,
where plain \.{ctex} will find it, and you are ready for the final ``Hello world!'' step.
\item Start the virgin \.{ctex} program and answer as follows:
\.{This is TeX, Version 3.14159265 (HINT) (no format preloaded)}\par
\.{**}{\it $\AM$plain}\par
\.{*}{\it Hello world!}\par
\.{*}{\it $\backslash$end}\par
\.{[1]}\par
\.{Output written on texput.dvi (1 page, 224 bytes).}\par
\.{Transcript written on texput.log}\par
\noindent
The ``$\AM$'' preceding ``{\it plain}'' tells \TeX\ that this is a format file.
Your dvi output is now in the \.{texput.dvi} file.
\item If you have \.{ctex.tex} from step~\enumref{creating},
\.{ctex} from step~\enumref{compile}, and \.{plain.fmt} from step~\enumref{format},
producing \.{ctex.dvi} using \.{ctex} itself seems like a snap.
Running \.{ctex} on \.{ctex.tex} will, however, need the include file \.{cwebmac.tex} which
you should have downloaded already with the \.{cweb} sources in step~\enumref{cweb1};
copy it to the \.{TeXinputs/} subdirectory. Then \.{ctex.tex} will further need the
\.{logo10.tfm} file from the mflogo fonts package. Download the file from the
\.{fonts/mflogo/tfm} directory (part of the mflogo package) on \.{www.ctan.org}
and place it in the \.{TeXfonts} subdirectory.
Unfortunately \TeX\ is a real big program and you need not only a super \.{ctangle}
and \.{cweave}, you need also a super \TeX\ to process it. The out-of-the box \.{ctex}
will end with a ``{\tt ! TeX capacity exceeded, sorry [main memory size=30001].}''
So the next step describes how to get this super \TeX.
\item
\label{documentation}%
Take your favorite text editor and open the file \.{ctex.w}.
Locate the line (this should be line 397) where it says \.{enum \{@@+@@!mem\_max=30000@@+\};}
and change the size to 50000. (You see how easy it is to change the code of \TeX\ now?)
It remains to run \.{ctangle} and \.{cc} to get the super \.{ctex}:
\.{cweb/ctangle ctex.w}\par
\.{cc ctex.c -lm -o ctex}\par
Now start super \.{ctex} and answer
{\it $\AM$plain ctex}. You should get \.{ctex.dvi}
\advance\leftskip by-\parindent
\subsection{Passing the Trip Test}
\advance\leftskip by+\parindent
\item
\label{proof}
Passing the trip test\index{trip test} is the last proof of concept!
Download the package \.{tex.zip} from \.{www.ctan.org}
which contains the files of \.{systems/knuth/dist/tex} (this is the
original \TeX\ distribution by Donald E. Knuth\index{Knuth, Donald E.}) and extract the files
into the \.{tex} subdirectory of \.{web2w} (see also step~\enumref{gettex} below).
Perform all the steps described in \.{tripman.tex} in the
\.{tex} subdirectory (you might want to create a dvi file with \.{ctex} before reading it)
replacing ``\.{tex.web}'' by ``\.{ctex.w}'' and ``\.{tangle}'' by ``\.{ctangle}''.
You should encounter
no difficulties (if yes, let me know) if you observe the following hints:
\itemize
\item Make a copy of \.{ctex.w} and modify the setting of constants as
required by step 2 of Knuths instructions. If you have the \.{patch} program,
you might want to use the file \.{triptest.patch} to get these changes.
\item After generating \.{ctex.c} from the modified \.{ctex.w} by running \.{ctangle},
compile \.{ctex.c}
with the options \.{-DINIT} and \.{-DSTAT} like this:
\.{cc -DINIT -DSTAT ctex.c -lm -o cinitex}\par
\noindent
Instead of setting \&{init} and \&{stats} in \.{ctex.w}, use the \.{-D} command line options.
\enditemize
\advance\leftskip by-\parindent
\subsection{Generating {\tt ctex.w} from {\tt tex.web}}
\advance\leftskip by+\parindent
\item To create \.{ctex.w} from \.{tex.web}, you need to build \.{web2w}, which
is written as a literate program. So you can start building it from the file
\.{web2w.w} or use the file \.{web2w.c} which comes with the \.{web2w} package.
In the latter case, you can skip the next step.
\item
\label{web2w}%
You create \.{web2w.c}\index{web2w.c+\.{web2w.c}} and \.{web2w.h}\index{web2w.h+\.{web2w.h}} from \.{web2w.w} by running
\.{ctangle web2w.w}\quad or \quad \.{cweb/ctangle web2w.w}
\noindent
Any \.{ctangle} program should work here, but it doesn't harm if you use
your own \.{ctangle} created in step~\enumref{cweb3}.
I do not describe how to produce \.{web2w.pdf} from \.{web2w.w}: First, because
you seem to have that file already if you are reading this, and second, because
it is a much more complicated process. In addition, if you like reading on paper
and prefer a nicely bound book over a mess of photocopies, you can buy this document
also as a book titled ``WEB to cweb''\cite{Ruckert:web2w}.
\item From \.{web2w.c}, \.{web2w.h}, \.{web.l}, and \.{pascal.y}, you get \.{web2w} by running
\.{flex -o web.lex.c web.l}
\.{bison -d -v pascal.y}
\.{cc -o web2w web2w.c web.lex.c pascal.tab.c}
The first command produces the scanner \.{web.lex.c};
the second command produces the parser in two files
\.{pascal.tab.c} and \.{pascal.tab.h}.
If your version of \.{bison} does not support an api prefix, you can use the option \.{-p pp}
instead.
The last command invokes the \CEE/ compiler to create \.{web2w}.
\item
\label{gettex}%
Next I want to run \.{tex.web} through \.{web2w}. To obtain \.{tex.web}
download the package \.{tex.zip} from \.{www.ctan.org}
which contains the files of the
original \TeX\ distribution by Donald E. Knuth
in directory \.{systems/knuth/dist/tex} and extract the files
into the \.{tex} subdirectory of \.{web2w} (see also step~\enumref{proof}).
\item Now I am ready to apply \.{web2w}. Run
\.{./web2w -o tex.w tex/tex.web}
\noindent
This command will produce \.{tex.w}, but I am not yet finished. I have to apply
the patch file\index{patch file} \.{ctex.patch} to get the finished \.{ctex.w} like this:
\.{patch --verbose -o ctex.w tex.w ctex.patch}
\noindent
And \.{ctex.w} has been created.
\endenumerate
\plainsection{References}
{\baselineskip=11pt
\def\bfblrm{\small\rm}%
\def\bblem{\small\it}%
\bibliography{web2w}
\bibliographystyle{plain}
}
\plainsection{Index}
{
\def\_{{\tt \UL}} % underline in a string
\catcode`\_=\active \let_=\_ % underline is a letter
\input web2w.ind
}
|