summaryrefslogtreecommitdiff
path: root/systems/texlive/tlnet/tlpkg/tlperl/lib/bignum.pm
blob: d738d6dc987b9dbf980b4210f92a2d12cc89fdfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
package bignum;

use strict;
use warnings;

use Carp qw< carp croak >;

our $VERSION = '0.66';

use Exporter;
our @ISA            = qw( Exporter );
our @EXPORT_OK      = qw( PI e bpi bexp hex oct );
our @EXPORT         = qw( inf NaN );

use overload;

# Defaults: When a constant is an integer, Inf or NaN, it is converted to an
# object of class $int_class. When a constant is a finite non-integer, it is
# converted to an object of class $float_class.

my $int_class = 'Math::BigInt';
my $float_class = 'Math::BigFloat';

##############################################################################

sub accuracy {
    shift;
    $int_class -> accuracy(@_);
    $float_class -> accuracy(@_);
}

sub precision {
    shift;
    $int_class -> precision(@_);
    $float_class -> precision(@_);
}

sub round_mode {
    shift;
    $int_class -> round_mode(@_);
    $float_class -> round_mode(@_);
}

sub div_scale {
    shift;
    $int_class -> div_scale(@_);
    $float_class -> div_scale(@_);
}

sub upgrade {
    shift;
    $int_class -> upgrade(@_);
}

sub downgrade {
    shift;
    $float_class -> downgrade(@_);
}

sub in_effect {
    my $level = shift || 0;
    my $hinthash = (caller($level))[10];
    $hinthash->{bignum};
}

sub _float_constant {
    my $str = shift;

    # See if we can convert the input string to a string using a normalized form
    # consisting of the significand as a signed integer, the character "e", and
    # the exponent as a signed integer, e.g., "+0e+0", "+314e-2", and "-1e+3".

    my $nstr;

    if (
        # See if it is an octal number. An octal number like '0377' is also
        # accepted by the functions parsing decimal and hexadecimal numbers, so
        # handle octal numbers before decimal and hexadecimal numbers.

        $str =~ /^0(?:[Oo]|_*[0-7])/ and
        $nstr = Math::BigInt -> oct_str_to_dec_flt_str($str)

          or

        # See if it is decimal number.

        $nstr = Math::BigInt -> dec_str_to_dec_flt_str($str)

          or

        # See if it is a hexadecimal number. Every hexadecimal number has a
        # prefix, but the functions parsing numbers don't require it, so check
        # to see if it actually is a hexadecimal number.

        $str =~ /^0[Xx]/ and
        $nstr = Math::BigInt -> hex_str_to_dec_flt_str($str)

          or

        # See if it is a binary numbers. Every binary number has a prefix, but
        # the functions parsing numbers don't require it, so check to see if it
        # actually is a binary number.

        $str =~ /^0[Bb]/ and
        $nstr = Math::BigInt -> bin_str_to_dec_flt_str($str))
    {
        my $pos      = index($nstr, 'e');
        my $expo_sgn = substr($nstr, $pos + 1, 1);
        my $sign     = substr($nstr, 0, 1);
        my $mant     = substr($nstr, 1, $pos - 1);
        my $mant_len = CORE::length($mant);
        my $expo     = substr($nstr, $pos + 2);

        # The number is a non-integer if and only if the exponent is negative.

        if ($expo_sgn eq '-') {
            return $float_class -> new($str);

            my $upgrade = $int_class -> upgrade();
            return $upgrade -> new($nstr) if defined $upgrade;

            if ($mant_len <= $expo) {
                return $int_class -> bzero();                   # underflow
            } else {
                $mant = substr $mant, 0, $mant_len - $expo;     # truncate
                return $int_class -> new($sign . $mant);
            }
        } else {
            $mant .= "0" x $expo;                               # pad with zeros
            return $int_class -> new($sign . $mant);
        }
    }

    # If we get here, there is a bug in the code above this point.

    warn "Internal error: unable to handle literal constant '$str'.",
      " This is a bug, so please report this to the module author.";
    return $int_class -> bnan();
}

#############################################################################
# the following two routines are for "use bignum qw/hex oct/;":

use constant LEXICAL => $] > 5.009004;

# Internal function with the same semantics as CORE::hex(). This function is
# not used directly, but rather by other front-end functions.

sub _hex_core {
    my $str = shift;

    # Strip off, clean, and parse as much as we can from the beginning.

    my $x;
    if ($str =~ s/ ^ ( 0? [xX] )? ( [0-9a-fA-F]* ( _ [0-9a-fA-F]+ )* ) //x) {
        my $chrs = $2;
        $chrs =~ tr/_//d;
        $chrs = '0' unless CORE::length $chrs;
        $x = $int_class -> from_hex($chrs);
    } else {
        $x = $int_class -> bzero();
    }

    # Warn about trailing garbage.

    if (CORE::length($str)) {
        require Carp;
        Carp::carp(sprintf("Illegal hexadecimal digit '%s' ignored",
                           substr($str, 0, 1)));
    }

    return $x;
}

# Internal function with the same semantics as CORE::oct(). This function is
# not used directly, but rather by other front-end functions.

sub _oct_core {
    my $str = shift;

    $str =~ s/^\s*//;

    # Hexadecimal input.

    return _hex_core($str) if $str =~ /^0?[xX]/;

    my $x;

    # Binary input.

    if ($str =~ /^0?[bB]/) {

        # Strip off, clean, and parse as much as we can from the beginning.

        if ($str =~ s/ ^ ( 0? [bB] )? ( [01]* ( _ [01]+ )* ) //x) {
            my $chrs = $2;
            $chrs =~ tr/_//d;
            $chrs = '0' unless CORE::length $chrs;
            $x = $int_class -> from_bin($chrs);
        }

        # Warn about trailing garbage.

        if (CORE::length($str)) {
            require Carp;
            Carp::carp(sprintf("Illegal binary digit '%s' ignored",
                               substr($str, 0, 1)));
        }

        return $x;
    }

    # Octal input. Strip off, clean, and parse as much as we can from the
    # beginning.

    if ($str =~ s/ ^ ( 0? [oO] )? ( [0-7]* ( _ [0-7]+ )* ) //x) {
        my $chrs = $2;
        $chrs =~ tr/_//d;
        $chrs = '0' unless CORE::length $chrs;
        $x = $int_class -> from_oct($chrs);
    }

    # Warn about trailing garbage. CORE::oct() only warns about 8 and 9, but it
    # is more helpful to warn about all invalid digits.

    if (CORE::length($str)) {
        require Carp;
        Carp::carp(sprintf("Illegal octal digit '%s' ignored",
                           substr($str, 0, 1)));
    }

    return $x;
}

{
    my $proto = LEXICAL ? '_' : ';$';
    eval '
sub hex(' . $proto . ') {' . <<'.';
    my $str = @_ ? $_[0] : $_;
    _hex_core($str);
}
.

    eval '
sub oct(' . $proto . ') {' . <<'.';
    my $str = @_ ? $_[0] : $_;
    _oct_core($str);
}
.
}

#############################################################################
# the following two routines are for Perl 5.9.4 or later and are lexical

my ($prev_oct, $prev_hex, $overridden);

if (LEXICAL) { eval <<'.' }
sub _hex(_) {
    my $hh = (caller 0)[10];
    return $$hh{bignum} ? bignum::_hex_core($_[0])
         : $$hh{bigrat} ? bigrat::_hex_core($_[0])
         : $$hh{bigint} ? bigint::_hex_core($_[0])
         : $prev_hex    ? &$prev_hex($_[0])
         : CORE::hex($_[0]);
}

sub _oct(_) {
    my $hh = (caller 0)[10];
    return $$hh{bignum} ? bignum::_oct_core($_[0])
         : $$hh{bigrat} ? bigrat::_oct_core($_[0])
         : $$hh{bigint} ? bigint::_oct_core($_[0])
         : $prev_oct    ? &$prev_oct($_[0])
         : CORE::oct($_[0]);
}
.

sub _override {
    return if $overridden;
    $prev_oct = *CORE::GLOBAL::oct{CODE};
    $prev_hex = *CORE::GLOBAL::hex{CODE};
    no warnings 'redefine';
    *CORE::GLOBAL::oct = \&_oct;
    *CORE::GLOBAL::hex = \&_hex;
    $overridden = 1;
}

sub unimport {
    $^H{bignum} = undef;        # no longer in effect
    overload::remove_constant('binary', '', 'float', '', 'integer');
}

sub import {
    my $class = shift;

    $^H{bignum} = 1;                    # we are in effect
    $^H{bigint} = undef;
    $^H{bigrat} = undef;

    # for newer Perls always override hex() and oct() with a lexical version:
    if (LEXICAL) {
        _override();
    }

    my @import     = ();                        # common options
    my @int_import = (upgrade => $float_class); # int class only options
    my @flt_import = (downgrade => $int_class); # float class only options
    my @a = ();                                 # unrecognized arguments
    my $ver;                                    # display version info?

    while (@_) {
        my $param = shift;

        # Upgrading.

        if ($param eq 'upgrade') {
            my $arg = shift;
            $float_class = $arg if defined $arg;
            push @int_import, 'upgrade', $arg;
            next;
        }

        # Downgrading.

        if ($param eq 'downgrade') {
            my $arg = shift;
            $int_class = $arg if defined $arg;
            push @flt_import, 'downgrade', $arg;
            next;
        }

        # Accuracy.

        if ($param =~ /^a(ccuracy)?$/) {
            push @import, 'accuracy', shift();
            next;
        }

        # Precision.

        if ($param =~ /^p(recision)?$/) {
            push @import, 'precision', shift();
            next;
        }

        # Rounding mode.

        if ($param eq 'round_mode') {
            push @import, 'round_mode', shift();
            next;
        }

        # Backend library.

        if ($param =~ /^(l|lib|try|only)$/) {
            push @import, $param eq 'l' ? 'lib' : $param;
            push @import, shift() if @_;
            next;
        }

        if ($param =~ /^(v|version)$/) {
            $ver = 1;
            next;
        }

        if ($param =~ /^(PI|e|bexp|bpi|hex|oct)\z/) {
            push @a, $param;
            next;
        }

        croak("Unknown option '$param'");
    }

    eval "require $int_class";
    die $@ if $@;
    $int_class -> import(@int_import, @import);

    eval "require $float_class";
    die $@ if $@;
    $float_class -> import(@flt_import, @import);

    if ($ver) {
        printf "%-31s v%s\n", $class, $class -> VERSION();
        printf " lib => %-23s v%s\n",
          $int_class -> config("lib"), $int_class -> config("lib_version");
        printf "%-31s v%s\n", $int_class, $int_class -> VERSION();
        exit;
    }

    $class -> export_to_level(1, $class, @a);   # export inf, NaN, etc.

    overload::constant

        # This takes care each number written as decimal integer and within the
        # range of what perl can represent as an integer, e.g., "314", but not
        # "3141592653589793238462643383279502884197169399375105820974944592307".

        integer => sub {
            #printf "Value '%s' handled by the 'integer' sub.\n", $_[0];
            my $str = shift;
            return $int_class -> new($str);
        },

        # This takes care of each number written with a decimal point and/or
        # using floating point notation, e.g., "3.", "3.0", "3.14e+2" (decimal),
        # "0b1.101p+2" (binary), "03.14p+2" and "0o3.14p+2" (octal), and
        # "0x3.14p+2" (hexadecimal).

        float => sub {
            #printf "# Value '%s' handled by the 'float' sub.\n", $_[0];
            _float_constant(shift);
        },

        # Take care of each number written as an integer (no decimal point or
        # exponent) using binary, octal, or hexadecimal notation, e.g., "0b101"
        # (binary), "0314" and "0o314" (octal), and "0x314" (hexadecimal).

        binary => sub {
            #printf "# Value '%s' handled by the 'binary' sub.\n", $_[0];
            my $str = shift;
            return $int_class -> new($str) if $str =~ /^0[XxBb]/;
            $int_class -> from_oct($str);
        };
}

sub inf () { $int_class -> binf(); }
sub NaN () { $int_class -> bnan(); }

# This should depend on the current accuracy/precision. Fixme!
sub PI  () { $float_class -> new('3.141592653589793238462643383279502884197'); }
sub e   () { $float_class -> new('2.718281828459045235360287471352662497757'); }

sub bpi ($) {
    my $up = Math::BigFloat -> upgrade();   # get current upgrading, if any ...
    Math::BigFloat -> upgrade(undef);       # ... and disable
    my $x = Math::BigFloat -> bpi(@_);
    Math::BigFloat -> upgrade($up);         # reset the upgrading
    return $x;
}

sub bexp ($$) {
    my $up = Math::BigFloat -> upgrade();   # get current upgrading, if any ...
    Math::BigFloat -> upgrade(undef);       # ... and disable
    my $x = Math::BigFloat -> new(shift) -> bexp(@_);
    Math::BigFloat -> upgrade($up);         # reset the upgrading
    return $x;
}

1;

__END__

=pod

=head1 NAME

bignum - transparent big number support for Perl

=head1 SYNOPSIS

    use bignum;

    $x = 2 + 4.5;                       # Math::BigFloat 6.5
    print 2 ** 512 * 0.1;               # Math::BigFloat 134...09.6
    print 2 ** 512;                     # Math::BigInt 134...096
    print inf + 42;                     # Math::BigInt inf
    print NaN * 7;                      # Math::BigInt NaN
    print hex("0x1234567890123490");    # Perl v5.10.0 or later

    {
        no bignum;
        print 2 ** 256;                 # a normal Perl scalar now
    }

    # for older Perls, import into current package:
    use bignum qw/hex oct/;
    print hex("0x1234567890123490");
    print oct("01234567890123490");

=head1 DESCRIPTION

=head2 Literal numeric constants

By default, every literal integer becomes a Math::BigInt object, and literal
non-integer becomes a Math::BigFloat object. Whether a numeric literal is
considered an integer or non-integers depends only on the value of the constant,
not on how it is represented. For instance, the constants 3.14e2 and 0x1.3ap8
become Math::BigInt objects, because they both represent the integer value
decimal 314.

The default C<use bignum;> is equivalent to

    use bignum downgrade => "Math::BigInt", upgrade => "Math::BigFloat";

The classes used for integers and non-integers can be set at compile time with
the C<downgrade> and C<upgrade> options, for example

    # use Math::BigInt for integers and Math::BigRat for non-integers
    use bignum upgrade => "Math::BigRat";

Note that disabling downgrading and upgrading does not affect how numeric
literals are converted to objects

    # disable both downgrading and upgrading
    use bignum downgrade => undef, upgrade => undef;
    $x = 2.4;       # becomes 2.4 as a Math::BigFloat
    $y = 2;         # becomes 2 as a Math::BigInt

=head2 Upgrading and downgrading

By default, when the result of a computation is an integer, an Inf, or a NaN,
the result is downgraded even when all the operands are instances of the upgrade
class.

    use bignum;
    $x = 2.4;       # becomes 2.4 as a Math::BigFloat
    $y = 1.2;       # becomes 1.2 as a Math::BigFloat
    $z = $x / $y;   # becomes 2 as a Math::BigInt due to downgrading

Equivalently, by default, when the result of a computation is a finite
non-integer, the result is upgraded even when all the operands are instances of
the downgrade class.

    use bignum;
    $x = 7;         # becomes 7 as a Math::BigInt
    $y = 2;         # becomes 2 as a Math::BigInt
    $z = $x / $y;   # becomes 3.5 as a Math::BigFloat due to upgrading

The classes used for downgrading and upgrading can be set at runtime with the
L</downgrade()> and L</upgrade()> methods, but see L</CAVEATS> below.

The upgrade and downgrade classes don't have to be Math::BigInt and
Math::BigFloat. For example, to use Math::BigRat as the upgrade class, use

    use bignum upgrade => "Math::BigRat";
    $x = 2;         # becomes 2 as a Math::BigInt
    $y = 3.6;       # becomes 18/5 as a Math::BigRat

The upgrade and downgrade classes can be modified at runtime

    use bignum;
    $x = 3;         # becomes 3 as a Math::BigInt
    $y = 2;         # becomes 2 as a Math::BigInt
    $z = $x / $y;   # becomes 1.5 as a Math::BigFlaot

    bignum -> upgrade("Math::BigRat");
    $w = $x / $y;   # becomes 3/2 as a Math::BigRat

Disabling downgrading doesn't change the fact that literal constant integers are
converted to the downgrade class, it only prevents downgrading as a result of a
computation. E.g.,

    use bignum downgrade => undef;
    $x = 2;         # becomes 2 as a Math::BigInt
    $y = 2.4;       # becomes 2.4 as a Math::BigFloat
    $z = 1.2;       # becomes 1.2 as a Math::BigFloat
    $w = $x / $y;   # becomes 2 as a Math::BigFloat due to no downgrading

If you want all numeric literals, both integers and non-integers, to become
Math::BigFloat objects, use the L<bigfloat> pragma.

Equivalently, disabling upgrading doesn't change the fact that literal constant
non-integers are converted to the upgrade class, it only prevents upgrading as a
result of a computation. E.g.,

    use bignum upgrade => undef;
    $x = 2.5;       # becomes 2.5 as a Math::BigFloat
    $y = 7;         # becomes 7 as a Math::BigInt
    $z = 2;         # becomes 2 as a Math::BigInt
    $w = $x / $y;   # becomes 3 as a Math::BigInt due to no upgrading

If you want all numeric literals, both integers and non-integers, to become
Math::BigInt objects, use the L<bigint> pragma.

You can even do

    use bignum upgrade => "Math::BigRat", upgrade => undef;

which converts all integer literals to Math::BigInt objects and all non-integer
literals to Math::BigRat objects. However, when the result of a computation
involving two Math::BigInt objects results in a non-integer (e.g., 7/2), the
result will be truncted to a Math::BigInt rather than being upgraded to a
Math::BigRat, since upgrading is disabled.

=head2 Overloading

Since all numeric literals become objects, you can call all the usual methods
from Math::BigInt and Math::BigFloat on them. This even works to some extent on
expressions:

    perl -Mbignum -le '$x = 1234; print $x->bdec()'
    perl -Mbignum -le 'print 1234->copy()->binc();'
    perl -Mbignum -le 'print 1234->copy()->binc()->badd(6);'

=head2 Options

C<bignum> recognizes some options that can be passed while loading it via via
C<use>. The following options exist:

=over 4

=item a or accuracy

This sets the accuracy for all math operations. The argument must be greater
than or equal to zero. See Math::BigInt's bround() method for details.

    perl -Mbignum=a,50 -le 'print sqrt(20)'

Note that setting precision and accuracy at the same time is not possible.

=item p or precision

This sets the precision for all math operations. The argument can be any
integer. Negative values mean a fixed number of digits after the dot, while a
positive value rounds to this digit left from the dot. 0 means round to integer.
See Math::BigInt's bfround() method for details.

    perl -Mbignum=p,-50 -le 'print sqrt(20)'

Note that setting precision and accuracy at the same time is not possible.

=item l, lib, try, or only

Load a different math lib, see L<Math Library>.

    perl -Mbignum=l,GMP -e 'print 2 ** 512'
    perl -Mbignum=lib,GMP -e 'print 2 ** 512'
    perl -Mbignum=try,GMP -e 'print 2 ** 512'
    perl -Mbignum=only,GMP -e 'print 2 ** 512'

=item hex

Override the built-in hex() method with a version that can handle big numbers.
This overrides it by exporting it to the current package. Under Perl v5.10.0 and
higher, this is not so necessary, as hex() is lexically overridden in the
current scope whenever the C<bignum> pragma is active.

=item oct

Override the built-in oct() method with a version that can handle big numbers.
This overrides it by exporting it to the current package. Under Perl v5.10.0 and
higher, this is not so necessary, as oct() is lexically overridden in the
current scope whenever the C<bignum> pragma is active.

=item v or version

this prints out the name and version of the modules and then exits.

    perl -Mbignum=v

=back

=head2 Math Library

Math with the numbers is done (by default) by a backend library module called
Math::BigInt::Calc. The default is equivalent to saying:

    use bignum lib => 'Calc';

you can change this by using:

    use bignum lib => 'GMP';

The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar,
and if this also fails, revert to Math::BigInt::Calc:

    use bignum lib => 'Foo,Math::BigInt::Bar';

Using c<lib> warns if none of the specified libraries can be found and
L<Math::BigInt> and L<Math::BigFloat> fell back to one of the default
libraries. To suppress this warning, use C<try> instead:

    use bignum try => 'GMP';

If you want the code to die instead of falling back, use C<only> instead:

    use bignum only => 'GMP';

Please see respective module documentation for further details.

=head2 Method calls

Since all numbers are now objects, you can use the methods that are part of the
Math::BigInt and Math::BigFloat API.

But a warning is in order. When using the following to make a copy of a number,
only a shallow copy will be made.

    $x = 9; $y = $x;
    $x = $y = 7;

Using the copy or the original with overloaded math is okay, e.g., the following
work:

    $x = 9; $y = $x;
    print $x + 1, " ", $y,"\n";     # prints 10 9

but calling any method that modifies the number directly will result in B<both>
the original and the copy being destroyed:

    $x = 9; $y = $x;
    print $x->badd(1), " ", $y,"\n";        # prints 10 10

    $x = 9; $y = $x;
    print $x->binc(1), " ", $y,"\n";        # prints 10 10

    $x = 9; $y = $x;
    print $x->bmul(2), " ", $y,"\n";        # prints 18 18

Using methods that do not modify, but test that the contents works:

    $x = 9; $y = $x;
    $z = 9 if $x->is_zero();                # works fine

See the documentation about the copy constructor and C<=> in overload, as well
as the documentation in Math::BigFloat for further details.

=head2 Methods

=over 4

=item inf()

A shortcut to return C<inf> as an object. Useful because Perl does not always
handle bareword C<inf> properly.

=item NaN()

A shortcut to return C<NaN> as an object. Useful because Perl does not always
handle bareword C<NaN> properly.

=item e

    # perl -Mbignum=e -wle 'print e'

Returns Euler's number C<e>, aka exp(1) (= 2.7182818284...).

=item PI

    # perl -Mbignum=PI -wle 'print PI'

Returns PI (= 3.1415926532..).

=item bexp()

    bexp($power, $accuracy);

Returns Euler's number C<e> raised to the appropriate power, to the wanted
accuracy.

Example:

    # perl -Mbignum=bexp -wle 'print bexp(1,80)'

=item bpi()

    bpi($accuracy);

Returns PI to the wanted accuracy.

Example:

    # perl -Mbignum=bpi -wle 'print bpi(80)'

=item accuracy()

Set or get the accuracy.

=item precision()

Set or get the precision.

=item round_mode()

Set or get the rounding mode.

=item div_scale()

Set or get the division scale.

=item upgrade()

Set or get the class that the downgrade class upgrades to, if any. Set the
upgrade class to C<undef> to disable upgrading. See C</CAVEATS> below.

=item downgrade()

Set or get the class that the upgrade class downgrades to, if any. Set the
downgrade class to C<undef> to disable upgrading. See L</CAVEATS> below.

=item in_effect()

    use bignum;

    print "in effect\n" if bignum::in_effect;       # true
    {
        no bignum;
        print "in effect\n" if bignum::in_effect;   # false
    }

Returns true or false if C<bignum> is in effect in the current scope.

This method only works on Perl v5.9.4 or later.

=back

=head1 CAVEATS

=over 4

=item The upgrade() and downgrade() methods

Note that setting both the upgrade and downgrade classes at runtime with the
L</upgrade()> and L</downgrade()> methods, might not do what you expect:

    # Assuming that downgrading and upgrading hasn't been modified so far, so
    # the downgrade and upgrade classes are Math::BigInt and Math::BigFloat,
    # respectively, the following sets the upgrade class to Math::BigRat, i.e.,
    # makes Math::BigInt upgrade to Math::BigRat:

    bignum -> upgrade("Math::BigRat");

    # The following sets the downgrade class to Math::BigInt::Lite, i.e., makes
    # the new upgrade class Math::BigRat downgrade to Math::BigInt::Lite

    bignum -> downgrade("Math::BigInt::Lite");

    # Note that at this point, it is still Math::BigInt, not Math::BigInt::Lite,
    # that upgrades to Math::BigRat, so to get Math::BigInt::Lite to upgrade to
    # Math::BigRat, we need to do the following (again):

    bignum -> upgrade("Math::BigRat");

A simpler way to do this at runtime is to use import(),

    bignum -> import(upgrade => "Math::BigRat",
                     downgrade => "Math::BigInt::Lite");

=item Hexadecimal, octal, and binary floating point literals

Perl (and this module) accepts hexadecimal, octal, and binary floating point
literals, but use them with care with Perl versions before v5.32.0, because some
versions of Perl silently give the wrong result.

=item Operator vs literal overloading

C<bigrat> works by overloading handling of integer and floating point literals,
converting them to L<Math::BigRat> objects.

This means that arithmetic involving only string values or string literals are
performed using Perl's built-in operators.

For example:

    use bigrat;
    my $x = "900000000000000009";
    my $y = "900000000000000007";
    print $x - $y;

outputs C<0> on default 32-bit builds, since C<bignum> never sees the string
literals. To ensure the expression is all treated as C<Math::BigFloat> objects,
use a literal number in the expression:

    print +(0+$x) - $y;

=item Ranges

Perl does not allow overloading of ranges, so you can neither safely use ranges
with C<bignum> endpoints, nor is the iterator variable a C<Math::BigFloat>.

    use 5.010;
    for my $i (12..13) {
      for my $j (20..21) {
        say $i ** $j;  # produces a floating-point number,
                       # not an object
      }
    }

=item in_effect()

This method only works on Perl v5.9.4 or later.

=item hex()/oct()

C<bignum> overrides these routines with versions that can also handle big
integer values. Under Perl prior to version v5.9.4, however, this will not
happen unless you specifically ask for it with the two import tags "hex" and
"oct" - and then it will be global and cannot be disabled inside a scope with
C<no bignum>:

    use bignum qw/hex oct/;

    print hex("0x1234567890123456");
    {
        no bignum;
        print hex("0x1234567890123456");
    }

The second call to hex() will warn about a non-portable constant.

Compare this to:

    use bignum;

    # will warn only under Perl older than v5.9.4
    print hex("0x1234567890123456");

=back

=head1 EXAMPLES

Some cool command line examples to impress the Python crowd ;)

    perl -Mbignum -le 'print sqrt(33)'
    perl -Mbignum -le 'print 2**255'
    perl -Mbignum -le 'print 4.5+2**255'
    perl -Mbignum -le 'print 3/7 + 5/7 + 8/3'
    perl -Mbignum -le 'print 123->is_odd()'
    perl -Mbignum -le 'print log(2)'
    perl -Mbignum -le 'print exp(1)'
    perl -Mbignum -le 'print 2 ** 0.5'
    perl -Mbignum=a,65 -le 'print 2 ** 0.2'
    perl -Mbignum=l,GMP -le 'print 7 ** 7777'

=head1 BUGS

Please report any bugs or feature requests to
C<bug-bignum at rt.cpan.org>, or through the web interface at
L<https://rt.cpan.org/Ticket/Create.html?Queue=bignum> (requires login).
We will be notified, and then you'll automatically be notified of
progress on your bug as I make changes.

=head1 SUPPORT

You can find documentation for this module with the perldoc command.

    perldoc bignum

You can also look for information at:

=over 4

=item * GitHub

L<https://github.com/pjacklam/p5-bignum>

=item * RT: CPAN's request tracker

L<https://rt.cpan.org/Dist/Display.html?Name=bignum>

=item * MetaCPAN

L<https://metacpan.org/release/bignum>

=item * CPAN Testers Matrix

L<http://matrix.cpantesters.org/?dist=bignum>

=item * CPAN Ratings

L<https://cpanratings.perl.org/dist/bignum>

=back

=head1 LICENSE

This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.

=head1 SEE ALSO

L<bigint> and L<bigrat>.

L<Math::BigInt>, L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as
L<Math::BigInt::FastCalc>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.

=head1 AUTHORS

=over 4

=item *

(C) by Tels L<http://bloodgate.com/> in early 2002 - 2007.

=item *

Maintained by Peter John Acklam E<lt>pjacklam@gmail.comE<gt>, 2014-.

=back

=cut