summaryrefslogtreecommitdiff
path: root/support/splint/tex/yycommon.sty
blob: 5058fafe8a0e98063f48c8d968d8537a1956443a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
% Copyright 2012-2014, Alexander Shibakov
% This file is part of SPLinT
%
% SPLinT is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% SPLinT is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with SPLinT.  If not, see <http://www.gnu.org/licenses/>.

\catcode`\@=11

% stacks will be defined as `list' macros, consisting of \sts{...}\sts{...}... type lists
% in \yypopstack, the second parameter must be a positive number
%
% note: perhaps, replacing \sts with the name of the stack would allow for more economical
% use of the user namespace, however, this will somewhat complicate the macros below, as well
% as make it impossible to assign a different control sequence to the
% stack (which may be considered a feature by itself)

% note: a somewhat clumsy way in which the code below is written is due to the goal of making it
% independent of general use registers (\tempc?); the result is extremely slow code

\def\yyinitstack#1{% to provide consistency with the accelerated macros
    \let#1\empty
}

\long\def\scoopupstack#1#2\stackend#3{\def#3{\sts{#1}#2}}

\def\stackend#1{\def#1{}} % if we got here, the stack is empty

% the following macro is a mild example of expansion tricks

\def\yypopstack#1\by#2{%
  \ifnum#2>\z@
      \yyp@pst@ck{#1}{#2}%
  \fi
}

\def\yyp@pstack#1{%
    \expandafter\space#1%
}

% the definition below is here purely for clarity

\catcode`\.=\active
\let.\expandafter

\def\yyp@pst@ck#1#2{%
  \let\sts\or
  \iffalse{\fi...\def...#1...{...\sts.\ifcase\number\number.\xincrement.{\number#2} \yyp@pstack#1}\else}\fi
}

\catcode`\.=12 % other character

% #1 is the name of the stack, #2 is a token register

\def\yypop#1\into#2{\def\sts{\consumeone{#2}}#1\stackend#1}

\long\def\consumeone#1#2{%
  #1{#2}\let\sts\scoopupstack
}

% pushing stuff on a stack: \yypush{t o k e n s}\on\yyvs or \expandafter\yypush\number\yystate\on\yyss

\long\def\yypush#1\on#2{\toksa={#1}\expandafter\toksb\expandafter{#2}\edef#2{\noexpand\sts{\the\toksa}\the\toksb}}

% push register contents on a stack: #1 is a register, #2 is a stack (a control
% sequence that expands to a `\sts{v a l u e}\sts...' list)

\def\yypushr#1\on#2{\expandafter\toksa\expandafter{#2}\edef#2{\noexpand\sts{\the#1}\the\toksa}}

% the first parameter is the stack, the second is the location from the top (a nonnegative number), the third is
% the control sequence that will hold the value;

\def\yyreadstack#1\at#2\to#3{\edef\sts{\noexpand\skipandcount{\number#2}{\noexpand#3}}#1\stackfinish#1}

\def\skipandcount#1#2#3{%
  \ifnum#1=\z@ %we have got to the element we need
      \def#2{#3}%
      \yybreak\ignorestack
  \else
      \yybreak{\edef\sts{\noexpand\skipandcount{\xdecrement{#1}}{\noexpand#2}}}%
  \yycontinue
}

% same as above except read the value into a register

\def\yyreadstackr#1\at#2\to#3{\edef\sts{\noexpand\skipandcountr{\number#2}{#3}}#1\stackfinish#1}

\def\skipandcountr#1#2#3{%
  \ifnum#1=\z@ %we have got to the element we need
      #2#3%
      \yybreak\ignorestack
  \else
      \yybreak{\edef\sts{\noexpand\skipandcountr{\xdecrement{#1}}{\noexpand#2}}}%
  \yycontinue
}

\long\def\ignorestack#1\stackfinish#2{}

\def\stackfinish#1{\def#1{0\message{:stack empty:}}}

\def\yyreadvstack#1\upto#2{% assume that #2 > 0
  \edef\sts{\noexpand\splitstack{\number#2}{\expandafter\xincrement\expandafter{\number\toptoks}}}#1\stackend#1%
}

\long\def\splitstack#1#2#3{%
  \expandafter\def\csname$'#1\endcsname{#3}% $
  \ifnum#2<\@cclvi % we have not reached the maximum allocated number of token registers
      \expandafter\toksdef\csname$$'#1\endcsname=#2
      \toks#2{#3}%
  \fi
  \ifnum#1=\@ne %we have read the values
      \let\sts\scoopupstack
  \else
      \edef\sts{\noexpand\splitstack{\xdecrement{#1}}{\xincrement{#2}}}%
  \fi
}

\def\yypeekvstack#1\upto#2{% assume #2 > 0
  \edef\sts{\noexpand\peelstack{\number#2}{\expandafter\xincrement\expandafter{\number\toptoks}}}#1\relax%
}

\long\def\peelstack#1#2#3{%
  \expandafter\def\csname$'#1\endcsname{#3}% $
  \ifnum#2<\@cclvi % we have not reached the maximum allocated number of token registers
      \expandafter\toksdef\csname$$'#1\endcsname=#2 
      \toks#2{#3}%
  \fi
  \ifnum#1=\@ne %we have read the values
      \let\sts\eatone
  \else
      \edef\sts{\noexpand\peelstack{\xdecrement{#1}}{\xincrement{#2}}}%
  \fi
}

% macros to support new printing routines

\def\yypeeksstack#1\upto#2\withprefix#3{% assume #2 > 0
  \edef\sts{\noexpand\peelsstack{\number#2}}%
  \expandafter\def\expandafter\sts\expandafter{\sts{#3}{}}#1\relax%
}

\long\def\peelsstack#1#2#3#4{%
  \ifnum#1=\@ne %we have read the values
      #3\let\sts\eatone
  \else
      \edef\sts{\noexpand\peelsstack{\xdecrement{#1}}}%
      \expandafter\def\expandafter\sts\expandafter{\sts{#2}{#2{#4}#3}}%     
  \fi
}

% token register access

\def\concat#1#2{% store the concatenation result in the first sequence
    #1\expandafter\expandafter\expandafter{\expandafter\the\expandafter#1\the#2}%
}

\def\concatl#1#2{% store the concatenation result in the second sequence
    #2\expandafter\expandafter\expandafter{\expandafter\the\expandafter#1\the#2}%
}

\def\appendr#1#2{%
    \begingroup
        \edef\next{#1{\the#1#2}}\next
    \tokreturn{}{}{#1{\the#1}}%
}

\def\appendl#1#2{%
    \begingroup
        \edef\next{#1{#2\the#1}}\next
    \tokreturn{}{}{#1{\the#1}}%
}

% the following macros are an expandable way to determine if a token register is empty;
% while a number of different conditionals can be used, including plain \iffalse,
% this choice seems to result in a shortest macro and the fewest number of \expandafter's; 
% an idea from
%    http://tex.stackexchange.com/questions/2936/test-whether-token-list-is-empty
% where it is attributed to Ulrich Diez can be generalized to make multiple tests inside braces
% in a row; the macros from that discussion are quoted below; note, however, that these macros 
% lead to unbalanced braces inside alignments (see The \TeX book, Appendix~D, p.~385 for the 
% discussion of the `master counter' and the `balance counter' and their behavior when
% \TeX\ evaluates the constants `{ and `}); in addition, the first `1' is superfluous;

%\newcommand\@ifempty@toks[1]{%
%  \ifcase\iffalse{{{\fi\expandafter\@ifempty@@toks\the#1}1}1}0
%    \expandafter\@firstoftwo
%  \else
%    \expandafter\@secondoftwo
%  \fi}
%\newcommand{\@ifempty@@toks}
%  {\expandafter\@gobble\expandafter{\expandafter{%
%        \ifcase`}\expandafter}\expandafter\fi\string}

% as a note of explanation, the reason this works relies on the fact
% that \string will turn a `{', a `}', or any other token into a
% non-brace while the parameter scanning mechanism of \TeX\ will try
% to collect the smallest possible balanced input; the `excessive'
% braces will disappear in the expansion of the `\if...' construct;
% the reason \if or other macros that expand their argumens are so well suited for this 
% `chain expansion' mechanism is in the fact that the expansions for \string and \if... are launched 
% from the same point.

\long\def\yytoksempty#1{%
  \iffalse{{\fi
  \if{\expandafter\yytoks@mpty\the#1}}}%
    \yybreak\yyfirstoftwo
  \else
    \yybreak\yysecondoftwo
  \yycontinue
}

% when the token list is empty, \TeX\ will try to expand \yybreak premaurely;
% in this case \yybreak forces a \fi to be expanded while skipping the rest;
% note that a simple \expandafter would not work in this case as \TeX would 
% insert a \relax when trying to expand a premature \else (this can be only
% gleaned from `\TeX\ the program')

\long\def\yystringempty#1{%
  \iffalse{{\fi
  \if{\yytoks@mpty#1}}}%
    \yybreak\yyfirstoftwo
  \else
    \yybreak\yysecondoftwo
  \yycontinue
}

\catcode`\>=2

\def\yytoks@mpty{%
    \expandafter\eatone\expandafter{\expandafter{%
        \if}\expandafter>\expandafter\fi\string
}

\catcode`\>=12

\long\def\yystartsinspace#1{% is the first token a \charcode 32, \catcode 10 token?
    \iffalse{\fi\yystartsinspac@#1 }%
}

\long\def\yystartsinspac@#1 {%
    \yystringempty{#1}%
        {\expandafter\yysecondofthree\expandafter{\string}}%
        {\expandafter\yythirdofthree\expandafter{\string}}%
}

% the macros below are a derivation of David Kastrup's magnificent string comparison 
% macros below:
%    \def\strequal#1{\number\strequalstart{}{}#1\relax}
%    \def\strequalstart#1#2#3{\if#3\relax\strequalstop\fi
%      \strequalstart{\if#3#1}{#2\fi}}
%    \def\strequalstop\fi\strequalstart#1#2#3{\fi#1#3\relax'#213 }
%
%    use: \if\strequal{string}{string}...
%
% they were adjusted to handle spaces in the strings and conform to a different
% syntax, namely \yyifsamestring{string1}{string2}{true}{false}
% the original macros use the fact that, say \if1\fi will expand to nothing and
% that \number'13 expands to 11 whereas \number13 expands to 13; the elegance of
% the second test was lost due to a different syntax;

\edef\yyifsamestring#1{\noexpand\yyifsamestr@ng{}{}#1 \noexpand\yyifsam@str@ng\space}
\def\yyifsamestr@ng#1#2#3 {\ifx\yyifsam@str@ng#3\yyifsam@str@ng\fi
  \yyifs@m@str@ng{#1}{#2}#3\space}

\def\yyifs@m@str@ng#1#2#3{%
    \if#3\space
        \expandafter\yyifsamestr@ng
    \else
        \expandafter\yyifs@m@str@ng
    \fi
    {\if#3#1}{#2\fi}%
}

\def\yyifsam@str@ng\fi\yyifs@m@str@ng#1#2\yyifsam@str@ng\space#3{\fi
    \if\noexpand\yyifsam@str@ng#1#3 \noexpand\yyifsam@str@ng\yystrcleanup#2\fi
    \yysecondoftwo
}

\def\yystrcleanup#1\yysecondoftwo{#1\yyfirstoftwo}

% a `self-propagating \expandafter'; allows building lists like \yysx a\yysx b ...
% so that a \romannumeral-1 at the beginning of the list would cary the expansion
% to the last token but leave the list intact; note that #1 should be a single token

\def\yysx#1#2{%
    \expandafter\space\expandafter\yysx\expandafter#1\romannumeral-1#2%
}

% the macro below can be simplified by reducing the number of braces
% but then \yytoks@mpty could not be reused

\long\def\yystartsinbrace#1{%
  \iffalse{\fi
  \if{\yytoks@mpty#1}}%
    \yybreak\yysecondoftwo
  \else
    \yybreak\yyfirstoftwo
  \yycontinue
}

% a test to determine whether the argument is a given control sequence

\long\def\yyisthiscs#1#2{%
    \yystringempty{#1}{\yysecondoftwo}{%
        \yystartsinspace{#1}{\yysecondoftwo}{%
            \yystartsinbrace{#1}{\yysecondoftwo}{%
                \expandafter\yystringempty\expandafter{\eatone#1}{%
                    \expandafter\yyisth@scs\expandafter{\string#1}{#2}%
                }{\yysecondoftwo}%
            }
        }
    }%
}

\long\def\yyisth@scs#1#2{%
    \expandafter\yyifsamestring\expandafter{\string#2}{#1}%
}

% same as above but the argument is a token register

\def\yyisthiscsr#1{%
    \expandafter\yyisthiscs\expandafter{\the#1}%
}

\long\def\yyfirstoftwo#1#2{#1}
\long\def\yysecondoftwo#1#2{#2}
\long\def\yysecondofthree#1#2#3{#2}
\long\def\yythirdofthree#1#2#3{#3}

% arrays of integers are going to be represented by a string of tokens `element0 \or element1 \or ...'
% #2 is a register (otherwise the case and the integer from the array `coalesce');
% the following macro was designed to make something like
% \vara=\getelemof\yytable\at\yyn\relax possible so it has to expand to a number;
% incidentally, some care should be taken using the above asignment to make sure that
% it is not followed by an expandable token (such as \if) as in this case the token might be 
% expanded prematurely, as the assignment is looking for the first non-expandable token which
% is not part of the number; this is the reason for the \relax

\def\getelemof#1\at#2{% the original meaning of this macro
  \ifcase\expandafter#2\the#1\else\fi
}

\def\getelemof#1\at#2{% no longer limited to registers for #2
  \expandafter\get@lemof\expandafter{\the#1}{#2}% 
}

\def\get@lemof#1#2{% 
  \ifcase#2 #1\else\fi
}

\def\fastgetelemof#1\at#2{%
  \csname #1\parsernamespace\number#2\endcsname
}

\def\fgetelemof#1\at#2{%
  \expandafter\ifx\csname optopt[#1]\parsernamespace\endcsname\relax
      \expandafter\getelemof\csname #1\endcsname\at{#2}%
  \else
      \csname #1\parsernamespace\number#2\endcsname
  \fi
}

% a nestable loop

\def\bloop#1\repeat{#1\bloop{#1}\repeat\fi}

% optimization macros: currently, the level of optimization has to be consistent throughout the
% document, i.e. \optimize macros have to be called on the same arrays after loading.
% the reason is the yyfaststack.sty file that modifies the \newtable macro once for all the tables

\def\optimize#1{%
  \setoptopt{#1}%
  \tempca\z@
  \bloop
      \tempcb=\expandafter\ifcase\expandafter\tempca\the\csname#1\endcsname\else\@MM\fi\relax
      \ifnum\tempcb<\@MM %
          \expandafter\edef\csname #1\parsernamespace\the\tempca\endcsname{\the\tempcb}%
          \advance\tempca\@ne
  \repeat
}

\def\optimizetext#1{% optimizing text arrays
  \setoptopt{#1}%
  \tempca\z@
  \@ptimizetext{#1}
}

\def\@ptimizetext#1{%
  \edef\next{\expandafter\ifcase\expandafter\tempca\the\csname#1\endcsname\else\end\fi}%
  \ifx\next\endcontainer
      \let\next\eatone
  \else
      \expandafter\edef\csname #1\parsernamespace\the\tempca\endcsname{\next}%
      \advance\tempca\@ne
      \let\next\@ptimizetext
  \fi
  \next{#1}%
}

\def\uoptimize#1{% same as the macro above but produces nonnegative constants as \mathchardef's
  \setoptopt{#1}%
  \tempca\z@
  \bloop
      \tempcb=\expandafter\ifcase\expandafter\tempca\the\csname#1\endcsname\else\@MM\fi\relax
      \ifnum\tempcb<\@MM %
          \toksa\expandafter{\csname #1\parsernamespace\the\tempca\endcsname}%
          \edef\next{\mathchardef\the\toksa=\the\tempcb\relax}\next
          \advance\tempca\@ne
  \repeat
}

\def\setoptopt#1{%
    \expandafter\let\csname optopt[#1]\parsernamespace\endcsname\end
}

\countdef\toptoks=15 % register responsible for token allocations 

% returning token register values from a group
% in such a way that no other register values are affected

\def\tokreturn#1#2#3{% #1 is the code to be prepended (will be expanded)
                     % #2 is a list of token registers
                     % #3 is the code to be appended
    \t@kreturn{#1}{#3}#2\end
}

\def\t@kreturn#1#2#3{% first step: see if the list is non-empty and pick the first token register
    \ifx#3\end % there are no registers to return so \toksa can be used as temporary storage
               % (on exiting the current \begingroup its value will be restored to what it was
               % before the group was entered)
        \edef\next{\toksa{#1#2}}\next % return prepended and appended code
        \def\t@kreturn{\expandafter\endgroup\the\toksa}%
    \else
        \edef\tokreturn{#3{{#2}#1#3{\the#3}}}\tokreturn
        \let\tokreturn#3%
        \let\t@kreturn\t@kr@turn
    \fi
    \t@kreturn % this sequence will be restored to its original value when the group is exited
}

\def\t@kr@turn#1{%
    \ifx#1\end
        \def\t@kreturn##1##2\end{\tokreturn{##2##1}}%
        \expandafter\t@kreturn\the\tokreturn\end
        \def\t@kreturn{\expandafter\endgroup\the\tokreturn}%
    \else
        \edef\t@kreturn{\tokreturn{\the\tokreturn#1{\the#1}}}\t@kreturn
        \let\t@kreturn\t@kr@turn
    \fi
    \t@kreturn
}

% switch macros, also used to implement state machines
% a lot of care has been taken to ensure that no control sequence is changed
% as well as all the register values are preserved.

\newif\iftracedfa

\def\taction#1\in#2{%
  \begingroup
      \edef\acstring{#1}% in case #1 is, say, \the\toksa, so we no longer have to keep track of it
      \iftracedfa\derrmessage{acting on <\meaning\acstring>\space in (\string#2) \getstatename#2 }\fi
      \toksa\expandafter{#2}\toksb\expandafter{\acstring}%
      \edef\next{\toksa{\the\toksa\the\toksb{%
                                      \iftracedfa\noexpand\derrmessage{default action: \noexpand\meaning\noexpand\default}\fi
                                      \noexpand\default}}%
                  \def\noexpand\next####1\the\toksb####2####{\noexpand\grabaction}}\next
      \expandafter\next\the\toksa\grabaction
  \tokreturn{}{}{\the\toksa}%
}

\def\tactionx#1\in#2{% exclusive version of the macro above (i.e. match the last action before the brace)
  \begingroup
      \edef\acstring{#1}% in case #1 is, say, \the\toksa, so we no longer have to keep track of it
      \iftracedfa\errmessage{acting on <\meaning\acstring>\space in (\string#2) \getstatename#2 }\fi
      \toksa\expandafter{#2}\toksb\expandafter{\acstring}%
      \edef\next{\toksa{\the\toksa\the\toksb{%
                                      \iftracedfa\noexpand\derrmessage{default action: \noexpand\meaning\noexpand\default}\fi
                                      \noexpand\default}}%
                  \def\noexpand\next####1\the\toksb####{\noexpand\grabaction}}\next
      \expandafter\next\the\toksa\grabaction
  \tokreturn{}{}{\the\toksa}%
}

\def\getstatename#1{\expandafter\g@tstatename#1.\raw}

\def\g@tstatename#1#2\raw{\expandafter\eatone\string#1}

\def\caction#1\in#2{%
  \begingroup
      \uccode`.=#1\relax
      \uppercase{\toksa{\taction{.}\in}}%
      \toksb{#2}\concat\toksa\toksb
  \tokreturn{}{}{\the\toksa}%
}

\def\checkforcount#1{% a rough implementation of `type checking' for a parameter
    \expandafter\expandafter\expandafter
        \ch@ckforcount\expandafter\meaning\expandafter#1\meaning\count\end
}

\expandafter\def\expandafter\ch@ckforcount\expandafter#\expandafter1\meaning\count#2\end{%
    \yystringempty{#2}{\toksa{\taction}}{\toksa{\caction}}%
}

\def\action#1\in#2{%
  \begingroup
      \checkforcount#1%
      \toksb{{#1}\in{#2}}\concat\toksa\toksb
  \tokreturn{}{}{\the\toksa}%
}%

\let\switchon\taction
\let\default\relax

\def\grabaction#1#2\grabaction{\toksa{#1}}

% grab the first token unless it is a space or a brace

\def\getfirsttoken#1{%
    \yystartsinbrace{#1}{ }{\yystartsinspace{#1}{ }{%
        \expandafter\g@tfirsttoken\string{#1} % terminate \romannumeral
    }}%
}

\def\g@tfirsttoken#1#2{%
    \expandafter\noexpand\expandafter#2\romannumeral0\expandafter\eatone\expandafter{\string}%
}

% macros for `breaking out of' conditionals:
% the idea is probably folklore;
% \yybreak ... \yycontinue are the most efficient as they read everything exactly once
% and expand only what is necessary; the next preferred way is the \xskip ... series
% the \yyfinish macro is here `to plug a hole' when it is stylistically preferable
% to keep the existing conditional structure and efficiency is not that important

\long\def\xskiptofi#1#2\fi{\fi#1}
\long\def\xskiptofifi#1#2\fi\fi{\fi\fi#1}
\long\def\xskiptofififi#1#2\fi\fi\fi{\fi\fi\fi#1}

\long\def\yyfinish#1#2\yycontinue{#2#1}% here just for completeness, use the ones below instead
\long\def\yybreak#1#2\yycontinue{\fi#1}
\long\def\yybreak@#1#2\yycontinue{\fi\fi#1}
\long\def\yybreak@@#1#2\yycontinue{\fi\fi\fi#1}
\long\def\yybreak@@@#1#2\yycontinue{\fi\fi\fi\fi#1}
\long\def\yybreak@@@@#1#2\yycontinue{\fi\fi\fi\fi\fi#1}

% we intentionally leave \yycontinue undefined since it should not be expanded normally
% every conditional that uses \yybreak?{...} ... \yycontinue construct
% must have an \else clause, i.e.\ a conditional such as
% \if ab
%     \yybreak{}%
% \yycontinue
% is a bad idea as it will result in an incomplete \iffalse
%\let\yycontinue\fi

% macros for taking care of extra tokens

\long\def\yyid#1{#1}
\long\def\yypione#1#2{#1}
\long\def\yypitwo#1#2{#2}
\long\def\yyswap#1#2{#2#1}
\long\def\eatone#1{}
\long\def\eattwo#1#2{}
\long\def\eattoend#1\end{}

\input xarithm.sty

% temporaries

\input trt1.sty

% \tempcd used by \printrule and implicit rule name macros in yymisc.sty
% \tempce used by implicit rule name macros in yymisc.sty

% \tokse and \toksf so far only used in the bison action for 
% \codepropstype

\newif\ifbootstrapmode