summaryrefslogtreecommitdiff
path: root/support/digestif/data/tikz.tags
blob: f14f8093f97bf2d3f1b64464468de9de4788d8f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
-- Copyright 2007-2013 Till Tantau
-- Copyright 2022 Augusto Stoffel, Jens Schneider
-- SPDX-License-Identifier: GFDL-1.2-or-later or LPPL-1.3c+
--
-- Adapted from the PGF manual, version 3.1.9a, which can be found at
-- https://ctan.org/pkg/pgf.
ctan_package = "tikz"
documentation = {{summary = "PGF Manual", uri = "texmf:doc/generic/pgf/pgfmanual.pdf"}}
commands = {
  afterdecoration = {
    arguments = {{meta = "after code"}},
    details = [[
Defines ⟨after code⟩ as commands to be executed after the decoration has
been applied to the current segment. This command can be omitted.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/afterdecoration"
  },
  anchor = {
    arguments = {{meta = "name"}, {meta = "code"}},
    details = [[
This command declares an anchor named ⟨name⟩. Unlike for saved anchors,
the ⟨code⟩ will not be executed each time a node is declared. Rather,
the ⟨code⟩ is only executed when the anchor is specifically requested;
either for anchoring the node during its creation or as a position in
the shape referenced later on.

The ⟨name⟩ is a quite arbitrary string that is not "passed down" to the
system level. Thus, names like `south` or `1` or `::` would all be fine.

A saved anchor is not automatically also a normal anchor. If you wish to
give the users access to a saved anchor you must declare a normal anchor
that just returns the position of the saved anchor.

When the ⟨code⟩ is executed, all saved anchor macros will be defined.
Thus, you can reference them in your ⟨code⟩. The effect of the ⟨code⟩
should be to set the values of `\pgf@x` and `\pgf@y` to the coordinates
of the anchor.

Let us consider some example for the `simple rectangle` shape. First, we
would like to make the upper right corner publicly available, for
example as `north east`:

    \anchor{north east}{\upperrightcorner}

The `\upperrightcorner` macro will set `\pgf@x` and `\pgf@y` to the
coordinates of the upper right corner. Thus, `\pgf@x` and `\pgf@y` will
have exactly the right values at the end of the anchor's code.

Next, let us define a `north west` anchor. For this anchor, we can
negate the `\pgf@x` variable:

    \anchor{north west}{
      \upperrightcorner
      \pgf@x=-\pgf@x
    }

Finally, it is a good idea to always define a `center` anchor, which
will be the default location for a shape.

    \anchor{center}{\pgfpointorigin}

You might wonder whether we should not take into consideration that the
node is not placed at the origin, but has been shifted somewhere.
However, the anchor positions are always specified in the shape's
"private" coordinate system. The "outer" transformation that has been
applied to the shape upon its creation is applied automatically to the
coordinates returned by the anchor's ⟨code⟩.

Our `simple rectangle` only has one text label (node part) called
`text`. This is the default situation, so we do not need to do anything.
For the `text` node part we must set up a `text` anchor. Upon creation
of a node, this anchor will be made to coincide with the left endpoint
of the baseline of the text label (within the private coordinate system
of the shape). By default, the `text` anchor is at the origin, but you
may change this. For example, we would say

    \anchor{text}{%
      \upperrightcorner%
      \pgf@x=-\pgf@x%
      \pgf@y=-\pgf@y%
    }

to center the text label on the origin in the shape coordinate space.
Note that we could *not* have written the following:

    \anchor{text}{\pgfpoint{-.5\wd\pgfnodeparttextbox}{-.5\ht\pgfnodeparttextbox}}

Do you see why this is wrong? The problem is that the box
`\pgfnodeparttextbox` will most likely not have the correct size when
the anchor is computed. After all, the anchor position might be
recomputed at a time when several other nodes have been created.

If a shape has several node parts, we would have to define an anchor for
each part.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/anchor"
  },
  anchorborder = {
    arguments = {{meta = "code"}},
    details = [[
A *border anchor* is an anchor point on the border of the shape. What
exactly is considered as the "border" of the shape depends on the shape.

When the user requests a point on the border of the shape using the
`\pgfpointshapeborder` command, the ⟨code⟩ will be executed to discern
this point. When the execution of the ⟨code⟩ starts, the dimensions
`\pgf@x` and `\pgf@y` will have been set to a location $p$ in the
shape's coordinate system, and relative to the anchor `center`. Note
that `\pgfpointshapeborder` will produce an error if the shape does not
contain the `center` anchor.

It is now the job of the ⟨code⟩ to set up `\pgf@x` and `\pgf@y` such
that they specify the point on the shape's border that lies on a
straight line from the shape's center to the point $p$. Usually, this is
a somewhat complicated computation, involving many case distinctions and
some basic math. Note that the output coordinates must be returned in
the shape's coordinate system, *no longer* relative to the `center`
anchor. While these different points of reference are only noticeable if
the `center` anchor is not at the origin of the shape's coordinate
system, it implies that "doing nothing" as a border anchor, i.e.,
returning the point that was fed to `\pgfpointshapeborder` requires
adding the `center` anchor to the input coordinates.

For our `simple rectangle` we must compute a point on the border of a
rectangle whose one corner is the origin (ignoring the depth for
simplicity) and whose other corner is `\upperrightcorner`. The following
code might be used:

    \anchorborder{%
      % Call a function that computes a border point. Since this
      % function will modify dimensions like \pgf@x, we must move them to
      % other dimensions.
      \@tempdima=\pgf@x
      \@tempdimb=\pgf@y
      \pgfpointborderrectangle{\pgfpoint{\@tempdima}{\@tempdimb}}{\upperrightcorner}
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/anchorborder"
  },
  arrow = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:tikz#/keys/tikz",
        meta = "options",
        optional = true
      },
      {meta = "arrow end tip"}
    },
    details = [[
This command simply draws the ⟨arrow end tip⟩ at the origin, pointing
right. This is exactly what you need when you want to draw an arrow tip
as a marking.

The ⟨options⟩ can only be given when TikZ is used. In this case, they
are executed in a scope that contains the arrow tip.

    \begin{tikzpicture}[decoration={
        markings,% switch on markings
        mark=at position 1cm  with {\node[red]{1cm};},
        mark=at position .75  with {\arrow[blue,line width=2mm]{>}},
        mark=at position -1cm with {\arrowreversed[black]{stealth}}}
        ]
      \draw [help lines] grid (3,2);
      \draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
    \end{tikzpicture}

Here is a more useful example:

    \begin{tikzpicture}[decoration={
        markings,% switch on markings
        mark=between positions 0 and .75 step 4mm with {\arrow{stealth}},
        mark=between positions .75 and 1 step 4mm with {\arrowreversed{stealth}}}
        ]
      \draw [help lines] grid (3,2);
      \draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/arrow"
  },
  arrowreversed = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:tikz#/keys/tikz",
        meta = "options",
        optional = true
      },
      {meta = "arrow end tip"}
    },
    details = [[
As above, only the arrow end tip is flipped and points in the other
direction.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/arrowreversed"
  },
  attribute = {
    arguments = {
      {meta = "attribute name"},
      {literal = "="},
      {meta = "initial value"},
      {literal = ";"}
    },
    details = [[
This command can only be given inside the body of an `\pgfooclass`
command. It declares the attribute named ⟨attribute name⟩. This name,
like method or class names, can be quite arbitrary, but should not
contain periods. Valid names are `an_ attribute?` or `my attribute`.

You can optionally specify an ⟨initial value⟩ for the attribute; if none
is given, the empty string is used automatically. The initial value is
the value that the attribute will have just after the object has been
created and before the constructor is called.

    \pgfooclass{stamp}{
      % This is the class stamp

      \attribute text;
      \attribute rotation angle = 20;

      \method stamp(#1) {
        \pgfooset{text}{#1} % Set the text
      }

      \method apply(#1,#2) {
        \pgfoothis.shift origin(#1,#2)

        % Draw the stamp:
        \node [rotate=\pgfoovalueof{rotation angle},font=\huge]
          {\pgfoovalueof{text}};
      }

      \method shift origin(#1,#2) { ... }

      \method set rotation (#1) {
        \pgfooset{rotation angle}{#1}
      }
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/attribute"
  },
  backgroundpath = {
    arguments = {{meta = "code"}},
    details = [[
This command specifies the path that "makes up" the background of the
shape. Note that the shape cannot prescribe what is going to happen with
the path: It might be drawn, shaded, filled, or even thrown away. If you
want to specify that something should "always" happen when this shape is
drawn (for example, if the shape is a stop-sign, we *always* want it to
be filled with a red color), you can use commands like
`\beforebackgroundpath`, explained below.

When the ⟨code⟩ is executed, all saved anchors will be in effect. The
⟨code⟩ should contain path construction commands.

For our `simple rectangle`, the following code might be used:

    \backgroundpath{
      \pgfpathrectanglecorners
        {\upperrightcorner}
        {\pgfpointscale{-1}{\upperrightcorner}}
    }

As the name suggests, the background path is used "behind" the text
labels. Thus, this path is used first, then the text labels are drawn,
possibly obscuring part of the path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/backgroundpath"
  },
  beforebackgroundpath = {
    arguments = {{meta = "code"}},
    details = [[
This command works like `\behindbackgroundpath`, only the ⟨code⟩ is
executed after the background path has been used, but before the texts
label are drawn.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/beforebackgroundpath"
  },
  beforedecoration = {
    arguments = {{meta = "before code"}},
    details = [[
Defines ⟨before code⟩ as (typically) PGF commands to be executed before
the decoration is applied to the current segment. This command can be
omitted. If you wish to set up some decoration specific parameters such
as segment length, or segment amplitude, then they can be set in ⟨before
code⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/beforedecoration"
  },
  beforeforegroundpath = {
    arguments = {{meta = "code"}},
    details = [[
This ⟨code⟩ is executed at the very end.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/beforeforegroundpath"
  },
  behindbackgroundpath = {
    arguments = {{meta = "code"}},
    details = [[
Unlike the previous two commands, ⟨code⟩ should not only construct a
path, it should also use this path in whatever way is appropriate. For
example, the ⟨code⟩ might fill some area with a uniform color.

Whatever the ⟨code⟩ does, it does it first. This means that any drawing
done by ⟨code⟩ will be even behind the background path.

Note that the ⟨code⟩ is protected with a `{pgfscope}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/behindbackgroundpath"
  },
  behindforegroundpath = {
    arguments = {{meta = "code"}},
    details = [[
The ⟨code⟩ is executed after the text labels have been drawn, but before
the foreground path is used.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/behindforegroundpath"
  },
  breakforeach = {
    details = [[
If this command is given inside a `\foreach` command, no further
executions of the ⟨commands⟩ will occur. However, the current execution
of the ⟨commands⟩ is continued normally, so it is probably best to use
this command only at the end of a `\foreach` command.

    \begin{tikzpicture}
      \foreach \x in {1,...,4}
        \foreach \y in {1,...,4}
        {
          \fill[red!50] (\x,\y) ellipse (3pt and 6pt);

          \ifnum \x<\y
            \breakforeach
          \fi
        }
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/breakforeach"
  },
  calendar = {
    arguments = {{meta = "calendar specification"}, {literal = ";"}},
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/calendar"
  },
  chainin = {
    arguments = {
      {delimiters = {"(", ")"}, meta = "existing name"},
      {
        delimiters = {"[", "]"},
        keys = "$ref:tikz#/keys/tikz",
        meta = "options",
        optional = true
      }
    },
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/chainin"
  },
  clip = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
This option causes all subsequent drawings to be clipped against the
current path and the size of subsequent paths will not be important for
the picture size. If you clip against a self-intersecting path, the
even-odd rule or the nonzero winding number rule is used to determine
whether a point is inside or outside the clipping region.

The clipping path is a graphic state parameter, so it will be reset at
the end of the current scope. Multiple clippings accumulate, that is,
clipping is always done against the intersection of all clipping areas
that have been specified inside the current scopes. The only way of
enlarging the clipping area is to end a `{scope}`.

    \begin{tikzpicture}
      \draw[clip] (0,0) circle (1cm);
      \fill[red] (1,0) circle (1cm);
    \end{tikzpicture}

It is usually a *very* good idea to apply the `clip` option only to the
first path command in a scope.

If you "only wish to clip" and do not wish to draw anything, you can use
the `\clip` command, which is a shorthand for `\path[clip]`.

    \begin{tikzpicture}
      \clip (0,0) circle (1cm);
      \fill[red] (1,0) circle (1cm);
    \end{tikzpicture}

To keep clipping local, use `{scope}` environments as in the following
example:

    \begin{tikzpicture}
      \draw (0,0) -- ( 0:1cm);
      \draw (0,0) -- (10:1cm);
      \draw (0,0) -- (20:1cm);
      \draw (0,0) -- (30:1cm);
      \begin{scope}[fill=red]
        \fill[clip] (0.2,0.2) rectangle (0.5,0.5);

        \draw (0,0) -- (40:1cm);
        \draw (0,0) -- (50:1cm);
        \draw (0,0) -- (60:1cm);
      \end{scope}
      \draw (0,0) -- (70:1cm);
      \draw (0,0) -- (80:1cm);
      \draw (0,0) -- (90:1cm);
    \end{tikzpicture}

There is a slightly annoying catch: You cannot specify certain graphic
options for the command used for clipping. For example, in the above
code we could not have moved the `fill=red` to the `\fill` command. The
reasons for this have to do with the internals of the PDF specification.
You do not want to know the details. It is best simply not to specify
any options for these commands.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/clip",
    summary = "Inside `{tikzpicture}` this is an abbreviation for `\\path[clip]`."
  },
  colorcurrentmixin = {
    details = [[
Expands to the current accumulated mix-in. Each nesting of a
`colormixin` adds a mix-in to this list.

    \begin{minipage}{\linewidth-6pt}\raggedright
    \begin{colormixin}{75!white}
      \colorcurrentmixin\ should be ``!75!white''\par
      \begin{colormixin}{75!black}
        \colorcurrentmixin\ should be ``!75!black!75!white''\par
        \begin{colormixin}{50!white}
          \colorcurrentmixin\ should be ``!50!white!75!black!75!white''\par
        \end{colormixin}
      \end{colormixin}
    \end{colormixin}
    \end{minipage}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/colorcurrentmixin"
  },
  coordinate = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
Inside `{tikzpicture}` this is an abbreviation for `\path coordinate`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/coordinate"
  },
  datavisualization = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
This command is available only inside a `{tikzpicture}` environment.

The ⟨data visualization options⟩ are used to configure the data
visualization, that is, how the data is to be depicted. The options are
executed with the path prefix `/tikz/data visualization`. This means
that normal TikZ options like `thin` or `red` cannot be used here.
Rather, a large number of options specific to data visualizations are
available.

As a minimum, you should specify at least two options: First, you should
use an option that selects an axis system that is appropriate for your
plot. Typical possible keys are `school book axes` or `scientific axes`,
detailed information on them can be found in Section ??.

Second, you use an option to select *how* the data should be visualized.
This is done using a key like `visualize as line` which will, as the
name suggests, visualize the data by connecting data points in the plane
using a line. Similarly, `visualize as smooth cycle` will try to fit a
smooth cycle through the data points. Detailed information on possible
visualizers can be found in Section ??.

Following these options, the ⟨data specification⟩ is used to provide the
actual to-be-visualized data. The syntax is somewhat similar to commands
like `\path`: The ⟨data specification⟩ is a sequence of keywords
followed by local options and parameters, terminated with a semicolon.
(Indeed, like for the `\path` command, the ⟨data visualizers options⟩
need not be specified at the beginning, but additional option surrounded
by square brackets may be given anywhere inside the ⟨data
specification⟩.)

The different possible keywords inside the ⟨data specification⟩ are
explained in the following.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/datavisualization"
  },
  decoration = {
    arguments = {{meta = "name"}},
    details = [[
This sets the decoration for the current state to ⟨name⟩. If this
command is omitted, the `moveto` decoration will be used.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/decoration"
  },
  deferredanchor = {
    arguments = {{meta = "name"}, {meta = "code"}},
    details = [[
This command declares an anchor named ⟨name⟩. It works like `\anchor`.
However, unlike for anchors declared by `\anchor`, ⟨name⟩ will *not* be
expanded during the shape declaration (i.e. not during
`\pgfdeclareshape`). Rather, the ⟨name⟩ is expanded when the *node* is
actually used (with `\pgfnode` or more likely with `\node`). This may be
useful if the anchor name is context dependent (depending, for example,
on the value of a key).

    \makeatletter
    \def\foo{foo}
    \pgfdeclareshape{simple shape}{%
      \savedanchor{\center}{%
        \pgfpointorigin}
      \anchor{center}{\center}
      \savedanchor{\anchorfoo}{%
        \pgf@x=1cm
        \pgf@y=0cm}
      \deferredanchor{anchor \foo}{\anchorfoo}}

    \begin{tikzpicture}
      \node[simple shape] (Test1) at (0,0) {};
      \fill (Test1.anchor foo) circle (2pt) node[below] {anchor foo anchor};
      %
      \def\foo{bar}
      \node[simple shape] (Test2) at (2,2) {};
      \fill (Test2.anchor bar) circle (2pt) node[below] {anchor bar anchor};
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/deferredanchor"
  },
  draw = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
Causes the path to be drawn. "Drawing" (also known as "stroking") can be
thought of as picking up a pen and moving it along the path, thereby
leaving "ink" on the canvas.

There are numerous parameters that influence how a line is drawn, like
the thickness or the dash pattern. These options are explained below.

If the optional ⟨color⟩ argument is given, drawing is done using the
given ⟨color⟩. This color can be different from the current filling
color, which allows you to draw and fill a path with different colors.
If no ⟨color⟩ argument is given, the last usage of the `color=` option
is used.

If the special color name `none` is given, this option causes drawing to
be "switched off". This is useful if a style has previously switched on
drawing and you locally wish to undo this effect.

Although this option is normally used on paths to indicate that the path
should be drawn, it also makes sense to use the option with a `{scope}`
or `{tikzpicture}` environment. However, this will *not* cause all paths
to be drawn. Instead, this just sets the ⟨color⟩ to be used for drawing
paths inside the environment.

    \begin{tikzpicture}
      \path[draw=red] (0,0) -- (1,1) -- (2,1) circle (10pt);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/draw",
    summary = "Inside `{tikzpicture}` this is an abbreviation for `\\path[draw]`."
  },
  fill = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
This option causes the path to be filled. All unclosed parts of the path
are first closed, if necessary. Then, the area enclosed by the path is
filled with the current filling color, which is either the last color
set using the general `color=` option or the optional color ⟨color⟩. For
self-intersection paths and for paths consisting of several closed
areas, the "enclosed area" is somewhat complicated to define and two
different definitions exist, namely the nonzero winding number rule and
the even odd rule, see the explanation of these options, below.

Just as for the `draw` option, setting ⟨color⟩ to `none` disables
filling locally.

    \begin{tikzpicture}
      \fill (0,0) -- (1,1) -- (2,1);
      \fill (4,0) circle (.5cm)  (4.5,0) circle (.5cm);
      \fill[even odd rule] (6,0) circle (.5cm)  (6.5,0) circle (.5cm);
      \fill (8,0) -- (9,1) -- (10,0) circle (.5cm);
    \end{tikzpicture}

If the `fill` option is used together with the `draw` option (either
because both are given as options or because a `\filldraw` command is
used), the path is filled *first*, then the path is drawn *second*. This
is especially useful if different colors are selected for drawing and
for filling. Even if the same color is used, there is a difference
between this command and a plain `fill`: A "filldrawn" area will be
slightly larger than a filled area because of the thickness of the
"pen".

    \begin{tikzpicture}[fill=yellow!80!black,line width=5pt]
      \filldraw (0,0) -- (1,1) -- (2,1);
      \filldraw (4,0) circle (.5cm)  (4.5,0) circle (.5cm);
      \filldraw[even odd rule] (6,0) circle (.5cm)  (6.5,0) circle (.5cm);
      \filldraw (8,0) -- (9,1) -- (10,0) circle (.5cm);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/fill",
    summary = "Inside `{tikzpicture}` this is an abbreviation for `\\path[fill]`."
  },
  filldraw = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
Inside `{tikzpicture}` this is an abbreviation for `\path[fill,draw]`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/filldraw"
  },
  foreach = {
    arguments = {{literal = " "}, {meta = "variables"}, {literal = " "}},
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/foreach"
  },
  foregroundpath = {
    arguments = {{meta = "code"}},
    details = [[
This command works like `\backgroundpath`, only it is invoked after the
text labels have been drawn. This means that this path can possibly
obscure (part of) the text labels.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/foregroundpath"
  },
  graph = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
Inside a `{tikzpicture}` this is an abbreviation for `\path graph`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/graph"
  },
  ifdate = {
    arguments = {{meta = "tests"}, {meta = "code"}, {meta = "else code"}},
    details = [[
\[ifdate\] This command has the same effect as calling
`\pgfcalendarifdate` for the current date.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifdate"
  },
  inheritanchor = {
    arguments = {
      {literal = "[from="},
      {meta = "another shape name"},
      {literal = "]"},
      {meta = "name"}
    },
    details = [[
Inherits the code of one specific anchor named ⟨name⟩ from ⟨another
shape name⟩. Thus, unlike saved anchors, which must be inherited
collectively, normal anchors can and must be inherited individually.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/inheritanchor"
  },
  inheritanchorborder = {
    arguments = {
      {literal = "[from="},
      {meta = "another shape name"},
      {literal = "]"}
    },
    details = [[
Inherits the border anchor code from ⟨another shape name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/inheritanchorborder"
  },
  inheritbackgroundpath = {
    arguments = {
      {literal = "[from="},
      {meta = "another shape name"},
      {literal = "]"}
    },
    details = [[
Inherits the background path code from ⟨another shape name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/inheritbackgroundpath"
  },
  inheritbeforebackgroundpath = {
    arguments = {
      {literal = "[from="},
      {meta = "another shape name"},
      {literal = "]"}
    },
    details = [[
Inherits the before background path code from ⟨another shape name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/inheritbeforebackgroundpath"
  },
  inheritbeforeforegroundpath = {
    arguments = {
      {literal = "[from="},
      {meta = "another shape name"},
      {literal = "]"}
    },
    details = [[
Inherits the before foreground path code from ⟨another shape name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/inheritbeforeforegroundpath"
  },
  inheritbehindbackgroundpath = {
    arguments = {
      {literal = "[from="},
      {meta = "another shape name"},
      {literal = "]"}
    },
    details = [[
This command can be used to inherit the code used for the drawings
behind the background path from ⟨another shape name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/inheritbehindbackgroundpath"
  },
  inheritbehindforegroundpath = {
    arguments = {
      {literal = "[from="},
      {meta = "another shape name"},
      {literal = "]"}
    },
    details = [[
Inherits the behind foreground path code from ⟨another shape name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/inheritbehindforegroundpath"
  },
  inheritforegroundpath = {
    arguments = {
      {literal = "[from="},
      {meta = "another shape name"},
      {literal = "]"}
    },
    details = [[
Inherits the foreground path code from ⟨another shape name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/inheritforegroundpath"
  },
  inheritsavedanchors = {
    arguments = {
      {literal = "[from="},
      {meta = "another shape name"},
      {literal = "]"}
    },
    details = [[
This command allows you to inherit the code for saved anchors from
⟨another shape name⟩. The idea is that if you wish to create a new shape
that is just a small modification of a another shape, you can recycle
the code used for ⟨another shape name⟩.

The effect of this command is the same as if you had called
`\savedanchor` and `\saveddimen` for each saved anchor or saved
dimension declared in ⟨another shape name⟩. Thus, it is not possible to
"selectively" inherit only some saved anchors, you always have to
inherit all saved anchors from another shape. However, you can inherit
the saved anchors of more than one shape by calling this command several
times.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/inheritsavedanchors"
  },
  jobname = {
    details = [[
The value of `\jobname` is one of `\tikzexternalrealjob` or
`\pgfactualjobname`, depending on the configuration. In short: if
auxiliary file support (`\label` and `\ref`) is activated,
`\jobname=\tikzexternalrealjob` (since that's the base file name of
auxiliary files).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/jobname"
  },
  matrix = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
This option can be passed to a `node` path command. It signals that the
node will contain a matrix.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (4,2);
      \node [matrix,fill=red!20,draw=blue,very thick] (my matrix) at (2,1)
      {
        \draw (0,0)   circle (4mm); & \node[rotate=10] {Hello};        \\
        \draw (0.2,0) circle (2mm); & \fill[red]   (0,0) circle (3mm); \\
      };

      \draw [very thick,->] (0,0) |- (my matrix.west);
    \end{tikzpicture}

The exact syntax of the matrix is explained in the course of this
section.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/matrix",
    summary = "Inside `{tikzpicture}` this is an abbreviation for `\\path node[matrix]`."
  },
  method = {
    arguments = {
      {meta = "method name"},
      {delimiters = {"(", ")"}, meta = "parameter list"},
      {meta = "method body"}
    },
    details = [[
This macro, which is only defined inside a class definition, defines a
new method named ⟨method name⟩. Just like class names, method names can
contain spaces and other characters, so ⟨method names⟩ like
`put_ stamp_ here` or `put stamp here` are both legal.

Three method names are special: First, a method having either the same
name as the class or having the name `init` is called the *constructor*
of the class. There are (currently) no destructors; objects simply
become "undefined" at the end of the scope in which they have been
created. The other two methods are called `get id` and `get handle`,
which are always automatically defined and which you cannot redefine.
They are discussed in Section ??.

Overloading of methods by differing numbers of parameters is not
possible, that is, it is illegal to have two methods inside a single
class with the same name (despite possibly different parameter lists).
However, two different classes may contain a method with the same name,
that is, classes form namespaces for methods. Also, a class can
(re)implement a method from a superclass.

The ⟨method name⟩ must be followed by a ⟨parameter list⟩ in parentheses,
which must be present even when the ⟨parameter list⟩ is empty. The
⟨parameter list⟩ is actually a normal TeX parameter list that will be
matched against the parameters inside the parentheses upon method
invocation and, thus, could be something like `# 1# 2 foo # 3 bar.`, but
a list like `# 1,# 2,# 3` is more customary. By setting the parameter
list to just `# 1` and then calling, say, `\pgfkeys{# 1}` at the
beginning of a method, you can implement Objective-C-like named
parameters.

When a method is called, the ⟨body⟩ of the method will be executed. The
main difference to a normal macro is that while the ⟨body⟩ is executed,
a special macro called `\pgfoothis` is set up in such a way that it
references the object for which the method is executed.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/method"
  },
  n = {
    arguments = {{meta = "number register"}},
    details = [[
When this macro is used on the left-hand side of an `=`-sign in a let
operation, it has no effect and is just there for readability. When the
macro is used on the right-hand side of an `=`-sign or in the body of
the let operation, then it expands to the value stored in the ⟨number
register⟩. This will either be a dimensionless number like `2.0` or a
dimension like `5.6pt`.

For instance, if we say `let \n1={1pt+2pt}, \n2={1+2} in ...`, then
inside the `...` part the macro `\n1` will expand to `3pt` and `\n2`
expands to `3`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/n"
  },
  node = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
Inside `{tikzpicture}` this is an abbreviation for `\path node`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/node"
  },
  nodepart = {
    arguments = {
      {literal = "["},
      {keys = "$ref:tikz#/keys/tikz", meta = "options"},
      {literal = "]"},
      {meta = "part name"}
    },
    details = [[
This command can only be used inside the ⟨text⟩ argument of a `node`
path operation. It works a little bit like a `\part` command in LaTeX.
It will stop the typesetting of whatever node part was typeset until now
and then start putting all following text into the node part named ⟨part
name⟩ -- until another `\partname` is encountered or until the node
⟨text⟩ ends. The ⟨options⟩ will be local to this part.

    \begin{tikzpicture}
      \node [circle split,draw,double,fill=red!20]
      {
        % No \nodepart has been used, yet. So, the following is put in the
        % ``text'' node part by default.
        $q_1$
        \nodepart{lower} % Ok, end ``text'' part, start ``output'' part
        $00$
      }; % output part ended.
    \end{tikzpicture}

You will have to lookup which parts are defined by a shape.

The following styles influences node parts:
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/nodepart"
  },
  nodeparts = {
    arguments = {{meta = "list of node parts"}},
    details = [[
This command declares which parts make up nodes of this shape. A *node
part* is a (possibly empty) text label that is drawn when a node of the
shape is created.

By default, a shape has just one node part called `text`. However, there
can be several node parts. For example, the `circle split` shape has two
parts: the `text` part, which shows that the upper text, and a `lower`
part, which shows the lower text. For the `circle split` shape the
`\nodeparts` command was called with the argument `{text,lower}`.

When a multipart node is created, the text labels are drawn in the
sequences listed in the ⟨list of node parts⟩. For each node part, you
must have declared one anchor and the TeX-box of the part is placed at
this anchor. For a node part called `XYZ` the TeX-box
`\pgfnodepartXYZbox` is placed at anchor `XYZ`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/nodeparts"
  },
  p = {
    arguments = {{meta = "point register"}},
    details = [[
When this macro is used on the left-hand side of an `=`-sign in a let
operation, it has no effect and is just there for readability. When the
macro is used on the right-hand side of an `=`-sign or in the body of
the let operation, then it expands to the $x$-part (measured in
TeX points) of the coordinate stored in the ⟨register⟩, followed, by a
comma, followed by the $y$-part.

For instance, if we say `let \p1=(1pt,1pt+2pt) in ...`, then inside the
`...` part the macro `\p1` will expand to exactly the seven characters
"1pt,3pt". This means that you when you write `(\p1)`, this expands to
`(1pt,3pt)`, which is presumably exactly what you intended.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/p"
  },
  path = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
This command is available only inside a `{tikzpicture}` environment.

The ⟨specification⟩ is a long stream of *path operations*. Most of these
path operations tell TikZ how the path is built. For example, when you
write `–(0,0)`, you use a *line-to operation* and it means "continue the
path from wherever you are to the origin".

At any point where TikZ expects a path operation, you can also give some
graphic options, which is a list of options in brackets, such as
`[rounded corners]`. These options can have different effects:

1.  Some options take "immediate" effect and apply to all subsequent
    path operations on the path. For example, the `rounded corners`
    option will round all following corners, but not the corners
    "before" and if the `sharp corners` is given later on the path (in a
    new set of brackets), the rounding effect will end.

        \tikz \draw (0,0) -- (1,1)
                   [rounded corners] -- (2,0) -- (3,1)
                   [sharp corners] -- (3,0) -- (2,1);

    Another example are the transformation options, which also apply
    only to subsequent coordinates.

2.  The options that have immediate effect can be "scoped" by putting
    part of a path in curly braces. For example, the above example could
    also be written as follows:

        \tikz \draw (0,0) -- (1,1)
                   {[rounded corners] -- (2,0) -- (3,1)}
                   -- (3,0) -- (2,1);

3.  Some options only apply to the path as a whole. For example, the
    `color=` option for determining the color used for, say, drawing the
    path always applies to all parts of the path. If several different
    colors are given for different parts of the path, only the last one
    (on the outermost scope) "wins":

        \tikz \draw (0,0) -- (1,1)
                   [color=red] -- (2,0) -- (3,1)
                   [color=blue] -- (3,0) -- (2,1);

    Most options are of this type. In the above example, we would have
    had to "split up" the path into several `\path` commands:

        \tikz{\draw (0,0) -- (1,1);
              \draw [color=red] (1,1) -- (2,0) -- (3,1);
              \draw [color=blue] (3,1) -- (3,0) -- (2,1);}

By default, the `\path` command does "nothing" with the path, it just
"throws it away". Thus, if you write `\path(0,0)–(1,1);`, nothing is
drawn in your picture. The only effect is that the area occupied by the
picture is (possibly) enlarged so that the path fits inside the area. To
actually "do" something with the path, an option like `draw` or `fill`
must be given somewhere on the path. Commands like `\draw` do this
implicitly.

Finally, it is also possible to give *node specifications* on a path.
Such specifications can come at different locations, but they are always
allowed when a normal path operation could follow. A node specification
starts with `node`. Basically, the effect is to typeset the node's text
as normal TeX text and to place it at the "current location" on the
path. The details are explained in Section ??.

Note, however, that the nodes are *not* part of the path in any way.
Rather, after everything has been done with the path what is specified
by the path options (like filling and drawing the path due to a `fill`
and a `draw` option somewhere in the ⟨specification⟩), the nodes are
added in a post-processing step.

*Note:* When scanning for path operations TikZ expands tokens looking
for valid path operations. This however implies that these tokens has to
be fully expandable up to the point where it results in a valid path
operation.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/path"
  },
  pattern = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
This option causes the path to be filled with a pattern. If the ⟨name⟩
is given, this pattern is used, otherwise the pattern set in the
enclosing scope is used. As for the `draw` and `fill` options, setting
⟨name⟩ to `none` disables filling locally.

The pattern works like a fill color. In particular, setting a new fill
color will fill the path with a solid color once more.

Strangely, no ⟨name⟩s are permissible by default. You need to load for
instance the `patterns` library, see Section ??, to install predefined
patterns.

    \begin{tikzpicture}
      \draw[pattern=dots] (0,0) circle (1cm);
      \draw[pattern=fivepointed stars] (0,0) rectangle (3,1);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pattern",
    summary = "Inside `{tikzpicture}` this is an abbreviation for `\\path[pattern]`."
  },
  pic = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
Inside `{tikzpicture}` this is an abbreviation for `\path pic`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pic"
  },
  rule = {
    arguments = {{literal = "{"}, {meta = "head"}},
    details = [[
Declare a rule. ⟨head⟩ should consist of a single symbol, which need not
have been declared using `\symbol` or exist as a default symbol (in
fact, the more interesting L-systems depend on using symbols with no
corresponding code, to control the "growth" of the system). ⟨body⟩
consists of a string of symbols, which again need not necessarily have
any code associated with them.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/rule"
  },
  savedanchor = {
    arguments = {{meta = "command"}, {meta = "code"}},
    details = [[
This command declares a saved anchor. The argument ⟨command⟩ should be a
TeX macro name like `\centerpoint`.

The ⟨code⟩ will be executed each time `\pgfnode` (or
`\pgfmultipartnode`) is called to create a node of the shape ⟨shape
name⟩. When the ⟨code⟩ is executed, the TeX-boxes of the node parts will
contain the text labels of the node. Possibly, these box are void. For
example, if there is just a `text` part, the node `\pgfnodeparttextbox`
will be set up when the ⟨code⟩ is executed.

The ⟨code⟩ can use the width, height, and depth of the box(es) to
compute the location of the saved anchor. In addition, the ⟨code⟩ can
take into account the values of dimensions like `\pgfshapeminwidth` or
`\pgfshapeinnerxsep`. Furthermore, the ⟨code⟩ can take into
consideration the values of any further shape-specific variables that
are set at the moment when `\pgfnode` is called.

The net effect of the ⟨code⟩ should be to set the two TeX dimensions
`\pgf@x` and `\pgf@y`. One way to achieve this is to say `\pgfpoint{`⟨x
value⟩`}{`⟨y value⟩`}` at the end of the ⟨code⟩, but you can also just
set these variables. The values that `\pgf@x` and `\pgf@y` have after
the code has been executed, let us call them $x$ and $y$, will be
recorded and stored together with the node that is created by the
command `\pgfnode`.

The macro ⟨command⟩ is defined to be `\pgfpoint{`$x$`}{`$y$`}`. However,
the ⟨command⟩ is only locally defined while anchor positions are being
computed. Thus, it is possible to use very simple names for ⟨command⟩,
like `\center` or `\a`, without causing a name-clash. (To be precise,
very simple ⟨command⟩ names will clash with existing names, but only
locally inside the computation of anchor positions; and we do not need
the normal `\center` command during these computations.)

For our `simple rectangle` shape, we will need only one saved anchor:
The upper right corner. The lower left corner could either be the origin
or the "mirrored" upper right corner, depending on whether we want the
text label to have its lower left corner at the origin or whether the
text label should be centered on the origin. Either will be fine, for
the final shape this will make no difference since the shape will be
shifted anyway. So, let us assume that the text label is centered on the
origin (this will be specified later on using the `text` anchor). We get
the following code for the upper right corner:

    \savedanchor{\upperrightcorner}{
      \pgf@y=.5\ht\pgfnodeparttextbox % height of the box, ignoring the depth
      \pgf@x=.5\wd\pgfnodeparttextbox % width of the box
    }

If we wanted to take, say, the `\pgfshapeminwidth` into account, we
could use the following code:

    \savedanchor{\upperrightcorner}{
      \pgf@y=.\ht\pgfnodeparttextbox % height of the box
      \pgf@x=.\wd\pgfnodeparttextbox % width of the box
      \setlength{\pgf@xa}{\pgfshapeminwidth}
      \ifdim\pgf@x<.5\pgf@xa
        \pgf@x=.5\pgf@xa
      \fi
    }

Note that we could not have written `.5\pgfshapeminwidth` since the
minimum width is stored in a "plain text macro", not as a real
dimension. So if `\pgfshapeminwidth` depth were 2cm, writing
`.5\pgfshapeminwidth` would yield the same as `.52cm`.

In the "real" `rectangle` shape the code is somewhat more complex, but
you get the basic idea.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/savedanchor"
  },
  saveddimen = {
    arguments = {{meta = "command"}, {meta = "code"}},
    details = [[
This command is similar to `\savedanchor`, only instead of setting
⟨command⟩ to `\pgfpoint{`$x$`}{`$y$`}`, the ⟨command⟩ is set just to
(the value of) $x$.

In the `simple rectangle` shape we might use a saved dimension to store
the depth of the shape box.

    \saveddimen{\depth}{
      \pgf@x=\dp\pgfnodeparttextbox
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/saveddimen"
  },
  savedmacro = {
    arguments = {{meta = "command"}, {meta = "code"}},
    details = [[
This command is similar to `\saveddimen`, only at some point in ⟨code⟩,
⟨command⟩ should be defined appropriately, (this could be a value, or
some text).

In the `regular polygon` shape, a saved macro is used to store the
number of sides of the polygon.

    \savedmacro{\sides}{\let\sides\pgfpolygonsides}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/savedmacro"
  },
  scoped = {
    arguments = {
      {meta = "animations spec"},
      {
        delimiters = {"[", "]"},
        keys = "$ref:tikz#/keys/tikz",
        meta = "options",
        optional = true
      },
      {meta = "path command"}
    },
    details = [[
This command works like `\tikz`, only you can use it inside a
`{tikzpicture}`. It will take the following ⟨path command⟩ and put it
inside a `{scope}` with the ⟨options⟩ set. The ⟨path command⟩ may either
be a single command ended by a semicolon or it may contain multiple
commands, but then they must be surrounded by curly braces.

    \begin{tikzpicture}
      \node [fill=white] at (1,1) {Hello world};
      \scoped [on background layer]
        \draw (0,0) grid (3,2);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/scoped"
  },
  shade = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
Causes the path to be shaded using the currently selected shading (more
on this later). If this option is used together with the `draw` option,
then the path is first shaded, then drawn.

It is not an error to use this option together with the `fill` option,
but it makes no sense.

    \tikz \shade (0,0) circle (1ex);

    \tikz \shadedraw (0,0) circle (1ex);
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/shade",
    summary = "Inside `{tikzpicture}` this is an abbreviation for `\\path[shade]`."
  },
  shadedraw = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
Inside `{tikzpicture}` this is an abbreviation for `\path[shade,draw]`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/shadedraw"
  },
  spy = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:tikz#/keys/tikz",
        meta = "options",
        optional = true
      },
      {literal = "on"},
      {meta = "coordinate"}
    },
    details = [[
This command can only be used inside a `spy scope`. Let us start with
the syntax:

-   The `\spy` command is not a special case of `\path`. Rather, it has
    a small parser of its own.

-   Following the optional ⟨options⟩, you must write `on`, followed by a
    coordinate. This coordinate will be the center of the area that is
    to be magnified.

-   Following the ⟨coordinate⟩, you must write `in node` followed by
    some ⟨node options⟩. The syntax for these options is the same as for
    a normal `node` path command, such as `[left]` or
    `(foo) [red] at (bar)`. *However*, ⟨node options⟩ are *not* followed
    by a curly brace. Rather, the ⟨node options⟩ must directly be
    followed by a semicolon.

The effect of this command is the following: The ⟨options⟩,
⟨coordinate⟩, and ⟨node options⟩ are stored internally till the end of
the current `spy scope`. This means that, in particular, you can
reference any node inside the `spy scope`, even if it is not yet defined
when the `\spy` command is given. At the end of the current `spy scope`,
two nodes are created, called the *spy-in node* and the *spy-on node*.

-   The *spy-in node* is the node that contains a magnified part of the
    picture (the node *in* which we see on what we spy). This node is,
    indeed, a normal TikZ node, so you can use all standard options to
    style this node. In particular, you can specify a shape or a border
    color or a drop shadow or whatever. The only thing that is special
    about this node is that instead of containing some normal text, its
    "text" is the magnified picture.

    To be precise, the picture of the `spy scope` is scaled by a certain
    factor, specified by the `lens` or `magnification` options discussed
    below, and is shifted in such a way that the ⟨coordinate⟩ lies at
    the center of the spy-on node.

-   The *spy-on node* is a node that is centered on the ⟨coordinate⟩ and
    whose size reflects exactly the area shown inside the spy-in node
    (the node containing *on* what we spy).

Let us now go over what happens in detail when the two nodes are
created:

1.  A scope is started. Two sets of options are used with this scope:
    First, the options passed to the enclosing `spy scope` and then the
    ⟨options⟩ (which will, thus, overrule the options of the
    `spy scope`).

2.  Then, the spy-on node is created. However, we will first discuss the
    spy-in node.

3.  The spy-in node is created after the spy-on node (and, hence, will
    cover the spy-on node in case they overlap). When this node is
    created, the ⟨node options⟩ are used in addition to the effect
    caused by the ⟨options⟩ and the options of the `{spy scope}`.
    Additionally, the following style is used:

    The position of the node (the `at` option) is set to the
    ⟨coordinate⟩ by default, so that it will cover the to-be-magnified
    area. You can change this by providing the `at` option yourself:

        \begin{tikzpicture}
          [spy using outlines={circle, magnification=3, size=1cm}]

          \draw [decoration=Koch curve type 1]
            decorate{ decorate{ decorate{ (0,0) -- (2,0) }}};

          \spy [red]  on (1.6,0.3) in node;
          \spy [blue] on (1,1)     in node at (1,-1);
        \end{tikzpicture}

    No "text" can be specified for the node. Rather, the "text" shown
    inside this node is the picture of the current `spy scope`, but
    canvas-transformed according to the following key:

    Since the most common transformation is undoubtedly a simple
    scaling, there is a special style for this:

    Now, usually the size of a node is determined in such a way that it
    "fits" around the text of the node. For a spy-on node this is not a
    good approach since the "text" of this node would contain "the whole
    picture". Because of this, TikZ acts as if the "text" of the node
    has zero size. You must then use keys like `minimum size` to cause
    the node to have a certain size. Note that the key `size` is an
    abbreviation for `minimum size` inside a spy scope.

    You can name the spy-on node in the usual ways. Additionally, the
    node is (also) always named `tikzspyinnode`. Following the spy
    scope, you can use this node like any other node:

        \begin{tikzpicture}
          \begin{scope}
            [spy using outlines={circle, magnification=3, size=2cm, connect spies}]

            \draw [decoration=Koch curve type 1]
              decorate{ decorate{ decorate{ (0,0) -- (2,0) }}};

            \spy [red] on (1.6,0.3) in node (a) [left] at (3.5,-1.25);

            \spy [blue, size=1cm] on (1,1) in node (b) [right] at (0,-1.25);
          \end{scope}
          \draw [ultra thick, green!50!black] (b) -- (a.north west);
        \end{tikzpicture}

4.  Once both nodes have been created, the current value of the
    following key is used to connect them:

Returning to the creation of the spy-in node: This node is centered on
⟨coordinate⟩ (more precisely, its anchor is set to `center` and the `at`
option is set to ⟨coordinate⟩). Its size and shape are initially
determined in the same way as the size and shape of the spy-on node
(unless, of course, you explicitly provide a different shape for, say,
the spy-on node locally, which is not really a good idea). Then,
additionally, the *inverted* transformation done by the `lens` option is
applied, resulting in a node whose size and shape exactly corresponds to
the area in the picture that is shown in the spy-on node.

    \begin{tikzpicture}
      [spy using outlines={lens={scale=3,rotate=20}, size=2cm, connect spies}]

      \draw [decoration=Koch curve type 1]
        decorate{ decorate{ decorate{ (0,0) -- (2,0) }}};

      \spy [red] on (1.6,0.3) in node at (2.5,-1.25);
    \end{tikzpicture}

Like for the spy-in node, a style can be used to format the spy-on node:

The spy-on node is named `tikzspyonnode` (but, as always, this node is
only available after the spy scope). If you have multiple spy-on nodes
and you would like to access all of them, you need to use the `name` key
inside the `every spy on node` style.

The `inner sep` and `outer sep` of both spy-in and spy-on nodes are set
to `0pt`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/spy"
  },
  state = {
    arguments = {
      {meta = "name"},
      {
        delimiters = {"[", "]"},
        keys = "$ref:tikz#/keys/tikz",
        meta = "options",
        optional = true
      },
      {meta = "code"}
    },
    details = [[
Declares the state ⟨name⟩ inside the current meta-decoration automaton.
Unlike decorations, states in meta-decorations are not executed within a
group, which makes the persistent computation options superfluous.
Consider using an initial state with `width=0pt` to do precalculations
that could speed the execution of the meta-decoration.

The ⟨options⟩ are executed with the key path set to
`/pgf/meta-decorations automaton/`, and the following keys are defined
for this path:

The code in ⟨code⟩ is quite different from the code in a decoration
state. In almost all cases only the following three macros will be
required:

There are some macros that may be useful when creating meta-decorations
(note that they are all macros):
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/state"
  },
  symbol = {
    arguments = {{meta = "name"}, {meta = "code"}},
    details = [[
This defines a symbol called ⟨name⟩ for a specific L-system, and
associates it with ⟨code⟩.

A symbol should consist of a single alpha-numeric character (i.e.,
`A`-`Z`, `a`-`z` or `0`-`9`). The symbols `F`, `f`, `+`, `-`, `[` and
`]` are available by default so do not need to be defined for each
L-system. However, if you are feeling adventurous, they can be redefined
for specific L-systems if required. The L-system treats the default
symbols as follows (the commands they execute are described below):

-   `F` move forward a certain distance, drawing a line. Uses
    `\pgflsystemdrawforward`.

-   `f` move forward a certain distance, without drawing a line. Uses
    `\pgflsystemmoveforward`.

-   `+` turn left by some angle. Uses `\pgflsystemturnleft`.

-   `-` turn right by some angle. Uses `\pgflsystemturnright`.

-   `[` save the current state (i.e., the position and direction). Uses
    `\pgflsystemsavestate`.

-   `]` restore the last saved state. Uses `\pgflsystemrestorestate`.

The symbols `[` and `]` act like a stack: `[` pushes the state of the
L-system on to the stack, and `]` pops a state off the stack.

When ⟨code⟩ is executed, the transformation matrix is set up so that the
origin is at the current position and the positive x-axis "points
forward", so `\pgfpathlineto{\pgfpoint{1cm}{0cm}}` draws a line 1cm
forward.

The following keys can alter the production of an L-system. However,
they do not store values in themselves.

For speed and convenience, when the code for a symbol is executed, the
following commands are available.

The following commands may be useful if you wish to define your own
symbols.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/symbol"
  },
  tikz = {
    arguments = {
      {meta = "animations spec"},
      {
        delimiters = {"[", "]"},
        keys = "$ref:tikz#/keys/tikz",
        meta = "options",
        optional = true
      },
      {meta = "path commands"}
    },
    details = [[
This command places the ⟨path commands⟩ inside a `{tikzpicture}`
environment. The ⟨path commands⟩ may contain paragraphs and fragile
material (like verbatim text).

If there is only one path command, it need not be surrounded by curly
braces, if there are several, you need to add them (this is similar to
the `\foreach` statement and also to the rules in programming languages
like Java or C concerning the placement of curly braces).

`\tikz{\draw (0,0) rectangle (2ex,1ex);}` yields \[PICTURE\]

`\tikz \draw (0,0) rectangle (2ex,1ex);` yields \[PICTURE\]
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikz"
  },
  tikzaliascoordinatesystem = {
    arguments = {{meta = "new name"}, {meta = "old name"}},
    details = [[
Creates an alias of ⟨old name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzaliascoordinatesystem"
  },
  tikzappendtofigurename = {
    arguments = {{meta = "suffix"}},
    details = [[
Appends ⟨suffix⟩ to the actual value of `figure name`.

It is a shortcut for
`\tikzset{external/figure name/.add={}``{suffix}``}` (a shortcut which
is also supported if TikZ is not installed, see below).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzappendtofigurename"
  },
  tikzdeclarecoordinatesystem = {
    arguments = {{meta = "name"}, {meta = "code"}},
    details = [[
This command declares a new coordinate system named ⟨name⟩ that can
later on be used by writing `(`⟨name⟩` cs:`⟨arguments⟩`)`. When
TikZ encounters a coordinate specified in this way, the ⟨arguments⟩ are
passed to ⟨code⟩ as argument `# 1`.

It is now the job of ⟨code⟩ to make sense of the ⟨arguments⟩. At the end
of ⟨code⟩, the two TeX dimensions `\pgf@x` and `\pgf@y` should be have
the $x$- and $y$-canvas coordinate of the coordinate.

It is not necessary, but customary, to parse ⟨arguments⟩ using the
key--value syntax. However, you can also parse it in any way you like.

In the following example, a coordinate system `cylindrical` is defined.

    \makeatletter
    \define@key{cylindricalkeys}{angle}{\def\myangle{#1}}
    \define@key{cylindricalkeys}{radius}{\def\myradius{#1}}
    \define@key{cylindricalkeys}{z}{\def\myz{#1}}
    \tikzdeclarecoordinatesystem{cylindrical}%
    {%
      \setkeys{cylindricalkeys}{#1}%
      \pgfpointadd{\pgfpointxyz{0}{0}{\myz}}{\pgfpointpolarxy{\myangle}{\myradius}}
    }
    \begin{tikzpicture}[z=0.2pt]
      \draw [->] (0,0,0) -- (0,0,350);
      \foreach \num in {0,10,...,350}
        \fill (cylindrical cs:angle=\num,radius=1,z=\num) circle (1pt);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzdeclarecoordinatesystem"
  },
  tikzdeclarepattern = {
    arguments = {{meta = "config"}},
    details = [[
A pattern declared with `\pgfdeclarepattern` can only execute PGF code.
This command extends the functionality to also allow TikZ code. All the
same keys of `\pgfdeclarepattern` are valid, but some of them have been
overloaded to give a more natural TikZ syntax.

In addition to the overloaded keys, some new keys have been added.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzdeclarepattern"
  },
  tikzdvdeclarestylesheetcolorseries = {
    arguments = {
      {meta = "name"},
      {meta = "color model"},
      {meta = "initial color"},
      {meta = "step"}
    },
    details = [[
This command creates a new style sheet using `\pgfdvdeclarestylesheet`.
This style sheet will only have a default style setup that maps numbers
to the color in the color series starting with ⟨initial color⟩ and
having a stepping of ⟨step⟩. Note that when the value of the attribute
is `1`, which it is the first data set, the *second* color in the color
series is used (since counting starts at `0` for color series). Thus, in
general, you need to start the ⟨initial color⟩ "one early".

        data point [x=2, y=2,       set=normal]
        data point [x=0, y=1,       set=heated]
        data point [x=2, y=1,       set=heated]
        data point [x=0.5, y=1.5,   set=critical]
        data point [x=2.25, y=1.75, set=critical]
    };},
    ]
    \tikzdvdeclarestylesheetcolorseries{greens}{hsb}{0.3,1.3,0.8}{0,-.4,-.1}
    \tikz \datavisualization [
      school book axes,
      visualize as line=normal,
      visualize as line=heated,
      visualize as line=critical,
      style sheet=greens]
    data group {lines};
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzdvdeclarestylesheetcolorseries"
  },
  tikzexternaldisable = {
    details = [[
Allows to disable the complete externalization. While `export next` will
still collect the contents of picture environments, this command
uninstalls the hooks for the `external` library completely. Thus, nested
picture environments or environments where `\end{tikzpicture}` is not
directly reachable won't produce compilation failures -- although it is
not possible to externalize them automatically.

The externalization remains disabled until the end of the next TeX group
(or environment) or until the next call to `\tikzexternalenable`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzexternaldisable"
  },
  tikzexternalenable = {
    details = [[
Re-enables a previously running externalization after
`\tikzexternaldisable`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzexternalenable"
  },
  tikzexternalfiledependsonfile = {
    arguments = {{meta = "external graphics"}, {meta = "file name"}},
    details = [[
A variant of `\tikzpicturedependsonfile` which adds a dependency for an
⟨external graphics⟩. The argument ⟨external graphics⟩ must be the path
as it would have been generated by the `external` library, i.e. without
file extension but including any prefixes.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzexternalfiledependsonfile"
  },
  tikzexternalize = {
    arguments = {
      {
        delimiters = {"[", "]"},
        meta = "optional arguments",
        optional = true
      }
    },
    details = [[
This command activates the externalization. It installs commands to
replace every TikZ-picture. It needs to be called before
`\begin{document}` because it may need to install its separate shipout
routine.

The ⟨optional arguments⟩ can be any of the keys described below.

Note that the generation/modification of auxiliary files like `.aux`,
`.toc` etc. is usually suppressed while a single image is externalized
(details for `\label` support follow).

It is also possible to write `\tikzexternalize``{main job name}` if the
argument is delimited by curly braces. This case is mainly for backwards
compatibility and is no longer necessary. Since it might be useful in
rare circumstances, it is documented in section ??.

A detailed description about the process of externalization is provided
in section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzexternalize"
  },
  tikzexternalrealjob = {
    details = [[
After the library is loaded, this macro will *always* contain the
correct main job's name (in the example above, it is `main`). It is to
be used instead of `\jobname` when the externalization is in effect.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzexternalrealjob"
  },
  tikzfading = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:tikz#/keys/tikz",
        meta = "options",
        optional = true
      }
    },
    details = [[
This command is used to define a fading similarly to the way a shading
is defined. In the ⟨options⟩ you should

1.  use the `name=`⟨name⟩ option to set a name for the fading,

2.  use the `shading` option to set the name of the shading that you
    wish to use,

3.  extra options for setting the colors of the shading (typically you
    will set them to the color `transparent!`⟨percentage⟩).

Then, a new fading named ⟨name⟩ will be created based on the shading.

    \tikzfading[name=fade right,
                left color=transparent!0,
                right color=transparent!100]

    % Now we use the fading in another picture:
    \begin{tikzpicture}
      % Background
      \fill [black!20] (-1.2,-1.2) rectangle (1.2,1.2);
      \path [pattern=checkerboard,pattern color=black!30]
                       (-1.2,-1.2) rectangle (1.2,1.2);

      \fill [red,path fading=fade right] (-1,-1) rectangle (1,1);
    \end{tikzpicture}

    \tikzfading[name=fade out,
                inner color=transparent!0,
                outer color=transparent!100]

    % Now we use the fading in another picture:
    \begin{tikzpicture}
      % Background
      \fill [black!20] (-1.2,-1.2) rectangle (1.2,1.2);
      \path [pattern=checkerboard,pattern color=black!30]
                       (-1.2,-1.2) rectangle (1.2,1.2);

      \fill [blue,path fading=fade out] (-1,-1) rectangle (1,1);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzfading"
  },
  tikzgraphforeachcolorednode = {
    arguments = {{meta = "color name"}, {meta = "macro"}},
    details = [[
When this command is called inside ⟨code⟩, the following will happen:
TikZ will iterate over all nodes inside the just-specified group that
have the color ⟨color name⟩. The order in which they are iterated over
is the order in which they appear inside the group specification (if a
node is encountered several times inside the specification, only the
first occurrence counts). Then, for each node the ⟨macro⟩ is executed
with the node's name as the only argument.

In the following example we use an operator to connect every node
colored `all` inside the subgroup to he node `root`.

    \def\myconnect#1{\tikzset{graphs/new ->={root}{#1}{}{}}}

    \begin{tikzpicture}
      \node (root) at (-1,-1) {root};

      \graph {
        x,
        {
          [operator=\tikzgraphforeachcolorednode{all}{\myconnect}]
          a, b, c
        }
      };
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzgraphforeachcolorednode"
  },
  tikzgraphnodefullname = {
    details = [[
This macro contains the concatenation of the above two.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzgraphnodefullname"
  },
  tikzgraphnodename = {
    details = [[
This macro expands to the name of the current node without the path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzgraphnodename"
  },
  tikzgraphnodepath = {
    details = [[
This macro expands to the current path of the node. These paths result
from the use of the `name` key as described above.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzgraphnodepath"
  },
  tikzgraphnodetext = {
    details = [[
This macro expands to the ⟨text⟩ to the right of the double underscore
or slash in a direct node specification or, if there is no slash, to the
⟨node name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzgraphnodetext"
  },
  tikzgraphpreparecolor = {
    arguments = {{meta = "color name"}, {meta = "counter"}, {meta = "prefix"}},
    details = [[
This command is used to "prepare" the nodes of a certain color for
random access. The effect is the following: It is counted how many nodes
there are having color ⟨color name⟩ in the current group and the result
is stored in ⟨counter⟩. Next, macros named ⟨prefix⟩`1`, ⟨prefix⟩`2`, and
so on are defined, that store the names of the first, second, third, and
so on node having the color ⟨color name⟩.

The net effect is that after you have prepared a color, you can quickly
iterate over them. This is especially useful when you iterate over
several color at the same time.

As an example, let us create an operator then adds a zig-zag path
between two color classes:

    \newcount\leftshorecount   \newcount\rightshorecount
    \newcount\mycount          \newcount\myothercount
    \def\zigzag{
      \tikzgraphpreparecolor{left shore}\leftshorecount{left shore prefix}
      \tikzgraphpreparecolor{right shore}\rightshorecount{right shore prefix}
      \mycount=0\relax
      \loop
        \advance\mycount by 1\relax%
        % Add the "forward" edge
        \tikzgraphsset{new ->=
          {\csname left shore prefix\the\mycount\endcsname}
          {\csname right shore prefix\the\mycount\endcsname}{}{}}
        \myothercount=\mycount\relax%
        \advance\myothercount by1\relax%
        \tikzgraphsset{new <-=
          {\csname left shore prefix\the\myothercount\endcsname}
          {\csname right shore prefix\the\mycount\endcsname}{}{}}
      \ifnum\myothercount<\leftshorecount\relax
      \repeat
    }
    \begin{tikzpicture}
      \graph [color class=left shore, color class=right shore]
      { [operator=\zigzag]
        { [left shore, Cartesian placement]                      a, b, c },
        { [right shore, Cartesian placement, nodes={xshift=1cm}] d, e, f }
      };
    \end{tikzpicture}

Naturally, in order to turn the above code into a usable operator, some
more code would be needed (like default values and taking care of shores
of different sizes).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzgraphpreparecolor"
  },
  tikzgraphsset = {
    arguments = {{keys = "$ref:tikz#/keys/tikz", meta = "options"}},
    details = [[
Executes the ⟨options⟩ with the path prefix `/tikz/graphs`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzgraphsset"
  },
  tikzifexternalizing = {
    arguments = {{meta = "true code"}, {meta = "false code"}},
    details = [[
This command can be used to check whether an image is currently written
to its separate graphics file (if the "grab" procedure is running). If
so, the `{true code}` will be executed. If not, that means if the main
document is being typeset normally, the `{false code}` will be invoked.

This command must be used *after* `\tikzexternalize`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzifexternalizing"
  },
  tikzifexternalizingnext = {
    arguments = {{meta = "true code"}, {meta = "false code"}},
    details = [[
Like `\tikzifexternalizing`, but this variant also checks if the next
following figure is the one which is about to be written to its separate
graphics file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzifexternalizingnext"
  },
  tikzinputsegmentfirst = {
    details = [[
The first point on the current input segment path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzinputsegmentfirst"
  },
  tikzinputsegmentlast = {
    details = [[
The last point on the current input segment path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzinputsegmentlast"
  },
  tikzinputsegmentsupporta = {
    details = [[
The first support on the curveto input segment path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzinputsegmentsupporta"
  },
  tikzinputsegmentsupportb = {
    details = [[
The second support on the curveto input segment path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzinputsegmentsupportb"
  },
  tikzlastnode = {
    details = [[
Expands to the last node on the path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzlastnode"
  },
  tikzmath = {
    details = [[
This command process a series of ⟨statements⟩ which can represent
assignments, function definitions, conditional evaluation, and
iterations. It provides, in effect, a miniature mathematical language to
perform basic mathematical operations. Perhaps the most important thing
to remember is that *every statement should end with a semi-colon*. This
is likely to be the most common reason why the `\tikzmath` command
fails.

    \tikzmath{
      % Adapted from http://www.cs.northwestern.edu/academics/courses/110/html/fib_rec.html
      function fibonacci(\n) {
        if \n == 0 then {
          return 0;
        } else {
           return fibonacci2(\n, 0, 1);
         };
      };
      function fibonacci2(\n, \p, \q) {
        if \n == 1 then {
          return \q;
        } else {
          return fibonacci2(\n-1, \q, \p+\q);
        };
      };
      int \f, \i;
      for \i in {0,1,...,20} {
        \f = fibonacci(\i);
        print {\f, };
      };
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzmath"
  },
  tikzpicturedependsonfile = {
    arguments = {{meta = "file name"}},
    details = [[
Adds a dependency for the *next* picture which is about to be
externalized. If the command is invoked within a picture environment, it
adds a dependency for the surrounding picture. Dependencies are written
into ⟨target file⟩`.dep` in the format

⟨target file⟩`.\tikzexternalimgextension: `⟨file name⟩.

The effect is that if ⟨file name⟩ changes, the external graphics
associated with the picture shall be remade.

This command uses the contents of `\tikzexternalimgextension` to check
for graphics. If you encounter difficulties with image extensions,
consider redefining this macro (after `\tikzexternalize`).

#### Limitations:

this command is currently only supported for `mode=list and make` and
the generated `makefile`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzpicturedependsonfile"
  },
  tikzrdfhashmark = {
    details = [[
Expands to `# ` with catcode 11.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzrdfhashmark"
  },
  tikzset = {
    arguments = {{keys = "$ref:tikz#/keys/tikz", meta = "options"}},
    details = [[
This command will process the ⟨options⟩ using the `\pgfkeys` command,
documented in detail in Section ??, with the default path set to
`/tikz`. Under normal circumstances, the ⟨options⟩ will be lists of
comma-separated pairs of the form ⟨key⟩`=`⟨value⟩, but more fancy things
can happen when you use the power of the `pgfkeys` mechanism, see
Section ?? once more.

When a pair ⟨key⟩`=`⟨value⟩ is processed, the following happens:

1.  If the ⟨key⟩ is a full key (starts with a slash) it is handled
    directly as described in Section ??.

2.  Otherwise (which is usually the case), it is checked whether
    `/tikz/`⟨key⟩ is a key and, if so, it is executed.

3.  Otherwise, it is checked whether `/pgf/`⟨key⟩ is a key and, if so,
    it is executed.

4.  Otherwise, it is checked whether ⟨key⟩ is a color and, if so,
    `color=`⟨key⟩ is executed.

5.  Otherwise, it is checked whether ⟨key⟩ contains a dash and, if so,
    `arrows=`⟨key⟩ is executed.

6.  Otherwise, it is checked whether ⟨key⟩ is the name of a shape and,
    if so, `shape=`⟨key⟩ is executed.

7.  Otherwise, an error message is printed.

Note that by the above description, all keys starting with `/tikz` and
also all keys starting with `/pgf` can be used as ⟨key⟩s in an ⟨options⟩
list.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzset"
  },
  tikzsetexternalprefix = {
    arguments = {{meta = "file name prefix"}},
    details = [[
Assigns a common prefix used by all file names. For example,

    \tikzsetexternalprefix{figures/}

will prepend `figures/` to every external graphics file name.

Please note that `\tikzsetexternalprefix` is the *only* way to assign a
prefix in case you want to prepare your document for environments where
PGF is not installed (see section ??).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzsetexternalprefix"
  },
  tikzsetfigurename = {
    arguments = {{meta = "name"}},
    details = [[
Changes the names of *all* following figures. It is possible to change
`figure name` during the document either using
`\tikzset{external/figure name`=`{name}``}` or with this command. A
unique counter will be used for each different `{name}`, and each
counter will start at $0$.

The value of `prefix` will be applied after `figure name` has been
evaluated.

    \documentclass{article}
    % main document, called main.tex
    \usepackage{tikz}

    \usetikzlibrary{external}
    \tikzexternalize % activate

    \begin{document}

    \begin{tikzpicture} % will be written to 'main-figure0.pdf'
      \node {root}
        child {node {left}}
        child {node {right}
          child {node {child}}
          child {node {child}}
        };
    \end{tikzpicture}

    {
      \tikzsetfigurename{subset_}
      A simple image is \tikz \fill (0,0) circle(5pt);. % will be written to 'subset_0.pdf'

      \begin{tikzpicture} % will be written to 'subset_1.pdf'
         \draw[help lines] (0,0) grid (5,5);
      \end{tikzpicture}
    }% here, the old file name will be restored:

    \begin{tikzpicture} % will be written to 'main-figure1.pdf'
       \draw (0,0) -- (5,5);
    \end{tikzpicture}
    \end{document}

The scope of `figure name` ends with the next closing brace.

Remark: Use `\tikzset{external/figure name/.add={prefix_ }{_ suffix_ }}`
to add a `prefix_ ` and a `_ suffix_ ` to the actual value of
`figure name`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzsetfigurename"
  },
  tikzsetnextfilename = {
    arguments = {{meta = "file name"}},
    details = [[
Sets the file name for the *next* TikZ picture or `\tikz` short command.
It will *only* be used for the next picture.

Pictures for which no explicit file name has been set (or the next file
name is empty) will get automatically generated file names.

Please note that `prefix` will still be prepended to `{file name}`.

    \documentclass{article}
    % main document, called main.tex
    \usepackage{tikz}

    \usetikzlibrary{external}
    \tikzexternalize[prefix=figures/] % activate

    \begin{document}

    \tikzsetnextfilename{trees}
    \begin{tikzpicture} % will be written to 'figures/trees.pdf'
      \node {root}
        child {node {left}}
        child {node {right}
          child {node {child}}
          child {node {child}}
        };
    \end{tikzpicture}

    \tikzsetnextfilename{simple}
    A simple image is \tikz \fill (0,0) circle(5pt);. % will be written to 'figures/simple.pdf'

    \begin{tikzpicture} % will be written to 'figures/main-figure0.pdf'
       \draw[help lines] (0,0) grid (5,5);
    \end{tikzpicture}
    \end{document}

    pdflatex -shell-escape main
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/tikzsetnextfilename"
  },
  useasboundingbox = {
    action = "tikzpath",
    arguments = {{delimiters = {"", ";"}, meta = "specification"}},
    details = [[
Inside `{tikzpicture}` this is an abbreviation for
`\path[use as bounding box]`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/useasboundingbox"
  },
  usegdlibrary = {
    arguments = {{meta = "list of libraries"}},
    details = [[
This command is used to load the special graph drawing libraries (the
`gd` in the name of the command stands for "graph drawing"). The ⟨list
of libraries⟩ is a comma-separated list of library written in the Lua
programming language (which is why a special command is needed).

In detail, this command does the following. For each ⟨name⟩ in the ⟨list
of libraries⟩ we do:

1.  Check whether LuaTeX can call `require` on the library file
    `pgf.gd.`⟨name⟩`.library`. LuaTeX's usual file search mechanism will
    search the texmf-trees in the usual manner and the dots in the file
    name get converted into directory slashes.

2.  If the above failed, try to `require` the string `pgf.gd.`⟨name⟩.

3.  If this fails, try to `require` the string ⟨name⟩`.library`.

4.  If this fails, try to `require` the string ⟨name⟩. If this fails,
    print an error message.

The net effect of the above is the following: Authors of graph drawing
algorithms can bundle together multiple algorithms in a library by
creating a `...xyz/library.lua` file that internally just calls
`require` for all files containing declarations. On the other hand, if a
graph drawing algorithm completely fits inside a single file, it can
also be read directly using `\usegdlibrary`.

    \usetikzlibrary{graphdrawing}
    \usegdlibrary{trees,force}

The different graph drawing libraries are documented in the following
Sections ?? to ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/usegdlibrary"
  },
  usetikzlibrary = {
    arguments = {{meta = "list of libraries"}},
    details = [[
Once TikZ has been loaded, you can use this command to load further
libraries. The list of libraries should contain the names of libraries
separated by commas. Instead of curly braces, you can also use square
brackets, which is something ConTeXt users will like. If you try to load
a library a second time, nothing will happen.

`\usetikzlibrary{arrows.meta}`

The above command will load a whole bunch of extra arrow tip
definitions.

What this command does is to load the file
`tikzlibrary`⟨library⟩`.code.tex` for each ⟨library⟩ in the ⟨list of
libraries⟩. If this file does not exist, the file
`pgflibrary`⟨library⟩`.code.tex` is loaded instead. If this file also
does not exist, an error message is printed. Thus, to write your own
library file, all you need to do is to place a file of the appropriate
name somewhere where TeX can find it. LaTeX, plain TeX, and ConTeXt
users can then use your library.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/usetikzlibrary"
  },
  value = {
    arguments = {{meta = "variable"}},
    details = [[
This expands to the current value of the key `/data point/`⟨variable⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/value"
  },
  x = {
    arguments = {{meta = "point register"}},
    details = [[
This macro expands just to the $x$-part of the point register. If we say
as above, as we did above, `let \p1=(1pt,1pt+2pt) in ...`, then inside
the `...` part the macro `\x1` expands to `1pt`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/x"
  },
  y = {
    arguments = {{meta = "point register"}},
    details = [[
Works like `\x`, only for the $y$-part.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/y"
  }
}
keys = {
  ["data visualization"] = {
    about = {
      details = [[
This key asks the data visualization to place *about* ⟨number⟩ many
ticks on an axis. It is not guaranteed that *exactly* ⟨number⟩ many
ticks will be used, rather the actual number will be the closest number
of ticks to ⟨number⟩ so that their stepping is still "good". For
instance, when you say `about=10`, it may happen that exactly `10`, but
perhaps even `13` ticks are actually selected, provided that these
numbers of ticks lead to good stepping values like `5` or `2.5` rather
than numbers like `3.4` or `7`. The method that is used to determine
which steppings a deemed to be "good" depends on the current tick
placement strategy.

**Linear steps.** Let us start with `linear steps`: First, the
difference between the maximum value $v_{\max}$ and the minimum value
$v_{\min}$ on the axis is computed; let us call it $r$ for "range".
Then, $r$ is divided by ⟨number⟩, yielding a target stepping $s$. If $s$
is a number like $1$ or $5$ or $10$, then this number could be used
directly as the new value of `step`. However, $s$ will typically
something strange like $0.023\,45$ or $345\,223.76$, so $s$ must be
replaced by a better value like $0.02$ in the first case and perhaps
$250\,000$ in the second case.

In order to determine which number is to be used, $s$ is rewritten in
the form $m \cdot 10^k$ with $1 \le m < 10$ and $k \in \mathbb Z$. For
instance, $0.023\,45$ would be rewritten as $2.345 \cdot 10^{-2}$ and
$345\,223.76$ as $3.452\,2376 \cdot 10^5$. The next step is to replace
the still not-so-good number $m$ like $2.345$ or $3.452\,237$ by a
"good" value $m'$. For this, the current value of the `about strategy`
is used:

Once $m'$ has been determined, the stepping is set to
$s' = m' \cdot 10^k$.

The net effect of all this is that for the default strategy the only
valid stepping are the values $1$, $2$, $2.5$ and $5$ and every value
obtainable by multiplying one of these values by a power of ten. The
following example shows the effects of, first, setting `about=5`
(corresponding to the `some` option) and then having axes where the
minimum value is always `0` and where the maximum value ranges from `10`
to `100` and, second, setting `about` to the values from `3`
(corresponding to the `few` option) and to `10` (corresponding to the
`many` option) while having the minimum at `0` and the maximum at `100`:

**Exponential steps.** For `exponential steps` the strategy for
determining a good stepping value is similar to `linear steps`, but with
the following differences:

-   Naturally, since the stepping value refers to the exponent, the
    whole computation of a good stepping value needs to be done "in the
    exponent". Mathematically spoken, instead of considering the
    difference $r = v_{\max} - v_{\min}$, we consider the difference $r
                = \log v_{\max} - \log v_{\min}$. With this difference,
    we still compute $s = r / ⟨number⟩$ and let $s = m \cdot 10^k$ with
    $1
                \le m < 10$.

-   It makes no longer sense to use values like $2.5$ for $m'$ since
    this would yield a fractional exponent. Indeed, the only sensible
    values for $m'$ seem to be $1$, $3$, $6$, and $10$. Because of this,
    the `about strategy` is ignored and one of these values or a
    multiple of one of them by a power of ten is used.

The following example shows the chosen steppings for a maximum varying
from $10^1$ to $10^5$ and from $10^{10}$ to $10^{50}$ as well as for
$10^{100}$ for `about=3`:

**Alternative strategies.**

In addition to the standard `about strategy`, there are some additional
strategies that you might wish to use instead:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/about",
      meta = "⟨number⟩"
    },
    ["about strategy"] = {
      details = [[
The ⟨list⟩ is a comma-separated sequence of pairs ⟨threshold⟩/⟨value⟩
like for instance `1.5/1.0` or `2.3/2.0`. When a good value $m'$ is
sought for a given $m$, we iterate over the list and find the first pair
⟨threshold⟩/⟨value⟩ where ⟨threshold⟩ exceeds $m$. Then $m'$ is set to
⟨value⟩. For instance, if ⟨list⟩ is `1.5/1.0,2.3/2.0,4/2.5,7/5,11/10`,
which is the default, then for $m=3.141$ we would get $m'=2.5$ since
$4 >
        3.141$, but $2.3 \le 3.141$. For $m=6.3$ we would get $m'=5$.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/about:strategy",
      meta = "⟨list⟩"
    },
    ["after creation"] = {
      details = [[
This code is executed right after the object has just been created. A
handle to the just-created object is available in `\tikzdvobj`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/after:creation",
      meta = "⟨code⟩"
    },
    ["after survey"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/after:survey",
      meta = "⟨code⟩"
    },
    ["after visualization"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/after:visualization",
      meta = "⟨code⟩"
    },
    ["all axes"] = {
      details = [[
This key passes the ⟨options⟩ to all axes inside the current scope, just
as if you had written ⟨some axis name⟩`=`⟨options⟩ for each ⟨some axis
name⟩ in the current scope, including the just-created name ⟨axis name⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/all:axes",
      meta = "⟨options⟩"
    },
    ["also at"] = {
      details = [[
This key is similar to `at`, but it causes ticks or grid lines to be
placed at the positions in the ⟨list⟩ *in addition* to the ticks that
have already been specified either directly using `at` or indirectly
using keys like `step` or `some`. The effect of multiple calls of this
key accumulate. However, when `at` is used after an `also at` key, the
`at` key completely resets the positions where ticks or grid lines are
shown.

    \tikz \datavisualization
      [ school book axes, visualize as smooth line,
        x axis={grid, ticks and grid={major={also at={0.5}}}}]
      data [format=function] {
        var x : interval [-1.25:2];
        func y = \value x * \value x / 2;
      };

As for `at`, there are some shorthands available:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/also:at",
      meta = "⟨list⟩"
    },
    arg1 = {
      details = [[
The value to be passed as the first parameter to the constructor.
Similarly, the keys `arg2` to `arg8` specify further parameters passed.
Naturally, only as many arguments are passed as parameters are set. Here
is an example:

    \tikzdatavisualizationset{
      new object={
        class = example class,
        arg1  = foo,
        arg2  = \bar
      }
    }

causes the following object creation code to be executed later on:

    \pgfoonew \tikzdvobj=new example class(foo,\bar)

Note that you key mechanisms like `.expand once` to pass the value of a
macro instead of the macro itself:

    \tikzdatavisualizationset{
      new object={
        class              = example class,
        arg1               = foo,
        arg2/.expand once  = \bar
      }
    }

Now, if `\bar` is set to `This \emph{is} it.`at the moment to object is
created later on, the following object creation code is executed:

    \pgfoonew \tikzdvobj=new example class(foo,This \emph{is} it)
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/arg1",
      meta = "⟨value⟩"
    },
    ["arg1 from key"] = {
      details = [[
Works like the `arg1`, only the value that is passed to the constructor
is the current value of the specified ⟨key⟩ at the moment when the
object is created.

    \tikzdatavisualizationset{
      new object={
        class              = example class,
        arg1 from key      = /tikz/some key
      }
    }
    \tikzset{some key/.initial=foobar}

causes the following to be executed:

    \pgfoonew \tikzdvobj=new example class(foobar)

Naturally, the keys `arg2 from key` to `arg8 from key` are also
provided.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/arg1:from:key",
      meta = "⟨key⟩"
    },
    ["arg1 handle from key"] = {
      details = [[
Works like the `arg1 from key`, only the key must store an object and
instead of the object a handle to the object is passed to the
constructor.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/arg1:handle:from:key",
      meta = "⟨key⟩"
    },
    at = {
      details = [[
Basically, the ⟨list⟩ must be a list of values that is processed with
the `\foreach` macro (thus, it can contain ellipses to specify ranges of
value). Empty values are skipped.

The effect of passing `at` to a `major`, `minor`, or `subminor` key is
that ticks or grid lines on the axis will be placed exactly at the
values in ⟨list⟩. Here is an example:

    \tikz \datavisualization
      [ school book axes, visualize as smooth line,
        x axis={ticks={major={at={-1,0.5,(pi/2)}}}}]
      data [format=function] {
        var x : interval [-1.25:2];
        func y = \value x * \value x / 2;
      };

When this option is used, any previously specified tick positions are
overwritten by the values in ⟨list⟩. Automatically computed ticks are
also overwritten. Thus, this option gives you complete control over
where ticks should be placed.

Normally, the individual values inside the ⟨list⟩ are just numbers that
are specified in the same way as an attribute value. However, such a
value may also contain the keyword `as`, which allows you so specify the
styling of the tick in detail. Section ?? details how this works.

It is often a bit cumbersome that one has to write things like

    some axis = {ticks = {major = {at = {...}}}}

A slight simplification is given by the following keys, which can be
passed directly to `ticks` and `grid`:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/at",
      meta = "⟨list⟩"
    },
    ["at end survey"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/at:end:survey",
      meta = "⟨code⟩"
    },
    ["at end visualization"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/at:end:visualization",
      meta = "⟨code⟩"
    },
    ["at start survey"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/at:start:survey",
      meta = "⟨code⟩"
    },
    ["at start visualization"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/at:start:visualization",
      meta = "⟨code⟩"
    },
    ["axis layer"] = {
      details = [[
The layer on which the axis is drawn. See the description of
`grid layer` on page ?? for details.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:layer"
    },
    ["axis option/anchor at max"] = {
      details = [[
Like `anchor at min`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:option/anchor:at:max"
    },
    ["axis option/anchor at min"] = {
      details = [[
When passed to an axis, this key sets the `anchor` so that a node
positioned at either the `min` or the `padded min` value of the axis
will be placed "nicely" with respect to the axis. For instance, if the
axis points upwards from the `min` value to the `max` value, the
`anchor` would be set to `north` since this gives a label below the
axis's start. Similarly, if the axis points right, the anchor would be
set to `east`, and so on.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:option/anchor:at:min"
    },
    ["axis options/attribute"] = {
      details = [[
Specifies that the axis is used to transform the data points according
the different values of the key `/data point/`⟨attribute⟩. For instance,
when we create a classical two-dimensional Cartesian coordinate system,
then there are two axes called `x axis` and `y axis` that monitor the
values of the attributes `/data point/x` and `/data point/y`,
respectively:

      [new axis base=x axis,
       new axis base=y axis,
       x axis={attribute=x},
       y axis={attribute=y}]

In another example, we also create an `x axis` and a `y axis`. However,
this time, we want to plot the values of the `/data point/time`
attribute on the $x$-axis and, say, the value of the `height` attribute
on the $y$-axis:

      [new axis base=x axis,
       new axis base=y axis,
       x axis={attribute=time},
       y axis={attribute=height}]

During the data visualization, the ⟨attribute⟩ will be "monitored"
during the survey phase. This means that for each data point, the
current value of `/data point/`⟨attribute⟩ is examined and the minimum
value of all of these values as well as the maximum value is recorded
internally. Note that this works even when very large numbers like
`100000000000` are involved.

Here is a real-life example. The `scientific axes` create two axes,
called `x axis` and `y axis`, respectively.

    \tikz \datavisualization [scientific axes,
                              x axis={attribute=people, length=2.5cm, ticks=few},
                              y axis={attribute=year},
                              visualize as scatter]
      data {
        year, people
        1900, 100
        1910, 200
        1950, 200
        1960, 250
        2000, 150
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/attribute",
      meta = "⟨attribute⟩"
    },
    ["axis options/degrees"] = {
      details = [[
When this key is passed to the angle axis of a polar axis system, it
sets up the scaling so that a value of `360` on this axis corresponds to
a complete circle.

    \tikz \datavisualization
        [new polar axes={angle axis}{radius axis},
         radius axis={unit length=1cm},
         angle axis={degrees},
         visualize as scatter]
      data [format=named] {
        angle={10,90}, radius={0.25,0.5,...,2}
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/degrees"
    },
    ["axis options/exponential steps"] = {
      details = [[
This strategy produces ticks at positions that are appropriate for
logarithmic plots. It is automatically selected when you use the
`logarithmic` option with an axis.

In detail, the following happens: As for `linear steps` let numbers $a$,
$b$, $s$, and $p$ be given. Then, major ticks are placed at all
positions $10^{i\cdot s+p}$ that lie in the interval $[a,b]$ for
$i \in \mathbb{Z}$.

The minor steps are added in the same way as for `linear steps`. In
particular, they interpolate *linearly* between major steps.

    \begin{tikzpicture}
      \datavisualization
        [scientific axes,
         x axis={logarithmic, length=2cm, ticks={step=1.5}},
         y axis={logarithmic, ticks={step=1, minor steps between steps=9}},
         visualize as scatter]
        data {
          x, y
          1, 10
          1000, 1000000
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/exponential:steps"
    },
    ["axis options/function"] = {
      details = [[
The ⟨code⟩ should specify a function $f$ that is applied during the
transformation of the interval $[s_1,s_2]$ to the interval $[t_1,t_2]$
in the following way: When the ⟨code⟩ is called, the macro `\pgfvalue`
will have been set to an internal representation of the
to-be-transformed value $v$. You can then call the commands of the
math-micro-kernel of the data visualization system, see Section ??, to
compute a new value. This new value must once more be stored in
`\pgfvalue`.

The most common use of this key is to say

    some axis={function=\pgfdvmathln{\pgfvalue}{\pgfvalue}}

This specifies that the function $f$ is the logarithm function.

    \tikz \datavisualization
       [scientific axes,
        x axis={ticks={major={at={1,10,100,1000}}},
                 scaling=1 at 0cm and 1000 at 3cm,
                 function=\pgfdvmathln{\pgfvalue}{\pgfvalue}},
        visualize as scatter]
      data [format=named] {
        x={1,100,...,1000}, y={1,2,3}
      };

Another possibility might be to use the square-root function, instead:

    \tikz \datavisualization
       [scientific axes,
        x axis={ticks=few,
                scaling=1 at 0cm and 1000 at 3cm,
                function=\pgfdvmathunaryop{\pgfvalue}{sqrt}{\pgfvalue}},
        visualize as scatter]
      data [format=named] {
        x={0,100,...,1000}, y={1,2,3}
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/function",
      meta = "⟨code⟩"
    },
    ["axis options/goto"] = {
      details = [[
The key can be passed to an axis. It will set the attribute monitored by
the axis to the given ⟨value⟩, which is usually some number. However,
⟨value⟩ may also be one of the following, which causes a special
behavior:

-   `min`: The attribute is set to the minimal value that the attribute
    has attained along this axis.

-   `max`: Like `min`.

-   `padded min`: This will also set the ⟨attribute⟩ monitored by the
    axis to the same value as `min`. Additionally, however, the subkey
    `/data point/`⟨attribute⟩`/offset` is set to the current padding for
    the minimum, see the description of `padding min` later on. The
    effect of this is that the actual point "meant" by the attribute is
    offset by this padding along the attribute's axis.

-   `padded max`: Like `padded min`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/goto",
      meta = "⟨value⟩"
    },
    ["axis options/goto pos"] = {
      details = [[
The key works like `goto`, only the ⟨fraction⟩ is not interpreted as a
value but as a fraction of the way between the minimum and the maximum
value for this axis.

Suppose that for an axis the attribute range interval is $[500,1000]$
and the reasonable interval is $[1,3]$. Then for a ⟨fraction⟩ of `0`,
the mapping process would choose value $1$ from the reasonable interval,
for a ⟨fraction⟩ of `1` the position $3$ from the reasonable interval,
and for a ⟨fraction⟩ or `0.25` the position $1.5$ since it is one
quarter at the distance from $1$ to $3$.

Note that neither the attribute range interval nor the transformation
function for the attribute are important for the `goto pos` option --
the ⟨fraction⟩ is computed with respect to the reasonable interval. Also
note that the values of the actual attribute corresponding to the
fractional positions in the reasonable interval are not computed.

    \tikzset{
      data visualization/our system/.append style={
        x axis=    {visualize axis={left axis={goto pos=0.25}},
                    visualize axis={left axis={goto pos=0.5}}},
     }
    }
    \tikz \datavisualization [
        our system,
        x axis={attribute=time, length=4cm},
        left axis ={attribute=money},
        right axis={attribute=people},
        visualize as line/.list={people 1, people 2, money 1, money 2}]
      data group {people and money};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/goto:pos",
      meta = "⟨fraction⟩"
    },
    ["axis options/grid"] = {
      details = [[
This key is similar to `ticks`, only it is used to configure where grid
lines should be shown rather than ticks. In particular, the options that
can be passed to the `ticks` key can also be passed to the `grid` key.
Just like `ticks`, the ⟨options⟩ only specify which grid lines should be
drawn in principle; it is the job of the `visualize grid` key to
actually cause any grid lines to be shown.

If you do not specify any ⟨options⟩, the default text `at default ticks`
is used. This option causes grid lines to be drawn at all positions
where ticks are shown by default. Since this usually exactly what you
would like to happen, most of the time you just need to `all axes=grid`
to cause a grid to be shown.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/grid",
      meta = "⟨options⟩"
    },
    ["axis options/include value"] = {
      details = [[
This key "fakes" data points for which the attribute's values are in the
comma-separated ⟨list of values⟩. For instance, when you write
`include value=0`, then the attribute range interval is guaranteed to
contain `0` -- even if the actual data points are all positive or all
negative.

    \tikz \datavisualization [scientific axes, all axes={length=3cm},
                              visualize as line]
      data [format=function] {
        var x : interval [5:10];
        func y = \value x * \value x;
      };

    \tikz \datavisualization [scientific axes, all axes={length=3cm},
                              visualize as line,
                              x axis={include value=20},
                              y axis={include value=0}]
      data [format=function] {
        var x : interval [5:10];
        func y = \value x * \value x;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/include:value",
      meta = "⟨list of value⟩"
    },
    ["axis options/label"] = {
      details = [[
This key sets the label of an axis to ⟨text⟩. This text will typically
be placed inside a `node` and the ⟨options⟩ can be used to further
configure the way this node is rendered. The ⟨options⟩ will be executed
with the path prefix `/tikz/data visualization/`, so you need to say
`node style` to configure the styling of a node, see Section ??.

    \tikz \datavisualization [
        scientific axes,
        x axis = {label, length=2.5cm},
        y axis = {label={[node style={fill=blue!20}]{$x^2$}}},
        visualize as smooth line]
     data [format=function] {
       var x : interval [-3:5];
       func y = \value x * \value x;
     };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/label",
      meta = "{[⟨options⟩]}⟨text⟩"
    },
    ["axis options/length"] = {
      details = [[
Sets `scaling` to `min at 0cm and max at `⟨dimension⟩. The effect is
that the range of all values of the axis's attribute will be mapped to
an interval of exact length ⟨dimension⟩.

    \tikz \datavisualization [scientific axes,
                              x axis={length=3cm},
                              y axis={length=2cm},
                              all axes={ticks=few},
                              visualize as line]
        data {
          x, y
          10, 10
          20, 20
          15, 30
          13, 20
        };

    \tikz \datavisualization [scientific axes,
                              x axis={length=3cm},
                              y axis={length=4cm},
                              all axes={ticks=few},
                              visualize as line]
        data {
          x, y
          10, 10
          20, 20
          15, 30
          13, 20
        };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/length",
      meta = "⟨dimension⟩"
    },
    ["axis options/linear steps"] = {
      details = [[
This strategy places ticks at positions that are evenly spaced by the
current value of `step`.

In detail, the following happens: Let $a$ be the minimum value of the
data values along the axis and let $b$ be the maximum. Let the current
*stepping* be $s$ (the stepping is set using the `step` option, see
below) and let the current *phasing* be $p$ (set using the `phase`)
option. Then ticks are placed all positions $i\cdot s + p$ that lie in
the interval $[a,b]$, where $i$ ranges over all integers.

The tick positions computed in the way described above are *major* step
positions. In addition to these, if the key `minor steps between steps`
is set to some number $n$, then $n$ many minor ticks are introduced
between each two major ticks (and also before and after the last major
tick, provided the values still lie in the interval $[a,b]$). Note that
is $n$ is $1$, then one minor tick will be added in the middle between
any two major ticks. Use a value of $9$ (not $10$) to partition the
interval between two major ticks into ten equally sized minor intervals.

    \begin{tikzpicture}
      \datavisualization
        [scientific axes={inner ticks, width=3cm},
         x axis={ticks={step=3, minor steps between steps=2}},
         y axis={ticks={step=.36}},
         visualize as scatter]
        data {
          x, y
          17, 30
          34, 32
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/linear:steps"
    },
    ["axis options/logarithmic"] = {
      details = [[
When this key is used with an axis, three things happen:

1.  The transformation `function` of the axis is setup to the logarithm.

2.  The strategy for automatically generating ticks and grid lines is
    set to the `exponential strategy`, see Section ?? for details.

3.  The default scaling is setup sensibly.

All told, to turn an axis into a logarithmic axis, you just need to add
this option to the axis.

    \tikz \datavisualization [scientific axes,
                              x axis={logarithmic},
                              y axis={logarithmic},
                              visualize as line]
     data [format=function] {
       var x : interval [0.01:100];
       func y = \value x * \value x;
     };

Note that this will work with any axis, including, say, the degrees on a
polar axis:

    \tikz \datavisualization
        [new polar axes,
         angle axis={logarithmic, scaling=1 at 0 and 90 at 90},
         radius axis={scaling=0 at 0cm and 100 at 3cm},
         visualize as scatter]
      data [format=named] {
        angle={1,10,...,90}, radius={1,10,...,100}
      };

    \tikz \datavisualization
        [new polar axes,
         angle axis={degrees},
         radius axis={logarithmic, scaling=1 at 0cm and 100 at 3cm},
         visualize as scatter]
      data [format=named] {
        angle={1,10,...,90}, radius={1,10,...,100}
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/logarithmic"
    },
    ["axis options/max value"] = {
      details = [[
Works like `min value`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/max:value",
      meta = "⟨value⟩"
    },
    ["axis options/min value"] = {
      details = [[
This key allows you to simply set the minimum value, regardless of which
values are present in the actual data. This key should be used with
care: If there are data points for which the attribute's value is less
than ⟨value⟩, they will still be depicted, but typically outside the
normal visualization area. Usually, saying `include value=`⟨value⟩ will
achieve the same as saying `min value=`⟨value⟩, but with less danger of
creating ill-formed visualizations.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/min:value",
      meta = "⟨value⟩"
    },
    ["axis options/padding"] = {
      details = [[
Sets both `padding min` to the negated value of ⟨dimension⟩ and
`padding max` to ⟨dimension⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/padding",
      meta = "⟨dimension⟩"
    },
    ["axis options/padding max"] = {
      details = [[
Works like `padding min`, but ⟨dimension⟩ should typically be positive.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/padding:max",
      meta = "⟨dimension⟩"
    },
    ["axis options/padding min"] = {
      details = [[
This is the dimension that is used whenever `goto=padded min` is used.
The ⟨dimension⟩ is then put into the `offset` subkey of the attribute
monitored by the axis. When a data point is transformed by a linear
transformer and when this subkey is nonzero, this offset is added. (For
an angle axis of a polar transformer, the ⟨dimension⟩ is interpreted as
an additional angle rather than as an additional distance). Note that
⟨dimension⟩ should typically be negative since "adding the ⟨dimension⟩"
will then make the axis longer (because it starts at a smaller value).
The standard axis systems set the padding to some default and take its
value into account:

    \begin{tikzpicture}
      \datavisualization [scientific axes=clean,
                          x axis={padding min=-1cm},
                          visualize as smooth line]
        data [format=function] {
          var x : interval [-3:5];
          func y = \value x * \value x;
        };
    \end{tikzpicture}

Using padded and using the `padded` key, we can visualize our axis "a
little removed from the actual data":

    \tikzset{
      data visualization/our system/.append style={
        all axes=  {padding=.5em},
        left axis= {visualize axis={x axis=   {goto=padded min}, padded}},
        right axis={visualize axis={x axis=   {goto=padded max}, padded}},
        x axis=    {visualize axis={left axis={goto=padded min}, padded},
                    visualize axis={left axis={goto=padded max}, padded}},
     }
    }
    \tikz \datavisualization [
        our system,
        x axis={attribute=time, length=3cm},
        left axis ={attribute=money},
        right axis={attribute=people},
        visualize as line/.list={people 1, people 2, money 1, money 2}]
      data group {people and money};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/padding:min",
      meta = "⟨dimension⟩"
    },
    ["axis options/power unit length"] = {
      details = [[
This key is used in conjunction with the `logarithmic` setting. It cases
the `scaling` to be set to `1 at 0cm and 10 at `⟨dimension⟩. This causes
a "power unit", that is, one power of ten in a logarithmic plot, to get
a length of ⟨dimension⟩. Again, this key is useful for ensuring that the
same scaling is used across multiple axes or pictures.

    \tikz \datavisualization
      [scientific axes,
       y axis={logarithmic, power unit length=1mm, grid},
       visualize as line]
     data {
       x, y
       0, 0.0000000001
       1, 1
       2, 100000
       3, 100000000000
       4, 10000000000000000000000000000000
       5, 500000000
       6, 5000000000000000000
     };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/power:unit:length",
      meta = "⟨dimension⟩"
    },
    ["axis options/radians"] = {
      details = [[
In contrast to `degrees`, this option sets up things so that a value of
`2*pi` on this axis corresponds to a complete circle.

    \tikz \datavisualization
        [new polar axes={angle axis}{radius axis},
         radius axis={unit length=1cm},
         angle axis={radians},
         visualize as scatter]
      data [format=named] {
        angle={0,1.5}, radius={0.25,0.5,...,2}
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/radians"
    },
    ["axis options/scaling"] = {
      details = [[
The ⟨scaling spec⟩ must have the following form:

> ⟨$s_1$⟩` at `⟨$t_1$⟩` and `⟨$s_2$⟩` at `⟨$t_2$⟩

This means that monitored values in the interval $[s_1,s_2]$ should be
mapped to values the "reasonable" interval $[t_1,t_2]$, instead. For
instance, we might write

    [y axis = {scaling = 1900 at 0cm and 2000 at 5cm}]

in order to map dates between 1900 and 2000 to the dimension interval
$[0\mathrm{cm},5\mathrm{cm}]$.

    \tikz \datavisualization
       [scientific axes,
        x axis={attribute=people, length=2.5cm, ticks=few},
        y axis={attribute=year, scaling=1900 at 0cm and 2000 at 5cm},
        visualize as scatter]
      data {
        year, people
        1900, 100
        1910, 200
        1950, 200
        1960, 250
        2000, 150
      };

So much for the basic idea. Let us now have a detailed look at what
happens.

**Number format and the min and max keywords.** The source values $s_1$
and $s_2$ are typically just numbers like `3.14` or `10000000000`.
However, as described in Section ??, you can also specify expressions
like `(pi/2)`, provided that (currently) you put them in parentheses.

Instead of a number, you may alternatively also use the two key words
`min` and `max` for $s_1$ and/or $s_2$. In this case, `min` evaluates to
the smallest value observed for the attribute in the data, symmetrically
`max` evaluates to the largest values. For instance, in the above
example with the `year` attribute ranging from `1900` to `2000`, the
keyword `min` would stand for `1900` and `max` for `2000`. Similarly,
for the `people` attribute `min` stands for `100` and `max` for `250`.
Note that `min` and `max` can only be used for $s_1$ and $s_2$, not for
$t_1$ and $t_2$.

A typical use of the `min` and `max` keywords is to say

    scaling = min at 0cm and max at 5cm

to map the complete range of values into an interval of length of 5cm.

The interval $[s_1,s_2]$ need not contain all values that the
⟨attribute⟩ may attain. It is permissible that values are less than
$s_1$ or more than $s_2$.

**Linear transformation of the attribute.** As indicated earlier, the
main job of an axis is to map values from a "large" interval $[s_1,s_2]$
to a more reasonable interval $[t_1,t_2]$. Suppose that for the current
data point the value of the key `/data point/`⟨attribute⟩ is the number
$v$. In the simplest case, the following happens: A new value $v'$ is
computed so that $v' = t_1$ when $v=s_1$ and $v'=t_2$ when $v=s_2$ and
$v'$ is some value in between $t_1$ and $t_2$ then $v$ is some value in
between $s_1$ and $s_2$. (Formally, in this basic case
$v' = t_1 + (v-s_1)\frac{t_2-t_1}{s_2-s_1}$.)

Once $v'$ has been computed, it is stored in the key
`/data point/`⟨attribute⟩`/scaled`. Thus, the "reasonable" value $v'$
does not replace the value of the attribute, but it is placed in a
different key. This means that both the original value and the more
"scaled" values are available when the data point is visualized.

As an example, suppose you have written

    [x axis = {attribute = x, scaling=1000 at 20 and 2000 at 30}]

Now suppose that `/data point/x` equals `1200` for a data point. Then
the key `/data point/x/scaled` will be set to `22` when the data point
is being visualized.

**Nonlinear transformations of the attribute.** By default, the
transformation of $[s_1,s_2]$ to $[t_1,t_2]$ is the linear
transformation described above. However, in some case you may be
interested in a different kind of transformation: For example, in a
logarithmic plot, values of an attribute may range between, say, `1` and
`1000` and we want an axis of length `3cm`. So, we would write

    [x axis = {attribute = x, scaling=1 at 0cm and 1000 at 3cm}]

Indeed, `1` will now be mapped to position `0cm` and `1000` will be
mapped to position `3cm`. Now, the value `10` will be mapped to
approximately `0.03cm` because it is (almost) at one percent between `1`
and `1000`. However, in a logarithmic plot we actually want `10` to be
mapped to the position `1cm` rather than `0.03cm` and we want `100` to
be mapped to the position `2cm`. Such a mapping a *nonlinear* mapping
between the intervals.

In order to achieve such a nonlinear mapping, the `function` key can be
used, whose syntax is described in a moment. The effect of this key is
to specify a function $f \colon \mathbb{R} \to \mathbb{R}$ like, say,
the logarithm function. When such a function is specified, the mapping
of $v$ to $v'$ is computed as follows: $$\begin{aligned}
        v' = t_1 + (f(s_2) - f(v))\frac{t_2 - t_1}{f(s_2)-f(s_1)}.
    \end{aligned}$$

The syntax of the `function` key is described next, but you typically
will not call this key directly. Rather, you will use a key like
`logarithmic` that installs appropriate code for the `function` key for
you.

**Default scaling.** When no scaling is specified, it may seem natural
to use $[0,1]$ both as the source and the target interval. However, this
would not work when the logarithm function is used as transformations:
In this case the logarithm of zero would be computed, leading to an
error. Indeed, for a logarithmic axis it is far more natural to use
$[1,10]$ as the source interval and $[0,1]$ as the target interval.

For these reasons, the default value for the `scaling` that is used when
no value is specified explicitly can be set using a special key:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/scaling",
      meta = "⟨scaling spec⟩"
    },
    ["axis options/scaling/default"] = {
      details = [[
The ⟨text⟩ is used as `scaling` whenever no other scaling is specified.
This key is mainly used when a transformation function is set using
`function`; normally, you will not use this key directly.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/scaling/default",
      meta = "⟨text⟩"
    },
    ["axis options/tick placement strategy"] = {
      details = [[
This key can be used to install a so-called *tick placement strategy*.
Whenever `visualize ticks` is used to request some ticks to be
visualized, it is checked whether some automatic ticks should be
created. This is the case when the following key is set:

Provided `compute step` is set to some nonempty value, upon
visualization of ticks the ⟨macro⟩ is executed. Typically, ⟨macro⟩ will
first call the ⟨code⟩ stored in the key `compute step`. Then, it should
implement some strategy then uses the value of the computed or desired
stepping to create appropriate `at` commands. To be precise, it should
set the keys `major`, `minor`, and/or `subminor` with some appropriate
`at` values.

Inside the call of ⟨macro⟩, the macro `\tikzdvaxis` will have been set
to the name of the axis for which default ticks need to be computed.
This allows you to access the minimum and the maximum value stored in
the `scaling mapper` of that axis.

    \def\silly{
      \tikzdatavisualizationset{major={at={
            2,3,5,7,11,13}}}
    }
    \begin{tikzpicture}
      \datavisualization [
        scientific axes, visualize as scatter,
        x axis={tick placement strategy=\silly}
        ]
        data {
          x, y
          0, 0
          15, 15
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/tick:placement:strategy",
      meta = "⟨macro⟩"
    },
    ["axis options/ticks"] = {
      details = [[
This key can be passed to an axis in order to configure which ticks are
present for the axis. The possible ⟨options⟩ include, for instance, keys
like `step`, which is used to specify a stepping for the ticks, but also
keys like `major` or `minor` for specifying the positions of major and
minor ticks in detail. The list of possible options is described in the
rest of this section.

Note that the `ticks` option will only configure which ticks should be
shown in principle. The actual rendering is done only when the
`visualize ticks` key is used, documented in Section ??, which is
typically done only internally by an axis system.

The ⟨options⟩ will be executed with the path prefix
`/tikz/data visualization/`. When the `ticks` key is used multiple times
for an axis, the ⟨options⟩ accumulate.

    \tikz \datavisualization [
      scientific axes, visualize as line,
      x axis={ticks={step=24, minor steps between steps=3},
              label=hours}]
      data {
        x, y
        0, 0
        10, 0
        20, 0.5
        30, 0.75
        40, 0.7
        50, 0.6
        60, 0.5
        70, 0.45
        80, 0.47
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/ticks",
      meta = "⟨options⟩"
    },
    ["axis options/ticks and grid"] = {
      details = [[
This key passes the ⟨options⟩ to both the `ticks` key and also to the
`grid` key. This is useful when you want to specify some special points
explicitly where you wish a tick to be shown and also a grid line.

    \tikz \datavisualization
      [scientific axes,
       visualize as smooth line,
       all axes= {grid, unit length=1.25cm},
       y axis={ ticks=few },
       x axis={ ticks=many, ticks and grid={ major also at={(pi/2) as $\frac{\pi}{2}$}}}]
      data [format=function] {
        var x : interval [-pi/2:3*pi] samples 50;
        func y = sin(\value x r);
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/ticks:and:grid",
      meta = "⟨options⟩"
    },
    ["axis options/unit length"] = {
      details = [[
Sets `scaling` to `0 at 0cm and 1 at `⟨dimension⟩. In other words, this
key allows you to specify how long a single unit should be. This key is
particularly useful when you wish to ensure that the same scaling is
used across multiple axes or pictures.

    \tikz \datavisualization [scientific axes,
                              all axes={ticks=few, unit length=1mm},
                              visualize as line]
        data {
          x, y
          10, 10
          40, 20
          15, 30
          13, 20
        };

The optional `per `⟨number⟩` units` allows you to apply more drastic
scaling. Suppose that you want to plot a graph where one billion
corresponds to one centimeter. Then the unit length would be need to be
set to a hundredth of a nanometer -- much too small for TeX to handle as
a dimension. In this case, you can write
`unit length=1cm per 1000000000 units`:

    \tikz \datavisualization
      [scientific axes,
       x axis={unit length=1mm per 1000000000 units, ticks=few},
       visualize as line]
     data {
       x, y
       10000000000, 10
       40000000000, 20
       15000000000, 30
       13000000000, 20
     };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/unit:length",
      meta = "⟨dimension⟩ per ⟨number⟩ units"
    },
    ["axis options/unit vector"] = {
      details = [[
Recall that an axis takes the values of an attribute and rescales them
so that they fit into a "reasonable" interval $[t_1,t_2]$. Suppose that
$v'$ is the rescaled dimension in (TeX) points. Then when the data point
is visualized, the coordinate system will be shifted by $v'$ times the
⟨coordinate⟩.

As an example, suppose that you have said
`scaling=0 and 10pt and 50 and 20pt`. Then when the underlying attribute
has the value `25`, it will be mapped to a $v'$ of $15$ (because `25`
lies in the middle of `0` and `50` and `15pt` lies in the middle of
`10pt` and `20pt`). This, in turn, causes the data point to be displaced
by $15$ times the ⟨coordinate⟩.

The bottom line is that the ⟨coordinate⟩ should usually denote a point
that is at distance `1pt` from the origin and that points into the
direction of the axis.

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);

      \datavisualization
        [new Cartesian axis=x axis, x axis={attribute=x},
         new Cartesian axis=y axis, y axis={attribute=y},
         x axis={unit vector=(0:1pt)},
         y axis={unit vector=(60:1pt)},
         visualize as scatter]
      data {
        x, y
        0, 0
        1, 0
        2, 0
        1, 1
        2, 1
        1, 1.5
        2, 1.5
      };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/unit:vector",
      meta = "⟨coordinate⟩"
    },
    ["axis options/unit vectors"] = {
      details = [[
Both the ⟨unit vector 0 degrees⟩ and the ⟨unit vector 90 degrees⟩ are
TikZ coordinates:

    \tikz \datavisualization
        [new polar axes={angle axis}{radius axis},
         radius axis={unit length=1cm},
         angle axis={unit vectors={(10:1pt)}{(60:1pt)}},
         visualize as scatter]
      data [format=named] {
        angle={0,90}, radius={0.25,0.5,...,2}
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/unit:vectors",
      meta = " {⟨unit vector 0 degrees⟩}{⟨unit vector 90 degrees⟩}"
    },
    ["axis options/visualize axis"] = {
      details = [[
This key is passed to an axis as an option. It causes a visual
representation of the axis to be created during the data visualization.
The ⟨options⟩ are used to determine where the axis should be drawn and
how long it should be. We can specify, for instance, that an axis should
be drawn at the minimum value of another axis or where another axis has
the value `0`.

**The goto, high, and low Keys.** In our example, the `left axis` should
be shown at the left hand side. This is the position where the `x axis`
has its minimum value. To specify this, we would use the following code:

    left axis={ visualize axis={ x axis={ goto=min } }

As can be seen, we can pass another axis as an ⟨option⟩ to
`visualize axis`, where we pass the following key to the axis in turn:

The `right axis` would be visualized the same way, only at `goto=max`.
The $x$-axis actually needs to be visualized *twice*: Once at the bottom
and once at the top. Thus, we need to call `visualize axis` twice for
this axis:

    \tikzset{
      data visualization/our system/.append style={
        left axis= {visualize axis={x axis=   {goto=min}}},
        right axis={visualize axis={x axis=   {goto=max}}},
        x axis=    {visualize axis={left axis={goto=min}},
                    visualize axis={left axis={goto=max}}},
     }
    }
    \tikz \datavisualization [
        our system,
        x axis={attribute=time, length=4cm},
        left axis ={attribute=money},
        right axis={attribute=people},
        visualize as line/.list={people 1, people 2, money 1, money 2}]
      data group {people and money};

There is another key that is similar to `goto`, but has a slightly
different semantics:

By default, when an axis is visualized, it spans the set of all possible
values for the monitored attribute, that is, from `min` to `max`.
However, there are actually two keys that allow you to adjust this:

By default, `low=min` and `high=max` are set for an axis visualization.
Another sensible setting is `low=padded min` and `high=padded max`. The
following key provides a shorthand for this:

As an example, consider the `scientific axes=clean`. Here, each axis is
actually drawn three times: Once at the minimum, once at the maximum and
then once more at the padded minimum.

**The axis line.** When an axis is drawn, TikZ does not simply draw a
straight line from the `low` position to the `high` position. In
reality, the data visualization system uses the two commands
`\pgfpathdvmoveto` and `\pgfpathdvlineto` internally. These will replace
the straight line by a curve in certain situations. For instance, in a
polar coordinate system, if an axis should be drawn along an angle axis
for a fixed radius, an arc will be used instead of a straight line.

**Styling the axis.** As can be seen, we now get the axis we want (but
without the ticks, visualizing them will be explained later). The axis
is, however, simply a black line. We can *style* the axis in a manner
similar to styling ticks and grid lines, see Section ??. In detail, the
following styles get executed:

1.  `axis layer`

2.  `every axis`

3.  `styling`

Additionally, even before `every axis` is executed, `low=min` and
`high=max` are executed.

Recall that the `styling` key is set using the `style` key, see
Section ??.

    \tikzset{
      data visualization/our system/.append style={
        every axis/.style={style=black!50}, % make this the default
        left axis= {visualize axis={x axis=   {goto=min}, style=red!75}},
        right axis={visualize axis={x axis=   {goto=max}, style=blue!75}},
        x axis=    {visualize axis={left axis={goto=min}},
                    visualize axis={left axis={goto=max}}},
     }
    }
    \tikz \datavisualization [
        our system,
        x axis={attribute=time, length=4cm},
        left axis ={attribute=money},
        right axis={attribute=people},
        visualize as line/.list={people 1, people 2, money 1, money 2}]
      data group {people and money};

**Padding the Axis.** When an axis is visualized, it is often a good
idea to make it "a little bit longer" or to "remove it a bit from the
border", because the visualization of an axis should not interfere with
the actual data. For this reason, a *padding* can be specified for axes:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/visualize:axis",
      meta = "⟨options⟩"
    },
    ["axis options/visualize grid"] = {
      details = [[
This key is passed to an axis. It causes grid lines to be drawn at the
positions specified by the `grid` key for this axis. The ⟨options⟩
govern where and how the grid lines will be drawn.

**The direction axis.** At first sight, one might expect that the grid
lines for an axis should simply be drawn perpendicular to the axis
between the minimum and maximum value of the axis. However, things are
somewhat more difficult in reality:

1.  A grid line is supposed to indicate all positions where a certain
    attribute attains a fixed value. But, then, a grid line does not
    really need to be a grid *line*. Consider for instance a three
    dimensional axis system. A "grid line" for the $x$-coordinate `3`
    would actually be a "grid plane".

2.  For a polar coordinate system and a fixed radius, this set of
    positions at a certain radius is not a straight line, but an arc.
    For more complicated coordinate systems such as the one arising from
    three-dimensional spherical projections, a grid line may well be a
    fairly involved curve.

The `visualize grid` command addresses these complications as follows:

1.  A grid line is always a line, not a plane or a volume. This means
    that in the example of a three dimensional axis system and the
    $x$-attribute being `3`, one would have to choose whether the grid
    line should go "along" the $y$-axis or "along" the $z$-axis for this
    position. One can, however, call the `visualize grid` command twice,
    once for each direction, to cause grid lines to be shown for both
    directions.

2.  A grid line is created by moving to a start position and then doing
    a lineto to the target position. However, the "moveto" and "lineto"
    are done by calling special commands of the data visualization
    system. These special commands allow coordinate system to "notice"
    that the line is along an axis and will allow them to replace the
    straight line by an appropriate curve. The polar axes systems employ
    this strategy, for instance.

By the above discussion, in order to create a grid line for attribute
$a$ having value $v$, we need to specify an axis "along" which the line
should be drawn. When there are only two axes, this is usually "the
other axis". This "other axis" is specified using the following key:

The `low` and `high` keys are the same as the ones used in the
`visualize axis` key.

    \tikz \datavisualization [
        xyz Cartesian cabinet,
        all axes={visualize axis={low=0, style=->}},
        x axis={visualize grid={direction axis=y axis}, grid=many},
        visualize as scatter]
      data {
        x, y, z
        0, 0, 1
        0, 1, 0
        2, 2, 2
      };

    \tikz \datavisualization [
        xyz Cartesian cabinet,
        all axes={visualize axis={low=0, style=->}, grid=many},
        x axis={visualize grid={direction axis=z axis}},
        z axis={visualize grid={direction axis=x axis},
                visualize grid={direction axis=y axis},},
        visualize as scatter]
      data {
        x, y, z
        0, 0, 1
        0, 1, 0
        2, 2, 2
      };

**Styling the grid lines.** When a grid line is draw, styles are applied
as described in Section ??.

**The major, minor, and subminor grid lines.** The `grid` option allows
you to specify for each kind of grid line (major, minor, or subminor) a
set of different values for which these grid lines should be drawn.
Correspondingly, it is also possible to configure for each kind of grid
line how it should be drawn. For this, the `major`, `minor`, `subminor`,
and also the `common` keys can be used inside the ⟨options⟩ of
`visualize grid`. While as option to `grid` these keys are used to
specify `at` values, as options of `visualize grid` they are used to
configure the different kinds of grid lines.

Most of the time, no special configuration is necessary since all
styling is best done by configuring keys like `every major grid`. You
need to use a key like `major` only if you wish to configure for
instance the `low` or `high` values of a `major` grid line differently
from those of `minor` grid lines -- are rather unlikely setting -- or
when the styling should deviate from the usual settings.

    \tikz \datavisualization [
        xy Cartesian,
        all axes={visualize axis={low=0, style=->},
                  grid={some, minor steps between steps}},
        x axis=  {visualize grid={
                    direction axis=y axis,
                    minor={low=0.25, high=1.75, style=red!50}}},
        visualize as scatter]
      data {
        x, y
        0, 0
        3, 3
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/visualize:grid",
      meta = "⟨options⟩"
    },
    ["axis options/visualize label"] = {
      details = [[
The ⟨options⟩ should be used to configure a "good place" for the axis
label. Usually, you will use the `goto` or the `goto pos` key.

For the example of `our system`, we would like the label of the `x axis`
to be placed below at the middle of the axis, so we use `goto pos=.5` to
determine this position. Concerning the other axes, we want it to be
placed at the minimum position of the `left axis` with a lot of padding.

    \tikzdatavisualizationset{
      our system/.append style={
        x axis={visualize label={
            x axis={goto pos=.5},
            left axis={padding=1.5em, goto=padded min}}}
      }
    }
    \tikz \datavisualization [
        our system,
        x axis={attribute=time, ticks=some, label},
        left axis ={attribute=money},
        right axis={attribute=people},
        visualize as line/.list={
          people 1, people 2, money 1, money 2}]
      data group {people and money};

In the above example, the `padding` of `1.5em` was rather arbitrary and
"suboptimal". It would be outright wrong if the labels on the `x axis`
were larger or if they were missing. It would be better if the vertical
position of the `x axis` label were always "below" all other options.
For such cases a slightly strange approach is useful: You position the
node using `node style={at=...}` where `at` is now the normal
TikZ option that is used to specify the position of a node. Inside the
`...`, you specify that the horizontal position should be the bottom of
up-to-now-constructed data visualization and the vertical position
should be at the "origin", which is, however, the position computed by
the `goto` keys for the axes:

    \tikzdatavisualizationset{
      our system/.append style={
        x axis={visualize label={
          x axis={goto pos=.5},
          node style={
            at={(0,0 |- data visualization bounding box.south)},
            below
    } } } } }
    \tikz \datavisualization [
        our system,
        x axis={attribute=time, ticks=some, label=Year},
        left axis ={attribute=money},
        right axis={attribute=people},
        visualize as line/.list={
          people 1, people 2, money 1, money 2}]
      data group {people and money};

Two additional keys are useful for positioning axis labels:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/visualize:label",
      meta = "⟨options⟩"
    },
    ["axis options/visualize ticks"] = {
      details = [[
Visualizing a tick involves (possibly) drawing a tick mark and adding
(possibly) the tick node. The process is similar to `visualize grid`:
Users use the `ticks` key to configure how many ticks they would like
for an axis and at which positions. The axis system uses the
`visualize ticks` key to specify where these ticks should actually be
shown.

Unlike grid lines, which are typically only visualized once for each
combination of an axis and a direction axis, tick marks might be
visualized at different places for the same axis. Consider for instance
the `scientific axes`:

    \tikz \datavisualization [scientific axes, all axes={length=3cm},
                              x axis={ticks={stack}},
                              visualize as smooth line]
      data [format=function] {
        var x : interval [0:2];
        func y = \value  x*\value x;
      };

Have a look at the ticks on the $y$-axis: There are ticks at values `0`,
`1`, `2`, `3`, and `4`. These are visualized both at the left side
(where the tick nodes are also shown) and additionally also at the right
side, but only as small marks. Similarly, the ticks on the $x$-axis
appear at the bottom, but also (in much simpler versions) at the top.
Both for the $x$-axis and for the $y$-axis the `visualize ticks` key was
called twice.

**The tick marks.** Drawing a tick mark is quite similar to visualizing
a grid line; indeed a tick mark can be thought of as a "mini grid line":
Just like a grid line it "points a long an axis". However, a tick will
always be a short straight line -- even when the coordinate system is
actually twisted (experimentation has shown that ticks that follow the
curvature of the coordinate system like grid lines are hard to
recognize). For this reason, the `low` and `high` keys have a different
meaning from the one used with the `visualize grid` key. In detail to
configure the size and position of a tick mark for the value $v$ of
attribute $a$, proceed as follows:

-   The `visualize ticks` key will have setup attribute $a$ to be equal
    to $v$.

-   You should now use the `goto` or `goto pos` key together with all
    *other* axes to configure at which position with respect to these
    other options the tick mark should be shown. For instance, suppose
    we want tick marks in `our system` for the $x$-axis at the bottom
    and at the top. This corresponds to once setting the `left axis` to
    its minimal value and once to its maximal value:

        \tikzset{
          data visualization/our system/.append style={
            x axis={visualize ticks={direction axis=left axis, left axis={goto=min}},
                    visualize ticks={direction axis=left axis, left axis={goto=max}},
            }
          }
        }
        \tikz \datavisualization [
            our system,
            x axis={attribute=time, length=3cm, ticks=many},
            left axis ={attribute=money},
            right axis={attribute=people},
            visualize as line/.list={people 1, people 2, money 1, money 2}]
          data group {people and money};

-   In the above example, we may wish to shorten the ticks a bit at the
    bottom and at the top. For this, we use the `low` and `high` key:

    What we want to happen is that in the upper visualization of the
    ticks the `low` value is `0pt`, while in the lower one the `high`
    value is `0pt`:

        \tikzset{
          data visualization/our system/.append style={
            x axis={
              visualize ticks={direction axis=left axis,high=0pt,left axis={goto=min}},
              visualize ticks={direction axis=left axis,low=0pt,left axis={goto=max}},
            }
          }
        }
        \tikz \datavisualization [
            our system,
            x axis={attribute=time, length=3cm, ticks=many},
            left axis ={attribute=money},
            right axis={attribute=people},
            visualize as line/.list={people 1, people 2, money 1, money 2}]
          data group {people and money};

In order to style the tick mark, use the styling mechanism that is
detailed in Section ??.

**The tick label node.** At certain tick positions, we may wish to add a
node indicating the value of the attribute at the given position. The
`visualize ticks` command has no influence over which text should be
shown at a node -- the text is specified and typeset as explained in
Section ??.

Each time `visualize ticks`, for each tick position up to two tick label
nodes will be created: One at the `low` position and one at the `high`
position. The following keys are used to configure which of these cases
happen:

When a tick label node is to be placed at the low or the high position,
the next step is to determine the exact position and the correct anchor
of the node. This is done as follows:

-   In order to compute an appropriate `anchor`, the tick mark is
    considered: This is a short line pointing in a certain direction.
    For a tick label node at the `low` position, the `anchor` attribute
    is setup in such a way that the node label will be below the `low`
    position when the tick mark direction points up, it will be to the
    right when the direction points left, above when it points down, and
    so on also for diagonal directions. Similarly, for the `high`
    position, when the direction points up, the node will be placed
    above the tick mark and so on.

    This computation is done automatically.

-   The tick label node is styled. The styles that are applied are
    described in Section ??.

-   A tick label node for the `low` position is usually anchored at this
    `low` position, but an additional padding will be added as described
    in Section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/axis:options/visualize:ticks",
      meta = "⟨options⟩"
    },
    ["before creation"] = {
      details = [[
This code is executed right before the object is finally created. It can
be used to compute values that are then passed to the constructor.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/before:creation",
      meta = "⟨code⟩"
    },
    ["before survey"] = {
      details = [[
The ⟨code⟩ is passed to the `before survey` method of the data
visualization object and then executed at the appropriate time (see
Section ?? for details).

The following commands work likewise:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/before:survey",
      meta = "⟨code⟩"
    },
    ["before visualization"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/before:visualization",
      meta = "⟨code⟩"
    },
    class = {
      details = [[
The class of the to-be-created object.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/class",
      meta = "⟨class name⟩"
    },
    common = {
      details = [[
This key allows you to specify ⟨options⟩ that apply to `major`, `minor`
and `subminor` alike. It does not make sense to use `common` to specify
positions (since you typically do not want both a major and a minor tick
at the same position), but it can be useful to configure, say, the size
of all kinds of ticks:

    \tikz \datavisualization
      [ school book axes, visualize as smooth line,
        x axis={ticks={minor steps between steps, common={low=0}}} ]
      data [format=function] {
        var x : interval [-1.25:2];
        func y = \value x * \value x / 2;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/common",
      meta = "⟨options⟩"
    },
    ["compute step"] = {
      details = [[
The ⟨code⟩ should compute a suitable value for the stepping to be used
by the ⟨macro⟩ in the tick placement strategy.

For instance, the `step` key sets `compute step` to
`\def\tikz@lib@dv@step{# 1}`. Thus, when you say `step=5`, then the
desired stepping of `5` is communicated to the ⟨macro⟩ via the macro
`\tikz@lib@dv@step`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/compute:step",
      meta = "⟨code⟩"
    },
    ["data point"] = {
      details = [[
This key is the "key version" of the previous command. The difference is
that this key can be used internally inside styles.

    \tikzdatavisualizationset{
      horizontal/.style={
        data point={x=#1, y=1}, data point={x=#1, y=2}},
    }
    \tikz \datavisualization
    [ school book axes, visualize as line,
      horizontal=1,
      horizontal=2 ];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/data:point",
      meta = "⟨options⟩"
    },
    ["decimal about strategy"] = {
      details = [[
The only permissible value for $m'$ is $1$. This is an even more radical
version of the previous strategy.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/decimal:about:strategy"
    },
    ["direction axis"] = {
      details = [[
You must pass this key as an ⟨option⟩ each time you use
`visualize axis`. When the grid line is drawn, the attribute $a$ is set
to $v$ and the axis ⟨axis name⟩'s attribute is set once to the current
value of `low` and once to `high`. Then a line is drawn between these
two positions using `\pgfpathdvlineto`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/direction:axis",
      meta = "⟨axis name⟩"
    },
    ["euro about strategy"] = {
      details = [[
Permissible values for $m'$ are: $1$, $2$, and $5$. These are the same
values as for the Euro coins, hence the name.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/euro:about:strategy"
    },
    ["every axis"] = {
      details = [[
Put styling of the axis here. It is usually a good idea to set this
style to `style={black!50}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:axis"
    },
    ["every data set label"] = {
      details = [[
This style is executed with every label that represents a data set.
Inside this style, use `node style` to change the appearance of nodes.
This style has a default definition, usually you should just append
things to this style.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      school book axes,
      x axis={label=$x$},
      visualize as smooth line/.list={log, lin, squared, exp},
      every data set label/.append style={text colored},
      log=    {label in data={text'=$\log x$, when=y is -1}},
      lin=    {label in data={text=$x/2$,
                        node style=sloped,    when=x is 2}},
      squared={label in data={text=$x^2$,     when=x is 1.1}},
      exp=    {label in data={text=$e^x$,
                        node style=sloped,    when=x is -2}},
      style sheet=vary hue]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:data:set:label"
    },
    ["every grid"] = {
      details = [[
This style provides overall configuration options for grid lines. By
default, it is set to the following:

    low=min, high=max

This causes grid lines to span all possible values when they are
visualized, which is usually the desired behavior (the `low` and `high`
keys are explained in Section ??. You can append the `style` key to this
style to configure the overall appearance of grid lines. It should be
noted that settings to `style` inside `every grid` will take precedence
over ones in `every major grid` and `every minor grid`. In the following
example we cause all grid lines to be dashed (which is not a good idea
in general since it creates a distracting background pattern).

    \tikz \datavisualization
      [scientific axes,
       all axes={length=3cm, grid},
       every grid/.append style={style=densely dashed},
       visualize as line]
      data [format=function] {
        var x : interval [5:10];
        func y = \value x * \value x;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:grid"
    },
    ["every label in data"] = {
      details = [[
Like `every data set label`, this key is also executed with labels.
However, this key is executed after the style sheets have been executed,
giving you a chance to overrule their styling.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:label:in:data"
    },
    ["every label in legend"] = {
      details = [[
This key is executed with every label in a legend. However, the options
stored in this style are executed with the path prefix
`/tikz/data visualization/legend entry options`. Thus, this key can use
keys like `node style` to configure the styling of all text nodes:

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      every label in legend/.style={node style=
        {fill=red!30}},
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=north east outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$,
          node style={circle, draw=red}}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:label:in:legend"
    },
    ["every major grid"] = {
      details = [[
This style configures the appearance of major grid lines. It does so by
calling the `style` key to setup appropriate TikZ options for
visualizing major grid lines. The default definition of this style is:

    style = {help lines, thin, black!25}

In the following example, we use thin major blue grid lines:

    \tikz \datavisualization
      [scientific axes,
       all axes={
         length=3cm,
         grid,
         grid={minor steps between steps}
       },
       every major grid/.style = {style={blue, thin}},
       visualize as line]
      data [format=function] {
        var x : interval [5:10];
        func y = \value x * \value x;
      };

As can be seen, this is not exactly visually pleasing. The default
settings for the grid lines should work in most situations; you may wish
to increase the blackness level, however, when you experience trouble
during printing or projecting graphics.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:major:grid"
    },
    ["every major ticks"] = {
      details = [[
The default is

      style={line cap=round}, tick length=2pt
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:major:ticks"
    },
    ["every minor grid"] = {
      details = [[
Works like `every major grid`. The default is

    style = {help lines, black!25}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:minor:grid"
    },
    ["every minor ticks"] = {
      details = [[
The default is

      style={help lines,thin, line cap=round}, tick length=1.4pt
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:minor:ticks"
    },
    ["every scientific axes"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:scientific:axes"
    },
    ["every subminor grid"] = {
      details = [[
Works like `every major grid`. The default is

    style = {help lines, black!10}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:subminor:grid"
    },
    ["every subminor ticks"] = {
      details = [[
The default is

      style={help lines, line cap=round}, tick length=0.8pt
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:subminor:ticks"
    },
    ["every ticks"] = {
      details = [[
This style allows you to configure the appearance of ticks using the
`style` and `node style` key. Here is (roughly) the default definition
of this style:

    node style={
      font=\footnotesize,
      inner sep=1pt,
      outer sep=.1666em,
      rounded corners=1.5pt
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:ticks"
    },
    ["every visualizer"] = {
      details = [[
This style is used with every visualizer. Note that it should contain
normal TikZ keys.

    \tikz \datavisualization
     [scientific axes=clean,
      every visualizer/.style={dashed},
      visualize as smooth line]
    data [format=function] {
      var x : interval[0:3*pi];
      func y = sin(\value x r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:visualizer"
    },
    ["every ⟨axis system name⟩"] = {
      details = [[
Even though this style has the path prefix `/tikz/data visualization`
itself, the keys stored in this style will be executed with the path
prefix `/tikz/data visualization/`⟨axis system name⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/every:⟨axis:system:name⟩"
    },
    few = {
      details = [[
This is an abbreviation for `about=3`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/few"
    },
    ["grid layer"] = {
      details = [[
\[section-dv-grid-layer\] This key is used to specified the *layer* on
which grid lines should be drawn (layers are explained in Section ??).
By default, all grid lines are placed on the `background` layer and thus
behind the data visualization. This is a sensible strategy since it
avoids obscuring the more important data with the far less important
grid lines. However, you can change this style to "get the grid lines to
the front":

    \tikz \datavisualization
      [scientific axes,
       all axes={
         length=3cm,
         grid,
         grid={minor steps between steps}
       },
       grid layer/.style=, % none, so on top of data (bad idea)
       visualize as line]
      data [format=function] {
        var x : interval [5:10];
        func y = \value x * \value x;
      };

When this style is executed, the keys stored in the style will be
executed with the prefix `/tikz`. Normally, you should only set this
style to be empty or to `on background layer`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/grid:layer"
    },
    ["half about strategy"] = {
      details = [[
Permissible values for $m'$: $1$ and $5$. Use this strategy if only
powers of $10$ or halves thereof seem logical.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/half:about:strategy"
    },
    high = {
      details = [[
Like `low`, only for where the axis ends.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/high",
      meta = "⟨value⟩"
    },
    ["int about strategy"] = {
      details = [[
Permissible values for $m'$ are: $1$, $2$, $3$, $4$, and $5$.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/int:about:strategy"
    },
    legend = {
      details = [[
This is a shorthand for `new legend=main legend, main legend=`⟨options⟩.
In other words, this key creates a new `main legend` and immediately
passes the configuration ⟨options⟩ to this legend.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes, x axis={label=$x$},
      visualize as smooth line/.list={log, lin, squared, exp},
      legend=below,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=vary dashing]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend",
      meta = "⟨options⟩"
    },
    ["legend entry options/circular label in legend line"] = {
      details = [[
This style is especially tailored to represent lines that are closed. It
is automatically selected for instance by the `polygon` or the
`smooth cycle` styles.

    \tikz \datavisualization [
      scientific axes={clean}, all axes={length=3cm},
      visualize as line/.list={a,b,c},
      a={polygon}, b={smooth cycle},
      style sheet=cross marks,
      a={label in legend={text=polygon}},
      b={label in legend={text=circle}},
      c={label in legend={text=line}}]
    data [format=function, set=a] {
      var t : {0,72,...,359};
      func x = cos(\value t);
      func y = sin(\value t);
    }
    data [format=function, set=b] {
      var t : [0:2*pi];
      func x = .8*cos(\value t r);
      func y = .8*sin(\value t r);
    }
    data point [x=-1, y=0.5, set=c]
    data point [x=1,  y=0.25, set=c];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/circular:label:in:legend:line"
    },
    ["legend entry options/default label in legend closed path"] = {
      details = [[
This style is executed by `smooth cycle` and `straight cycle`. There are
(currently) no other predefined sets of coordinates that can be used
instead of the default value `circular label in legend line`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/default:label:in:legend:closed:path"
    },
    ["legend entry options/default label in legend mark"] = {
      details = [[
This style is executed by `no lines` and, implicitly, by scatter plots.
The default is to use `label in legend line one mark`. Another possible
value is `label in legend line three marks`.

    \tikz \datavisualization [
      visualize as scatter/.list={a,b,c},
      style sheet=cross marks,
      legend entry options/default label in legend mark/.style=
        label in legend three marks,
      a={label in legend={text=example a}},
      b={label in legend={text=example b}},
      c={label in legend={text=example c}}];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/default:label:in:legend:mark"
    },
    ["legend entry options/default label in legend path"] = {
      details = [[
This style is set, by default, to `zig zag label in legend line`. It is
installed by the styles `straight line`, `smooth line`, and `gap line`,
so changing this style will change the appearance of lines in legends.
The main other sensible option for this key is
`straight label in legend line`.

    \tikz \datavisualization [
      school book axes, visualize as line/.list={a,b},
      style sheet=vary dashing,
      a={label in legend={text=a}},  b={label in legend={text=b}}]
    data point [x=-1, y=-1, set=a]   data point [x=1, y=0, set=a]
    data point [x=-1, y=1,  set=b]   data point [x=1, y=0.5, set=b];

    \tikz \datavisualization [
      school book axes, visualize as line/.list={a,b},
      legend entry options/default label in legend path/.style=
        straight label in legend line,
      style sheet=vary dashing,
      a={label in legend={text=a}},  b={label in legend={text=b}}]
    data point [x=-1, y=-1, set=a]   data point [x=1, y=0, set=a]
    data point [x=-1, y=1,  set=b]   data point [x=1, y=0.5, set=b];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/default:label:in:legend:path"
    },
    ["legend entry options/gap circular label in legend line"] = {
      details = [[
This style is especially tailored to for the `gap cycle` style and
automatically selected by it:

    \tikz \datavisualization [
      scientific axes={clean}, all axes={length=3cm},
      visualize as line/.list={a,b,c},
      a={gap cycle}, b={smooth cycle}, c={gap line},
      a={style={mark=*, mark size=0.5pt},
         label in legend={text=polygon}},
      b={label in legend={text=circle}},
      c={style={mark=*, mark size=0.5pt, mark options=red},
         label in legend={text=line}}]
    data [format=function, set=a] {
      var t : {0,72,...,359};
      func x = cos(\value t);
      func y = sin(\value t);
    }
    data [format=function, set=b] {
      var t : [0:352];
      func x = .8*cos(\value t);
      func y = .8*sin(\value t);
    }
    data point [x=-1, y=0.5, set=c]
    data point [x=1,  y=0.25, set=c];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/gap:circular:label:in:legend:line"
    },
    ["legend entry options/label in legend line coordinates"] = {
      details = [[
This key takes a ⟨list of coordinates⟩, which are TikZ-coordinates
separated by commas like `(0,0),``(1,1)`. The effect of setting the key
is the following: The label in legend visualizer used by, for instance,
`visualize as line` will draw a path going through these points. When
the line is drawn, the exact same style will be used as was used for the
data set. For instance, if the `smooth line` key was used and also the
`style=red` key, the line through the ⟨list of coordinates⟩ will also be
red and smooth. When the `straight cycle` key was used, the coordinates
will also be connected by a cycle, and so on.

When the line connecting the ⟨list of coordinates⟩ is drawn, the
coordinate system will have been shifted and transformed in such a way
that `(0,0)` lies to the left of the text and at half the height of the
character "x". This means that the right-most-point in the list should
usually be `(0,0)` and all other $x$-coordinates should usually be
negative. When the `text left` options is used, the coordinate system
will have been flipped, so the ⟨list of coordinates⟩ is independent of
whether the text is to the right or to the left of the line.

Let us now have a look at a first, simple example. We create a legend
entry that is just a straight line, so it should start somewhere to the
left of the origin at height $0$ and go to the origin:

    \tikz \datavisualization [
      school book axes, visualize as line/.list={a,b},
      style sheet=vary dashing,
      a={label in legend={text=a,
          label in legend line coordinates={(-1em,0), (0,0)}}},
      b={label in legend={text=b,
          label in legend line coordinates={(-2em,0), (0,0)}}}]
    data point [x=-1, y=-1, set=a]   data point [x=1, y=0, set=a]
    data point [x=-1, y=1,  set=b]   data point [x=1, y=0.5, set=b];

Now let us make this a bit more fancy and useful by using shifted lines:

    \tikz \datavisualization [
      school book axes, visualize as line/.list={a,b},
      legend={up then right}, style sheet=vary dashing,
      a={label in legend={text=a,
          label in legend line coordinates={(-2em,-.25ex), (0,0)}}},
      b={label in legend={text=b,
          label in legend line coordinates={(-2em,.25ex), (0,0)}}}]
    data point [x=-1, y=-1, set=a]   data point [x=1, y=0, set=a]
    data point [x=-1, y=1,  set=b]   data point [x=1, y=0.5, set=b];

In the final example, we use a little "hat" to represent lines:

    \tikz \datavisualization [
      school book axes, visualize as line/.list={a,b},
      legend={up then right}, style sheet=vary dashing,
      a={label in legend={text=a,
          label in legend line coordinates={
            (-2em,-.2ex), (-1em,.2ex), (0,-.2ex)}}},
      b={label in legend={text=b,
          label in legend line coordinates={
            (-2em,-.2ex), (-1em,.2ex), (0,-.2ex)}}}]
    data point [x=-1, y=-1, set=a]   data point [x=1, y=0, set=a]
    data point [x=-1, y=1,  set=b]   data point [x=1, y=0.5, set=b];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/label:in:legend:line:coordinates",
      meta = " {list of coordinates}"
    },
    ["legend entry options/label in legend mark coordinates"] = {
      details = [[
This key is similar to `label in legend line coordinates`, but now the
⟨list of coordinates⟩ is used as the positions where plot marks are
shown. Naturally, plot marks are only shown there if they are also shown
by the visualizer in the actual data -- just like the line through the
coordinates of the previous key is only shown when there is a line.

The ⟨list of coordinates⟩ may be the same as the one used for lines, but
usually it is not. In general, it is better to have marks for instance
not at the ends of the line.

    \tikz \datavisualization [
      school book axes, visualize as line/.list={a,b},
      legend={up then right},
      style sheet=vary dashing,
      style sheet=cross marks,
      a={label in legend={text=a,
          label in legend line coordinates={
            (-2em,-.2ex), (-1em,.2ex), (0,-.2ex)},
          label in legend mark coordinates={
            (-1em,.2ex)}}},
      b={label in legend={text=b,
          label in legend line coordinates={
            (-2em,-.2ex), (-1em,.2ex), (0,-.2ex)},
          label in legend mark coordinates={
            (-2em,-.2ex), (0,-.2ex)}}}]
    data point [x=-1, y=-1, set=a]   data point [x=1, y=0, set=a]
    data point [x=-1, y=1,  set=b]   data point [x=1, y=0.5, set=b];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/label:in:legend:mark:coordinates",
      meta = " {list of coordinates}"
    },
    ["legend entry options/label in legend one mark"] = {
      details = [[
To be used with scatter plots, since no line is drawn. Just displays a
single mark (this is the default with a scatter plot or when the
`no line` is selected.

    \tikz \datavisualization [visualize as scatter/.list={a,b,c},
       style sheet=cross marks,
      a={label in legend={text=example a}},
      b={label in legend={text=example b}},
      c={label in legend={text=example c}}];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/label:in:legend:one:mark"
    },
    ["legend entry options/label in legend three marks"] = {
      details = [[
An alternative to the previous style, where several marks are shown.

    \tikz \datavisualization [visualize as scatter/.list={a,b,c},
      style sheet=cross marks,
      a={label in legend={text=example a, label in legend three marks}},
      b={label in legend={text=example b, label in legend three marks}},
      c={label in legend={text=example c, label in legend three marks}}];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/label:in:legend:three:marks"
    },
    ["legend entry options/legend"] = {
      details = [[
Set this key to the name of a legend that has previously been created
using `new legend`. The label will then be shown in this legend.

In most cases, there is only one legend (namely `main legend`) and there
is no need to set this key since it defaults to the main legend.

Also note that the legend ⟨name⟩ is automatically created if it nodes
not yet exist.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/legend",
      meta = "⟨name⟩"
    },
    ["legend entry options/node style"] = {
      details = [[
This key adds ⟨options⟩ to the styling of the text nodes of the label.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=north east outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$,
          node style={circle, draw=red}}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/node:style",
      meta = "⟨options⟩"
    },
    ["legend entry options/setup"] = {
      details = [[
Some code to be executed at this point. Mostly, it is used to setup
attributes for style sheets.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/setup"
    },
    ["legend entry options/straight label in legend line"] = {
      details = [[
Just gives a straight line and two plot marks.

    \tikz \datavisualization [visualize as line,
      line={style={mark=x}, label in legend={text=example,
        straight label in legend line}}];

This style might seem like a good idea to use in general, but it does
have a huge drawback: Some commonly used plot marks will be impossible
to distinguish -- even though there is no problem distinguishing them in
a graph.

    \tikz \datavisualization [visualize as line/.list={a,b,c},
      legend entry options/default label in legend path/.style=
        straight label in legend line,
      a={style={mark=+}, label in legend={text=bad example a}},
      b={style={mark=-}, label in legend={text=bad example b}},
      c={style={mark=|}, label in legend={text=bad example c}}];

For this reason, this option is not the default, but rather the next
one.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/straight:label:in:legend:line"
    },
    ["legend entry options/text"] = {
      details = [[
Use this key to setup the ⟨text⟩ that is shown as the label of the data
set.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes, x axis={label=$x$},
      visualize as smooth line/.list=
      {log, lin, squared, exp},
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={pin in data    ={text=$x^2$, pos=0.1}},
      exp=    {label in data  ={text=$e^x$}},
      style sheet=vary dashing]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/text",
      meta = "⟨text⟩"
    },
    ["legend entry options/text colored"] = {
      details = [[
Causes the `node style` to set the text color to `visualizer color`. The
effect of this is that the label's text will have the same color as the
data set to which it is attached.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend={label style=text colored},
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/text:colored"
    },
    ["legend entry options/text left"] = {
      details = [[
Placed the text node to the left of the data set style visualization.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend={label style=text left},
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/text:left"
    },
    ["legend entry options/text only"] = {
      details = [[
Shows only the text nodes and no data set style visualization at all.
This options only makes sense in conjunction with the `text colored`
options, which is why this options is also selected implicitly.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend={south east inside, rows=2,
              label style=text only},
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/text:only"
    },
    ["legend entry options/text right"] = {
      details = [[
Placed the text node to the right of the data set style visualization.
This is the default for most, but not all, legends.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/text:right"
    },
    ["legend entry options/visualizer in legend"] = {
      details = [[
Set this key to some code that paints something in the cell picture.
Typically, this will be a visual representation of the data set styling,
but it could also be something different.

    \tikz \datavisualization [
      school book axes, visualize as line/.list={a,b},
      style sheet=vary dashing,
      a={label in legend={text=a}},
      new legend entry={
        text=spacer,
        visualizer in legend={\draw[solid] (0,0) circle[radius=2pt];}
      },
      b={label in legend={text=b}}]
    data point [x=-1, y=-1, set=a]   data point [x=1, y=0, set=a]
    data point [x=-1, y=1,  set=b]   data point [x=1, y=0.5, set=b];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/visualizer:in:legend"
    },
    ["legend entry options/visualizer in legend style"] = {
      details = [[
Calls to this key accumulate ⟨options⟩ that will be executed with the
path prefix `/tikz` at this point.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/visualizer:in:legend:style",
      meta = " {options}"
    },
    ["legend entry options/zig zag label in legend line"] = {
      details = [[
Uses a small up-down-up line as the label in legend visualizer. The two
plot marks are at the extremal points of the line. It works pretty well
in almost all situations and is the default.

    \tikz \datavisualization [
      visualize as line=a,
      visualize as smooth line/.list={b,c},
      a={style={mark=+}, label in legend={text=better example a}},
      b={style={mark=-}, label in legend={text=better example b}},
      c={style={mark=|}, label in legend={text=better example c}}];

Even though the above example shows that the marks are easier to
distinguish than with a straight line, the chosen marks are still not
optimal. This is the reason that the `cross marks` style uses different
crosses:

    \tikz \datavisualization [
      visualize as line/.list={a,b},
      visualize as smooth line=c,
      style sheet=cross marks,
      a={label in legend={text=good example a}},
      b={label in legend={text=good example b}},
      c={gap line, label in legend={text=good example c}}];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:entry:options/zig:zag:label:in:legend:line"
    },
    ["legend options/above"] = {
      details = [[
This is an easier-to-remember alias.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/above"
    },
    ["legend options/above left of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/above:left:of",
      meta = "⟨data point⟩"
    },
    ["legend options/above of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/above:of",
      meta = "⟨data point⟩"
    },
    ["legend options/above right of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/above:right:of",
      meta = "⟨data point⟩"
    },
    ["legend options/anchor"] = {
      details = [[
The whole legend is a TikZ-matrix internally. Thus, in particular, it is
stored in a node, which has anchors. Like for any other node, when the
node is shown, the node is shifted in such a way that the ⟨anchor⟩ of
the node lies at the current `at` position.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/anchor",
      meta = "⟨anchor⟩"
    },
    ["legend options/at"] = {
      details = [[
Configures the ⟨coordinate⟩ at which the ⟨anchor⟩ of the legend's node
should lie.

It may seem hard to predict a good ⟨coordinate⟩ for a legend since,
depending of the size of the axis, different positions need to the
chosen for the legend. However, it turns out that one can often use the
coordinates of the special nodes `data bounding box` and
`data visualization bounding box`, documented in Section ??.

As an example, let us put a legend to the right of the visualization,
but so that the first entry starts at the top of the visualization:

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes, x axis={label=$x$},
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend={anchor=north west, at=
        (data visualization bounding box.north east)},
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=vary dashing]
    data group {function classes};

As can be seen, a bit of an additional shift might have been in order,
but the result is otherwise quite satisfactory.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/at",
      meta = "⟨coordinate⟩"
    },
    ["legend options/at values"] = {
      details = [[
This key allows you to specify the desired center of the legend in terms
of a data point. The ⟨data point⟩ should be a list of comma-separated
key--value pairs that specify a data point. The legend will then be
centered at this data point.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list={log, lin},
      legend={at values={x=-1, y=2}},
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/at:values",
      meta = "⟨data point⟩"
    },
    ["legend options/below"] = {
      details = [[
This is an easier-to-remember alias.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/below"
    },
    ["legend options/below left of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/below:left:of",
      meta = "⟨data point⟩"
    },
    ["legend options/below of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/below:of",
      meta = "⟨data point⟩"
    },
    ["legend options/below right of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/below:right:of",
      meta = "⟨data point⟩"
    },
    ["legend options/columns"] = {
      details = [[
Shorthand for `ideal number of columns=`⟨number⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/columns",
      meta = "⟨number⟩"
    },
    ["legend options/down then left"] = {
      details = [[
     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={down then left, columns=3}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/down:then:left"
    },
    ["legend options/down then right"] = {
      details = [[
Causes the legend entries to fill the legend matrix first downward and,
once a column is full, the next column is begun to the right of the
previous one. This is the default.

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={down then right, columns=3}]
    data group {sin functions};

In the example, the `legend example` is the following style:

    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/down:then:right"
    },
    ["legend options/east inside"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/east:inside"
    },
    ["legend options/east outside"] = {
      details = [[
Placing the legend to the right of the data visualization is the
default:

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=east outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/east:outside"
    },
    ["legend options/every legend inside"] = {
      details = [[
Executed the keys `opaque` by default and sets the text size to the size
of footnotes.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/every:legend:inside"
    },
    ["legend options/every new legend"] = {
      details = [[
This key defaults to `east outside, label style=text right`. This means
that by default a legend is placed to the right of the data
visualization and that in the individual legend entries the text is to
the right of the data set visualization.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/every:new:legend"
    },
    ["legend options/ideal number of columns"] = {
      details = [[
Specifies, that the entries should be split into ⟨number⟩ different
columns, whenever possible. However, when there would be more than the
`max rows` value of rows per column, more columns than the ideal number
are created.

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={ideal number of columns=2}]
    data group {sin functions};

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={ideal number of columns=4}]
    data group {sin functions};

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={max rows=3,ideal number of columns=2}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/ideal:number:of:columns",
      meta = "⟨number⟩"
    },
    ["legend options/ideal number of rows"] = {
      details = [[
Works like `ideal number of columns`.

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={ideal number of rows=2}]
    data group {sin functions};

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={ideal number of rows=4}]
    data group {sin functions};

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={max columns=3,ideal number of rows=2}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/ideal:number:of:rows",
      meta = "⟨number⟩"
    },
    ["legend options/label style"] = {
      details = [[
This key can be used with a legend. It will simply add the ⟨options⟩ to
the `every label in legend` style for the given legend.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend={label style={node style=draw}},
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$,
          node style={circle, draw=red}}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/label:style",
      meta = "⟨options⟩"
    },
    ["legend options/left"] = {
      details = [[
This is an easier-to-remember alias.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/left"
    },
    ["legend options/left of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/left:of",
      meta = "⟨data point⟩"
    },
    ["legend options/left then down"] = {
      details = [[
     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={left then down, columns=3}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/left:then:down"
    },
    ["legend options/left then up"] = {
      details = [[
     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={left then up, columns=3}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/left:then:up"
    },
    ["legend options/matrix node style"] = {
      details = [[
Adds the ⟨options⟩ to the list of options that will be executed when the
legend's node is created.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend={matrix node style={fill=black!25}},
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=vary dashing]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/matrix:node:style",
      meta = "⟨options⟩"
    },
    ["legend options/max columns"] = {
      details = [[
This key works like `max rows`, only now the number of columns is
monitored. Note that this strategy only really makes sense when the when
you use this key with a strategy that first goes left or right and then
up or down.

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={right then down, max columns=2}]
    data group {sin functions};

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={right then down,max columns=3}]
    data group {sin functions};

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={right then down,max columns=4}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/max:columns",
      meta = "⟨number⟩"
    },
    ["legend options/max rows"] = {
      details = [[
As the legend matrix is being filled, whenever the number of rows in the
current column would exceed ⟨number⟩, a new column is started.

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={max rows=3}]
    data group {sin functions};

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={max rows=4}]
    data group {sin functions};

     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={max rows=5}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/max:rows",
      meta = "⟨number⟩"
    },
    ["legend options/north east inside"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/north:east:inside"
    },
    ["legend options/north east outside"] = {
      details = [[
A variant, where the legend is to the right, but aligned with the
northern end of the data visualization:

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=north east outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/north:east:outside"
    },
    ["legend options/north inside"] = {
      details = [[
As above.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/north:inside"
    },
    ["legend options/north outside"] = {
      details = [[
The legend is placed above the data. Note that the legend entries now
for a row rather than a column.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=north outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/north:outside"
    },
    ["legend options/north west inside"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/north:west:inside"
    },
    ["legend options/north west outside"] = {
      details = [[
     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=north west outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/north:west:outside"
    },
    ["legend options/opaque"] = {
      details = [[
When this key is used, the legend's node will be filled with the ⟨color⟩
and its corners will be rounded. Additionally, the inner and outer
separations will be set to sensible values.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/opaque",
      meta = "⟨color⟩"
    },
    ["legend options/right"] = {
      details = [[
This is an easier-to-remember alias.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/right"
    },
    ["legend options/right of"] = {
      details = [[
Works like `at values`, but the anchor is set to `west`:

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list={log, lin},
      legend={right of={x=-1, y=2}},
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/right:of",
      meta = "⟨data point⟩"
    },
    ["legend options/right then down"] = {
      details = [[
     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={right then down, columns=3}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/right:then:down"
    },
    ["legend options/right then up"] = {
      details = [[
     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={right then up, columns=3}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/right:then:up"
    },
    ["legend options/rows"] = {
      details = [[
Shorthand for `ideal number of rows=`⟨number⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/rows",
      meta = "⟨number⟩"
    },
    ["legend options/south east inside"] = {
      details = [[
Puts the legend in the upper right corner of the data.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin},
      legend=south east inside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      style sheet=strong colors]
    data group {function classes};

Note that the text is now a little smaller since there tends to be much
less space inside the data visualization than next to it. Also, the
legend's node is filled in white by default to ensures that the legend
is clearly legible even in the presence of, say, a grid or data points
behind it. This behavior is triggered by the following style key:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/south:east:inside"
    },
    ["legend options/south east outside"] = {
      details = [[
     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=south east outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/south:east:outside"
    },
    ["legend options/south inside"] = {
      details = [[
Puts the legend in the upper right corner of the data. Note that the
text is now a little smaller since there tends to be much less space
inside the data visualization than next to it.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list={log, lin},
      legend=south inside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/south:inside"
    },
    ["legend options/south outside"] = {
      details = [[
     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=south outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/south:outside"
    },
    ["legend options/south west inside"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/south:west:inside"
    },
    ["legend options/south west outside"] = {
      details = [[
     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=south west outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/south:west:outside"
    },
    ["legend options/transparent"] = {
      details = [[
Sets the filling of the legend node to `none`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/transparent"
    },
    ["legend options/up then left"] = {
      details = [[
     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={up then left, columns=3}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/up:then:left"
    },
    ["legend options/up then right"] = {
      details = [[
     {
        var set : {1,...,8};
        var x : interval [0:50];
        func y = sin(\value x * (\value{set}+10))/(\value{set}+5);
      }
    };%
    \tikzdatavisualizationset {
      legend example/.style={
        scientific axes, all axes={length=1cm, ticks=none},
        1={label in legend={text=1}},
        2={label in legend={text=2}},
        3={label in legend={text=3}},
        4={label in legend={text=4}},
        5={label in legend={text=5}},
        6={label in legend={text=6}},
        7={label in legend={text=7}},
        8={label in legend={text=8}}
      }
    }},
    ]
    \tikz \datavisualization [
      visualize as smooth line/.list={1,2,3,4,5,6,7,8},
      legend example, style sheet=vary hue,
      main legend={up then right, columns=3}]
    data group {sin functions};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/up:then:right"
    },
    ["legend options/west inside"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/west:inside"
    },
    ["legend options/west outside"] = {
      details = [[
The legend is placed left. Note that the text also swaps its position.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line/.list=
        {log, lin, squared, exp},
      legend=west outside,
      log=    {label in legend={text=$\log x$}},
      lin=    {label in legend={text=$x/2$}},
      squared={label in legend={text=$x^2$}},
      exp=    {label in legend={text=$e^x$}},
      style sheet=strong colors]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/legend:options/west:outside"
    },
    low = {
      details = [[
When used with the `visualize ticks` option, the `low` key contains a
dimension that specifies the extend of the tick going "toward the
minimum" of the direction axis. More precisely, when a tick mark is
visualized, a unit tangent vector at the current data point in the
direction of the `direction axis` is computed and this vector is
multiplied by ⟨dimension⟩ to compute the start position of the tick
line. The end position is given by this vector times the `high` value.

Note that the ⟨dimension⟩ should usually be negative for the `low` key
and positive for the `high` key.

For tick marks where a tick label node is shown, the ⟨dimension⟩ is
increased by the current values of keys like
`tick text even low padding`, see Section ?? for details.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/low",
      meta = "⟨dimension⟩"
    },
    major = {
      details = [[
The key can be passed as an option to the `ticks` key and also to the
`grid` key, which in turn is passed as an option to an axis. The
⟨options⟩ passed to `major` specify at which positions major ticks/grid
lines should be shown (using the `at` option and `also at` option) and
also any special styling. The different possible options are described
later in this section.

    \tikz \datavisualization
      [ school book axes, visualize as smooth line,
        x axis={ticks={major={at={1, 1.5, 2}}}}]
      data [format=function] {
        var x : interval [-1.25:2];
        func y = \value x * \value x / 2;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/major",
      meta = "⟨options⟩"
    },
    ["major also at"] = {
      details = [[
A shorthand for `major={also at={`⟨list⟩`}}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/major:also:at",
      meta = "⟨list⟩"
    },
    ["major at"] = {
      details = [[
A shorthand for `major={at={`⟨list⟩`}}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/major:at",
      meta = "⟨list⟩"
    },
    many = {
      details = [[
This is an abbreviation for `about=10`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/many"
    },
    minor = {
      details = [[
Like `major`, only for minor ticks/grid lines.

    \tikz \datavisualization
      [ school book axes, visualize as smooth line,
        x axis={grid={minor={at={1, 1.5, 2}}}}]
      data [format=function] {
        var x : interval [-1.25:2];
        func y = \value x * \value x / 2;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/minor",
      meta = "⟨options⟩"
    },
    ["minor also at"] = {
      details = [[
A shorthand for `major={also at={`⟨list⟩`}}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/minor:also:at",
      meta = "⟨list⟩"
    },
    ["minor at"] = {
      details = [[
A shorthand for `major={at={`⟨list⟩`}}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/minor:at",
      meta = "⟨list⟩"
    },
    ["minor steps between steps"] = {
      details = [[
Specifies that between any two major steps (whose positions are
specified by the `step` key), there should be ⟨number⟩ many minor steps.
Note that the default of `9` is exactly the right number so that each
interval between two minor steps is exactly a tenth of the size of a
major step. See also Section ?? for further details.

    \begin{tikzpicture}
      \datavisualization [school book axes, visualize as smooth line,
        x axis={ticks={minor steps between steps=3}},
        y axis={ticks={minor steps between steps}},
      ]
        data [format=function] {
          var x : interval [-1.5:1.5];
          func y = \value x*\value x;
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/minor:steps:between:steps",
      meta = "⟨number⟩"
    },
    ["new Cartesian axis"] = {
      details = [[
This key creates a new "Cartesian" axis, named ⟨name⟩. For such an axis,
the (scaled) values of the axis's attribute are transformed into a
displacement on the page along a straight line. The following key is
used to configure in which "direction" the axis points:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/new:Cartesian:axis",
      meta = "⟨name⟩"
    },
    ["new axis base"] = {
      details = [[
This key defines a new axis for the current data visualization called
⟨name⟩. This has two effects:

1.  A so called *scaling mapper* is created that will monitor a certain
    attribute, rescale it, and map it to another attribute. (This will
    be explained in detail in a moment.)

2.  The ⟨axis name⟩ is made available as a key that can be used to
    configure the axis:

3.  The ⟨axis name⟩ becomes part of the current set of axes. This set
    can be accessed through the following key:

There are many ⟨options⟩ that can be passed to a newly created axis.
They are explained in the rest of this section.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/new:axis:base",
      meta = "⟨axis name⟩"
    },
    ["new axis system"] = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/new:axis:system",
      meta = "{axis system name}{axis setup}{default options} {application options}"
    },
    ["new legend"] = {
      details = [[
This key is used to create a new legend named ⟨legend name⟩. The legend
is empty by default and further options are needed to add entries to it.
When the key is called a second time for the same ⟨legend name⟩ nothing
happens.

When a legend is created, a new key is created that can subsequently be
used to configure the legend:

In the end, the legend is just a TikZ node, a `matrix` node, to be
precise. The following key is used to style this node:

The following style allows you to configure the default appearance of
every newly created legend:

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      scientific axes, x axis={label=$x$},
      visualize as smooth line/.list={log, lin, squared, exp},
      new legend={upper legend},
      new legend={lower legend},
      upper legend=above,
      lower legend=below,
      log=    {label in legend={text=$\log x$, legend=upper legend}},
      lin=    {label in legend={text=$x/2$, legend=upper legend}},
      squared={label in legend={text=$x^2$, legend=lower legend}},
      exp=    {label in legend={text=$e^x$, legend=lower legend}},
      style sheet=vary dashing]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/new:legend",
      meta = "⟨legend name⟩"
    },
    ["new legend entry"] = {
      details = [[
This key will add a new entry to the legend that is identified by the
⟨options⟩. For this, the ⟨options⟩ are executed once with the path
prefix `/tikz/data visualization/legend entry options` and the resulting
setting of the `legend` key is used to pick which legend the new entry
should belong to. Then, the ⟨options⟩ are stored away for the time
being.

Later, when the legend is created, the ⟨options⟩ get executed once more.
This time, however, the `legend` key is no longer important. Instead,
the ⟨options⟩ that setup keys like `text` or `visualizer in legend` now
play a role.

In detail, the following happens:

-   For the legend entry, a little cell picture is created in the matrix
    of the legend (see Section ?? for details on cell pictures).

-   Inside this picture, a node is created whose text is taken from the
    key

        /tikz/data visualization/legend entry options/text

-   Also inside the picture, the code stored in the following key gets
    executed:

The following styles are applied in the following order before the cell
picture is filled:

1.  `/tikz/data visualization/every data set label` with path
    `/tikz/data visualization`

2.  `/tikz/data visualization/every label in legend` with path  
    `/tikz/data visualization/legend entry options`.

3.  The ⟨options⟩.

4.  The code in the following key:

5.  A styling signal is emitted.

6.  Only for the node: The current value of `node style`.

7.  Only for the visualizer in legend: The styling that has been
    accumulated by calls to the following key:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/new:legend:entry",
      meta = "⟨options⟩"
    },
    ["new object"] = {
      details = [[
This key serves two purposes:

1.  This method makes it easy to create a new object as part of the
    rendering pipeline, using ⟨options⟩ to specify arguments rather that
    directly calling `\pgfoonew`. Since you have the full power of the
    keys mechanism at your disposal, it is easy, for instance, to
    control whether or not parameters to the constructor are expanded or
    not.

2.  The object is not created immediately, but only just before the
    visualization starts. This allows you to specify that an object must
    be created, but the parameter values of for its constructor may
    depend on keys that are not yet set. A typical application is the
    creating of an axis object: When you say `scientific axes`, the
    `new object` command is used internally to create two objects
    representing these axes. However, keys like `x={length=5cm}` can
    only *later* be used to specify the parameters that need to be
    passed to the constructor of the objects.

The following keys may be used inside the ⟨options⟩:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/new:object",
      meta = "⟨options⟩"
    },
    ["new polar axes"] = {
      details = [[
This key actually creates two axes, whose names are give as parameters:
An *angle axis* and a *radius axis*. These two axes work in concert in
the following way: Suppose a data point has two attributes called
`angle` and `radius` (these attribute names can be changed by changing
the `attribute` of the ⟨angle axis name⟩ or the ⟨radius axis name⟩,
respectively). These two attributes are then scaled as usual, resulting
in two "reasonable" values $a$ (for the angle) and $r$ (for the radius).
Then, the data point gets visualized (in principle, details will follow)
at a position on the page that is at a distance of $r$ from the origin
and at an angle of $a$.

    \tikz \datavisualization
        [new polar axes={angle axis}{radius axis},
         radius axis={length=2cm},
         visualize as scatter]
      data [format=named] {
        angle={0,20,...,160}, radius={0,...,5}
      };

In detail, the ⟨angle axis⟩ keeps track of two vectors $v_0$ and
$v_{90}$, each of which will usually have unit length (length `1pt`) and
which point in two different directions. Given a radius $r$ (measured in
TeX `pt`s, so if the radius attribute `10pt`, then $r$ would be $10$)
and an angle $a$, let $s$ be the sine of $a$ and let $c$ be the cosine
of $a$, where $a$ is a number is degrees (so $s$ would be $1$ for
$a = 90$). Then, the current page position is shifted by $c \cdot r$
times $v_0$ and, additionally, by $s \cdot r$ times $v_{90}$. This means
that in the "polar coordinate system" $v_0$ is the unit vector along the
"$0^\circ$-axis" and $v_{90}$ is the unit vector along
"$90^\circ$-axis". The values of $v_0$ and $v_{90}$ can be changed using
the following key on the ⟨angle axis⟩:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/new:polar:axes",
      meta = "{⟨angle axis name⟩}{⟨radius axis name⟩}"
    },
    ["new visualizer"] = {
      details = [[
This key configures a new visualizer named ⟨name⟩. This entails the
following actions:

-   The key `/tikz/data visualization/`⟨name⟩ is created. As described
    earlier, this key can be used to pass for instance `style` options
    to the visualizer.

-   The style key
    `/tikz/data visualization/visualizers/`⟨name⟩`/styling` is created
    and made empty. This is the key in which the `style` key will store
    the options passed to the visualizer.

-   The style key
    `/tikz/data visualization/visualizers/`⟨name⟩`/label in legend options`
    is set to ⟨legend entry options⟩. These options are used to
    configure how the visualizer should be rendered in a legend, see
    Section ?? for details.

-   The key `/data point/set/`⟨name⟩ is set to a number that is
    increased for each visualizer in the current data visualization.
    This number is important for style sheets, see Section ??.

-   The key `/data point/`⟨name⟩`/execute at begin` is set to code that
    creates a `{scope}` that executes the following styles as options:

    1.  The ⟨options⟩ passed to the `new visualizer` key.

    2.  The `every visualizer` style.

    3.  The styling from the currently active style sheets, see
        Section ??.

    4.  The styling stored in the `styling` key mentioned above.

-   The key `/data point/`⟨name⟩`/execute at end` is set to code that
    will finish all paths that may have been created by the visualizer
    and closes the scope.

All of the above mean the following in practice:

-   Inside a new `visualize as ...` key, you pass the name of the
    to-be-created to `new visualizer` as the first parameter and any
    special default styling setup of the visualizer as the second
    parameter.

-   The new `visualize as ...` key should also create a visualizer
    object using `new object`.

-   When this object finally is about to create the actual
    visualization, it should surround the code by invoking the code
    stored in the `execute at begin` and the `execute at end` keys of
    the visualizer.

Everything else is usually taken care of by the `new visualizer` key
automatically.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/new:visualizer",
      meta = "{name}{options}{legend entry options}"
    },
    ["no tick text"] = {
      details = [[
Shorthand for `tick text at low=false, tick text at high=false`.

    \tikz \datavisualization [scientific axes, all axes={length=3cm},
                              x axis={ticks={
                                  major also at={6.5 as [no tick text]}}},
                              visualize as smooth line]
      data [format=function] {
        var x : interval [5:10];
        func y = \value x * \value x;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/no:tick:text"
    },
    ["no tick text at"] = {
      details = [[
Shorthand for `options at=`⟨value⟩` as [no tick text]`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/no:tick:text:at",
      meta = "⟨value⟩"
    },
    ["node style"] = {
      details = [[
This key works like `style`, but it has an effect only on nodes that are
created during a data visualization. This includes tick labels and axis
labels:

    \tikz \datavisualization
      [scientific axes,
       all axes={ticks={node style=red}, length=3cm},
       visualize as line]
      data [format=function] {
        var x : interval [5:10];
        func y = \value x * \value x;
      };

Note that in the example the ticks themselves (the little thicker lines)
are not red.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/node:style",
      meta = "⟨tikzoptions⟩"
    },
    ["node styling"] = {
      details = [[
Executing this key will cause all "accumulated" node stylings to be
executed.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/node:styling"
    },
    none = {
      details = [[
Switches off the automatic step computation. Unless you use `step=`
explicitly to set a stepping, no ticks will be (automatically) added.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/none"
    },
    ["options at"] = {
      details = [[
This key causes the ⟨options⟩ to be executed for any tick mark(s) at
⟨value⟩ in addition to any options given already for this position:

    \tikz \datavisualization [
      scientific axes,
      visualize as smooth line,
      x axis={ticks={major={
        options at = 3    as [no tick text],
        also at    = (pi) as
          [{tick text padding=1ex}] $\pi$}}}]
    data [format=function] {
      var x : interval[0:2*pi];
      func y = sin(\value x r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/options:at",
      meta = "⟨value⟩ as [⟨options⟩]"
    },
    padded = {
      details = [[
Shorthand for `low=padded min, high=padded max`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/padded"
    },
    phase = {
      details = [[
See Section ?? for details on how the phase of steps influences the tick
placement.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/phase",
      meta = "⟨value⟩"
    },
    ["quarter about strategy"] = {
      details = [[
Permissible values for $m'$ are: $1$, $2.5$, and $5$.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/quarter:about:strategy"
    },
    ["school book axes"] = {
      details = [[
This axis system is intended to "look like" the coordinate systems often
used in school books: The axes are drawn in such a way that they
intersect to origin. Furthermore, no automatic scaling is done to ensure
that the lengths of units are the same in all directions.

This axis system must be used with care -- it is nearly always necessary
to specify the desired unit length by hand using the option
`unit length`. If the magnitudes of the units on the two axes differ,
different unit lengths typically need to be specified for the different
axes.

Finally, if the data is "far removed" from the origin, this axis system
will also "look bad".

    \begin{tikzpicture}
      \datavisualization [school book axes, visualize as smooth line]
        data [format=function] {
          var x : interval [-1.3:1.3];
          func y = \value x*\value x*\value x;
        };
    \end{tikzpicture}

The stepping of the ticks is one unit by default. Using keys like
`ticks=some` may help to give better steppings.

The ⟨options⟩ are executed with the key itself as path prefix. Thus, the
following subkeys are permissible options:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/school:book:axes",
      meta = "⟨options⟩"
    },
    ["school book axes/standard labels"] = {
      details = [[
This key makes the label of the $x$-axis appear at the right end of this
axis and it makes the label of the $y$-axis appear at the top of the
$y$-axis.

Currently, this is the only supported placement strategy for the school
book axis system.

    \begin{tikzpicture}
      \datavisualization [school book axes={standard labels},
                          visualize as smooth line,
                          clean ticks,
                          x axis={label=$x$},
                          y axis={label=$f(x)$}]
        data [format=function] {
          var x : interval [-1:1];
          func y = \value x*\value x + 1;
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/school:book:axes/standard:labels"
    },
    ["school book axes/unit"] = {
      details = [[
Sets the scaling so that 1 cm corresponds to ⟨value⟩ units. At the same
time, the stepping of the ticks will also be set to ⟨value⟩.

    \begin{tikzpicture}
      \datavisualization [school book axes={unit=10},
                          visualize as smooth line,
                          clean ticks,
                          x axis={label=$x$},
                          y axis={label=$f(x)$}]
        data [format=function] {
          var x : interval [-20:20];
          func y = \value x*\value x/10;
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/school:book:axes/unit",
      meta = "⟨value⟩"
    },
    ["scientific axes"] = {
      details = [[
This key installs a two-dimensional coordinate system based on the
attributes `/data point/x` and `/data point/y`.

    \begin{tikzpicture}
      \datavisualization [scientific axes,
                          visualize as smooth line]
        data [format=function] {
          var x : interval [0:100];
          func y = sqrt(\value x);
        };
    \end{tikzpicture}

This axis system is usually a good choice to depict "arbitrary two
dimensional data". Because the axes are automatically scaled, you do not
need to worry about how large or small the values will be. The name
`scientific axes` is intended to indicate that this axis system is often
used in scientific publications.

You can use the ⟨options⟩ to fine tune the axis system. The ⟨options⟩
will be executed with the following path prefix:

    /tikz/data visualization/scientific axes

All keys with this prefix can thus be passed as ⟨options⟩.

This axis system will always distort the relative magnitudes of the
units on the two axis. If you wish the units on both axes to be equal,
consider directly specifying the unit length "by hand":

    \begin{tikzpicture}
      \datavisualization [visualize as smooth line,
                          scientific axes,
                          all axes={unit length=1cm per 10 units, ticks={few}}]
        data [format=function] {
          var x : interval [0:100];
          func y = sqrt(\value x);
        };
    \end{tikzpicture}

The `scientific axes` have the following properties:

-   The `x`-values are surveyed and the $x$-axis is then scaled and
    shifted so that it has the length specified by the following key.

    The minimum value is at the left end of the axis and at the canvas
    origin. The maximum value is at the right end of the axis.

-   The `y`-values are surveyed and the $y$-axis is then scaled so that
    is has the length specified by the following key.

    The minimum value is at the bottom of the axis and at the canvas
    origin. The maximum value is at the top of the axis.

-   Lines (forming a frame) are depicted at the minimum and maximum
    values of the axes in 50% black.

The following keys are executed by default as options: `outer ticks` and
`standard labels`.

You can use the following style to overrule the defaults:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:axes",
      meta = "⟨options⟩"
    },
    ["scientific axes/clean"] = {
      details = [[
The axes and the ticks are completely removed from the actual data,
making this axis system especially useful for scatter plots, but also
for most other scientific plots.

    \tikz \datavisualization [
      scientific axes=clean,
      visualize as smooth line]
    data [format=function] {
      var x : interval [-12:12];
      func y = \value x*\value x*\value x;
    };

The distance of the axes from the actual plot is given by the padding of
the axes.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:axes/clean"
    },
    ["scientific axes/end labels"] = {
      details = [[
Places the labels at the end of the $x$- and the $y$-axis, similar to
the axis labels of a school book axis system.

    \tikz \datavisualization [
      scientific axes={clean, end labels},
      visualize as smooth line,
      x axis={label=degree $d$,
        ticks={tick unit={}^\circ}},
      y axis={label=$\tan d$}]
    data [format=function] {
      var x : interval [-80:80];
      func y = tan(\value x);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:axes/end:labels"
    },
    ["scientific axes/height"] = {
      details = [[
By default, the `height` is the golden ratio times the `width`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:axes/height",
      meta = "⟨dimension⟩"
    },
    ["scientific axes/inner ticks"] = {
      details = [[
This axis system works like `scientific axes`, only the ticks are on the
"inside" of the frame.

    \begin{tikzpicture}
      \datavisualization [scientific axes=inner ticks,
                          visualize as smooth line]
        data [format=function] {
          var x : interval [-12:12];
          func y = \value x*\value x*\value x;
        };
    \end{tikzpicture}

This axis system is also common in publications, but the ticks tend to
interfere with marks if they are near to the border as can be seen in
the following example:

    \begin{tikzpicture}
      \datavisualization [scientific axes={inner ticks, width=3.2cm},
                          style sheet=cross marks,
                          visualize as scatter/.list={a,b}]
        data [set=a] {
          x, y
          0, 0
          1, 1
          0.5, 0.5
          2, 1
        }
        data [set=b] {
          x, y
          0.05, 0
          1.5, 1
          0.5, 0.75
          2, 0.5
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:axes/inner:ticks"
    },
    ["scientific axes/outer ticks"] = {
      details = [[
This causes the ticks to be drawn " on the outside" of the frame so that
they interfere as little as possible with the data. It is the default.

    \begin{tikzpicture}
      \datavisualization [scientific axes=outer ticks,
                          visualize as smooth line]
        data [format=function] {
          var x : interval [-12:12];
          func y = \value x*\value x*\value x;
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:axes/outer:ticks"
    },
    ["scientific axes/standard labels"] = {
      details = [[
As the name suggests, this is the standard placement strategy. The label
of the $x$-axis is placed below the center of the $x$-axis, the label of
the $y$-axis is rotated by $90^\circ$ and placed left of the center of
the $y$-axis.

    \tikz \datavisualization
     [scientific axes={clean, standard labels},
      visualize as smooth line,
      x axis={label=degree $d$,
        ticks={tick unit={}^\circ}},
      y axis={label=$\sin d$}]
    data [format=function] {
      var x : interval [-10:10] samples 10;
      func y = sin(\value x);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:axes/standard:labels"
    },
    ["scientific axes/upright labels"] = {
      details = [[
Works like `scientific axes standard labels`, only the label of the
$y$-axis is not rotated.

    \tikz \datavisualization [
      scientific axes={clean, upright labels},
      visualize as smooth line,
      x axis={label=degree $d$,
        ticks={tick unit={}^\circ}},
      y axis={label=$\cos d$, include value=1,
        ticks={style={
            /pgf/number format/precision=4,
            /pgf/number format/fixed zerofill}}}]
    data [format=function] {
      var x : interval [-10:10] samples 10;
      func y = cos(\value x);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:axes/upright:labels"
    },
    ["scientific axes/width"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:axes/width",
      meta = "⟨dimension⟩"
    },
    ["scientific polar axes"] = {
      details = [[
This key installs a polar axis system that can be used in a "scientific"
publication. Two axes are created called the `angle axis` and the
`radius axis`. Unlike "normal" Cartesian axes, these axes do not point
in a specific direction. Rather, the `radius axis` is used to map the
values of one attribute to a distance from the origin while the
`angle axis` is used to map the values of another attribute to a
rotation angle.

The ⟨options⟩ will be executed with the path prefix

    /tikz/data visualization/scientific polar axes

The permissible keys are documented in the later subsections of this
section.

Let us start with the configuration of the radius axis since it is
easier. Firstly, you should specify which attribute is linked to the
radius. The default is `radius`, but you will typically wish to change
this. As with any other axis, the `attribute` key is used to configure
the axis, see Section ?? for details. You can also apply all other
configurations to the radius axis like, say, `unit length` or `length`
or `style`. Note, however, that the `logarithmic` key will not work with
the radius axis for a `scientific polar axes` system since the attribute
value zero is always placed at the center -- and for a logarithmic plot
the value `0` cannot be mapped.

    \tikz \datavisualization [
      scientific polar axes,
      radius axis={
        attribute=distance,
        ticks={step=5000},
        padding=1.5em,
        length=3cm,
        grid
      },
      visualize as smooth line]
    data [format=function] {
      var  angle : interval [0:100];
      func distance = \value{angle}*\value{angle};
    };

For the `angle axis`, you can also specify an attribute using the
`attribute` key. However, for this axis the mapping of a value to an
actual angle is a complicated process involving many considerations of
how the polar axis system should be visualized. For this reason, there
are a large number of predefined such mappings documented in Section ??.
Finally, as for a `scientific plot`, you can configure where the ticks
should be shown using the keys `inner ticks`, `outer ticks`, and
`clean`, documented below.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:polar:axes",
      meta = "⟨options⟩"
    },
    ["scientific polar axes/clean"] = {
      details = [[
This key separates the area where the data is shown from the area where
the ticks are shown. Usually, this is the best choice for the tick
placement since it avoids a collision of data and explanations.

    \tikz \datavisualization [
      scientific polar axes={clean, 0 to 180},
      visualize as smooth line]
    data [format=function] {
      var  angle : interval [0:100];
      func radius = \value{angle};
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:polar:axes/clean"
    },
    ["scientific polar axes/inner ticks"] = {
      details = [[
This key causes the ticks to be "turned to the inside". I do not
recommend using this key.

    \tikz \datavisualization [
      scientific polar axes={inner ticks, 0 to 180},
      visualize as smooth line]
    data [format=function] {
      var  angle : interval [0:100];
      func radius = \value{angle};
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:polar:axes/inner:ticks"
    },
    ["scientific polar axes/outer ticks"] = {
      details = [[
This key, which is the default, causes ticks to be drawn "outside" the
outer "ring" of the polar axes:

    \tikz \datavisualization [
      scientific polar axes={outer ticks, 0 to 180},
      visualize as smooth line]
    data [format=function] {
      var  angle : interval [0:100];
      func radius = \value{angle};
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/scientific:polar:axes/outer:ticks"
    },
    some = {
      details = [[
This is an abbreviation for `about=5`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/some"
    },
    stack = {
      details = [[
Shorthand for `tick text even padding=`⟨dimension⟩.

    \tikz \datavisualization [scientific axes,
                              all axes={length=2.5cm},
                              x axis={ticks={stack=1.5em}},
                              visualize as smooth line]
      data [format=function] {
        var y : interval[-100:100];
        func x = \value y*\value y;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/stack",
      meta = "⟨dimension⟩"
    },
    ["stack'"] = {
      details = [[
Shorthand for `tick text odd padding=`⟨dimension⟩. The difference to
`stack` is that the set of value that are "lowered" is exactly exchanged
with the set of value "lowered" by `stack`.

    \tikz \datavisualization [scientific axes,
                              all axes={length=2.5cm},
                              x axis={ticks=stack'},
                              visualize as smooth line]
      data [format=function] {
        var y : interval[-100:100];
        func x = \value y*\value y;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/stack'",
      meta = "⟨dimension⟩"
    },
    ["standard about strategy"] = {
      details = [[
Permissible values for $m'$ are: $1$, $2$, $2.5$, and $5$. This strategy
is the default strategy.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/standard:about:strategy"
    },
    step = {
      details = [[
The value of this key is used to determine the spacing of the major
ticks. The key is used by the `linear steps` and `exponential steps`
strategies, see the explanations in Section ?? for details. Basically,
all ticks are placed at all multiples of ⟨value⟩ that lie in the
attribute range interval.

    \tikz \datavisualization [
        school book axes, visualize as smooth line,
        y axis={ticks={step=1.25}},
      ]
        data [format=function] {
          var x : interval [0:3];
          func y = \value x*\value x/2;
        };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/step",
      meta = "⟨value⟩"
    },
    store = {
      details = [[
If the ⟨key name⟩ is not empty, once the object has been created, a
handle to the object will be stored in ⟨key name⟩. If a handle is
already stored in ⟨key name⟩, the object is not created twice.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/store",
      meta = "⟨key name⟩"
    },
    style = {
      details = [[
This key takes options whose path prefix is `/tikz`, not
`/tikz/data visualization`. These options will be *appended* to a
current list of such options (thus, multiple calls of this key
accumulate). The resulting list of keys is not executed immediately, but
it will be executed whenever the data visualization engine calls the
TikZ layer to draw something (this placed will be indicated in the
following).

    \tikz \datavisualization
      [scientific axes,
       all axes={ticks={style=blue}, length=3cm},
       y axis={grid, grid={minor steps between steps, major={style=red}}},
       visualize as line]
      data [format=function] {
        var x : interval [5:10];
        func y = \value x * \value x;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/style",
      meta = "⟨tikzoptions⟩"
    },
    ["style sheet"] = {
      details = [[
Adds the ⟨style sheet⟩ to the list of style sheets attached to the `set`
attribute.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      school book axes, all axes={unit length=7.5mm},
      visualize as smooth line/.list={log, lin, squared, exp},
      style sheet=vary thickness and dashing,
      style sheet=vary hue]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/style:sheet",
      meta = "⟨style sheet⟩"
    },
    styling = {
      details = [[
Executing this key will cause all "accumulated" TikZ options from
previous calls to the key `/tikz/data visualization/style` to be
executed. Thus, you use `style` to set TikZ options, but you use
`styling` to actually apply these options. Usually, you do not call this
option directly since this application is only done deep inside the data
visualization engine.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/styling"
    },
    subminor = {
      details = [[
Like `major`, only for subminor ticks/grid lines.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/subminor",
      meta = "⟨options⟩"
    },
    ["subminor also at"] = {
      details = [[
A shorthand for `major={also at={`⟨list⟩`}}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/subminor:also:at",
      meta = "⟨list⟩"
    },
    ["subminor at"] = {
      details = [[
A shorthand for `major={at={`⟨list⟩`}}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/subminor:at",
      meta = "⟨list⟩"
    },
    ["tick layer"] = {
      details = [[
Like `grid layer`, this key specifies on which layer the ticks should be
placed.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:layer"
    },
    ["tick length"] = {
      details = [[
Shorthand for `low=-`⟨dimension⟩`, high=`⟨dimension⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:length",
      meta = "⟨dimension⟩"
    },
    ["tick node layer"] = {
      details = [[
Like `tick layer`, but now for the nodes. By default, tick nodes are
placed on the main layer and thus on top of the data in case that the
tick nodes are inside the data.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:node:layer"
    },
    ["tick prefix"] = {
      details = [[
The ⟨text⟩ will be put in front of every typeset tick:

    \tikz \datavisualization
      [scientific axes, all axes={ticks=few, length=2.5cm},
       x axis={ticks={tick prefix=$\langle$, tick suffix=$]$}},
       visualize as line]
      data [format=function] {
        var x : interval [5:10];
        func y = \value x * \value x;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:prefix",
      meta = "⟨text⟩"
    },
    ["tick suffix"] = {
      details = [[
Works like `tick prefix`. This key is especially useful for adding units
like "cm" or "$\mathrm m/\mathrm s$" to every tick label. For this
reason, there is a (near) alias that is easier to memorize:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:suffix",
      meta = "⟨text⟩"
    },
    ["tick text at high"] = {
      details = [[
Like `tick text at low`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:text:at:high",
      meta = "⟨true or false⟩"
    },
    ["tick text at low"] = {
      details = [[
Pass this option to `visualize ticks` when you want tick label nodes to
be placed at the `low` position of each tick mark.

    \tikzset{
      data visualization/our system/.append style={
        x axis={
          visualize ticks={direction axis=left axis, left axis={goto=min},
                           high=0pt, tick text at low, stack},
          visualize ticks={direction axis=left axis, left axis={goto=max},
                           low=0pt, tick text at high, stack}
        }
      }
    }
    \tikz \datavisualization [
        our system,
        x axis={attribute=time, length=3cm, ticks=some},
        left axis ={attribute=money},
        right axis={attribute=people},
        visualize as line/.list={people 1, people 2, money 1, money 2}]
      data group {people and money};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:text:at:low",
      meta = "⟨true or false⟩"
    },
    ["tick text even padding"] = {
      details = [[
A shorthand for setting `tick text even low padding` and
`tick text even high padding` at the same time.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:text:even:padding",
      meta = "⟨dimension⟩"
    },
    ["tick text high even padding"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:text:high:even:padding",
      meta = "⟨dimension⟩"
    },
    ["tick text high odd padding"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:text:high:odd:padding",
      meta = "⟨dimension⟩"
    },
    ["tick text low even padding"] = {
      details = [[
When a tick label is shown at the low position of an even tick, the
⟨distance⟩ is added to the `low` value, see also Section ??.

    \tikz \datavisualization [scientific axes,
                              all axes={length=2.5cm},
                              x axis={ticks={tick text low even padding=-1em}},
                              visualize as smooth line]
      data [format=function] {
        var y : interval[-100:100];
        func x = \value y*\value y;
      };

Note that ⟨dimension⟩ should usually be non-positive.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:text:low:even:padding",
      meta = "⟨dimension⟩"
    },
    ["tick text low odd padding"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:text:low:odd:padding",
      meta = "⟨dimension⟩"
    },
    ["tick text odd padding"] = {
      details = [[
A shorthand for setting `tick text odd low padding` and
`tick text odd high padding` at the same time.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:text:odd:padding",
      meta = "⟨dimension⟩"
    },
    ["tick text padding"] = {
      details = [[
Sets all text paddings to ⟨dimension⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:text:padding",
      meta = "⟨dimension⟩"
    },
    ["tick typesetter"] = {
      details = [[
The key gets called for each number that should be typeset. The argument
⟨value⟩ will be in scientific notation (like `1.0e1` for $10$). By
default, this key applies `\pgfmathprintnumber` to its argument. This
command is a powerful number printer whose configuration is documented
in Section ??.

You are invited to code underlying this key so that a different
typesetting mechanism is used. Here is a (not quite finished) example
that shows how, say, numbers could be printed in terms of multiples of
$\pi$:

    \def\mytypesetter#1{%
      \pgfmathparse{#1/pi}%
      \pgfmathprintnumber{\pgfmathresult}$\pi$%
    }
    \tikz \datavisualization
      [school book axes, all axes={unit length=1.25cm},
       x axis={ticks={step=(0.5*pi), tick typesetter/.code=\mytypesetter{##1}}},
       y axis={include value={-1,1}},
       visualize as smooth line]
      data [format=function] {
        var x : interval [0.5:7];
        func y = sin(\value x r);
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:typesetter",
      meta = "⟨value⟩"
    },
    ["tick unit"] = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/tick:unit",
      meta = "⟨roman math text⟩"
    },
    ["uv Cartesian"] = {
      details = [[
This axis system works like `xy Cartesian`, but it introduces two axes
called `u axis` and `v axis` rather than the `x axis` and the `y axis`.
The idea is that in addition to a "major" $xy$-coordinate system this is
also a "smaller" or "minor" coordinate system in use for depicting, say,
small vectors with respect to this second coordinate system.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/uv:Cartesian"
    },
    ["uv axes"] = {
      details = [[
Applies the ⟨options⟩ to both the `u axis` and the `y axis`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/uv:axes",
      meta = "⟨options⟩"
    },
    ["uvw Cartesian cabinet"] = {
      details = [[
Like `xyz Cartesian cabinet`, but for the $uvw$-system.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/uvw:Cartesian:cabinet"
    },
    ["uvw axes"] = {
      details = [[
Like `xyz axes`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/uvw:axes",
      meta = "⟨options⟩"
    },
    ["visualizer label options/auto"] = {
      details = [[
This key is executed automatically by default. It works like the `pos`
option, where the ⟨fraction⟩ is set to $(⟨data set's
        index⟩-1/2)/⟨number of data sets⟩$. For instance, when there are
$10$ data sets, the fraction for the first one will be $5\%$, the
fraction for the second will be $15\%$, for the third it will be $25\%$,
ending with $95\%$ for the last one.

The net effect of all this is that when there are several lines, labels
will be placed at different positions along the lines with hopefully
only little overlap.

    \tikz \datavisualization [
      scientific axes=clean,
      visualize as smooth line/.list={linear, squared, cubed},
      linear ={label in data={text=$2x$}},
      squared={label in data={text=$x^2$}},
      cubed  ={label in data={text=$x^3$}}]
    data [set=linear, format=function] {
      var x : interval [0:1.5];
      func y = 2*\value x;
    }
    data [set=squared, format=function] {
      var x : interval [0:1.5];
      func y = \value x * \value x;
    }
    data [set=cubed, format=function] {
      var x : interval [0:1.5];
      func y = \value x * \value x * \value x;
    };

As can be seen in the example, the result is not always satisfactory. In
this case, the `pin in data` option might be preferable, see below.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/auto"
    },
    ["visualizer label options/index"] = {
      details = [[
This key chooses the ⟨number⟩th data point belonging to the visualizer's
data set.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      school book axes,
      x axis={label=$x$},
      visualize as smooth line/.list={exp},
      exp=    {label in data={text=$5$, index=5},
               label in data={text=$10$, index=10},
               label in data={text=$20$, index=20},
               style={mark=x}},
      style sheet=vary hue]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/index",
      meta = "⟨number⟩"
    },
    ["visualizer label options/node style"] = {
      details = [[
Just passes the options to `/tikz/data visualization/node style`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/node:style",
      meta = "⟨options⟩"
    },
    ["visualizer label options/pin angle"] = {
      details = [[
The position of the label of a `pin in data` is mainly computed in the
same way as for a `label in data`. However, once the position has been
computed, the label is shifted as follows:

-   When an ⟨angle⟩ is specified using the present key, the shift is by
    the current value of `pin length` in the direction of ⟨angle⟩.

-   When ⟨angle⟩ is empty (which is the default), then the shift is also
    by the current value of `pin length`, but now in the direction that
    is orthogonal and to the left of the line between the coordinate of
    the data point and the coordinate of the next data point. When
    `text’` is used, the direction is to the right instead of the left.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/pin:angle",
      meta = "⟨angle⟩"
    },
    ["visualizer label options/pin length"] = {
      details = [[
See the description of `pin angle`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/pin:length",
      meta = "⟨dimension⟩"
    },
    ["visualizer label options/pos"] = {
      details = [[
This key chooses the first data point belonging to the data set whose
index is at least ⟨fraction⟩ times the number of all data points in the
data set.

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      school book axes,
      x axis={label=$x$},
      visualize as smooth line=exp,
      exp=    {label in data={text=$.2$, pos=0.2},
               label in data={text=$.5$, pos=0.5},
               label in data={text=$.95$, pos=0.95},
               style={mark=x}},
      style sheet=vary hue]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/pos",
      meta = "⟨fraction⟩"
    },
    ["visualizer label options/text"] = {
      details = [[
This is the text that will be displayed next to the data. It will be to
the "left" of the data, see the description below.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/text",
      meta = "⟨text⟩"
    },
    ["visualizer label options/text colored"] = {
      details = [[
Causes the `node style` to set the text color to `visualizer color`. The
effect of this is that the label's text will have the same color as the
data set to which it is attached.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/text:colored"
    },
    ["visualizer label options/text'"] = {
      details = [[
Like `text`, only the text will be to the "right" of the data.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/text'",
      meta = "⟨text⟩"
    },
    ["visualizer label options/when"] = {
      details = [[
This key causes the value of the ⟨attribute⟩ to be monitored in the
stream of data points. The chosen is data point is the first data point
where the ⟨attribute⟩ is at least ⟨number⟩ (if this never happens, the
last data point is used).

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      school book axes,
      x axis={label=$x$},
      visualize as smooth line/.list={log, lin, squared, exp},
      log=    {label in data={text'=$\log x$, when=y is -1,
                              text colored}},
      lin=    {label in data={text=$x/2$,     when=x is 2}},
      squared={label in data={text=$x^2$,     when=x is 1.1}},
      exp=    {label in data={text=$e^x$,     when=x is -2,
                              text colored}},
      style sheet=vary hue]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:label:options/when",
      meta = "⟨attribute⟩ is⟨number⟩"
    },
    ["visualizer options/gap cycle"] = {
      details = [[
Like `gapped line`, only with a cycle:

    \tikz [scale=.55] \datavisualization
     [scientific axes=clean, all axes={ticks=few},
      visualize as smooth line=my data,  my data={gap cycle}]
    data [format=function] {
      var t : interval [0:4] samples 5;
      func x = cos(\value t r);
      func y = sin(\value t r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/gap:cycle"
    },
    ["visualizer options/gap line"] = {
      details = [[
This key causes the data points to be connected by lines that "do not
quite touch" the data points. This is implemented by using the
`\pgfplothandlergaplineto`, see Section ??.

    \tikz [scale=.55] \datavisualization
     [scientific axes=clean, all axes={ticks=few},
      visualize as smooth line=my data,  my data={gap line}]
    data [format=function] {
      var t : interval [0:4] samples 5;
      func x = cos(\value t r);
      func y = sin(\value t r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/gap:line"
    },
    ["visualizer options/ignore style sheets"] = {
      details = [[
This option, which should be passed to a visualizer after its creation
before another visualizer is created, causes style sheets *not* to apply
to the visualizer (but the `style` option will still have an effect).
This allows you to create visualizers that are used for special purposes
and that do not "take part" in the usual styling. For instance, a
visualizer might be used internally to depict a regression line, even
though the regression line itself should not participate in the usual
styling by, say, dashing or different coloring.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/ignore:style:sheets"
    },
    ["visualizer options/label in data"] = {
      details = [[
This key is passed to a visualizer that has previously been created
using keys starting `visualize as ...`. It will create a label inside
the data visualization "next" to the visualizer (the details are
explained in a moment). You can use this key multiple times with a
visualizer to create multiple labels at different points with different
texts.

The ⟨options⟩ determine which text is shown and where it is shown. They
are executed with the following path prefix:

    /tikz/data visualization/visualizer label options

In order to configure which text is shown and where, use the following
keys inside the ⟨options⟩:

The following keys are used to configure where the label will be shown.
They use different strategies to specify one data point where the label
will be anchored. The coordinate of this data point will be stored in
`(label` `visualizer` `coordinate)`. Independently of the strategy, once
the data point has been chosen, the coordinate of the next data point is
stored in `(label` `visualizer` `coordinate’)`. Then, a (conceptual)
line is created from the first coordinate to the second and a node is
placed at the beginning of this line to its "left" or, for the `text’`
option, on its "right". More precisely, an automatic anchor is computed
for a node placed implicitly on this line using the `auto` option or,
for the `text’` option, using `auto,swap`.

The node placed at the position computed in this way will have the
⟨text⟩ set by the `text` or `text’` option and its styling is determined
by the current `node style`.

Let us now have a look at the different ways of determining the data
point at which the label in anchored:

The following keys allow you to style labels.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/label:in:data",
      meta = "⟨options⟩"
    },
    ["visualizer options/label in legend"] = {
      details = [[
This key is passed to a data set, similar to options like `pin in data`
or `smooth line`. The ⟨options⟩ are used to configure the following:

-   The legend in which the data set should be visualized.

-   The text that is to be shown in the legend for the data set.

-   The appearance of the legend entries.

In detail, the ⟨options⟩ are executed with the path prefix

    /tikz/data visualization/legend entry options

To configure in which legend the label should appear, use the following
key:

In addition to the two keys described above, there are further keys that
are described in Section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/label:in:legend",
      meta = "⟨options⟩"
    },
    ["visualizer options/label in legend options"] = {
      details = [[
Use this key with a visualizer to configure the label in legend options.
Typically, this key is used only internally by a visualizer upon its
creating to set the ⟨options⟩ to setup the `visualizer in legend` key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/label:in:legend:options",
      meta = "⟨options⟩"
    },
    ["visualizer options/no lines"] = {
      details = [[
Suppresses the line. This option only makes sense when the `mark` option
is used.

    \tikz [scale=.55] \datavisualization
     [scientific axes=clean, all axes={ticks=few},
      visualize as smooth line=my data,  my data={no lines, style={mark=x}}]
    data [format=function] {
      var t : interval [0:4] samples 5;
      func x = cos(\value t r);
      func y = sin(\value t r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/no:lines"
    },
    ["visualizer options/pin in data"] = {
      details = [[
This key is a variant of the `label in data` key and takes the same
options, plus two additional ones. The difference to `label in data` is
that the label node is shown a bit removed from the data set, but
connected to it via a small line (this is like the difference between
the `label` and `pin` options).

    \tikz \datavisualization [
      scientific axes=clean,
      visualize as smooth line/.list={linear, squared, cubed},
      linear ={pin in data={text=$2x$}},
      squared={pin in data={text=$x^2$}},
      cubed  ={pin in data={text=$x^3$}}]
    data [set=linear, format=function] {
      var x : interval [0:1.5];
      func y = \value x;
    }
    data [set=squared, format=function] {
      var x : interval [0:1.5];
      func y = \value x * \value x;
    }
    data [set=cubed, format=function] {
      var x : interval [0:1.5];
      func y = \value x * \value x * \value x;
    };

The following keys can be used additionally:

     {
        var x : interval [0.2:2.5];
        func y = ln(\value x);
      }
      data [set=lin, format=function] {
        var x : interval [-2:2.5];
        func y = 0.5*\value x;
      }
      data [set=squared, format=function] {
        var x : interval [-1.5:1.5];
        func y = \value x*\value x;
      }
      data [set=exp, format=function] {
        var x : interval [-2.5:1];
        func y = exp(\value x);
      }
    };},
    ]
    \tikz \datavisualization [
      school book axes,
      x axis={label=$x$},
      visualize as smooth line/.list={log, lin, squared, exp},
      every data set label/.append style={text colored},
      log=    {pin in data={text'=$\log x$, when=y is -1}},
      lin=    {pin in data={text=$x/2$, when=x is 2,
                            pin length=1ex}},
      squared={pin in data={text=$x^2$, when=x is 1.1,
                            pin angle=230}},
      exp=    {label in data={text=$e^x$, when=x is -2}},
      style sheet=vary hue]
    data group {function classes};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/pin:in:data",
      meta = "⟨options⟩"
    },
    ["visualizer options/polygon"] = {
      details = [[
This is an alias for `straight cycle`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/polygon"
    },
    ["visualizer options/smooth cycle"] = {
      details = [[
Causes the data points to be connected by a circular line that is
smoothed at the joins:

    \tikz [scale=.55] \datavisualization
     [scientific axes=clean, all axes={ticks=few},
      visualize as smooth line=my data,  my data={smooth cycle}]
    data [format=function] {
      var t : interval [0:4] samples 5;
      func x = cos(\value t r);
      func y = sin(\value t r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/smooth:cycle"
    },
    ["visualizer options/smooth line"] = {
      details = [[
Causes the data points to be connected by a line that is smoothed at the
joins:

    \tikz [scale=.55] \datavisualization
     [scientific axes=clean, all axes={ticks=few},
      visualize as smooth line=my data,  my data={smooth line}]
    data [format=function] {
      var t : interval [0:4] samples 5;
      func x = cos(\value t r);
      func y = sin(\value t r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/smooth:line"
    },
    ["visualizer options/straight cycle"] = {
      details = [[
Causes the data points to be connected by a polygon.

    \tikz [scale=.55] \datavisualization
     [scientific axes=clean, all axes={ticks=few},
      visualize as smooth line=my data,  my data={straight cycle}]
    data [format=function] {
      var t : interval [0:4] samples 5;
      func x = cos(\value t r);
      func y = sin(\value t r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/straight:cycle"
    },
    ["visualizer options/straight line"] = {
      details = [[
Causes the data points to be connected by straight lines.

    \tikz [scale=.55] \datavisualization
     [scientific axes=clean, all axes={ticks=few},
      visualize as smooth line=my data,  my data={straight line}]
    data [format=function] {
      var t : interval [0:4] samples 5;
      func x = cos(\value t r);
      func y = sin(\value t r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/straight:line"
    },
    ["visualizer options/style"] = {
      details = [[
The ⟨options⟩ given to this key should be normal TikZ options. They will
be executed when the visualizer is used.

    \tikz \datavisualization
     [scientific axes=clean,
      visualize as smooth line=sin,
      sin={style={red, densely dotted}},
      visualize as smooth line=cos,
      cos={style={mark=x}},
    ]
    data [set=sin, format=function] {
      var x : interval[0:3*pi];
      func y = sin(\value x r);
    }
    data [set=cos, format=function] {
      var x : interval[0:3*pi];
      func y = cos(\value x r);
    };

When you have multiple visualizers in a single data visualization, you
can use the `style` option with each visualizer to configure their
different appearances as in the above example. However, it is usually
much better (and easier) to use a style sheet, see Section ??.

    \tikz \datavisualization
     [scientific axes={clean, end labels},
      x axis={label=$x$}, y axis={grid={major also at=0}},
      visualize as smooth line/.list={sin,cos,sin 2,cos 2},
      legend={below, rows=2},
      sin={label in legend={text=$\sin x$}},
      cos={label in legend={text=$\cos x$}},
      sin 2={label in legend={text=$\sin 2x$}},
      cos 2={label in legend={text=$\cos 2x$}},
      style sheet=strong colors]
    data [set=sin, format=function] {
      var x : interval[0:3*pi];
      func y = sin(\value x r);
    }
    data [set=cos, format=function] {
      var x : interval[0:3*pi];
      func y = cos(\value x r);
    }
    data [set=sin 2, format=function] {
      var x : interval[0:3*pi];
      func y = sin(2*\value x r);
    }
    data [set=cos 2, format=function] {
      var x : interval[0:3*pi];
      func y = cos(2*\value x r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/visualizer:options/style",
      meta = "⟨options⟩"
    },
    when = {
      details = [[
This key is used to specify when the object is to be created. As
described above, the object is not created immediately, but at some time
during the rendering process. You can specify any of the phases defined
by the data visualization object, see Section ?? for details.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/when",
      meta = "⟨phase name⟩"
    },
    ["xy Cartesian"] = {
      details = [[
This axis system creates two axes called `x axis` and `y axis` that
point right and up, respectively. By default, one unit is mapped to one
cm.

    \begin{tikzpicture}
      \datavisualization [xy Cartesian, visualize as smooth line]
        data [format=function] {
          var x : interval [-1.25:1.25];
          func y = \value x*\value x*\value x;
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/xy:Cartesian"
    },
    ["xy axes"] = {
      details = [[
This key applies the ⟨options⟩ both to the `x axis` and the `y axis`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/xy:axes",
      meta = "⟨options⟩"
    },
    ["xyz Cartesian cabinet"] = {
      details = [[
This axis system works like `xy Cartesian`, only it *additionally*
creates an axis called `z axis` that points left and down. For this
axis, one unit corresponds to $\frac{1}{2}\sin 45^\circ\mathrm{cm}$.
This is also known as a cabinet projection.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/xyz:Cartesian:cabinet"
    },
    ["xyz axes"] = {
      details = [[
This key applies the ⟨options⟩ both to the `x axis` and the `y axis`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/xyz:axes",
      meta = "⟨options⟩"
    },
    ["⟨axis name⟩"] = {
      details = [[
This key becomes available once `new axis base=`metaaxis name has been
called. It will execute the ⟨options⟩ with the path prefix
`/tikz/data visualization/axis options`.

    [new axis base=my axis,
     my axis={attribute=some attribute}]
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/⟨axis:name⟩",
      meta = "⟨options⟩"
    },
    ["⟨axis system name⟩"] = {
      details = [[
When the key ⟨axis system name⟩ is used, the following keys will be
executed in the following order:

1.  The ⟨axis setup⟩ with the path prefix `/tikz/data visualization/`.

2.  The ⟨default options⟩ with the same path prefix.

3.  The following style:

4.  The ⟨options⟩ with the path prefix `/tikz/data visualization/`⟨axis
    system name⟩.

5.  The ⟨application options⟩ with the path prefix
    `/tikz/data visualization/`
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/⟨axis:system:name⟩",
      meta = "⟨options⟩"
    },
    ["⟨legend name⟩"] = {
      details = [[
When this key is used, the ⟨options⟩ are executed with the path prefix

    /tikz/data visualization/legend options

The different keys with this path prefix allow you to change the
position where the legend is shown and how it is organised (for
instance, whether legend entries are shown in a row or in a column or in
a square).

The different possible keys will be explained in the course of this
section.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/⟨legend:name⟩",
      meta = "⟨options⟩"
    },
    ["⟨visualizer name⟩"] = {
      details = [[
For each visualizer, a key of the same name is created with the path
prefix `/tikz/data visualization`. This key takes the ⟨options⟩ and
executes them with the path prefix

    /tikz/data visualization/visualizer options/

These options are then used to configure the appearance of the current
visualizer. (This is quite similar to the way options are passed to an
axis in order to configure the axis.) Possible options include `style`,
but also `label in legend` and `label in data`. The latter two options
are discussed in Section ??, the first option below.

    \tikz \datavisualization
     [scientific axes=clean,
      visualize as smooth line/.list={sin, cos},
      sin={style=red},
      cos={style=blue}]
    data [set=sin, format=function] {
      var x : interval[0:3*pi];
      func y = sin(\value x r);
    }
    data [set=cos, format=function] {
      var x : interval[0:3*pi];
      func y = cos(\value x r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualization/⟨visualizer:name⟩",
      meta = "⟨options⟩"
    }
  },
  graphs = {
    ["--"] = {
      details = [[
Sets the `default edge kind` to `–`.

    \tikz \graph { subgraph K_n [--, n=5, clockwise, radius=6mm] };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/--"
    },
    ["->"] = {
      details = [[
Sets the `default edge kind` to `->`.

    \tikz \graph { subgraph K_n [->, n=5, clockwise, radius=6mm] };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/->"
    },
    ["-\\protect\\exclamationmarktext-"] = {
      details = [[
Sets the `default edge kind` to `-!-`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/-\\protect\\exclamationmarktext-"
    },
    ["<-"] = {
      details = [[
Sets the `default edge kind` to `<-`.

    \tikz \graph { subgraph K_n [<-, n=5, clockwise, radius=6mm] };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/<-"
    },
    ["<->"] = {
      details = [[
Sets the `default edge kind` to `<->`.

    \tikz \graph { subgraph K_n [<->, n=5, clockwise, radius=6mm] };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/<->"
    },
    ["Cartesian placement"] = {
      details = [[
This strategy is the default strategy. It works, roughly, as follows:
For each new node on a chain, advance a "logical width" counter and for
each new node in a group, advance a "logical depth" counter. When a
chain contains a whole group, then the "logical width" taken up by the
group is the maximum over the logical widths taken up by the chains
inside the group; and symmetrically the logical depth of a chain is the
maximum of the depths of the groups inside it.

This slightly confusing explanation is perhaps best exemplified. In the
below example, the two numbers indicate the two logical width and depth
of each node as computed by the `graphs` library. Just ignore the arcane
code that is used to print these numbers.

    \tikz
      \graph [nodes={align=center, inner sep=1pt}, grow right=7mm,
              typeset={\tikzgraphnodetext\\[-4pt]
                       \tiny\mywidth\\[-6pt]\tiny\mydepth},
              placement/compute position/.append code=
                \pgfkeysgetvalue{/tikz/graphs/placement/width}{\mywidth}
                \pgfkeysgetvalue{/tikz/graphs/placement/depth}{\mydepth}]
    {
      a,
      b,
      c -> d -> {
        e -> f -> g,
        h -> i
      } -> j,
      k -> l
    };

You will find a detailed description of how these logical units are
computed, exactly, in Section ??.

Now, even though we talk about "widths" and "depths" and even though by
default a graph "grows" to the right and down, this is by no means
fixed. Instead, you can use the following keys to change how widths and
heights are interpreted:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/Cartesian:placement"
    },
    V = {
      details = [[
Sets a list of vertex names for use with graphs like `subgraph I_ n` and
also other graphs. This list is available in the macro `\tikzgraphV`.
The number of elements of this list is available in `\tikzgraphVnum`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/V",
      meta = "{list of vertices}"
    },
    W = {
      details = [[
Sets the list of vertices for the `W` set. The elements and their number
are available in the macros `\tikzgraphW` and `\tikzgraphWnum`,
respectively.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/W",
      meta = "{list of vertices}"
    },
    as = {
      details = [[
The ⟨text⟩ is used as the text of the node. This allows you to provide a
text for the node that differs arbitrarily from the name of the node.

    \tikz \graph { a [as=$x$] -- b [as=$y_5$] -> c [red, as={a--b}] };

This key always takes precedence over all of the mechanisms described
below.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/as",
      meta = "⟨text⟩"
    },
    ["branch down"] = {
      details = [[
    \tikz \graph [branch down=7mm] { a -> b -> {c, d, e}};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/branch:down",
      meta = "⟨distance⟩"
    },
    ["branch down sep"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/branch:down:sep",
      meta = "⟨distance⟩"
    },
    ["branch left"] = {
      details = [[
    \tikz \graph [branch left=7mm, grow down=7mm] { a -> b -> {c, d, e}};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/branch:left",
      meta = "⟨distance⟩"
    },
    ["branch left sep"] = {
      details = [[
    \tikz \graph [grow down sep, branch left sep] {
      start -- {
        an even longer text -- {short, very long text} -- more text,
        long -- longer,
        some text -- a -- b
      } -- end
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/branch:left:sep",
      meta = "⟨distance⟩"
    },
    ["branch right"] = {
      details = [[
    \tikz \graph [branch right=7mm, grow down=7mm] { a -> b -> {c, d, e}};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/branch:right",
      meta = "⟨distance⟩"
    },
    ["branch right sep"] = {
      details = [[
This key works like `grow right sep`, only it affects groups rather than
chains.

    \tikz \graph [grow down, branch right sep] {
      start -- {
        an even longer text -- {short, very long text} -- more text,
        long -- longer -- longest,
        some text -- a -- b
      } -- end
    };

When both this key and, say, `grow down sep` are set, instead of the
`west` anchor, the `north west` anchor will be selected automatically.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/branch:right:sep",
      meta = "⟨distance⟩"
    },
    ["branch up"] = {
      details = [[
Sets the `group shift` so that groups "branch upward". The distance by
which the center of each new element is removed from the center of the
previous one is ⟨distance⟩.

    \tikz \graph [branch up=7mm] { a -> b -> {c, d, e} };

Note that when you draw a tree, the `branch ...` keys specify how
siblings (or adjacent branches) are arranged, while the `grow ...` keys
specify in which direction the branches "grow".
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/branch:up",
      meta = "⟨distance⟩"
    },
    ["branch up sep"] = {
      details = [[
    \tikz \graph [branch up sep] { a, b, c[draw, circle, inner sep=7mm] };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/branch:up:sep",
      meta = "⟨distance⟩"
    },
    butterfly = {
      details = [[
The `butterfly` connector is used to create the kind of connections
present between layers of a so-called *butterfly network*. As for other
connectors, two sets of nodes are connected, which are the nodes having
color `target’` and `source’` by default. In a *level $l$* connection,
the first $l$ nodes of the first set are connected to the second $l$
nodes of the second set, while the second $l$ nodes of the first set get
connected to the first $l$ nodes of the second set. Then, for next $2l$
nodes of both sets a similar kind of connection is installed.
Additionally, each node gets connected to the corresponding node in the
other set with the same index (as in a `matching`):

    \tikz \graph [left anchor=east, right anchor=west,
                  branch down=4mm, grow right=15mm] {
      subgraph I_n [n=12, name=A] --[butterfly={level=3}]
      subgraph I_n [n=12, name=B] --[butterfly={level=2}]
      subgraph I_n [n=12, name=C]
    };

Unlike most joining operators, the colors of the nodes in the first and
the second set are not passed as parameters to the `butterfly` key.
Rather, they can be set using the ⟨options⟩, which are executed with the
path prefix `/tikz/graphs/butterfly`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/butterfly",
      meta = "⟨options⟩"
    },
    ["butterfly/from"] = {
      details = [[
Sets the color class of the from nodes.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/butterfly/from",
      meta = "⟨color⟩"
    },
    ["butterfly/level"] = {
      details = [[
Sets the level $l$ for the connections.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/butterfly/level",
      meta = "⟨level⟩"
    },
    ["butterfly/to"] = {
      details = [[
Sets the color class of the to nodes.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/butterfly/to",
      meta = "⟨color⟩"
    },
    ["chain polar shift"] = {
      details = [[
Under the regime of the `circular placement` strategy, each node on a
chain is shifted by `(`⟨logical width⟩⟨angle⟩`:`⟨logical
width⟩⟨angle⟩`)`.

    \tikz \graph [circular placement] {
      a -> b -> c;
      d -> e;
      f ->  g -> h;
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/chain:polar:shift",
      meta = "(⟨angle⟩:⟨radius⟩)"
    },
    ["chain shift"] = {
      details = [[
Under the regime of the `Cartesian placement` strategy, each node is
shifted by the current logical width times this ⟨coordinate⟩.

    \tikz \graph [chain shift=(45:1)] {
      a -> b -> c;
      d -> e;
      f -> g -> h;
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/chain:shift",
      meta = "⟨coordinate⟩"
    },
    ["circular placement"] = {
      details = [[
This key works quite similar to `Cartesian placement`. As for that
placement strategy, a node has logical width and depth `1`. However, the
computed total width and depth are mapped to polar coordinates rather
than Cartesian coordinates.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/circular:placement"
    },
    ["clear <"] = {
      details = [[
A more easy-to-remember shorthand for `source edge clear`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/clear:<"
    },
    ["clear >"] = {
      details = [[
A more easy-to-remember shorthand for `target edge clear`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/clear:>"
    },
    clique = {
      details = [[
Adds an edge between all vertices of the current group having the
(logical) color ⟨color⟩. Since, by default, this color is set to `all`,
which is a color that all nodes get by default, when you do not specify
anything, all nodes will be connected.

    \tikz \graph [clockwise, n=5] {
      a,
      b,
      {
        [clique]
        c, d, e
      }
    };

    \tikz \graph [color class=red, clockwise, n=5] {
      [clique=red, ->]
      a, b[red], c[red], d, e[red]
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/clique",
      meta = "⟨color⟩"
    },
    clockwise = {
      details = [[
This key sets the `group shift` so that if there are exactly ⟨number⟩
many nodes in a group, they will form a complete circle. If you do not
provide a ⟨number⟩, the current value of `\tikzgraphVnum` is used, which
is exactly what you want when you use predefined graph macros like
`subgraph K_ n`.

    \tikz \graph [clockwise=4] { a, b, c, d };

    \tikz \graph [clockwise] { subgraph K_n [n=5] };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/clockwise",
      meta = "⟨number⟩"
    },
    ["color class"] = {
      details = [[
This sets up a new color class called ⟨color class name⟩. Nodes and
whole groups of nodes can now be colored with ⟨color class name⟩. This
is done using the following keys, which become available inside the
current scope:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/color:class",
      meta = "⟨color class name⟩"
    },
    ["complete bipartite"] = {
      details = [[
Adds all possible edges from every node having color ⟨from color⟩ to
every node having color ⟨to color⟩:

    \tikz \graph { {a, b}       ->[complete bipartite]
                   {c, d, e}    --[complete bipartite]
                   {g, h, i, j} --[complete bipartite]
                   k };

    \tikz \graph [color class=red, color class=green, clockwise, n=6] {
      [complete bipartite={red}{green}, ->]
      a [red], b[red], c[red], d[green], e[green], f[green]
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/complete:bipartite",
      meta = "⟨from color⟩⟨to color⟩"
    },
    counterclockwise = {
      details = [[
Works like `clockwise`, only the direction is inverted.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/counterclockwise",
      meta = "⟨number⟩"
    },
    cycle = {
      details = [[
Connects the nodes colored ⟨color⟩ is a cyclic fashion. The ordering is
the ordering in which they appear in the whole graph specification.

    \tikz \graph [clockwise, n=6, phase=60] {
      { [cycle, ->] a, b, c },
      { [cycle, <-] d, e, f }
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/cycle",
      meta = "⟨color⟩"
    },
    declare = {
      details = [[
This key declares that ⟨graph name⟩ can subsequently be used as a
replacement for a ⟨node name⟩. Whenever the ⟨graph name⟩ is used in the
following, a graph group will be inserted instead whose content is
exactly ⟨specification⟩. In case ⟨graph name⟩ is used together with some
⟨options⟩, they are executed prior to inserting the ⟨specification⟩.

    \tikz \graph [branch down=4mm, declare={claw}{1 -- {2,3,4}}] {
      a;
      claw;
      b;
    };

In the next example, we use a key to configure a subgraph:

    \tikz \graph [ n/.code=\def\n{#1}, branch down=4mm,
                   declare={star}{root -- { \foreach \i in {1,...,\n} {\i} }}]
    { star [n=5]; };

Actually, the `n` key is already defined internally for a similar
purpose.

As a last example, let us define a somewhat more complicated graph
macro.

    \newcount\mycount
    \tikzgraphsset{
      levels/.store in=\tikzgraphlevel,
      levels=1,
      declare={bintree}{%
        [/utils/exec={%
          \ifnum\tikzgraphlevel=1\relax%
            \def\childtrees{ / }%
          \else%
            \mycount=\tikzgraphlevel%
            \advance\mycount by-1\relax%
            \edef\childtrees{
              / -> {
                bintree[levels=\the\mycount],
                bintree[levels=\the\mycount]
              }}
          \fi%
        },
        parse/.expand once=\childtrees
        ]
        % Everything is inside the \childtrees...
      }
    }
    \tikz \graph [grow down=5mm, branch right=5mm] { bintree [levels=5] };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/declare",
      meta = "{graph name}{specification}"
    },
    ["default edge kind"] = {
      details = [[
This key stores one of the five edge kinds `–`, `<-`, `->`, `<->`, and
`-!-`. When an operator wishes to create a new edge, it should typically
set

    \tikzgraphsset{new \pfkeysvalueof{/tikz/graphs/default edge kind}=...}

While this key can be set explicitly, it may be more convenient to use
the abbreviating keys listed below. Also, this key is automatically set
to the current value of ⟨edge specification⟩ when a joining operator is
called, see the discussion of joining operators in Section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/default:edge:kind",
      meta = "⟨value⟩"
    },
    ["default edge operator"] = {
      details = [[
This key stores the name of a ⟨key⟩ that is executed for every ⟨edge
specification⟩ whose ⟨options⟩ do not contain the `operator` key.

    \tikz \graph [default edge operator=matching] {
      {a, b}    ->[matching and star]
      {c, d, e} --[complete bipartite]
      {f, g, h} --
      {i, j, k}
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/default:edge:operator",
      meta = "⟨key⟩"
    },
    edge = {
      details = [[
This is an alias for `edges`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/edge",
      meta = "⟨options⟩"
    },
    ["edge label"] = {
      details = [[
This key is an abbreviation for `edge node=node[auto]{`⟨text⟩`}`. The
net effect is that the `text` is placed next to the newly created edges.

    \tikz \graph [edge label=x] { a -> b -> {c,d} };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/edge:label",
      meta = "⟨text⟩"
    },
    ["edge label'"] = {
      details = [[
This key is an abbreviation for `edge node=node[auto,swap]{`⟨text⟩`}`.

    \tikz \graph [edge label=out, edge label'=in]
      { subgraph C_n [clockwise, n=5] };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/edge:label'",
      meta = "⟨text⟩"
    },
    ["edge node"] = {
      details = [[
This key specifies that the ⟨node specification⟩ should be added to each
newly created edge as an implicitly placed node.

    \tikz \graph [edge node={node [red, near end] {X}}] { a -> b -> c };

Again, multiple uses of this key accumulate.

    \tikz \graph [edge node={node [near end] {X}},
                  edge node={node [near start] {Y}}] { a -> b -> c };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/edge:node",
      meta = "⟨node specification⟩"
    },
    ["edge quotes"] = {
      details = [[
A shorthand for setting the style `every edge quotes` to ⟨options⟩.

      \tikz \graph [edge quotes={blue,auto}] {
      a ->["x"] b ->["y"'] c ->["b" red] d;
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/edge:quotes",
      meta = "⟨options⟩"
    },
    ["edge quotes center"] = {
      details = [[
A shorthand for `edge quotes` to `anchor=center`.

    \tikz \graph [edge quotes center] {
      a ->["x"] b ->["y"] c ->["z" red] d;
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/edge:quotes:center"
    },
    ["edge quotes mid"] = {
      details = [[
A shorthand for `edge quotes` to `anchor=mid`.

    \tikz \graph [edge quotes mid] {
      a ->["x"] b ->["y"] c ->["z" red] d;
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/edge:quotes:mid"
    },
    edges = {
      details = [[
This option causes the ⟨options⟩ to be applied to each newly created
edge inside the ⟨group specification⟩.

    \tikz \graph [edges={red,thick}] { a -> b -> c };

Again, multiple uses of this key accumulate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/edges",
      meta = "⟨options⟩"
    },
    ["empty nodes"] = {
      details = [[
Just sets `typeset` to nothing, which causes all nodes to have an empty
text (unless, of course, the `as` option is used):

    \tikz \graph [empty nodes, nodes={circle, draw}] { a -> {b, c} };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/empty:nodes"
    },
    ["every graph"] = {
      details = [[
This style is executed at the beginning of every `graph` path command
prior to the ⟨options⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/every:graph"
    },
    ["fresh nodes"] = {
      details = [[
When this key is set to `true`, all nodes will be considered to be
fresh. This option is useful when you create for instance a tree with
many identical nodes.

When a node name is encountered that was already used previously, a new
name is chosen is follows: An apostrophe (`’`) is appended repeatedly
until a node name is found that has not yet been used:

    \tikz \graph [branch down=5mm] {
      { [fresh nodes]
        a -> {
          b -> {c, c},
          b -> {c, c},
          b -> {c, c},
        }
      },
      b' -- b''
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/fresh:nodes",
      meta = "⟨true or false⟩"
    },
    ["grid placement"] = {
      details = [[
This key works similar to `Cartesian placement`. As for that placement
strategy, a node has logical width and depth 1. However, the computed
total width and depth are mapped to a $N\times M$ grid. The values of
$N$ and $M$ depend on the size of the graph and the value of
`wrap after`. The number of columns $M$ is either set to `wrap after`
explicitly or computed automatically as
$\sqrt{\texttt{\string\texttt{V\textbackslash string}}}$. $N$ is the
number of rows needed to lay out the graph in a grid with $M$ columns.

    % An example with 6 nodes, 3 columns and therefor 2 rows
    \tikz \graph [grid placement] { subgraph I_n[n=6, wrap after=3] };

    % An example with 9 nodes with columns and rows computed automatically
    \tikz \graph [grid placement] { subgraph Grid_n [n=9] };

    % Directions can be changed
    \tikz \graph [grid placement, branch up, grow left] { subgraph Grid_n [n=9] };

In case a user-defined graph instead of a pre-defined `subgraph` is to
be laid out using `grid placement`, `n` has to be specified explicitly:

    \tikz \graph [grid placement] {
      [n=6, wrap after=3]
      a -- b -- c -- d -- e -- f
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/grid:placement"
    },
    ["group polar shift"] = {
      details = [[
Like for `group shift`, each node on a chain is shifted by `(`⟨logical
depth⟩⟨angle⟩`:`⟨logical depth⟩⟨angle⟩`)`.

    \tikz \graph [circular placement, group polar shift=(30:0)] {
      a -> b -> c;
      d -> e;
      f -> g -> h;
    };

    \tikz \graph [circular placement,
                  chain polar shift=(30:0),
                  group polar shift=(0:1cm)] {
      a -- b -- c;
      d -- e;
      f -- g -- h;
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/group:polar:shift",
      meta = "(⟨angle⟩:⟨radius⟩)"
    },
    ["group shift"] = {
      details = [[
Like for `chain shift`, each node is shifted by the current logical
depth times this ⟨coordinate⟩.

    \tikz \graph [chain shift=(45:7mm), group shift=(-45:7mm)] {
      a -> b -> c;
      d -> e;
      f -> g -> h;
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/group:shift",
      meta = "⟨coordinate⟩"
    },
    ["grow down"] = {
      details = [[
Like `grow up`.

    \tikz \graph [grow down=7mm] { a -> b -> c};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/grow:down",
      meta = "⟨distance⟩"
    },
    ["grow down sep"] = {
      details = [[
As above.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/grow:down:sep",
      meta = "⟨distance⟩"
    },
    ["grow left"] = {
      details = [[
Like `grow up`.

    \tikz \graph [grow left=7mm] { a -> b -> c};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/grow:left",
      meta = "⟨distance⟩"
    },
    ["grow left sep"] = {
      details = [[
    \tikz \graph [grow left sep] { long -- longer -- longest };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/grow:left:sep",
      meta = "⟨distance⟩"
    },
    ["grow right"] = {
      details = [[
Like `grow up`.

    \tikz \graph [grow right=7mm] { a -> b -> c};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/grow:right",
      meta = "⟨distance⟩"
    },
    ["grow right sep"] = {
      details = [[
This key has several effects, but let us start with the bottom line:
Nodes along a chain are placed in such a way that the left end of a new
node is ⟨distance⟩ from the right end of the previous node:

    \tikz \graph [grow right sep, left anchor=east, right anchor=west] {
      start -- {
        long text -- {short, very long text} -- more text,
        long -- longer -- longest
      } -- end
    };

What happens internally is the following: First, the `anchor` of the
nodes is set to `west` (or `north west` or `south west`, see below).
Second, the logical width of a node is no longer `1`, but set to the
actual width of the node (which we define as the horizontal difference
between the `west` anchor and the `east` anchor) in points. Third, the
`chain shift` is set to `(1pt,0pt)`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/grow:right:sep",
      meta = "⟨distance⟩"
    },
    ["grow up"] = {
      details = [[
Sets the `chain shift` to `(0,`⟨distance⟩`)`, so that chains "grow
upward". The distance by which the center of each new element is removed
from the center of the previous one is ⟨distance⟩.

    \tikz \graph [grow up=7mm] { a -> b -> c};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/grow:up",
      meta = "⟨distance⟩"
    },
    ["grow up sep"] = {
      details = [[
    \tikz \graph [grow up sep] {
      a / $a=x$ --
      b / {$b=\displaystyle \int_0^1 x dx$} --
      c [draw, circle, inner sep=7mm]
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/grow:up:sep",
      meta = "⟨distance⟩"
    },
    ["induced complete bipartite"] = {
      details = [[
Works like the `complete bipartite` operator, but in a `simple` graph
any edges between the vertices in either shore are removed (more
precisely, they get replaced by `-!-` edges).

    \tikz \graph [simple] {
      subgraph K_n [n=5, clockwise];  % Lots of edges

      {2, 3} ->[induced complete bipartite] {4, 5}
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/induced:complete:bipartite"
    },
    ["induced cycle"] = {
      details = [[
While the `cycle` command will only add edges, this key will also remove
all other edges between the nodes of the cycle, provided we are
constructing a `simple` graph.

    \tikz \graph [simple] {
      subgraph K_n [n=7, clockwise]; % create lots of edges

      { [induced cycle, ->, edge=red] 2, 3, 4, 6, 7 },
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/induced:cycle",
      meta = "⟨color⟩"
    },
    ["induced independent set"] = {
      details = [[
This key is the "opposite" of a `clique`: It removes all edges in the
current group having belonging to color class ⟨color⟩. More precisely,
an edge of kind `-!-` is added for each pair of vertices. This means
that edge only get removed if you specify the `simple` option.

    \tikz \graph [simple] {
      subgraph K_n [<->, n=7, clockwise]; % create lots of edges

      { [induced independent set] 1, 3, 4, 5, 6 }
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/induced:independent:set",
      meta = "⟨color⟩"
    },
    ["induced path"] = {
      details = [[
Works like `induced cycle`, only there is no edge from the last to the
first vertex.

    \tikz \graph [simple] {
      subgraph K_n [n=7, clockwise]; % create lots of edges

      { [induced path, ->, edges=red] 2, 3, 4, 6, 7 },
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/induced:path",
      meta = "⟨color⟩"
    },
    ["left anchor"] = {
      details = [[
This anchor is used for the node that is to the left of an edge
specification. Setting this anchor to the empty string means that no
special anchor is used (which is the default). The ⟨anchor⟩ is stored in
the macro `\tikzgraphleftanchor` with a leading dot.

    \tikz \graph {
      {a,b,c} -> [complete bipartite] {e,f,g}
    };

    \tikz \graph [left anchor=east, right anchor=west] {
      {a,b,c} -- [complete bipartite] {e,f,g}
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/left:anchor",
      meta = "⟨anchor⟩"
    },
    m = {
      details = [[
This is an abbreviation for
`W={1,...,`⟨number⟩`}, name shore W/.style={name=W}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/m",
      meta = "⟨number⟩"
    },
    matching = {
      details = [[
This joining operator forms a maximum *matching* between the nodes of
the two sets of nodes having colors ⟨from color⟩ and ⟨to color⟩,
respectively. The first node of the from set is connected to the first
node of to set, the second node of the from set is connected to the
second node of the to set, and so on. If the sets have the same size,
what results is what graph theoreticians call a *perfect matching*,
otherwise only a maximum, but not perfect matching results.

    \tikz \graph {
      {a, b, c} ->[matching]
      {d, e, f} --[matching]
      {g, h}    --[matching]
      {i, j, k}
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/matching",
      meta = "⟨from color⟩⟨to color⟩"
    },
    ["matching and star"] = {
      details = [[
The `matching and star` connector works like the `matching` connector,
only it behaves differently when the two to-be-connected sets have
different size. In this case, all the surplus nodes get connected to the
last node of the other set, resulting in what is known as a *star* in
graph theory. This simple rule allows for some powerful effects (since
this connector is the one initially set, there is no need to add it
here):

    \tikz \graph { a -> {b, c} -> {d, e} -- f};

The `matching and star` connector also makes it easy to create trees and
series-parallel graphs.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/matching:and:star",
      meta = "⟨from color⟩⟨to color⟩"
    },
    ["math nodes"] = {
      details = [[
Sets `typeset` to `\textbackslash tikzgraphnodetext`, which causes all
nodes names to be typeset in math mode:

    \tikz \graph [math nodes, nodes={circle, draw}] { a_1 -> {b^2, c_3^n} };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/math:nodes"
    },
    multi = {
      details = [[
When this edge is set for a whole graph (which is the default) or just
for a group (which is useful if the whole graph is simple in general,
but a part is a multi-graph), then when you specify an edge between two
nodes several times, several such edges get created:

    \tikz \graph [multi] { % "multi" is not really necessary here
      a ->[bend left,  red]  b;
      a ->[bend right, blue] b;
    };

In case `multi` is used for a scope inside a larger scope where the
`simple` option is specified, then inside the local `multi` scope edges
are immediately created and they are completely ignored when it comes to
deciding which kind of edges should be present in the surrounding simple
graph. From the surrounding scope's point of view it is as if the local
`multi` graph contained no edges at all.

This means, in particular, that you can use the `multi` option with a
single edge to "enforce" this edge to be present in a simple graph.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/multi"
    },
    n = {
      details = [[
This is an abbreviation for
`V={1,...,`⟨number⟩`}, name shore V/.style={name=V}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/n",
      meta = "⟨number⟩"
    },
    name = {
      details = [[
This key prepends the ⟨text⟩, followed by a separating symbol (a space
by default), to all ⟨node name⟩s inside a ⟨full node name⟩. Repeated
calls of this key accumulate, leading to ever-longer "name paths":

    \begin{tikzpicture}
      \graph {
        { [name=first]  1, 2, 3} --
        { [name=second] 1, 2, 3}
      };
      \draw [red] (second 1) circle [radius=3mm];
    \end{tikzpicture}

Note that, indeed, in the above example six nodes are created even
though the first and second set of nodes have the same ⟨node name⟩. The
reason is that the full names of the six nodes are all different. Also
note that only the ⟨node name⟩ is used as the node text, not the full
name. This can be changed as described later on.

This key can be used repeatedly, leading to ever longer node names.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/name",
      meta = "⟨text⟩"
    },
    ["name separator"] = {
      details = [[
Changes the symbol that is used to separate the ⟨text⟩ from the ⟨node
name⟩. The default is `\space`, resulting in a space.

    \begin{tikzpicture}
      \graph [name separator=] { % no separator
        { [name=first]  1, 2, 3} --
        { [name=second] 1, 2, 3}
      };
      \draw [red] (second1) circle [radius=3mm];
    \end{tikzpicture}

    \begin{tikzpicture}
      \graph [name separator=-] {
        { [name=first]  1, 2, 3} --
        { [name=second] 1, 2, 3}
      };
      \draw [red] (second-1) circle [radius=3mm];
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/name:separator",
      meta = "⟨symbols⟩"
    },
    ["name shore V"] = {
      details = [[
Set this style to, say, `name=my V set` in order to set a name for the
`V` set.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/name:shore:V"
    },
    ["name shore W"] = {
      details = [[
Same as for `name shore V`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/name:shore:W"
    },
    ["new --"] = {
      details = [[
This key is called for `–` with the same parameters as above. The only
difference in the definition is that in the `\path` command the `->`
gets replaced by `-`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/new:--",
      meta = "{left node}{right node}{edge options}{edge nodes}"
    },
    ["new ->"] = {
      details = [[
This key will be called for a `->` edge specification with the following
four parameters:

1.  ⟨left node⟩ is the name of the "left" node, that is, the name of
    $l_i$.

2.  ⟨right node⟩ is the name of the right node.

3.  ⟨edge options⟩ are the accumulated options from all calls of
    `/tikz/graph/edges` in groups that surround the edge specification.

4.  ⟨edge nodes⟩ is text like `node {A} node {B}` that specifies some
    nodes that should be put as labels on the edge using TikZ's implicit
    positioning mechanism.

By default, the key executes the following code:

> `\path [->,every new ->]`  
> `(`⟨left node⟩`\tikzgraphleftanchor) edge [` ⟨edge options⟩`]` ⟨edge
> nodes⟩``  
> `(`⟨right node⟩`\tikzgraphrightanchor);`

You are welcome to change the code underlying the key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/new:->",
      meta = "{left node}{right node}{edge options}{edge nodes}"
    },
    ["new -\\protect\\exclamationmarktext-"] = {
      details = [[
Called for `-!-` with the same parameters as above. Does nothing by
default.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/new:-\\protect\\exclamationmarktext-",
      meta = "{left node}{right node}{edge options}{edge nodes}"
    },
    ["new <-"] = {
      details = [[
Called for `<-` with the same parameters as above. [1]

[1] You might wonder why this key is needed: It seems more logical at
first sight to just call `new edge directed` with swapped first
parameters. However, a positioning algorithm might wish to take the fact
into account that an edge is "backward" rather than "forward" in order
to improve the layout. Also, different arrow heads might be used.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/new:<-",
      meta = "{left node}{right node}{edge options}{edge nodes}"
    },
    ["new <->"] = {
      details = [[
Called for `<->` with the same parameters as above. The `->` is replaced
by `<-`
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/new:<->",
      meta = "{left node}{right node}{edge options}{edge nodes}"
    },
    ["no placement"] = {
      details = [[
This strategy simply "switches off" the whole placement mechanism,
causing all nodes to be placed at the origin by default. You need to use
this strategy if you position nodes "by hand". For this, you can use the
`at` key, the `shift` keys:

    \tikz \graph [no placement]
    {
      a[at={(0:0)}] -> b[at={(1,0)}] -> c[yshift=1cm];
    };

Since the syntax and the many braces and parentheses are a bit
cumbersome, the following two keys might also be useful:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/no:placement"
    },
    nodes = {
      details = [[
This option causes the ⟨options⟩ to be applied to each newly created
node inside the ⟨group specification⟩.

    \tikz \graph [nodes=red] { a -> b -> c };

Multiple uses of this key accumulate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/nodes",
      meta = "⟨options⟩"
    },
    ["not ⟨color class name⟩"] = {
      details = [[
Sets up an operator for the current scope so that all nodes in it loose
the color ⟨color class name⟩. You can also use `!`⟨color class name⟩ as
an alias for this key.

    \tikz \graph [color class=red, color class=green,
                  math nodes, clockwise, n=5] {
      [complete bipartite={red}{green}]
      { [red]   r_1, r_2 },
      { [green] g_1, g_2, g_3 },
      g_2 [not green]
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/not:⟨color:class:name⟩"
    },
    ["number nodes"] = {
      details = [[
When this key is used in a scope, each encountered node name will get
appended a new number, starting with ⟨start⟩. Typically, this ensures
that all node names are different. Between the original node name and
the appended number, the setting of the following will be inserted:

    \tikz \graph [branch down=5mm] {
      { [number nodes]
        a -> {
          b -> {c, c},
          b -> {c, c},
          b -> {c, c},
        }
      },
      b 2 -- b 5
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/number:nodes",
      meta = "⟨start number⟩"
    },
    ["number nodes sep"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/number:nodes:sep",
      meta = "⟨text⟩"
    },
    operator = {
      details = [[
This key has an effect in three places:

1.  It can be used in the ⟨options⟩ of a ⟨direct node specification⟩.

2.  It can be used in the ⟨options⟩ of a ⟨group specification⟩.

3.  It can be used in the ⟨options⟩ of an ⟨edge specification⟩.

The first case is a special case of the second, since it is treated like
a group specification containing a single node. The last case is more
complicated and discussed in the next section. So, let us focus on the
second case.

Even though the ⟨options⟩ of a group are given at the beginning of the
⟨group specification⟩, the ⟨code⟩ is only executed when the group has
been parsed completely and all its nodes have been identified. If you
use the `operator` multiple times in the ⟨options⟩, the effect
accumulates, that is, all code passed to the different calls of
`operator` gets executed in the order it is encountered.

The ⟨code⟩ can do "whatever it wants", but it will typically add edges
between certain nodes. You can configure what kind of edges (directed,
undirected, etc.) are created by using the following keys:

When the ⟨code⟩ of an operator is executed, the following commands can
be used to find the nodes that should be connected:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/operator",
      meta = "⟨code⟩"
    },
    path = {
      details = [[
Works like `cycle`, only there is no edge from the last to the first
vertex.

    \tikz \graph [clockwise, n=6] {
      { [path, ->] a, b, c },
      { [path, <-] d, e, f }
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/path",
      meta = "⟨color⟩"
    },
    phase = {
      details = [[
This is an initial value that is added to the total computed angle when
the polar shift of a node has been calculated.

    \tikz \graph [circular placement] { a, b, c, d };

    \tikz \graph [circular placement, phase=0] { a, b, c, d };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/phase",
      meta = "⟨angle⟩"
    },
    ["placement/chain count"] = {
      details = [[
This key stores a number that tells us the sequence number of the chain
in the current group.

    \tikz \graph [
      grow right sep, branch down=5mm, typeset=\tikzgraphnodetext:\mynum,
      placement/compute position/.append code=
        \pgfkeysgetvalue{/tikz/graphs/placement/chain count}{\mynum}]
    {
      a -> b -> {c,d,e},
      f,
      g -> h
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/placement/chain:count"
    },
    ["placement/compute position"] = {
      details = [[
The ⟨code⟩ is called by the `graph` command just prior to creating a new
node (the exact moment when this key is called is detailed in the
description of the `place` key). When the ⟨code⟩ is called, all of the
keys described above will hold numbers computed in the way described
above.

The job of the ⟨code⟩ is to setup node options appropriately so that the
to-be-created node will be placed correctly. Thus, the ⟨code⟩ should
typically set the key `nodes={shift=`⟨coordinate⟩`}` where ⟨coordinate⟩
is the computed position for the node. The ⟨code⟩ could also set other
options like, say, the color of a node depending on its depth.

The following example appends some code to the standard code of
`compute position` so that "deeper" nodes of a tree are lighter.
(Naturally, the same effect could be achieved much more easily using the
`level` key.)

    \newcount\mycount
    \def\lightendeepernodes{
      \pgfmathsetcount{\mycount}{
        100-20*\pgfkeysvalueof{/tikz/graphs/placement/width}
      }
      \edef\mydepth{\the\mycount}
      \tikzset{nodes={fill=red!\mydepth,circle,text=white}}
    }
    \tikz
      \graph [placement/compute position/.append code=\lightendeepernodes]
       {
         a -> {
           b -> c -> d,
           e -> {
             f,
             g
           },
           h
         }
       };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/placement/compute:position",
      meta = "⟨code⟩"
    },
    ["placement/depth"] = {
      details = [[
Similarly to the `width` key, this key stores the "logical depth" of the
nodes parsed up to now in the current group or chain and, also
similarly, this key may or may not be related to the actual depth/height
of the current node. As for the `width`, the exact definition is as
follows: For a single node, the depth is computed by the following key:

Second, the depth of a group is the sum of the depths of its elements.
Third, the depth of a chain is the maximum of the depth of its elements.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/placement/depth"
    },
    ["placement/element count"] = {
      details = [[
This key stores a number that tells us the position of the node on the
current chain. However, you only have access to this value inside the
code passed to the macro `compute position`, explained later on.

    \tikz \graph [
      grow right sep, typeset=\tikzgraphnodetext:\mynum,
      placement/compute position/.append code=
        \pgfkeysgetvalue{/tikz/graphs/placement/element count}{\mynum}]
    {
      a -> b -> c,
      d -> {e, f->h} -> j
    };

As can be seen, each group resets the element counter.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/placement/element:count"
    },
    ["placement/level"] = {
      details = [[
This key stores a number that is increased for each element on a chain,
but gets reset at the end of a group:

    \tikz \graph [ branch down=5mm, typeset=
        \tikzgraphnodetext:\pgfkeysvalueof{/tikz/graphs/placement/level}]
    {
      a -> {
        b,
        c -> {
          d,
          e -> {f,g},
          h
        },
        j
      }
    };

Unlike the parameters `depth` and `width` described in the next section,
the key `level` is always available.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/placement/level"
    },
    ["placement/logical node depth"] = {
      details = [[
The code behind this key should return the "logical height" of the node
⟨full node name⟩ in the macro `\pgfmathresult`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/placement/logical:node:depth",
      meta = "⟨full node name⟩"
    },
    ["placement/logical node width"] = {
      details = [[
This key is called to compute a physical or logical width of the node
⟨full node name⟩. You can change the code of this key. The code should
return the computed value in the macro `\pgfmathresult`. By default,
this key returns `1`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/placement/logical:node:width",
      meta = "⟨full node name⟩"
    },
    ["placement/place"] = {
      details = [[
Executing this key has two effects: First, the key `compute position` is
called to compute a good position for future nodes (usually, these
"future nodes" are just a single node that is created immediately).
Second, all of the above counters like `depth` or `width` are reset (but
not `level`).

There are two places where this key is sensibly called: First, just
prior to creating a node, which happens automatically. Second, when you
change the online strategy. In this case, the computed width and depth
values from one strategy typically make no sense in the other strategy,
which is why the new strategy should proceed "from a fresh start". In
this case, the implicit call of `compute position` ensures that the new
strategy gets the last place the old strategy would have used as its
starting point, while the computation of its positions is now relative
to this new starting point.

For these reasons, when an online strategy like `Cartesian placement` is
called, this key gets called implicitly. You will rarely need to call
this key directly, except when you define a new online strategy.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/placement/place"
    },
    ["placement/width"] = {
      details = [[
This key stores the "logical width" of the nodes parsed up to now in the
current group or chain (more precisely, parsed since the last call of
`place` in an enclosing group). This is not necessarily the "total
physical width" of the nodes, but rather a number representing how "big"
the elements prior to the current element were. This *may* be their
width, but it may also be their height or even their number (which,
incidentally, is the default). You can use the `width` to perform shifts
or rotations of to-be-created nodes (to be explained later).

The logical width is defined recursively as follows. First, the width of
a single node is computed by calling the following key:

The width of a chain is the sum of the widths of its elements. The width
of a group is the maximum of the widths of its elements.

To get a feeling what the above rules imply in practice, let us first
have a look at an example where each node has logical width and height
`1` (which is the default). The arcane options at the beginning of the
code just setup things so that the computed width and depth of each node
is displayed at the bottom of each node.

    \tikz
      \graph [nodes={align=center, inner sep=1pt}, grow right=7mm,
              typeset={\tikzgraphnodetext\\[-4pt]
                       \tiny\mywidth\\[-6pt]\tiny\mydepth},
              placement/compute position/.append code=
                \pgfkeysgetvalue{/tikz/graphs/placement/width}{\mywidth}
                \pgfkeysgetvalue{/tikz/graphs/placement/depth}{\mydepth}]
    {
      a,
      b,
      c -> d -> {
        e -> f -> g,
        h -> i
      } -> j,
      k -> l
    };

In the next example the "logical" width and depth actually match the
"physical" width and height. This is caused by the `grow right sep`
option, which internally sets the `logical node width` key so that it
returns the width of its parameter in points.

    \tikz
      \graph [grow right sep, branch down sep, nodes={align=left, inner sep=1pt},
              typeset={\tikzgraphnodetext\\[-4pt] \tiny Width: \mywidth\\[-6pt] \tiny Depth: \mydepth},
              placement/compute position/.append code=
                \pgfkeysgetvalue{/tikz/graphs/placement/width}{\mywidth}
                \pgfkeysgetvalue{/tikz/graphs/placement/depth}{\mydepth}]
    {
      a,
      b,
      c -> d -> {
        e -> f -> g,
        h -> i
      } -> j,
      k -> l
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/placement/width"
    },
    ["put node text on incoming edges"] = {
      details = [[
When this key is used with a node or a group, the following happens:

1.  The command
    `target edge node={node[`⟨options⟩`]{\tikzgraphnodetext}}` is
    executed. This means that all incoming edges of the node get a label
    with the text that would usually be displayed in the node. You can
    use keys like `math nodes` normally.

2.  The command `as={}` is executed. This means that the node itself
    will display nothing.

Here is an example that show how this command is used.

    \tikz \graph [put node text on incoming edges,
                  math nodes, nodes={circle,draw}]
      { a -> b -> {c, d} };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/put:node:text:on:incoming:edges",
      meta = "⟨options⟩"
    },
    ["put node text on outgoing edges"] = {
      details = [[
Works like the previous key, only with `target` replaced by `source`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/put:node:text:on:outgoing:edges",
      meta = "⟨options⟩"
    },
    quick = {
      details = [[
When you provide this key with a graph, the syntax of graph
specifications gets restricted. You are no longer allowed to use certain
features of the graph syntax; but all features that are still allowed
are also allowed in the same way when you do not provide the `quick`
option. Thus, leaving out the `quick` option will never hurt.

Since the syntax is so severely restricted, it is easier to explain
which aspects of the graph syntax *will* still work:

1.  A quick graph consists of a sequence of either nodes, edges
    sequences, or groups. These are separated by commas or semicolons.

2.  Every node is of the form

    > `"`⟨node name⟩`"``/"`⟨node text⟩`"[`⟨options⟩`]`

    The quotation marks are mandatory. The part `/"`⟨node text⟩`"` may
    be missing, in which case the node name is used as the node text.
    The ⟨options⟩ may also be missing. The ⟨node name⟩ may not contain
    any "funny" characters (unlike in the normal graph command).

3.  Every chain is of the form

    > ⟨node spec⟩ ⟨connector⟩ ⟨node spec⟩ ⟨connector⟩ ...⟨connector⟩
    > ⟨node spec⟩`;`

    Here, the ⟨node spec⟩ are node specifications as described above,
    the ⟨connector⟩ is one of the four connectors `->`, `<-`, `–`, and
    `<->` (the connector `-!-` is not allowed since the `simple` option
    is also not allowed). Each connector may be followed by options in
    square brackets. The semicolon may be replaced by a comma.

4.  Every group is of the form

    > `{ [`⟨options⟩`]` ⟨chains and groups⟩ `};`

    The ⟨options⟩ are compulsory. The semicolon can, again, be replaced
    by a comma.

5.  The `number nodes` option will work as expected.

Here is a typical way this syntax might be used:

    \tikz \graph [quick] { "a" --["foo"] "b"[x=1] };

    \tikz \graph [quick] {
      "a"/"$a$" -- "b"[x=1] --[red] "c"[x=2];
      { [nodes=blue] "a" -- "d"[y=1]; };
    };

Let us now have a look at the most important things that will *not* work
when the `quick` option is used:

-   Connecting a node and a group as in `a->{b,c}`.

-   Node names without quotation marks as in `a–b`.

-   Everything described in subsequent subsections, which includes
    subgraphs (graph macros), graph sets, graph color classes, anonymous
    nodes, the `fresh nodes` option, sublayouts, simple graphs, edge
    annotations.

-   Placement strategies -- you either have to define all node positions
    explicitly using `at=` or `x=` and `y=` or you must use a graph
    drawing algorithm like `layered layout`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/quick"
    },
    radius = {
      details = [[
This is an initial value that is added to the total computed radius when
the polar shift of a node has been calculated. Essentially, this key
allows you to set the ⟨radius⟩ of the innermost circle.

    \tikz \graph [circular placement, radius=5mm] { a, b, c, d };

    \tikz \graph [circular placement, radius=1cm] { a, b, c, d };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/radius",
      meta = "⟨dimension⟩"
    },
    ["recolor ⟨color class name⟩ by"] = {
      details = [[
Causes all keys having color ⟨color class name⟩ to get ⟨new color⟩
instead. They loose having color ⟨color class name⟩, but other colors
are not affected.

    \tikz \graph [color class=red, color class=green,
                  math nodes, clockwise, n=5] {
      [complete bipartite={red}{green}]
      { [red]   r_1, r_2 },
      { [green] g_1, g_2, g_3 },
      g_2 [recolor green by=red]
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/recolor:⟨color:class:name⟩:by",
      meta = "⟨new color⟩"
    },
    ["right anchor"] = {
      details = [[
Works like `left anchor`, only for `\tikzgraphrightanchor`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/right:anchor",
      meta = "⟨anchor⟩"
    },
    simple = {
      details = [[
In contrast a multi-graph, in a simple graph, at most one edge gets
created for every pair of vertices:

    \tikz \graph [simple]{
      a ->[bend left,  red]  b;
      a ->[bend right, blue] b;
    };

As can be seen, the second edge "wins" over the first edge. The general
rule is as follows: In a simple graph, whenever an edge between two
vertices is specified multiple times, only the very last specification
and its options will actually be executed.

The real power of the `simple` option lies in the fact that you can
first create a complicated graph and then later redirect and otherwise
modify edges easily:

    \tikz \graph [simple, grow right=2cm] {
      {a,b,c,d} ->[complete bipartite] {e,f,g,h};

      { [edges={red,thick}] a -> e -> d -> g -> a };
    };

One particularly interesting kind of edge specification for a simple
graph is `-!-`. Recall that this is used to indicate that "no edge"
should be added between certain nodes. In a multi-graph, this key
usually has no effect (unless the key `new -!-` has been redefined) and
is pretty superfluous. In a simple graph, however, it counts as an edge
kind and you can thus use it to remove an edge that been added
previously:

    \tikz \graph [simple] {
      subgraph K_n [n=8, clockwise];
      % Get rid of the following edges:
      1 -!- 2;
      3 -!- 4;
      6 -!- 8;
      % And make one edge red:
      1 --[red] 3;
    };

Creating a graph such as the above in other fashions is pretty awkward.

For every unordered pair $\{u,v\}$ of vertices at most one edge will be
created in a simple graph. In particular, when you say `a -> b` and
later also `a <- b`, then only the edge `a <- b` will be created.
Similarly, when you say `a -> b` and later `b -> a`, then only the edge
`b -> a` will be created.

The power of the `simple` command comes at a certain cost: As the graph
is being constructed, a (sparse) array is created that keeps track for
each edge of the last edge being specified. Then, at the end of the
scope containing the `simple` command, for every pair of vertices the
edge is created. This is implemented by two nested loops iterating over
all possible pairs of vertices -- which may take quite a while in a
graph of, say, 1000 vertices. Internally, the `simple` command is
implemented as an operator that adds the edges when it is called, but
this should be unimportant in normal situations.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/simple"
    },
    ["source edge clear"] = {
      details = [[
Works like `target edge clear`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/source:edge:clear",
      meta = "⟨node specification⟩"
    },
    ["source edge node"] = {
      details = [[
Works like `source edge style` and `target edge node`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/source:edge:node",
      meta = "⟨node specification⟩"
    },
    ["source edge style"] = {
      details = [[
Works exactly like `target edge style`, only now the ⟨options⟩ are only
added when the node is a source of a newly created edge:

    \tikz \graph {
      { a, b } ->
      { c [source edge style=red], d } ->
      { e, f }
    };

If both for the source and also for the target of an edge ⟨options⟩ have
been specified, the options are applied in the following order:

1.  First come the options from the edge itself.

2.  Then come the options contributed by the source node using this key.

3.  Then come the options contributed by the target node using
    `target node style`.

&nbsp;

    \tikz \graph {
      a [source edge style=red] ->[green]
      b [target edge style=blue]  % blue wins
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/source:edge:style",
      meta = "⟨options⟩"
    },
    ["target edge clear"] = {
      details = [[
Clears all ⟨options⟩ for edges with the node as a target and also edge
labels (see below) for this node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/target:edge:clear"
    },
    ["target edge node"] = {
      details = [[
This key works like `target edge style`, only the ⟨node specification⟩
will not be added as options to any newly created edges with the current
node as their target, but rather it will be added as a node
specification.

    \tikz \graph {
      { a, b } ->
      { c [target edge node=node{X}], d } ->
      { e, f }
    };

As for `target edge style` multiple uses of this key accumulate and the
key `target edge clear` will (also) clear all target edge nodes that
have been set for a node earlier on.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/target:edge:node",
      meta = "⟨node specification⟩"
    },
    ["target edge style"] = {
      details = [[
This key can (only) be used with a *node* inside a graph specification.
When used, the ⟨options⟩ will be added to every edge that is created by
a connector like `->` in which the node is a *target*. Consider the
following example:

    \tikz \graph {
      { a, b } ->
      { c [target edge style=red], d } ->
      { e, f }
    };

In the example, only when the edge from `a` to `c` is created, `c` is
the "target" of the edge. Thus, only this edge becomes red.

When an edge already has options set directly, the ⟨options⟩ are
executed after these direct options, thus, they "overrule" them:

    \tikz \graph {
      { a, b } -> [blue, thick]
      { c [target edge style=red], d } ->
      { e, f }
    };

The ⟨options⟩ set in this way will stay attached to the node, so also
for edges created later on that lead to the node will have these options
set:

    \tikz \graph {
      { a, b } ->
      { c [target edge style=red], d } ->
      { e, f },
      b -> c
    };

Multiple uses of this key accumulate. However, you may sometimes also
wish to "clear" these options for a key since at some later point you no
longer wish the ⟨options⟩ to be added when some further edges are added.
This can be achieved using the following key:

    \tikz \graph {
      { a, b } ->
      { c [target edge style=red], d },
      b -> c[target edge clear]
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/target:edge:style",
      meta = "⟨options⟩"
    },
    trie = {
      details = [[
If this key is set to `true`, after a node has been created on a chain,
the `name` key is executed with the node's ⟨node name⟩. Thus, all nodes
later on this chain have the "path" of nodes leading to this node as
their name. This means, in particular, that

1.  two nodes of the same name but in different parts of a chain will be
    different,

2.  while if another chain starts with the same nodes, no new nodes get
    created.

In total, this is exactly the behavior you would expect of a trie:

    \tikz \graph [trie] {
      a -> {
        a,
        c -> {a, b},
        b
      }
    };

You can even "reiterate" over a path in conjunction with the `simple`
option. However, in this case, the default placement strategies will not
work and you will need options like `layered layout` from the graph
drawing libraries, which need LuaTeX.

    \tikz \graph [trie, simple, layered layout] {
      a -> b -> a,
      a -> b -> c,
      a -> {d,a}
    };

In the following example, we setup the `typeset` key so that it shows
the complete names of the nodes:

    \tikz \graph [trie, simple, layered layout,
                  typeset=\tikzgraphnodefullname] {
      a -> b -> a,
      a -> b -> c,
      a -> {d,a}
    };

You can also use the `trie` key locally and later reference nodes using
their full name:

    \tikz \graph {
      { [trie, simple]
        a -> {
          b,
          c -> a
        }
      },
      a b ->[red] a c a
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/trie",
      meta = "⟨true or false⟩"
    },
    typeset = {
      details = [[
The macro or code stored in this key is used as the ⟨text⟩ of the node.
Inside the ⟨code⟩, the following macros are available:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/typeset",
      meta = "⟨code⟩"
    },
    ["use existing nodes"] = {
      details = [[
When this key is set to `true`, all nodes will be considered to the
referenced, no node will be fresh. This option is useful if you have
already created all the nodes of a graph prior to using the `graph`
command and you now only wish to connect the nodes. It also implies that
an error is raised if you reference a node which has not been defined
previously.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/use:existing:nodes",
      meta = "⟨true or false⟩"
    },
    ["wrap after"] = {
      details = [[
Defines the number of nodes placed in a single row of the grid. This
value implicitly defines the number of grid columns as well. In the
following example a `grid placement` is used to visualize the edges
created between the nodes of a `Grid_ n` `subgraph` using different
values for `wrap after`.

    \tikz \graph [grid placement] { subgraph Grid_n [n=3,wrap after=1] };
    \tikz \graph [grid placement] { subgraph Grid_n [n=3,wrap after=3] };

    \tikz \graph [grid placement] { subgraph Grid_n [n=4,wrap after=2] };
    \tikz \graph [grid placement] { subgraph Grid_n [n=4] };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/wrap:after",
      meta = "⟨number⟩"
    },
    x = {
      details = [[
When you use this key, it will have the same effect as if you had
written `at={(`⟨x dimension⟩`,`⟨y dimension⟩`)}`, where ⟨y dimension⟩ is
a value set using the `y` key:

    \tikz \graph [no placement]
    {
      a[x=0,y=0] -> b[x=1,y=0] -> c[x=0,y=1];
    };

Note that you can specify an `x` or a `y` key for a whole scope and then
vary only the other key:

    \tikz \graph [no placement]
    {
      a ->
      { [x=1] % group option
        b [y=0] -> c[y=1]
      };
    };

Note that these keys have the path `/tikz/graphs/`, so they will be
available inside `graph`s and will not clash with the usual `x` and `y`
keys of TikZ, which are used to specify the basic lengths of vectors.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/x",
      meta = "⟨x dimension⟩"
    },
    y = {
      details = [[
See above.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/y",
      meta = "⟨y dimension⟩"
    },
    ["⟨color class name⟩"] = {
      details = [[
This key internally uses the `operator` command to setup an operator
that will cause all nodes of the current group to get the "logical
color" ⟨color class name⟩. Nodes retain this color in all encompassing
scopes, unless it is explicitly changed (see below) or unset (again, see
below).

    \tikz \graph [color class=red] {
      [cycle=red]  % causes all "logically" red nodes to be connected in
                   % a cycle
      a,
      b [red],
      { [red] c ->[bend right] d },
      e
    };

    \tikz \graph [color class=red, color class=green,
                  math nodes, clockwise, n=5] {
      [complete bipartite={red}{green}]
      { [red]   r_1, r_2 },
      { [green] g_1, g_2, g_3 }
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graphs/⟨color:class:name⟩"
    }
  },
  tikz = {
    ["'"] = {
      details = [[
This is a very short alias for `swap`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/'"
    },
    ["3d view"] = {
      details = [[
With the `3d view` option, the projection of the 3D coordinates on the
2D page is defined. It is determined by rotating the coordinate system
by $-⟨azimuth⟩$ around the $z$-axis, and by ⟨elevation⟩ around the (new)
$x$-axis, as shown below.

For example, when both ⟨azimuth⟩ and ⟨elevation⟩ are 0$^\circ$, $+z$
will be pointing upward, and $+x$ will be pointing right. The default is
as shown below.

    \begin{tikzpicture}[3d view]
      \draw[->] (-1,0,0) -- (1,0,0) node[pos=1.1]{x};
      \draw[->] (0,-1,0) -- (0,1,0) node[pos=1.1]{y};
      \draw[->] (0,0,-1) -- (0,0,1) node[pos=1.1]{z};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/3d:view",
      meta = "{azimuth}{elevation}"
    },
    [">"] = {
      details = [[
This is a short way of saying `<->/.tip=`⟨end arrow specification⟩.

    \begin{tikzpicture}[scale=2,ultra thick]
      \begin{scope}[>=Latex]
        \draw[>->]    (0pt,3ex) -- (1cm,3ex);
        \draw[|<->>|] (0pt,2ex) -- (1cm,2ex);
      \end{scope}
      \begin{scope}[>=Stealth]
        \draw[>->]    (0pt,1ex) -- (1cm,1ex);
        \draw[|<<.<->|] (0pt,0ex) -- (1cm,0ex);
      \end{scope}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/>",
      meta = "⟨end arrow specification⟩"
    },
    above = {
      details = [[
With the `positioning` library loaded, the `above` option does not take
a simple ⟨dimension⟩ as its parameter. Rather, it can (also) take a more
elaborate ⟨specification⟩ as parameter. This ⟨specification⟩ has the
following general form: It starts with an optional ⟨shifting part⟩ and
is followed by an optional ⟨of-part⟩. Let us start with the ⟨shifting
part⟩, which can have three forms:

1.  It can simply be a ⟨dimension⟩ (or a mathematical expression that
    evaluates to a dimension) like `2cm` or `3cm/2+4cm`. In this case,
    the following happens: the node's anchor is set to `south` and the
    node is vertically shifted upwards by ⟨dimension⟩.

        \begin{tikzpicture}
          \draw[help lines] (0,0) grid (2,2);
          \node at (1,1) [above=2pt+3pt,draw] {above};
        \end{tikzpicture}

    This use of the `above` option is the same as if the `positioning`
    library were not loaded.

2.  It can be a ⟨number⟩ (that is, any mathematical expression that does
    not include a unit like `pt` or `cm`). Examples are `2` or
    `3+sin(60)`. In this case, the anchor is also set to `south` and the
    node is vertically shifted by the vertical component of the
    coordinate `(0,`⟨number⟩`)`.

        \begin{tikzpicture}
          \draw[help lines] (0,0) grid (2,2);
          \node at (1,1) [above=.2,draw] {above};
          % south border of the node is now 2mm above (1,1)
        \end{tikzpicture}

3.  It can be of the form ⟨number or dimension 1⟩` and `⟨number or
    dimension 2⟩. This specification does not make particular sense for
    the `above` option, it is much more useful for options like
    `above left`. The reason it is allowed for the `above` option is
    that it is sometimes automatically used, as explained later.

    The effect of this option is the following. First, the point
    `(`⟨number or dimension 2⟩`,`⟨number or dimension 1⟩`)` is computed
    (note the inverted order), using the normal rules for evaluating
    such a coordinate, yielding some position. Then, the node is shifted
    by the vertical component of this point. The anchor is set to
    `south`.

        \begin{tikzpicture}
          \draw[help lines] (0,0) grid (2,2);
          \node at (1,1) [above=.2 and 3mm,draw] {above};
          % south border of the node is also 2mm above (1,1)
        \end{tikzpicture}

The ⟨shifting part⟩ can optionally be followed by a ⟨of-part⟩, which has
one of the following forms:

1.  The ⟨of-part⟩ can be `of`` `⟨coordinate⟩, where ⟨coordinate⟩ is
    *not* in parentheses and it is *not* just a node name. An example
    would be `of somenode.north` or `of {2,3}`. In this case, the
    following happens: First, the node's `at` parameter is set to the
    ⟨coordinate⟩. Second, the node is shifted according to the
    ⟨shift-part⟩. Third, the anchor is set to `south`.

    Here is a basic example:

        \begin{tikzpicture}[every node/.style=draw]
          \draw[help lines] (0,0) grid (2,2);
          \node (somenode) at (1,1) {some node};

          \node [above=5mm of somenode.north east] {\tiny 5mm of somenode.north east};
          \node [above=1cm of somenode.north]      {\tiny 1cm of somenode.north};
        \end{tikzpicture}

    As can be seen the `above=5mm of somenode.north east` option does,
    indeed, place the node 5mm above the north east anchor of
    `somenode`. The same effect could have been achieved writing
    `above=5mm` followed by `at=(somenode.north east)`.

    If the ⟨shifting-part⟩ is missing, the shift is not zero, but rather
    the value of the `node distance` key is used, see below.

2.  The ⟨of-part⟩ can be `of `⟨node name⟩. An example would be
    `of somenode`. In this case, the following usually happens:

    -   The anchor is set to `south`.

    -   The node is shifted according to the ⟨shifting part⟩ or, if it
        is missing, according to the value of `node distance`.

    -   The node's `at` parameter is set to ⟨node name⟩`.north`.

    The net effect of all this is that the new node will be placed in
    such a way that the distance between its south border and ⟨node
    name⟩'s north border is exactly the given distance.

        \begin{tikzpicture}[every node/.style=draw]
          \draw[help lines] (0,0) grid (2,2);
          \node (some node) at (1,1) {some node};

          \node (other node) [above=1cm of some node] {\tiny above=1cm of some node};

          \draw [<->] (some node.north) -- (other node.south)
                                        node [midway,right,draw=none] {1cm};
        \end{tikzpicture}

    It is possible to change the behavior of this ⟨specification⟩ rather
    drastically, using the following key:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/above",
      meta = "⟨specification⟩"
    },
    ["above delimiter"] = {
      details = [[
This option allows you to add a delimiter above the node. It is
implemented by rotating a left delimiter.

    \begin{tikzpicture}
      \matrix [matrix of math nodes,%
               left delimiter=\|,right delimiter=\rmoustache,%
               above delimiter=(,below delimiter=\}]
      {
        a_8 & a_1 & a_6 \\
        a_3 & a_5 & a_7 \\
        a_4 & a_9 & a_2 \\
      };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/above:delimiter",
      meta = "⟨delimiter⟩"
    },
    ["above left"] = {
      details = [[
Does the same as `anchor=south east`. Note that giving both `above` and
`left` options does not have the same effect as `above left`, rather
only the last `left` "wins". Actually, this option also takes an
⟨offset⟩ parameter, but using this parameter without using the
`positioning` library is deprecated. (The `positioning` library changes
the meaning of this parameter to something more sensible.)

    \tikz \fill (0,0) circle (2pt) node[above left] {above left};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/above:left"
    },
    ["above left of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/above:left:of",
      meta = "⟨node⟩"
    },
    ["above of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/above:of",
      meta = "⟨node⟩"
    },
    ["above right"] = {
      details = [[
Works similar to `above left`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/above:right",
      meta = "⟨specification⟩"
    },
    ["above right of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/above:right:of",
      meta = "⟨node⟩"
    },
    absolute = {
      details = [[
When this key is set, the ⟨angle⟩ is interpreted differently: We still
use a point on the border of the `main node`, but the angle is measured
"absolutely", that is, an angle of `0` refers to the point on the border
that lies on a straight line from the `main node`'s center to the right
(relative to the paper, not relative to the local coordinate system of
either the node or the scope).

The difference can be seen in the following example:

    \tikz [rotate=-80,every label/.style={draw,red}]
      \node [transform shape,rectangle,draw,label=right:label] {main node};

    \tikz [rotate=-80,every label/.style={draw,red},absolute]
      \node [transform shape,rectangle,draw,label=right:label] {main node};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/absolute",
      meta = "⟨true or false⟩"
    },
    accepting = {
      details = [[
This style is used to draw accepting states. You can replace this by the
style `accepting by arrow` to get accepting states with an arrow leaving
them.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/accepting"
    },
    ["accepting above"] = {
      details = [[
This is a shorthand for `accepting by arrow,accepting where=above`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/accepting:above"
    },
    ["accepting below"] = {
      details = [[
Works similarly to the previous option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/accepting:below"
    },
    ["accepting by arrow"] = {
      details = [[
This style causes an arrow and, possibly, some text to be added to the
node. The arrow points to the text from the node.

The same options as for initial states can be used, only with `initial`
replaced by `accepting`:

    \begin{tikzpicture}
      [shorten >=1pt,node distance=2cm,on grid,>={Stealth[round]},initial text=,
       every state/.style={draw=blue!50,very thick,fill=blue!20},
       accepting/.style=accepting by arrow]

      \node[state,initial]  (q_0)                      {$q_0$};
      \node[state]          (q_1) [above right=of q_0] {$q_1$};
      \node[state]          (q_2) [below right=of q_0] {$q_2$};
      \node[state,accepting](q_3) [below right=of q_1] {$q_3$};

      \path[->] (q_0) edge              node [above left]  {0} (q_1)
                      edge              node [below left]  {1} (q_2)
                (q_1) edge              node [above right] {1} (q_3)
                      edge [loop above] node               {0} ()
                (q_2) edge              node [below right] {0} (q_3)
                      edge [loop below] node               {1} ();
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/accepting:by:arrow"
    },
    ["accepting by double"] = {
      details = [[
This style causes a double line to be drawn around a state.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/accepting:by:double"
    },
    ["accepting left"] = {
      details = [[
Works similarly to the previous option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/accepting:left"
    },
    ["accepting right"] = {
      details = [[
Works similarly to the previous option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/accepting:right"
    },
    ["accepting text"] = {
      details = [[
This key sets the text to be used.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/accepting:text",
      meta = "⟨text⟩"
    },
    ["accepting where"] = {
      details = [[
Set the place where the text should be shown. Allowed values are
`above`, `below`, `left`, and `right`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/accepting:where",
      meta = "⟨direction⟩"
    },
    alias = {
      details = [[
This option allows you to provide another name for the node. Giving this
option multiple times will allow you to access the node via several
aliases. Using the `node also` syntax, you can also assign an alias name
to a node at a later point, see Section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/alias",
      meta = "⟨another node name⟩"
    },
    align = {
      details = [[
This key is used to set up an alignment for multi-line text inside a
node. If `text width` is set to some width (let us call this *alignment
with line breaking*), the `align` key will setup the `\leftskip` and the
`\rightskip` in such a way that the text is broken and aligned according
to ⟨alignment option⟩. If `text width` is not set (that is, set to the
empty string; let us call this *alignment without line breaking*), then
a different mechanism is used internally, namely the key
`node halign header`, is set to an appropriate value. While this key,
which is documented below, is not to be used by beginners, the net
effect is simple: When `text width` is not set, you can use `\\` to
break lines and align them according to ⟨alignment option⟩ and the
resulting node's width will be minimal to encompass the resulting lines.

In detail, you can set ⟨alignment option⟩ to one of the following
values:

`align=``left`  
For alignment without line breaking, the different lines are simply
aligned such that their left borders are below one another.

    \tikz \node[fill=yellow!80!black,align=left]
      {This is a\\ demonstration text for\\ alignments.};

For alignment with line breaking, the same will happen; only the lines
will now, additionally, be broken automatically:

    \tikz \node[fill=yellow!80!black,text width=3cm,align=left]
      {This is a demonstration text for showing how line breaking works.};

`align=``flush left`  
For alignment without line breaking this option has exactly the same
effect as `left`. However, for alignment with line breaking, there is a
difference: While `left` uses the original plain TeX definition of a
ragged right border, in which TeX will try to balance the right border
as well as possible, `flush left` causes the right border to be ragged
in the LaTeX-style, in which no balancing occurs. This looks ugly, but
it may be useful for very narrow boxes and when you wish to avoid
hyphenations.

    \tikz \node[fill=yellow!80!black,text width=3cm,align=flush left]
      {This is a demonstration text for showing how line breaking works.};

`align=``right`  
Works like `left`, only for right alignment.

    \tikz \node[fill=yellow!80!black,align=right]
      {This is a\\ demonstration text for\\ alignments.};

    \tikz \node[fill=yellow!80!black,text width=3cm,align=right]
      {This is a demonstration text for showing how line breaking works.};

`align=``flush right`  
Works like `flush left`, only for right alignment.

    \tikz \node[fill=yellow!80!black,text width=3cm,align=flush right]
      {This is a demonstration text for showing how line breaking works.};

`align=``center`  
Works like `left` or `right`, only for centered alignment.

    \tikz \node[fill=yellow!80!black,align=center]
      {This is a\\ demonstration text for\\ alignments.};

    \tikz \node[fill=yellow!80!black,text width=3cm,align=center]
      {This is a demonstration text for showing how line breaking works.};

There is one annoying problem with the `center` alignment (but not with
`flush center` and the other options): If you specify a large line width
and the node text fits on a single line and is, in fact, much shorter
than the specified `text width`, an underfull horizontal box will
result. Unfortunately, this cannot be avoided, due to the way TeX works
(more precisely, I have thought long and hard about this and have not
been able to figure out a sensible way to avoid this). For this reason,
TikZ switches off horizontal badness warnings inside boxes with
`align=center`. Since this will also suppress some "wanted" warnings,
there is also an option for switching the warnings on once more:

`align=``flush center`  
Works like `flush left` or `flush right`, only for center alignment.
Because of all the trouble that results from the `center` option in
conjunction with narrow lines, I suggest picking this option rather than
`center` *unless* you have longer text, in which case `center` will give
the typographically better results.

    \tikz \node[fill=yellow!80!black,text width=3cm,align=flush center]
      {This is a demonstration text for showing how line breaking works.};

`align=``justify`  
For alignment without line breaking, this has the same effect as `left`.
For alignment with line breaking, this causes the text to be
"justified". Use this only with rather broad nodes.

    \tikz \node[fill=yellow!80!black,text width=3cm,align=justify]
      {This is a demonstration text for showing how line breaking works.};

In the above example, TeX complains (rightfully) about three very badly
typeset lines. (For this manual I asked TeX to stop complaining by using
`\hbadness=10000`, but this is a foul deed, indeed.)

`align=``none`  
Disables all alignments and `\\` will not be redefined.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/align",
      meta = "⟨alignment option⟩"
    },
    ["allow upside down"] = {
      details = [[
If set to `true`, TikZ will not "righten" upside down text.

    \tikz [allow upside down]
      \draw (0,0) .. controls +(up:2cm) and +(left:2cm) .. (1,3)
        node foreach \p in {0,0.25,...,1} [sloped,above,pos=\p]{\p};

    \begin{tikzpicture}[->,allow upside down]
      \draw (0,0)   -- (2,0.5) node[midway,sloped,above] {$x$};
      \draw (2,-.5) -- (0,0)   node[midway,sloped,below] {$y$};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/allow:upside:down",
      meta = "⟨boolean⟩"
    },
    ["ampersand replacement"] = {
      details = [[
If a macro name is provided, this macro will be defined to be equal to
`\pgfmatrixnextcell` inside matrices and `& ` will not be made active.
For instance, you could say `ampersand replacement=\& ` and then use
`\& ` to separate columns as in the following example:

    \tikz
      \matrix [ampersand replacement=\&]
      {
        \draw (0,0)   circle (4mm); \& \node[rotate=10] {Hello};        \\
        \draw (0.2,0) circle (2mm); \& \fill[red]   (0,0) circle (3mm); \\
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ampersand:replacement",
      meta = "⟨macro name or empty⟩"
    },
    anchor = {
      details = [[
Causes the node to be shifted such that its anchor ⟨anchor name⟩ lies on
the current coordinate.

The only anchor that is present in all shapes is `center`. However, most
shapes will at least define anchors in all "compass directions".
Furthermore, the standard shapes also define a `base` anchor, as well as
`base west` and `base east`, for placing things on the baseline of the
text.

The standard shapes also define a `mid` anchor (and `mid west` and
`mid east`). This anchor is half the height of the character "x" above
the base line. This anchor is useful for vertically centering multiple
nodes that have different heights and depth. Here is an example:

    \begin{tikzpicture}[scale=3,transform shape]
      % First, center alignment -> wobbles
      \draw[anchor=center] (0,1)  node{x} -- (0.5,1)  node{y} -- (1,1)  node{t};
      % Second, base alignment -> no wobble, but too high
      \draw[anchor=base]   (0,.5) node{x} -- (0.5,.5) node{y} -- (1,.5) node{t};
      % Third, mid alignment
      \draw[anchor=mid]    (0,0)  node{x} -- (0.5,0)  node{y} -- (1,0)  node{t};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/anchor",
      meta = "⟨anchor name⟩"
    },
    ["and gate"] = {
      details = [[
This key should be passed to a `node` command. It will cause the node to
"look like" an `and gate`, where the exact appearance of the gate is
dictated by the which circuit environment is used. To further configure
the appearance of the `and gate`, see Section ??.

    \tikz [circuit logic IEC] \node [and gate] {$A$};

    \tikz [circuit logic US]
    {
      \node [and gate,point down] {$A$};
      \node [and gate,point down,info=center:$A$] at (1,0) {};
    }

**Inputs.** Multiple inputs can be specified for a logic gate (provided
they support multiple inputs: a not gate -- also known as an inverter --
does not). However, there is an upper limit for the number of inputs
which has been set to 1024, which should be *way* more than would ever
be needed.

The following key is used to configure the inputs. It is available only
inside a `circuit logic` environment.

(This key is just a shorthand for `logic gate inputs`, described in
detail on page ??. There you will also find descriptions of how to
configure the size of the inverted circles and the way the symbol size
increases when there are too many inputs.)

**Output.** Every logic gate has one anchor called `output`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/and:gate"
    },
    ["angle eccentricity"] = {
      details = [[
    \tikz \draw (2,0) coordinate (A) -- (0,0) coordinate (B)
             -- (1,1) coordinate (C)
      pic ["$\alpha$", draw, ->] {angle};

    \tikz \draw (2,0) coordinate (A) -- (0,0) coordinate (B)
             -- (1,1) coordinate (C)
      pic ["$\alpha$", draw, angle eccentricity=1] {angle};

    \tikz {
      \draw (2,0) coordinate (A) -- (0,0) coordinate (B)
         -- (1,1) coordinate (C)
          pic (alpha) ["$\alpha$", draw] {angle};

      \draw (alpha) circle [radius=5pt];
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/angle:eccentricity",
      meta = "⟨factor⟩"
    },
    ["angle radius"] = {
      details = [[
The length of the sides of the angle's wedge:

    \tikz \draw (2,0) coordinate (A) -- (0,0) coordinate (B)
             -- (-1,-1) coordinate (C)
               pic [fill=black!50]                      {angle = A--B--C}
               pic [draw,->,red,thick,angle radius=1cm] {angle = C--B--A};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/angle:radius",
      meta = "⟨dimension⟩"
    },
    animate = {
      details = [[
You must place all specifications of animations inside uses of
`animate`. You can, and usually should, place the specification of all
timelines of a single picture inside a single use of this key since it
will reset the time and the fork time (explained in Section ??). You
can, however, use this key several times, in principle. Note that if you
animate the same attribute of the same object in two different uses of
`animate`, two separate timelines will result (and complicated rules are
used to determine which one "wins" in case they specify conflicting
values for the attribute at different times).

The key can be used at all places where a TikZ key is used; typically
you will use it with a `{scope}` environment, inside the options of a
node, or directly with the `\tikz` command:

    \tikz \node [fill, text = white, animate = {
      myself:fill = {0s = "red", 2s = "blue", begin on = click }}] {Click me};

    \tikz [animate = {a node:fill = {0s = "red", 2s = "blue",
                                     begin on = click}}]
      \node (a node) [fill, text = white] {Click me};

The details of what, exactly, happens in the ⟨animation specification⟩
will be described in the rest of this section. However, basically, an
⟨animation specification⟩ is just a sequence of normal TikZ key--value
pairs that get executed with the path prefix `/tikz/animate` and with
some special syntax handlers installed. In particular, you can define
styles for this key path and use them. For instance, we can define a
`shake` animation like this:

    \tikzset{
      animate/shake/.style = {myself:xshift = { begin on=click,
          0s = "0mm", 50ms = "#1", 150ms = "-#1", 250ms = "#1", 300ms = "0mm" }}}
    \tikz \node [fill = blue!20, draw=blue, very thick, circle,
      animate = {shake = 1mm}] {Shake};
    \tikz \node [fill = blue!20, draw=blue, very thick, circle,
      animate = {shake = 2mm}] {SHAKE};

Note that, as stressed earlier, you can only use the `animate` key to
specify animations for objects that do not yet exist. The node and
object names mentioned in a specification always refer to "upcoming"
objects; already existing objects of the same name are not influenced.

You can use the `name` key inside `animate` to "name" the animation.
Once named, you can later reference the animation in other animations;
for instance, you can say that another animation should start when the
present animation has ended.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate",
      meta = "⟨animation specification⟩"
    },
    ["animate/arrows"] = {
      details = [[
This key only has an effect on `:path` animations. It causes the arrow
tips specified in ⟨arrow spec⟩ to be added to the path during the
animation (the syntax is the same as for the normal `arrows` key). If
you have several different animations for a paths, these may contain
different arrow tips, but each animation must stick to one kind of arrow
tips.

What happens internally when this key is used is the following: The
specified arrow tips are rendered internally as so-called *markers,*
which are small graphics that can be placed at the beginning and ends of
paths and which "rotate along" as a path changes. Note that these
markers are used *only* in the context of animated paths, the arrow tips
of normal, "static" paths are drawn without the use of markers.
Normally, there is no visual difference between an arrow tip drawn using
markers or those drawn for static paths, but in rare cases there may be
differences. You should only add arrows to open path consisting of a
single segment with sufficiently long first and last segments (so that
TikZ can shorten these segments correctly when necessary).

As pointed out earlier, the only way to add arrow tips to a path that is
animated is using this key, you can *not* say something like

    \draw :path = { 1s = "{(0,0) -- (1,0)}", 2s = "{(0,1) -- (1,0)}" }
      [->] (0,0) -- (1,0);

This will raise an error since you try to animate a path (`:path = ...`)
that has normal arrow tips attached (`[->]`).

Instead, you must specify the arrow tips inside the animation command:

    \draw :path = { 1s = "{(0,0) -- (1,0)}", 2s = "{(0,1) -- (1,0)}", arrows = -> }
      (0,0) -- (1,0);

However, the above code now has a big shortcoming: While the animation
is *not* running, *no* arrow tip is shown (the `arrows` key only applies
to the animation.

The trick is to use the `base` key. It allows you to install a path as
the "base" path that is used when no animation is running and the arrows
specified for the animation will also be used for the base. All told,
the "correct" way to specify the animation is the following (note that
no static path is specified, any specified path would be overruled by
the `base` path anyway):

    \draw :path = { 1s = "{(0,0) -- (1,0)}" base, 2s = "{(0,1) -- (1,0)}", arrows = -> };

Here is an example:

    \tikz [very thick] {
      \node (node) at (-2,0)
        [fill = blue!20, draw = blue, very thick, circle] {Click me!};
      \draw :path = {
        0s = "{(0,0) to[out=90, in=180] (.5,1) to[out=0, in=90] (.5,.5)}" base,
        2s = "{(1,0) to[out=180, in=180] (.25,.5) to[out=0, in=180] (1,.5)}",
        arrows = <.<->, begin on = {click, of=node} }; }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/arrows",
      meta = "⟨arrow spec⟩"
    },
    ["animate/attribute"] = {
      details = [[
The list of attributes must be a comma-separated list of attribute
names. The timelines specified later will apply to all of these
attributes (and to all objects previously selected using `object`).
Possible attributes include colors, positions, line width, but even the
paths themselves. The exact list of possible attributes is documented in
Section ??.

    \tikz [animate = {attribute = fill, n: = { 0s = "red", 2s = "blue",
                                               begin on = click } }]
      \node (n) [fill, text = white] {The node};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/attribute",
      meta = "⟨list of attributes⟩"
    },
    ["animate/base"] = {
      details = [[
A "base" value is a value that is used for the attribute whenever the
timeline is *not* active:

    \tikz \node [fill = green, text = white] :fill =
        { 1s = "red", 2s = "blue", base = "orange", begin on = click }
      {Click me};

Syntactically, the `base` key works much like special time syntax: It
sets up a local `sync` scope and executes the ⟨options⟩ in it and
creates an `entry`. However, instead of setting the `time` attribute to
a time, it sets it to a special value that tells TikZ that when the
entry is created, the current ⟨value⟩ should be used as the `base`
value.

This means that you can write `base = "orange"` as in the above example
to set the base. However, you can also use the `base` key in other ways;
most noticeably, you can use it *after* some value:

    \tikz \node [fill = green, text = white] :fill =
        { 1s = {"red" = base}, 2s = "blue", begin on = click }
      {Click me};

Instead of using `base` as a key, you can also add `base` directly after
the quotes of a value. This is particularly useful for setting up a base
value that is also used in a timeline:

    \tikz \node [fill = green, text = white] :fill =
        { 1s = "red" base, 2s = "blue", begin on = click }
      {Click me};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/base",
      meta = "⟨options⟩"
    },
    ["animate/entry"] = {
      details = [[
Each time this key is used in the options of `animate`, TikZ checks
whether the five keys `object`, `attribute`, `id`, `time`, and `value`
are set. If one of them is not set, nothing happens. (The `id` key is
set to the value `default` by default, all other keys must be set
explicitly.)

If all of these keys are set, a *time--value* pair is created and added
to the timeline of attribute of the object. Additionally, all options
starting with `/tikz/animate/options/`, which also influence the
timeline like `begin on`, are also added to the timeline of the
object--attribute pair.

    \tikz [animate = {
      object = node, attribute = fill, time = 0s, value = red, entry,
      object = node, attribute = fill, time = 2s, value = blue, entry,
      object = node, attribute = fill, begin on = click, entry}]
      \node (node) [fill, text=white] { Click me };

In the above example, it would not have been necessary the specify the
object and the attribute in each line, they retain their values unless
they are overwritten. Thus, we could also have written:

    \tikz [animate = {
      object = node, attribute = fill, time = 0s, value = red, entry,
                                       time = 2s, value = blue, entry,
                                       begin on = click, entry}]
      \node (node) [fill, text=white] { Click me };

Note, however, that in both examples we actually add the time--value
pair $(2\mathrm{s}, \mathrm{blue})$ twice since the `time` and `value`
keys also retain their settings and, thus, for the third `entry` they
have the same values as before and a new pair is added. While this
superfluous pair is not a problem in the example (it has no visual
effect), we will see later on how such pairs can be avoided by using the
`scope` key.

A sequence of calls of `entry` can freely switch between objects and
attributes (that is, between timelines), but the times for any given
timeline must be given in non-decreasing order:

    \tikz [animate = {
      object = node,  attribute = fill, time = 0s, value = red, entry,
      object = node2, attribute = draw, entry,
      object = node,  attribute = fill, time = 2s, value = blue, entry,
      object = node2, attribute = draw, entry,
      object = node,  attribute = fill, begin on = click, entry,
      object = node2, attribute = draw, begin on = click, entry}] {
      \node (node)  [fill, text=white]            { Node 1 };
      \node (node2) [draw, ultra thick] at (0,-1) { Node 2 };
    }

In the above example, we could not have exchanged the first two lines of
the `animate` options with the third and fourth line since the values
for time `0s` must come before the values for time `2s`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/entry"
    },
    ["animate/fork"] = {
      details = [[
Sets the fork time for the local scope to ⟨t⟩ and sets the current time
to `0s`. In this scope, when you use "absolute" times like `0s` or `2s`,
you actually refer to later times that have started as ⟨t⟩.

One application of forks is in the definition of keys that add a certain
part to a longer animation. Consider for instance the definition of a
`highlight` key:

    \tikz [animate/highlight/.style = {
        scope = { fork = #1,
                  :fill = { 0s = "black", 0.1s = "white", 0.2s = "black"} }
      }]
      \node [animate = { myself: = {
                :fill = { 0s = "black", begin on = click },
                          highlight = 1s, highlight = 2s } },
             fill = blue, text=white, very thick, circle] { Click me };

In the above example, we could also have written `0.1s later` instead of
`0.2s` and, indeed, the whole style could have been defined using only
times with `later`, eliminating the need for the `fork` key. However,
using forks you can specify absolute times for things happening in a
conceptual "subprocess" and also relative times. The name `fork` for the
key is also borrowed from operating system theory, where a "fork" is the
spawning of an independent process.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/fork",
      meta = "⟨t⟩"
    },
    ["animate/id"] = {
      details = [[
Timelines are use to defined how the values of an attribute of an object
change over time. In many cases, you will have at most one timeline for
each object--attribute pair, but, sometimes, you may wish to have more
than one timeline for the same object and the same attribute. For
instance, you might have a timeline that specifies a changing `shift` of
a node in some direction and, at the same time, another timeline that
specifies an additional `shift` in some other direction(s). The problem
is that there is only one `shift` attribute and it would be difficult to
compute the joint effect of the two timelines.

For this purpose, timelines are actually identified not only by the
object--attribute pair but, in reality, by the triple consisting of the
object, the attribute, and the value of this key. We can now specify two
separate timelines:

    \tikz [animate = {
      id = 1, n:shift = { 0s = "{(0,0)}", 2s = "{(0,5mm)}", begin on = click },
      id = 2, n:shift = { 0s = "{(0,0)}", 2s = "{(5mm,0)}", begin on = click }
    }]
      \node (n) [fill = blue!20, draw=blue, very thick] {The node};

The default value of `id` is `default`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/id",
      meta = "⟨id⟩"
    },
    ["animate/object"] = {
      details = [[
The ⟨list of objects⟩ is a comma-separated list of strings of the form
⟨object⟩`.`⟨type⟩. All of the objects in the list are selected as
to-be-animate object for the next use of the `entry` key. The objects
referred to by ⟨object⟩ will be the *next* objects with the `name` key
set to ⟨object⟩. You can apply the `name` key to nodes (where you can
also use the special parentheses-syntax and put the name in parentheses,
it has the same effect), but also to scopes and paths. (The `name path`
key is not the same as `name`; it is an older key from the intersections
package and not related.)

    \tikz [animate = { object = b, :fill = {0s = "red", 2s = "blue",
                                            begin on = click }}] {
      \node (a) [fill, text = white, minimum width=1.5cm] at (0,1cm) {a};
      \node (b) [fill, text = white, minimum width=1.5cm] at (0,5mm) {b};
      \node (c) [fill, text = white, minimum width=1.5cm] at (0,0mm) {c}; }

    \tikz [animate = { object = b, :fill = {0s = "red", 2s = "blue",
                                            begin on = click },
                       object = c, :fill = {0s = "green", 2s = "blue",
                                            begin on = click } }] {
      \scoped [name = a, yshift=1cm] \fill (0,0) rectangle (1.5cm,2mm);
      \scoped [name = b, yshift=5mm] \fill (0,0) rectangle (1.5cm,2mm);
      \scoped [name = c, yshift=0mm] \fill (0,0) rectangle (1.5cm,2mm); }

If the ⟨object⟩ name is never used later in the file, no animation is
created.

The ⟨object⟩ may also be the special text `myself`. In this case, the
referenced object is the scope or object to which the `animate` key is
given. If an object is named `myself` (as in `\node (myself) ...`), you
cannot reference this node using the `object` key, `myself` *always*
refers to the object where the `animate` key is given (of course, you
can animate the node named `myself` by placing the `animate` key inside
the options of this node; you only cannot "remotely" add an animation to
it).

The ⟨object⟩ may be followed by a dot and a *type*. This is need in rare
cases where you want to animate only a special "part" of an object that
is not accessible in other ways. Normally, TikZ takes care of choosing
these types automatically, you only need to set these "if you know what
you are doing".
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/object",
      meta = "⟨list of objects⟩"
    },
    ["animate/options/along"] = {
      details = [[
Use this key with a `:shift` (or a `:position`) to make TikZ shift the
object by the coordinates along the ⟨path⟩. When this key is used, the
values may no longer be coordinates, but must be fractions of the
distance along the path. A value of `"0"` refers to the beginning of the
path and `"1"` refers to the end:

    \tikz {
      \draw [help lines] (-0.2,-0.2) grid (2.2,1.2);
      \draw (1,.5) circle [radius=1mm];
      \node :shift = {
                along = {(0,0) circle[radius=5mm]} upright,
                0s="0", 2s=".25", begin on=click }
        at (1,.5) [fill = blue, opacity=.5, circle] {Click};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/along",
      meta = "{path}⟨sloped or upright⟩ in⟨time⟩"
    },
    ["animate/options/begin"] = {
      details = [[
This key specifies when the "moment `0s`" should be relative to the
moment when the current graphic is first displayed. You can use this key
multiple times, in this case the timeline is restarted for each of the
times specified (if it is already running, it will be reset). If no
`begin` key is given at all, the effect is the same as if `begin=0s` had
been specified.

It is permissible to set ⟨time⟩ to a negative value.

Note that this key has no effect for snapshots.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/begin",
      meta = "⟨time⟩"
    },
    ["animate/options/begin on"] = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/begin:on",
      meta = "⟨options⟩"
    },
    ["animate/options/begin snapshot"] = {
      details = [[
Use this key on a timeline to specify that, only for purposes of taking
snapshots, the timeline starts at ⟨start time⟩ rather than at "moment
zero". (Think of this as saying that the animation starts when a virtual
user clicks on the animation and this click occurs ⟨start time⟩ seconds
after the general "moment zero", causing the animation to "lag behind"
by this amount of time.) Computationally, for the timeline the ⟨start
time⟩ is subtracted from the snapshot's ⟨time⟩ when the value needs to
be determined:

    \tikz [make snapshot of = 1s] {
      \fill :fill = { 0s = "black", 2s = "white",
                      begin snapshot = 1s }        (0,0) rectangle ++(1,1);
      \fill :fill = { 1s = "black", 3s = "white" } (2,0) rectangle ++(1,1);
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/begin:snapshot",
      meta = "⟨start time⟩"
    },
    ["animate/options/ease"] = {
      details = [[
A shorthand for `ease in=`⟨fraction⟩`, ease out=`⟨fraction⟩.

Note that since for the first time the entry control is ignored and,
similarly, for the last time the exit control is ignored, using the
`ease` key with an animation having only two times is particularly easy,
since we only need to set `ease` once:

    \tikz {
      \foreach \i in {0,0.1,...,1} \draw (-0.9,.9-\i) -- ++(1.8,0);
      \node :yshift = { begin on = click, ease, 0s = "0cm", 2s = "-10mm" }
        [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/ease",
      meta = "{fraction}"
    },
    ["animate/options/ease in"] = {
      details = [[
A shorthand for `entry control={1-`⟨fraction⟩`}{1}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/ease:in",
      meta = "{fraction}"
    },
    ["animate/options/ease out"] = {
      details = [[
A shorthand for `exit control={`⟨fraction⟩`}{1}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/ease:out",
      meta = "{fraction}"
    },
    ["animate/options/end"] = {
      details = [[
This key will truncate the timeline so that it ends ⟨time⟩ after the
display of the graphic, provided the timeline begins before the
specified end time. For instance, if you specify a timeline starting at
2 s and ending at 5 s and you set `begin` to 1 s and `end` to 4 s, the
timeline will run, relative to the moment when the graphic is displayed
from 3 s to 4 s.

    \tikz \node [fill = green!50!black, text = white]
        :rotate = { 1s = "0", 5s = "90", begin = 2s, end = 4s }
      {Click me};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/end",
      meta = "⟨time⟩"
    },
    ["animate/options/end on"] = {
      details = [[
Works exactly like `begin on`, one possible end of the timeline is
specified using the ⟨options⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/end:on",
      meta = "⟨options⟩"
    },
    ["animate/options/entry control"] = {
      details = [[
Works like `exit control`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/entry:control",
      meta = "{time fraction}{value fraction}"
    },
    ["animate/options/exit control"] = {
      details = [[
Specifies an exit control using two values as above. The spline from
above would be specified as follows:

    exit control={0.5}{0},
    entry control={0.9}{1},
    0s = "50",
    10s = "100"

Note that the curve specified using exit and entry controls must be
"well-behaved" in the sense that exactly one value must be specified for
each point in time in the time interval.

In the next three example, we first specify a "smooth" exit from the
start position, then a smooth arrival at the end position, and, finally
both.

    \tikz {
      \foreach \i in {0,0.1,...,1} \draw (-0.9,.9-\i) -- ++(1.8,0);
      \node :yshift = { begin on = click,
                        0s = { exit control = {1}{0}, "0cm" },
                        1s = "-5mm",
                        2s = "-10mm" }
        [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }

    \tikz {
      \foreach \i in {0,0.1,...,1} \draw (-0.9,.9-\i) -- ++(1.8,0);
      \node :yshift = { begin on = click,
                        0s = "0cm",
                        1s = "-5mm",
                        2s = { entry control = {0}{1}, "-10mm" } }
        [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }

    \tikz {
      \foreach \i in {0,0.1,...,1} \draw (-0.9,.9-\i) -- ++(1.8,0);
      \node :yshift = { begin on = click,
                        0s = { exit control = {1}{0}, "0cm" },
                        1s = "-5mm",
                        2s = { entry control = {0}{1}, "-10mm" } }
        [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/exit:control",
      meta = "{time fraction}{value fraction}"
    },
    ["animate/options/forever"] = {
      details = [[
This key causes the timeline to continue "forever" after the last time
with the last value. You can also think of this as having the animation
"freeze" at the end.

    \tikz \node :fill = { 1s="red", 2s="blue", forever, begin on=click}
      [fill = green!50!black, text = white] {Click me};

    \tikz \node [fill = green!50!black, text = white]
        :fill = { 1s = "red", 2s = "blue", begin on = click }
      {Click me};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/forever"
    },
    ["animate/options/freeze"] = {
      details = [[
An alias for `forever`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/freeze"
    },
    ["animate/options/jump"] = {
      details = [[
Works like the `stay` key, but will cause the value to "jump to" the new
value right at the beginning of the time interval. It is similar to an
entry control specifying a "flat" curve.

    \tikz {
      \foreach \i in {0,0.1,...,1} \draw (-0.9,.9-\i) -- ++(1.8,0);
      \node :yshift = { begin on = click,
                        0s = "0cm",
                        1s = {jump, "-5mm"},
                        2s = "-10mm" }
        [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/jump"
    },
    ["animate/options/origin"] = {
      details = [[
Shifts the animation coordinate system by ⟨coordinate⟩. This has the
effect that the "origin" for scalings and rotations gets shifted by this
amount. In the following example, the point around which the rotation is
done is the right border at `(2,1)` since the origin of the animation is
at `(1,1)` relative to the picture's origin and the `origin` key shifts
it one centimeter to the right.

    \tikz {
      \draw [help lines] (-0.2,-0.2) grid (2.2,2.2);
      \node :rotate = { 0s="0", 2s="45", begin on=click,
                        origin = {(1,0)}}
        at (1,1) [fill = blue!20, draw = blue, ultra thick] {Click me};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/origin",
      meta = "⟨coordinate⟩"
    },
    ["animate/options/repeat"] = {
      details = [[
An alias for `repeats`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/repeat",
      meta = "⟨specification⟩"
    },
    ["animate/options/repeats"] = {
      details = [[
Use this key to specify that the timeline animation should repeat at the
end. The ⟨specification⟩ must consist of two parts, each of which may be
empty. The first part is one of the following:

-   Empty, in which case the timeline repeats forever.

        \tikz \node :rotate = { 0s = "0", 2s = "90",
                                repeats, begin on = click }
            [fill = blue!20, draw = blue, ultra thick, circle] {Click me!};

-   A ⟨number⟩ (like `2` or `3.25`), in which case the timeline repeats
    ⟨number⟩ times.

        \tikz \node :rotate = { 0s = "0", 2s = "90",
                                repeats = 1.75, begin on = click }
            [fill = blue!20, draw = blue, ultra thick, circle] {Click me!};

-   The text "`for` ⟨time⟩" (like `for 2s` or `for 300ms`), in which
    case the timeline repeats however often necessary so that it stops
    exactly after ⟨time⟩.

        \tikz \node :rotate = { 0s = "0", 2s = "90",
                                repeats = for 3.5s, begin on = click }
            [fill = blue!20, draw = blue, ultra thick, circle] {Click me!};

The second part of the specification must be one of the following:

-   Empty, in which case each time the timeline is restarted, the
    attribute's value undergoes the same series of values it did
    previously.

-   The text `accumulating`. This has the effect that each time the
    timeline is restarted, the last values specified by the timeline is
    *added* to the value from the previous iteration(s). A typical
    example is an animation that shifts a scope by, say, 1 cm over a
    time of 1 s. Now, if you repeat this five times, normally the scope
    will shift 1 cm for 1 s then "jump back", shift again, jump back,
    and so on for five times. In contrast, when the repeats are
    accumulating, the scope will move by 5 cm over 5 s in total.

        \tikz \node :rotate = { 0s = "0", 2s = "90", begin on = click,
                                repeats = accumulating }
            [fill = blue!20, draw = blue, ultra thick, circle] {Click me!};

        \tikz \node :rotate = { 0s = "0", 2s = "90", begin on = click,
                                repeats = for 4s accumulating }
            [fill = blue!20, draw = blue, ultra thick, circle] {Click me!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/repeats",
      meta = "⟨specification⟩"
    },
    ["animate/options/restart"] = {
      details = [[
You can set ⟨choice⟩ to one of the following:

-   `true` means that the animation will restart each time the event is
    triggered. If the animation is already running, it will be reset to
    its beginning.

-   `false` means that once the animation has started once, it will
    never be restarted.

        \tikz \node :rotate = { 0s="0", 2s="90",
                                restart = false, begin on = {click}}
            [fill = blue!20, draw = blue, circle, ultra thick] {Here!};

-   `never` means the same as `false`.

-   `when not active` means that the animation will restart when the
    event is triggered, but *not* while the animation is running.

        \tikz \node :rotate = { 0s="0", 2s="90",
                                restart = when not active, begin on = {click}}
            [fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/restart",
      meta = "⟨choice⟩"
    },
    ["animate/options/stay"] = {
      details = [[
Specifies that inside the time interval the value "stays put" at the
first value till the end of the interval, where it will jump to the
second value. This is similar to an exit control where the curve is
"infinitely flat".

    \tikz {
      \foreach \i in {0,0.1,...,1} \draw (-0.9,.9-\i) -- ++(1.8,0);
      \node :yshift = { begin on = click,
                        0s = "0cm",
                        1s = {stay, "-5mm"},
                        2s = "-10mm" }
        [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/stay"
    },
    ["animate/options/transform"] = {
      details = [[
While the `origin` key does only a shift, the `transform` key allows you
to add an arbitrary transformation to the animation coordinate system
using keys like `shift`, `rotate` or even `reset cm` and `cm`. In
particular, `origin=`⟨c⟩ has the same effect as `transform` `=`
`{shift=`⟨c⟩`}`. Note that the transformation only influences the
animation, not the object itself.

As an example, when you say `transform={scale=2}`, an `:xshift` with a
value of `"1cm"` will actually shift the object by 2cm. Similarly, after
you say `transform={rotate=90,scale=2}`, the same `:xshift` of `"1cm"`
will actually shift the object by 2cm upwards.

Note that, internally, TikZ has to invert the transformation matrix
resulting from the ⟨transformation keys⟩ (plus the original animation
transformation matrix), which can by numerically instable when you use
ill-conditioned transformations.

    \tikz {
      \draw [help lines] (-0.2,-0.2) grid (2.2,2.2);
      \node :xshift = { 0s="0cm", 2s="5mm", begin on=click,
                        transform = {rotate=-90} }
        at (1,1) [fill = blue!20, draw = blue, ultra thick] {Click me};
    }

    \tikz {
      \draw [help lines] (-0.2,-0.2) grid (2.2,2.2);
      \node :xshift = { 0s="0cm", 2s="5mm", begin on=click,
                        transform = {rotate=-45, scale=2} }
        at (1,1) [fill = blue!20, draw = blue, ultra thick] {Click me};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/options/transform",
      meta = "⟨transformation keys⟩"
    },
    ["animate/remember"] = {
      details = [[
This key stores the current time (the time of the last use of the `time`
key) globally in the macro ⟨macroname⟩. This time will include the
offset of the fork time:

    time = 2s,
    fork = 2s later,    % fork time is now 4s
    time = 1s,          % local time is 1s, absolute time is 5s (1s + fork time)
    time = 1s later,    % local time is 2s, absolute time is 6s (2s + fork time)
    remember = \mytime  % \mytime is now 6s
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/remember",
      meta = "⟨macroname⟩"
    },
    ["animate/resume"] = {
      details = [[
The ⟨absolute time⟩ is evaluated using `\pgfparsetime` and, then, the
current time is set to the resulting time minus the fork time. When the
⟨absolute time⟩ is a macro previously set using `remember`, the net
effect of this is that we return to the exact "moment" in the global
time line when `remember` was used.

    fork = 4s,
    time = 1s,
    remember = \mytime  % \mytime is now 5s
    fork = 2s,          % fork time is now 2s, local time is 0s
    resume   = \mytime  % fork time is still 2s, local time is 3s

Using resume you can easily implement a "join" operation for forked
times. You simply remember the times at the ends of the forks and then
resume the maximum time of these remembered times:

    scope = {
      fork,
      time = 1s later,
      ...
      remember = \forka
    },
    scope = {
      fork,
      time = 5s later,
      ...
      remember = \forkb
    },
    scope = {
      fork,
      time = 2s later,
      ...
      remember = \forkc
    },
    resume = {max(\forka,\forkb,\forkc)} % "join" the three forks
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/resume",
      meta = "⟨absolute time⟩"
    },
    ["animate/scope"] = {
      details = [[
Executed the ⟨options⟩ inside a TeX scope. In particular, all settings
made inside the scope have no effect after the end of the `scope`.

    \tikz \node [animate = { myself: = { begin on = click,
        scope = { attribute = fill, repeats = 3, 0s = "red", 2s = "red!50" },
        scope = { attribute = draw,              0s = "red", 2s = "red!50" }
      }},
      fill=blue!20, draw=blue, very thick, circle] {Click me};

Without the use of the `scope` key, the `repeats` key would also affect
the draw attribute.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/scope",
      meta = "⟨options⟩"
    },
    ["animate/shorten < "] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/shorten:<:",
      meta = " ⟨dimension⟩"
    },
    ["animate/shorten > "] = {
      details = [[
For animated paths, just as the key `arrows` has to be passed to the
animation (to `:path`) instead of to the static path, the keys
`shorten >` and `shorten <` also have to be passed to the `:path` key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/shorten:>:",
      meta = " ⟨dimension⟩"
    },
    ["animate/sync"] = {
      details = [[
A shorthand for `scope={` ⟨options⟩ `, remember=\temp},resume=\temp`
where `\temp` is actually an internal name. The effect is that after a
`sync` the local time just continues as if the scope where not present
-- but regarding everything else the effects are local to the `sync`
scope.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/sync",
      meta = "⟨options⟩"
    },
    ["animate/time"] = {
      details = [[
Sets the time for the next time--value pair in a call of `entry` to
⟨time⟩ plus the current fork time. The text `later` is optional. Both
"fork times" and the optional `later` will be explained in a moment.

**Time Parsing.** The ⟨time⟩ is parsed using the command
`\pgfparsetime`, which is essentially the same as the usual math parser
of TikZ, and the result is interpreted as a time in seconds. Thus, a
⟨time⟩ of `2+3` means "5 seconds" and a ⟨time⟩ of `2*(2.1)` means "4.2
seconds". (You could even specify silly times like `1in`, which results
in the time "72.27 seconds". Please do not do that.) The "essentially"
refers to the fact that some extras are installed when the time parser
is running:

-   The postfix operator `s` is added, which has no effect. Thus, when
    you write `5s` you get the same results as `5`, which is exactly 5
    seconds as desired.

-   The postfix operator `ms` is added, which divides a number by 1000,
    so `2ms` equals 0.002s.

-   The postfix operator `min` is added, which multiplies a number
    by 60.

-   The postfix operator `h` is added, which multiplies a number
    by 3600.

-   The infix operator `:` is redefined, so that it multiplies its first
    argument by 60 and adds the second. This implies that `1:20` equals
    80s and `01:00:00` equals 3600s.

-   The parsing of octal numbers is switched off to allow things like
    `01:08` for 68s.

Note that you cannot use the colon syntax for times in things like
`01:20 = "0"` would (falsely) be interpreted as: "For the object named
`01` and its attribute named `20`, do something." You can, however, use
`01:20` in arguments to the `time` key, meaning that you would have to
write instead: `time = 1:20, "0"`, possibly surround by a `scope`.

**Relative Times.** You can suffix a `time` key with "`later`". In this
case, the ⟨time⟩ is interpreted as an offset to the time in the previous
use of the time key:

    \tikz \node :fill = { begin on = click,
        0s = "white",
        500ms later = "red",
        500ms later = "green",  % same as 1s   = "-5mm"
        500ms later = "blue"} % same as 1.5s = "-2.5mm"
      [fill=blue!20, draw=blue, very thick, circle] {Click me};

In reality, the offset is not taken to just any previous use of the
`time` key, but to the most recent use of this key or of the `resume`
key in the current local TeX scope. Here is an example:

    time = 2s,
    time = 1s later,    % same as time = 3s
    time = 500ms later, % same as time = 3.5s
    time = 4s,
    time = 1s later,    % same as time = 5s
    scope = {           % opens a local scope
      time = 1s later,  % same as time = 6s
      time = 10s
      time = 1s later   % same as time = 11s
    },                  % closes the scope, most recent time is 5s once more
    time = 2s later     % same as time = 7s

**Fork Times.** The time meant by the value ⟨time⟩ passed to the `time`
key is not used directly. Rather, TikZ adds the current *fork time* to
it, which is `0s` by default. You can change the fork time using the
following key:

**Remembering and Resuming Times.** When you have a complicated
animation with a long timeline, you will sometimes wish to start some
animation when some other animation has reached a certain moment; but
this moment is only reached through heavy use of `later` times and/or
forks. In such situations, the following keys are useful:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/time",
      meta = "⟨time⟩later"
    },
    ["animate/value"] = {
      details = [[
This key sets the value of the next time--value pair created by `entry`
to ⟨value⟩. The syntax of the ⟨value⟩ is not fixed, it depends on the
type of the attribute. For instance, for an attribute like `opacity` the
⟨value⟩ must be an expression that can be evaluated to a number between
0 and 1; for the attribute `color` the ⟨value⟩ must, instead, be a
color; and so on. Take care that when a value contains a comma, you must
surround it by braces as in `"{(1,1)}"`.

The allowed texts for the ⟨value⟩ is always the same as the one you
would pass to the TikZ option of the same name. For instance, since the
TikZ option `shift` expects a coordinate, you use coordinates as ⟨value⟩
with the usual TikZ syntax (including all sorts of extensions, the
animation system calls the standard TikZ parsing routines). The same is
true of dimensions, scalar values, colors, and so on.

In addition to the values normally use for setting the attribute, you
can also (sometimes) use the special text `current value` as ⟨value⟩.
This means that the value of the point in the timeline should be
whatever the value the attribute has at the beginning of the timeline.
For instance, when you write

    animate = { obj:color = { 0s = "current value", 2s = "white" } }

the color of `obj` will change from whatever color it currently has to
white in two seconds. This is especially useful when several animations
are triggered by user events and the current color of `obj` cannot be
determined beforehand.

There are several limitations on the use of the text `current value`,
which had to be imposed partly because of the limited support of this
feature in SVG:

-   You can use `current value` only with the first time in a timeline.

-   You can only have two times in a timeline that starts with
    `current value`.

-   You cannot use `current value` for timelines of which you wish to
    take a snapshot.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animate/value",
      meta = "⟨value⟩"
    },
    ["animations/base"] = {
      details = [[
The syntax of the ⟨value⟩ is the same as for the `entry` key. The
⟨value⟩ is installed as the value of the object's attribute whenever the
timeline is not active. This makes it easy to specify the value of an
attribute when the animation is "not running".

    \tikz {
      \pgfanimateattribute{rotate}{
        whom = node, begin on = {click},
        entry = {0s}{90}, entry = {2s}{180},
        base  = 45
      }
      \node (node) [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animations/base",
      meta = "⟨value⟩"
    },
    ["animations/begin snapshot"] = {
      details = [[
When this key is used inside the options of `\pgfanimateattribute`, with
respect to snapshots, the timeline begins at ⟨begin time⟩. This means
that, if the snapshot time is set to ⟨time⟩ and the beginning of the
snapshot's timeline is set to ⟨begin time⟩, the attribute is set to the
value of the timeline at time $⟨time⟩ -
        ⟨begin time⟩$.

The idea is that when you make a snapshot of several animations and all
of them have started at different times because of different events, you
use `begin snapshot` with each object and attribute to directly specify
when these different events have happened.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/animations/begin:snapshot",
      meta = "⟨begin time⟩"
    },
    annotation = {
      details = [[
This style indicates that a node is an annotation node. It includes the
style `every annotation`, which allows you to change this style in a
convenient fashion.

    \begin{tikzpicture}
      [mindmap,concept color=blue!80,
      every annotation/.style={fill=red!20}]
      \node [concept] (root)  {Root concept};

      \node [annotation,right] at (root.east)
      {The root concept is, in general, the most important concept.};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/annotation"
    },
    ["annotation arrow"] = {
      details = [[
This style should set the default `>` arrow to some nice value.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/annotation:arrow"
    },
    ["append after command"] = {
      details = [[
Some of the path commands described in the following sections take
optional arguments. For these commands, when you use this key inside
these options, the ⟨path⟩ will be inserted *after* the path command is
done. For instance, when you give this command in the option list of a
node, the ⟨path⟩ will be added after the node. This is used by, for
instance, the `label` option to allow you to specify a label in the
option list of a node, but have this `label` cause a node to be added
after another node.

    \tikz \draw node [append after command={(foo)--(1,1)},draw] (foo){foo};

If this key is called multiple times, the effects accumulate, that is,
all of the paths are added in the order to keys were found.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/append:after:command",
      meta = "⟨path⟩"
    },
    arrows = {
      details = [[
The `arrows` key, which is normally used to set the arrow tips for the
current scope, can also be used to set some arrow keys for the current
scope. When the argument to `arrows` starts with an opening bracket and
only otherwise contains one further closing bracket at the very end,
this semantic of the `arrow` key is assumed.

The ⟨arrow keys⟩ will be set for the rest of current scope. This is
useful for generally setting some design parameters or for generally
switching on, say, bending as in:

    \tikz [arrows={[bend]}] ... % Bend all arrows
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/arrows",
      meta = "[⟨arrow keys⟩]"
    },
    at = {
      details = [[
If this option is explicitly set inside the ⟨options⟩ (or indirectly via
the `every circle` style), the ⟨coordinate⟩ is used as the center of the
circle instead of the current point. Setting `at` to some value in an
enclosing scope has no effect.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/at",
      meta = "⟨coordinate⟩"
    },
    ["at end"] = {
      details = [[
Set to `pos=1`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/at:end"
    },
    ["at start"] = {
      details = [[
Set to `pos=0`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/at:start"
    },
    attribute = {
      details = [[
This style is used to indicate that a node is an attribute. To connect
an attribute to its entity, you can use, for example, the `child`
command or the `pin` option.

    \begin{tikzpicture}
      \node[entity] (sheep)  {Sheep}
        child {node[attribute] {name}}
        child {node[attribute] {color}};
    \end{tikzpicture}

    \begin{tikzpicture}[every pin edge/.style=draw]
      \node[entity,pin={[attribute]60:name},pin={[attribute]120:color}] {Sheep};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/attribute"
    },
    auto = {
      details = [[
This option causes an anchor position to be calculated automatically
according to the following rule. Consider a line between two points. If
the ⟨direction⟩ is `left`, then the anchor is chosen such that the node
is to the left of this line. If the ⟨direction⟩ is `right`, then the
node is to the right of this line. Leaving out ⟨direction⟩ causes
automatic placement to be enabled with the last value of `left` or
`right` used. A ⟨direction⟩ of `false` disables automatic placement.
This happens also whenever an anchor is given explicitly by the `anchor`
option or by one of the `above`, `below`, etc. options.

This option only has an effect for nodes that are placed on lines or
curves.

    \begin{tikzpicture}
      [scale=.8,auto=left,every node/.style={circle,fill=blue!20}]
      \node (a) at (-1,-2) {a};
      \node (b) at ( 1,-2) {b};
      \node (c) at ( 2,-1) {c};
      \node (d) at ( 2, 1) {d};
      \node (e) at ( 1, 2) {e};
      \node (f) at (-1, 2) {f};
      \node (g) at (-2, 1) {g};
      \node (h) at (-2,-1) {h};

      \foreach \from/\to in {a/b,b/c,c/d,d/e,e/f,f/g,g/h,h/a}
        \draw [->] (\from) -- (\to)
                   node[midway,fill=red!20] {\from--\to};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/auto",
      meta = "⟨direction⟩"
    },
    ["background grid"] = {
      details = [[
This style dictates how the background grid path is drawn.

    \begin{tikzpicture}
      [background grid/.style={thick,draw=red,step=.5cm},
       show background grid]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/background:grid"
    },
    ["background rectangle"] = {
      details = [[
This style dictates how the background rectangle is drawn or filled. The
default setting causes the path of the background rectangle to be drawn
in the usual way. Setting this style to, say, `fill=blue!20` causes a
light blue background to be added to the picture. You can also use more
fancy settings as shown in the following example:

    \begin{tikzpicture}
      [background rectangle/.style=
         {double,ultra thick,draw=red,top color=blue,rounded corners},
       show background rectangle]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}

Naturally, no one in their right mind would use the above, but here is a
nice background:

    \begin{tikzpicture}
      [background rectangle/.style=
         {draw=blue!50,fill=blue!20,rounded corners=1ex},
       show background rectangle]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/background:rectangle"
    },
    ["background top"] = {
      details = [[
    \tikzset{background rectangle/.style={fill=blue!20},
             background top/.style={draw=blue!50,line width=1ex}}
    \begin{tikzpicture}[framed,show background top]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/background:top"
    },
    ["badness warnings for centered text"] = {
      details = [[
If set to true, normal badness warnings will be issued for centered
boxes. Note that you may get annoying warnings for perfectly normal
boxes, namely whenever the box is very large and the contents is not
long enough to fill the box sufficiently.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/badness:warnings:for:centered:text",
      meta = "⟨true or false⟩"
    },
    ["ball color"] = {
      details = [[
This option sets the color used for the ball shading. It sets the
`shade` and `shading=ball` options. Note that the ball will never
"completely" have the color ⟨color⟩. At its "highlight" spot a certain
amount of white is mixed in, at the border a certain amount of black.
Because of this, it also makes sense to say `ball color=white` or
`ball color=black`

    \begin{tikzpicture}
      \shade[ball color=white] (0,0) circle (2ex);
      \shade[ball color=red] (1,0) circle (2ex);
      \shade[ball color=black] (2,0) circle (2ex);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ball:color",
      meta = "⟨color⟩"
    },
    ["base left"] = {
      details = [[
This key works like the `left` key, only instead of the `east` anchor,
the `base east` anchor is used and, when the second form of an ⟨of-part⟩
is used, the corresponding `base west` anchor.

This key is useful for chaining together nodes so that their base lines
are aligned.

    \begin{tikzpicture}[node distance=1ex]
      \draw[help lines] (0,0) grid (3,1);
      \huge
      \node (X) at (0,1)     {X};
      \node (a) [right=of X] {a};
      \node (y) [right=of a] {y};

      \node (X) at (0,0)          {X};
      \node (a) [base right=of X] {a};
      \node (y) [base right=of a] {y};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/base:left",
      meta = "⟨specification⟩"
    },
    ["base right"] = {
      details = [[
Works like `base left`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/base:right",
      meta = "⟨specification⟩"
    },
    baseline = {
      details = [[
Normally, the lower end of the picture is put on the baseline of the
surrounding text. For example, when you give the code
`\tikz\draw(0,0)circle(.5ex);`, PGF will find out that the lower end of
the picture is at $-.5\mathrm{ex} - 0.2\mathrm{pt}$ (the 0.2pt are half
the line width, which is 0.4pt) and that the upper end is at
$.5\mathrm{ex}+.5\mathrm{pt}$. Then, the lower end will be put on the
baseline, resulting in the following: \[PICTURE\].

Using this option, you can specify that the picture should be raised or
lowered such that the height ⟨dimension⟩ is on the baseline. For
example, `\tikz[baseline=0pt]\draw(0,0)circle(.5ex);` yields \[PICTURE\]
since, now, the baseline is on the height of the $x$-axis.

This options is often useful for "inlined" graphics as in

    $A \mathbin{\tikz[baseline] \draw[->>] (0pt,.5ex) -- (3ex,.5ex);} B$

Instead of a ⟨dimension⟩ you can also provide a coordinate in
parentheses. Then the effect is to put the baseline on the
$y$-coordinate that the given ⟨coordinate⟩ has *at the end of the
picture*. This means that, at the end of the picture, the ⟨coordinate⟩
is evaluated and then the baseline is set to the $y$-coordinate of the
resulting point. This makes it easy to reference the $y$-coordinate of,
say, the baseline of nodes.

    Hello
    \tikz[baseline=(X.base)]
      \node [cross out,draw] (X) {world.};

    Top align:
    \tikz[baseline=(current bounding box.north)]
      \draw (0,0) rectangle (1cm,1ex);

Use `baseline=default` to reset the `baseline` option to its initial
configuration.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/baseline",
      meta = "⟨dimension or coordinate or default⟩"
    },
    ["behind path"] = {
      details = [[
When this key is set, either as a local option for the node or some
surrounding scope, the node will be drawn behind the current path. For
this, TikZ collects all nodes defined on the current path with this
option set and then inserts all of them, in the order they appear, just
before it draws the path. Thus, several nodes with this option set may
obscure one another, but never the path itself. "Just before it draws
the path" actually means that the nodes are inserted into the page
output just before any pre-actions are applied to the path (see below
for what pre-actions are).

    \tikz \fill [fill=blue!50, draw=blue, very thick]
          (0,0)   node [behind path, fill=red!50]   {first node}
       -- (1.5,0) node [behind path, fill=green!50] {second node}
       -- (1.5,1) node [behind path, fill=brown!50] {third node}
       -- (0,1)   node [             fill=blue!30]  {fourth node};

Note that `behind path` only applies to the current path; not to the
current scope or picture. To put a node "behind everything" you need to
use layers and options like `on background layer`, see the `backgrounds`
library in Section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/behind:path"
    },
    below = {
      details = [[
This key is redefined in the same manner as `above`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/below",
      meta = "⟨specification⟩"
    },
    ["below delimiter"] = {
      details = [[
Works as above.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/below:delimiter",
      meta = "⟨delimiter⟩"
    },
    ["below left"] = {
      details = [[
Similar to `above left`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/below:left"
    },
    ["below left of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/below:left:of",
      meta = "⟨node⟩"
    },
    ["below of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/below:of",
      meta = "⟨node⟩"
    },
    ["below right"] = {
      details = [[
Similar to `above left`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/below:right"
    },
    ["below right of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/below:right:of",
      meta = "⟨node⟩"
    },
    bend = {
      details = [[
Has the same effect as saying `bend`⟨coordinate⟩ outside the ⟨options⟩.
The option specifies that the bend of the parabola should be at the
given ⟨coordinate⟩. You have to take care yourself that the bend
position is a "valid" position; which means that if there is no parabola
of the form $f(x) = a x^2 + b x + c$ that goes through the old current
point, the given bend, and the new current point, the result will not be
a parabola.

There is one special property of the ⟨coordinate⟩: When a relative
coordinate is given like `+(0,0)`, the position relative to this
coordinate is "flexible". More precisely, this position lies somewhere
on a line from the old current point to the new current point. The exact
position depends on the next option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/bend",
      meta = "⟨coordinate⟩"
    },
    ["bend angle"] = {
      details = [[
Sets the angle to be used by the `bend left` or `bend right`, but
without actually selecting the `curve to` or the `relative` option. This
is useful for globally specifying a `bend angle` for a whole picture.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/bend:angle",
      meta = "⟨angle⟩"
    },
    ["bend at end"] = {
      details = [[
This places the bend at the end of a parabola.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/bend:at:end"
    },
    ["bend at start"] = {
      details = [[
This places the bend at the start of a parabola. It is a shortcut for
the following options: `bend pos=0,bend={+(0,0)}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/bend:at:start"
    },
    ["bend left"] = {
      details = [[
This option sets `out=`⟨angle⟩`,in=`$180-⟨angle⟩$`,relative`. If no
⟨angle⟩ is given, the last given `bend left` or `bend right` angle is
used.

    \begin{tikzpicture}[shorten >=1pt,node distance=2cm,on grid]
      \node[state,initial]  (q_0)                {$q_0$};
      \node[state]          (q_1) [right=of q_0] {$q_1$};
      \node[state,accepting](q_2) [right=of q_1] {$q_2$};

      \path[->] (q_0) edge              node [above]  {0} (q_1)
                      edge [loop above] node          {1} ()
                      edge [bend left]  node [above]  {1} (q_2)
                      edge [bend right] node [below]  {0} (q_2)
                (q_1) edge              node [above]  {1} (q_2);
    \end{tikzpicture}

    \begin{tikzpicture}
      \foreach \angle in {0,45,...,315}
        \node[rectangle,draw=black!50] (\angle) at (\angle:2) {\angle};

      \foreach \from/\to in {0/45,45/90,90/135,135/180,
                             180/225,225/270,270/315,315/0}
        \path (\from) edge [->,bend right=22,looseness=0.8] (\to)
                      edge [<-,bend left=22,looseness=0.8] (\to);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/bend:left",
      meta = "⟨angle⟩"
    },
    ["bend pos"] = {
      details = [[
Specifies where the "previous" point is relative to which the bend is
calculated. The previous point will be at the ⟨fraction⟩th part of the
line from the old current point to the new current point.

The idea is the following: If you say `bend pos=0` and `bend +(0,0)`,
the bend will be at the old current point. If you say `bend pos=1` and
`bend +(0,0)`, the bend will be at the new current point. If you say
`bend pos=0.5` and `bend +(0,2cm)` the bend will be 2cm above the middle
of the line between the start and end point. This is most useful in
situations such as the following:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw (-1,0) parabola[bend pos=0.5] bend +(0,2) +(3,0);
    \end{tikzpicture}

In the above example, the `bend +(0,2)` essentially means "a parabola
that is 2cm high" and `+(3,0)` means "and 3cm wide". Since this
situation arises often, there is a special shortcut option:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/bend:pos",
      meta = "⟨fraction⟩"
    },
    ["bend right"] = {
      details = [[
Works like the `bend left` option, only the bend is to the other side.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/bend:right",
      meta = "⟨angle⟩"
    },
    ["blend group"] = {
      details = [[
This key can only be used with a scope (like `transparency group`). It
will cause the current scope to become a transparency group and, inside
this group, the blend mode will be set to ⟨mode⟩.

    \tikz [blend group=screen] {
      \fill[red!90!black]   ( 90:.6) circle (1);
      \fill[green!80!black] (210:.6) circle (1);
      \fill[blue!90!black]  (330:.6) circle (1);
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/blend:group",
      meta = "⟨mode⟩"
    },
    ["blend mode"] = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/blend:mode",
      meta = "⟨mode⟩"
    },
    ["bottom color"] = {
      details = [[
This option works like `top color`, only for the bottom color.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/bottom:color",
      meta = "⟨color⟩"
    },
    ["callout absolute pointer"] = {
      details = [[
The TikZ version of the `callout absolute pointer` key. Here,
⟨coordinate⟩ can be specified using the TikZ format for coordinates.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/callout:absolute:pointer",
      meta = "⟨coordinate⟩"
    },
    ["callout relative pointer"] = {
      details = [[
The TikZ version of the `callout relative pointer` key. Here,
⟨coordinate⟩ can be specified using the TikZ format for coordinates.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/callout:relative:pointer",
      meta = "⟨coordinate⟩"
    },
    ["canvas is plane"] = {
      details = [[
Perform the transformation into the new canvas plane using the units
above. Note that you have to set the units *before* calling
`canvas is plane`.

    \begin{tikzpicture}[
        ->,
        plane x={(0.707,-0.707)},
        plane y={(0.707,0.707)},
        canvas is plane,
    ]
        \draw (0,0) -- (1,0);
        \draw (0,0) -- (0,1);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/canvas:is:plane"
    },
    ["canvas is xy plane at z"] = {
      details = [[
A plane with

-   `plane origin={(0,0,`⟨dimension⟩`)}`,

-   `plane x={(1,0,`⟨dimension⟩`)}`, and

-   `plane y={(0,1,`⟨dimension⟩`)}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/canvas:is:xy:plane:at:z",
      meta = "⟨dimension⟩"
    },
    ["canvas is xz plane at y"] = {
      details = [[
A plane with

-   `plane origin={(0,`⟨dimension⟩`,0)}`,

-   `plane x={(1,`⟨dimension⟩`,0)}`, and

-   `plane y={(0,`⟨dimension⟩`,1)}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/canvas:is:xz:plane:at:y",
      meta = "⟨dimension⟩"
    },
    ["canvas is yx plane at z"] = {
      details = [[
A plane with

-   `plane origin={(0,0,`⟨dimension⟩`)}`,

-   `plane x={(0,1,`⟨dimension⟩`)}`, and

-   `plane y={(1,0,`⟨dimension⟩`)}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/canvas:is:yx:plane:at:z",
      meta = "⟨dimension⟩"
    },
    ["canvas is yz plane at x"] = {
      details = [[
A plane with

-   `plane origin={(`⟨dimension⟩`,0,0)}`,

-   `plane x={(`⟨dimension⟩`,1,0)}`, and

-   `plane y={(`⟨dimension⟩`,0,1)}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/canvas:is:yz:plane:at:x",
      meta = "⟨dimension⟩"
    },
    ["canvas is zx plane at y"] = {
      details = [[
A plane with

-   `plane origin={(0,`⟨dimension⟩`,0)}`,

-   `plane x={(0,`⟨dimension⟩`,1)}`, and

-   `plane y={(1,`⟨dimension⟩`,0)}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/canvas:is:zx:plane:at:y",
      meta = "⟨dimension⟩"
    },
    ["canvas is zy plane at x"] = {
      details = [[
A plane with

-   `plane origin={(`⟨dimension⟩`,0,0)}`,

-   `plane x={(`⟨dimension⟩`,0,1)}`, and

-   `plane y={(`⟨dimension⟩`,1,0)}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/canvas:is:zy:plane:at:x",
      meta = "⟨dimension⟩"
    },
    cells = {
      details = [[
This key adds the ⟨options⟩ to the style `every cell`. It is mainly just
a shorthand for the code `every cell/.append style=`⟨options⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cells",
      meta = "⟨options⟩"
    },
    centered = {
      details = [[
A shorthand for `anchor=center`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/centered"
    },
    ["chain default direction"] = {
      details = [[
This ⟨direction⟩ is used in a `chain` option, if no other ⟨direction⟩ is
specified.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/chain:default:direction",
      meta = "⟨direction⟩"
    },
    ["child anchor"] = {
      details = [[
Specifies the anchor where the edge from parent meets the child node by
setting the macro `\tikzchildanchor` to `.`⟨anchor⟩.

If you specify `border` as the ⟨anchor⟩, then the macro
`\tikzchildanchor` is set to the empty string. The effect of this is
that the edge from the parent will meet the child on the border at an
automatically calculated position.

    \begin{tikzpicture}
      \node {root}
        [child anchor=north]
        child {node {left} edge from parent[dashed]}
        child {node {right}
          child {node {child}}
          child {node {child} edge from parent[draw=none]}
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/child:anchor",
      meta = "⟨anchor⟩"
    },
    ["children are tokens"] = {
      details = [[
The idea behind this style is to use trees mechanism for placing tokens.
Every token lying on a place is treated as a child of the node. Normally
this would have the effect that the tokens are placed below the place
and they would be connected to the place by an edge. The
`children are tokens` style, however, redefines the growth function of
trees such that it places the children next to each other inside (or,
rather, on top) of the place node. Additionally, the edge from the
parent node is not drawn.

    \begin{tikzpicture}
      \node[place,label=above:$p_1$] {}
      [children are tokens]
      child {node [token] {1}}
      child {node [token] {2}}
      child {node [token] {3}};
    \end{tikzpicture}

In detail, what happens is the following: Tree growth functions tell
TikZ where it should place the children of nodes. These functions get
passed the number of children that a node has an the number of the child
that should be placed. The special tree growth function for tokens has a
special mapping for each possible number of children up to nine
children. This mapping decides for each child where it should be placed
on top of the place. For example, a single child is placed directly on
top of the place. Two children are placed next to each other, separated
by the `token distance`. Three children are placed in a triangle whose
side lengths are `token distance`; and so on up to nine tokens. If you
wish to place more than nice tokens on a place, you will have to write
your own placement code.

    \begin{tikzpicture}
      \node[place,label=above:$p_2$] {}
      [children are tokens]
      child {node [token] {1}}
      child {node [token,fill=red] {2}}
      child {node [token,fill=red] {2}}
      child {node [token] {1}};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/children:are:tokens"
    },
    ["circle connection bar"] = {
      details = [[
This style installs a rather involved to-path. Unlike normal to-paths,
this path requires that the start and the target of the to-path are
named nodes of shape `circle` -- if this is not the case, this path will
produce errors.

Assuming that the start and the target are circles, the to-path will
first compute the radii of these circles (by measuring the distance from
the `center` anchor to some anchor on the border) and will set the
`start circle` keys accordingly. Next, the `fill` option is set to the
`concept color` while `draw=none` is set. The decoration is set to
`circle connection bar`. Finally, the following style is included:

    \begin{tikzpicture}[concept color=blue!50,blue!50,outer sep=0pt]
      \node (n1) at (0,0)   [circle,minimum size=2cm,fill,draw,thick] {};
      \node (n2) at (2.5,0) [circle,minimum size=1cm,fill,draw,thick] {};

      \path (n1) to[circle connection bar] (n2);
    \end{tikzpicture}

Note that it is not a good idea to have more than one `to` operation
together with the option `circle connection bar` in a single `\path`.
Use the `edge` operation, instead, for creating multiple connections and
this operation creates a new scope for each edge.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circle:connection:bar"
    },
    ["circle connection bar switch color"] = {
      details = [[
This style works similarly to the `circle connection bar`. The only
difference is that instead of filling the path with a single color a
shading is used.

    \begin{tikzpicture}[outer sep=0pt]
      \node (n1) at (0,0)    [circle,minimum size=2cm,fill,draw,thick,red] {};
      \node (n2) at (30:2.5) [circle,minimum size=1cm,fill,draw,thick,blue] {};

      \path (n1) to[circle connection bar switch color=from (red) to (blue)] (n2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circle:connection:bar:switch:color",
      meta = "from (⟨first color⟩) to (⟨second color⟩)"
    },
    ["circle through"] = {
      details = [[
When this key is given as an option to a node, the following happens:

1.  The `inner sep` and the `outer sep` are set to zero.

2.  The shape is set to `circle`.

3.  The `minimum size` is set such that the circle around the center of
    the node (which is specified using `at`), goes through ⟨coordinate⟩.

&nbsp;

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \node (a) at (2,1.5) {$a$};
      \node [draw] at (1,1) [circle through={(a)}] {$c$};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circle:through",
      meta = "⟨coordinate⟩"
    },
    ["circuit declare annotation"] = {
      details = [[
This key is used to declare an annotation named ⟨name⟩. Once declared,
it can be used as an argument of a symbol and will add the drawing in
⟨path⟩ to the symbol. In detail, the following happens:

**The Main Keys.** Two keys called ⟨name⟩ and ⟨name⟩`’` are defined. The
second causes the annotation to be "mirrored and placed on the other
side" of the symbol. Both of these keys may also take further keys as
parameter like `info` keys. Whenever the ⟨name⟩ key is used, a local
scope is opened and in this scope the following things are done:

1.  The style `every` ⟨name⟩ is executed.

2.  The following style is executed and then `arrows=->`:

3.  The coordinate system is shifted such that the origin is at the
    north anchor of the symbol. (For the ⟨name⟩`’` key the coordinate
    system is flipped and shifted such that the origin is at the south
    anchor of the symbol.)

4.  The `label distance` is locally set to ⟨distance⟩.

5.  The parameter options given to the ⟨name⟩ key are executed.

6.  The ⟨path⟩ is executed.

**Usage.** What all of the above amounts to is best explained by an
example. Suppose we wish to create an annotation that looks like a
little circular arrow (like \[PICTURE\]). We could then say:

    \tikzset{circuit declare annotation=
      {circular annotation}
      {9pt}
      {(0pt,8pt) arc (-270:80:3.5pt)}
    }

We can then use it like this:

    \tikz[circuit ee IEC]
      \draw (0,0) to [resistor={circular annotation}]   (3,0);

Well, not very impressive since we do not see anything. This is due to
the fact that the ⟨path⟩ becomes part of a path that contains the symbol
node an nothing else. This path is not drawn or filled, so we do not see
anything. What we must do is to use an `edge` path operation:

    \tikzset{circuit declare annotation={circular annotation}{9pt}
      {(0pt,8pt) edge[to path={arc(-270:80:3.5pt)}] ()}
    }
    \tikz[circuit ee IEC]
      \draw (0,0) to [resistor={circular annotation}]   (3,0)
                  to [capacitor={circular annotation'}] (3,2);

The ⟨distance⟩ is important for the correct placement of additional
`info` labels. When an annotation is present, the info labels may need
to be moved further away from the symbol, but not always. For this
reason, an annotation defines an additional ⟨distance⟩ that is applied
to all info labels given as parameters to the annotation. Here is an
example, that shows the difference:

    \tikz[circuit ee IEC]
      \draw (0,0) to [resistor={circular annotation,ohm=5}]   (2,0)
                  to [resistor={circular annotation={ohm=5}}] (4,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:declare:annotation",
      meta = "{name}{distance}{path}"
    },
    ["circuit declare symbol"] = {
      details = [[
This key is used to declare a symbol. It does not cause this symbol to
be shown nor does it set a graphic to be used for the symbol, it simply
"prepares" several keys that can later be used to draw a symbol and to
configure it.

In detail, the first key that is defined is just called ⟨name⟩. This key
should be given as an option to a `node` or on a `to` path, as explained
below. The key will take options, which can be used to influence the way
the symbol graphic is rendered.

Let us have a look at an example. Suppose we want to define a symbol
called `foo`, which just looks like a simple rectangle. We could then
say

    \tikzset{circuit declare symbol=foo}

The symbol could now be used like this:

      \node [foo]       at (1,1) {};
      \node [foo={red}] at (2,1) {};

However, in the above example we would not actually see anything since
we have not yet set up the graphic to be used by `foo`. For this, we
must use a key called `set foo graphic` or, generally, `set` ⟨name⟩
`graphic`. This key gets graphic options as parameter that will be set
when a symbol `foo` should be shown:

    \begin{tikzpicture}
      [circuit declare symbol=foo,
       set foo graphic={draw,shape=rectangle,minimum size=5mm}]

      \node [foo]       at (1,1) {};
      \node [foo={red}] at (2,1) {};
    \end{tikzpicture}

In detail, when you use the key ⟨name⟩=⟨options⟩ with a node, the
following happens:

1.  The `inner sep` is set to `0.5pt`.

2.  The following style is executed:

3.  The graphic options that have been set using `set` ⟨name⟩ `graphic`
    are set.

4.  The style `every `⟨name⟩ is executed. You can use it to configure
    the symbol further.

5.  The ⟨options⟩ are executed.

The key ⟨name⟩ will have a different effect when it is used on a `to`
path command inside a `circuit` environment (the `circuit` environment
sets up `to` paths in such a way that the use of a key declared using
`circuit declare symbol` is automatically detected). When ⟨name⟩ is used
on a `to` path, the above actions also happen (setting the inner
separation, using the symbol graphic, and so on), but they are passed to
the key `circuit handle symbol`, which is explained next.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:declare:symbol",
      meta = "⟨name⟩"
    },
    ["circuit declare unit"] = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:declare:unit",
      meta = "{name}{unit}"
    },
    ["circuit ee"] = {
      details = [[
This style calls the keys `circuit` (which internally calls
`every circuit` and the following style:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:ee"
    },
    ["circuit ee IEC"] = {
      details = [[
This style calls `circuit ee` and installs the IEC-like graphics for the
logical symbols like `resistor`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:ee:IEC"
    },
    ["circuit handle symbol"] = {
      details = [[
This key is mostly used internally. Its purpose is to render a symbol.
The effect of this key differs, depending on whether it is used as the
optional argument of a `to` path command or elsewhere.

If the key is not used as an argument of a `to` path command, the
⟨options⟩ are simply executed.

The more interesting case happens when the key is given on a `to` path
command. In this case, several things happen:

1.  The `to` path is locally changed and set to an internal path (which
    you should not try to change) that consists mostly of a single
    straight line.

2.  The ⟨options⟩ are tentatively executed with filtering switched on.
    Everything is filtered out, except for the key `pos` and also the
    styles `at start`, `very near start`, `near start`, `midway`,
    `near end`, `very near end`, and `at end`. If none of them is found,
    `midway` is used.

3.  The filtered option is used to determine a position for the symbol
    on the path. At the given position (with `pos=0` representing the
    start and `pos=1` representing the end), a node will be added to the
    path (in a manner to be described presently).

4.  This node gets ⟨options⟩ as its option list.

5.  The node is added by virtue of a special `markings` decoration. This
    means that a `mark` command is executed that causes the node to be
    placed as a mark on the path.

6.  The marking decoration will automatically subdivide the path and
    cause a line to be drawn from the start of the path to the node's
    border (at the position that lies on a line from the node's center
    to the start of the path) and then from the node's border (at a
    position on the other side of the node) to the end of the path.

7.  The marking decoration will also take care of the case that multiple
    marks are present on a path, in this case the lines from and to the
    borders of the nodes are only between consecutive nodes.

8.  The marking decoration will also rotate the coordinate system in
    such a way that the $x$-axis points along the path. Thus, if you use
    the `transform shape` option, the node will "point along" the path.

9.  In case a node is at `pos=0` or at `pos=1` some special code will
    suppress the superfluous lines to the start or end of the path.

The net effect of all of the above is that a node will be placed "on the
path" and the path will have a "gap" just large enough to encompass the
node. Another effect is that you can use this key multiple times on a
path to add several node to a path, provided they do not overlap.

    \begin{tikzpicture}[circuit]
      \draw (0,0) to [circuit handle symbol={draw,shape=rectangle,near start},
                      circuit handle symbol={draw,shape=circle,near end}] (3,2);
      \end{tikzpicture}

    \begin{tikzpicture}[transform shape,circuit]
      \draw (0,0) to [circuit handle symbol={draw,shape=rectangle,at start},
                      circuit handle symbol={draw,shape=circle,near end}] (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:handle:symbol",
      meta = "⟨options⟩"
    },
    ["circuit logic"] = {
      details = [[
This style calls the keys `circuit` (which internally calls
`every circuit`, then it defines the `inputs` key and it calls the
`every circuit logic` key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:logic"
    },
    ["circuit logic CDH"] = {
      details = [[
This key calls `circuit logic US` and installs the two special and- and
nand-gates, that is, it uses `set and gate graphic` with
`and gate CDH graphic` and likewise for nand-gates.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:logic:CDH"
    },
    ["circuit logic IEC"] = {
      details = [[
This key calls `circuit logic` and installs the IEC-like graphics for
the logical symbols like `and gate`.

As explained in Section ??, for each graphic symbol of the library there
is also a style that stores this particular appearance. These keys are
called `and gate IEC graphic`, `or gate IEC graphic`, and so on.

    \begin{tikzpicture}[circuit logic IEC,
                        every circuit symbol/.style={
                          logic gate IEC symbol color=black,
                          fill=blue!20,draw=blue,very thick}]
      \matrix[column sep=7mm]
      {
        \node (i0) {0}; &                            & \\
                        & \node [and gate] (a1) {};  & \\
        \node (i1) {0}; &                            & \node [or gate] (o) {};\\
                        & \node [nand gate] (a2) {}; & \\
        \node (i2) {1}; &                            & \\
      };
      \draw (i0.east) -- ++(right:3mm) |- (a1.input 1);
      \draw (i1.east) -- ++(right:3mm) |- (a1.input 2);
      \draw (i1.east) -- ++(right:3mm) |- (a2.input 1);
      \draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
      \draw (a1.output) -- ++(right:3mm) |- (o.input 1);
      \draw (a2.output) -- ++(right:3mm) |- (o.input 2);
      \draw (o.output) -- ++(right:3mm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:logic:IEC"
    },
    ["circuit logic US"] = {
      details = [[
This style calls `circuit logic` and installs US-like graphics for the
logical symbols like `and gate`. For instance, it says

    set and gate graphic = and gate US graphic

Here is an example:

    \begin{tikzpicture}[circuit logic CDH,
                        tiny circuit symbols,
                        every circuit symbol/.style={
                          fill=white,draw}]
      \matrix[column sep=7mm]
      {
        \node (i0) {0}; &                            & \\
                        & \node [and gate] (a1) {};  & \\
        \node (i1) {0}; &                            & \node [or gate] (o) {};\\
                        & \node [nand gate] (a2) {}; & \\
        \node (i2) {1}; &                            & \\
      };
      \draw (i0.east) -- ++(right:3mm) |- (a1.input 1);
      \draw (i1.east) -- ++(right:3mm) |- (a1.input 2);
      \draw (i1.east) -- ++(right:3mm) |- (a2.input 1);
      \draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
      \draw (a1.output) -- ++(right:3mm) |- (o.input 1);
      \draw (a2.output) -- ++(right:3mm) |- (o.input 2);
      \draw (o.output) -- ++(right:3mm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:logic:US"
    },
    ["circuit symbol filled"] = {
      details = [[
This style is used with symbols that are completely filled. For
instance, the variant IEC version of an inductor is a filled, black
rectangle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:symbol:filled"
    },
    ["circuit symbol lines"] = {
      details = [[
This style is used with symbols that consist only of lines that do not
surround anything. Examples are a capacitor.

    \tikz [circuit ee IEC,
           circuit symbol lines/.style={thick,draw=red}]
      \draw (0,0) to [capacitor] ++(right:3) to [resistor] ++(up:2);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:symbol:lines"
    },
    ["circuit symbol open"] = {
      details = [[
This style is used with symbols that consist of lines that surround some
area. For instance, the IEC version of a resistor is an open symbol.

    \tikz [circuit ee IEC,
           circuit symbol open/.style={thick,draw,fill=yellow}]
      \draw (0,0) to [inductor] ++(right:3) to [resistor] ++(up:2);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:symbol:open"
    },
    ["circuit symbol size"] = {
      details = [[
This key sets `minimum height` to ⟨height⟩ times the current value of
the circuit symbol unit and the `minimum width` to ⟨width⟩ times this
value. Thus, this option can be used with a node command to set the size
of the node as a multiple of the circuit symbol unit.

    \begin{tikzpicture}[circuit ee IEC]
      \draw (0,1) to [resistor] (2,1) to[inductor] (4,1);

      \begin{scope}
        [every resistor/.style={circuit symbol size=width 3 height 1}]
        \draw (0,0) to [resistor] (2,0) to[inductor] (4,0);
      \end{scope}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:symbol:size",
      meta = "width ⟨width⟩ height ⟨height⟩"
    },
    ["circuit symbol unit"] = {
      details = [[
This dimension is a "unit" for the size of symbols. The libraries
generally define the sizes of symbols relative to this dimension. For
instance, the longer side of an inductor is, by default, in the IEC
library equal to five times this ⟨dimension⟩. When you change this
⟨dimension⟩, the size of all symbols will automatically change
accordingly.

Note, that it is still possible to overwrite the size of any particular
symbol. These settings apply only to the default sizes.

    \begin{tikzpicture}[circuit ee IEC]
      \draw (0,1) to [resistor] (3.5,1);
      \draw[circuit symbol unit=14pt]
            (0,0) to [resistor] (3.5,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:symbol:unit",
      meta = "⟨dimension⟩"
    },
    ["circuit symbol wires"] = {
      details = [[
This style is used for symbols that consist only of "wires". The
difference to the previous style is that a symbol consisting of wires
will look strange when the lines are thicker than the lines of normal
wires, while for symbols consisting of lines (but not wires) it may look
nice to make them thicker. An example is the `make contact` symbol.

Compare

    \tikz [circuit ee IEC,circuit symbol lines/.style={draw,very thick}]
      \draw (0,0) to [capacitor={near start},
                      make contact={near end}] (3,0);

to

    \tikz [circuit ee IEC,circuit symbol wires/.style={draw,very thick}]
      \draw (0,0) to [capacitor={near start},
                      make contact={near end}] (3,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuit:symbol:wires"
    },
    circuits = {
      details = [[
This key should be passed as an option to a picture or a scope that
contains a circuit. It will do some internal setups. This key is
normally called by more specialized keys like `circuit ee IEC`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circuits"
    },
    ["circular drop shadow"] = {
      details = [[
This shadow works like a drop shadow, only it adds a circular fading to
the shadow. This means that the shadow will fade out at the border. The
following options are preset for this shadow:

      shadow scale=1.1, shadow xshift=.3ex, shadow yshift=-.3ex,
      fill=black, path fading={circle with fuzzy edge 15 percent},
      every shadow,

    \begin{tikzpicture}
      \foreach \i in {1,...,8}
        \node[circle,circular drop shadow,draw=blue,fill=blue!20,thick]
          at (\i*45:1) {Circle \i};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circular:drop:shadow",
      meta = "⟨shadow options⟩"
    },
    ["circular glow"] = {
      details = [[
This shadow works much like the `circular shadow`, only it is not
shifted. This creates a visual effect of a "glow" behind the circle. The
following options are preset for this shadow:

      shadow scale=1.25, shadow xshift=0pt, shadow yshift=0pt,
      fill=black, path fading={circle with fuzzy edge 15 percent},
      every shadow,

    \begin{tikzpicture}
      \foreach \i in {1,...,8}
      \node[circle,circular glow,fill=red!20,draw=red,thick]
        at (\i*45:1) {Circle \i};
    \end{tikzpicture}

    \begin{tikzpicture}
      \foreach \i in {1,...,8}
      \node[circle,circular glow={fill=white},fill=red!20,draw=red,thick]
        at (\i*45:1) {Circle \i};
    \end{tikzpicture}

    \begin{tikzpicture}
      \foreach \i in {1,...,8}
      \node[circle,circular glow={fill=green},fill=black,text=green!50!black]
        at (\i*45:1) {Circle \i};
    \end{tikzpicture}

An especially interesting effect can be achieved by only using the glow
and not filling the path:

    \begin{tikzpicture}
      \foreach \i in {1,...,8}
      \node[circle,circular glow={fill=red!\i0}]
        at (\i*45:1) {Circle \i};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/circular:glow",
      meta = "⟨shadow options⟩"
    },
    clip = {
      details = [[
This option causes all subsequent drawings to be clipped against the
current path and the size of subsequent paths will not be important for
the picture size. If you clip against a self-intersecting path, the
even-odd rule or the nonzero winding number rule is used to determine
whether a point is inside or outside the clipping region.

The clipping path is a graphic state parameter, so it will be reset at
the end of the current scope. Multiple clippings accumulate, that is,
clipping is always done against the intersection of all clipping areas
that have been specified inside the current scopes. The only way of
enlarging the clipping area is to end a `{scope}`.

    \begin{tikzpicture}
      \draw[clip] (0,0) circle (1cm);
      \fill[red] (1,0) circle (1cm);
    \end{tikzpicture}

It is usually a *very* good idea to apply the `clip` option only to the
first path command in a scope.

If you "only wish to clip" and do not wish to draw anything, you can use
the `\clip` command, which is a shorthand for `\path[clip]`.

    \begin{tikzpicture}
      \clip (0,0) circle (1cm);
      \fill[red] (1,0) circle (1cm);
    \end{tikzpicture}

To keep clipping local, use `{scope}` environments as in the following
example:

    \begin{tikzpicture}
      \draw (0,0) -- ( 0:1cm);
      \draw (0,0) -- (10:1cm);
      \draw (0,0) -- (20:1cm);
      \draw (0,0) -- (30:1cm);
      \begin{scope}[fill=red]
        \fill[clip] (0.2,0.2) rectangle (0.5,0.5);

        \draw (0,0) -- (40:1cm);
        \draw (0,0) -- (50:1cm);
        \draw (0,0) -- (60:1cm);
      \end{scope}
      \draw (0,0) -- (70:1cm);
      \draw (0,0) -- (80:1cm);
      \draw (0,0) -- (90:1cm);
    \end{tikzpicture}

There is a slightly annoying catch: You cannot specify certain graphic
options for the command used for clipping. For example, in the above
code we could not have moved the `fill=red` to the `\fill` command. The
reasons for this have to do with the internals of the PDF specification.
You do not want to know the details. It is best simply not to specify
any options for these commands.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/clip"
    },
    ["clockwise from"] = {
      details = [[
This option also causes children to be arranged on a circle. However,
the rule for placing children is simpler than with the `grow cyclic`
style: The first child is placed at ⟨angle⟩ at a distance of
`\tikzleveldistance`. The second child is placed at the same distance
from the parent, but at angle ⟨angle⟩${}-{}$`\tikzsiblingangle`. The
third child is displaced by another `\tikzsiblingangle` in a clockwise
fashion, and so on.

Note that this function will not rotate the coordinate system.

    \begin{tikzpicture}
      \node {root}
      [clockwise from=30,sibling angle=30]
      child {node {$30$}}
      child {node {$0$}}
      child {node {$-30$}}
      child {node {$-60$}};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/clockwise:from",
      meta = "⟨angle⟩"
    },
    cm = {
      details = [[
applies the following transformation to all coordinates: Let $(x,y)$ be
the coordinate to be transformed and let ⟨coordinate⟩ specify the point
$(t_x,t_y)$. Then the new coordinate is given by
$\left(\begin{smallmatrix} a & c \\ b & d\end{smallmatrix}\right)
    \left(\begin{smallmatrix} x \\ y \end{smallmatrix}\right) +
    \left(\begin{smallmatrix} t_x \\ t_y \end{smallmatrix}\right)$.
Usually, you do not use this option directly.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                             (0,0) -- (1,1) -- (1,0);
      \draw[cm={1,1,0,1,(0,0)},blue]    (0,0) -- (1,1) -- (1,0);
      \draw[cm={0,1,1,0,(1cm,1cm)},red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cm",
      meta = "{⟨$a$⟩,⟨$b$⟩,⟨$c$⟩,⟨$d$⟩,⟨coordinate⟩}"
    },
    color = {
      details = [[
This option sets the color that is used for fill, drawing, and text
inside the current scope. Any special settings for filling colors or
drawing colors are immediately "overruled" by this option.

The ⟨color name⟩ is the name of a previously defined color. For
LaTeX users, this is just a normal "LaTeX-color" and the `xcolor`
extensions are allowed. Here is an example:

    \tikz \fill[color=red!20] (0,0) circle (1ex);

It is possible to "leave out" the `color=` part and you can also write:

    \tikz \fill[red!20] (0,0) circle (1ex);

What happens is that every option that TikZ does not know, like
`red!20`, gets a "second chance" as a color name.

For plain TeX users, it is not so easy to specify colors since plain
TeX has no "standardized" color naming mechanism. Because of this,
PGF emulates the `xcolor` package, though the emulation is *extremely
basic* (more precisely, what I could hack together in two hours or so).
The emulation allows you to do the following:

-   Specify a new color using `\definecolor`. Only the color models
    `gray`, `rgb`, and `RGB` are supported[1].
    `\definecolor{orange}{rgb}{1,0.5,0}`

-   Use `\colorlet` to define a new color based on an old one. Here, the
    `!` mechanism is supported, though only "once" (use multiple
    `\colorlet` for more fancy colors). `\colorlet{lightgray}{black!25}`

-   Use `\color``{color name}` to set the color in the current
    TeX group. `\aftergroup`-hackery is used to restore the color after
    the group.

[1] ConTeXt users should be aware that `\definecolor` has a different
meaning in ConTeXt. There is a low-level equivalent named
`\pgfutil@definecolor` which can be used instead.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/color",
      meta = "⟨color name⟩"
    },
    ["colored tokens"] = {
      details = [[
This option, which must also be given when a place node is being
created, gets a list of colors as parameter. It will then add as many
tokens to the place as there are colors in this list, each filled
correspondingly.

    \tikz  \node[place,colored tokens={black,black,red,blue}] {};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/colored:tokens",
      meta = "⟨color list⟩"
    },
    ["column sep"] = {
      details = [[
This option sets a default space that is added between every two
columns. This space can be positive or negative and is zero by default.
The ⟨spacing list⟩ normally contains a single dimension like `2pt`.

    \begin{tikzpicture}
      \matrix [draw,column sep=1cm,nodes=draw]
      {
        \node(a) {123}; & \node (b) {1};   & \node {1}; \\
        \node    {12};  & \node     {12};  & \node {1}; \\
        \node(c) {1};   & \node (d) {123}; & \node {1}; \\
      };
      \draw [red,thick]  (a.east) -- (a.east |- c)
                         (d.west) -- (d.west |- b);
      \draw [<->,red,thick] (a.east) -- (d.west |- b)
        node [above,midway] {1cm};
    \end{tikzpicture}

More generally, the ⟨spacing list⟩ may contain a whole list of numbers,
separated by commas, and occurrences of the two key words
`between origins` and `between borders`. The effect of specifying such a
list is the following: First, all numbers occurring in the list are
simply added to compute the final spacing. Second, concerning the two
keywords, the last occurrence of one of the keywords is important. If
the last occurrence is `between borders` or if neither occurs, then the
space is inserted between the two columns normally. However, if the last
occurs is `between origins`, then the following happens: The distance
between the columns is adjusted such that the difference between the
origins of all the cells in the first column (remember that they all lie
on straight line) and the origins of all the cells in the second column
is exactly the given distance.

*The* `between origins` *option can only be used for columns mentioned
in the first row, that is, you cannot specify this option for columns
introduced only in later rows.*

    \begin{tikzpicture}
      \matrix [draw,column sep={1cm,between origins},nodes=draw]
      {
        \node(a) {123}; & \node (b) {1};   & \node {1}; \\
        \node    {12};  & \node     {12};  & \node {1}; \\
        \node    {1};   & \node     {123}; & \node {1}; \\
      };
      \draw [<->,red,thick] (a.center) -- (b.center) node [above,midway] {1cm};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/column:sep",
      meta = "⟨spacing list⟩"
    },
    ["column ⟨number⟩"] = {
      details = [[
This style is used for every cell in column ⟨number⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/column:⟨number⟩"
    },
    concept = {
      details = [[
This style should be used with all nodes that are concepts, although
some styles like `extra concept` install this style automatically.

Basically, this style makes the concept node circular and installs a
uniform color called `concept color`, see below. Additionally, the style
`every concept` is called.

    \tikz[mindmap,concept color=red!50] \node [concept] {Some concept};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/concept"
    },
    ["concept color"] = {
      details = [[
We saw already that this option is used to change the color of concepts.
We now have a look at its effect when used on child nodes of a concept.
Normally, this option simply changes the color of the children. However,
when the option is given as an option to the `child` operation (and not
to the `node` operation and also not as an option to all children via
the `level 1` style), TikZ will smoothly change the concept color from
the parent's color to the color of the child concept.

Here is an example:

    \tikz[mindmap,concept color=blue!80]
      \node [concept] {Root concept}
        child[concept color=red,grow=30] {node[concept] {Child concept}}
        child[concept color=orange,grow=0]  {node[concept] {Child concept}};

In order to have a concept color which changes with the hierarchy level,
a tiny bit of magic is needed:

    \tikz[mindmap,text=white,
          root concept/.style={concept color=blue},
          level 1 concept/.append style=
            {every child/.style={concept color=blue!50}}]
      \node [concept] {Root concept}
        child[grow=30] {node[concept] {child}}
        child[grow=0 ] {node[concept] {child}};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/concept:color",
      meta = "⟨color⟩"
    },
    ["concept connection"] = {
      details = [[
This style can be used for lines between two concepts. Feel free to
redefine this style.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/concept:connection"
    },
    ["connect spies"] = {
      details = [[
Causes the spy-in and the spy-on nodes to be connected by a thin line.

    \begin{tikzpicture}
      [spy using overlays={circle, magnification=3, size=1cm}]

      \draw [decoration=Koch curve type 2]
        decorate{ decorate{ decorate{ (0,0) -- (2,0) }}};

      \spy [green] on (1.6,0.1) in node at (3,1);
      \spy [red,connect spies] on (0.5,0.4) in node at (1,1.5);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/connect:spies"
    },
    ["const plot"] = {
      details = [[
This option causes the points on the path to be connected using
piecewise constant series of lines:

    \tikz\draw plot[const plot] file{plots/pgfmanual-sine.table};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/const:plot"
    },
    ["const plot mark left"] = {
      details = [[
Just an alias for `/tikz/const plot`.

    \tikz\draw plot[const plot mark left,mark=*] file{plots/pgfmanual-sine.table};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/const:plot:mark:left"
    },
    ["const plot mark mid"] = {
      details = [[
A variant of `/tikz/const plot` which places its mark in the middle of
the horizontal lines:

    \tikz\draw plot[const plot mark mid,mark=*] file{plots/pgfmanual-sine.table};

More precisely, it generates vertical lines in the middle between each
pair of consecutive points. If the mesh width is constant, this leads to
symmetrically placed marks ("middle").
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/const:plot:mark:mid"
    },
    ["const plot mark right"] = {
      details = [[
A variant of `/tikz/const plot` which places its mark on the right ends:

    \tikz\draw plot[const plot mark right,mark=*] file{plots/pgfmanual-sine.table};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/const:plot:mark:right"
    },
    ["continue branch"] = {
      details = [[
This option works like the `continue chain` option, only ⟨current
chain⟩`/`⟨branch name⟩ is used as the chain name, rather than just
⟨branch name⟩.

    \begin{tikzpicture}[every on chain/.style=join,every join/.style=->,
                        node distance=2mm and 1cm]
      { [start chain=trunk]
        \node [on chain] {A};
        \node [on chain] {B};
        { [start branch=numbers going below] } % just a declaration,
        { [start branch=greek   going above] } % we will come back later
        \node [on chain] {C};

        % Now come the branches...
        { [continue branch=numbers]
          \node [on chain] {1};
          \node [on chain] {2};
        }
        { [continue branch=greek]
          \node [on chain] {$\alpha$};
          \node [on chain] {$\beta$};
        }
      }
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/continue:branch",
      meta = "⟨branch name⟩⟨direction⟩"
    },
    ["continue chain"] = {
      details = [[
This option allows you to (re)activate an existing chain and to possibly
change the default direction. If the `chain name` is missing, the name
of the innermost activated chain is used. If no chain is activated,
`chain` is used.

Let us have a look at the two different applications of this option. The
first is to change the direction of a chain as it is being constructed.
For this, just give this option somewhere inside the scope of the chain.

    \begin{tikzpicture}[start chain=going right,node distance=5mm]
      \node [draw,on chain] {Hello};
      \node [draw,on chain] {World};
      \node [draw,continue chain=going below,on chain] {,};
      \node [draw,on chain] {this};
      \node [draw,on chain] {is};
    \end{tikzpicture}

The second application is to reactivate a chain after it "has already
been closed down".

    \begin{tikzpicture}[node distance=5mm,
                        every node/.style=draw]
      { [start chain=1]
        \node [on chain] {A};
        \node [on chain] {B};
        \node [on chain] {C};
      }

      { [start chain=2 going below]
        \node [on chain=2] at (0.5,-.5) {0};
        \node [on chain=2] {1};
        \node [on chain=2] {2};
      }

      { [continue chain=1]
        \node [on chain] {D};
      }
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/continue:chain",
      meta = "⟨chain name⟩⟨direction⟩"
    },
    controls = {
      details = [[
This option causes the ⟨coordinate⟩s to be used as control points.

    \tikz \draw (0,0) to [controls=+(90:1) and +(90:1)] (3,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/controls",
      meta = "⟨coordinate⟩ and ⟨coordinate⟩"
    },
    ["copy shadow"] = {
      details = [[
This shadow installs the following default options:

      shadow scale=1, shadow xshift=.5ex, shadow yshift=-.5ex, every shadow

Furthermore, the options `fill=`⟨fill color⟩ and `draw=`⟨draw color⟩ are
also set, where the ⟨fill color⟩ and ⟨draw color⟩ are the fill and draw
colors used for the main path.

    \begin{tikzpicture}
      \node [copy shadow,fill=blue!20,draw=blue,thick] {Hello World!};

      \node at (0,-1) [copy shadow={shadow xshift=1ex,shadow yshift=1ex},
                       fill=blue!20,draw=blue,thick]
        {Hello World!};

      \node at (0,-2) [copy shadow={opacity=.5},tape,
                       fill=blue!20,draw=blue,thick]
        {Hello World!};

      % We have to repeat the left color since shadings are not
      % automatically applied to shadows
      \node at (0,-3) [copy shadow={left color=blue!50},
                       left color=blue!50,draw=blue,thick]
        {Hello World!};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/copy:shadow",
      meta = "⟨shadow options⟩"
    },
    ["counterclockwise from"] = {
      details = [[
Works the same way as `clockwise from`, but sibling angles are added
instead of subtracted.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/counterclockwise:from",
      meta = "⟨angle⟩"
    },
    ["cs/angle"] = {
      details = [[
Same as `longitude`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/angle",
      meta = "⟨degrees⟩"
    },
    ["cs/first line"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/first:line",
      meta = "{(⟨first % coordinate⟩)--(⟨second coordinate⟩)}"
    },
    ["cs/first node"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/first:node",
      meta = "⟨node⟩"
    },
    ["cs/horizontal line through"] = {
      details = [[
Specifies that one line is a horizontal line that goes through the given
coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/horizontal:line:through",
      meta = "{(⟨coordinate⟩)}"
    },
    ["cs/latitude"] = {
      details = [[
Angle of the coordinate between the $y$- and $z$-vector, measured from
the $y$-vector.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/latitude",
      meta = "⟨degrees⟩"
    },
    ["cs/longitude"] = {
      details = [[
Angle of the coordinate between the $x$- and $y$-vector, measured from
the $y$-vector.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/longitude",
      meta = "⟨degrees⟩"
    },
    ["cs/name"] = {
      details = [[
Specifies the node that you wish to use to specify a coordinate. The
⟨node name⟩ is the name that was previously used to name the node using
the `name=`⟨node name⟩ option or the special node name syntax.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/name",
      meta = "⟨node name⟩"
    },
    ["cs/node"] = {
      details = [[
This key specifies the node on whose border the tangent should lie.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/node",
      meta = "⟨node⟩"
    },
    ["cs/point"] = {
      details = [[
This key specifies the point through which the tangent should go.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/point",
      meta = "⟨point⟩"
    },
    ["cs/radius"] = {
      details = [[
Factor by which the $x$-, $y$-, and $z$-vector are multiplied.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/radius",
      meta = "⟨number⟩"
    },
    ["cs/second line"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/second:line",
      meta = "{(⟨first % coordinate⟩)--(⟨second coordinate⟩)}"
    },
    ["cs/second node"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/second:node",
      meta = "⟨node⟩"
    },
    ["cs/solution"] = {
      details = [[
Specifies which solution should be used if there are more than one.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/solution",
      meta = "⟨number⟩"
    },
    ["cs/vertical line through"] = {
      details = [[
Specifies that the other line is vertical and goes through the given
coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/vertical:line:through",
      meta = "{(⟨coordinate⟩)}"
    },
    ["cs/x"] = {
      details = [[
The $x$ component of the coordinate. Should be given *without* unit.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/x",
      meta = "⟨number⟩"
    },
    ["cs/x radius"] = {
      details = [[
A specific factor by which only the $x$-vector is multiplied.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/x:radius",
      meta = "⟨dimension⟩"
    },
    ["cs/y"] = {
      details = [[
Distance by which the coordinate is above the origin.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/y",
      meta = "⟨dimension⟩"
    },
    ["cs/y radius"] = {
      details = [[
Works like `x radius`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/y:radius",
      meta = "⟨dimension⟩"
    },
    ["cs/z"] = {
      details = [[
Works like `x`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/cs/z",
      meta = "⟨factor⟩"
    },
    ["current point is local"] = {
      details = [[
Normally, the scope path operation has no effect on the current point.
That is, curly braces on a path have no effect on the current position:

    \begin{tikzpicture}
      \draw      (0,0) -- ++(1,0)   -- ++(0,1)   -- ++(-1,0);
      \draw[red] (2,0) -- ++(1,0) { -- ++(0,1) } -- ++(-1,0);
    \end{tikzpicture}

If you set this key to `true`, this behavior changes. In this case, at
the end of a group created on a path, the last current position reverts
to whatever value it had at the beginning of the scope. More precisely,
when TikZ encounters `}` on a path, it checks whether at this particular
moment the key is set to `true`. If so, the current position reverts to
the value it had when the matching `{` was read.

    \begin{tikzpicture}
      \draw      (0,0) -- ++(1,0)   -- ++(0,1)   -- ++(-1,0);
      \draw[red] (2,0) -- ++(1,0)
         { [current point is local] -- ++(0,1) } -- ++(-1,0);
    \end{tikzpicture}

In the above example, we could also have given the option outside the
scope, for instance as a parameter to the whole scope.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/current:point:is:local",
      meta = "⟨boolean⟩"
    },
    ["curve to"] = {
      details = [[
Specifies that the `to path` should be a curve. This curve will leave
the start coordinate at a certain angle, which can be specified using
the `out` option. It reaches the target coordinate also at a certain
angle, which is specified using the `in` option. The control points of
the curve are at a certain distance that is computed in different ways,
depending on which options are set.

All of the following options implicitly cause the `curve to` style to be
installed.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/curve:to"
    },
    dash = {
      details = [[
Sets the dashing pattern and phase at the same time.

    \begin{tikzpicture}
      \draw [dash=on 20pt off 10pt phase  0pt] (0pt,3pt) -- (3.5cm,3pt);
      \draw [dash=on 20pt off 10pt phase 10pt] (0pt,0pt) -- (3.5cm,0pt);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/dash",
      meta = "⟨dash pattern⟩phase⟨dash phase⟩"
    },
    ["dash dot"] = {
      details = [[
Shorthand for setting a dashed and dotted dash pattern.

    \tikz \draw[dash dot] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/dash:dot"
    },
    ["dash dot dot"] = {
      details = [[
Shorthand for setting a dashed and dotted dash pattern with more dots.

    \tikz \draw[dash dot dot] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/dash:dot:dot"
    },
    ["dash expand off"] = {
      details = [[
Makes the `off` part of a dash pattern expandable such that it can
stretch. This only works when there is a single `on` and a single `off`
field and requires the `decorations` library. Right now this option has
to be specified on the path where it is supposed to take effect after
the `dash pattern` option because the dash pattern has to be known at
the point where it is applied.

    \begin{tikzpicture}[|-|, dash pattern=on 4pt off 2pt]
      \draw [dash expand off] (0pt,30pt) -- (26pt,30pt);
      \draw [dash expand off] (0pt,20pt) -- (24pt,20pt);
      \draw [dash expand off] (0pt,10pt) -- (22pt,10pt);
      \draw [dash expand off] (0pt, 0pt) -- (20pt, 0pt);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/dash:expand:off"
    },
    ["dash pattern"] = {
      details = [[
Sets the dashing pattern. The syntax is the same as in METAFONT. For
example following pattern `on 2pt off 3pt on 4pt off 4pt` means "draw
2pt, then leave out 3pt, then draw 4pt once more, then leave out 4pt
again, repeat".

    \begin{tikzpicture}[dash pattern=on 2pt off 3pt on 4pt off 4pt]
      \draw (0pt,0pt) -- (3.5cm,0pt);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/dash:pattern",
      meta = "⟨dash pattern⟩"
    },
    ["dash phase"] = {
      details = [[
Shifts the start of the dash pattern by ⟨phase⟩.

    \begin{tikzpicture}[dash pattern=on 20pt off 10pt]
      \draw[dash phase=0pt] (0pt,3pt) -- (3.5cm,3pt);
      \draw[dash phase=10pt] (0pt,0pt) -- (3.5cm,0pt);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/dash:phase",
      meta = "⟨dash phase⟩"
    },
    dashed = {
      details = [[
Shorthand for setting a dashed dash pattern.

    \tikz \draw[dashed] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/dashed"
    },
    ["data visualizers/visualize as line"] = {
      details = [[
Creates a new visualizer named ⟨visualizer name⟩. Basically, this
visualizer connects all data points for which the `/data point/set`
attribute equals ⟨visualizer name⟩ by a line that is styled by the
visualizer's style.

In more detail, the following happens:

1.  A new object is created (of class `plot handler visualizer`) that is
    configured to collect the canvas positions of all data points whose
    `set` attribute equals ⟨visualizer name⟩.

2.  During the end of the data visualization, PGF's plotting mechanism
    (see Section ??) is used to plot the stream of recorded data points.

    This means that, in principle, all of the plot handlers available in
    TikZ could be used for the visualization (such as the `smooth`
    handler). However, some plot handlers such as, say, the `xcomb` are
    unsuitable as plot handlers since they do not support the advanced
    axis handling done by the data visualization engine. Because of this
    (and also for other reasons), you cannot set the plot handler
    directly, but must use one of the options like `straight line`,
    `smooth line` and others, documented in a moment.

3.  Additionally, plot marks can be drawn at the collected data points.
    Here, all of the options available to TikZ for drawing plot marks
    are available. To configure them, all options offered by TikZ for
    configuring marks are available such as `mark repeat`:

        \tikz \datavisualization
         [scientific axes=clean,
          visualize as line=my data,
          my data={style={mark=x, mark repeat=3}}]
        data [format=function] {
          var x : interval [0:pi] samples 10;
          func y = sin(\value x r);
        };

The line visualizer also provides a method of dealing with gaps in a
line. Take for instance the function $f(x) = \tan x$. When this function
is plotted over the interval $[0,\pi]$, then the function will go to
$\pm
    \infty$ at $\pi/2$. When we plot this, we might plot the function in
the interval $[0,\frac{\pi}{2}-\epsilon]$ and then continue in the
interval $[\frac{\pi}{2}+\epsilon,\pi]$. However, we do not want the
point at coordinate $\bigl(\frac{\pi}{2}- \epsilon, \tan(\frac{\pi}{2}-
    \epsilon)\bigr)$ to be connected to the coordinate
$\bigl(\frac{\pi}{2}+
    \epsilon, \tan(\frac{\pi}{2}+ \epsilon)\bigr)$ by a line. Rather,
there should be a "gap" or a "jump" between these coordinates. To
achieve this, the following key can be used:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualizers/visualize:as:line",
      meta = "⟨visualizer name⟩"
    },
    ["data visualizers/visualize as scatter"] = {
      details = [[
A shorthand `visualize as line=`⟨visualizer name⟩ followed ⟨visualizer
name⟩`=no lines` and setting the `style` of the visualizer so that is
will use `mark=x` (plus some size adjustments) to draw marks at the data
points.

    \tikz \datavisualization
     [scientific axes=clean,
      visualize as scatter]
    data [format=function] {
      var x : interval [0:pi] samples 10;
      func y = sin(\value x r);
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualizers/visualize:as:scatter",
      meta = "⟨visualizer name⟩"
    },
    ["data visualizers/visualize as smooth line"] = {
      details = [[
A shorthand `visualize as line=`⟨visualizer name⟩ followed ⟨visualizer
name⟩`=smooth line`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/data:visualizers/visualize:as:smooth:line",
      meta = "⟨visualizer name⟩"
    },
    dates = {
      details = [[
This option specifies the date range. Both the start and end date are
specified and described on page ??. In short: You can provide ISO-format
type dates like `2006-01-02`, you can replace the day of month by `last`
to refer to the last day of a month (so `2006-02-last` is the same as
`2006-02-28`), and you can add a plus sign followed by a number to
specify an offset (so `2006-01-01+-1` is the same as `2005-12-31`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/dates",
      meta = "⟨start date⟩ to ⟨end date⟩"
    },
    ["day code"] = {
      details = [[
This option allows you to change the code that is executed for each day.
The default is to create a node with an appropriate name, but you can
change this:

    \tikz \calendar[dates=2000-01-01 to 2000-01-31,week list,
                    day code={\fill[blue] (0,0) circle (2pt);}];

The default code is the following:

    \node[name=\pgfcalendarsuggestedname,every day]{\tikzdaytext};

The first part causes the day nodes to be accessible via the following
names: If ⟨name⟩ is the name given to the calendar via a `name=` option
or via the specification element `(`⟨name⟩`)`, then
`\pgfcalendarsuggestedname` will expand to ⟨name⟩`-`⟨date⟩, where ⟨date⟩
is the date of the day that is currently being processed in ISO format.

For example, if January 1, 2006 is being processed and the calendar has
been named `mycal`, then the node containing the `1` for this date will
be names `mycal-2006-01-01`. You can later reference this node.

    \begin{tikzpicture}
      \calendar (mycal) [dates=2000-01-01 to 2000-01-31,week list];

      \draw[red] (mycal-2000-01-20) circle (4pt);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/day:code",
      meta = "⟨code⟩"
    },
    ["day list downward"] = {
      details = [[
This style causes the days of a month to be typeset one below the other.
The shift between days is given by `day yshift`. Between month an
additional shift of `month yshift` is added.

    \tikz
      \calendar [dates=2000-01-28 to 2000-02-03,
                 day list downward,month yshift=1em];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/day:list:downward"
    },
    ["day list left"] = {
      details = [[
As above, but the list grows left.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/day:list:left"
    },
    ["day list right"] = {
      details = [[
This style also works as before, but the list of days grows to the
right. Instead of `day yshift` and `month yshift`, the values of
`day xshift` and `month xshift` are used.

    \tikz
      \calendar [dates=2000-01-28 to 2000-02-03,
                 day list right,month xshift=1em];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/day:list:right"
    },
    ["day list upward"] = {
      details = [[
Works as above, only the list grows upward instead of downward.

    \tikz
      \calendar [dates=2000-01-28 to 2000-02-03,
                 day list upward,month yshift=1em];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/day:list:upward"
    },
    ["day text"] = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/day:text",
      meta = "⟨text⟩"
    },
    ["day xshift"] = {
      details = [[
Specifies the horizontal shift between days. This is not the gap between
days, but the shift between the anchors of their nodes.

    \tikz \calendar[dates=2000-01-01 to 2000-01-31,week list,day xshift=3ex];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/day:xshift",
      meta = "⟨dimension⟩"
    },
    ["day yshift"] = {
      details = [[
Specifies the vertical shift between days. Again, this is the shift
between the anchors of their nodes.

    \tikz \calendar[dates=2000-01-01 to 2000-01-31,week list,day yshift=2ex];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/day:yshift",
      meta = "⟨dimension⟩"
    },
    decorate = {
      details = [[
When this key is set, the whole path is decorated after it has been
finished. The decoration used for decorating the path is set via the
`decoration` way, in exactly the same way as for the `decorate` path
command. Indeed, the following two commands have the same effect:

1.  `\path decorate[`⟨options⟩`] {`⟨path⟩`};`

2.  `\path [decorate,`⟨options⟩`] `⟨path⟩`;`

The main use or the `decorate` option is the you can also use it with
the nodes. It then causes the background path of the node to be
decorated. Note that you can decorate a background path only once in
this manner. That is, in contrast to the `decorate` path command you
cannot apply this option twice (this would just set it to `true`, once
more).

    \begin{tikzpicture}[decoration=zigzag]
      \draw [help lines] (0,0) grid (3,5);

      \draw [fill=blue!20,decorate] (1.5,4) circle (1cm);

      \node at (1.5,2.5) [fill=red!20,decorate,ellipse] {Ellipse};

      \node at (1.5,1) [inner sep=6mm,fill=red!20,decorate,ellipse,decoration=
        {text along path,text={This is getting silly}}] {Ellipse};
    \end{tikzpicture}

In the last example, the `text along path` decoration removes the path.
In such cases it is useful to use a pre- or postaction to cause the
decoration to be applied only before or after the main path has been
used. Incidentally, this is another application of the `decorate` option
that you cannot achieve with the decorate path command.

    \begin{tikzpicture}[decoration=zigzag]
      \node at (1.5,1) [inner sep=6mm,fill=red!20,ellipse,
        postaction={decorate,decoration=
        {text along path,text={This is getting silly}}}] {Ellipse};
    \end{tikzpicture}

Here is more useful example, where a postaction is used to add the path
after the main path has been drawn.

    \begin{tikzpicture}
    \draw [help lines] grid (3,2);
    \fill [draw=red,fill=red!20,
             postaction={decorate,decoration={raise=2pt,text along path,
               text=around and around and around and around we go}}]
      (0,1) arc (180:-180:1.5cm and 1cm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/decorate",
      meta = "⟨boolean⟩"
    },
    ["delta angle"] = {
      details = [[
Sets the delta angle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/delta:angle",
      meta = "⟨degrees⟩"
    },
    ["densely dash dot"] = {
      details = [[
Shorthand for setting a densely dashed and dotted dash pattern.

    \tikz \draw[densely dash dot] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/densely:dash:dot"
    },
    ["densely dash dot dot"] = {
      details = [[
Shorthand for setting a densely dashed and dotted dash pattern with more
dots.

    \tikz \draw[densely dash dot dot] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/densely:dash:dot:dot"
    },
    ["densely dashed"] = {
      details = [[
Shorthand for setting a densely dashed dash pattern.

    \tikz \draw[densely dashed] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/densely:dashed"
    },
    ["densely dotted"] = {
      details = [[
Shorthand for setting a densely dotted dash pattern.

    \tikz \draw[densely dotted] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/densely:dotted"
    },
    distance = {
      details = [[
Set the minimum and maximum distance to the same value ⟨distance⟩. Note
that this causes any computed distance $d$ to be ignored and ⟨distance⟩
to be used instead.

    \begin{tikzpicture}[out=45,in=135,distance=1cm]
      \draw (0,0) to (1,0)
            (0,0) to (2,0)
            (0,0) to (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/distance",
      meta = "⟨distance⟩"
    },
    domain = {
      details = [[
Sets the domain from which the samples are taken.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/domain",
      meta = "⟨start⟩:⟨end⟩"
    },
    dotted = {
      details = [[
Shorthand for setting a dotted dash pattern.

    \tikz \draw[dotted] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/dotted"
    },
    double = {
      details = [[
This option causes "two" lines to be drawn instead of a single one.
However, this is not what really happens. In reality, the path is drawn
twice. First, with the normal drawing color, secondly with the ⟨core
color⟩, which is normally `white`. Upon the second drawing, the line
width is reduced. The net effect is that it appears as if two lines had
been drawn and this works well even with complicated, curved paths:

    \tikz \draw[double]
      plot[smooth cycle] coordinates{(0,0) (1,1) (1,0) (0,1)};

You can also use the doubling option to create an effect in which a line
seems to have a certain "border":

    \begin{tikzpicture}
      \draw (0,0) -- (1,1);
      \draw[draw=white,double=red,very thick] (0,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/double",
      meta = "⟨core color⟩"
    },
    ["double copy shadow"] = {
      details = [[
This shadow works like a `copy shadow`, only the shadow is added twice,
the second time with the double `xshift` and `yshift`.

    \begin{tikzpicture}
      \node [double copy shadow,fill=blue!20,draw=blue,thick] {Hello World!};

      \node at (0,-1) [double copy shadow={shadow xshift=1ex,shadow yshift=1ex},
                       fill=blue!20,draw=blue,thick]
        {Hello World!};

      \node at (0,-2) [double copy shadow={opacity=.5},tape,
                       fill=blue!20,draw=blue,thick]
        {Hello World!};

      \node at (0,-3) [double copy shadow={left color=blue!50},
                       left color=blue!50,draw=blue,thick]
        {Hello World!};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/double:copy:shadow",
      meta = "⟨shadow options⟩"
    },
    ["double distance"] = {
      details = [[
Sets the distance the "two" lines are spaced apart. In reality, this is
the thickness of the line that is used to draw the path for the second
time. The thickness of the *first* time the path is drawn is twice the
normal line width plus the given ⟨dimension⟩. As a side-effect, this
option "selects" the `double` option.

    \begin{tikzpicture}
      \draw[very thick,double]              (0,0) arc (180:90:1cm);
      \draw[very thick,double distance=2pt] (1,0) arc (180:90:1cm);
      \draw[thin,double distance=2pt]       (2,0) arc (180:90:1cm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/double:distance",
      meta = "⟨dimension⟩"
    },
    ["double distance between line centers"] = {
      details = [[
This option works like `double distance`, only the distance is not the
distance between (inner) borders of the two main lines, but between
their centers. Thus, the thickness the *first* time the path is drawn is
the normal line width plus the given ⟨dimension⟩, while the line width
of the *second* line that is drawn is ⟨dimension⟩ minus the normal line
width. As a side-effect, this option "selects" the `double` option.

    \begin{tikzpicture}[double distance between line centers=3pt]
      \foreach \lw in {0.5,1,1.5,2,2.5}
        \draw[line width=\lw pt,double] (\lw,0) -- ++(4mm,0);
    \end{tikzpicture}

    \begin{tikzpicture}[double distance=3pt]
      \foreach \lw in {0.5,1,1.5,2,2.5}
        \draw[line width=\lw pt,double] (\lw,0) -- ++(4mm,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/double:distance:between:line:centers",
      meta = "⟨dimension⟩"
    },
    ["double equal sign distance"] = {
      details = [[
This style selects a double line distance such that it corresponds to
the distance of the two lines in an equal sign.

    \Huge $=\implies$\tikz[baseline,double equal sign distance]
                        \draw[double,thick,-{Implies[]}](0,0.55ex) --++(3ex,0);

    \normalsize $=\implies$\tikz[baseline,double equal sign distance]
                              \draw[double,-{Implies[]}](0,0.6ex) --++(3ex,0);

    \tiny $=\implies$\tikz[baseline,double equal sign distance]
                       \draw[double,very thin,-{Implies[]}](0,0.5ex) -- ++(3ex,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/double:equal:sign:distance"
    },
    draw = {
      details = [[
Causes the path to be drawn. "Drawing" (also known as "stroking") can be
thought of as picking up a pen and moving it along the path, thereby
leaving "ink" on the canvas.

There are numerous parameters that influence how a line is drawn, like
the thickness or the dash pattern. These options are explained below.

If the optional ⟨color⟩ argument is given, drawing is done using the
given ⟨color⟩. This color can be different from the current filling
color, which allows you to draw and fill a path with different colors.
If no ⟨color⟩ argument is given, the last usage of the `color=` option
is used.

If the special color name `none` is given, this option causes drawing to
be "switched off". This is useful if a style has previously switched on
drawing and you locally wish to undo this effect.

Although this option is normally used on paths to indicate that the path
should be drawn, it also makes sense to use the option with a `{scope}`
or `{tikzpicture}` environment. However, this will *not* cause all paths
to be drawn. Instead, this just sets the ⟨color⟩ to be used for drawing
paths inside the environment.

    \begin{tikzpicture}
      \path[draw=red] (0,0) -- (1,1) -- (2,1) circle (10pt);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/draw",
      meta = "⟨color⟩"
    },
    ["draw opacity"] = {
      details = [[
This option sets "how transparent" lines should be. A value of `1` means
"fully opaque" or "not transparent at all", a value of `0` means "fully
transparent" or "invisible". A value of `0.5` yields lines that are
semitransparent.

Note that when you use PostScript as your output format, this option
works only with recent versions of Ghostscript.

    \begin{tikzpicture}[line width=1ex]
      \draw (0,0) -- (3,1);
      \filldraw [fill=yellow!80!black,draw opacity=0.5] (1,0) rectangle (2,1);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/draw:opacity",
      meta = "⟨value⟩"
    },
    ["drop shadow"] = {
      details = [[
This option adds a drop shadow to a `\path` or a `node`. It uses the
`general shadow` and passes the ⟨shadow options⟩ to it, plus, before
them, the following extra options:

      shadow scale=1, shadow xshift=.5ex, shadow yshift=-.5ex,
      opacity=.5, fill=black!50, every shadow

    \tikz [even odd rule]
      \filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);

    \begin{tikzpicture}
      \foreach \i in {1,...,4}
        \node[starburst,drop shadow,fill=white,draw] at (0,\i) {Burst \i};
    \end{tikzpicture}

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      \filldraw [drop shadow={opacity=1},fill=white]
        (1,2)  circle (.5) (1.5,2)  circle (.5);

      \filldraw [drop shadow={opacity=0.25},fill=white]
        (1,.5) circle (.5) (1.5,.5) circle (.5);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/drop:shadow",
      meta = "⟨shadow options⟩"
    },
    ["edge from parent"] = {
      details = [[
This style is inserted right before the `edge from parent path` and
before the ⟨options⟩ are inserted.

    \begin{tikzpicture}
      [edge from parent/.style={draw,red,thick}]
      \node {root}
        child {node {left} edge from parent[dashed]}
        child {node {right}
          child {node {child}}
          child {node {child} edge from parent[draw=none]}
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:from:parent"
    },
    ["edge from parent fork down"] = {
      details = [[
This style will draw a line from the parent downwards (for half the
level distance) and then on to the child using only horizontal and
vertical lines.

    \begin{tikzpicture}
      \node {root}
        [edge from parent fork down]
        child {node {left}}
        child {node {right}
          child[child anchor=north east] {node {child}}
          child {node {child}}
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:from:parent:fork:down"
    },
    ["edge from parent fork left"] = {
      details = [[
Behaves similarly to the previous styles.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:from:parent:fork:left"
    },
    ["edge from parent fork right"] = {
      details = [[
This style behaves similarly, only it will first draw its edge to the
right.

    \begin{tikzpicture}
      \node {root}
        [edge from parent fork right,grow=right]
        child {node {left}}
        child {node {right}
          child {node {child}}
          child {node {child}}
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:from:parent:fork:right"
    },
    ["edge from parent fork up"] = {
      details = [[
Behaves similarly to the previous styles.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:from:parent:fork:up"
    },
    ["edge from parent macro"] = {
      details = [[
The ⟨macro⟩ gets expanded each time the `edge from parent` path
operation is used. This ⟨macro⟩ must take two parameters and must expand
to some text that is subsequently parsed by the parser. The first
parameter will be the set of ⟨options⟩ that where passed to the
`edge from parent` command, the second parameter will be the ⟨node
specifications⟩ that following the command.

The standard behavior of drawing a straight line from the parent node to
the child node could be achieved by setting the ⟨macro⟩ to the
following:

    \def\mymacro#1#2{
      [style=edge from parent, #1]
      (\tikzparentnode\tikzparentanchor) -- #2 (\tikzchildnode\tikzchildanchor)
    }

Note that `# 2` is placed between `–` and the node to ensure that nodes
are put "on top" of the line.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:from:parent:macro",
      meta = "⟨macro⟩"
    },
    ["edge from parent path"] = {
      details = [[
This option allows you to set the `edge from parent path` to a new path.
Initially, this path is the following:

    (\tikzparentnode\tikzparentanchor) -- (\tikzchildnode\tikzchildanchor)

The `\tikzparentnode` is a macro that will expand to the name of the
parent node. This works even when you have not assigned a name to the
parent node, in this case an internal name is automatically generated.
The `\tikzchildnode` is a macro that expands to the name of the child
node. The two `...anchor` macros are empty by default. So, what is
essentially inserted is just the path segment
`(\tikzparentnode) – (\tikzchildnode)`; which is exactly an edge from
the parent to the child.

You can modify this edge from parent path to achieve all sorts of
effects. For example, we could replace the straight line by a curve as
follows:

    \begin{tikzpicture}[level distance=15mm, sibling distance=15mm,
      edge from parent path=
      {(\tikzparentnode.south) .. controls +(0,-1) and +(0,1)
                               .. (\tikzchildnode.north)}]
      \node {root}
        child {node {left}}
        child {node {right}
          child {node {child}}
          child {node {child}}
        };
    \end{tikzpicture}

Further useful `edge from parent path`s are defined in the tree library,
see Section ??.

The nodes in a ⟨node specification⟩ following the `edge from parent`
path command get executed as if the `pos` option had been added to all
these nodes, see also Section ??.

As an example, consider the following code:

    \node (root) {} child {node (child) {} edge to parent node {label}};

The `edge to parent` operation and the following `node` operation will,
together, have the same effect as if we had said:

    (root) -- (child) node [pos=0.5] {label}

Here is a more complicated example:

    \begin{tikzpicture}
      \node {root}
        child {
          node {left}
          edge from parent
            node[left] {a}
            node[right] {b}
        }
        child {
          node {right}
            child {
              node {child}
              edge from parent
                node[left] {c}
            }
            child {node {child}}
          edge from parent
            node[near end] {x}
        };
    \end{tikzpicture}

As said before, the anchors in the default `edge from parent path` are
empty. However, you can set them using the following keys:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:from:parent:path",
      meta = "⟨path⟩"
    },
    ["edge label"] = {
      details = [[
A shorthand for `edge node={node[auto]{`⟨text⟩`}}`.

    \tikz \draw (0,0) to [edge label=x] (3,2);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:label",
      meta = "⟨text⟩"
    },
    ["edge label'"] = {
      details = [[
A shorthand for `edge node={node[auto,swap]{`⟨text⟩`}}`.

    \tikz \draw (0,0) to [edge label=x, edge label'=y] (3,2);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:label'",
      meta = "⟨text⟩"
    },
    ["edge node"] = {
      details = [[
This key can be used inside the ⟨options⟩ of a `to` path command. It
will add the ⟨node specification⟩ to the list of nodes to be placed on
the connecting line, just as if you had written the ⟨node specification⟩
directly after the `to` keyword:

    \begin{tikzpicture}
      \draw (0,0) to [edge node={node [sloped,above] {x}}] (3,2);

      \draw (0,0) to [out=90,in=180,
                      edge node={node [sloped,above] {x}}] (3,2);
    \end{tikzpicture}

This key is mostly useful to create labels automatically using other
keys.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/edge:node",
      meta = "⟨node specification⟩"
    },
    ["end angle"] = {
      details = [[
Sets the end angle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/end:angle",
      meta = "⟨degrees⟩"
    },
    entity = {
      details = [[
This style is to be used with nodes that represent entity types. It
causes the node's shape to be set to a rectangle that is drawn and whose
minimum size and width are set to sensible values.

Note that this style is called `entity` despite the fact that it is to
be used for nodes representing entity *types* (the difference between an
entity and an entity type is the same as the difference between an
object and a class in object-oriented programming). If this bothers you,
feel free to define a style `entity type` instead.

    \begin{tikzpicture}
      \node[entity] (sheep)                   {Sheep};
      \node[entity] (genome) [right=of sheep] {Genome};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/entity"
    },
    evaluate = {
      details = [[
This key simply executes `\tikzmath{`⟨statements⟩`}`.

    \tikz[x=0.25cm,y=0.25cm,
      evaluate={
        int \i, \j;
        for \i in {0,...,10} {
          for \j in {0,...,10} {
            \a{\i,\j} = (\i+\j)*5;
          };
        };
      }
    ]
    \foreach \i in {0,...,10}
      \foreach \j in {0,...,10}
        \fill [red!\a{\i,\j}!yellow]  (\i,\j) rectangle ++(1, 1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/evaluate",
      meta = "{⟨statements⟩}"
    },
    ["even odd rule"] = {
      details = [[
This option causes a different method to be used for determining the
inside and outside of paths. While it is less flexible, it turns out to
be more intuitive.

With this method, we also shoot rays from the point for which we wish to
determine whether it is inside or outside the filling area. However,
this time we only count how often we "hit" the path and declare the
point to be "inside" if the number of hits is odd.

Using the even-odd rule, it is easy to "drill holes" into a path.

    \begin{tikzpicture}
      \filldraw[fill=yellow!80!black,even odd rule]
        (0,0) rectangle (1,1) (0.5,0.5) circle (0.4cm);
      \draw[->] (0.5,0.5) -- +(0,1) [above] node{crossings: $1+1 = 2$};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/even:odd:rule"
    },
    ["every above delimiter"] = {
      details = [[
Works as above.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:above:delimiter"
    },
    ["every accepting by arrow"] = {
      details = [[
Executed at the beginning of every path that contains the arrow and the
text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:accepting:by:arrow"
    },
    ["every annotation"] = {
      details = [[
This style is included by `annotation`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:annotation"
    },
    ["every attribute"] = {
      details = [[
This style is used with every attribute, and therefore also for every
key attribute.

    \begin{tikzpicture}
      [text depth=1pt,
       every attribute/.style={fill=black!20,draw=black},
       every entity/.style={fill=blue!20,draw=blue,thick},
       every relationship/.style={fill=orange!20,draw=orange,thick,aspect=1.5}]

      \node[entity] (sheep)  at (0,0)   {Sheep}
        child {node  [key attribute] {name}};
      \node[entity] (genome) at (2,0)   {Genome};
      \node[relationship]    at (1,1.5) {has}
        edge (sheep)
        edge (genome);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:attribute"
    },
    ["every below delimiter"] = {
      details = [[
Works as above.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:below:delimiter"
    },
    ["every calendar"] = {
      details = [[
This style is used with every calendar.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:calendar"
    },
    ["every cell"] = {
      details = [[
This style is installed at the beginning of each cell picture with the
two parameters being the current ⟨row⟩ and ⟨column⟩ of the cell. Note
that setting this style to `draw` will *not* cause all nodes to be drawn
since the `draw` option has to be passed to each node individually.

Inside this style (and inside all cells), the current ⟨row⟩ and ⟨column⟩
number are also accessible via the counters `\pgfmatrixcurrentrow` and
`\pgfmatrixcurrentcolumn`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:cell",
      meta = "{row}{column}"
    },
    ["every child"] = {
      details = [[
This style is used at the beginning of each child, as if you had given
the style's contents as options to the `child` operation.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:child"
    },
    ["every child node"] = {
      details = [[
This style is used at the beginning of each child node in addition to
the `every node` style.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:child:node"
    },
    ["every circle"] = {
      details = [[
You can use this key to set up, say, a default radius for every circle.
The key will also be used with the `ellipse` operation.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:circle"
    },
    ["every circle connection bar"] = {
      details = [[
Redefine this style to change the appearance of circle connection bar
to-paths.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:circle:connection:bar"
    },
    ["every circuit ee"] = {
      details = [[
Use this key to configure the appearance of logical circuits.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:circuit:ee"
    },
    ["every circuit logic"] = {
      details = [[
Use this key to configure the appearance of logical circuits.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:circuit:logic"
    },
    ["every circuit symbol"] = {
      details = [[
Use this style to set up things in general.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:circuit:symbol"
    },
    ["every concept"] = {
      details = [[
In order to change the appearance of concept nodes, you should change
this style. Note, however, that the color of a concept should be uniform
for some of the connection bar stuff to work, so you should not change
the color or the draw/fill state of concepts using this option. It is
mostly useful for changing the text color and font.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:concept"
    },
    ["every cut"] = {
      details = [[
Executed for every line that should be cut using scissors.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:cut"
    },
    ["every data"] = {
      details = [[
This key is executed for every `data` command.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:data"
    },
    ["every day"] = {
      details = [[
This style is executed by the default node code for each day. The
`every day` style is useful for changing the way days look. For example,
let us make all days red:

    \tikz[every day/.style=red]
      \calendar[dates=2000-01-01 to 2000-01-31,week list];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:day"
    },
    ["every delimiter"] = {
      details = [[
This style is executed for every delimiter. You can use it to shift or
color delimiters or do whatever.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:delimiter"
    },
    ["every edge"] = {
      details = [[
Executed for each `edge`.

    \begin{tikzpicture}[every edge/.style={draw,dashed}]
      \path (0,0) edge (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:edge"
    },
    ["every edge quotes"] = {
      details = [[
This style is `auto` by default, which causes labels specified using the
quotes-syntax to be placed next to the edges. Unless the setting of
`auto` has been changed, they will be placed to the left.

    \tikz \draw (0,0) edge ["left", ->] (2,0);

In order to place all labels to the right by default, change this style
to `auto=right`:

    \tikz [every edge quotes/.style={auto=right}]
      \draw (0,0) edge ["right", ->] (2,0);

To place all nodes "on" the edge, just make this style empty (and,
possibly, make your labels opaque):

    \tikz [every edge quotes/.style={fill=white,font=\footnotesize}]
      \draw (0,0) edge ["mid", ->] (2,1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:edge:quotes"
    },
    ["every entity"] = {
      details = [[
This style is evoked by the style `entity`. To change the appearance of
entities, you can change this style.

    \begin{tikzpicture}
      [every entity/.style={draw=blue!50,fill=blue!20,thick}]
      \node[entity] (sheep)                   {Sheep};
      \node[entity] (genome) [right=of sheep] {Genome};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:entity"
    },
    ["every even column"] = {
      details = [[
This style is used for every cell in an even column.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:even:column"
    },
    ["every even row"] = {
      details = [[
This style is used for every cell in an even row.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:even:row"
    },
    ["every extra concept"] = {
      details = [[
Change this style to change the appearance of extra concepts.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:extra:concept"
    },
    ["every fit"] = {
      details = [[
Set this style to change the appearance of a node that uses the `fit`
option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:fit"
    },
    ["every fold"] = {
      details = [[
Executed for every line that should be folded.

    \tikz \pic[
      every cut/.style=red,
      every fold/.style=dotted,
      folding line length=6mm
    ] { tetrahedron folding };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:fold"
    },
    ["every info"] = {
      details = [[
Set this style to configure the styling of info labels. Since this key
is *not* used with normal labels, it provides an easy way of changing
the way info labels look without changing other labels.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:info"
    },
    ["every initial by arrow"] = {
      details = [[
This style is executed at the beginning of every path that contains the
arrow and the text. You can use it to, say, make the text red or
whatever.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:initial:by:arrow"
    },
    ["every join"] = {
      details = [[
This style is executed each time this command is used.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:join"
    },
    ["every label"] = {
      details = [[
This style is used in every node created by the `label` option. The
default is `draw=none,fill=none`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:label"
    },
    ["every label quotes"] = {
      details = [[
    \tikz [every label quotes/.style=red]
      \node ["90:$90^\circ$", "left:$180^\circ$", circle, draw] {circle};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:label:quotes"
    },
    ["every left delimiter"] = {
      details = [[
This style is additionally executed for every left delimiter.

    \begin{tikzpicture}
      [every left delimiter/.style={red,xshift=1ex},
       every right delimiter/.style={xshift=-1ex}]
      \matrix [matrix of math nodes,left delimiter=(,right delimiter=\}]
      {
        a_8 & a_1 & a_6 \\
        a_3 & a_5 & a_7 \\
        a_4 & a_9 & a_2 \\
      };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:left:delimiter"
    },
    ["every loop"] = {
      details = [[
This style is installed at the beginning of every loop.

    \begin{tikzpicture}[every loop/.style={}]
      \draw (0,0) to [loop above] () to [loop right] ()
                  to [loop below] () to [loop left]  ();
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:loop"
    },
    ["every mark"] = {
      details = [[
This style is installed before drawing plot marks. For example, you can
scale (or otherwise transform) the plot mark or set its color.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:mark"
    },
    ["every matrix"] = {
      details = [[
This style is used in every matrix.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:matrix"
    },
    ["every mindmap"] = {
      details = [[
This style is included by the `mindmap` style. Change this style to add
special settings to your mindmaps.

    \tikz[large mindmap,concept color=red!50]
      \node [concept] {Root concept}
        child[grow=right] {node[concept] {Child concept}};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:mindmap"
    },
    ["every month"] = {
      details = [[
This style can be used to change the appearance of month labels.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:month"
    },
    ["every new --"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:new:--"
    },
    ["every new ->"] = {
      details = [[
This key gets executed by default for a `new ->`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:new:->"
    },
    ["every new <-"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:new:<-"
    },
    ["every new <->"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:new:<->"
    },
    ["every node"] = {
      details = [[
This style is installed at the beginning of every node.

    \begin{tikzpicture}[every node/.style={draw}]
      \draw (0,0) node {A} -- (1,1) node {B};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:node"
    },
    ["every odd column"] = {
      details = [[
This style is used for every cell in an odd column.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:odd:column"
    },
    ["every odd row"] = {
      details = [[
This style is used for every cell in an odd row.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:odd:row"
    },
    ["every on background layer"] = {
      details = [[
This style is executed at the beginning of each background layer. If you
have a global setup in `every picture`, you should consider putting that
part of it that concerns the graphics state into this style.

    \tikzset{
      every picture/.style={line width=1ex},
      every on background layer/.style={every picture}
    }
    \begin{tikzpicture}
      \draw [->] (0,0) -- (2,1);

      \scoped[on background layer]
        \draw[red] (0,1) -- (2,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:on:background:layer"
    },
    ["every on chain"] = {
      details = [[
This key is executed for every node on a chain, including the first one.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:on:chain"
    },
    ["every outer matrix"] = {
      details = [[
While the `every matrix` key also applies to the matrix contents, this
only applies to the outer node which holds the matrix.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:outer:matrix"
    },
    ["every path"] = {
      details = [[
This style is installed at the beginning of every path. This can be
useful for (temporarily) adding, say, the `draw` option to everything in
a scope.

    \begin{tikzpicture}
      [fill=yellow!80!black,      % only sets the color
       every path/.style={draw}]  % all paths are drawn
      \fill  (0,0) rectangle +(1,1);
      \shade (2,0) rectangle +(1,1);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:path"
    },
    ["every pic"] = {
      details = [[
This style is installed at the beginning of every pic.

     (0,0) to [bend left] (3mm,0);
      },
    }}]
    \begin{tikzpicture}[every pic/.style={scale=2,transform shape}]
      \pic foreach \x in {1,2,3} at (\x,0) {seagull};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:pic"
    },
    ["every pic quotes"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:pic:quotes"
    },
    ["every picture"] = {
      details = [[
This style is installed at the beginning of each picture.

    \tikzset{every picture/.style=semithick}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:picture"
    },
    ["every pin"] = {
      details = [[
This style is used in every node created by the `pin` option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:pin"
    },
    ["every pin edge"] = {
      details = [[
This style is used in every edge created by the `pin` options.

    \tikz [pin distance=15mm,
           every pin edge/.style={<-,shorten <=1pt,decorate,
                                  decoration={snake,pre length=4pt}}]
      \node [circle,draw,pin=right:X,
                         pin=above right:Y,
                         pin=above:Z]       {my circle};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:pin:edge"
    },
    ["every pin quotes"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:pin:quotes"
    },
    ["every place"] = {
      details = [[
This style is evoked by the style `place`. To change the appearance of
places, you can change this style.

    \begin{tikzpicture}
      [every place/.style={draw=blue,fill=blue!20,thick,minimum size=9mm}]
      \node[place,tokens=7,label=above:$p_1$]  (p1) {};
      \node[place,structured tokens={3,2,9},
            label=below:$p_2\ge1$,right=of p1] (p2) {};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:place"
    },
    ["every plot"] = {
      details = [[
This style is installed in each plot, that is, as if you always said

      plot[every plot,...]

This is most useful for globally setting a prefix for all plots by
saying:

    \tikzset{every plot/.style={prefix=plots/}}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:plot"
    },
    ["every relationship"] = {
      details = [[
Works like `every entity`.

    \begin{tikzpicture}
      [every entity/.style={fill=blue!20,draw=blue,thick},
       every relationship/.style={fill=orange!20,draw=orange,thick,aspect=1.5}]
      \node[entity] (sheep)  at (0,0)   {Sheep};
      \node[entity] (genome) at (2,0)   {Genome};
      \node[relationship]    at (1,1.5) {has}
        edge (sheep)
        edge (genome);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:relationship"
    },
    ["every right delimiter"] = {
      details = [[
Works as above.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:right:delimiter"
    },
    ["every scope"] = {
      details = [[
This style is installed at the beginning of every scope.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:scope"
    },
    ["every shadow"] = {
      details = [[
This style is executed in addition to any ⟨shadow options⟩ for each
shadow. Use this style to reconfigure the way shadows are drawn.

    \begin{tikzpicture}[every shadow/.style={opacity=.8,fill=blue!50!black}]
      \filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:shadow"
    },
    ["every spy in node"] = {
      details = [[
This style is used with every spy-in node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:spy:in:node"
    },
    ["every spy on node"] = {
      details = [[
This style is used with every spy-on node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:spy:on:node"
    },
    ["every state"] = {
      details = [[
This style is used by `state with output` and also by
`state without output`. By default, it does nothing, but you can use it
to make your state look more fancy:

    \begin{tikzpicture}[shorten >=1pt,node distance=2cm,on grid,>={Stealth[round]},
        every state/.style={draw=blue!50,very thick,fill=blue!20}]

      \node[state,initial]  (q_0)                      {$q_0$};
      \node[state]          (q_1) [above right=of q_0] {$q_1$};
      \node[state]          (q_2) [below right=of q_0] {$q_2$};

      \path[->] (q_0) edge              node [above left]  {0} (q_1)
                      edge              node [below left]  {1} (q_2)
                (q_1) edge [loop above] node               {0} ()
                (q_2) edge [loop below] node               {1} ();
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:state"
    },
    ["every subgraph node"] = {
      details = [[
Set a subgraph node style.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:subgraph:node"
    },
    ["every to"] = {
      details = [[
This style is installed at the beginning of every to.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:to"
    },
    ["every token"] = {
      details = [[
Change this style to change the appearance of tokens.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:token"
    },
    ["every transition"] = {
      details = [[
This style is evoked by the style `transition`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:transition"
    },
    ["every year"] = {
      details = [[
Works like `every month`, only for years.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:year"
    },
    ["every ⟨part name⟩ node part"] = {
      details = [[
This style is installed at the beginning of every node part named ⟨part
name⟩.

    \tikz [every lower node part/.style={red}]
      \node [circle split,draw] {$q_1$ \nodepart{lower} $00$};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:⟨part:name⟩:node:part"
    },
    ["every ⟨shape⟩ node"] = {
      details = [[
These styles are installed at the beginning of a node of a given
⟨shape⟩. For example, `every rectangle node` is used for rectangle
nodes, and so on.

    \begin{tikzpicture}
      [every rectangle node/.style={draw},
       every circle node/.style={draw,double}]
      \draw (0,0) node[rectangle] {A} -- (1,1) node[circle] {B};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/every:⟨shape⟩:node"
    },
    ["execute after day scope"] = {
      details = [[
This is executed at the very end of the current date, outside the scope.
The accumulation is also in reverse.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:after:day:scope",
      meta = "⟨code⟩"
    },
    ["execute at begin cell"] = {
      details = [[
The code will be executed at the beginning of each nonempty cell.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:begin:cell",
      meta = "⟨code⟩"
    },
    ["execute at begin day scope"] = {
      details = [[
This code is execute before everything else inside the scope of the
current date. Again, the effect is accumulative.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:begin:day:scope",
      meta = "⟨code⟩"
    },
    ["execute at begin node"] = {
      details = [[
This option causes ⟨code⟩ to be executed at the beginning of a node.
Using this option multiple times will cause the code to accumulate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:begin:node",
      meta = "⟨code⟩"
    },
    ["execute at begin picture"] = {
      details = [[
This option causes ⟨code⟩ to be executed at the beginning of the
picture. This option must be given in the argument of the
`{tikzpicture}` environment itself since this option will not have an
effect otherwise. After all, the picture has already "started" later on.
The effect of multiply setting this option accumulates.

This option is mainly used in styles like the `every picture` style to
execute certain code at the start of a picture.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:begin:picture",
      meta = "⟨code⟩"
    },
    ["execute at begin scope"] = {
      details = [[
This option install some code that will be executed at the beginning of
the scope. This option must be given in the argument of the `{scope}`
environment.

The effect applies only to the current scope, not to subscopes.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:begin:scope",
      meta = "⟨code⟩"
    },
    ["execute at begin to"] = {
      details = [[
The ⟨code⟩ is executed prior to the `to`. This can be used to draw one
or more additional paths or to do additional computations.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:begin:to",
      meta = "⟨code⟩"
    },
    ["execute at empty cell"] = {
      details = [[
The code will be executed inside each empty cell.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:empty:cell",
      meta = "⟨code⟩"
    },
    ["execute at end cell"] = {
      details = [[
The code will be executed at the end of each nonempty cell.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:end:cell",
      meta = "⟨code⟩"
    },
    ["execute at end day scope"] = {
      details = [[
This code is executed just before the day scope is closed. The effect is
also accumulative, however, in reverse order. This is useful to pair,
say, `\scope` and `\endscope` commands in at-begin- and at-end-code.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:end:day:scope",
      meta = "⟨code⟩"
    },
    ["execute at end node"] = {
      details = [[
This option installs ⟨code⟩ that will be executed at the end of the
node. Using this option multiple times will cause the code to
accumulate.

    \begin{tikzpicture}
      [execute at begin node={A},
       execute at end node={D}]
      \node[execute at begin node={B}] {C};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:end:node",
      meta = "⟨code⟩"
    },
    ["execute at end picture"] = {
      details = [[
This option installs ⟨code⟩ that will be executed at the end of the
picture. Using this option multiple times will cause the code to
accumulate. This option must also be given in the optional argument of
the `{tikzpicture}` environment.

    \begin{tikzpicture}[execute at end picture=%
      {
        \begin{pgfonlayer}{background}
          \path[fill=yellow,rounded corners]
            (current bounding box.south west) rectangle
            (current bounding box.north east);
        \end{pgfonlayer}
      }]
      \node at (0,0) {X};
      \node at (2,1) {Y};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:end:picture",
      meta = "⟨code⟩"
    },
    ["execute at end scope"] = {
      details = [[
This option installs some code that will be executed at the end of the
current scope. Using this option multiple times will cause the code to
accumulate. This option must also be given in the optional argument of
the `{scope}` environment.

Again, the effect applies only to the current scope, not to subscopes.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:end:scope",
      meta = "⟨code⟩"
    },
    ["execute at end to"] = {
      details = [[
Works like the previous option, only this code is executed after the to
path has been added.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:at:end:to",
      meta = "⟨code⟩"
    },
    ["execute before day scope"] = {
      details = [[
The ⟨code⟩ is executed before everything else for each date. Multiple
calls of this option have an accumulative effect. Thus, if you use this
option twice, the code from the first use is used first for each day,
followed by the code given the second time.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/execute:before:day:scope",
      meta = "⟨code⟩"
    },
    ["external/aux in dpth"] = {
      details = [[
Allows to enable or disable the feature which handles references and
labels as part of image externalization. Disabling it will safe one
`\newwrite` command, i.e. a write register.

Also see the `disable dependency files` feature.

Here are some implementation details on how references within/from
external graphics work for those who would like to know the details:

For point a), a `\ref` inside of an externalized graphics works by
reading the main document's `.aux` file. To this end, the standard
`mode=convert with system call` detects such references and reschedules
the externalization to `\end{document}.`[1] Other values of `mode`
require just one attempt to externalize the picture.

Note that `\pageref` is not supported (sorry).

Point b) works as follows: a `\label` inside of an externalized graphics
causes the `external` library to generate separate auxiliary files for
every external image. These files are called ⟨imagename⟩`.dpth`. The
extension `.dpth` indicates that the file also contains the image's
depth (the `baseline` key of TikZ). Furthermore, anything which would
have been written to an `.aux` file will be redirected to the `.dpth`
file -- but only things which occur inside of the externalized
`tikzpicture` environment. When the main document loads the image, it
will copy the `.dpth` file into the main `.aux` file. Then, successive
compilations of the main document contain the external `\label`
information. In other words, a `\label` in an external graphics needs
the following work flow:

1.  The external graphics needs to be generated together with its
    `.dpth` (usually automatically by TikZ).

2.  The main document includes the external graphics and copies the
    `.dpth` content into its main `.aux` file.

3.  The main document needs to be translated once again to re-read its
    `.aux` file[2].

This does also work if a `\label`/`\ref` combination is implemented
itsself by a `tikzpicture` (a feature offered by `pgfplots`).

[1] Note that this requires the `atveryend` package. The purpose to
reschedule the externalization is to access the main job's aux file, but
only after it has been written completely.

[2] Note that it is not possible to activate the content of an auxiliary
file after `\ begin{document}` in LaTeX.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/aux:in:dpth",
      meta = "{boolean}"
    },
    ["external/disable dependency files"] = {
      details = [[
Allows to (irreversibly) disable the generation of file dependencies.
Disabling it will safe one `\newwrite` command, i.e. a write register.
Note that the write register is only allocated if the feature has been
used at all. This key needs to be provided as argument to
`\tikzexternalize` (or it needs to be set before calling
`\tikzexternalize`).

Also see the `aux in dpth` key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/disable:dependency:files"
    },
    ["external/export"] = {
      details = [[
A boolean which can be used to disable the export mechanism for all
pictures inside of the current TeX-scope.

    \begin{document}
    \begin{tikzpicture} % will be exported
        ...
    \end{tikzpicture}

    {
    \tikzset{external/export=false}
    \begin{tikzpicture} % won't be exported
        ...
    \end{tikzpicture}
    ...
    }

    \begin{tikzpicture} % will be exported
        ...
    \end{tikzpicture}
    \end{document}

For LaTeX, the feature lasts until the next `\end``{\cdot}` (this holds
for every call to `\tikzset`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/export",
      meta = "{boolean}"
    },
    ["external/export next"] = {
      details = [[
A boolean which can be used to disable the export mechanism for single
pictures.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/export:next",
      meta = "{boolean}"
    },
    ["external/figure list"] = {
      details = [[
A boolean which configures whether a figure list shall be generated. A
figure list is an output file named `{jobname}``.figlist` which is
filled with file names of each figure, one per line.

This file is not used by TeX anymore, its purpose is to issue the
required conversion commands `pdflatex -jobname ``{picture file name}`
`{main file}` manually (or in a script). See section ?? for the details
about the expected system call (or activate
`mode=convert with system call` and inspect your log file).

    \documentclass{article}
    % main document, called main.tex
    \usepackage{tikz}

    \usetikzlibrary{external}
    \tikzexternalize[
       mode=graphics if exists,
       figure list=true,
       prefix=figures/]

    \begin{document}

    \tikzsetnextfilename{trees}
    \begin{tikzpicture}
      \node {root}
        child {node {left}}
        child {node {right}
          child {node {child}}
          child {node {child}}
        };
    \end{tikzpicture}

    \tikzsetnextfilename{simple}
    A simple image is \tikz \fill (0,0) circle(5pt);.

    \begin{tikzpicture}
       \draw[help lines] (0,0) grid (5,5);
    \end{tikzpicture}
    \end{document}

    pdflatex main

generates `main.figlist` containing

    figures/trees
    figures/simple
    figures/main-figure0
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/figure:list",
      meta = "{boolean}"
    },
    ["external/figure name"] = {
      details = [[
Same as `\tikzsetfigurename``{name}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/figure:name",
      meta = "{name}"
    },
    ["external/force remake"] = {
      details = [[
A boolean which is used to customize the up-to-date checks of all
following figures. Every up-to-date check will fail, resulting in
automatic regeneration of every following figure.

    \tikzset{external/force remake}
    \begin{tikzpicture}
        \draw (0,0) circle(5pt);
    \end{tikzpicture}

You can also use `force remake` inside of a local TeX group to remake
only selected pictures. The example

    \tikz \draw (0,0) -- (1,1);

    {
    \tikzset{external/force remake}
    \begin{tikzpicture}
       \draw (0,0) circle(5pt);
    \end{tikzpicture}
    }

    \tikz \draw (0,0) -- (1,1);

will only apply `force remake` to the second figure.

Up-to-date checks are applied for `mode=convert with system call` and
the makefile generated by `mode=list and make`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/force:remake",
      meta = "{boolean}"
    },
    ["external/mode"] = {
      details = [[
Configures what to do with TikZ pictures (unless we are currently
externalizing one particular image, in that case, these modes are
ignored).

The preconfigured mode `convert with system call` checks whether
external graphics files are up-to-date and includes them if that is the
case. Any picture which is not up-to-date will be generated
automatically using a system call. The system call can be configured
using the `system call` template. The up-to-date check is applied
according to the `up to date check` key. As soon as
`convert with system call` is set, the `figure list` will be disabled --
such a file is not required. In case you still need or want it, you can
enable it after setting `mode`.

Please note that system calls may be disabled for security reasons. For
pdflatex, they can be enabled using

    pdflatex -shell-escape

while other TeX variants may need other switches. The feature is
sometimes called `\write18`.

The choice `only graphics` always tries to replace pictures with
external graphics. It is an error if the graphics file does not exist.

The choice `no graphics` (or, equivalently, `only pictures`) typesets
TikZ pictures without checking for external graphics.

A mixture is `graphics if exists`, it checks whether a suitable graphics
file exists and includes it if that is the case. If it does not exist,
the picture is typeset using TeX.

Mode `list only` skips every TikZ picture; it only generates the file
`{main file}``.figlist` containing file names for every picture, the
contents of any picture environment is thrown away and a replacement
text is shown. This implies `figure list=true`. See also the
`list and make` mode which includes available graphics.

The mode `list and make` is similar to `list only`: it generates the
same file `{main file}``.figlist`, but any images which exist already
are included as graphics instead of ignoring them. Furthermore, this
mode generates an additional file: `{main file}`.makefile. This allows
to use a work flow like

    % step 1: generate main.makefile:
    pdflatex main
    % step 2: generate ALL graphics on 2 processors:
    make -j 2 -f main.makefile
    % step 3: include the graphics:
    pdflatex main

This last make method is optional: `list and make` just assumes that
images are generated somehow (not necessarily with the generated
makefile). The generated makefile allows parallel externalization of
graphics on multi-core systems and it supports any file dependencies
configured with `\tikzpicturedependsonfile`. Furthermore, it respects
the `force remake` and `remake next` keys.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/mode",
      meta = "{choice}"
    },
    ["external/only named"] = {
      details = [[
If enabled, only pictures for which file names have been set explicitly
using `\tikzsetnextfilename` will be considered, no file names will be
generated automatically.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/only:named",
      meta = "{boolean}"
    },
    ["external/optimize"] = {
      details = [[
Configures whether the conversion process shall be optimized. This
affects only the case when `\jobname` differs from the main file name,
i.e. when single pictures are converted.

In that case, the main file is compiled as usual -- but everything
except the selected picture is thrown away. If optimization is enabled,
all other pictures won't be processed at all. Furthermore, expensive
commands which do not contribute to the selected picture will be thrown
away as well.

The default implementation discards `\includegraphics` commands which
are *not* inside of the selected picture to reduce conversion time.

It is possible to add commands which shall be optimized away, see below.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/optimize",
      meta = "{boolean}"
    },
    ["external/optimize command away"] = {
      details = [[
Installs commands to optimize ⟨\\command⟩ away. As is described above,
optimization applies to the case when single pictures are converted: one
usually doesn't need to process (probably expensive) commands which do
not contribute to the selected picture.

The argument `{required argument count}` is either empty or a
non-negative integer between $0$ and $9$. It denotes the number of
arguments which should be consumed after ⟨\\command⟩. In any case, one
argument in square brackets after the command will be recognized as
well. To be more precise, the following cases for arguments of
⟨\\command⟩ are supported:

1.  If `{required argument count}` is empty (the default), ⟨\\command⟩
    may take one optional argument in square brackets and one in curly
    braces (which is also optional).

2.  If `{required argument count}` is not empty, `{\command}` may take
    one optional argument in square brackets. Furthermore, it expects
    exactly `{required argument count}` following arguments.

Example:

    \tikzset{external/optimize command away=\includegraphics}

    \newcommand{\myExpensiveMacro}[1]{Very expensive!}

    \tikzset{external/optimize command away=\myExpensiveMacro}

    \newcommand{\myExpensiveMacroWithThreeArgs}[3]{Very expensive!}

    \tikzset{external/optimize command away={\myExpensiveMacroWithThreeArgs}{3}}

    % A command with optional argument:
    \newcommand{\aFurtherExample}[3][]{Very expensive!}

    % consume only two arguments: the first optional one will be processed
    % anyway:
    \tikzset{external/optimize command away={\myExpensiveMacroWithThreeArgs}{2}}

The argument ⟨\\command⟩ must be the name of a single macro. Any
occurrence of this macro, together with its arguments, will be removed.

    \begin{tikzpicture}
        % this picture is currently converted!
    \end{tikzpicture}

    This here is outside of the converted picture and contains \myExpensiveMacro. It will be discarded.

    This call: \myExpensiveMacro[argument=value]{Argument} as well.
    And this here: \myExpensiveMacro{Argument} also.

The default is to optimize `\includegraphics` away.

This key is actually a style which sets the `optimize/install` and
`optimize/restore` keys.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/optimize:command:away",
      meta = "⟨\\command⟩{required argument count}"
    },
    ["external/optimize/install"] = {
      details = [[
A command key which contains code to install optimizations. You can
append code here (or clear the macro) if you need to modify the
optimization.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/optimize/install"
    },
    ["external/optimize/restore"] = {
      details = [[
A command key which contains code to undo optimizations. You can append
code here (or clear the macro) if you need to modify the optimization.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/optimize/restore"
    },
    ["external/prefix"] = {
      details = [[
A shortcut for `\tikzsetexternalprefix``{file name prefix}`, see below.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/prefix",
      meta = "{file name prefix}"
    },
    ["external/remake next"] = {
      details = [[
A variant of `force remake` which applies only to the next image.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/remake:next",
      meta = "{boolean}"
    },
    ["external/shell escape"] = {
      details = [[
Contains the command line option for `latex` which enables the
`\write18` feature. For TeX-Live, this is `-shell-escape`. For MiKTeX,
you should use `\tikzexternalize[shell escape=-enable-write18]`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/shell:escape",
      meta = "{command-line arg}"
    },
    ["external/system call"] = {
      details = [[
\[extlib:systemcall:option\] A template string used to generate system
calls. Inside of `{template}`, the macro `\image` can be used as
placeholder for the image which is about to be generated while
`\texsource` contains the main file name (in truth, it contains
`\input``{main file name}`, but that doesn't matter).

The default depends on the value of `\pgfsysdriver`. For
`pgfsys-pdftex.def`, it is

    \tikzset{external/system call={pdflatex \tikzexternalcheckshellescape -halt-on-error
        -interaction=batchmode -jobname "\image" "\texsource"}}

where `\tikzexternalcheckshellescape` inserts the value of the
configuration key `shell escape` if and only if the current document has
been typeset with `-shell-escape`[1].

Other drivers result in slightly different calls. There is support for
`lualatex`, `xelatex`, and `dvips`. The precise values are written to
the `.log` file as soon as you attempt to compile a document.

The argument `{template}` will be expanded using `\edef`, so any control
sequences will be expanded. During this evaluation, '`\\`' will result
in a normal backslash, '`\`'. Furthermore, double quotes '`"`', single
quotes '`’`', semicolons and dashes '`-`' will be made to normal
characters if any package uses them as macros. This ensures
compatibility with the `german` package, for example.

[1] Note that this is always true for the default configuration. This
security consideration applies mainly for `mode=list and make` which
will also work *without* shell escapes.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/system:call",
      meta = "{template}"
    },
    ["external/up to date check"] = {
      details = [[
The `external` lib has to decide when some existing figure is
up-to-date. In such a case, it can be used without remaking it. Outdated
pictures will be remade.

The key `up to date check` allows to choose among a couple of heuristics
which are supposed to catch the most important reasons to remake a
figure.

The `up to date check` can be overrule by any of the `force remake` or
`remake next` keys: if one of them is true, the figure is not
up-to-date.

The choice simple is based on the existence of the file: the file is
up-to-date if and only if it exists.

The choice md5 generates an MD5 checksum of the picture for which the
up-to-date check is running. The MD5 is compared against the MD5 of the
previous run, which, in turn, will be written into an extra file with
the extension `.md5`. This file will be modified if and only if the MD5
comparison indicates a difference. The MD5 computation is based on the
pdfTeX method `\pdfmdfivesum`. If it is unavailable for some reason, the
choice `diff` will be used instead.

The choice diff is the same as MD5 -- except that it compares the
picture content as-is instead of a hash. The `.md5` file will be used to
compare an old version with the current one -- but its content is some
"normalized" version of the picture for internal use.

#### Attention:

the content--based strategies `md5` and `diff` operate on the picture
content -- and only on the picture content. Here, "picture content" only
includes the top--level tokens; no expansion is applied and no included
files are part of the strategies. If you change preamble styles, you
have to rebuild the figures manually (for example by deleting the
generated graphics files). If you have include files, consider using
`\tikzpicturedependsonfile` and its variants. Since this key provides
heuristics, you should always remake your figures before you finally
publish your document. Example: Suppose we have the following picture
which depends on a command `\mycommand`:

    \def\mycommand{My comment}

    \begin{tikzpicture}

    \node at (0,0) {\mycommand};

    \end{tikzpicture}

What happens if you change "My comment" to "My super comment"? Well,
`external` will *not* pick it up; you will need to handle this manually.
However, if you modify anything between `\begin{tikzpicture}` and
`\end{tikzpicture}`, the `external` library *will* pick it up and
regenerate the picture.

The `up to date check` is applied for `mode=convert with system call`
and `mode=list and make`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/up:to:date:check",
      meta = "{choice}"
    },
    ["external/verbose"] = {
      details = [[
Sets all verbosity flags to ⟨boolean⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/verbose",
      meta = "{boolean}"
    },
    ["external/verbose IO"] = {
      details = [[
A boolean which configures whether I/O operations shall be listed in the
logfile.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/verbose:IO",
      meta = "{boolean}"
    },
    ["external/verbose optimize"] = {
      details = [[
A boolean which configures whether optimization operations shall be
listed in the logfile.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/external/verbose:optimize",
      meta = "{boolean}"
    },
    ["extra concept"] = {
      details = [[
This style is intended for concepts that are not part of the "mindmap
tree", but stand beside it. Typically, they will have a subdued color or
be smaller. In order to have these concepts appear in a uniform way and
in order to indicate in the code that these concepts are additional, you
can use this style.

    \begin{tikzpicture}[mindmap,concept color=blue!80]
      \node [concept]                 {Root concept};
      \node [extra concept] at (10,0) {extra concept};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/extra:concept"
    },
    ["face 1"] = {
      details = [[
The ⟨code⟩ is executed for the first face of the dodecahedron. When it
is executed, the coordinate system will have been shifted and rotated
such that it lies at the middle of the first face of the dodecahedron.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/face:1",
      meta = "⟨code⟩"
    },
    ["face 2"] = {
      details = [[
Same as `face 1`, but for the second face.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/face:2",
      meta = "⟨code⟩"
    },
    ["face 3"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/face:3",
      meta = "⟨code⟩"
    },
    ["face 4"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/face:4",
      meta = "⟨code⟩"
    },
    ["fading angle"] = {
      details = [[
A shortcut for `fading transform={rotate=`⟨degree⟩`}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/fading:angle",
      meta = "⟨degree⟩"
    },
    ["fading transform"] = {
      details = [[
The ⟨transformation options⟩ are applied to the fading before it is
used. For instance, if ⟨transformation options⟩ is set to `rotate=90`,
the fading is rotated by 90 degrees.

    \begin{tikzpicture}[path fading=fade down]
      % Checker board
      \fill [black!20] (0,0) rectangle (4,1.5);
      \path [pattern=checkerboard,pattern color=black!30] (0,0) rectangle (4,1.5);

      \fill [red,path fading,fading transform={rotate=90}]
        (1,0.75) ellipse (.75 and .5);
      \fill [red,path fading,fading transform={rotate=30}]
        (3,0.75) ellipse (.75 and .5);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/fading:transform",
      meta = "⟨transformation options⟩"
    },
    fill = {
      details = [[
This option causes the path to be filled. All unclosed parts of the path
are first closed, if necessary. Then, the area enclosed by the path is
filled with the current filling color, which is either the last color
set using the general `color=` option or the optional color ⟨color⟩. For
self-intersection paths and for paths consisting of several closed
areas, the "enclosed area" is somewhat complicated to define and two
different definitions exist, namely the nonzero winding number rule and
the even odd rule, see the explanation of these options, below.

Just as for the `draw` option, setting ⟨color⟩ to `none` disables
filling locally.

    \begin{tikzpicture}
      \fill (0,0) -- (1,1) -- (2,1);
      \fill (4,0) circle (.5cm)  (4.5,0) circle (.5cm);
      \fill[even odd rule] (6,0) circle (.5cm)  (6.5,0) circle (.5cm);
      \fill (8,0) -- (9,1) -- (10,0) circle (.5cm);
    \end{tikzpicture}

If the `fill` option is used together with the `draw` option (either
because both are given as options or because a `\filldraw` command is
used), the path is filled *first*, then the path is drawn *second*. This
is especially useful if different colors are selected for drawing and
for filling. Even if the same color is used, there is a difference
between this command and a plain `fill`: A "filldrawn" area will be
slightly larger than a filled area because of the thickness of the
"pen".

    \begin{tikzpicture}[fill=yellow!80!black,line width=5pt]
      \filldraw (0,0) -- (1,1) -- (2,1);
      \filldraw (4,0) circle (.5cm)  (4.5,0) circle (.5cm);
      \filldraw[even odd rule] (6,0) circle (.5cm)  (6.5,0) circle (.5cm);
      \filldraw (8,0) -- (9,1) -- (10,0) circle (.5cm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/fill",
      meta = "⟨color⟩"
    },
    ["fill opacity"] = {
      details = [[
This option sets the opacity of fillings. In addition to filling
operations, this opacity also applies to text and images.

Note, again, that when you use PostScript as your output format, this
option works only with recent versions of Ghostscript.

    \begin{tikzpicture}[thick,fill opacity=0.5]
      \filldraw[fill=red]   (0:1cm)    circle (12mm);
      \filldraw[fill=green] (120:1cm)  circle (12mm);
      \filldraw[fill=blue]  (-120:1cm) circle (12mm);
    \end{tikzpicture}

    \begin{tikzpicture}
      \fill[red] (0,0) rectangle (3,2);

      \node                   at (0,0) {\huge A};
      \node[fill opacity=0.5] at (3,2) {\huge B};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/fill:opacity",
      meta = "⟨value⟩"
    },
    fit = {
      details = [[
This option must be given to a `node` path command. The ⟨coordinates or
nodes⟩ should be a sequence of TikZ coordinates or node names, one
directly after the other without commas (like with the
`plot coordinates` path operation). Examples are `(1,0) (2,2)` or
`(a) (1,0) (b)`, where `a` and `b` are nodes.

For this sequence of coordinates, a minimal bounding box is computed
that encompasses all the listed ⟨coordinates or nodes⟩. For coordinates
in the list, the bounding box is guaranteed to contain this coordinate,
for nodes it is guaranteed to contain the `east`, `west`, `north` and
`south` anchors of the node. In principle (the details will be explained
in a moment), things are now set up such that the text box of the node
will be exactly this bounding box.

Here is an example: We fit several points in a rectangular node. By
setting the `inner sep` to zero, we see exactly the text box of the
node. Then we fit these points again in a circular node. Note how the
circle encompasses exactly the same bounding box.

    \begin{tikzpicture}[inner sep=0pt,thick,
                        dot/.style={fill=blue,circle,minimum size=3pt}]
      \draw[help lines] (0,0) grid (3,2);
      \node[dot] (a) at (1,1) {};
      \node[dot] (b) at (2,2) {};
      \node[dot] (c) at (1,2) {};
      \node[dot] (d) at (1.25,0.25) {};
      \node[dot] (e) at (1.75,1.5) {};

      \node[draw=red,   fit=(a) (b) (c) (d) (e)] {box};
      \node[draw,circle,fit=(a) (b) (c) (d) (e)] {};
    \end{tikzpicture}

Every time the `fit` option is used, the following style is also applied
to the node:

The exact effects of the `fit` option are the following:

1.  A minimal bounding box containing all coordinates is computed. Note
    that if a coordinate like `(a)` is used that contains a node name,
    this has the same effect as explicitly providing the `(a.north)` and
    `(a.south)` and `(a.west)` and `(a.east)`. If you wish to refer only
    to the center of the `a` node, use `(a.center)` instead.

2.  The `text width` option is set to the width of this bounding box.

3.  The `align=center` option is set.

4.  The `anchor` is set to `center`.

5.  The `at` position of the node is set to the center of the computed
    bounding box.

6.  After the node has been typeset, its height and depth are adjusted
    such that they add up to the height of the computed bounding box and
    such that the text of the node is vertically centered inside the
    box.

The above means that, generally speaking, if the node contains text like
`box` in the above example, it will be centered inside the box. It will
be difficult to put the text elsewhere, in particular, changing the
`anchor` of the node will not have the desired effect. Instead, what you
should do is to create a node with the `fit` option that does not
contain any text, give it a name, and then use normal nodes to add text
at the desired positions. Alternatively, consider using the `label` or
`pin` options.

Suppose, for instance, that in the above example we want the word "box"
to appear inside the box, but at its top. This can be achieved as
follows:

    \begin{tikzpicture}[inner sep=0pt,thick,
                        dot/.style={fill=blue,circle,minimum size=3pt}]
      \draw[help lines] (0,0) grid (3,2);
      \node[dot] (a) at (1,1) {};
      \node[dot] (b) at (2,2) {};
      \node[dot] (c) at (1,2) {};
      \node[dot] (d) at (1.25,0.25) {};
      \node[dot] (e) at (1.75,1.5) {};

      \node[draw=red,fit=(a) (b) (c) (d) (e)] (fit) {};
      \node[below] at (fit.north) {box};
    \end{tikzpicture}

Here is a real-life example that uses fitting:

    \begin{tikzpicture}
      [vertex/.style={minimum size=2pt,fill,draw,circle},
       open/.style={fill=none},
       sibling distance=1.5cm,level distance=.75cm,
       every fit/.style={ellipse,draw,inner sep=-2pt},
       leaf/.style={label={[name=#1]below:$#1$}},auto]

      \node [vertex] (root) {}
      child { node [vertex,open] {}
        child { node [vertex,open] {}
          child { node [vertex] (b's parent) {}
            child { node [vertex] {}
              child { node [vertex,leaf=d] {} }
              child { node [vertex,leaf=e] {} } }
            child { node [vertex,leaf=b] {} } }
          child { node [vertex,leaf=a] {} } }
        child { node [coordinate] {}
          child[missing]
          child { node [vertex] (f's parent) {}
            child { node [vertex,leaf=c] {} }
            child { node [vertex,leaf=f] {} } } }
        edge from parent node {$\rho$} };

      \node [fit=(d) (e) (b) (b's parent),label=above left:$F^{(b,R)}$] {};
      \node [fit=(c) (f) (f's parent),label=above right:$F^{(c,R)}$]    {};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/fit",
      meta = "⟨coordinates or nodes⟩"
    },
    ["fit fading"] = {
      details = [[
When set to `true`, the fading is shifted and resized (in exactly the
same way as a shading) so that it covers the current path. When set to
`false`, the fading is only shifted so that it is centered on the path's
center, but it is not resized. This can be useful for special-purpose
fadings, for instance when you use a fading to "punch out" something.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/fit:fading",
      meta = "⟨boolean⟩"
    },
    ["folding line length"] = {
      details = [[
Sets the length of the base line for folding. For the dodecahedron this
is the length of all the sides of the pentagons.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/folding:line:length",
      meta = "⟨dimension⟩"
    },
    font = {
      details = [[
Sets the font used for the text inside nodes. However, this font will
*not* (yet) be installed when any of the dimensions of the node are
being computed, so dimensions like `1em` will be with respect to the
font used outside the node (usually the font that was in force when the
picture started).

    \begin{tikzpicture}
      \node [font=\itshape] {italic};
    \end{tikzpicture}

    \tikz \node [font=\tiny,  minimum height=3em, draw] {tiny};
    \tikz \node [font=\small, minimum height=3em, draw] {small};

A useful example of how the `font` option can be used is the following:

    \tikz [every text node part/.style={font=\itshape},
           every lower node part/.style={font=\footnotesize}]
      \node [circle split,draw] {state \nodepart{lower} output};

As can be seen, the font can be changed for each node part. This does
*not* work with the `node font` command since, as the name suggests,
this command can only be used to select the "overall" font for the node
and this is done very early.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/font",
      meta = "⟨font commands⟩"
    },
    framed = {
      details = [[
This is a shorthand for `show background rectangle`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/framed"
    },
    ["general shadow"] = {
      details = [[
This option should be given to a `\path` or a `node`. It has the
following effect: Before the path is used normally, it is used once with
the ⟨shadow options⟩ in force. Furthermore, when the path is "preused"
in this way, it is shifted and scaled a little bit.

In detail, the following happens: A `preaction` is used to paint the
path in a special manner before it is actually painted. This "special"
manner is as follows: The options in ⟨shadow options⟩ are used for
painting this path. Typically, the ⟨shadow options⟩ will contain options
like `fill=black` to create, say, a black shadow. Furthermore, after the
⟨shadow options⟩ have been set up, the following extra canvas
transformations are applied to the path: It is scaled by `shadow scale`
(with the origin of scaling at the path's center) and it is shifted by
`shadow xshift` and `shadow yshift`.

Note that since scaling and shifting is done using canvas
transformations, shadows are not taken into account when the picture's
bounding box is computed.

    \tikz [even odd rule]
      \draw [general shadow={fill=red}] (0,0) circle (.5) (0.5,0) circle (.5);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/general:shadow",
      meta = "⟨shadow options⟩"
    },
    ["graph/level"] = {
      details = [[
This key gets executed for each newly created node with ⟨level⟩ set to
the current level of the node. You can use this key to, say, reconfigure
the node distance or the node color.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graph/level",
      meta = "⟨level⟩"
    },
    ["graph/level ⟨level⟩"] = {
      details = [[
This key also gets executed for each newly created node with ⟨level⟩ set
to the current level of the node.

    \tikz \graph [
      branch down=5mm,
      level 1/.style={nodes=red},
      level 2/.style={nodes=green!50!black},
      level 3/.style={nodes=blue}]
    {
      a -> {
        b,
        c -> {
          d,
          e -> {f,g},
          h
        },
        j
      }
    };

    \tikz \graph [
      branch down=5mm,
      level 1/.style={grow right=2cm},
      level 2/.style={grow right=1cm},
      level 3/.style={grow right=5mm}]
    {
      a -> {
        b,
        c -> {
          d,
          e -> {f,g},
          h
        },
        j
      }
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graph/level:⟨level⟩"
    },
    ["graph/parse"] = {
      details = [[
This key can only be used inside the ⟨options⟩ of a ⟨group
specification⟩. Its effect is that the ⟨text⟩ is inserted at the
beginning of the current group as if you had entered it there.
Naturally, it makes little sense to just write down some static ⟨text⟩
since you could just as well directly place it at the beginning of the
group. The real power of this command stems from the fact that the keys
mechanism allows you to say, for instance, `parse/.expand once` to
insert the text stored in some macro into the group.

    \def\mychain{ a -> b -> c; }
    \tikz \graph { [parse/.expand once=\mychain] d -> e };

In the following, more fancy example we use a loop to create a chain of
dynamic length.

    \def\mychain#1{
      \def\mytext{1}
      \foreach \i in {2,...,#1} {
        \xdef\mytext{\mytext -> \i}
      }
    }
    \tikzgraphsset{my chain/.style={
        /utils/exec=\mychain{#1},
        parse/.expand once=\mytext}
    }
    \tikz \graph { [my chain=4] };

Multiple uses of this key accumulate, that is, all the texts given in
the different uses is inserted in the order it is given.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/graph/parse",
      meta = "⟨text⟩"
    },
    gridded = {
      details = [[
This is a shorthand for `show background grid`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/gridded"
    },
    grow = {
      details = [[
This key is used to define the ⟨direction⟩ in which the tree will grow.
The ⟨direction⟩ can either be an angle in degrees or one of the
following special text strings: `down`, `up`, `left`, `right`, `north`,
`south`, `east`, `west`, `north east`, `north west`, `south east`, and
`south west`. All of these have "their obvious meaning", so, say,
`south west` is the same as the angle $-135^\circ$.

As a side effect, this option installs the default growth function.

In addition to setting the direction, this option also has a seemingly
strange effect: It sets the sibling distance for the current level to
`0pt`, but leaves the sibling distance for later levels unchanged.

This somewhat strange behavior has a highly desirable effect: If you
give this option before the list of children of a node starts, the
"current level" is still the parent level. Each child will be on a later
level and, hence, the sibling distance will be as specified originally.
This will cause the children to be neatly aligned in a line orthogonal
to the given ⟨direction⟩. However, if you give this option locally to a
single child, then "current level" will be the same as the child's
level. The zero sibling distance will then cause the child to be placed
exactly at a point at distance `level distance` in the direction
⟨direction⟩. However, the children of the child will be placed
"normally" on a line orthogonal to the ⟨direction⟩.

These placement effects are best demonstrated by some examples:

    \tikz \node {root} [grow=right] child child;

    \tikz \node {root} [grow=south west] child child;

    \begin{tikzpicture}[level distance=10mm,sibling distance=5mm]
      \node {root}
        [grow=down]
        child
        child
        child[grow=right] {
          child child child
        };
    \end{tikzpicture}

    \begin{tikzpicture}[level distance=2em]
      \node {C}
        child[grow=up]    {node {H}}
        child[grow=left]  {node {H}}
        child[grow=down]  {node {H}}
        child[grow=right] {node {C}
            child[grow=up]    {node {H}}
            child[grow=right] {node {H}}
            child[grow=down]  {node {H}}
          edge from parent[double]
            coordinate (wrong)
        };
      \draw[<-,red] ([yshift=-2mm]wrong) -- +(0,-1)
        node[below]{This is wrong!};
    \end{tikzpicture}

    \begin{tikzpicture}
      \node[rectangle,draw] (a) at (0,0) {start node};
      \node[rectangle,draw] (b) at (2,1) {end};

      \draw (a) -- (b)
        node[coordinate,midway] {}
          child[grow=100,<-] {node[above] {the middle is here}};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/grow",
      meta = "⟨direction⟩"
    },
    ["grow cyclic"] = {
      details = [[
This style causes the children to be arranged "on a circle". For this,
the children are placed at distance `\tikzleveldistance` from the parent
node, but not on a straight line, but on points on a circle. Instead of
a sibling distance, there is a `sibling angle` that denotes the angle
between two given children.

Note that this function will rotate the coordinate system of the
children to ensure that the grandchildren will grow in the right
direction.

    \begin{tikzpicture}
      [grow cyclic,
       level 1/.style={level distance=8mm,sibling angle=60},
       level 2/.style={level distance=4mm,sibling angle=45},
       level 3/.style={level distance=2mm,sibling angle=30}]
      \coordinate [rotate=-90] % going down
        child foreach \x in {1,2,3}
          {child foreach \x in {1,2,3}
            {child foreach \x in {1,2,3}}};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/grow:cyclic"
    },
    ["grow via three points"] = {
      details = [[
This option installs a growth function that works as follows: If a
parent node has just one child, this child is placed at ⟨x⟩. If the
parent node has two children, these are placed at ⟨y⟩ and ⟨z⟩. If the
parent node has more than two children, the children are placed at
points that are linearly extrapolated from the three points ⟨x⟩, ⟨y⟩,
and ⟨z⟩. In detail, the position is $x + \frac{n-1}{2}(y-x) +
    (c-1)(z-y)$, where $n$ is the number of children and $c$ is the
number of the current child (starting with $1$).

The net effect of all this is that if you have a certain "linear
arrangement" in mind and use this option to specify the placement of a
single child and of two children, then any number of children will be
placed correctly.

Here are some arrangements based on this growth function. We start with
a simple "above" arrangement:

    \begin{tikzpicture}[grow via three points={%
        one child at (0,1) and two children at (-.5,1) and (.5,1)}]
      \node at (0,0) {one} child;
      \node at (0,-1.5) {two} child child;
      \node at (0,-3) {three} child child child;
      \node at (0,-4.5) {four} child child child child;
    \end{tikzpicture}

The next arrangement places children above, but "grows only to the
right".

    \begin{tikzpicture}[grow via three points={%
        one child at (0,1) and two children at (0,1) and (1,1)}]
      \node at (0,0) {one} child;
      \node at (0,-1.5) {two} child child;
      \node at (0,-3) {three} child child child;
      \node at (0,-4.5) {four} child child child child;
    \end{tikzpicture}

In the final arrangement, the children are placed along a line going
down and right.

    \begin{tikzpicture}[grow via three points={%
        one child at (-1,-.5) and two children at (-1,-.5) and (0,-.75)}]
      \node at (0,0) {one} child;
      \node at (0,-1.5) {two} child child;
      \node at (0,-3) {three} child child child;
      \node at (0,-4.5) {four} child child child child;
    \end{tikzpicture}

These examples should make it clear how you can create new styles to
arrange your children along a line.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/grow:via:three:points",
      meta = "one child at (⟨x⟩ ) and two children at (⟨y⟩) and (⟨z⟩)"
    },
    ["grow'"] = {
      details = [[
This key has the same effect as `grow`, only the children are arranged
in the opposite order.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/grow'",
      meta = "⟨direction⟩"
    },
    ["growth function"] = {
      details = [[
This rather low-level option allows you to set a new growth function.
The ⟨macro name⟩ must be the name of a macro without parameters. This
macro will be called for each child of a node. The initial function is
an internal function that corresponds to downward growth.

The effect of executing the macro should be the following: It should
transform the coordinate system in such a way that the origin becomes
the place where the current child should be anchored. When the macro is
called, the current coordinate system will be set up such that the
anchor of the parent node is in the origin. Thus, in each call, the
⟨macro name⟩ must essentially do a shift to the child's origin. When the
macro is called, the TeX counter `\tikznumberofchildren` will be set to
the total number of children of the parent node and the counter
`\tikznumberofcurrentchild` will be set to the number of the current
child.

The macro may, in addition to shifting the coordinate system, also
transform the coordinate system further. For example, it could be
rotated or scaled.

Additional growth functions are defined in the library, see Section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/growth:function",
      meta = "⟨macro name⟩"
    },
    ["growth parent anchor"] = {
      details = [[
This key allows you to specify which anchor of the parent node is to be
used for computing the children's position. For example, when there is
only one child and the `level distance` is `2cm`, then the child node
will be placed two centimeters below the ⟨anchor⟩ of the parent node.
"Being placed" means that the child node's anchor (which is the anchor
specified using the `anchor=` option in the `node` command of the child)
is two centimeters below the parent node's ⟨anchor⟩.

In the following example, the two red lines both have length `1cm`.

    \begin{tikzpicture}[level distance=1cm]
      \node [rectangle,draw] (a) at (0,0) {root}
      [growth parent anchor=south] child;

      \node [rectangle,draw] (b) at (2,0) {root}
      [growth parent anchor=north east] child;

      \draw [red,thick,dashed] (a.south) -- (a-1);
      \draw [red,thick,dashed] (b.north east) -- (b-1);
    \end{tikzpicture}

In the next example, the top and bottom nodes are aligned at the top and
the bottom, respectively.

    \begin{tikzpicture}
      [level distance=2cm,growth parent anchor=north,
       every node/.style={anchor=north,rectangle,draw}
       every child node/.style={anchor=south}]

      \node at (0,0) {root} child {node {small}};

      \node at (2,0) {big root} child {node {\large big}};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/growth:parent:anchor",
      meta = "⟨anchor⟩"
    },
    ["handle active characters in code"] = {
      details = [[
When this key is set, at the beginning of every `\tikz` command and
every `{tikzpicture}`, the character codes of all symbols used by
TikZ are reset to their normal values. Furthermore, at the beginning of
each node, the catcodes are restored to the values they had prior to the
current picture.

The net effect of this is that, in most cases, symbols having a special
character code can be used nicely both in TikZ code and also in node
texts.

In the following, slightly silly, example we make the dot an active
character and define it in some strange way. Now, in the later
TikZ command, the dot in `3.0cm` may no longer be active and setting the
`handle...` option achieves exactly this. However, as can be seen, the
dot is once more active inside the node.

    \catcode`\.=\active
    \def.{\o}

    \tikz [handle active characters in code]
      \node [draw, minimum width=3.0cm] {hall. pe.ple};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/handle:active:characters:in:code",
      meta = "⟨true or false⟩"
    },
    ["handle active characters in nodes"] = {
      details = [[
This key is needed for a special situation: As explained for the
`handle ... code` key, that key switches off all special meaning of
symbols and switches them back on again at the beginning of nodes.
However, there is one situation when this is not possible: When some
text has already been read by TeX, the catcodes can no longer change.
Now, for normal nodes this is not a problem since their contents has not
been read at the moment the catcodes are restored. In contrast for label
nodes for edges, nodes produced by the `graph` and `quotes` libraries,
and some others nodes, their text *has* already been read when the
catcodes get adjusted.

The present key may help in such situations: It causes the text of all
such "indirectly created" nodes to be surrounded by a call to the
`\scantokens` command. This command attempts to reread an already read
text, but allows catcodes to change. As users of this command will know,
it is not a perfect substitute for directly reading the text by TeX, but
it normally has the desired effect.

    \catcode`\.=\active
    \def.{\o}

    \tikz [handle active characters in code,
           handle active characters in nodes]
      \node [draw, label=f..] {hall. pe.ple};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/handle:active:characters:in:nodes",
      meta = "⟨true or false⟩"
    },
    height = {
      details = [[
Inside a `spy scope`, this is a shortcut for `minimum height`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/height",
      meta = "⟨dimension⟩"
    },
    ["help lines"] = {
      details = [[
This style makes lines "subdued" by using thin gray lines for them.
However, this style is not installed automatically and you have to say
for example:

    \tikz \draw[help lines] (0,0) grid (3,3);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/help:lines"
    },
    ["huge circuit symbols"] = {
      details = [[
This style sets the default circuit symbol unit to `10pt`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/huge:circuit:symbols"
    },
    ["huge mindmap"] = {
      details = [[
This style causes concepts to be even bigger and it is best used with A2
paper and above.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/huge:mindmap"
    },
    id = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/id",
      meta = "⟨id⟩"
    },
    ["if"] = {
      details = [[
This option has the same effect as giving a corresponding if in the
⟨calendar specification⟩. The option is mostly useful for use in the
`every calendar` style, where you cannot provide if conditionals
otherwise.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/if",
      meta = "(⟨conditions⟩)⟨code or options⟩else⟨else code or options⟩"
    },
    ["in"] = {
      details = [[
The angle at which the curve reaches the target coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/in",
      meta = "⟨angle⟩"
    },
    ["in control"] = {
      details = [[
This option causes the ⟨coordinate⟩ to be used as the target control
point. You can use a coordinate like `+(1,0)` to specify a point
relative to the *end* coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/in:control",
      meta = "⟨coordinate⟩"
    },
    ["in distance"] = {
      details = [[
Sets the minimum and maximum in distance.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/in:distance",
      meta = "⟨distance⟩"
    },
    ["in front of path"] = {
      details = [[
This is the opposite of `behind path`: It causes nodes to be drawn on
top of the path. Since this is the default behavior, you usually do not
need this option; it is only needed when an enclosing scope has used
`behind path` and you now wish to "switch back" to the normal behavior.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/in:front:of:path"
    },
    ["in looseness"] = {
      details = [[
Specifies the looseness factor for the in distance only.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/in:looseness",
      meta = "⟨number⟩"
    },
    ["in max distance"] = {
      details = [[
The maximum distance set only for the target coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/in:max:distance",
      meta = "⟨distance⟩"
    },
    ["in min distance"] = {
      details = [[
The minimum distance set only for the target coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/in:min:distance",
      meta = "⟨distance⟩"
    },
    info = {
      details = [[
This key has nearly the same effect as the `label` key, only the
following style is used additionally automatically:

The ⟨options⟩ and ⟨angle⟩ are passed directly to the `label` command.

    \begin{tikzpicture}[circuit ee IEC,every info/.style=red]
      \node [resistor,info=$3\Omega$] {};
    \end{tikzpicture}

You will find a detailed discussion of the `label` option on page ??.

Hint: To place some text *on* the main node, use `center` as the
⟨angle⟩:

    \begin{tikzpicture}[circuit ee IEC,every info/.style=red]
      \node [resistor,info=center:$3\Omega$] {};
      \node [resistor,point up,info=center:$R_1$] at (2,0) {};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/info",
      meta = "[⟨options⟩]⟨angle⟩:⟨text⟩"
    },
    ["info sloped"] = {
      details = [[
This key works like `info`, only the `transform shape` option is set
when the label is drawn, causing it to follow the sloping of the main
node.

    \begin{tikzpicture}[circuit ee IEC,every info/.style=red]
      \draw (0,0) to[resistor={info sloped={$3\Omega$}}] (3,0)
                  to[resistor={info sloped={$4\Omega$}}] (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/info:sloped",
      meta = "[⟨options⟩]⟨angle⟩:⟨text⟩"
    },
    ["info'"] = {
      details = [[
This key works exactly like the `info` key, only in case the ⟨angle⟩ is
missing, it defaults to `below` instead of the current value of
`label position`, which is usually `above`. This means that when you use
`info`, you get a label above the node, while when you use the `info’`
key you get a label below the node. In case the node has been rotated,
the positions of the info nodes are rotated accordingly.

    \begin{tikzpicture}[circuit ee IEC,every info/.style=red]
      \draw (0,0) to[resistor={info={$3\Omega$},info'={$R_1$}}] (3,0)
                  to[resistor={info={$4\Omega$},info'={$R_2$}}] (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/info'",
      meta = "[⟨options⟩]⟨angle⟩:⟨text⟩"
    },
    ["info' sloped"] = {
      details = [[
This is a combination of `info’` and `info sloped`.

    \begin{tikzpicture}[circuit ee IEC,every info/.style=red]
      \draw (0,0) to[resistor={info' sloped={$3\Omega$}}] (3,0)
                  to[resistor={info' sloped={$4\Omega$}}] (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/info':sloped",
      meta = ""
    },
    initial = {
      details = [[
This style is used to draw initial states.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial"
    },
    ["initial above"] = {
      details = [[
This is a shorthand for `initial by arrow,initial where=above`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial:above"
    },
    ["initial below"] = {
      details = [[
Works similarly to the previous option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial:below"
    },
    ["initial by arrow"] = {
      details = [[
This style causes an arrow and, possibly, some text to be added to the
node. The arrow points from the text to the node. The node text and the
direction and the distance can be set using the following key:

    \begin{tikzpicture}[every initial by arrow/.style={text=red,->>}]
      \node[state,initial,initial distance=2cm] {$q_0$};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial:by:arrow"
    },
    ["initial by diamond"] = {
      details = [[
This style uses a diamond to indicate an initial node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial:by:diamond"
    },
    ["initial distance"] = {
      details = [[
Sets the length of the arrow leading from the text to the state node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial:distance",
      meta = "⟨distance⟩"
    },
    ["initial left"] = {
      details = [[
Works similarly to the previous option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial:left"
    },
    ["initial right"] = {
      details = [[
Works similarly to the previous option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial:right"
    },
    ["initial text"] = {
      details = [[
This key sets the text to be used. Use an empty text to suppress all
text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial:text",
      meta = "⟨text⟩"
    },
    ["initial where"] = {
      details = [[
Set the place where the text should be shown. Allowed values are
`above`, `below`, `left`, and `right`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/initial:where",
      meta = "⟨direction⟩"
    },
    ["inner color"] = {
      details = [[
This option sets the color used at the center of a `radial` shading.
When this option is used, the `shade` and `shading=radial` options are
set.

    \tikz \draw[inner color=red] (0,0) rectangle (2,1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/inner:color",
      meta = "⟨color⟩"
    },
    ["inner frame sep"] = {
      details = [[
Sets the horizontal and vertical separator distances simultaneously.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/inner:frame:sep",
      meta = "⟨dimension⟩"
    },
    ["inner frame xsep"] = {
      details = [[
Sets the additional horizontal separator distance for the background
rectangle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/inner:frame:xsep",
      meta = "⟨dimension⟩"
    },
    ["inner frame ysep"] = {
      details = [[
Same for the vertical separator distance.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/inner:frame:ysep",
      meta = "⟨dimension⟩"
    },
    inputs = {
      details = [[
This key is defined only inside the scope of a `circuit logic`. There,
it has the same effect as `logic gate inputs`, described on page ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/inputs",
      meta = "⟨inputs⟩"
    },
    ["insert path"] = {
      details = [[
This key can be used inside an option to add something to the current
path. This is mostly useful for defining styles that create graphic
contents. This option should be used with care, for instance it should
not be used as an argument of, say, a `node`. In the following example,
we use a style to add little circles to a path.

    \tikz [c/.style={insert path={circle[radius=2pt]}}]
      \draw (0,0) -- (1,1) [c] -- (3,2) [c];

The effect is the same as of
`(0,0) – (1,1) circle[radius=2pt] – (3,2) circle[radius=2pt]`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/insert:path",
      meta = "⟨path⟩"
    },
    ["intersection/by"] = {
      details = [[
This key allows you to specify a list of names for the intersection
coordinates. The intersection coordinates will still be named
⟨prefix⟩`-`⟨number⟩, but additionally the first coordinate will also be
named by the first element of the ⟨comma-separated list⟩. What happens
is that the ⟨comma-separated list⟩ is passed to the `\foreach` statement
and for ⟨list member⟩ a coordinate is created at the already-named
intersection.

    \begin{tikzpicture}
      \clip (-2,-2) rectangle (2,2);
      \draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
      \draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);

      \fill [name intersections={of=curve 1 and curve 2, by={a,b}}]
            (a) circle (2pt)
            (b) circle (2pt);
    \end{tikzpicture}

You can also use the `...` notation of the `\foreach` statement inside
the ⟨comma-separated list⟩.

In case an element of the ⟨comma-separated list⟩ starts with options in
square brackets, these options are used when the coordinate is created.
A coordinate name can still, but need not, follow the options. This
makes it easy to add labels to intersections:

    \begin{tikzpicture}
      \clip (-2,-2) rectangle (2,2);
      \draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
      \draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);

      \fill [name intersections={
              of=curve 1 and curve 2,
              by={[label=center:a],[label=center:...],[label=center:i]}}];
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/intersection/by",
      meta = "⟨comma-separated list⟩"
    },
    ["intersection/name"] = {
      details = [[
This key specifies the prefix name for the coordinate nodes placed at
each intersection.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/intersection/name",
      meta = "⟨prefix⟩"
    },
    ["intersection/of"] = {
      details = [[
This key is used to specify the names of the paths to use for the
intersection.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/intersection/of",
      meta = "⟨name path 1⟩ and ⟨name path 2⟩"
    },
    ["intersection/sort by"] = {
      details = [[
By default, the intersections are simply returned in the order that the
intersection algorithm finds them. Unfortunately, this is not
necessarily a "helpful" ordering. This key can be used to sort the
intersections along the path specified by ⟨path name⟩, which should be
one of the paths mentioned in the `/tikz/intersection/of` key.

    \begin{tikzpicture}
    \clip (-0.5,-0.75) rectangle (3.25,2.25);
    \foreach \pathname/\shift in {line/0cm, curve/2cm}{
      \tikzset{xshift=\shift}
      \draw [->, name path=curve] (1,1.5) .. controls (-1,1) and (2,0.5) .. (0,0);
      \draw [->, name path=line]  (0,-.5) -- (1,2) ;
      \fill [name intersections={of=line and curve,sort by=\pathname, name=i}]
        [red, opacity=0.5, every node/.style={left=.25cm, black, opacity=1}]
        \foreach \s in {1,2,3}{(i-\s) circle (2pt) node {\footnotesize\s}};
    }
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/intersection/sort:by",
      meta = "⟨path name⟩"
    },
    ["intersection/total"] = {
      details = [[
This key means that the total number of intersections found will be
stored in ⟨macro⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/intersection/total",
      meta = "⟨macro⟩"
    },
    ["isometric view"] = {
      details = [[
A special kind of `3d view` is isometric, which can be set with the
`isometric view` style. It simply sets `3d view={-45}{35.26}`. The value
for ⟨elevation⟩ is determined with $\arctan(1/\sqrt{2})$. In isometric
projection the angle between any pair of axes is 120$^\circ$, as shown
below.

    \begin{tikzpicture}[isometric view]
      \draw[->] (-1,0,0) -- (1,0,0) node[pos=1.1]{x};
      \draw[->] (0,-1,0) -- (0,1,0) node[pos=1.1]{y};
      \draw[->] (0,0,-1) -- (0,0,1) node[pos=1.1]{z};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/isometric:view"
    },
    join = {
      details = [[
When this key is given to any node on a chain (except possibly for the
first node), an `edge` command is added after the node. The `with` part
specifies which node should be used for the start point of the edge; if
the `with` part is omitted, the `\tikzchainprevious` is used. This
`edge` command gets the ⟨options⟩ as parameter and the current node as
its target. If there is no previous node and no `with` is given, no
`edge` command gets executed.

Note that it makes sense to call this option several times for a node,
in order to connect it to several nodes. This is especially useful for
joining in branches, see the next section.

    \begin{tikzpicture}[start chain,node distance=5mm,
                        every join/.style={->,red}]
      \node [draw,on chain,join] {};
      \node [draw,on chain,join] {Hallo};
      \node [draw,on chain,join] {Welt};
      \node [draw,on chain=going below,
             join,join=with chain-1 by {blue,<-}] {foo};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/join",
      meta = "with ⟨with⟩ by ⟨options⟩"
    },
    ["jump mark left"] = {
      details = [[
This option causes the points on the path to be drawn using piecewise
constant, non-connected series of lines. If there are any marks, they
will be placed on left open ends:

    \tikz\draw plot[jump mark left, mark=*] file{plots/pgfmanual-sine.table};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/jump:mark:left"
    },
    ["jump mark mid"] = {
      details = [[
This option causes the points on the path to be drawn using piecewise
constant, non-connected series of lines. If there are any marks, they
will be placed in the middle of the horizontal line segments:

    \tikz\draw plot[jump mark mid, mark=*] file{plots/pgfmanual-sine.table};

In case of non-constant mesh widths, the same remarks as for
`const plot mark mid` apply.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/jump:mark:mid"
    },
    ["jump mark right"] = {
      details = [[
This option causes the points on the path to be drawn using piecewise
constant, non-connected series of lines. If there are any marks, they
will be placed on right open ends:

    \tikz\draw plot[jump mark right, mark=*] file{plots/pgfmanual-sine.table};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/jump:mark:right"
    },
    ["key attribute"] = {
      details = [[
This style is intended for key attributes. By default, the will cause
the attribute to be typeset in italics. Typically, underlining is used
instead, but that looks ugly and it is difficult to implement in TeX.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/key:attribute"
    },
    label = {
      details = [[
\[label-option\] When this option is given to a `node` operation, it
causes *another* node to be added to the path after the current node has
been finished. This extra node will have the text ⟨text⟩. It is placed,
in principle, in the direction ⟨angle⟩ relative to the main node, but
the exact rules are a bit complex. Suppose the `node` currently under
construction is called `main node` and let us call the label node
`label node`. Then the following happens:

1.  The ⟨angle⟩ is used to determine a position on the border of the
    `main node`. If the ⟨angle⟩ is missing, the value of the following
    key is used instead:

    The ⟨angle⟩ determines the position on the border of the shape in
    two different ways. Normally, the border position is given by
    `main node.`⟨angle⟩. This means that the ⟨angle⟩ can either be a
    number like `0` or `-340`, but it can also be an anchor like
    `north`. Additionally, the special angles `above`, `below`, `left`,
    `right`, `above left`, and so on are automatically replaced by the
    corresponding angles `90`, `270`, `180`, `0`, `135`, and so on.

    A special case arises when the following key is set:

2.  Then, an anchor point for the `label node` is computed. It is
    determined in such a way that the `label node` will "face away" from
    the border of the `main node`. The anchor that is chosen depends on
    the position of the border point that is chosen and its position
    relative to the center of the `main node` and on whether the
    `transform shape` option is set. In detail, when the computed border
    point is at $0^\circ$, the anchor `west` will be used. Similarly,
    when the border point is at $90^\circ$, the anchor `south` will be
    used, and so on for $180^\circ$ and $270^\circ$.

    For angles between these "major" angles, like $30^\circ$ or
    $110^\circ$, combined anchors, like `south west` for $30^\circ$ or
    `south east` for $110^\circ$, are used. However, for angles close to
    the major angles, (differing by up to $2^\circ$ from the major
    angle), the anchor for the major angle is used. Thus, a label at a
    border point for $2^\circ$ will have the anchor `west`, while a
    label for $3^\circ$ will have the anchor `south west`, resulting in
    a "jump" of the anchor. You can set the anchor "by hand" using the
    `anchor` key or indirect keys like `left`.

        \tikz
          \node [circle, draw,
                 label=default,
                 label=60:$60^\circ$,
                 label=below:$-90^\circ$,
                 label=3:$3^\circ$,
                 label=2:$2^\circ$,
                 label={[below]180:$180^\circ$},
                 label={[centered]135:$135^\circ$}] {my circle};

3.  One ⟨angle⟩ is special: If you set the ⟨angle⟩ to `center`, then the
    label will be placed on the center of the main node. This is mainly
    useful for adding a label text to an existing node, especially if it
    has been rotated.

        \tikz \node [transform shape,rotate=90,
                     rectangle,draw,label={[red]center:R}] {main node};

You can pass ⟨options⟩ to the node `label node`. For this, you provide
the options in square brackets before the ⟨angle⟩. If you do so, you
need to add braces around the whole argument of the `label` option and
this is also the case if you have brackets or commas or semicolons or
anything special in the ⟨text⟩.

    \tikz \node [circle,draw,label={[red]above:X}] {my circle};

    \begin{tikzpicture}
      \node [circle,draw,label={[name=label node]above left:$a,b$}] {};
      \draw (label node) -- +(1,1);
    \end{tikzpicture}

If you provide multiple `label` options, then multiple extra label nodes
are added in the order they are given.

The following styles influence how labels are drawn:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/label",
      meta = "[⟨options⟩]⟨angle⟩:⟨text⟩"
    },
    ["label distance"] = {
      details = [[
The ⟨distance⟩ is additionally inserted between the main node and the
label node.

    \tikz[label distance=5mm]
      \node [circle,draw,label=right:X,
                         label=above right:Y,
                         label=above:Z]       {my circle};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/label:distance",
      meta = "⟨distance⟩"
    },
    ["label position"] = {
      details = [[
Sets the default position for labels.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/label:position",
      meta = "⟨angle⟩"
    },
    ["large circuit symbols"] = {
      details = [[
This style sets the default circuit symbol unit to `8pt`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/large:circuit:symbols"
    },
    ["large mindmap"] = {
      details = [[
This style includes the `mindmap` style, but additionally changes the
default size of concepts, fonts and distances so that a medium-sized
mindmap will fit on an A3 page (A3 pages are twice as large as A4
pages).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/large:mindmap"
    },
    ["late options"] = {
      details = [[
This option can be given on a path (but not as an argument to a `node`
path command) and has the same effect as the `node also` path command.
Inside the ⟨options⟩, you should use the `name` option to specify the
node for which you wish to add late options:

    \begin{tikzpicture}
      \node      [draw,circle]       (a) {Hello};
      \path [late options={name=a, label=above:world}];
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/late:options",
      meta = "⟨options⟩"
    },
    left = {
      details = [[
Similar to `above`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/left",
      meta = "⟨offset⟩"
    },
    ["left color"] = {
      details = [[
This option does exactly the same as `top color`, except that the
shading angle is set to $90^\circ$.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/left:color",
      meta = "⟨color⟩"
    },
    ["left delimiter"] = {
      details = [[
This option can be given to a any node that has the standard anchors
`north`, `south` and so on. The ⟨delimiter⟩ can be any delimiter that is
acceptable to TeX's `\left` command.

    \begin{tikzpicture}
      \matrix [matrix of math nodes,left delimiter=(,right delimiter=\}]
      {
        a_8 & a_1 & a_6 \\
        a_3 & a_5 & a_7 \\
        a_4 & a_9 & a_2 \\
      };
    \end{tikzpicture}

    \begin{tikzpicture}
      \node [fill=red!20,left delimiter=(,right delimiter=\}]
        {$\displaystyle\int_0^1 x\,dx$};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/left:delimiter",
      meta = "⟨delimiter⟩"
    },
    ["left of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/left:of",
      meta = "⟨node⟩"
    },
    lens = {
      details = [[
The ⟨options⟩ should contain transformation commands like `scale` or
`rotate`. These transformations are applied to the picture when it is
shown inside the spy-on node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/lens",
      meta = "⟨options⟩"
    },
    level = {
      details = [[
This style is executed at the beginning of each set of children, where
⟨number⟩ is the current level in the current tree. For example, when you
say `\node {x} child child;`, then `level=1` is used before the first
`child`. The style or code of this key will be passed ⟨number⟩ as its
first parameter. If this first `child` has children itself, then
`level=2` would be used for them.

    \begin{tikzpicture}[level/.style={sibling distance=20mm/#1}]
      \node {root}
        child { child child }
        child { child child child };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/level",
      meta = "⟨number⟩"
    },
    ["level 1 concept"] = {
      details = [[
The `mindmap` style adds this style to the `level 1` style. This means
that the first level children of a mindmap tree will use this style.

    \tikz
      [root concept/.append style={concept color=blue!80},
       level 1 concept/.append style={concept color=red!50},
       mindmap]
      \node [concept] {Root concept}
        child[grow=30] {node[concept] {child}}
        child[grow=0 ] {node[concept] {child}};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/level:1:concept"
    },
    ["level 2 concept"] = {
      details = [[
Works like `level 1 concept`, only for second level children.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/level:2:concept"
    },
    ["level 3 concept"] = {
      details = [[
Works like `level 1 concept`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/level:3:concept"
    },
    ["level 4 concept"] = {
      details = [[
Works like `level 1 concept`. Note that there are no fifth and higher
level styles, you need to modify `level 5` directly in such cases.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/level:4:concept"
    },
    ["level distance"] = {
      details = [[
This key determines the distance between different levels of the tree,
more precisely, between the parent and the line on which its children
are arranged. When given to a single child, this will set the distance
for this child only.

    \begin{tikzpicture}
      \node {root}
        [level distance=20mm]
        child
        child {
          [level distance=5mm]
          child
          child
          child
        }
        child[level distance=10mm];
    \end{tikzpicture}

    \begin{tikzpicture}
      [level 1/.style={level distance=10mm},
       level 2/.style={level distance=5mm}]
      \node {root}
        child
        child {
          child
          child[level distance=10mm]
          child
        }
        child;
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/level:distance",
      meta = "⟨distance⟩"
    },
    ["level ⟨number⟩"] = {
      details = [[
This style is used in addition to the `level` style. So, when you say
`\node {x} child child;`, then the following key list is executed:
`level=1,level 1`.

    \begin{tikzpicture}
      [level 1/.style={sibling distance=20mm},
       level 2/.style={sibling distance=5mm}]
      \node {root}
        child { child child }
        child { child child child };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/level:⟨number⟩"
    },
    ["light emitting"] = {
      details = [[
Like a unit, an annotation should be given as an additional option to a
node. It causes some drawings (in this case, two parallel lines) to be
placed next to the node.

    \tikz [circuit ee IEC] \draw (0,0) to [diode=light emitting] (2,0);

The ⟨options⟩ can be used for three different things:

1.  You can use keys like `red` to change the appearance of this
    annotation, locally.

2.  You can use keys like `<-` or `-latex` to change the direction and
    kinds of arrows used in the annotation.

3.  You can use info labels like `ohm=5` or `info=foo` inside the
    ⟨options⟩. These info labels will be added to the main node (not to
    the annotation itself), but the label distance will have been
    changed to accommodate for the space taken up by the annotation.

        \tikz [circuit ee IEC]
        {
          \draw (0,2) to [diode={light emitting,info=not good}] (2,2);
          \draw (0,0) to [diode={light emitting={info=better},
                                 info'=also good}]  (2,0);
        }

In addition to `light emitting` there is also a key called
`light emitting’`, which simply places the annotation on the other side
of the node.

You can configure the appearance of annotations in three ways:

-   You can set the `every circuit annotation` style.

-   You can set the `every light emitting` style.

-   You can set the following key:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/light:emitting",
      meta = "⟨options⟩"
    },
    ["line cap"] = {
      details = [[
Specifies how lines "end". Permissible ⟨type⟩ are `round`, `rect`, and
`butt`. They have the following effects:

    \begin{tikzpicture}
      \begin{scope}[line width=10pt]
        \draw[line cap=round] (0,1 ) -- +(1,0);
        \draw[line cap=butt]  (0,.5) -- +(1,0);
        \draw[line cap=rect]  (0,0 ) -- +(1,0);
      \end{scope}
      \draw[white,line width=1pt]
        (0,0 ) -- +(1,0) (0,.5) -- +(1,0) (0,1 ) -- +(1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/line:cap",
      meta = "⟨type⟩"
    },
    ["line join"] = {
      details = [[
Specifies how lines "join". Permissible ⟨type⟩ are `round`, `bevel`, and
`miter`. They have the following effects:

    \begin{tikzpicture}[line width=10pt]
      \draw[line join=round] (0,0) -- ++(.5,1) -- ++(.5,-1);
      \draw[line join=bevel] (1.25,0) -- ++(.5,1) -- ++(.5,-1);
      \draw[line join=miter] (2.5,0) -- ++(.5,1) -- ++(.5,-1);
      \useasboundingbox (0,1.5); % enlarge bounding box
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/line:join",
      meta = "⟨type⟩"
    },
    ["line to"] = {
      details = [[
Causes a straight line to be added to the path upon a `to` or an `edge`
operation.

    \tikz {\draw (0,0) to[line to] (1,0);}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/line:to"
    },
    ["line width"] = {
      details = [[
Specifies the line width. Note the space.

      \tikz \draw[line width=5pt] (0,0) -- (1cm,1.5ex);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/line:width",
      meta = "⟨dimension⟩"
    },
    loop = {
      details = [[
This key is similar to the `curve to` key, but differs in the following
ways: First, the actual target coordinate is ignored and the start
coordinate is used as the target coordinate. Thus, it is allowed not to
provide any target coordinate, which can be useful with unnamed nodes.
Second, the `looseness` is set to `8` and the `min distance` to `5mm`.
These settings result in rather nice loops when the opening angle
(difference between `in` and `out`) is 30$^\circ$.

    \begin{tikzpicture}
      \node [circle,draw] {a} edge [in=30,out=60,loop] ();
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loop"
    },
    ["loop above"] = {
      details = [[
Sets the `loop` style and sets in and out angles such that loop is above
the node. Furthermore, the `above` option is set, which causes a node
label to be placed at the correct position.

    \begin{tikzpicture}
      \node [circle,draw] {a} edge [loop above] node {x} ();
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loop:above"
    },
    ["loop below"] = {
      details = [[
Works like the previous option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loop:below"
    },
    ["loop left"] = {
      details = [[
Works like the previous option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loop:left"
    },
    ["loop right"] = {
      details = [[
Works like the previous option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loop:right"
    },
    ["loose background"] = {
      details = [[
Sets the inner frame separator to 2ex.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loose:background"
    },
    ["loosely dash dot"] = {
      details = [[
Shorthand for setting a loosely dashed and dotted dash pattern.

    \tikz \draw[loosely dash dot] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loosely:dash:dot"
    },
    ["loosely dash dot dot"] = {
      details = [[
Shorthand for setting a loosely dashed and dotted dash pattern with more
dots.

    \tikz \draw[loosely dash dot dot] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loosely:dash:dot:dot"
    },
    ["loosely dashed"] = {
      details = [[
Shorthand for setting a loosely dashed dash pattern.

    \tikz \draw[loosely dashed] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loosely:dashed"
    },
    ["loosely dotted"] = {
      details = [[
Shorthand for setting a loosely dotted dash pattern.

    \tikz \draw[loosely dotted] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/loosely:dotted"
    },
    looseness = {
      details = [[
This number specifies how "loose" the curve will be. In detail, the
following happens: TikZ computes the distance between the start and the
target coordinate (if the start and/or target coordinate are nodes, the
distance is computed between the points on their border). This distance
is then multiplied by a fixed factor and also by the factor ⟨number⟩.
The resulting distance, let us call it $d$, is then used as the distance
of the control points from the start and target coordinates.

The fixed factor has been chosen in such a way that if ⟨number⟩ is `1`,
if the `in` and `out` angles differ by 90$\circ$, then a quarter circle
results:

    \tikz \draw (0,0) to [out=0,in=-90]               (1,1);
    \tikz \draw (0,0) to [out=0,in=-90,looseness=0.5] (1,1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/looseness",
      meta = "⟨number⟩"
    },
    ["lower left"] = {
      details = [[
Sets the color to be used in a `bilinear interpolation` shading for the
lower left corner. Also, this options selects this shading and sets the
`shade` option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/lower:left",
      meta = "⟨color⟩"
    },
    ["lower right"] = {
      details = [[
Works like `lower left`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/lower:right",
      meta = "⟨color⟩"
    },
    magnification = {
      details = [[
This has the same effect as saying `lens={scale=`⟨number⟩`}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/magnification",
      meta = "⟨number⟩"
    },
    ["make snapshot after"] = {
      details = [[
Works exactly like `make snapshot of`, only the ⟨time⟩ is interpreted as
$⟨time⟩ + \epsilon$. This only makes a difference at the end of a
timeline and when there are two or more values specified for the same
time: When there are several values specified for time $t$, a normal
snapshot for time $t$ uses the first value given for the attribute. In
contrast, this command would use the last one given. Similarly, when an
animation timeline ends at time $t$, a normal snapshot of time $t$ would
use the last value of the timeline, while this key would not apply the
animation at all (it has already ended at time $t + \epsilon$).

    \tikz [make snapshot of = 2s]
      \fill :fill = { 0s = "green", 2s = "red" } (0,0) rectangle ++(1,1);
    \tikz [make snapshot after = 2s]
      \fill :fill = { 0s = "green", 2s = "red" } (0,0) rectangle ++(1,1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/make:snapshot:after",
      meta = "⟨time⟩"
    },
    ["make snapshot if necessary"] = {
      details = [[
This key makes a snapshot of ⟨time⟩ only when the output format does not
provide support for animations; if the output format supports animations
(like SVG), then the command has no effect and animations are created
normally.

This manual is typeset with the following being set once are for all in
preamble:

    \tikzset{make snapshot if necessary}

Because of this setting, in the PDF version of this document, all
animations are shown at the value they would have at moment $0s$. In
contrast, in the SVG version, the animations are created normally.

In both versions, the smaller pictures showing how the animation
proceeds over time are created using `make snapshot of` for the
indicated times.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/make:snapshot:if:necessary",
      meta = "⟨time⟩"
    },
    ["make snapshot of"] = {
      details = [[
When this key is used in a TeX scope, animation commands given in the
scope do not add animation code to the output. Instead, TikZ computes
the values the attributes of the animation would have at the specified
⟨time⟩ and inserts the necessary system layer command to set the
attribute to the computed values (some care has been taken to make this
computation match the computations done by viewer applications as best
as possible).

    \tikz [make snapshot of = 1s] {
      \fill :fill = { 0s = "black", 2s = "white" } (0,0) rectangle ++(1,1);
      \fill :fill = { 1s = "black", 3s = "white" } (2,0) rectangle ++(1,1);
    }

The moment ⟨time⟩ is best thought of as ⟨time⟩ seconds after the "moment
zero" where all timelines start by default. Now, "real" animation may
start at different time through user interaction, which clearly makes no
sense for snapshots. Nevertheless, you will sometimes wish to have more
control over when a timeline starts for the purposes of taking
snapshots. You can use the following key for this:

The computations of the values the animation "would have" are done
entirely by TikZ, which has the big advantage is that no support from
the viewer application or the output format is needed -- snapshots work
with all output formats, not just with SVG. However, computations done
by TikZ are not always very precise and can be slow because of TeX's
limitations. In addition, there are some further limitations when it
comes to TikZ's computation of snapshot values:

-   As mentioned above, except for `begin snapshot`, other commands for
    specifying the beginning or end of a timeline based on user
    interaction make no sense for timelines: The keys `begin`,
    `begin on`, `end`, and `end on` are silently ignored.

-   The value `current value` for a value is forbidden since this value
    is almost impossible to compute by TikZ.

-   Accumulating repeats of a motion are (currently) not supported, but
    should not rely on this.

When ⟨time⟩ is empty, "snapshot taking" is switched off and animation
commands are inserted once more.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/make:snapshot:of",
      meta = "⟨time⟩"
    },
    mark = {
      details = [[
Sets the mark to a mnemonic that has previously been defined using the
`\pgfdeclareplotmark`. By default, `*`, `+`, and `x` are available,
which draw a filled circle, a plus, and a cross as marks. Many more
marks become available when the library `plotmarks` is loaded.
Section ?? lists the available plot marks.

One plot mark is special: the `ball` plot mark is available only in
TikZ. The `ball color` option determines the balls's color. Do not use
this option with a large number of marks since it will take very long to
render in PostScript.

  Option                 Effect
  --------------------- --------
  height14pt width0pt   
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/mark",
      meta = "⟨mark mnemonic⟩"
    },
    ["mark indices"] = {
      details = [[
This option allows you to specify explicitly the indices at which a mark
should be placed. Counting starts with 1. You can use the `\foreach`
syntax, that is, `...` can be used.

    \tikz \draw plot[mark=x,mark indices={1,4,...,10,11,12,...,16,20},smooth]
      file {plots/pgfmanual-sine.table};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/mark:indices",
      meta = "⟨list⟩"
    },
    ["mark options"] = {
      details = [[
Redefines `every mark` such that it sets `{options}`.

    \tikz \fill[fill=blue!20]
      plot[mark=triangle*,mark options={color=blue,rotate=180}]
        file{plots/pgfmanual-sine.table} |- (0,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/mark:options",
      meta = "⟨options⟩"
    },
    ["mark phase"] = {
      details = [[
This option tells TikZ that the first mark to be draw should be the
$p$th, followed by the $(p+r)$th, then the $(p+2r)$th, and so on.

    \tikz \draw plot[mark=x,mark repeat=3,mark phase=6,smooth] file {plots/pgfmanual-sine.table};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/mark:phase",
      meta = "⟨p⟩"
    },
    ["mark repeat"] = {
      details = [[
This option tells TikZ that only every $r$th mark should be drawn.

    \tikz \draw plot[mark=x,mark repeat=3,smooth] file {plots/pgfmanual-sine.table};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/mark:repeat",
      meta = "⟨r⟩"
    },
    ["mark size"] = {
      details = [[
Sets the size of the plot marks. For circular plot marks, ⟨dimension⟩ is
the radius, for other plot marks ⟨dimension⟩ should be about half the
width and height.

This option is not really necessary, since you achieve the same effect
by specifying `scale=`⟨factor⟩ as a local option, where ⟨factor⟩ is the
quotient of the desired size and the default size. However, using
`mark size` is a bit faster and more natural.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/mark:size",
      meta = "⟨dimension⟩"
    },
    matrix = {
      details = [[
This option can be passed to a `node` path command. It signals that the
node will contain a matrix.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (4,2);
      \node [matrix,fill=red!20,draw=blue,very thick] (my matrix) at (2,1)
      {
        \draw (0,0)   circle (4mm); & \node[rotate=10] {Hello};        \\
        \draw (0.2,0) circle (2mm); & \fill[red]   (0,0) circle (3mm); \\
      };

      \draw [very thick,->] (0,0) |- (my matrix.west);
    \end{tikzpicture}

The exact syntax of the matrix is explained in the course of this
section.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix",
      meta = "⟨true or false⟩"
    },
    ["matrix anchor"] = {
      details = [[
This option has the same effect as `anchor`, but the option applies only
to the matrix itself, not to the cells inside. If you just say
`anchor=north` as an option to the matrix node, all nodes inside matrix
will also have this anchor, unless it is explicitly set differently for
each node. By comparison, `matrix anchor` sets the anchor for the
matrix, but for the nodes inside the value of `anchor` remain unchanged.

    \begin{tikzpicture}
      \matrix [matrix anchor=west] at (0,0)
      {
        \node {123}; \\ % still center anchor
        \node {12}; \\
        \node {1}; \\
      };
      \matrix [anchor=west] at (0,-2)
      {
        \node {123}; \\ % inherited west anchor
        \node {12}; \\
        \node {1}; \\
      };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix:anchor",
      meta = "⟨anchor⟩"
    },
    ["matrix of math nodes"] = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix:of:math:nodes"
    },
    ["matrix of nodes"] = {
      details = [[
Conceptually, this key adds `\node{` at the beginning and `};` at the
end of each cell and sets the `anchor` of the node to `base`.
Furthermore, it adds the option `name` option to each node, where the
name is set to ⟨matrix name⟩`-`⟨row number⟩`-`⟨column number⟩. For
example, if the matrix has the name `my matrix`, then the node in the
upper left cell will get the name `my matrix-1-1`.

    \begin{tikzpicture}
      \matrix (magic) [matrix of nodes]
      {
        8 & 1 & 6 \\
        3 & 5 & 7 \\
        4 & 9 & 2 \\
      };

      \draw[thick,red,->] (magic-1-1) |- (magic-2-3);
    \end{tikzpicture}

You may wish to add options to certain nodes in the matrix. This can be
achieved in three ways.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix:of:nodes"
    },
    ["matrix/inner style order"] = {
      details = [[
The order in which these styles are applied to the matrix cells is
specified by this key. By default it is

    \tikzset{
      matrix/inner style order={
        every cell,
        column,
        even odd column,
        row,
        even odd row,
        cell,
      },
    }

You can use this to install your own styles here, but only *names* of
styles are permitted here. The style specification has to be placed
outside of `matrix/inner style order` and unless it is installed inside
`/tikz/matrix/inner style/`, it has to be fully qualified.

    \tikzset{
      my style/.code={%
        \ifnum\pgfmatrixcurrentcolumn=2
            \tikzset{font=\itshape}%
        \fi
      },
      matrix/inner style order={
          every cell,
          even odd column,
          even odd row,
          column,
          row,
          cell,
          /tikz/my style,
      },
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix/inner:style:order"
    },
    ["matrix/inner style/cell"] = {
      details = [[
Wraps `/tikz/row `⟨number⟩` column `⟨number⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix/inner:style/cell"
    },
    ["matrix/inner style/column"] = {
      details = [[
Wraps `/tikz/column `⟨number⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix/inner:style/column"
    },
    ["matrix/inner style/even odd column"] = {
      details = [[
Wraps `/tikz/every even column` and `/tikz/every odd column`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix/inner:style/even:odd:column"
    },
    ["matrix/inner style/even odd row"] = {
      details = [[
Wraps `/tikz/every even row` and `/tikz/every odd row`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix/inner:style/even:odd:row"
    },
    ["matrix/inner style/every cell"] = {
      details = [[
Wraps `/tikz/every cell`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix/inner:style/every:cell"
    },
    ["matrix/inner style/row"] = {
      details = [[
Wraps `/tikz/row `⟨number⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/matrix/inner:style/row"
    },
    ["max distance"] = {
      details = [[
If the computed distance for the start and target coordinates are above
⟨distance⟩, then ⟨distance⟩ is used instead.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/max:distance",
      meta = "⟨distance⟩"
    },
    ["medium circuit symbols"] = {
      details = [[
This style sets the default circuit symbol unit to `7pt`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/medium:circuit:symbols"
    },
    meet = {
      details = [[
Use this key with a scope to establish a view for the scope. In the
argument to the `meet` key, both `rectangle` texts are optional. Also,
everything following `at` is optional; when it is missing, the ⟨window
corner⟩s are assumed to be the same as the ⟨to-be-viewed corner⟩s. The
latter are two corners of a rectangle that should be transformed in such
a way that it fits inside the rectangle described by the two window
corners.

More precisely, at the beginning of the scope a canvas transformation is
installed that scales and translates the canvas is such a way that

1.  the center of the to-be-viewed rectangle lies at the center of the
    window rectangle and

2.  the to-be-viewed rectangle has maximum size that it still fits
    inside the window rectangle.

&nbsp;

    \tikz {
      \draw [red, very thick] (0,0) rectangle (20mm,20mm);
      \begin{scope}[meet = {(0.5,0.5) (2.5,1.5) at (0,0) (2,2)}]
        \draw [blue, very thick] (5mm,5mm) rectangle (25mm,15mm);
        \draw [thick] (1,1) circle [x radius=5mm, y radius=10mm] node {Hi};
      \end{scope} }

    \tikz {
      \draw [red, very thick] (0,0) rectangle (20mm,20mm);
      \begin{scope}[slice = {(0.5,0.5) (2.5,1.5) at (0,0) (2,2)}]
        \draw [blue, very thick] (5mm,5mm) rectangle (25mm,15mm);
        \draw [thick] (1,1) circle [x radius=5mm, y radius=10mm] node {Hi};
      \end{scope} }

As mentioned earlier, the main use of views is in conjunction with
animations. In order to animate a view, you specify the scope containing
the `meet` command as the target object and then animate its `:view`
attribute:

    \tikz [animate = {
      my scope:view = {
        begin on = { click, of next = here },
        0s = "{(0.5,0.5) (2.5,1.5)}",
        2s = "{(0.5,0) (1.5,2)}", forever
      }}] {
      \draw [red, fill=red!20, very thick, name=here]
        (0,0) rectangle (20mm,20mm);
      \begin{scope}[name = my scope,
                    meet = {(0.5,0.5) (2.5,1.5) at (0,0) (2,2)}]
        \draw [blue, very thick] (5mm,5mm) rectangle (25mm,15mm);
        \draw [thick] (1,1) circle [x radius=5mm, y radius=10mm] node {Hi};
      \end{scope} }

You can, of course, also specify the animation using the
`animate myself:` key when you specify the animation inside the scope:

    \tikz [animate = {
      my scope:view = {
      }}] {
      \draw [red, fill=red!20, very thick, name=here]
        (0,0) rectangle (20mm,20mm);
      \begin{scope}[animate = { myself: = { :view = {
                      begin on = { click, of = here },
                      0s = "{(0.5,0.5) (2.5,1.5)}",
                      2s = "{(0.5,0) (1.5,2)}", forever }}},
                    slice = {(0.5,0.5) (2.5,1.5) at (0,0) (2,2)}]
        \draw [blue, very thick] (5mm,5mm) rectangle (25mm,15mm);
        \draw [thick] (1,1) circle [x radius=5mm, y radius=10mm] node {Hi};
      \end{scope} }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/meet",
      meta = "⟨to-be-viewed corner⟩ rectangle ⟨to-be-viewed corner⟩ at ⟨window corner⟩ rectangle ⟨window corner⟩"
    },
    ["mid left"] = {
      details = [[
Works like `base left`, but with `mid east` and `mid west` anchors
instead of `base east` and `base west`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/mid:left",
      meta = "⟨specification⟩"
    },
    ["mid right"] = {
      details = [[
Works like `mid left`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/mid:right",
      meta = "⟨specification⟩"
    },
    ["middle color"] = {
      details = [[
This option specifies the color for the middle of an axis shading. It
also sets the `shade` and `shading=axis` options, but it does not change
the rotation angle.

*Note:* Since both `top color` and `bottom color` change the middle
color, this option should be given *last* if all of these options need
to be given:

    \tikz \draw[top color=white,bottom color=black,middle color=red]
      (0,0) rectangle (2,1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/middle:color",
      meta = "⟨color⟩"
    },
    midway = {
      details = [[
This has the same effect as `pos=0.5`.

    \tikz \draw (0,0) .. controls +(up:2cm) and +(left:3cm) .. (1,5)
           node[at end]          {\texttt{at end}}
           node[very near end]   {\texttt{very near end}}
           node[near end]        {\texttt{near end}}
           node[midway]          {\texttt{midway}}
           node[near start]      {\texttt{near start}}
           node[very near start] {\texttt{very near start}}
           node[at start]        {\texttt{at start}};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/midway"
    },
    ["min distance"] = {
      details = [[
If the computed distance for the start and target coordinates are below
⟨distance⟩, then ⟨distance⟩ is used instead.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/min:distance",
      meta = "⟨distance⟩"
    },
    mindmap = {
      details = [[
Use this style with all pictures or at least scopes that contain a
mindmap. It installs a whole bunch of settings that are useful for
drawing mindmaps.

    \tikz[mindmap,concept color=red!50]
      \node [concept] {Root concept}
        child[grow=right] {node[concept] {Child concept}};

The sizes of concepts are predefined in such a way that a medium-size
mindmap will fit on an A4 page (more or less).

#### Remark:

Note that `mindmap` redefines `font` sizes and `sibling angle` depending
on the current concept level (i.e. inside of `level 1 concept`,
`level 2 concept` etc.). Thus, if you need to redefine these variables,
use

`level 1 concept/.append style={font=\small}`

or

`level 2 concept/.append style={sibling distance=90}`

*after* the `mindmap` style.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/mindmap"
    },
    missing = {
      details = [[
If this option is given to a child, the current child counter is
increased, but the child is otherwise ignored. In particular, the normal
contents of the child is completely ignored.

    \begin{tikzpicture}[level distance=10mm,sibling distance=5mm]
      \node {root} [grow=down]
        child          { node {1} }
        child          { node {2} }
        child          { node {3} }
        child[missing] { node {4} }
        child          { node {5} }
        child          { node {6} };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/missing",
      meta = "⟨true or false⟩"
    },
    ["miter limit"] = {
      details = [[
When you use the miter join and there is a very sharp corner (a small
angle), the miter join may protrude very far over the actual joining
point. In this case, if it were to protrude by more than ⟨factor⟩ times
the line width, the miter join is replaced by a bevel join.

    \begin{tikzpicture}[line width=5pt]
      \draw                 (0,0) -- ++(5,.5) -- ++(-5,.5);
      \draw[miter limit=25] (6,0) -- ++(5,.5) -- ++(-5,.5);
      \useasboundingbox (14,0); % make bounding box bigger
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/miter:limit",
      meta = "⟨factor⟩"
    },
    ["month code"] = {
      details = [[
This option allows you to specify what the macro `\tikzmonthcode` should
expand to.

By default, the `\tikzmonthcode` it is set to

    \node[every month]{\tikzmonthtext};

Note that this node is not named by default.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:code",
      meta = "⟨code⟩"
    },
    ["month label above centered"] = {
      details = [[
Works as above, only the label is centered above the row containing the
first day.

    \tikz
      \calendar [dates=2000-02-01 to 2000-02-last,
                 day list right,month label above centered];

    \tikz
      \calendar [dates=2000-01-20 to 2000-02-10,
                 week list,month label above centered];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:label:above:centered"
    },
    ["month label above left"] = {
      details = [[
This style places the month label above of the row of the first day,
flushed left to the leftmost column. The amount by which the label is
raised is fixed to `1.25em`; use the `yshift` option with the month node
to modify this.

    \tikz
      \calendar [dates=2000-01-28 to 2000-02-03,
                 day list right,month xshift=1em,
                 month label above left];

    \tikz
      \calendar [dates=2000-01-20 to 2000-02-10,
                 week list,month label above left];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:label:above:left"
    },
    ["month label above right"] = {
      details = [[
Works as above, but flushed right

    \tikz
      \calendar [dates=2000-01-20 to 2000-02-10,
                 week list,month label above right];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:label:above:right"
    },
    ["month label below centered"] = {
      details = [[
Works like `month label above centered`, only below.

    \tikz
      \calendar [dates=2000-02-01 to 2000-02-last,
                 day list right,month label below centered];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:label:below:centered"
    },
    ["month label below left"] = {
      details = [[
Works like `month label above left`, only the label is placed below the
row. This placement is not really useful with the `week list`
arrangement, but rather with the `day list right` or `month list`
arrangement.

    \tikz
      \calendar [dates=2000-02-01 to 2000-02-last,
                 day list right,month label below left];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:label:below:left"
    },
    ["month label left"] = {
      details = [[
Places the month label to the left of the first day of the month. (For
`week list` and `month list` where a month does not start on a Monday,
the position is chosen "as if" the month had started on a Monday --
which is usually exactly what you want.)

    \tikz
      \calendar [dates=2000-01-28 to 2000-02-03,
                 day list downward,month yshift=1em,
                 month label left];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:label:left"
    },
    ["month label left vertical"] = {
      details = [[
This style works like the above style, only the label is rotated
counterclockwise by 90 degrees.

    \tikz
      \calendar [dates=2000-01-28 to 2000-02-03,
                 day list downward,month yshift=1em,
                 month label left vertical];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:label:left:vertical"
    },
    ["month label right"] = {
      details = [[
This style places the month label to the right of the row in which the
first day of the month lies. This means that for a day list the label is
to the right of the first day, for a week list it is to the right of the
first week, and for a month list it is to the right of the whole month.

    \tikz
      \calendar [dates=2000-01-28 to 2000-02-03,
                 day list downward,month yshift=1em,
                 month label right];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:label:right"
    },
    ["month label right vertical"] = {
      details = [[
Works as above, only the label is rotated clockwise by 90 degrees.

    \tikz
      \calendar [dates=2000-01-28 to 2000-02-03,
                 day list downward,month yshift=1em,
                 month label right vertical];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:label:right:vertical"
    },
    ["month list"] = {
      details = [[
In this arrangement there is a row for each month. As for the
`week list`, the `day xshift` is used for the horizontal distance. For
the vertical shift, `month yshift` is used.

In each row, all days of the month are listed alongside each other.
However, it is once more ensured that days in each column lie on the
same day of week. Thus, the very first column contains only Mondays. If
a month does not start with a Monday, its days are shifted to the right
such that the days lie on the correct columns.

    \sffamily\scriptsize
    \tikz
      \calendar [dates=2000-01-01 to 2000-12-31,
                 month list,month label left,month yshift=1.25em]
                if (Sunday) [black!50];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:list"
    },
    ["month text"] = {
      details = [[
This option allows you to change the macro `\tikzmonthtext`. By default,
the month text is a long textual presentation of the current month being
typeset.

    \tikz \calendar[dates=2000-01-01 to 2000-01-31,week list,
                    month label above centered,
                    month text=\textcolor{red}{\%mt} \%y-];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:text",
      meta = "⟨text⟩"
    },
    ["month xshift"] = {
      details = [[
Specifies an additional horizontal shift between different months.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:xshift",
      meta = "⟨dimension⟩"
    },
    ["month yshift"] = {
      details = [[
Specifies an additional vertical shift between different months.

    \tikz \calendar[dates=2000-01-01 to 2000-02-last,week list,
                    month yshift=0pt];

    \tikz \calendar[dates=2000-01-01 to 2000-02-last,week list,
                    month yshift=1cm];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/month:yshift",
      meta = "⟨dimension⟩"
    },
    ["move to"] = {
      details = [[
Causes a move to be added to the path upon a `to` or an `edge`
operation.

    \tikz \draw (0,0) to[line to] (1,0)
                      to[move to] (2,0) to[line to] (3,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/move:to"
    },
    name = {
      details = [[
Assigns a name to the node for later reference. Since this is a
"high-level" name (drivers never know of it), you can use spaces,
number, letters, or whatever you like when naming a node. Thus, you can
name a node just `1` or perhaps `start of chart` or even `y_ 1`. Your
node name should *not* contain any punctuation like a dot, a comma, or a
colon since these are used to detect what kind of coordinate you mean
when you reference a node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/name",
      meta = "⟨node name⟩"
    },
    ["name intersections"] = {
      details = [[
This key changes the key path to `/tikz/intersection` and processes
⟨options⟩. These options determine, among other things, which paths to
use for the intersection. Having processed the options, any
intersections are then found. A coordinate is created at each
intersection, which by default, will be named `intersection-1`,
`intersection-2`, and so on. Optionally, the prefix `intersection` can
be changed, and the total number of intersections stored in a TeX-macro.

    \begin{tikzpicture}[every node/.style={opacity=1, black, above left}]
      \draw [help lines] grid (3,2);
      \draw [name path=ellipse] (2,0.5) ellipse (0.75cm and 1cm);
      \draw [name path=rectangle, rotate=10] (0.5,0.5) rectangle +(2,1);
      \fill [red, opacity=0.5, name intersections={of=ellipse and rectangle}]
        (intersection-1) circle (2pt) node {1}
        (intersection-2) circle (2pt) node {2};
    \end{tikzpicture}

The following keys can be used in ⟨options⟩:

    \begin{tikzpicture}
      \clip (-2,-2) rectangle (2,2);
      \draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
      \draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);

      \fill [name intersections={of=curve 1 and curve 2, name=i, total=\t}]
            [red, opacity=0.5, every node/.style={above left, black, opacity=1}]
            \foreach \s in {1,...,\t}{(i-\s) circle (2pt) node {\footnotesize\s}};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/name:intersections",
      meta = "{options}"
    },
    ["name prefix"] = {
      details = [[
The value of this key is prefixed to every node inside the current
scope. This includes both the naming of the node (via the `name` key or
via the implicit `(`⟨name⟩`)` syntax) as well as any referencing of the
node. Outside the scope, the nodes can (and need to) be referenced using
"full name" consisting of the prefix and the node name.

The net effect of this is that you can set the name prefix at the
beginning of a scope to some value and then use short and simple names
for the nodes inside the scope. Later, outside the scope, you can
reference the nodes via their full name:

    \tikz {
      \begin{scope}[name prefix = top-]
        \node (A) at (0,1) {A};
        \node (B) at (1,1) {B};
        \draw (A) -- (B);
      \end{scope}
      \begin{scope}[name prefix = bottom-]
        \node (A) at (0,0) {A};
        \node (B) at (1,0) {B};
        \draw (A) -- (B);
      \end{scope}

      \draw [red] (top-A) -- (bottom-B);
    }

As can be seen, name prefixing makes it easy to write reusable code.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/name:prefix",
      meta = "⟨text⟩"
    },
    ["name prefix .."] = {
      details = [[
This key is available only inside the code of a pic. There, it (locally)
changes the name prefix to the value it had outside the pic. This allows
you to access nodes outside the current pic.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/name:prefix:.."
    },
    ["name suffix"] = {
      details = [[
Works as `name prefix`, only the ⟨text⟩ is appended to every node name
in the current scope.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/name:suffix",
      meta = "⟨text⟩"
    },
    ["near end"] = {
      details = [[
Set to `pos=0.75`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/near:end"
    },
    ["near start"] = {
      details = [[
Set to `pos=0.25`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/near:start"
    },
    ["nearly opaque"] = {
      details = [[
    \tikz{\fill[red]           (0,0)   rectangle (1,0.5);
          \fill[nearly opaque] (0.5,0) rectangle (1.5,0.25); }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/nearly:opaque"
    },
    ["nearly transparent"] = {
      details = [[
    \tikz{\fill[red]                (0,0)   rectangle (1,0.5);
          \fill[nearly transparent] (0.5,0) rectangle (1.5,0.25); }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/nearly:transparent"
    },
    ["new set"] = {
      details = [[
This will setup a node set named ⟨set name⟩ within the current scope.
Inside the scope, you can add nodes to the node set using the `set` key.
If a node set of the same name already exists in the current scope, it
will be reset and made empty for the current scope.

Note that this command has the path `/tikz` and is normally used
*outside* the `graph` command.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/new:set",
      meta = "⟨set name⟩"
    },
    ["no markers"] = {
      details = [[
Disables markers (the same as `mark=none`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/no:markers"
    },
    ["no marks"] = {
      details = [[
Disables markers (the same as `mark=none`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/no:marks"
    },
    ["node contents"] = {
      details = [[
\[option-node-contents\] This key sets the contents of the node to the
given text as if you had given it at the end in curly braces. When the
option is used inside the options of a node, the parsing of the node
stops immediately after the end of the option block. In particular, the
option block cannot be followed by further option blocks or curly braces
(or, rather, these do not count as part of the node specification.) Also
note that the ⟨node contents⟩ may not contain fragile stuff since the
catcodes get fixed upon reading the options. Here is an example:

    \tikz {
      \path (0,0) node [red]                    {A}
            (1,0) node [blue]                   {B}
            (2,0) node [green, node contents=C]
            (3,0) node [node contents=D]           ;
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/node:contents",
      meta = "⟨node contents⟩"
    },
    ["node distance"] = {
      details = [[
The value of this key is used as ⟨shifting part⟩ is used if and only if
a ⟨of-part⟩ is present, but no ⟨shifting part⟩.

    \begin{tikzpicture}[every node/.style=draw,node distance=5mm]
      \draw[help lines] (0,0) grid (2,3);

      % Not gridded
      \node (a1) at (0,0) {not gridded};
      \node (b1) [above=of a1] {fooy};
      \node (c1) [above=of b1] {a};

      % gridded
      \begin{scope}[on grid]
        \node (a2) at (2,0) {gridded};
        \node (b2) [above=of a2] {fooy};
        \node (c2) [above=of b2] {a};
      \end{scope}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/node:distance",
      meta = "⟨shifting part⟩"
    },
    ["node font"] = {
      details = [[
This option sets the font used for all text used in a node.

    \begin{tikzpicture}
      \draw[node font=\itshape] (1,0) -- +(1,1) node[above] {italic};
    \end{tikzpicture}

Since the ⟨font commands⟩ are executed at a very early stage in the
construction of the node, the font selected using this command will also
dictate the values of dimensions defined in terms of `em` or `ex`. For
instance, when the `minimum height` of a node is `3em`, the actual
height will be (at least) three times the line distance selected by the
⟨font commands⟩:

    \tikz \node [node font=\tiny,  minimum height=3em, draw] {tiny};
    \tikz \node [node font=\small, minimum height=3em, draw] {small};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/node:font",
      meta = "⟨font commands⟩"
    },
    ["node halign header"] = {
      details = [[
This is the key that is used by `align` internally for alignment without
line breaking. Read the following only if you are familiar with the
`\halign` command.

This key only has an effect if `text width` is empty, otherwise it is
ignored. Furthermore, if ⟨macro storing a header⟩ is empty, then this
key also has no effect. So, suppose `text width` is empty, but ⟨header⟩
is not. In this case the following happens:

When the node text is parsed, the command `\\` is redefined internally.
This redefinition is done in such a way that the text from the start of
the node to the first occurrence of `\\` is put in an `\hbox`. Then the
text following `\\` up to the next `\\` is put in another `\hbox`. This
goes on until the text between the last `\\` and the closing `}` is also
put in an `\hbox`.

The ⟨macro storing a header⟩ should be a macro that contains some text
suitable for use as a header for the `\halign` command. For instance,
you might define

    \def\myheader{\hfil\hfil##\hfil\cr}
    \tikz [node halign header=\myheader] ...

You cannot just say `node halign header=\hfil\hfil# \hfil\cr` because
this confuses TeX inside matrices, so this detour via a macro is needed.

Next, conceptually, all these boxes are recursively put inside an
`\halign` command. Assuming that ⟨first⟩ is the first of the above
boxes, the command `\halign{`⟨header⟩ `\box`⟨first⟩ `\cr}` is used to
create a new box, which we will call the ⟨previous box⟩. Then, the
following box is created, where ⟨second⟩ is the second input box:
`\halign{`⟨header⟩ `\box`⟨previous box⟩ `\cr` `\box`⟨second⟩`\cr}`. Let
us call the resulting box the ⟨previous box⟩ once more. Then the next
box that is created is `\halign{`⟨header⟩ `\box`⟨previous box⟩ `\cr`
`\box`⟨third⟩`\cr}`.

All of this means that if ⟨header⟩ is an `\halign` header like
`\hfil# \hfil\cr`, then all boxes will be centered relative to one
another. Similarly, a ⟨header⟩ of `\hfil# \cr` causes the text to be
flushed right.

Note that this mechanism is not flexible enough to all multiple columns
inside ⟨header⟩. You will have to use a `tabular` or a `matrix` in such
cases.

One further note: Since the text of each line is placed in a box,
settings will be local to each "line". This is very similar to the way a
cell in a `tabular` or a `matrix` behaves.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/node:halign:header",
      meta = "⟨macro storing a header⟩"
    },
    ["node quotes mean"] = {
      details = [[
This key allows you to define your own handler for quotes options.
Inside the options of a `node`, whenever a key--value pair with the
syntax

> `"`⟨text⟩`"``’`⟨options⟩

is encountered, the following happens: The above string gets replaced by
⟨replacement⟩ where inside the ⟨replacement⟩ the parameter `# 1` is
⟨text⟩ and `# 2` is ⟨options⟩. If the apostrophe is present (see also
the discussion of `quotes mean label`), the ⟨options⟩ start with `’,`.

The ⟨replacement⟩ is then parsed normally as options (using `\pgfkeys`).

Here is an example, where the quotes are used to define labels that are
automatically named according to the `text`:

    \tikzset{node quotes mean={label={[#2,name={#1}]#1}}}

    \tikz {
      \node ["1", "2" label position=left, circle, draw] {circle};
      \draw (1) -- (2);
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/node:quotes:mean",
      meta = "⟨replacement⟩"
    },
    nodes = {
      details = [[
This key adds the ⟨options⟩ to the style `every node`. It is mainly just
a shorthand for the code `every node/.append style=`⟨options⟩.

The main use of this option is the install some options for the nodes
*inside* the matrix that should not apply to the matrix *itself*.

    \begin{tikzpicture}
      \matrix [nodes={fill=blue!20,minimum size=5mm}]
      {
        \node {8}; & \node{1}; & \node {6}; \\
        \node {3}; & \node{5}; & \node {7}; \\
        \node {4}; & \node{9}; & \node {2}; \\
      };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/nodes",
      meta = "⟨options⟩"
    },
    ["nodes in empty cells"] = {
      details = [[
When set to `true`, a node (with empty contents) is put in empty cells.
Normally, empty cells are just, well, empty. The style can be used
together with both a `matrix of nodes` and a `matrix of math nodes`.

    \begin{tikzpicture}
      \matrix [matrix of math nodes,nodes={circle,draw}]
      {
        a_8 &     & a_6 \\
        a_3 &     & a_7 \\
        a_4 & a_9 &     \\
      };
    \end{tikzpicture}

    \begin{tikzpicture}
      \matrix [matrix of math nodes,nodes={circle,draw},nodes in empty cells]
      {
        a_8 &     & a_6 \\
        a_3 &     & a_7 \\
        a_4 & a_9 &     \\
      };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/nodes:in:empty:cells",
      meta = "⟨true or false⟩"
    },
    ["nonzero rule"] = {
      details = [[
If this rule is used (which is the default), the following method is
used to determine whether a given point is "inside" the path: From the
point, shoot a ray in some direction towards infinity (the direction is
chosen such that no strange borderline cases occur). Then the ray may
hit the path. Whenever it hits the path, we increase or decrease a
counter, which is initially zero. If the ray hits the path as the path
goes "from left to right" (relative to the ray), the counter is
increased, otherwise it is decreased. Then, at the end, we check whether
the counter is nonzero (hence the name). If so, the point is deemed to
lie "inside", otherwise it is "outside". Sounds complicated? It is.

    \begin{tikzpicture}
      \filldraw[fill=yellow!80!black]
      % Clockwise rectangle
      (0,0) -- (0,1) -- (1,1) -- (1,0) -- cycle
      % Counter-clockwise rectangle
      (0.25,0.25) -- (0.75,0.25) -- (0.75,0.75) -- (0.25,0.75) -- cycle;

      \draw[->] (0,1) -- (.4,1);
      \draw[->] (0.75,0.75) -- (0.3,.75);

      \draw[->] (0.5,0.5) -- +(0,1) node[above] {crossings: $-1+1 = 0$};

      \begin{scope}[yshift=-3cm]
        \filldraw[fill=yellow!80!black]
        % Clockwise rectangle
        (0,0) -- (0,1) -- (1,1) -- (1,0) -- cycle
        % Clockwise rectangle
        (0.25,0.25) -- (0.25,0.75) -- (0.75,0.75) -- (0.75,0.25) -- cycle;

        \draw[->] (0,1) -- (.4,1);
        \draw[->] (0.25,0.75) -- (0.4,.75);

        \draw[->] (0.5,0.5) -- +(0,1) node[above] {crossings: $1+1 = 2$};
      \end{scope}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/nonzero:rule"
    },
    ["numbered faces"] = {
      details = [[
Sets `face `⟨i⟩ to `\node {`⟨i⟩`};` for all $i$.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/numbered:faces"
    },
    ohm = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ohm",
      meta = "⟨value⟩"
    },
    ["on background layer"] = {
      details = [[
This key can (only) be used with a `{scope}` or `\scoped`. It will cause
everything inside the scope to be typeset on a background layer.

The ⟨options⟩ will be executed *inside* background scope. This is useful
since *other* options passed to the `{scope}` environment will be
executed *before* the actual background material starts and, thus, will
have no effect on it.

    \begin{tikzpicture}
      % On main layer:
      \fill[blue] (0,0) circle (1cm);

      \begin{scope}[on background layer={color=yellow}]
        \fill (-1,-1) rectangle (1,1);
      \end{scope}

      \begin{scope}[on background layer]
        \fill[black] (-.8,-.8) rectangle (.8,.8);
      \end{scope}

      % On main layer again:
      \fill[blue!50] (-.5,-1) rectangle (.5,1);
    \end{tikzpicture}

A scope with this option set should not be "deeply nested" inside the
picture since changes to the graphic state (like the color or the
transformation matrix) "do not survive a layer switch", see also
Section ?? for details. In particular, setting, say, the line width at
the beginning of a picture will not have an effect on the background
picture.

For this reason, it may be useful to setup the following style:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/on:background:layer",
      meta = "⟨options⟩"
    },
    ["on chain"] = {
      details = [[
This key should be given as an option to a node. When the option is
used, the ⟨chain name⟩ must be the name of a chain that has been started
using the `start chain` option. If ⟨chain name⟩ is the empty string, the
current value of the innermost activated chain is used. If this option
is used several times for a node, only the last invocation "wins". (To
place a node on several chains, use the `\chainin` command repeatedly.)

The ⟨direction⟩ part is optional. If present, it sets the direction used
for this node, otherwise the ⟨direction⟩ that was given to the original
`start chain` option is used (or of the last `continue chain` option,
which allows you to change this default).

The effects of this option are the following:

1.  An internal counter (there is one local counter for each chain) is
    increased. This counter reflects the current number of the node in
    the chain, where the first node is node 1, the second is node 2, and
    so on.

    The value of this internal counter is globally stored in the macro
    `\tikzchaincount`.

2.  If the node does not yet have a name, (having been given using the
    `name` option or the name-syntax), the name of the node is set to
    ⟨chain name⟩`-`⟨value of the internal chain counter⟩. For instance,
    if the chain is called `nums`, the first node would be named
    `nums-1`, the second `nums-2`, and so on. For the default chain name
    `chain`, the first node is named `chain-1`, the second `chain-2`,
    and so on.

3.  Independently of whether the name has been provided automatically or
    via the `name` option, the name of the node is globally stored in
    the macro `\tikzchaincurrent`.

4.  Except for the first node, the macro `\tikzchainprevious` is now
    globally set to the name of the node of the previous node on the
    chain. For the first node of the chain, this macro is globally set
    to the empty string.

5.  Except possibly for the first node of the chain, the placement rule
    is now executed. The placement rule is just a TikZ option that is
    applied automatically to each node on the chain. Depending on the
    form of the ⟨direction⟩ parameter (either the locally given one or
    the one given to the `start chain` option), different things happen.

    First, it makes a difference whether the ⟨direction⟩ starts with
    `going` or with `placed`. The difference is that in the first case,
    the placement rule is not applied to the first node of the chain,
    while in the second case the placement rule is applied also to this
    first node. The idea is that a `going`-direction indicates that we
    are "going somewhere relative to the previous node" whereas a
    `placed` indicates that we are "placing nodes according to their
    number".

    Independently of which form is used, the ⟨text⟩ inside ⟨direction⟩
    that follows `going` or `placed` (separated by a compulsory space)
    can have two different effects:

    1.  If it contains an equal sign, then this ⟨text⟩ is used as the
        placement rule, that is, it is simply executed.

    2.  If it does not contain an equal sign, then
        ⟨text⟩`=of \tikzchainprevious` is used as the placement rule.

    Note that in the first case, inside the ⟨text⟩ you have access to
    `\tikzchainprevious` and `\tikzchaincount` for doing your
    positioning calculations.

        \begin{tikzpicture}[start chain=circle placed {at=(\tikzchaincount*30:1.5)}]
          \foreach \i in {1,...,10}
            \node [on chain] {\i};

          \draw (circle-1) -- (circle-10);
        \end{tikzpicture}

6.  The following style is executed:

Recall that the standard placement rule has a form like
`right=of (\tikzchainprevious)`. This means that each new node is placed
to the right of the previous one, spaced by the current value of
`node distance`.

    \begin{tikzpicture}[start chain,node distance=5mm]
      \node [draw,on chain] {};
      \node [draw,on chain] {Hallo};
      \node [draw,on chain] {Welt};
    \end{tikzpicture}

The optional ⟨direction⟩ allows us to temporarily change the direction
in the middle of a chain:

    \begin{tikzpicture}[start chain,node distance=5mm]
      \node [draw,on chain] {Hello};
      \node [draw,on chain] {World};
      \node [draw,on chain=going below] {,};
      \node [draw,on chain] {this};
      \node [draw,on chain] {is};
    \end{tikzpicture}

You can also use more complicated computations in the ⟨direction⟩:

    \begin{tikzpicture}[start chain=going {at=(\tikzchainprevious),shift=(30:1)}]
      \draw [help lines] (0,0) grid (3,2);
      \node [draw,on chain] {1};
      \node [draw,on chain] {Hello};
      \node [draw,on chain] {World};
      \node [draw,on chain] {.};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/on:chain",
      meta = "⟨chain name⟩⟨direction⟩"
    },
    ["on grid"] = {
      details = [[
When this key is set to `true`, an ⟨of-part⟩ of the current form behaves
differently: The anchors set for the current node as well as the anchor
used for the other ⟨node name⟩ are set to `center`.

This has the following effect: When you say `above=1cm of somenode` with
`on grid` set to true, the new node will be placed in such a way that
its center is 1cm above the center of `somenode`. Repeatedly placing
nodes in this way will result in nodes that are centered on "grid
coordinate", hence the name of the option.

    \begin{tikzpicture}[every node/.style=draw]
      \draw[help lines] (0,0) grid (2,3);

      % Not gridded
      \node (a1) at (0,0) {not gridded};
      \node (b1) [above=1cm of a1] {fooy};
      \node (c1) [above=1cm of b1] {a};

      % gridded
      \node (a2) at (2,0) {gridded};
      \node (b2) [on grid,above=1cm of a2] {fooy};
      \node (c2) [on grid,above=1cm of b2] {a};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/on:grid",
      meta = "⟨boolean⟩"
    },
    ["only marks"] = {
      details = [[
This option causes only marks to be shown; no path segments are added to
the actual path. This can be useful for quickly adding some marks to a
path.

    \tikz \draw (0,0) sin (1,1) cos (2,0)
      plot[only marks,mark=x] coordinates{(0,0) (1,1) (2,0) (3,-1)};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/only:marks"
    },
    opacity = {
      details = [[
Sets both the drawing and filling opacity to ⟨value⟩.

The following predefined styles make it easier to use this option:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/opacity",
      meta = "⟨value⟩"
    },
    opaque = {
      details = [[
This yields completely opaque drawings, which is the default.

    \tikz{\fill[red]    (0,0)   rectangle (1,0.5);
          \fill[opaque] (0.5,0) rectangle (1.5,0.25); }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/opaque"
    },
    out = {
      details = [[
The angle at which the curve leaves the start coordinate. If the start
coordinate is a node, the start coordinate is the point on the border of
the node at the given ⟨angle⟩. The control point will, thus, lie at a
certain distance in the direction ⟨angle⟩ from the start coordinate.

    \begin{tikzpicture}[out=45,in=135]
      \draw (0,0) to (1,0)
            (0,0) to (2,0)
            (0,0) to (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/out",
      meta = "⟨angle⟩"
    },
    ["out control"] = {
      details = [[
This option causes the ⟨coordinate⟩ to be used as the start control
point. All computations of $d$ are ignored. You can use a coordinate
like `+(1,0)` to specify a point relative to the start coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/out:control",
      meta = "⟨coordinate⟩"
    },
    ["out distance"] = {
      details = [[
Sets the minimum and maximum out distance.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/out:distance",
      meta = "⟨distance⟩"
    },
    ["out looseness"] = {
      details = [[
Specifies the looseness factor for the out distance only.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/out:looseness",
      meta = "⟨number⟩"
    },
    ["out max distance"] = {
      details = [[
The maximum distance set only for the start coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/out:max:distance",
      meta = "⟨distance⟩"
    },
    ["out min distance"] = {
      details = [[
The minimum distance set only for the start coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/out:min:distance",
      meta = "⟨distance⟩"
    },
    ["outer color"] = {
      details = [[
This option sets the color used at the border and outside of a `radial`
shading.

    \tikz \draw[outer color=red,inner color=white]
      (0,0) rectangle (2,1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/outer:color",
      meta = "⟨color⟩"
    },
    ["outer frame sep"] = {
      details = [[
Sets both the $x$- and $y$-separation.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/outer:frame:sep",
      meta = "⟨dimension⟩"
    },
    ["outer frame xsep"] = {
      details = [[
The ⟨dimension⟩ is added at the left and right side of the line.

    \begin{tikzpicture}
      [background rectangle/.style={fill=yellow},
       framed,
       show background top,
       outer frame xsep=1ex]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/outer:frame:xsep",
      meta = "⟨dimension⟩"
    },
    ["outer frame ysep"] = {
      details = [[
This option does not apply to the top line, but to the left and right
lines, see below.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/outer:frame:ysep",
      meta = "⟨dimension⟩"
    },
    overlay = {
      details = [[
This option is mainly intended for use when nodes in other pictures are
referenced, but you can also use it in other situations. The effect of
this option is that everything within the current scope is not taken
into consideration when the bounding box of the current picture is
computed.

You need to specify this option on all paths (or at least on all parts
of paths) that contain a reference to a node in another picture. The
reason is that, otherwise, TikZ will attempt to make the current picture
large enough to encompass *the node in the other picture*. However, on a
second run of TeX this will create an even bigger picture, leading to
larger and larger pictures. Unless you know what you are doing, I
suggest specifying the `overlay` option with all pictures that contain
references to other pictures.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/overlay",
      meta = "⟨boolean⟩"
    },
    ["parabola height"] = {
      details = [[
This option has the same effect as
`[bend pos=0.5,bend={+(0pt,`⟨dimension⟩`)}]`.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw (-1,0) parabola[parabola height=2cm] +(3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/parabola:height",
      meta = "⟨dimension⟩"
    },
    parametric = {
      details = [[
Sets whether the plot is a parametric plot. If true, then `t` must be
used instead of `x` as the parameter and two comma-separated functions
must be given in the ⟨gnuplot formula⟩. An example is the following:

    \tikz \draw[scale=0.5,domain=-3.141:3.141,smooth]
      plot[parametric,id=parametric-example] function{t*sin(t),t*cos(t)};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/parametric",
      meta = "⟨boolean⟩"
    },
    ["parent anchor"] = {
      details = [[
This option works the same way as the `child anchor`, only for the
parent.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/parent:anchor",
      meta = "⟨anchor⟩"
    },
    ["path fading"] = {
      details = [[
This option tells TikZ that the current path should be faded with the
fading ⟨name⟩. If no ⟨name⟩ is given, the ⟨name⟩ set for the whole scope
is used. Similarly to options like `draw` or `fill`, this option is
reset for each path, so you have to add it to each path that should be
faded. You can also specify `none` as ⟨name⟩, in which case fading for
the path will be switched off in case it has been switched on by
previous options or styles.

    \begin{tikzpicture}[path fading=south]
      % Checker board
      \fill [black!20] (0,0) rectangle (4,3);
      \pattern [pattern=checkerboard,pattern color=black!30]
                       (0,0) rectangle (4,3);

      \fill [color=blue]                   (0.5,1.5) rectangle +(1,1);
      \fill [color=blue,path fading=north] (2.5,1.5) rectangle +(1,1);

      \fill [color=red,path fading]        (1,0.75) ellipse (.75 and .5);
      \fill [color=red]                    (3,0.75) ellipse (.75 and .5);
    \end{tikzpicture}

Note that you can "fade just about anything". In particular, you can
fade a shading.

    \begin{tikzpicture}
      % Checker board
      \fill [black!20] (0,0) rectangle (4,4);
      \path [pattern=checkerboard,pattern color=black!30] (0,0) rectangle (4,4);

      \shade [ball color=blue,path fading=south] (2,2) circle (1.8);
    \end{tikzpicture}

The `fade inside` of the following example is more transparent in the
middle than on the outside.

    \tikzfading[name=fade inside,
                inner color=transparent!80,
                outer color=transparent!30]
    \begin{tikzpicture}
      % Checker board
      \fill [black!20] (0,0) rectangle (4,4);
      \path [pattern=checkerboard,pattern color=black!30] (0,0) rectangle (4,4);

      \shade [ball color=red] (3,3) circle (0.8);
      \shade [ball color=white,path fading=fade inside] (2,2) circle (1.8);
    \end{tikzpicture}

Note that adding the `path fading` option to a node fades the
(background) path, not the text itself. To fade the text, you need to
use a scope fading (see below).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/path:fading",
      meta = "⟨name⟩"
    },
    ["path picture"] = {
      details = [[
When this option is given on a path and when the ⟨code⟩ is not empty,
the following happens: After all other "filling" operations are done
with the path, which are caused by the options `fill`, `pattern` and
`shade`, a local scope is opened and the path is temporarily installed
as a clipping path. Then, the ⟨code⟩ is executed, which can now draw
something. Then, the local scope ends and, possibly, the path is
stroked, provided the `draw` option has been given.

As with other keys like `fill` or `draw` this option needs to be given
on a path, setting the `path picture` outside a path has no effect (the
path picture is cleared at the beginning of each path).

The ⟨code⟩ can be any normal TikZ code like `\draw ...` or `\node ...`.
As always, when you include an external graphic, you need to put it
inside a `\node`.

Note that no special actions are taken to transform the origin in any
way. This means that the coordinate `(0,0)` is still where is was when
the path was being constructed and not -- as one might expect -- at the
lower left corner of the path. However, you can use the following
special node to access the size of the path:

path picture bounding box This node is of shape `rectangle`. Its size
and position are those of `current path bounding box` just before the
⟨code⟩ of the path picture started to be executed. The ⟨code⟩ can
construct its own paths, so accessing the `current path bounding box`
inside the ⟨code⟩ yields the bounding box of any path that is currently
being constructed inside the ⟨code⟩.

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      \filldraw [fill=blue!10,draw=blue,thick] (1.5,1) circle (1)
        [path picture={
          \node at (path picture bounding box.center) {
            This is a long text.
          };}
        ];
    \end{tikzpicture}

    \begin{tikzpicture}[cross/.style={path picture={
          \draw[black]
                (path picture bounding box.south east) --
                (path picture bounding box.north west)
                (path picture bounding box.south west) --
                (path picture bounding box.north east);
        }}]
      \draw [help lines] (0,0) grid (3,2);
      \filldraw [cross,fill=blue!10,draw=blue,thick] (1,1) circle (1);
      \path     [cross,top color=red,draw=red,thick] (2,0) -- (3,2) -- (3,0);
    \end{tikzpicture}

      \begin{tikzpicture}[path image/.style={
          path picture={
            \node at (path picture bounding box.center) {
              \includegraphics[height=3cm]{#1}
            };}}]
      \draw     [help lines] (0,0) grid (3,2);

      \draw [path image=brave-gnu-world-logo,draw=blue,thick]
              (0,1) circle (1);
      \draw [path image=brave-gnu-world-logo,draw=red,very thick,->]
              (1,0) parabola[parabola height=2cm] (3,0);

    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/path:picture",
      meta = "⟨code⟩"
    },
    pattern = {
      details = [[
This option causes the path to be filled with a pattern. If the ⟨name⟩
is given, this pattern is used, otherwise the pattern set in the
enclosing scope is used. As for the `draw` and `fill` options, setting
⟨name⟩ to `none` disables filling locally.

The pattern works like a fill color. In particular, setting a new fill
color will fill the path with a solid color once more.

Strangely, no ⟨name⟩s are permissible by default. You need to load for
instance the `patterns` library, see Section ??, to install predefined
patterns.

    \begin{tikzpicture}
      \draw[pattern=dots] (0,0) circle (1cm);
      \draw[pattern=fivepointed stars] (0,0) rectangle (3,1);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pattern",
      meta = "⟨name⟩"
    },
    ["pattern color"] = {
      details = [[
This option is used to set the color to be used for form-only patterns.
This option has no effect on inherently colored patterns.

    \begin{tikzpicture}
      \draw[pattern color=red,pattern=fivepointed stars]  (0,0) circle (1cm);
      \draw[pattern color=blue,pattern=fivepointed stars] (0,0) rectangle (3,1);
    \end{tikzpicture}

    \begin{tikzpicture}
      \def\mypath{(0,0) -- +(0,1) arc (180:0:1.5cm) -- +(0,-1)}
      \fill   [red]                                \mypath;
      \pattern[pattern color=white,pattern=bricks] \mypath;
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pattern:color",
      meta = "⟨color⟩"
    },
    ["patterns/bottom left"] = {
      details = [[
Instead of a PGF name point, this key takes a TikZ point,
e.g. `(-.1,-.1)`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/patterns/bottom:left",
      meta = "⟨point⟩"
    },
    ["patterns/bounding box"] = {
      details = [[
This is a shorthand to set the bounding box. It will assign the first
point to `bottom left` and the second point to `top right`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/patterns/bounding:box",
      meta = "⟨point⟩ and ⟨point⟩"
    },
    ["patterns/infer tile bounding box"] = {
      details = [[
Instead of specifying the bounding box by hand, you can ask TikZ to
infer the size of the bounding box for you. The ⟨dimension⟩ parameter is
padding that is added around the bounding box.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/patterns/infer:tile:bounding:box",
      meta = "⟨dimension⟩"
    },
    ["patterns/tile size"] = {
      details = [[
Instead of a PGF name point, this key takes a TikZ point, e.g. `(3,3)`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/patterns/tile:size",
      meta = "⟨point⟩"
    },
    ["patterns/tile transformation"] = {
      details = [[
Instead of a PGF transformation, this key takes a list of keys and value
and extracts the resulting transformation from them, e.g. `rotate=30`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/patterns/tile:transformation",
      meta = "⟨transformation⟩"
    },
    ["patterns/top right"] = {
      details = [[
Instead of a PGF name point, this key takes a TikZ point,
e.g. `(3.1,3.1)`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/patterns/top:right",
      meta = "⟨point⟩"
    },
    perspective = {
      details = [[
The 'strength' of the perspective can be determined by setting the
location of the vanishing points. The default values have a stronger
perspective towards $x$ and $y$ than towards $z$, as shown below.

    \begin{tikzpicture}[3d view,perspective]
      \simplecuboid{2}{2}{2}
      \simpleaxes{2}{2}{2}
    \end{tikzpicture}

From this example it also shows that the maximum dimensions of the
cuboid are no longer 2 by 2 by 2. This is inherent to the perspective
projection.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/perspective",
      meta = "⟨vanishing points⟩"
    },
    ["perspective/p"] = {
      details = [[
The location of the vanishing point that determines the 'strength' of
the perspective in $x$-direction can be set with the `p` key.

    \begin{tikzpicture}[
      3d view,
      perspective={
        p = {(5,0,0)}}]
      \simplecuboid{2}{2}{2}
      \simpleaxes{2}{2}{2}
    \end{tikzpicture}

Note also that when only `p` is provided, the perspective in $y$ and $z$
direction is turned off.

To turn off the perspective in $x$-direction, one must set the $x$
component of `p` to `0` (e.g. `p={(0,a,b)}`, where `a` and `b` can be
any number and will be ignored). Or one can provide `q` and `r` and omit
`p`.

By changing the $y$ and $z$ components of `p`, one can achieve various
effects.

    \begin{tikzpicture}[
      3d view,
      perspective={
        p = {(5,0,1)}}]
      \simplecuboid{2}{2}{2}
      \simpleaxes{2}{2}{2}
    \end{tikzpicture}

    \begin{tikzpicture}[
      3d view,
      perspective={
        p = {(5,1,0)}}]
      \simplecuboid{2}{2}{2}
      \simpleaxes{2}{2}{2}
    \end{tikzpicture}

    \begin{tikzpicture}[
      3d view,
      perspective={
        p = {(5,1,1)}}]
      \simplecuboid{2}{2}{2}
      \simpleaxes{2}{2}{2}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/perspective/p",
      meta = "{x,y,z}"
    },
    ["perspective/q"] = {
      details = [[
Similar to `p`, but can be turned off by setting its $y$ component to
`0`.

    \begin{tikzpicture}[
      3d view,
      perspective={
        q = {(0,5,0)}}]
      \simplecuboid{2}{2}{2}
      \simpleaxes{2}{2}{2}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/perspective/q",
      meta = "{x,y,z}"
    },
    ["perspective/r"] = {
      details = [[
Similar to `p`, but can be turned off by setting its $z$ component to
`0`.

    \begin{tikzpicture}[
      3d view,
      perspective={
        r = {(0,0,5)}}]
      \simplecuboid{2}{2}{2}
      \simpleaxes{2}{2}{2}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/perspective/r",
      meta = "{x,y,z}"
    },
    ["pic actions"] = {
      details = [[
This key is a style that can be used (only) inside the code of a pic.
There, it will set the "action" keys set inside the ⟨options⟩ of the pic
("actions" are drawing, filling, shading, and clipping or any
combination thereof).

To see how this key works, let us define the following pic:

    \tikzset{
      my pic/.pic = {
        \path [pic actions] (0,0) circle[radius=3mm];
        \draw (-3mm,-3mm) rectangle (3mm,3mm);
      }
    }

In the code, whether or not the circle gets drawn/filled/shaded depends
on which options where given to the `pic` command when it is used. In
contrast, the rectangle will always (just) be drawn.

     (0,0) circle[radius=3mm];
        \draw (-3mm,-3mm) rectangle (3mm,3mm);
      }
    }}]
    \tikz \pic                      {my pic}; \space
    \tikz \pic [red]                {my pic}; \space
    \tikz \pic [draw]               {my pic}; \space
    \tikz \pic [draw=red]           {my pic}; \space
    \tikz \pic [draw, shading=ball] {my pic}; \space
    \tikz \pic [fill=red!50]        {my pic};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pic:actions"
    },
    ["pic text"] = {
      details = [[
This macro stores the ⟨text⟩ in the macro `\tikzpictext`, which is
`\let` to `\relax` by default. Setting the `pic text` to some value is
the "preferred" way of communicating a (single) piece of text that
should become part of a pic (typically of a node). In particular, the
`quotes` library maps quoted parameters to this key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pic:text",
      meta = "⟨text⟩"
    },
    ["pic text options"] = {
      details = [[
This macro stores the ⟨options⟩ in the macro `\tikzpictextoptions`,
which is `\let` to the empty string by default. The `quotes` library
maps options for quoted parameters to this key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pic:text:options",
      meta = "⟨options⟩"
    },
    ["pic type"] = {
      details = [[
This key sets the pic type of the current `pic`. When this option is
used inside an option block of a `pic`, the parsing of the `pic` ends
immediately and no pic type in braces is expected. (In other words, this
option behaves exactly like the `node contents` option and, indeed, the
two are interchangeable.)

     (0,0) to [bend left] (3mm,0);
      },
    }}]
    \tikz {
      \path (0,0) pic [pic type = seagull]
            (1,0) pic                      {seagull};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pic:type",
      meta = "⟨pic type⟩"
    },
    ["pics/background code"] = {
      details = [[
Like `foreground code`, only that the ⟨code⟩ is always put behind the
path, except when the `behind path` option is applied to the pic, then
the background code is drawn in front of the "behind path" code.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pics/background:code",
      meta = "⟨code⟩"
    },
    ["pics/code"] = {
      details = [[
This key stores the ⟨code⟩ that should be drawn in the current pic.
Normally, setting this key is done by the ⟨pic type⟩, but you can also
set it in the ⟨options⟩ and leave the ⟨pic type⟩ empty:

    \tikz \pic [pics/code={\draw (-3mm,0) to[bend left] (0,0)
                                          to[bend left] (3mm,0);}]
          {}; % no pic type specified
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pics/code",
      meta = "⟨code⟩"
    },
    ["pics/foreground code"] = {
      details = [[
This key stores ⟨code⟩ that will always be drawn in front of the current
path, even when `behind path` is used. If `behind path` is not used and
`code` is (also) set, the code of `code` is drawn first, following by
the foreground ⟨code⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pics/foreground:code",
      meta = "⟨code⟩"
    },
    pin = {
      details = [[
This option is quite similar to the `label` option, but there is one
difference: In addition to adding an extra node to the picture, it also
adds an edge from this node to the main node. This causes the node to
look like a pin that has been added to the main node:

    \tikz \node [circle,fill=blue!50,minimum size=1cm,pin=60:$q_0$] {};

The meaning of the ⟨options⟩ and the ⟨angle⟩ and the ⟨text⟩ is exactly
the same as for the `node` option. Only, the options and styles the
influence the way pins look are different:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pin",
      meta = "[⟨options⟩]⟨angle⟩:⟨text⟩"
    },
    ["pin distance"] = {
      details = [[
This ⟨distance⟩ is used instead of the `label distance` for the distance
between the main node and the label node.

    \tikz[pin distance=1cm]
      \node [circle,draw,pin=right:X,
                         pin=above right:Y,
                         pin=above:Z]       {my circle};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pin:distance",
      meta = "⟨distance⟩"
    },
    ["pin edge"] = {
      details = [[
This option can be used to set the options that are to be used in the
edge created by the `pin` option.

    \tikz[pin distance=10mm]
      \node [circle,draw,pin={[pin edge={blue,thick}]right:X},
                         pin=above:Z]       {my circle};

    \tikz [every pin edge/.style={},
           initial/.style={pin={[pin distance=5mm,
                                 pin edge={<-,shorten <=1pt}]left:start}}]
      \node [circle,draw,initial] {my circle};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pin:edge",
      meta = "⟨options⟩"
    },
    ["pin position"] = {
      details = [[
The default pin position. Works like `label position`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pin:position",
      meta = "⟨angle⟩"
    },
    place = {
      details = [[
This style indicates that a node is a place of a Petri net. Usually, the
text of the node should be empty since places do not contain any text.
You should use the `label` option to add text outside the node like its
name or its capacity. You should use the `tokens` options, explained in
Section ??, to add tokens inside the place.

    \begin{tikzpicture}
      \node[place,label=above:$p_1$,tokens=2]        (p1) {};
      \node[place,label=below:$p_2\ge1$,right=of p1] (p2) {};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/place"
    },
    ["plane origin"] = {
      details = [[
Origin of the plane.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/plane:origin",
      meta = "⟨point⟩"
    },
    ["plane x"] = {
      details = [[
Unit vector of the $x$-direction in the new plane.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/plane:x",
      meta = "⟨point⟩"
    },
    ["plane y"] = {
      details = [[
Unit vector of the $y$-direction in the new plane.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/plane:y",
      meta = "⟨point⟩"
    },
    ["point down"] = {
      details = [[
This is the same as `rotate=-90`.

    \tikz [circuit ee IEC] \node [diode,point down] {};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/point:down"
    },
    ["point left"] = {
      details = [[
This is the same as `rotate=-180`.

    \tikz [circuit ee IEC] \node [diode,point left] {};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/point:left"
    },
    ["point right"] = {
      details = [[
This key has no effect.

    \tikz [circuit ee IEC] \node [diode,point right] {};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/point:right"
    },
    ["point up"] = {
      details = [[
This is the same as `rotate=90`.

    \tikz [circuit ee IEC] \node [diode,point up] {};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/point:up"
    },
    ["polar comb"] = {
      details = [[
This option causes a line from the origin to the point to be added to
the path for each plot point.

    \tikz \draw plot[polar comb,
         mark=pentagon*,mark options={fill=white,draw=red},mark size=4pt]
       coordinates {(0:1cm) (30:1.5cm) (160:.5cm) (250:2cm) (-60:.8cm)};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/polar:comb"
    },
    pos = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pos",
      meta = "⟨fraction⟩"
    },
    post = {
      details = [[
This style is also used with paths leading *from* a transition *to* a
place, but this time the place is in the post-set of the transition.
Again, feel free to redefine it.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/post"
    },
    postaction = {
      details = [[
The postactions work in the same way as the preactions, only they are
applied *after* the main action has been taken. Like preactions,
multiple `postaction` options may be given to a `\path` command, in
which case the path is reused several times, each time with a different
set of options in force.

If both pre- and postactions are specified, then the preactions are
taken first, then the main action, and then the post actions.

In the first example, we use a postaction to draw the path, after it has
already been drawn:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \draw
        [postaction={draw,line width=2mm,blue}]
        [line width=4mm,red,fill=white] (0,0) rectangle (2,2);
    \end{tikzpicture}

In another example, we use a postaction to "colorize" a path:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw
        [postaction={path fading=south,fill=white}]
        [postaction={path fading=south,fading angle=45,fill=blue,opacity=.5}]
        [left color=black,right color=red,draw=white,line width=2mm]
                   (0,0) rectangle (1,2)
                   (1,2) circle (5mm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/postaction",
      meta = "⟨options⟩"
    },
    pre = {
      details = [[
This style can be used with paths leading *from* a transition *to* a
place to indicate that the place is in the pre-set of the transition. By
default, this style is `<-,shorten <=1pt`, but feel free to redefine it.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pre"
    },
    ["pre and post"] = {
      details = [[
This style is to be used to indicate that a place is both in the pre-
and post-set of a transition.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/pre:and:post"
    },
    preaction = {
      details = [[
This option can be given to a `\path` command (or to derived commands
like `\draw` which internally call `\path`). Similarly to options like
`draw`, this option only has an effect when given to a `\path` or as
part of the options of a `node`; as an option to a `{scope}` it has no
effect.

When this option is used on a `\path`, the effect is the following: When
the path has been completely constructed and is about to be used, a
scope is created. Inside this scope, the path is used but not with the
original path options, but with ⟨options⟩ instead. Then, the path is
used in the usual manner. In other words, the path is used twice: Once
with ⟨options⟩ in force and then again with the normal path options in
force.

Here is an example in which the path consists of a rectangle. The main
action is to draw this path in red (which is why we see a red
rectangle). However, the preaction is to draw the path in blue, which is
why we see a blue rectangle behind the red rectangle.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \draw
        [preaction={draw,line width=4mm,blue}]
        [line width=2mm,red] (0,0) rectangle (2,2);
    \end{tikzpicture}

Note that when the preactions are preformed, then the path is already
"finished". In particular, applying a coordinate transformation to the
path has no effect. By comparison, applying a canvas transformation does
have an effect. Let us use this to add a "shadow" to a path. For this,
we use the preaction to fill the path in gray, shifted a bit to the
right and down:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw
        [preaction={fill=black,opacity=.5,
                    transform canvas={xshift=1mm,yshift=-1mm}}]
        [fill=red] (0,0) rectangle (1,2)
                   (1,2) circle (5mm);
    \end{tikzpicture}

Naturally, you would normally create a style `shadow` that contains the
above code. The `shadows` library, see Section ??, contains predefined
shadows of this kind.

It is possible to use the `preaction` option multiple times. In this
case, for each use of the `preaction` option, the path is used again
(thus, the ⟨options⟩ do not accumulate in a single usage of the path).
The path is used in the order of `preaction` options given.

In the following example, we use one `preaction` to add a shadow and
another to provide a shading, while the main action is to use a pattern.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw [pattern=fivepointed stars]
        [preaction={fill=black,opacity=.5,
                    transform canvas={xshift=1mm,yshift=-1mm}}]
        [preaction={top color=blue,bottom color=white}]
                   (0,0) rectangle (1,2)
                   (1,2) circle (5mm);
    \end{tikzpicture}

A complicated application is shown in the following example, where the
path is used several times with different fadings and shadings to create
a special visual effect:

    \begin{tikzpicture}
      [
        % Define an interesting style
        button/.style={
          % First preaction: Fuzzy shadow
          preaction={fill=black,path fading=circle with fuzzy edge 20 percent,
                     opacity=.5,transform canvas={xshift=1mm,yshift=-1mm}},
          % Second preaction: Background pattern
          preaction={pattern=#1,
                     path fading=circle with fuzzy edge 15 percent},
          % Third preaction: Make background shiny
          preaction={top color=white,
                     bottom color=black!50,
                     shading angle=45,
                     path fading=circle with fuzzy edge 15 percent,
                     opacity=0.2},
          % Fourth preaction: Make edge especially shiny
          preaction={path fading=fuzzy ring 15 percent,
                     top color=black!5,
                     bottom color=black!80,
                     shading angle=45},
          inner sep=2ex
        },
        button/.default=horizontal lines light blue,
        circle
      ]

      \draw [help lines] (0,0) grid (4,3);

      \node [button] at (2.2,1) {\Huge Big};
      \node [button=crosshatch dots light steel blue,
             text=white] at (1,1.5) {Small};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/preaction",
      meta = "⟨options⟩"
    },
    prefix = {
      details = [[
The ⟨prefix⟩ is put before each plot file name. The default is
`\jobname.`, but if you have many plots, it might be better to use, say
`plots/` and have all plots placed in a directory. You have to create
the directory yourself.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/prefix",
      meta = "⟨prefix⟩"
    },
    ["prefix after command"] = {
      details = [[
Works like `append after command`, only the accumulation order is
inverse: The ⟨path⟩ is added before any earlier paths added using either
`append after command` or `prefix after command`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/prefix:after:command",
      meta = "⟨path⟩"
    },
    ["quotes mean label"] = {
      details = [[
When this option is used (which is the default when this library is
loaded), then, as described above, inside the options of a node a
special syntax check is done.

**The syntax.** For each string in the list of options it is tested
whether it starts with a quotation mark (note that this will never
happen for normal keys since the normal keys of TikZ do not start with
quotation marks). When this happens, the ⟨string⟩ should not be a
key--value pair, but, rather, must have the form:

> `"`⟨text⟩`"``’`⟨options⟩

(We will discuss the optional apostrophe in a moment. It is not really
important for the current option, but only for edge labels, which are
discussed later).

**Transformation to a label option.** When a ⟨string⟩ has the above
form, it is treated (almost) as if you had written

> `label={[`⟨options⟩`]`⟨text⟩`}`

instead. The "almost" refers to the following additional feature: In
reality, before the ⟨options⟩ are executed inside the `label` command,
the direction keys `above`, `left`, `below right` and so on are
redefined so that `above` is a shorthand for `label position=90` and
similarly for the other keys. The net effect is that in order to specify
the position of the ⟨text⟩ relative to the main node you can just put
something like `left` or `above right` inside the ⟨options⟩:

    \tikz
      \node ["$90^\circ$" above, "$180^\circ$" left, circle, draw] {circle};

Alternatively, you can also use ⟨direction⟩`:`⟨actual text⟩ as your
⟨text⟩. This works since the `label` command allows you to specify a
direction at the beginning when it is separated by a colon:

    \tikz
      \node ["90:$90^\circ$", "left:$180^\circ$", circle, draw] {circle};

Arguably, placing `above` or `left` behind the ⟨text⟩ seems more natural
than having it inside the ⟨text⟩.

In addition to the above, before the ⟨options⟩ are executed, the
following style is also executed:

**Handling commas and colons inside the text.** The ⟨text⟩ may not
contain a comma, unless it is inside curly braces. The reason is that
the key handler separates the total options of a `node` along the commas
it finds. So, in order to have text containing a comma, just add curly
braces around either the comma or just around the whole ⟨text⟩:

    \tikz \node ["{yes, we can}", draw] {foo};

The same is true for a colon, only in this case you may need to surround
specifically the colon by curly braces to stop the `label` option from
interpreting everything before the colon as a direction:

    \tikz \node ["yes{:} we can", draw] {foo};

**The optional apostrophe.** Following the closing quotation marks in a
⟨string⟩ there may (but need not) be a single quotation mark (an
apostrophe), possibly surrounded by whitespaces. If it is present, it is
simply added to the ⟨options⟩ as another option (and, indeed, a single
apostrophe is a legal option in TikZ, it is a shorthand for `swap`):

  String           has the same effect as
  ---------------- --------------------------------------------------
  `"foo"’`         `"foo" {’}`
  `"foo"’ red`     `"foo" {’,red}`
  `"foo"’{red}`    `"foo" {’,red}`
  `"foo"{’,red}`   `"foo" {’,red}`
  `"foo"{red,’}`   `"foo" {red,’}`
  `"foo"{’red}`    `"foo" {’red}` (illegal; there is no key `’red`)
  `"foo" red’`     `"foo" {red’}` (illegal; there is no key `red’`)
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/quotes:mean:label"
    },
    ["quotes mean pin"] = {
      details = [[
This option has exactly the same effect as `quotes mean label`, only
instead of transforming quoted text to the `label` option, they get
transformed to the `pin` option:

    \tikz [quotes mean pin]
      \node ["$90^\circ$" above, "$180^\circ$" left, circle, draw] {circle};

Instead of `every label quotes`, the following style is executed with
each such pin:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/quotes:mean:pin"
    },
    radius = {
      details = [[
Sets the `x radius` and `y radius` simultaneously.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/radius",
      meta = "⟨value⟩"
    },
    range = {
      details = [[
This key sets the range of the plot. If set, all points whose
$y$-coordinates lie outside this range will be considered to be outliers
and will cause jumps in the plot, by default:

    \tikz \draw[scale=0.5,domain=-3.141:3.141, samples=100, smooth, range=-3:3]
      plot[id=tan-example] function{tan(x)};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/range",
      meta = "⟨start⟩:⟨end⟩"
    },
    ["raw gnuplot"] = {
      details = [[
This key causes the ⟨gnuplot formula⟩ to be passed on to GNUPLOT without
setting up the samples or the `plot` operation. Thus, you could write

    plot[raw gnuplot,id=raw-example] function{set samples 25; plot sin(x)}

This can be useful for complicated things that need to be passed to
GNUPLOT. However, for really complicated situations you should create a
special external generating GNUPLOT file and use the `file`-syntax to
include the table "by hand".
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/raw:gnuplot"
    },
    ["rdf engine"] = {
      details = [[
This key only has an effect when `rdf engine on` is called, otherwise
the argument is silently ignored. The ⟨rdf keys⟩ get executed with the
path prefix `/tikz/rdf engine` at the beginning of the current scope
(for a node, at the beginning of the node's scope). Depending on which
keys are used, semantic information gets to be added to the output.

Note that you cannot simply the keys with path prefix `/tikz/rdf engine`
directly since they need to be executed at very specific times during
TikZ's processing of scopes. Always call those keys via this key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine",
      meta = "⟨rdf keys⟩"
    },
    ["rdf engine on"] = {
      details = [[
Switches "on" the generation of RDF information for the current
TeX scope. The idea is that libraries can internally use the
`rdf engine` key (explained below) a lot in order to provide good
semantic information in the output when desired, but need not worry that
this will bloat output files since users have to use this key explicitly
to include semantic information in the output.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine:on"
    },
    ["rdf engine/get new resource curie"] = {
      details = [[
The ⟨macro⟩ will be set to a new unique curie that can be used anywhere
where a curie is allowed. Here is an example how we can add a state and
a transition container to an automaton, both of which have no
corresponding scope in TikZ.

    \tikz [ name = my automaton,
            rdf engine = {
              get new resource curie = \statecurie,
              get new resource curie = \transitiocurie,
              statement = {
                subject   = (my automaton),
                predicate = automata:hasStateSet,
                object    = \statecurie },
              statement = {
                subject   = \statecurie,
                hat type  = automata:stateSet },
              statement = {
                subject   = (my automaton),
                predicate = automata:hasTransitionSet,
                object    = \transitiocurie },
              statement = {
                subject   = \transitiocurie,
                hat type  = automata:transitionSet } } ] { ... }

The ⟨macro⟩ will be valid for the whole scope.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/get:new:resource:curie",
      meta = "⟨macro⟩"
    },
    ["rdf engine/get scope curie"] = {
      details = [[
The ⟨macro⟩ will be set to a unique curie that represents the scope or
node. If the scope is named (using the `name` key or the special
parenthesis syntax for nodes) and this name is later referenced in
another statement, the same curie will be generated. Note how in the
following code no name is given for the automaton, which means that the
whole RDF code could be moved inside a style like `finite automaton` or
something similar.

    \tikz [ rdf engine = {
              get new resource curie = \statecurie,
              get new resource curie = \transitiocurie,
              get scope curie = \automatoncurie,
              statement = {
                subject   = \automatoncurie,
                predicate = automata:hasStateSet,
                object    = \statecurie },
              statement = {
                subject   = \statecurie,
                hat type  = automata:stateSet },
              statement = {
                subject   = \automatoncurie,
                predicate = automata:hasTransitionSet,
                object    = \transitiocurie },
              statement = {
                subject   = \transitiocurie,
                hat type  = automata:transitionSet } } ] { ... }

The ⟨macro⟩ will be valid for the whole scope.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/get:scope:curie",
      meta = "⟨macro⟩"
    },
    ["rdf engine/prefix"] = {
      details = [[
Inside the current scope, you can use ⟨prefix⟩`:` inside curies (compact
universal resource identifier expressions, see the RDFA specification)
as an abbreviation for the ⟨iri⟩. (It has the same effect as the
`prefix` attribute in RDFa.) You can use this key several times for a
given scope.

    \scoped [rdf engine = {
      prefix = {rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns\tikzrdfhashmark},
      prefix = {automata: http://www.tcs.uni-luebeck.de/ontologies/2016/04/28/automata/},
      statement = { ..., predicate = rdf:type, object = automata:state },
      statement = { ..., predicate = rdf:type, object = automata:final },
      }] ...

The above could also be written more verbosely as

    \scoped [rdf engine = {
      statement = { ...,
        predicate = http://www.w3.org/1999/02/22-rdf-syntax-ns\tikzrdfhashmark type,
        object = http://www.tcs.uni-luebeck.de/ontologies/2016/04/28/automata/state }
      },
      statement = { ...,
        predicate = http://www.w3.org/1999/02/22-rdf-syntax-ns\tikzrdfhashmark type,
        object = http://www.tcs.uni-luebeck.de/ontologies/2016/04/28/automata/final }
      }] ...

The use of the command `\tikzrdfhashmark` is necessary since TeX assigns
a special meaning to hash marks. The command simple expands to a
"normal" hash mark for use in texts.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/prefix",
      meta = "⟨prefix: iri⟩"
    },
    ["rdf engine/scope is new context"] = {
      details = [[
This key executes `get scope curie=\tikzrdfcontext`, thereby setting the
macro `\tikzrdfcontext` to the current scope. The idea is the key is
used with "major resources" and that keys can use this macro as the
`subject` of statements if no subject is given explicitly. For instance,
a `title` key might be defined as follows:

    title/.style = {
      rdf engine = { statement = {
          subject   = \tikzrdfcontext,
          predicate = dc:Title,
          object    = "#1"
    } } }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/scope:is:new:context"
    },
    ["rdf engine/statement"] = {
      details = [[
Each use of this key will add one RDF statement to the output file. The
⟨options⟩ will be executed with the path prefix
`/tikz/rdf engine/statements` and must use the three keys `subject`,
`predicate`, and `object` to specify the three components of the
statement (these keys can, however, be called by styles internally, so
not all statements will explicitly set these three keys). Note that *all
three must always be set*, it is *not* possible to setup, say, just a
subject for a scope and then omit the subject for statements inside the
scope. (However, using styles you can setup things in such a way that a
certain subject is used for several statements.)

    \tikz [rdf engine = {
      statement = {
        subject   = http://www.example.org/persons/Einstein,
        predicate = http://www.example.org/predicates/isA,
        object    = http://www.example.org/professions/physicist
      },
      statement = {
        subject   = http://www.example.org/persons/Curie,
        predicate = http://www.example.org/predicates/isA,
        object    = http://www.example.org/professions/physicist
      }}] { ... }

The statements are normally added at the beginning of the scope where
the `rdf enging` command is used (except when the `object` is
`scope content`, which is explained later). This means that when you use
`prefix` inside an `rdf engine` command, it will apply to all
statements, regardless of the order.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statement",
      meta = "{options}"
    },
    ["rdf engine/statements/has as member"] = {
      details = [[
This key may only be added to statements whose subject was previously
used as a subject in a statement containing the `is a container` key. In
this case, the internal counter will be increased and the predicate will
be set to `rdf:_ `⟨count⟩. This means that we can write the above code
as:

    \tikz { ...

      \scoped [rdf engine = {
        statement = {
          subject   = (safe),
          has type  = rdf:Seq,
          is a container,
        },
        statement = {
          subject   = (safe),
          has as member,
          object    = (coins)
        },
        statement = {
          subject   = (safe),
          has as member,
          object    = (gold)
        } }];
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statements/has:as:member"
    },
    ["rdf engine/statements/has type"] = {
      details = [[
This style is a shorthand for `predicate=rdf:type` and `object=`⟨type⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statements/has:type",
      meta = "⟨type⟩"
    },
    ["rdf engine/statements/is a bag"] = {
      details = [[
This is a shorthand for `predicate = rdf:Bag, is a container`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statements/is:a:bag"
    },
    ["rdf engine/statements/is a container"] = {
      details = [[
Add this key to a statement in order to tell TikZ that it should setup a
special counter for the subject of the statement that keeps track of the
container's children.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statements/is:a:container"
    },
    ["rdf engine/statements/is a sequence"] = {
      details = [[
This is a shorthand for `predicate = rdf:Seq, is a container`. In the
above example we could say:

    \tikz { ...

      \scoped [rdf engine = {
        statement = {
          subject   = (safe),
          is a sequence
        },
        ... } ]; }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statements/is:a:sequence"
    },
    ["rdf engine/statements/is an alternative"] = {
      details = [[
This is a shorthand for `predicate = rdf:Alt, is a container`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statements/is:an:alternative"
    },
    ["rdf engine/statements/object"] = {
      details = [[
Sets the object for the statement. The syntax allowed for the ⟨object⟩
is as follows:

1.  As for `subject` and `predicate` you can use a curie here. This is
    the default unless one of the following special cases is used:

2.  As for `subject` and `predicate`, you can use the syntax `(`⟨name of
    node or scope⟩`)` to create and use a curie for the node or scope.

3.  If the ⟨object⟩ starts with `"`, it must have the syntax
    `"`⟨literals⟩`"`. In this case, the object of the statement is not a
    curie (not a normal "resource") but the string of ⟨literals⟩ given.

4.  If the ⟨object⟩ is the text "`scope content`", the object of the
    statement is actually the whole contents of the scope to which this
    statement is attached.

5.  The two previous cases can be combined in the form of an object of
    the form `"`⟨literals⟩`" and scope content`. In this case, the
    contents of the scope is "normally" the object, but this gets
    "overruled" by the ⟨literals⟩. Formally, this means that the object
    is the ⟨literals⟩, but the intended semantics is that the object is
    the scope content, only for further processing it should be
    considered to be ⟨literals⟩. A typical example is the case where the
    scope content is, say, the text "January 1st, 2000" but the
    ⟨literals⟩ are set to `2000-01-01`, which is easier for software to
    process:

        \node [rdf engine = {
          statement = {
            subject = ...,
            predicate = dc:Date,
            object = "2000-01-01" and scope content
          } } ] { January 1st, 2000 };

For the last two cases, only one statement may be given per scope that
has the `scope content` as its object; if more than one is given, the
last one wins. This is the reason why several uses of `predicate` are
allowed in a `statement`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statements/object",
      meta = "⟨object⟩"
    },
    ["rdf engine/statements/predicate"] = {
      details = [[
Sets the predicate for the statement. The syntax is exactly the same as
for the subject. Unlike for subjects, you can use the predicate key
several times inside a single statement and the uses will "accumulate"
and several statements are created, namely one statement for each use of
`predicate` for the subject and object specified inside the use of
`statement`. This behavior is not very systematic (it violates the rule
"one statement per `statement`") and you should normally use the
`statement` once for each use of the `predicate` key. However, in
conjunction with the object `scope content` it is necessary to allow
this behavior.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statements/predicate",
      meta = "⟨predicate⟩"
    },
    ["rdf engine/statements/subject"] = {
      details = [[
Sets the subject of the to-be-created statement. The ⟨subject⟩ can be in
one of two possible formats:

1.  A curie (a *compact universal resource identifier expression,* see
    the RDFA specification for details). Examples are standard URLs like
    `http://www.example.org`, but also text like `# my_ automaton`. Note
    that in order to include a hashmark in a curie you should use the
    command `\tikzrdfhashmark`, which expands to a hash mark (TeX treats
    hash marks in a special way, which is why this command is used
    here).

2.  When the ⟨subject⟩ starts with an opening parenthesis, that is, with
    "`(`", the ⟨subject⟩ must have the form `(`⟨node or scope name⟩`)`.
    In this case, the ⟨node or scope name⟩ must be the name of an
    already existing node (the current node or scope is considered as
    "existing" here). Then, the curie `# `⟨id⟩ is used as subject, where
    the ⟨id⟩ is a unique internal identifier for the node.

    As an example, suppose you wish to specify that a node has some
    other node as child, you could write the following:

        \tikz [ rdf engine = { prefix = { rels: http://www.example.org/relations/} } ] {
          \node (fritz)          { Fritz };
          \node (heinz) at (2,0) { Heinz };
          \draw [->] (fritz) -- (heinz)
                [rdf engine = {
                  statement = {
                    subject = (fritz),
                    predicate = rels:isSonOf,
                    object  = (heinz)
                  } } ];
        }

You can use a macro as ⟨subject⟩, it will be expanded before the above
syntax check is done.

If you use the `subject` key several times inside a single `statement`
command, (only) the last subject is used.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rdf:engine/statements/subject",
      meta = "⟨subject⟩"
    },
    relationship = {
      details = [[
This style works like `entity`, only it is to be used for relationships.
Again, `relationship`s are actually relationship types.

    \begin{tikzpicture}
      \node[entity] (sheep)  at (0,0)   {Sheep};
      \node[entity] (genome) at (2,0)   {Genome};
      \node[relationship]    at (1,1.5) {has}
        edge (sheep)
        edge (genome);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/relationship"
    },
    relative = {
      details = [[
This option tells TikZ whether the `in` and `out` angles should be
considered absolute or relative. Absolute means that an `out` angle of
30$^\circ$ means that the curve leaves the start coordinate at an angle
of 30$^\circ$ relative to the paper (unless, of course, further
transformations have been installed). A *relative* angle is, by
comparison, measured relative to a straight line from the start
coordinate to the target coordinate. Thus, a relative angle of
30$^\circ$ means that the curve will bend to the left from the line
going straight from the start to the target. For the target, the
relative coordinate is measured in the same manner, namely relative to
the line going from the start to the target. Thus, an angle of
150$^\circ$ means that the curve will reach target coming slightly from
the left.

    \begin{tikzpicture}[out=45,in=135,relative]
      \draw (0,0) to (1,0)
                  to (2,1)
                  to (2,2);
    \end{tikzpicture}

    \begin{tikzpicture}[out=90,in=90,relative]
      \node [circle,draw] (a) at (0,0) {a};
      \node [circle,draw] (b) at (1,1) {b};
      \node [circle,draw] (c) at (2,2) {c};

      \path (a) edge (b)
                edge (c);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/relative",
      meta = "⟨true or false⟩"
    },
    ["remember picture"] = {
      details = [[
This option tells TikZ that it should attempt to remember the position
of the current picture on the page. This attempt may fail depending on
which backend driver is used. Also, even if remembering works, the
position may only be available on a second run of TeX.

Provided that remembering works, you may consider saying

    \tikzset{every picture/.append style={remember picture}}

to make TikZ remember all pictures. This will add one line in the `.aux`
file for each picture in your document -- which typically is not very
much. Then, you do not have to worry about remembered pictures at all.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/remember:picture",
      meta = "⟨boolean⟩"
    },
    ["reset cm"] = {
      details = [[
Completely resets the coordinate transformation matrix to the identity
matrix. This will destroy not only the transformations applied in the
current scope, but also all transformations inherited from surrounding
scopes. Do not use this option, unless you really, really know what you
are doing.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/reset:cm"
    },
    resistor = {
      details = [[
This key should be used with a `node` path command or with the `to` path
command.

**Using the Key with Normal Nodes.** When used with a node, it will
cause this node to "look like" a resistor (by default, in the IEC
library, this is just a simple rectangle).

    \tikz [circuit ee IEC]
      \node [resistor] {};

Unlike normal nodes, a resistor node generally should not take any text
(as in `node [resistor] {foo}`). Instead, the labeling of resistors
should be done using the `label`, `info` and `ohm` options.

    \tikz [circuit ee IEC]
      \node [resistor,ohm=5] {};

The ⟨options⟩ make no real sense when the `resistor` option is used with
a normal node, you can just as well given them to the `node` itself.
Thus, the following has the same effect as the above example:

    \tikz [circuit ee IEC]
      \node [resistor={ohm=5}] {};

In a circuit, you will often wish to rotate elements. For this, the
options `point up`, `point down`, `point left` or `point right` may be
especially useful. They are just shorthands for appropriate rotations
like `rotate=90`.

    \tikz [circuit ee IEC] {
      \node (R1) [resistor,point up,ohm=5] at (3,1) {};
      \node (R2) [resistor,ohm=10k]        at (0,0) {};
      \draw (R2) -| (R1);
    }

**Using the Key on a To Path.** When the `resistor` key is used on a
`to` path inside a `circuit ee IEC`, the `circuit handle symbol` key is
called internally. This has a whole bunch of effects:

1.  The path currently being constructed is cut up to make place for a
    node.

2.  This node will be a `resistor node` that is rotated so that it
    points "along" the path (unless an option like `shift only` or an
    extra rotation is used to change this).

3.  The ⟨options⟩ passed to the `resistor` key are passed on to the
    node.

4.  The ⟨options⟩ are pre-parsed to identify a `pos` key or a key like
    `at start` or `midway`. These keys are used to determine where on
    the `to` path the node will lie.

Since the ⟨options⟩ of the `resistor` key are passed on to the resistor
node on the path, you can use it to add labels to the node. Here is a
simple example:

    \tikz [circuit ee IEC]
      \draw (0,0) to [resistor=red]        (3,0)
                  to [resistor={ohm=2\mu}] (3,2);

You can add multiple labels to a resistor and you can have multiple
resistors (or other elements) on a single path.

**Inputs, Outputs, and Anchors.** Like the logical gates, all ee-symbols
have an `input` and an `output` anchor. Special-purpose-nodes may have
even more anchors of this type. Furthermore, the ee-symbols-nodes also
have four standard compass direction anchors.

**Changing the Appearance.** To configure the appearance of all
`resistor`s, see Section ??. You can use the ⟨options⟩ to locally change
the appearance of a single resistor.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/resistor",
      meta = "⟨options⟩"
    },
    right = {
      details = [[
Similar to `above`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/right",
      meta = "⟨offset⟩"
    },
    ["right color"] = {
      details = [[
Works like `left color`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/right:color",
      meta = "⟨color⟩"
    },
    ["right delimiter"] = {
      details = [[
Works as above.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/right:delimiter",
      meta = "⟨delimiter⟩"
    },
    ["right of"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/right:of",
      meta = "⟨node⟩"
    },
    ["root concept"] = {
      details = [[
This style is used for the roots of mindmap trees. By adding something
to this, you can change how the root of a mindmap will be rendered.

    \tikz
      [root concept/.append style={concept color=blue!80,minimum size=3.5cm},
       mindmap]
      \node [concept] {Root concept};

Note that styles like `large mindmap` redefine these styles, so you
should add something to this style only inside the picture.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/root:concept"
    },
    rotate = {
      details = [[
Rotates the coordinate system by ⟨degree⟩:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                 (0,0) -- (1,1) -- (1,0);
      \draw[rotate=40,blue] (0,0) -- (1,1) -- (1,0);
      \draw[rotate=-20,red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rotate",
      meta = "⟨degree⟩"
    },
    ["rotate around"] = {
      details = [[
Rotates the coordinate system by ⟨degree⟩ around the point ⟨coordinate⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                                (0,0) -- (1,1) -- (1,0);
      \draw[rotate around={40:(1,1)},blue] (0,0) -- (1,1) -- (1,0);
      \draw[rotate around={-20:(1,1)},red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rotate:around",
      meta = "{⟨degree⟩:⟨coordinate⟩}"
    },
    ["rotate around x"] = {
      details = [[
This key sets the $x$, $y$ and $z$ vectors of the PGF $xyz$-coordinate
system so that they are rotated by ⟨angle⟩ around the axis corresponding
to the $x$-vector. The rotation is applied so that when looking towards
the origin along this axis, positive angles result in an anticlockwise
rotation.

    \begin{tikzpicture}[>=stealth]
      \draw [->] (0,0,0) -- (2,0,0) node [at end, right] {$x$};
      \draw [->] (0,0,0) -- (0,2,0) node [at end, left]  {$y$};
      \draw [->] (0,0,0) -- (0,0,2) node [at end, left]  {$z$};

      \draw [red,   rotate around x=0]  (0,0,0) -- (1,1,0) -- (1,0,0);
      \draw [green, rotate around x=45] (0,0,0) -- (1,1,0) -- (1,0,0);
      \draw [blue,  rotate around x=90] (0,0,0) -- (1,1,0) -- (1,0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rotate:around:x",
      meta = "⟨angle⟩"
    },
    ["rotate around y"] = {
      details = [[
This key sets the $x$, $y$ and $z$ vectors of the PGF $xyz$-coordinate
system so that they are rotated by ⟨angle⟩ around the axis corresponding
to the $y$-vector. The rotation is applied so that when looking towards
the origin along this axis, positive angles result in an anticlockwise
rotation.

    \begin{tikzpicture}[>=stealth]
      \draw [->] (0,0,0) -- (2,0,0) node [at end, right] {$x$};
      \draw [->] (0,0,0) -- (0,2,0) node [at end, left]  {$y$};
      \draw [->] (0,0,0) -- (0,0,2) node [at end, left]  {$z$};

      \draw [red,   rotate around y=0]   (0,0,0) -- (1,1,0) -- (1,0,0);
      \draw [green, rotate around y=-45] (0,0,0) -- (1,1,0) -- (1,0,0);
      \draw [blue,  rotate around y=-90] (0,0,0) -- (1,1,0) -- (1,0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rotate:around:y",
      meta = "⟨angle⟩"
    },
    ["rotate around z"] = {
      details = [[
This key sets the $x$, $y$ and $z$ vectors of the PGF $xyz$-coordinate
system so that they are rotated by ⟨angle⟩ around the axis corresponding
to the $z$-vector. The rotation is applied so that when looking towards
the origin along this axis, positive angles result in an anticlockwise
rotation.

    \begin{tikzpicture}[>=stealth]
      \draw [->] (0,0,0) -- (2,0,0) node [at end, right] {$x$};
      \draw [->] (0,0,0) -- (0,2,0) node [at end, left]  {$y$};
      \draw [->] (0,0,0) -- (0,0,2) node [at end, left]  {$z$};

      \draw [red,   rotate around z=0]  (0,0) -- (1,1) -- (1,0);
      \draw [green, rotate around z=45] (0,0) -- (1,1) -- (1,0);
      \draw [blue,  rotate around z=90] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rotate:around:z",
      meta = "⟨angle⟩"
    },
    ["rotate fit"] = {
      details = [[
This key fits ⟨coordinates or nodes⟩ inside a node that is rotated by
⟨angle⟩. As a side effect, it also sets the `/tikz/rotate` key.

    \begin{tikzpicture}[inner sep=0pt,thick,
      dot/.style={fill=blue,circle,minimum size=3pt}]
      \draw[help lines] (0,0) grid (3,2);
      \node[dot] (a) at (1,1) {};
      \node[dot] (b) at (2,2) {};
      \node[dot] (c) at (1,2) {};
      \node[dot] (d) at (1.25,0.25) {};
      \node[dot] (e) at (1.75,1.5) {};
      \node[draw, fit=(a) (b) (c) (d) (e)] {};
      \node[draw=red, rotate fit=30, fit=(a) (b) (c) (d) (e)] {};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rotate:fit",
      meta = "⟨angle⟩"
    },
    ["rounded corners"] = {
      details = [[
When this option is in force, all corners (places where a line is
continued either via line-to or a curve-to operation) are replaced by
little arcs so that the corner becomes smooth.

    \tikz \draw [rounded corners] (0,0) -- (1,1)
               -- (2,0) .. controls (3,1) .. (4,0);

The ⟨inset⟩ describes how big the corner is. Note that the ⟨inset⟩ is
*not* scaled along if you use a scaling option like `scale=2`.

    \begin{tikzpicture}
      \draw[color=gray,very thin] (10pt,15pt) circle[radius=10pt];
      \draw[rounded corners=10pt] (0,0) -- (0pt,25pt) -- (40pt,25pt);
    \end{tikzpicture}

You can switch the rounded corners on and off "in the middle of path"
and different corners in the same path can have different corner radii:

    \begin{tikzpicture}
      \draw (0,0) [rounded corners=10pt] -- (1,1) -- (2,1)
                         [sharp corners] -- (2,0)
                   [rounded corners=5pt] -- cycle;
    \end{tikzpicture}

Here is a rectangle with rounded corners:

    \tikz \draw[rounded corners=1ex] (0,0) rectangle (20pt,2ex);

You should be aware, that there are several pitfalls when using this
option. First, the rounded corner will only be an arc (part of a circle)
if the angle is $90^\circ$. In other cases, the rounded corner will
still be round, but "not as nice".

Second, if there are very short line segments in a path, the "rounding"
may cause inadvertent effects. In such case it may be necessary to
temporarily switch off the rounding using `sharp corners`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/rounded:corners",
      meta = "⟨inset⟩"
    },
    ["row sep"] = {
      details = [[
This option works like `column sep`, only for rows. Here, too, you can
specify whether the space is added between the lower end of the first
row and the upper end of the second row, or whether the space is
computed between the origins of the two rows.

    \begin{tikzpicture}
      \matrix [draw,row sep=1cm,nodes=draw]
      {
        \node (a) {123}; & \node {1};   & \node {1}; \\
        \node (b) {12};  & \node {12};  & \node {1}; \\
        \node     {1};   & \node {123}; & \node {1}; \\
      };
      \draw [<->,red,thick] (a.south) -- (b.north) node [right,midway] {1cm};
    \end{tikzpicture}

    \begin{tikzpicture}
      \matrix [draw,row sep={1cm,between origins},nodes=draw]
      {
        \node (a) {123}; & \node {1};   & \node {1}; \\
        \node (b) {12};  & \node {12};  & \node {1}; \\
        \node     {1};   & \node {123}; & \node {1}; \\
      };
      \draw [<->,red,thick] (a.center) -- (b.center) node [right,midway] {1cm};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/row:sep",
      meta = "⟨spacing list⟩"
    },
    ["row ⟨number⟩"] = {
      details = [[
This style is used for every cell in row ⟨number⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/row:⟨number⟩"
    },
    ["row ⟨row number⟩ column ⟨column number⟩"] = {
      details = [[
This style is used for the cell in row ⟨row number⟩ and column ⟨column
number⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/row:⟨row:number⟩:column:⟨column:number⟩"
    },
    samples = {
      details = [[
Sets the number of samples used in the plot.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/samples",
      meta = "⟨number⟩"
    },
    ["samples at"] = {
      details = [[
This option specifies a list of positions for which the variable should
be evaluated. For instance, you can say `samples at={1,2,8,9,10}` to
have the variable evaluated exactly for values $1$, $2$, $8$, $9$, and
$10$. You can use the `\foreach` syntax, so you can use `...` inside the
⟨sample list⟩.

When this option is used, the `samples` and `domain` option are
overruled. The other way round, setting either `samples` or `domain`
will overrule this option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/samples:at",
      meta = "⟨sample list⟩"
    },
    ["save path"] = {
      details = [[
Save the current soft path into ⟨macro⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/save:path",
      meta = "⟨macro⟩"
    },
    scale = {
      details = [[
Multiplies all coordinates by the given ⟨factor⟩. The ⟨factor⟩ should
not be excessively large in absolute terms or very close to zero.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw               (0,0) -- (1,1) -- (1,0);
      \draw[scale=2,blue] (0,0) -- (1,1) -- (1,0);
      \draw[scale=-1,red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/scale",
      meta = "⟨factor⟩"
    },
    ["scale around"] = {
      details = [[
Scales the coordinate system by ⟨factor⟩, with the "origin of scaling"
centered on ⟨coordinate⟩ rather than the origin.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                             (0,0) -- (1,1) -- (1,0);
      \draw[scale=2,blue]               (0,0) -- (1,1) -- (1,0);
      \draw[scale around={2:(1,1)},red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/scale:around",
      meta = "{⟨factor⟩:⟨coordinate⟩}"
    },
    ["scope fading"] = {
      details = [[
In principle, this key works in exactly the same way as the
`path fading` key. The only difference is, that the effect of the fading
will persist after the current path till the end of the scope. Thus, the
⟨fading⟩ is applied to all subsequent drawings in the current scope, not
just to the current path. In this regard, the option works very much
like the `clip` option. (Note, however, that, unlike the `clip` option,
fadings to not accumulate unless a transparency group is used.)

The keys `fit fading` and `fading transform` have the same effect as for
`path fading`. Also that, just as for `path fading`, providing the
`scope fading` option with a `{scope}` only sets the name of the fading
to be used. You have to explicitly provide the `scope fading` with a
path to actually install a fading.

    \begin{tikzpicture}
      \fill [black!20] (-2,-2) rectangle (2,2);
      \pattern [pattern=checkerboard,pattern color=black!30]
                       (-2,-2) rectangle (2,2);

      % The bounding box of the shading:
      \draw [red] (-50bp,-50bp) rectangle (50bp,50bp);

      \path [scope fading=south,fit fading=false] (0,0);
      % fading is centered at its natural size

      \fill[red]   ( 90:1) circle (1);
      \fill[green] (210:1) circle (1);
      \fill[blue]  (330:1) circle (1);
    \end{tikzpicture}

In the following example we resize the fading to the size of the whole
picture:

    \begin{tikzpicture}
      \fill [black!20] (-2,-2) rectangle (2,2);
      \pattern [pattern=checkerboard,pattern color=black!30]
                       (-2,-2) rectangle (2,2);

      \path [scope fading=south] (-2,-2) rectangle (2,2);

      \fill[red]   ( 90:1) circle (1);
      \fill[green] (210:1) circle (1);
      \fill[blue]  (330:1) circle (1);
    \end{tikzpicture}

Scope fadings are also needed if you wish to fade a node.

    \tikz \node [scope fading=south,fading angle=45,text width=3.5cm]
    {
      This is some text that will fade out as we go right
      and down. It is pretty hard to achieve this effect in
      other ways.
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/scope:fading",
      meta = "⟨fading⟩"
    },
    semithick = {
      details = [[
Sets the line width to 0.6pt.

      \tikz \draw[semithick] (0,0) -- (1cm,1.5ex);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/semithick"
    },
    semitransparent = {
      details = [[
    \tikz{\fill[red]             (0,0)   rectangle (1,0.5);
          \fill[semitransparent] (0.5,0) rectangle (1.5,0.25); }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/semitransparent"
    },
    set = {
      details = [[
This key can be used as an option with a `node` command. The ⟨set name⟩
must be the name of a node set that has previously been created inside
some enclosing scope via the `new set` key. The effect is that the
current node is added to the node set.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/set",
      meta = "⟨set name⟩"
    },
    shade = {
      details = [[
Causes the path to be shaded using the currently selected shading (more
on this later). If this option is used together with the `draw` option,
then the path is first shaded, then drawn.

It is not an error to use this option together with the `fill` option,
but it makes no sense.

    \tikz \shade (0,0) circle (1ex);

    \tikz \shadedraw (0,0) circle (1ex);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shade"
    },
    shading = {
      details = [[
This selects a shading named ⟨name⟩. The following shadings are
predefined: `axis`, `radial`, and `ball`.

    \tikz \shadedraw [shading=axis] (0,0) rectangle (1,1);
    \tikz \shadedraw [shading=radial] (0,0) rectangle (1,1);
    \tikz \shadedraw [shading=ball] (0,0) circle (.5cm);

The shadings as well as additional shadings are described in more detail
in Section ??.

To change the color of a shading, special options are needed like
`left color`, which sets the color of an axis shading from left to
right. These options implicitly also select the correct shading type,
see the following example

    \tikz \shadedraw [left color=red,right color=blue]
        (0,0) rectangle (1,1);

For a complete list of the possible options see Section ?? once more.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shading",
      meta = "⟨name⟩"
    },
    ["shading angle"] = {
      details = [[
This option rotates the shading (not the path!) by the given angle. For
example, we can turn a top-to-bottom axis shading into a left-to-right
shading by rotating it by $90^\circ$.

    \tikz \shadedraw [shading=axis,shading angle=90] (0,0) rectangle (1,1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shading:angle",
      meta = "⟨degrees⟩"
    },
    ["shadow scale"] = {
      details = [[
Shadows are scaled by ⟨factor⟩.

    \tikz [even odd rule]
      \draw [general shadow={fill=red,shadow scale=1.25}]
        (0,0) circle (.5) (0.5,0) circle (.5);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shadow:scale",
      meta = "⟨factor⟩"
    },
    ["shadow xshift"] = {
      details = [[
Shadows are shifted horizontally by ⟨dimension⟩.

    \tikz [even odd rule]
      \draw [general shadow={fill=red,shadow xshift=-5pt}]
        (0,0) circle (.5) (0.5,0) circle (.5);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shadow:xshift",
      meta = "⟨dimension⟩"
    },
    ["shadow yshift"] = {
      details = [[
Shadows are shifted vertically by ⟨dimension⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shadow:yshift",
      meta = "⟨dimension⟩"
    },
    shape = {
      details = [[
Select the shape either of the current node or, when this option is not
given inside a node but somewhere outside, the shape of all nodes in the
current scope.

Since this option is used often, you can leave out the `shape=`. When
TikZ encounters an option like `circle` that it does not know, it will,
after everything else has failed, check whether this option is the name
of some shape. If so, that shape is selected as if you had said
`shape=`⟨shape name⟩.

By default, the following shapes are available: `rectangle`, `circle`,
`coordinate`. Details of these shapes, like their anchors and size
options, are discussed in Section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shape",
      meta = "⟨shape name⟩"
    },
    ["sharp corners"] = {
      details = [[
This options switches off any rounding on subsequent corners of the
path.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/sharp:corners"
    },
    ["sharp plot"] = {
      details = [[
This is the default and causes the points to be connected by straight
lines. This option is included only so that you can "switch back" if you
"globally" install, say, `smooth`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/sharp:plot"
    },
    shift = {
      details = [[
Adds the ⟨coordinate⟩ to all coordinates.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                       (0,0) -- (1,1) -- (1,0);
      \draw[shift={(1,1)},blue]   (0,0) -- (1,1) -- (1,0);
      \draw[shift={(30:1cm)},red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shift",
      meta = "{⟨coordinate⟩}"
    },
    ["shift only"] = {
      details = [[
This option does not take any parameter. Its effect is to cancel all
current transformations except for the shifting. This means that the
origin will remain where it is, but any rotation around the origin or
scaling relative to the origin or skewing will no longer have an effect.

This option is useful in situations where a complicated transformation
is used to "get to a position", but you then wish to draw something
"normal" at this position.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                                      (0,0) -- (1,1) -- (1,0);
      \draw[rotate=30,xshift=2cm,blue]           (0,0) -- (1,1) -- (1,0);
      \draw[rotate=30,xshift=2cm,shift only,red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shift:only"
    },
    ["shorten <"] = {
      details = [[
Shorten the path by ⟨length⟩ in the direction of the starting point.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shorten:<",
      meta = "⟨length⟩"
    },
    ["shorten >"] = {
      details = [[
Shorten the path by ⟨length⟩ in the direction of the end point.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/shorten:>",
      meta = "⟨length⟩"
    },
    ["show background bottom"] = {
      details = [[
Works like the style for the top line.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/show:background:bottom"
    },
    ["show background grid"] = {
      details = [[
This style behaves similarly to the `show background rectangle` style,
but it will not use a rectangle path, but a grid. The lower left and
upper right corner of the grid is computed in the same way as for the
background rectangle:

    \begin{tikzpicture}[show background grid]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}

You can influence the background grid by setting the following style:

This option can be combined with the `framed` option (use the `framed`
option first):

    \tikzset{background grid/.style={thick,draw=red,step=.5cm},
             background rectangle/.style={rounded corners,fill=yellow}}
    \begin{tikzpicture}[framed,gridded]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/show:background:grid"
    },
    ["show background left"] = {
      details = [[
Works similarly.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/show:background:left"
    },
    ["show background rectangle"] = {
      details = [[
This style causes a rectangle to be drawn behind your graphic. This
style option must be given to the `{tikzpicture}` environment or to the
`\tikz` command.

    \begin{tikzpicture}[show background rectangle]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}

The size of the background rectangle is determined as follows: We start
with the bounding box of the picture. Then, a certain separator distance
is added on the sides. This distance can be different for the $x$- and
$y$-directions and can be set using the following options:

The following two styles make setting the inner separator a bit easier
to remember:

You can influence how the background rectangle is rendered by setting
the following style:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/show:background:rectangle"
    },
    ["show background right"] = {
      details = [[
Works similarly.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/show:background:right"
    },
    ["show background top"] = {
      details = [[
This style causes a single line to be drawn at the top of the background
rectangle. Normally, the line coincides exactly with the top line of the
background rectangle:

    \begin{tikzpicture}[
        background rectangle/.style={fill=yellow},
        framed,show background top]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}

The following option allows you to lengthen (or shorten) the line:

    \begin{tikzpicture}
      [background rectangle={fill=blue!20},
       outer frame sep=1ex,%
       show background top,%
       show background bottom,%
       show background left,%
       show background right]
      \draw (0,0) ellipse (10mm and 5mm);
    \end{tikzpicture}

You can influence how the line is drawn grid by setting the following
style:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/show:background:top"
    },
    ["sibling angle"] = {
      details = [[
Sets the angle between siblings in the `grow cyclic` style.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/sibling:angle",
      meta = "⟨angle⟩"
    },
    ["sibling distance"] = {
      details = [[
This key specifies the distance between the anchors of the children of a
parent node.

    \begin{tikzpicture}
      [level distance=4mm,
       level 1/.style={sibling distance=8mm},
       level 2/.style={sibling distance=4mm},
       level 3/.style={sibling distance=2mm}]
      \coordinate
         child {
           child {child child}
           child {child child}
         }
         child {
           child {child child}
           child {child child}
         };
    \end{tikzpicture}

    \begin{tikzpicture}
      [level distance=10mm,
       every node/.style={fill=red!60,circle,inner sep=1pt},
       level 1/.style={sibling distance=20mm,nodes={fill=red!45}},
       level 2/.style={sibling distance=10mm,nodes={fill=red!30}},
       level 3/.style={sibling distance=5mm,nodes={fill=red!25}}]
      \node {31}
         child {node {30}
           child {node {20}
             child {node {5}}
             child {node {4}}
           }
           child {node {10}
             child {node {9}}
             child {node {1}}
           }
         }
         child {node {20}
           child {node {19}
             child {node {1}}
             child[missing]
           }
           child {node {18}}
         };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/sibling:distance",
      meta = "⟨distance⟩"
    },
    size = {
      details = [[
Inside a `spy scope`, this is a shortcut for `minimum size`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/size",
      meta = "⟨dimension⟩"
    },
    slice = {
      details = [[
This key works exactly like `meet`, only the second rule is changed:

1.  the to-be-viewed rectangle has minimal size that it encompasses all
    of the window rectangle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/slice",
      meta = "⟨to-be-viewed corner⟩ rectangle ⟨to-be-viewed corner⟩ at ⟨window corner⟩ rectangle ⟨window corner⟩"
    },
    sloped = {
      details = [[
This option causes the node to be rotated such that a horizontal line
becomes a tangent to the curve. The rotation is normally done in such a
way that text is never "upside down". To get upside-down text, use can
use `[rotate=180]` or `[allow upside down]`, see below.

    \tikz \draw (0,0) .. controls +(up:2cm) and +(left:2cm) .. (1,3)
        node foreach \p in {0,0.25,...,1} [sloped,above,pos=\p]{\p};

    \begin{tikzpicture}[->]
      \draw (0,0)   -- (2,0.5) node[midway,sloped,above] {$x$};
      \draw (2,-.5) -- (0,0)   node[midway,sloped,below] {$y$};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/sloped"
    },
    ["small circuit symbols"] = {
      details = [[
This style sets the default circuit symbol unit to `6pt`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/small:circuit:symbols"
    },
    ["small mindmap"] = {
      details = [[
This style includes the `mindmap` style, but additionally changes the
default size of concepts, fonts and distances so that a medium-sized
mindmap will fit on an A5 page (A5 pages are half as large as A4 pages).
Mindmaps with `small mindmap` will also fit onto a standard frame of the
`beamer` package.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/small:mindmap"
    },
    smooth = {
      details = [[
This option causes the points on the path to be connected using a smooth
curve:

    \tikz\draw plot[smooth] file{plots/pgfmanual-sine.table};

Note that the smoothing algorithm is not very intelligent. You will get
the best results if the bending angles are small, that is, less than
about $30^\circ$ and, even more importantly, if the distances between
points are about the same all over the plotting path.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/smooth"
    },
    ["smooth cycle"] = {
      details = [[
This option causes the points on the path to be connected using a closed
smooth curve.

    \tikz[scale=0.5]
      \draw plot[smooth cycle] coordinates{(0,0) (1,0) (2,1) (1,2)}
            plot               coordinates{(0,0) (1,0) (2,1) (1,2)} -- cycle;
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/smooth:cycle"
    },
    solid = {
      details = [[
Shorthand for setting a solid line as "dash pattern". This is the
default.

    \tikz \draw[solid] (0pt,0pt) -- (50pt,0pt);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/solid"
    },
    ["spy connection path"] = {
      details = [[
The ⟨code⟩ is executed after the spy-on and spy-in nodes have just been
created. Inside this ⟨code⟩, the two nodes can be accessed as
`tikzspyinnode` and `tikzspyonnode`. For example, the key
`connect spies` sets this command to

    \draw[thin] (tikzspyonnode) -- (tikzspyinnode);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/spy:connection:path",
      meta = "⟨code⟩"
    },
    ["spy scope"] = {
      details = [[
This option may be used with a `{scope}` or any environment that creates
such a scope internally (like `{tikzpicture}`). It has the following
effects:

-   It resets a number of graphic state parameters, including the color,
    line style, and others. This is necessary for technical reasons.

-   It tells TikZ that the content of the scope should be saved
    internally in a special box.

-   It defines the command `\spy` so that it can be used inside the
    scope.

-   At the end of the scope, the nodes belonging to the `\spy` commands
    used inside the scope are created.

-   The ⟨options⟩ are saved in an internal style. Each time `\spy` is
    used, these ⟨options⟩ will be used.

-   Three keys are defined that provide useful shortcuts:

It is permissible to nest `spy scopes`. In this case, all `\spy`
commands inside the inner `spy scope` only have an effect on material
inside the scope, whereas `\spy` commands outside the inner `spy scope`
but inside the outer `spy scope` allow you to "spy on the spy".

    \begin{tikzpicture}
      [spy using outlines={rectangle, red, magnification=5,
                           size=1.5cm, connect spies}]

      \begin{scope}
        [spy using outlines={circle, blue,
                             magnification=3, size=1.5cm, connect spies}]
        \draw [help lines] (0,0) grid (3,2);

        \draw [decoration=Koch curve type 1]
          decorate{ decorate{ decorate{ (0,0) -- (2,0) }}};

        \spy on (1.6,0.3) in node (zoom) [left] at (3.5,-1.25);
      \end{scope}

      \spy on (zoom.north west) in node [right] at (0,-1.25);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/spy:scope",
      meta = "⟨options⟩"
    },
    ["spy using outlines"] = {
      details = [[
This key creates a `spy scope` in which the spy-in node is drawn, but
not filled, using a thick line; and the spy-on node is drawn, but not
filled, using a very thin line.

    \begin{tikzpicture}
      [spy using outlines={circle, magnification=3, size=1cm, connect spies}]

      \draw [decoration=Koch curve type 1]
        decorate{ decorate{ decorate{ (0,0) -- (2,0) }}};

      \spy [red] on (1.6,0.3) in node at (3,1);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/spy:using:outlines",
      meta = "⟨options⟩"
    },
    ["spy using overlays"] = {
      details = [[
This key creates a `spy scope` in which both the spy-in and spy-on nodes
are filled, but with the fill opacity set to 20%.

    \begin{tikzpicture}
      [spy using overlays={circle, magnification=3, size=1cm, connect spies}]

      \draw [decoration=Koch curve type 1]
        decorate{ decorate{ decorate{ (0,0) -- (2,0) }}};

      \spy [green] on (1.6,0.3) in node at (3,1);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/spy:using:overlays",
      meta = "⟨options⟩"
    },
    ["start angle"] = {
      details = [[
Sets the start angle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/start:angle",
      meta = "⟨degrees⟩"
    },
    ["start branch"] = {
      details = [[
This key is used in the same manner as the `start chain` command,
however, the effect is slightly different:

-   This option may only be used if some chain is already active and
    there is a (last) node on this chain. Let us call this node the
    ⟨fork node⟩.

-   The chain is not just called ⟨branch name⟩, but ⟨current
    chain⟩`/`⟨branch name⟩. For instance, if the ⟨fork node⟩ is part of
    the chain called `trunk` and the ⟨branch name⟩ is set to `left`, the
    complete chain name of the branch is `trunk/left`. The ⟨branch name⟩
    must be given, there is no default value.

-   The ⟨fork node⟩ is automatically "chained into" the branch chain as
    its first node. Thus, for the first node on the branch that you
    provide, the `join` option will cause it to be connected to the fork
    node.

&nbsp;

    \begin{tikzpicture}[every on chain/.style=join,every join/.style=->,
                        node distance=2mm and 1cm]
      { [start chain=trunk]
        \node [on chain] {A};
        \node [on chain] {B};

        { [start branch=numbers going below]
          \node [on chain] {1};
          \node [on chain] {2};
          \node [on chain] {3};
        }
        { [start branch=greek going above]
          \node [on chain] {$\alpha$};
          \node [on chain] {$\beta$};
          \node [on chain] {$\gamma$};
        }

        \node [on chain,join=with trunk/numbers-end,join=with trunk/greek-end] {C};
        { [start branch=symbols going below]
          \node [on chain] {$\star$};
          \node [on chain] {$\circ$};
          \node [on chain] {$\int$};
        }
      }
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/start:branch",
      meta = "⟨branch name⟩⟨direction⟩"
    },
    ["start chain"] = {
      details = [[
This key should, but need not, be given as an option to a scope
enclosing all nodes of the chain. Typically, this will be a `scope` or
the whole `tikzpicture`, but it might just be a path on which all nodes
of the chain are found. If no ⟨chain name⟩ is given, the default value
`chain` will be used instead.

The key starts a chain named ⟨chain name⟩ and makes it *active*, which
means that it is currently being constructed. The `start chain` can be
issued only once to activate a chain, inside a scope in which a chain is
active you cannot use this option once more (for the same chain name).
The chain stops being active at the end of the scope in which the
`start chain` command was given.

Although chains are only locally active (that is, active inside the
scope the `start chain` command was issued), the information concerning
the chains is stored globally and it is possible to *continue* a chain
after a scope has ended. For this, the `continue chain` option can be
used, which allows you to reactivate an existing chain in another scope.

The ⟨direction⟩ is used to determine the placement rule for nodes on the
chain. If it is omitted, the current value of the following key is used:

The ⟨direction⟩ can have two different forms: `going `⟨options⟩ or
`placed `⟨options⟩. The effect of these rules will be explained in the
description of the `on chain` option. Right now, just remember that the
⟨direction⟩ you provide with the `chain` option applies to the whole
chain.

Other than this, this key has no further effect. In particular, to place
nodes on the chain, you must use the `on chain` option, described next.

    \begin{tikzpicture}[start chain]
      % The chain is called just "chain"
      \node [on chain] {A};
      \node [on chain] {B};
      \node [on chain] {C};
    \end{tikzpicture}

    \begin{tikzpicture}
      % Same as above, using the scope shorthand
      { [start chain]
        \node [on chain] {A};
        \node [on chain] {B};
        \node [on chain] {C};
      }
    \end{tikzpicture}

    \begin{tikzpicture}[start chain=1 going right,
                        start chain=2 going below,
                        node distance=5mm,
                        every node/.style=draw]
      \node [on chain=1] {A};
      \node [on chain=1] {B};
      \node [on chain=1] {C};

      \node [on chain=2] at (0.5,-.5) {0};
      \node [on chain=2] {1};
      \node [on chain=2] {2};

      \node [on chain=1] {D};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/start:chain",
      meta = "⟨chain name⟩⟨direction⟩"
    },
    state = {
      details = [[
You should redefine it to something else, if you wish to use states of a
different nature.

    \begin{tikzpicture}[state/.style=state with output]
      \node[state]          {$q_0$ \nodepart{lower} $11$};
      \node[state] at (2,0) {$q_1$ \nodepart{lower} $00$};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/state"
    },
    ["state with output"] = {
      details = [[
This node style causes nodes to be drawn as split circles, that is,
using the `circle split` shape. In the upper part of the shape you have
the name of the style, in the lower part the output is placed. To
specify the output, use the command `\nodepart{lower}` inside the node.
This style also calls `every state`.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \node[state without output] {$q_0$};

      \node[state with output] at (2,0) {$q_1$ \nodepart{lower} $00$};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/state:with:output"
    },
    ["state without output"] = {
      details = [[
This node style causes nodes to be drawn as circles. Also, this style
calls `every state`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/state:without:output"
    },
    step = {
      details = [[
Sets the stepping in both the $x$ and $y$-direction. If a dimension is
provided, this is used directly. If a number is provided, this number is
interpreted in the $xy$-coordinate system. For example, if you provide
the number `2`, then the $x$-step is twice the $x$-vector and the
$y$-step is twice the $y$-vector set by the `x=` and `y=` options.
Finally, if you provide a coordinate, then the $x$-part of this
coordinate will be used as the $x$-step and the $y$-part will be used as
the $y$-coordinate.

    \begin{tikzpicture}[x=.5cm]
      \draw[thick] (0,0) grid [step=1]     (3,2);
      \draw[red]   (0,0) grid [step=.75cm] (3,2);
    \end{tikzpicture}
    \begin{tikzpicture}
      \draw        (0,0) circle [radius=1];
      \draw[blue]  (0,0) grid [step=(45:1)] (3,2);
    \end{tikzpicture}

A complication arises when the $x$- and/or $y$-vector do not point along
the axes. Because of this, the actual rule for computing the $x$-step
and the $y$-step is the following: As the $x$- and $y$-steps we use the
$x$- and $y$-components or the following two vectors: The first vector
is either $(⟨x-grid-step-number⟩,0)$ or
$(⟨x-grid-step-dimension⟩,0\mathrm{pt})$, the second vector is
$(0,⟨y-grid-step-number⟩)$ or $(0\mathrm{pt},⟨y-grid-step-dimension⟩)$.

If the $x$-step or $y$-step is $0$ or negative the corresponding lines
are not drawn.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/step",
      meta = "⟨number or dimension or coordinate⟩"
    },
    ["structured tokens"] = {
      details = [[
This option, which must again be passed to a place, gets a list of texts
for tokens. For each text, a new token will be added to the place.

    \tikz  \node[place,structured tokens={$x$,$y$,$z$}] {};

    \begin{tikzpicture}[every place/.style={minimum size=9mm}]

      \foreach \x/\y/\tokennumber in {0/2/1,1/2/2,2/2/3,
                                      0/1/4,1/1/5,2/1/6,
                                      0/0/7,1/0/8,2/0/9}
        \node [place,structured tokens={1,...,\tokennumber}] at (\x,\y) {};
    \end{tikzpicture}

If you use lots of structured tokens, consider redefining the
`every token` style so that the tokens are larger.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/structured:tokens",
      meta = "⟨token texts⟩"
    },
    ["subgraph nodes"] = {
      details = [[
Sets the `every subgraph node` style to ⟨style⟩.

    \tikz [subgraph text bottom=text centered,
           subgraph nodes=red]
      \graph [tree layout] {
        a -> { b -> {c, d}, e -> {f, g -> h} };

        left [draw]  // { b, c, d };
        right [draw] // { e, f, g, h};

        left <-> right;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/subgraph:nodes",
      meta = "⟨style⟩"
    },
    ["subgraph text bottom"] = {
      details = [[
Works like `subgraph text top`, only the text placed at the bottom.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/subgraph:text:bottom",
      meta = "⟨text alignment options⟩"
    },
    ["subgraph text none"] = {
      details = [[
When this option is used, the text of a subgraph node is not shown.
Adding a slash after the node name achieves roughly the same effect, but
this option is useful in situations when subgraph nodes generally should
not have any text inside them.

    \tikz [subgraph text none]
      \graph [tree layout] {
        a -> { b -> {c, d}, e -> {f, g -> h} };

        left [draw]  // { b, c, d };
        right [draw] // { e, f, g, h};

        left <-> right;
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/subgraph:text:none"
    },
    ["subgraph text sep"] = {
      details = [[
Some space added between the inner nodes of a subgraph node and the text
labels.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/subgraph:text:sep",
      meta = "⟨dimension⟩"
    },
    ["subgraph text top"] = {
      details = [[
Specifies that the text of a subgraph node should be placed at the top
of the subgraph node: Still inside the node, but above all nodes inside
the subgraph node.

    \tikz [subgraph text top=text ragged left]
      \graph [tree layout] {
        a -> { b -> {c, d}, e -> {f, g -> h} };

        left [draw]  // { b, c, d };
        right [draw] // { e, f, g, h};

        left <-> right;
      };

You can pass any of the ⟨text alignment options⟩ understood by TikZ,
such as `text centered`:

    \tikz [subgraph text top=text centered]
      \graph [tree layout] {
        a -> { b -> {c, d}, e -> {f, g -> h} };

        left [draw, circle] // { b, c, d };
      };

To place a label *outside* the subgraph node, use a label, typically
defined using the `quotes` library:

    \tikz \graph [tree layout] {
        a -> { b -> {c, d}, e -> {f, g -> h} };

        / ["left", draw]  // { b, c, d } <->
        / ["right", draw] // { e, f, g, h};
      };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/subgraph:text:top",
      meta = "⟨text alignment options⟩"
    },
    swap = {
      details = [[
This option exchanges the roles of `left` and `right` in automatic
placement. That is, if `left` is the current `auto` placement, `right`
is set instead and the other way round.

    \begin{tikzpicture}[auto]
      \draw[help lines,use as bounding box] (0,-.5) grid (4,5);

      \draw (0.5,0) .. controls (9,6) and (-5,6) .. (3.5,0)
        node foreach \pos in {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}
             [pos=\pos,swap,fill=red!20] {\pos}
        node foreach \pos in {0.025,0.2,0.4,0.6,0.8,0.975}
             [pos=\pos,fill=blue!20] {\pos};
    \end{tikzpicture}

    \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto]
      \draw[help lines] (0,0) grid (3,2);

      \node[state] (q_0)                      {$q_0$};
      \node[state] (q_1) [above right of=q_0] {$q_1$};
      \node[state] (q_2) [below right of=q_0] {$q_2$};
      \node[state] (q_3) [below right of=q_1] {$q_3$};

      \path[->] (q_0) edge              node        {0} (q_1)
                      edge              node [swap] {1} (q_2)
                (q_1) edge              node        {1} (q_3)
                      edge [loop above] node        {0} ()
                (q_2) edge              node [swap] {0} (q_3)
                      edge [loop below] node        {1} ();
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/swap"
    },
    tension = {
      details = [[
This option influences how "tight" the smoothing is. A lower value will
result in sharper corners, a higher value in more "round" curves. A
value of $1$ results in a circle if four points at quarter-positions on
a circle are given. The default is $0.55$. The "correct" value depends
on the details of plot.

    \begin{tikzpicture}[smooth cycle]
      \draw                 plot[tension=0.2]
        coordinates{(0,0) (1,1) (2,0) (1,-1)};
      \draw[yshift=-2.25cm] plot[tension=0.5]
        coordinates{(0,0) (1,1) (2,0) (1,-1)};
      \draw[yshift=-4.5cm]  plot[tension=1]
        coordinates{(0,0) (1,1) (2,0) (1,-1)};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/tension",
      meta = "⟨value⟩"
    },
    text = {
      details = [[
Sets the color to be used for text labels. A `color=` option will
immediately override this option.

    \begin{tikzpicture}
      \draw[red]       (0,0) -- +(1,1) node[above]     {red};
      \draw[text=red]  (1,0) -- +(1,1) node[above]     {red};
      \draw            (2,0) -- +(1,1) node[above,red] {red};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/text",
      meta = "⟨color⟩"
    },
    ["text depth"] = {
      details = [[
This option works like `text height`, only for the depth of the text
box. This option is mostly useful when you need to ensure a uniform
depth of text boxes that need to be aligned.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/text:depth",
      meta = "⟨dimension⟩"
    },
    ["text effects"] = {
      details = [[
Execute every option in `{options}` with the key path for each option
temporarily set to `/pgf/decoration/text effects/`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/text:effects",
      meta = "{options}"
    },
    ["text height"] = {
      details = [[
Sets the height of the text boxes in shapes. Thus, when you write
something like `node {text}`, the `text` is first typeset, resulting in
some box of a certain height. This height is then replaced by the height
`text height`. The resulting box is then used to determine the size of
the shape, which will typically be larger. When you write `text height=`
without specifying anything, the "natural" size of the text box remains
unchanged.

    \tikz \node[draw]                  {y};
    \tikz \node[draw,text height=10pt] {y};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/text:height",
      meta = "⟨dimension⟩"
    },
    ["text opacity"] = {
      details = [[
Sets the opacity of text labels, overriding the `fill opacity` setting.

    \begin{tikzpicture}[every node/.style={fill,draw}]
      \draw[line width=2mm,blue!50,line cap=round] (0,0) grid (3,2);

      \node[opacity=0.5] at (1.5,2) {Upper node};
      \node[draw opacity=0.8,fill opacity=0.2,text opacity=1]
        at (1.5,0) {Lower node};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/text:opacity",
      meta = "⟨value⟩"
    },
    ["text width"] = {
      details = [[
This option will put the text of a node in a box of the given width
(something akin to a `{minipage}` of this width, only portable across
formats). If the node text is not as wide as ⟨dimension⟩, it will
nevertheless be put in a box of this width. If it is larger, line
breaking will be done.

By default, when this option is given, a ragged right border will be
used (`align=left`). This is sensible since, typically, these boxes are
narrow and justifying the text looks ugly. You can, however, change the
alignment using `align` or directly using commands line `\centering`.

    \tikz \draw (0,0) node[fill=yellow!80!black,text width=3cm]
      {This is a demonstration text for showing how line breaking works.};

Setting ⟨dimension⟩ to an empty string causes the automatic line
breaking to be disabled.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/text:width",
      meta = "⟨dimension⟩"
    },
    thick = {
      details = [[
Sets the line width to 0.8pt.

      \tikz \draw[thick] (0,0) -- (1cm,1.5ex);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/thick"
    },
    thin = {
      details = [[
Sets the line width to 0.4pt.

      \tikz \draw[thin] (0,0) -- (1cm,1.5ex);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/thin"
    },
    ["tight background"] = {
      details = [[
Sets the inner frame separator to 0pt. The background rectangle will
have the size of the bounding box.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/tight:background"
    },
    ["tiny circuit symbols"] = {
      details = [[
This style sets the default circuit symbol unit to `5pt`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/tiny:circuit:symbols"
    },
    ["to path"] = {
      details = [[
Whenever a `to` operation is used, the ⟨path⟩ is inserted. More
precisely, the following path is added:

> `{[every to,`⟨options⟩`] `⟨path⟩ `}`

The ⟨options⟩ are the options given to the `to` operation, the ⟨path⟩ is
the path set by this option `to path`.

Inside the ⟨path⟩, different macros are used to reference the from- and
to-coordinates. In detail, these are:

-   `\tikztostart` will expand to the from-coordinate (without the
    parentheses).

-   `\tikztotarget` will expand to the to-coordinate.

-   `\tikztonodes` will expand to the nodes between the `to` operation
    and the coordinate. Furthermore, these nodes will have the `pos`
    option set implicitly.

Let us have a look at a simple example. The standard straight line for a
`to` is achieved by the following ⟨path⟩:

> `– (\tikztotarget) \tikztonodes`

Indeed, this is the default setting for the path. When we write
`(a) to (b)`, the ⟨path⟩ will expand to `(a) – (b)`, when we write

> `(a) to[red] node {x} (b)`

the ⟨path⟩ will expand to

> `(a) – (b) node[red] {x}`

It is not possible to specify the path

> `– \tikztonodes (\tikztotarget)`

since TikZ does not allow one to have a macro after `–` that expands to
a node.

Now let us have a look at how we can modify the ⟨path⟩ sensibly. The
simplest way is to use a curve.

    \begin{tikzpicture}[to path={
        .. controls +(1,0) and +(1,0) .. (\tikztotarget) \tikztonodes}]

      \node (a) at (0,0) {a};
      \node (b) at (2,1) {b};
      \node (c) at (1,2) {c};

      \draw (a) to node {x} (b)
            (a) to          (c);
    \end{tikzpicture}

Here is another example:

    \tikzset{
      my loop/.style={to path={
        .. controls +(80:1) and +(100:1) .. (\tikztotarget) \tikztonodes}},
      my state/.style={circle,draw}}

    \begin{tikzpicture}[shorten >=2pt]
      \node [my state] (a) at (210:1) {$q_a$};
      \node [my state] (b) at (330:1) {$q_b$};

      \draw[->] (a) to           node[below]       {1} (b)
                    to [my loop] node[above right] {0} (b);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/to:path",
      meta = "⟨path⟩"
    },
    token = {
      details = [[
This style indicates that a node is a token. By default, this causes the
node to be a small black circle. Unlike places and transitions, it
*does* make sense to provide text for the token node. Such text will be
typeset in a tiny font and in white on black (naturally, you can easily
change this by setting the style `every token`).

    \begin{tikzpicture}
      \node[place,label=above:$p_1$]             (p1) {};
      \node[token] at (p1) {};

      \node[place,label=above:$p_2$,right=of p1] (p2) {};
      \node[token] at (p2) {$y$};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/token"
    },
    ["token distance"] = {
      details = [[
This specifies the distance between the centers of the tokens in the
arrangements of the option `children are tokens`.

    \begin{tikzpicture}
      \node[place,label=above:$p_3$] {}
      [children are tokens,token distance=1.1ex]
      child {node [token] {}}
      child {node [token,red] {}}
      child {node [token,blue] {}}
      child {node [token] {}};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/token:distance",
      meta = "⟨distance⟩"
    },
    tokens = {
      details = [[
This option is given to a `place` node, not to a `token` node. The
effect of this option is to add ⟨number⟩ many child nodes to the place,
each having the style `token`. Thus, the following two pieces of codes
have the same effect:

    \tikz
      \node[place] {}
      [children are tokens]
      child {node [token] {}}
      child {node [token] {}}
      child {node [token] {}};
    \tikz
      \node[place,tokens=3] {};

It is legal to say `tokens=0`, no tokens are drawn in this case. This
option does not handle ten or more tokens correctly. If you need this
many tokens, you will have to program your own code.

    \begin{tikzpicture}[every place/.style={minimum size=9mm}]

      \foreach \x/\y/\tokennumber in {0/2/1,1/2/2,2/2/3,
                                      0/1/4,1/1/5,2/1/6,
                                      0/0/7,1/0/8,2/0/9}
        \node [place,tokens=\tokennumber] at (\x,\y) {};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/tokens",
      meta = "⟨number⟩"
    },
    ["top color"] = {
      details = [[
This option sets the color to be used at the top in an `axis` shading.
When this option is given, several things happen:

1.  The `shade` option is selected.

2.  The `shading=axis` option is selected.

3.  The middle color of the axis shading is set to the average of the
    given top color ⟨color⟩ and of whatever color is currently selected
    for the bottom.

4.  The rotation angle of the shading is set to 0.

&nbsp;

    \tikz \draw[top color=red] (0,0) rectangle (2,1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/top:color",
      meta = "⟨color⟩"
    },
    ["transform canvas"] = {
      details = [[
The ⟨options⟩ should contain coordinate transformations options like
`scale` or `xshift`. Multiple options can be given, their effects
accumulate in the usual manner. The effect of these ⟨options⟩
(immediately) changes the current canvas transformation matrix. The
coordinate transformation matrix is not changed. Tracking of the picture
size is (locally) switched off and the node coordinate will no longer be
correct.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                                    (0,0) -- (1,1) -- (1,0);
      \draw[transform canvas={scale=2},blue]   (0,0) -- (1,1) -- (1,0);
      \draw[transform canvas={rotate=180},red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/transform:canvas",
      meta = "⟨options⟩"
    },
    ["transform shape"] = {
      details = [[
Causes the current "external" transformation matrix to be applied to the
shape. For example, if you said `\tikz[scale=3]` and then say
`node[transform shape] {X}`, you will get a "huge" X in your graphic.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/transform:shape"
    },
    ["transform shape nonlinear"] = {
      details = [[
When set to true, TikZ will try to apply any current nonlinear
transformation also to nodes. Typically, for the text in nodes this is
not possible in general, in such cases a linear approximation of the
nonlinear transformation is used. For more details, see Section ??.

    \begin{tikzpicture}
       % Install a nonlinear transformation:
       \pgfsetcurvilinearbeziercurve
          {\pgfpoint{0mm}{20mm}}
          {\pgfpoint{10mm}{20mm}}
          {\pgfpoint{10mm}{10mm}}
          {\pgfpoint{20mm}{10mm}}
       \pgftransformnonlinear{\pgfpointcurvilinearbezierorthogonal\pgf@x\pgf@y}%

       % Draw something:
       \draw [help lines] (0,-30pt) grid [step=10pt] (80pt,30pt);

       \foreach \x in {0,20,...,80}
         \node [fill=red!20]  at (\x pt, -20pt) {\x};

       \foreach \x in {0,20,...,80}
         \node [fill=blue!20, transform shape nonlinear] at (\x pt, 20pt) {\x};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/transform:shape:nonlinear",
      meta = "⟨true or false⟩"
    },
    transition = {
      details = [[
This style indicates that a node is a transition. As for places, the
text of a transition should be empty and the `label` option should be
used for adding labels.

To connect a transition to places, you can use the `edge` command as in
the following example:

    \begin{tikzpicture}
      \node[place,tokens=2,label=above:$p_1$]        (p1) {};
      \node[place,label=above:$p_2\ge1$,right=of p1] (p2) {};

      \node[transition,below right=of p1,label=below:$t_1$] {}
        edge[pre]                 (p1)
        edge[post] node[auto] {2} (p2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/transition"
    },
    ["transparency group"] = {
      details = [[
This option can be given to a `scope`. It will have the following
effect: The scope's contents is stroked / filled "ignoring any outside
transparency". This means, all previous transparency settings are
ignored (you can still set transparency inside the group, but never
mind). For instance, in the forbidden sign example, the whole sign is
first painted (conceptually) like the image on the left hand side. Note
that some pixels of the sign are painted multiple times (up to three
times), but only the last color "wins".

Then, when the scope is finished, it is painted as a whole. The *fill*
transparency settings are now applied to the resulting picture. For
instance, the pixel that has been painted three times is just red at the
end, so this red color will be blended with whatever is "behind" the
group on the page.

    \begin{tikzpicture}
      \pattern[pattern=checkerboard,pattern color=black!15](-1,-1) rectangle (3,1);
      \node at (0,0) [forbidden sign,line width=2ex,draw=red,fill=white] {Smoking};

      \begin{scope}[transparency group,opacity=.5]
        \node at (2,0) [forbidden sign,line width=2ex,draw=red,fill=white]
          {Smoking};
      \end{scope}
    \end{tikzpicture}

Note that in the example, the `opacity=.5` is not active inside the
transparency group: The group is only established at beginning of the
scope and all options given to the `{scope}` environment are set before
the group is established. To change the opacity *inside* the group, you
need to open another scope inside it or use the `opacity` key with a
command inside the group:

    \begin{tikzpicture}
      \pattern[pattern=checkerboard,pattern color=black!15](-1,-1) rectangle (3,1);
      \node at (0,0) [forbidden sign,line width=2ex,draw=red,fill=white] {Smoking};

      \begin{scope}[transparency group,opacity=.5]
        \node (s) at (2,0) [forbidden sign,line width=2ex,draw=red,fill=white]
        {Smoking};

        \draw [opacity=.5, line width=2ex, blue] (1.2,0) -- (2.8,0);
      \end{scope}
    \end{tikzpicture}

The ⟨options⟩ are a list of comma-separated options:

-   `knockout` When this option is given inside the ⟨options⟩, the group
    becomes a so-called *knockout* group. This means, essentially, that
    inside the group everything is painted as if the "opacity" of a line
    or area were just another color channel. In particular, if you paint
    a pixel with opacity $0$ inside a knockout group, this pixel becomes
    perfectly transparent immediately. In contrast, painting a pixel
    with something of opacity $0$ normally has no effect.

    Not all renderers, let alone printers, will support this. At the
    time of writing, Apple's Preview will not show the following
    correctly (you should see the text TikZ in the middle):

        \begin{tikzpicture}
          \shade [left color=red,right color=blue] (-2,-1) rectangle (2,1);
          \begin{scope}[transparency group=knockout]
            \fill [white] (-1.9,-.9) rectangle (1.9,.9);
            \node [opacity=0,font=\fontencoding{T1}\fontfamily{ptm}\fontsize{45}{45}\bfseries]
                  {Ti\emph{k}Z};
          \end{scope}
        \end{tikzpicture}

    In the example, we first draw a large shading and then, inside the
    transparency group "overwrite" most of this shading by a big white
    rectangle. The interesting part is the text of the node, which has
    opacity `0`. Normally, this would mean that nothing is shown.
    However, in a knockout group, we "paint" the text with an "opacity
    zero" color. The effect is that part of the totally opaque white
    rectangle gets overwritten by a perfectly transparent area (namely
    exactly the area taken up by the pixels of the text). When this
    whole knockout group is then placed on top of the shading, the
    shading will "shine through" at the knocked-out pixels.

-   `isolated``=false` A group can be isolated or not. By default, they
    are isolated, since this is typically what you want. For details on
    what isolated groups are, exactly, see Section 7.3.4 of the PDF
    Specification, version 1.7.

Note that when a transparency group is created, TikZ must correctly
determine the size of the material inside the group. Usually, this is no
problem, but when you use things like `overlay` or `transform canvas`,
trouble may result. In this case, please consult Section ?? on how to
sidestep this problem in such cases.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/transparency:group",
      meta = "\\oarg{options}"
    },
    transparent = {
      details = [[
Makes everything totally transparent and, hence, invisible.

    \tikz{\fill[red]             (0,0)   rectangle (1,0.5);
          \fill[transparent,red] (0.5,0) rectangle (1.5,0.25); }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/transparent"
    },
    ["trim left"] = {
      details = [[
The `trim left` key tells PGFto discard everything which is left of the
provided ⟨dimension or coordinate⟩. Here, ⟨dimension⟩ is a single $x$
coordinate of the picture and ⟨coordinate⟩ is a point with $x$ and $y$
coordinates (but only its $x$ coordinate will be used). The effect is
the same as if you issue `\hspace{-s}` where `s` is the difference of
the picture's bounding box lower left $x$ coordinate and the $x$
coordinate specified as ⟨dimension or coordinate⟩:

    Text before image.%
        \begin{tikzpicture}[trim left]
            \draw (-1,-1) grid (3,2);
            \fill (0,0) circle (5pt);
        \end{tikzpicture}%
    Text after image.

Since `trim left` uses the default `trim left=0pt`, everything left of
$x=0$ is removed from the bounding box.

The following example has once the relative long label $-1$ and once the
shorter label $1$. Horizontal alignment is established with `trim left`:

    \begin{tikzpicture}
        \draw (0,1) -- (0,0) -- (1,1) -- cycle;
        \fill (0,0) circle (2pt);
        \node[left] at (0,0) {$-1$};
    \end{tikzpicture}
    \par
    \begin{tikzpicture}
        \draw (0,1) -- (0,0) -- (1,1) -- cycle;
        \fill (0,0) circle (2pt);
        \node[left] at (0,0) {$1$};
    \end{tikzpicture}
    \par
    \begin{tikzpicture}[trim left]
        \draw (0,1) -- (0,0) -- (1,1) -- cycle;
        \fill (0,0) circle (2pt);
        \node[left] at (0,0) {$-1$};
    \end{tikzpicture}
    \par
    \begin{tikzpicture}[trim left]
        \draw (0,1) -- (0,0) -- (1,1) -- cycle;
        \fill (0,0) circle (2pt);
        \node[left] at (0,0) {$1$};
    \end{tikzpicture}

Use `trim left=default` to reset the value.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/trim:left",
      meta = "⟨dimension or coordinate or default⟩"
    },
    ["trim right"] = {
      details = [[
This key is similar to `trim left`: it discards everything which is
right of the provided ⟨dimension or coordinate⟩. As for `trim left`,
⟨dimension⟩ denotes a single $x$ coordinate of the picture and
⟨coordinate⟩ a coordinate with $x$ and $y$ value (although only its $x$
component will be used).

We use the same example from above and add `trim right`:

    Text before image.%
        \begin{tikzpicture}[trim left, trim right=2cm, baseline]
            \draw (-1,-1) grid (3,2);
            \fill (0,0) circle (5pt);
        \end{tikzpicture}%
    Text after image.

In addition to `trim left=0pt`, we also discard everything which is
right of $x$`=2cm`. Furthermore, the `baseline` key supports vertical
alignment as well (using the $y$`=0cm` baseline).

Use `trim right=default` to reset the value.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/trim:right",
      meta = "⟨dimension or coordinate or default⟩"
    },
    turn = {
      details = [[
This key can be given as an option to a ⟨coordinate⟩ as in the following
example:

    \tikz \draw (0,0) -- (1,1) -- ([turn]-45:1cm) -- ([turn]-30:1cm);

The effect of this key is to locally shift the coordinate system so that
the last point reached is at the origin and the coordinate system is
"turned" so that the $x$-axis points in the direction of a tangent
entering the last point. This means, in effect, that when you use polar
coordinates of the form ⟨relative angle⟩`:`⟨distance⟩ together with the
`turn` option, you specify a point that lies at ⟨distance⟩ from the last
point in the direction of the last tangent entering the last point, but
with a rotation of ⟨relative angle⟩.

This key also works with curves ...

    \tikz [delta angle=30, radius=1cm]
      \draw (0,0) arc [start angle=0]  -- ([turn]0:1cm)
                  arc [start angle=30] -- ([turn]0:1cm)
                  arc [start angle=60] -- ([turn]30:1cm);

    \tikz \draw (0,0) to [bend left] (2,1) -- ([turn]0:1cm);

...and with plots ...

    \tikz \draw plot coordinates {(0,0) (1,1) (2,0) (3,0) } -- ([turn]30:1cm);

Although the above examples use polar coordinates with `turn`, you can
also use any normal coordinate. For instance, `([turn]1,1)` will append
a line of length $\sqrt 2$ that is turns by $45^\circ$ relative to the
tangent to the last point.

    \tikz \draw (0.5,0.5) -| (2,1) -- ([turn]1,1)
             .. controls ([turn]0:1cm) .. ([turn]-90:1cm);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turn"
    },
    turtle = {
      details = [[
This key executes the ⟨keys⟩ with the current key path set to
`/tikz/turtle`.

    \tikz[turtle/distance=2mm]
      \draw [turtle={home,fd,rt,fd,lt,fd,lt,fd}];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle",
      meta = "⟨keys⟩"
    },
    ["turtle/back"] = {
      details = [[
This has the same effect as a `turtle/forward` for the negated
⟨distance⟩ value.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/back",
      meta = "⟨distance⟩"
    },
    ["turtle/bk"] = {
      details = [[
An abbreviation for the `back` key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/bk"
    },
    ["turtle/distance"] = {
      details = [[
The default distance by which the turtle advances.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/distance",
      meta = "⟨distance⟩"
    },
    ["turtle/fd"] = {
      details = [[
An abbreviation for the `forward` key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/fd"
    },
    ["turtle/forward"] = {
      details = [[
Makes the turtle move forward by the given ⟨distance⟩. If no ⟨distance⟩
is specified, the current value of the following key is used:

"Moving forward the turtle" actually means that, relative to the current
last point on the path, a point at the given ⟨distance⟩ in the direction
the turtle is currently heading is computed. Then, the operation
`to[turtle/how]` is used to extend the path to this point.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/forward",
      meta = "⟨distance⟩"
    },
    ["turtle/home"] = {
      details = [[
Places the turtle at the origin and lets it head upward.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/home"
    },
    ["turtle/how"] = {
      details = [[
This style can set up the `to path` used by turtles. By setting this
style you can change the to-path:

    \tikz \draw [turtle={how/.style={bend left},home,forward,right,forward}];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/how"
    },
    ["turtle/left"] = {
      details = [[
Turns the turtle left by the given angle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/left",
      meta = "⟨angle⟩"
    },
    ["turtle/lt"] = {
      details = [[
An abbreviation for the `left` key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/lt"
    },
    ["turtle/right"] = {
      details = [[
Turns the turtle right by the given angle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/right",
      meta = "⟨angle⟩"
    },
    ["turtle/rt"] = {
      details = [[
An abbreviation for the `right` key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/turtle/rt"
    },
    ["ultra nearly opaque"] = {
      details = [[
    \tikz{\fill[red]                 (0,0)   rectangle (1,0.5);
          \fill[ultra nearly opaque] (0.5,0) rectangle (1.5,0.25); }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ultra:nearly:opaque"
    },
    ["ultra nearly transparent"] = {
      details = [[
Makes everything, well, ultra nearly transparent.

    \tikz{\fill[red]                      (0,0)   rectangle (1,0.5);
          \fill[ultra nearly transparent] (0.5,0) rectangle (1.5,0.25); }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ultra:nearly:transparent"
    },
    ["ultra thick"] = {
      details = [[
Sets the line width to 1.6pt.

      \tikz \draw[ultra thick] (0,0) -- (1cm,1.5ex);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ultra:thick"
    },
    ["ultra thin"] = {
      details = [[
Sets the line width to 0.1pt.

      \tikz \draw[ultra thin] (0,0) -- (1cm,1.5ex);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ultra:thin"
    },
    ["upper left"] = {
      details = [[
Works like `lower left`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/upper:left",
      meta = "⟨color⟩"
    },
    ["upper right"] = {
      details = [[
Works like `lower left`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/upper:right",
      meta = "⟨color⟩"
    },
    ["use as bounding box"] = {
      details = [[
Normally, when this option is given on a path, the bounding box of the
present path is used to determine the size of the picture and the size
of all *subsequent* paths are ignored. However, if there were previous
path operations that have already established a larger bounding box, it
will not be made smaller by this operation (consider the
`\pgfresetboundingbox` command to reset the previous bounding box).

In a sense, `use as bounding box` has the same effect as clipping all
subsequent drawing against the current path -- without actually doing
the clipping, only making PGF treat everything as if it were clipped.

The first application of this option is to have a `{tikzpicture}`
overlap with the main text:

    Left of picture\begin{tikzpicture}
      \draw[use as bounding box] (2,0) rectangle (3,1);
      \draw (1,0) -- (4,.75);
    \end{tikzpicture}right of picture.

In a second application this option can be used to get better control
over the white space around the picture:

    Left of picture
    \begin{tikzpicture}
      \useasboundingbox (0,0) rectangle (3,1);
      \fill (.75,.25) circle (.5cm);
    \end{tikzpicture}
    right of picture.

Note: If this option is used on a path inside a TeX group (scope), the
effect "lasts" only until the end of the scope. Again, this behavior is
the same as for clipping.

Consider using `\useasboundingbox` together with `\pgfresetboundingbox`
in order to replace the bounding box with a new one.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/use:as:bounding:box"
    },
    ["use path"] = {
      details = [[
Set the current path to the soft path stored in ⟨macro⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/use:path",
      meta = "⟨macro⟩"
    },
    variable = {
      details = [[
Sets the macro whose value is set to the different values when
⟨coordinate expression⟩ is evaluated.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/variable",
      meta = "⟨macro⟩"
    },
    ["very near end"] = {
      details = [[
Set to `pos=0.875`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/very:near:end"
    },
    ["very near start"] = {
      details = [[
Set to `pos=0.125`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/very:near:start"
    },
    ["very nearly opaque"] = {
      details = [[
    \tikz{\fill[red]                (0,0)   rectangle (1,0.5);
          \fill[very nearly opaque] (0.5,0) rectangle (1.5,0.25); }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/very:nearly:opaque"
    },
    ["very nearly transparent"] = {
      details = [[
    \tikz{\fill[red]                     (0,0)   rectangle (1,0.5);
          \fill[very nearly transparent] (0.5,0) rectangle (1.5,0.25); }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/very:nearly:transparent"
    },
    ["very thick"] = {
      details = [[
Sets the line width to 1.2pt.

      \tikz \draw[very thick] (0,0) -- (1cm,1.5ex);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/very:thick"
    },
    ["very thin"] = {
      details = [[
Sets the line width to 0.2pt.

      \tikz \draw[very thin] (0,0) -- (1cm,1.5ex);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/very:thin"
    },
    view = {
      details = [[
This is an alias for `/tikz/meet`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/view"
    },
    ["visualizer color"] = {
      details = [[
This key is used to set the color `visualizer color` to ⟨color⟩. This
color is used by visualizers to color the data they visualize, rather
than the current "standard color". The reason for not using the normal
current color is simply that it makes many internals of the data
visualization engine a bit simpler.

        data point [x=2, y=2,       set=normal]
        data point [x=0, y=1,       set=heated]
        data point [x=2, y=1,       set=heated]
        data point [x=0.5, y=1.5,   set=critical]
        data point [x=2.25, y=1.75, set=critical]
    };},
    ]
    \pgfdvdeclarestylesheet{my colors}
    {
      default style/.style={visualizer color=black},
      1/.style={visualizer color=black},
      2/.style={visualizer color=red!80!black},
      3/.style={visualizer color=blue!80!black},
    }
    \tikz \datavisualization [
      school book axes,
      visualize as line=normal,
      visualize as line=heated,
      visualize as line=critical,
      style sheet=my colors]
    data group {lines};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/visualizer:color",
      meta = "⟨color⟩"
    },
    ["week list"] = {
      details = [[
This style creates one row for each week in the range. The value of
`day xshift` is used for the distance between days in each week row, the
value of `day yshift` is used for the distance between rows. In both
cases, "distance" refers to the distance between the anchors of the
nodes of the days (or, more generally, the distance between the origins
of the little pictures created for each day).

The days inside each week are shifted such that Monday is always at the
first position (to change this, you need to copy and then modify the
code appropriately). If the date range does not start on a Monday, the
first line will not start in the first column, but rather in the column
appropriate for the first date in the range.

At the beginning of each month (except for the first month in the range)
an additional vertical space of `month yshift` is added. If this is set
to `0pt` you get a continuous list of days.

    \tikz
      \calendar [dates=2000-01-01 to 2000-02-last,week list];

    \tikz
      \calendar [dates=2000-01-01 to 2000-02-last,week list,
                 month yshift=0pt];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/week:list"
    },
    width = {
      details = [[
Inside a `spy scope`, this is a shortcut for `minimum width`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/width",
      meta = "⟨dimension⟩"
    },
    x = {
      details = [[
If ⟨value⟩ is a dimension, the $x$-vector of PGF's $xyz$-coordinate
system is set up to point ⟨value⟩ to the right, that is, to
$(⟨value⟩,0pt)$.

    \begin{tikzpicture}
      \draw                  (0,0)   -- +(1,0);
      \draw[x=2cm,color=red] (0,0.1) -- +(1,0);
    \end{tikzpicture}

    \tikz \draw[x=1.5cm] (0,0) grid (2,2);

The last example shows that the size of steppings in grids, just like
all other dimensions, are not affected by the $x$-vector. After all, the
$x$-vector is only used to determine the coordinate of the upper right
corner of the grid.

If ⟨value⟩ is a coordinate, the $x$-vector of PGF's $xyz$-coordinate
system is set to the specified coordinate. If ⟨value⟩ contains a comma,
it must be put in braces.

    \begin{tikzpicture}
      \draw                            (0,0) -- (1,0);
      \draw[x={(2cm,0.5cm)},color=red] (0,0) -- (1,0);
    \end{tikzpicture}

You can use this, for example, to exchange the meaning of the $x$- and
$y$-coordinate.

    \begin{tikzpicture}[smooth]
      \draw plot coordinates{(1,0) (2,0.5) (3,0) (3,1)};
      \draw[x={(0cm,1cm)},y={(1cm,0cm)},color=red]
            plot coordinates{(1,0) (2,0.5) (3,0) (3,1)};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/x",
      meta = "⟨value⟩"
    },
    ["x radius"] = {
      details = [[
Sets the horizontal radius of the circle (which, when this value is
different form the vertical radius, is actually an ellipse). The ⟨value⟩
may either be a dimension or a dimensionless number. In the latter case,
the number is interpreted in the $xy$-coordinate system (if the $x$-unit
is set to, say, `2cm`, then `x radius=3` will have the same effect as
`x radius=6cm`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/x:radius",
      meta = "⟨value⟩"
    },
    xbar = {
      details = [[
This option works like `ybar` except that the bars are horizontal.

    \tikz \draw[pattern=north west lines] plot[xbar]
       coordinates{(1,0) (0.4,1) (1.7,2) (1.6,3)};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/xbar"
    },
    ["xbar interval"] = {
      details = [[
Works like `ybar interval`, but for horizontal bar plots.

    \begin{tikzpicture}[xbar interval,x=0.5cm,y=0.5cm]
      \draw[color=red,fill=red!80]
        plot coordinates {(3,0) (2,1) (4,1.5) (1,4) (2,6) (2,7)};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/xbar:interval"
    },
    xcomb = {
      details = [[
This option works like `ycomb` except that the bars are horizontal.

    \tikz \draw plot[xcomb,mark=x] coordinates{(1,0) (0.8,0.2) (0.6,0.4) (0.2,1)};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/xcomb"
    },
    xrange = {
      details = [[
Set the $x$-range. This makes sense only for parametric plots.

    \tikz \draw[scale=0.5,domain=-3.141:3.141,smooth,xrange=0:1]
      plot[parametric,id=parametric-example-cut] function{t*sin(t),t*cos(t)};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/xrange",
      meta = "⟨start⟩:⟨end⟩"
    },
    xscale = {
      details = [[
Multiplies only the $x$-value of all coordinates by the given ⟨factor⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                (0,0) -- (1,1) -- (1,0);
      \draw[xscale=2,blue] (0,0) -- (1,1) -- (1,0);
      \draw[xscale=-1,red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/xscale",
      meta = "⟨factor⟩"
    },
    xshift = {
      details = [[
Adds ⟨dimension⟩ to the $x$ value of all coordinates.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                   (0,0) -- (1,1) -- (1,0);
      \draw[xshift=2cm,blue]  (0,0) -- (1,1) -- (1,0);
      \draw[xshift=-10pt,red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/xshift",
      meta = "⟨dimension⟩"
    },
    xslant = {
      details = [[
Slants the coordinate horizontally by the given ⟨factor⟩:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                (0,0) -- (1,1) -- (1,0);
      \draw[xslant=2,blue] (0,0) -- (1,1) -- (1,0);
      \draw[xslant=-1,red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/xslant",
      meta = "⟨factor⟩"
    },
    xstep = {
      details = [[
Sets the stepping in the $x$-direction.

    \begin{tikzpicture}
      \draw (0,0) grid [xstep=.5,ystep=.75] (3,2);
      \draw[ultra thick] (0,0) grid [ystep=0] (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/xstep",
      meta = "⟨dimension or number⟩"
    },
    y = {
      details = [[
Works like the `x=` option, only if ⟨value⟩ is a dimension, the
resulting vector points to $(0,⟨value⟩)$.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/y",
      meta = "⟨value⟩"
    },
    ["y radius"] = {
      details = [[
Works like the `x radius`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/y:radius",
      meta = "⟨value⟩"
    },
    ybar = {
      details = [[
This option produces fillable bar plots. It is thus very similar to
`ycomb`, but it employs rectangular shapes instead of line-to
operations. It thus allows to use any fill or pattern style.

    \tikz\draw[draw=blue,fill=blue!60!black] plot[ybar] file{plots/pgfmanual-sine.table};

    \begin{tikzpicture}[ybar]
      \draw[color=red,fill=red!80,bar width=6pt]
        plot coordinates{(0,1) (.5,1.2) (1,.6) (1.5,.7) (2,.9)};
      \draw[color=red!50,fill=red!20,bar width=4pt,bar shift=3pt]
        plot coordinates{(0,1.2) (.5,1.3) (1,.5) (1.5,.2) (2,.5)};
    \end{tikzpicture}

The use of `bar width` and `bar shift` is explained in the
`plothandlers` library documentation, section ??. Please refer to
page ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ybar"
    },
    ["ybar interval"] = {
      details = [[
As `/tikz/ybar`, this options produces vertical bars. However, bars are
centered at coordinate *intervals* instead of interval edges, and the
bar's width is also determined relatively to the interval's length:

    \begin{tikzpicture}[ybar interval,x=10pt]
      \draw[color=red,fill=red!80]
        plot coordinates{(0,2) (2,1.2) (3,.3) (5,1.7) (8,.9) (9,.9)};
    \end{tikzpicture}

Since there are $N$ intervals $[x_i,x_{i+1}]$ for given $N+1$
coordinates, you will always have one coordinate more than bars. The
last $y$ value will be ignored.

You can configure relative shifts and relative bar widths, which is
explained in the `plothandlers` library documentation, section ??.
Please refer to page ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ybar:interval"
    },
    ycomb = {
      details = [[
This option causes the `plot` operation to interpret the plotting points
differently. Instead of connecting them, for each point of the plot a
straight line is added to the path from the $x$-axis to the point,
resulting in a sort of "comb" or "bar diagram".

    \tikz\draw[ultra thick] plot[ycomb,thin,mark=*] file{plots/pgfmanual-sine.table};

    \begin{tikzpicture}[ycomb]
      \draw[color=red,line width=6pt]
        plot coordinates{(0,1) (.5,1.2) (1,.6) (1.5,.7) (2,.9)};
      \draw[color=red!50,line width=4pt,xshift=3pt]
        plot coordinates{(0,1.2) (.5,1.3) (1,.5) (1.5,.2) (2,.5)};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ycomb"
    },
    ["year code"] = {
      details = [[
Works like `month code`, only for years.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/year:code",
      meta = "⟨code⟩"
    },
    ["year text"] = {
      details = [[
Works like `month text`, only for years.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/year:text",
      meta = "⟨text⟩"
    },
    yrange = {
      details = [[
Same as `range`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/yrange",
      meta = "⟨start⟩:⟨end⟩"
    },
    yscale = {
      details = [[
Multiplies only the $y$-value of all coordinates by ⟨factor⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/yscale",
      meta = "⟨factor⟩"
    },
    yshift = {
      details = [[
Adds ⟨dimension⟩ to the $y$ value of all coordinates.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/yshift",
      meta = "⟨dimension⟩"
    },
    yslant = {
      details = [[
Slants the coordinate vertically by the given ⟨factor⟩:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw                (0,0) -- (1,1) -- (1,0);
      \draw[yslant=2,blue] (0,0) -- (1,1) -- (1,0);
      \draw[yslant=-1,red] (0,0) -- (1,1) -- (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/yslant",
      meta = "⟨factor⟩"
    },
    ystep = {
      details = [[
Sets the stepping in the $y$-direction.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/ystep",
      meta = "⟨dimension or number⟩"
    },
    z = {
      details = [[
Works like the `y=` option, but now a dimension is the point
$(⟨value⟩,⟨value⟩)$.

    \begin{tikzpicture}[z=-1cm,->,thick]
      \draw[color=red] (0,0,0) -- (1,0,0);
      \draw[color=blue] (0,0,0) -- (0,1,0);
      \draw[color=orange] (0,0,0) -- (0,0,1);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./tikz/z",
      meta = "⟨value⟩"
    }
  }
}