summaryrefslogtreecommitdiff
path: root/support/digestif/data/pgf.tags
blob: 24bdeeec270d2eedc6e4fd88f455c35700a0e0a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
-- Copyright 2007-2013 Till Tantau
-- Copyright 2022 Augusto Stoffel, Jens Schneider
-- SPDX-License-Identifier: GFDL-1.2-or-later or LPPL-1.3c+
--
-- Adapted from the PGF manual, version 3.1.9a, which can be found at
-- https://github.com/pgf-tikz/pgf/.
ctan_package = "pgf"
documentation = {{summary = "PGF Manual", uri = "texmf:doc/generic/pgf/pgfmanual.pdf"}}
commands = {
  beginpgfgraphicnamed = {
    arguments = {{meta = "file name prefix"}},
    details = [[
This command indicates that everything up to the next call of
`\endpgfgraphicnamed` is part of a graphic that should be placed in a
file named ⟨file name prefix⟩`.`⟨suffix⟩, where the ⟨suffix⟩ depends on
your backend driver. Typically, ⟨suffix⟩ will be `dvi` or `pdf`.

Here is a typical example of how this command is used:

    % In file main.tex:
    ...
    As we see in Figure~\ref{fig1}, the world is flat.
    \begin{figure}
      \beginpgfgraphicnamed{graphic-of-flat-world}
      \begin{tikzpicture}
        \fill (0,0) circle (1cm);
      \end{tikzpicture}
      \endpgfgraphicnamed
      \caption{The flat world.}
      \label{fig1}
    \end{figure}

Each graphic to be externalized should have a unique name. Note that
this name will be used as the name of a file in the file system, so it
should not contain any funny characters.

This command can have three different effects:

1.  The easiest situation arises if there does not yet exist a graphic
    file called ⟨file name prefix⟩`.`⟨suffix⟩, where the ⟨suffix⟩ is one
    of the suffixes understood by your current backend driver (so `pdf`
    or `jpg` if you use `pdftex`, `eps` if you use `dvips`, and so on).
    In this case, both this command and the `\endpgfgraphicnamed`
    command simply have no effect.

2.  A more complex situation arises when a graphic file named ⟨file name
    prefix⟩`.`⟨suffix⟩ *does* exist. In this case, this graphic file is
    included using the `\includegraphics` command [1]. Furthermore, the
    text between `\beginpgfgraphicnamed` and `\endpgfgraphicnamed` is
    ignored.

    When the text is "ignored", what actually happens is that all text
    up to the next occurrence of `\endpgfgraphicnamed` is thrown away
    without any macro expansion. This means, in particular, that (a) you
    cannot put `\endpgfgraphicnamed` inside a macro and (b) the macros
    used in the graphics need not be defined at all when the graphic
    file is included.

3.  The most complex behavior arises when current the `\jobname` equals
    the ⟨file name prefix⟩ and, furthermore, the *real job name* has
    been declared. The behavior for this case is explained later.

Note that the `\beginpgfgraphicnamed` does not really have any effect
until you have generated the graphic files named. Till then, this
command is simply ignored. Also, if you delete the graphics file later
on, the graphics are typeset normally once more.

[1] Actually, the command key `/pgf/images/include external` is invoked
which calls an appropriate `\includegraphics` command.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/beginpgfgraphicnamed"
  },
  endpgfgraphicnamed = {
    details = [[
This command just marks the end of the graphic that should be
externalized.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/endpgfgraphicnamed"
  },
  ifpgfmathmathunitsdeclared = {
    details = [[
This TeX-if is similar to `\ifpgfmathunitsdeclared`, but it is only set
when the unit `mu` is encountered at least once. In this case,
`\ifpgfmathunitsdeclared` will *also* be set to true. The `scalar`
function has no effect on this TeX-if.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifpgfmathmathunitsdeclared"
  },
  ifpgfmathunitsdeclared = {
    details = [[
After a call of `\pgfmathparse` this if will be true exactly if some
unit was encountered in the expression. It is always set globally in
each call.

Note that *any* "mentioning" of a unit inside an expression will set
this TeX-if to true. In particular, even an expressionlike `2pt/1pt`,
which arguably should be considered "scalar" or "unit-free" will still
have this TeX-if set to true. However, see the `scalar` function for a
way to change this.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifpgfmathunitsdeclared"
  },
  ifpgfrememberpicturepositiononpage = {
    details = [[
Determines whether the position of pictures on the page should be
recorded. The value of this TeX-if at the end of a `{pgfpicture}`
environment is important, not the value at the beginning.

If this option is set to true of a picture, PGF will attempt to record
the position of the picture on the page. (This attempt will fail with
most drivers and when it works, it typically requires two runs of TeX.)
The position is not directly accessible. Rather, the nodes mechanism
will use this position if you access a node from another picture. See
Sections ?? and ?? for more details.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifpgfrememberpicturepositiononpage"
  },
  ifpgfshadingmodelcmyk = {
    details = [[
Within the ⟨type 4 function⟩ argument of  
texttt  
textbackslash pgfdeclarefunctionalshading, this command can be used to
test if the `xcolor` color model is `cmyk` *at the time the shading is
created*. This can be used to ensure that the data output in the ⟨type 4
function⟩ correctly matches the active color model.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifpgfshadingmodelcmyk"
  },
  ifpgfshadingmodelgray = {
    details = [[
Within the ⟨type 4 function⟩ argument of  
texttt  
textbackslash pgfdeclarefunctionalshading, this command can be used to
test if the `xcolor` color model is `gray` *at the time the shading is
created*. This can be used to ensure that the data output in the ⟨type 4
function⟩ correctly matches the active color model.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifpgfshadingmodelgray"
  },
  ifpgfshadingmodelrgb = {
    details = [[
Within the ⟨type 4 function⟩ argument of  
texttt  
textbackslash pgfdeclarefunctionalshading, this command can be used to
test if the `xcolor` color model is `rgb` *at the time the shading is
created*. This can be used to ensure that the data output in the ⟨type 4
function⟩ correctly matches the active color model.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifpgfshadingmodelrgb"
  },
  ["ifpgfsys@eorule"] = {
    details = [[
Determines whether the even odd rule is used for filling and clipping or
not.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifpgfsys@eorule"
  },
  ["ifpgfsys@transparency@group@isolated"] = {
    details = [[
Determines whether a transparency group should be isolated.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifpgfsys@transparency@group@isolated"
  },
  ["ifpgfsys@transparency@group@knockout"] = {
    details = [[
Determines whether a transparency group is a knockout group or not.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/ifpgfsys@transparency@group@knockout"
  },
  ["pgf@process"] = {
    arguments = {{meta = "code"}},
    details = [[
Executes the ⟨code⟩ in a scope and then makes `\pgf@x` and `\pgf@y`
global.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgf@process"
  },
  ["pgf@protocolsizes"] = {
    arguments = {{meta = "x-dimension"}, {meta = "y-dimension"}},
    details = [[
Updates all of the above dimensions in such a way that the point
specified by the two arguments is inside both bounding boxes. For the
picture's bounding box this updating occurs only if
`\ifpgf@relevantforpicturesize` is true, see below.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgf@protocolsizes"
  },
  ["pgf@relevantforpicturesizefalse"] = {
    details = [[
Suppresses updating of the picture's bounding box.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgf@relevantforpicturesizefalse"
  },
  ["pgf@relevantforpicturesizetrue"] = {
    details = [[
Causes updating of the picture's bounding box.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgf@relevantforpicturesizetrue"
  },
  ["pgf@sys@bp"] = {
    arguments = {{meta = "dimension"}},
    details = [[
Inserts how many multiples of $\frac{1}{72}\mathrm{in}$ the ⟨dimension⟩
is into the current protocol stream (buffered).

`\pgf@sys@bp{\pgf@x}` or `\pgf@sys@bp{1cm}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgf@sys@bp"
  },
  pgfactualjobname = {
    details = [[
Once `\tikzexternalize` has been called, `\pgfactualjobname` contains
the name of the currently generated output file (which may be `main` or
`main-figure0` or `main-figure1` in our example above).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfactualjobname"
  },
  pgfaliasid = {
    arguments = {{meta = "alias"}, {meta = "name"}},
    details = [[
Creates an alias of a name inside the current TeX scope. After calling
this command, you can use ⟨alias⟩ anywhere where you would normally use
⟨name⟩. Note that the binding between ⟨alias⟩ and ⟨name⟩ is not kept
when `\pgfuseid` is used on the ⟨name⟩ (or the ⟨alias⟩).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfaliasid"
  },
  pgfaliasimage = {
    arguments = {{meta = "new image name"}, {meta = "existing image name"}},
    details = [[
The `{existing image name}` is "cloned" and the `{new image name}` can
now be used whenever the original image is used. This command is useful
for creating aliases for alternate extensions and for accessing the last
image inserted using `\pgfimage`.

`\pgfaliasimage{image.!30!white}{image.!25!white}`
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfaliasimage"
  },
  pgfalternateextension = {
    details = [[
You should redefine this command to install a different alternate
extension.

`\def\pgfalternateextension{!25!white}`
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfalternateextension"
  },
  pgfanimateattribute = {
    arguments = {
      {meta = "attribute"},
      {keys = "$ref:pgf#/keys/pgf", meta = "options"}
    },
    details = [[
Adds an animation of the ⟨attribute⟩ of a future *object* to the current
graphic. Attributes are things like the "fill opacity" or the
transformation matrix or the line width.

The ⟨options⟩ are keys that configure how the attribute changes over
time. Using the `entry` key multiple times, you specify which value the
chosen attribute should have at different points in time. Unless special
keys are used, "outside" the specified timeline the animation has no
effect:

    \tikz {
      \pgfanimateattribute{opacity}{
        whom = node, begin on = {click}, entry = {0s}{1}, entry = {2s}{0} }
      \node (node) [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }

Other keys, like `repeats`, allow you to specify how the animation
behaves "as a whole". These keys are documented later in this section.

**The Attributes**

In detail, the `\pgfanimateattribute` command opens a TeX-scope, looks
up the *type* values of the specified ⟨attribute⟩ have (if you wish to
animate the `opacity` of an object, the type is "scalar" meaning that
entries must be scalar numbers; when you animate the `fill` attribute,
the type is "color" and values must be colors, and so on), and then
executes the ⟨options⟩ with the path prefix `/pgf/animation`. Finally,
an appropriate system layer command `\pgfsysanimate...` is called to
create the actual animation and the scope is closed.

The following ⟨attributes⟩ are permissible:

  ------------------------------------------- -----------
  *Attribute*                                 *Type*
  `draw`, `fill`                              color
  `line width`                                dimension
  `motion`                                    scalar
  `opacity`, `fill opacity`, `draw opacity`   scalar
  `path`                                      path
  `rotate`                                    scalar
  `scale`                                     scaling
  `softpath`                                  softpath
  `translate`                                 point
  `view`                                      viewbox
  `visible`                                   boolean
  `stage`                                     boolean
  `xskew`, `yskew`                            scalar
  ------------------------------------------- -----------

These attributes are detailed in Sections ?? to ??, but here is a quick
overview:

-   `draw` and `fill` refer to the color used to draw (stroke) and fill
    paths in an object, respectively. Typical values for this attribute
    are `red` or `black!10`.

-   `line width` is, of course, the line width used in an object.
    Typical values are `0.4pt` or `1mm`. Note that you (currently)
    cannot use keys like `thin` or `thick` here, but this may change in
    the future.

-   `motion` is a slightly special attribute: It allows you to specify a
    path along which the object should be moved (using the `along` key).
    The values given to the `entry` key for this attribute refer to a
    *fraction of the distance along the path*. See the `along` key for
    details.

-   `opacity` and the variants `fill opacity` and `draw opacity` animate
    the opacity of an object. Allowed values range between 0 and 1.

-   `path` allows you to animate a path (it will morph). The "values"
    are now paths themselves. See Section ?? for details.

-   `rotate` refers to a rotation of the object. Values for the `entry`
    key are the rotation angles like `0` or `90`.

-   `scale` refers to the scaling of the object. Values are either
    single scalars values (like `1` or `1.5`) or two numbers separated
    by a comma (like `1,1.5` or `0.5,2`), referring to the $x$-scaling
    and $y$-scaling.

-   `softpath` is a special case of the `path` attribute, see Section ??
    once more.

-   `translate` shifts the object by a certain vector. Values are points
    like `\pgfpoint{1cm}{2cm}`.

-   `view` allows you to animate the view box of a view, see Section ??
    for details.

-   `visible` refers to the visibility of an object. Allowed values are
    `true` and `false`.

-   `stage` is identical to `visible`, but when the object is not
    animated, it will be hidden by default.

-   `xskew` and `yskew` skew the object. Attributes are angles like `0`
    or `45` or even `90`.

**The Target Object**

As stated earlier, the ⟨options⟩ are used to specify the object whose
attribute for which an animation should be added to the picture. Indeed,
you *must* specify the object explicitly using the `whom` key and you
must do so *before* the object is created. Note that, in contrast, in
SVG you can specify an animation more or less anywhere and then use
hyper-references to link the animation to the to-be-animated object;
PGF insists that you specify the animation before the object. This is a
bit of a bother in some situations, but it is the only way to ensure
that PGF has a fighting chance to attach some additional code to the
object (which is necessary for almost all animations of the
transformation matrix).

As explained in the introduction of this chapter, an "animation" is just
a bit of special text in the output document asking a viewer application
to animate the object at some later time. The `\pgfanimateattribute`
command inserts this special text immediately, even though it refers to
an object created only later on. Normally, this is not a problem, but
the special text should be on the same page as the to-be-animated
object. To ensure this, it suffices to call `\pgfanimateattribute` no
earlier than the beginning of the `pgfpicture` containing the object.

**Naming the Animation**

You can assign a name to an animation for later (or early) reference. In
particular, it is possible to begin *another* animation relative to the
beginning or end of this animation and for referencing this animation
must be assigned a name. See the `of` and `of next` keys for details.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfanimateattribute"
  },
  pgfanimateattributecode = {
    arguments = {{meta = "attribute"}, {meta = "code"}},
    details = [[
The command works like `\pgfanimateattribute`, only instead of ⟨options⟩
you specify some ⟨code⟩ whose job is to setup the options.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfanimateattributecode"
  },
  pgfapproximatenonlineartransformation = {
    details = [[
This command will do two things:

1.  It clears the nonlinear transformations for the rest of the current
    TeX scope, so only linear transformations apply.

2.  However, before removing the nonlinear transformations, the linear
    transformation matrix is modified so that it mimics the effect the
    nonlinear transformation had at the origin. That is, after you call
    this command, drawing something near the origin will look almost the
    same as if you had not called it.

 

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      \pgftransformnonlinear{\polartransformation}% see above
      \draw (0pt,0mm) grid [xstep=10pt, ystep=5mm] (90pt, 20mm);

      \begin{scope}[shift={(45pt,20mm)}]
        % Draw something near "origin":
        \draw [red] (-10pt,-10pt) -- (10pt,10pt);
        \draw [red] (10pt,-10pt) -- (-10pt,10pt);

        % Now draw the same, but in the "approximate" coordinate system:
        \pgfapproximatenonlineartransformation
        \draw [] (-10pt,-10pt) -- (10pt,10pt);
        \draw [] (10pt,-10pt) -- (-10pt,10pt);
        \pgftext{foo};
      \end{scope}
    \end{tikzpicture}

This command is used by `\pgftext` and `\pgfnode` to transform text when
a nonlinear transformation is in force.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfapproximatenonlineartransformation"
  },
  pgfapproximatenonlineartranslation = {
    details = [[
This command works like the normal approximation command, but it will
only approximate how the origin gets translated, it will not approximate
the rotation, skewing, or scaling that is involved. This is useful for
drawing text at the right position, but without "mutilating" the text.

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      \pgftransformnonlinear{\polartransformation}% see above
      \draw (0pt,0mm) grid [xstep=10pt, ystep=5mm] (90pt, 20mm);

      \begin{scope}[shift={(45pt,20mm)}]
        % Draw something near "origin":
        \draw [red] (-10pt,-10pt) -- (10pt,10pt);
        \draw [red] (10pt,-10pt) -- (-10pt,10pt);

        % Now draw the same, but in the "approximate" coordinate system:
        \pgfapproximatenonlineartranslation
        \draw [] (-10pt,-10pt) -- (10pt,10pt);
        \draw [] (10pt,-10pt) -- (-10pt,10pt);
        \pgftext{foo};
      \end{scope}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfapproximatenonlineartranslation"
  },
  pgfarrowsaddtolateoptions = {
    arguments = {{meta = "code"}},
    details = [[
This command works like `\pgfarrowsaddtooptions`, only the ⟨code⟩ will
be executed "later" than the code added by the normal version of the
command. This is useful for keys that depend on the length of an arrow:
Keys like `width’` want to define the arrow width as a multiple of the
arrow length, but when the `width’` key is given, the length may not yet
have been specified. By making the computation of the width a "late"
option, we ensure that `\pgfarrowlength` will have been setup correctly.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowsaddtolateoptions"
  },
  pgfarrowsaddtolengthscalelist = {
    arguments = {{meta = "dimension register"}},
    details = [[
Each time an arrow tip is used, the given ⟨dimension register⟩ will be
multiplied by the `scale length` factor prior to the actual drawing. You
call this command only once in the preamble somewhere.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowsaddtolengthscalelist"
  },
  pgfarrowsaddtooptions = {
    arguments = {{meta = "code"}},
    details = [[
This command should be called by keys with the prefix `/pgf/arrow keys`
to add code to the arrow option cache. For our `depth` key example, we
could use this key as follows:

    \pgfkeys{/pgf/arrow keys/depth/.code=
      \pgfarrowsaddtooptions{\pgfmathsetlength{\pgfarrowdepth}{#1}}

Actually, this is still not optimal since the expensive
`\pgfmathsetlength` command is now called each time an arrow tip is used
with the `depth` option set. The trick is to do the expensive operation
only once and then store only very quick code in the arrow option cache:

    \pgfkeys{/pgf/arrow keys/depth/.code=
      \pgfmathsetlength{\somedimen}{#1}
      \pgfarrowsaddtooptions{\pgfarrowdepth=\somedimen} % buggy

The above code will not (yet) work since `\somedimen` will surely have a
different value when the cache is executed. The trick is to use some
`\expandafter`s:

    \pgfkeys{/pgf/arrow keys/depth/.code=
      \pgfmathsetlength{\somedimen}{#1}
      \expandafter\pgfarrowsaddtooptions\expandafter{\expandafter\pgfarrowdepth\expandafter=\the\somedimen}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowsaddtooptions"
  },
  pgfarrowsaddtowidthscalelist = {
    arguments = {{meta = "dimension register"}},
    details = [[
Works like `\pgfarrowsaddtolengthscalelist`, only for width parameters.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowsaddtowidthscalelist"
  },
  pgfarrowshullpoint = {
    arguments = {{meta = "x dimension"}, {meta = "y dimension"}},
    details = [[
Adds a point to the convex hull of the arrow tip. As for the previous
commands, no math parsing is done; instead PGF says `\pgf@x=`⟨x
dimension⟩ and then `\pgf@y=`⟨y dimension⟩. Thus, both "dimensions" can
contain code for advancing and thus modifying `\pgf@x` and `\pgf@y`.

In our example we would write

    \pgfarrowshullpoint{1cm}{0pt}
    \pgfarrowshullpoint{-3cm}{2cm}
    \pgfarrowshullpoint{-3cm}{-2cm}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowshullpoint"
  },
  pgfarrowslengthdependent = {
    arguments = {{meta = "dimension"}, {meta = "length factor"}, {meta = "dummy"}},
    details = [[
This command takes three parameters, of which the last one is ignored,
and does the "length dependent computation" described for the `width’`
and `inset’` keys. The result is returned in `\pgf@x`.

You can setup length dependent keys using code like the following:

    \pgfkeys{/pgf/arrow keys/depth'/.code={%
      \pgfarrowsthreeparameters{#1}%
      \expandafter\pgfarrowsaddtolateoptions\expandafter{%
        \expandafter\pgfarrowslengthdependent\pgfarrowstheparameters% compute...
        \pgfarrowdepth\pgf@x% ... and store.
      }%
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowslengthdependent"
  },
  pgfarrowslinewidthdependent = {
    arguments = {
      {meta = "dimension"},
      {meta = "line width factor"},
      {meta = "outer factor"}
    },
    details = [[
This command takes three parameters and does the "line width dependent
computation" described on page ?? for the `length` key. The result is
returned in `\pgf@x`.

The idea is that you can setup line-width dependent keys like `length`
or `width` using code like the following:

    \pgfkeys{/pgf/arrow keys/depth/.code={%
      \pgfarrowsthreeparameters{#1}%
      \expandafter\pgfarrowsaddtolateoptions\expandafter{%
        \expandafter\pgfarrowslinewidthdependent\pgfarrowstheparameters% compute...
        \pgfarrowdepth\pgf@x% ... and store.
      }%
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowslinewidthdependent"
  },
  pgfarrowssave = {
    arguments = {{meta = "macro"}},
    details = [[
As explained earlier, the setup code needs to "communicate" with the
drawing code via "saved values". This command get the name of a macro
and will store the value this macro had internally. Then, each time
drawing code is executed, the value of this macro will be restored.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowssave"
  },
  pgfarrowssavethe = {
    arguments = {{meta = "register"}},
    details = [[
Works like `\pgfarrowssave`, only the parameter must be a register and
`\the`⟨register⟩ will be saved. Typically, you will write something like

    \pgfarrowssavethe{\pgfarrowlength}
    \pgfarrowssavethe{\pgfarrowwidth}

To ensure that inside the drawing code the the dimension registers
`\pgfarrowlength` and `\pgfarrowwidth` are setup with the values they
had during the setup.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowssavethe"
  },
  pgfarrowssetbackend = {
    arguments = {{meta = "dimension"}},
    details = [[
Works like the command for the tip end, only it sets the back end. In
our example we would call

    \pgfarrowssettipend{-3cm}

Defaults to `0pt`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowssetbackend"
  },
  pgfarrowssetlineend = {
    arguments = {{meta = "dimension"}},
    details = [[
Sets the line end, so in the example we have
`\pgfarrowssettipend{-1cm}`. Default to `0pt`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowssetlineend"
  },
  pgfarrowssettipend = {
    arguments = {{meta = "dimension"}},
    details = [[
When this command is called inside the setup code of an arrow tip, it
specifies that the tip of the drawn arrow will end exactly at
⟨dimension⟩. For example, for our earlier example of the large arrow
tip, where the tip end was at 1cm, we would call

    \pgfarrowssettipend{1cm}

Note that for efficiency reasons, the ⟨dimension⟩ is not passed through
`\pgfmathsetlength`; rather what happens is that `\pgf@x=`⟨dimension⟩
gets executed. In particular, you can pack further computations into the
⟨dimension⟩ by simply starting it with a number and then appending some
code that modifies `\pgf@x`. Here is an example where instead of 1cm we
use $1\mathrm{cm} - \frac12\mathrm{linewidth}$ as the tip end:

    \pgfarrowssettipend{1cm\advance\pgf@x by-.5\pgflinewidth}

If the command is not called at all inside the setup code, the tip end
is set to `0pt`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowssettipend"
  },
  pgfarrowssetvisualbackend = {
    arguments = {{meta = "dimension"}},
    details = [[
Sets the visual back end, `\pgfarrowssetvisualbackend{-2cm}` in our
example. Default to the value of the normal back end.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowssetvisualbackend"
  },
  pgfarrowssetvisualtipend = {
    arguments = {{meta = "dimension"}},
    details = [[
Sets the visual tip end. Default to the value of the normal tip end and,
thus, we need not set it in our example.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowssetvisualtipend"
  },
  pgfarrowsthreeparameters = {
    arguments = {{meta = "line-width dependent size specification"}},
    details = [[
This command is useful for parsing the values given to keys like
`length` or `width` the expect a dimension followed optionally for some
numbers. This command converts the ⟨line-width dependent size
specification⟩, which may consist of one, two, or three numbers, into a
triple of three numbers in curly braces, which gets stored in the macro
`\pgfarrowstheparameters`. Here is an example, where `\showvalueofmacro`
is used in this example to show the value stored in a macro:

        \makeatletter
        \def\showvalueofmacro#1{%
            \texttt{\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\pgfutil@gobble\expandafter\expandafter\expandafter\string\expandafter\csname#1\endcsname}
        }%

    \pgfarrowsthreeparameters{2pt 1}
    \showvalueofmacro\pgfarrowstheparameters
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowsthreeparameters"
  },
  pgfarrowsupperhullpoint = {
    arguments = {{meta = "x dimension"}, {meta = "y dimension"}},
    details = [[
This command works like the previous command, only it normally adds
*two* points to the convex hull: First, the point
$(⟨x dimension⟩,⟨y dimension⟩)$ and, secondly, the point
$(⟨x dimension⟩,-⟨y dimension⟩)$. However, the second point is only
added if the arrow is not a harpoon.

Thus, in our example we could simplify the convex hull to

    \pgfarrowshullpoint{1cm}{0pt}
    \pgfarrowsupperhullpoint{-3cm}{2cm}

If the ⟨y dimension⟩ is zero or less, only one point, namely
$(⟨x dimension⟩,⟨y dimension⟩)$, is added to the hull. Thus, we could
also have used the upper convex hull command in the first of the two of
the above commands.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfarrowsupperhullpoint"
  },
  pgfcalendar = {
    arguments = {
      {meta = "prefix"},
      {meta = "start date"},
      {meta = "end date"},
      {meta = "rendering code"}
    },
    details = [[
This command can be used to typeset a calendar. It is a very general
command, the actual work has to be done by giving clever implementations
of ⟨rendering code⟩. Note that this macro need *not* be called inside a
`{pgfpicture}` environment (even though it typically will be) and you
can use it to typeset calendars in normal TeX or using packages other
than PGF.

**Basic typesetting process.** A calendar is typeset as follows: The
⟨start date⟩ and ⟨end date⟩ specify a range of dates. For each date in
this range the ⟨rendering code⟩ is executed with certain macros setup to
yield information about the *current date* (the current date in the
enumeration of dates of the range). Typically, the ⟨rendering code⟩
places nodes inside a picture, but it can do other things as well. Note
that it is also the job of the ⟨rendering code⟩ to position the calendar
correctly.

The different calls of the ⟨rending code⟩ are not surrounded by
TeX groups (though you can do so yourself, of course). This means that
settings can accumulate between different calls, which is often
desirable and useful.

**Information about the current date.** Inside the ⟨rendering code⟩,
different macros can be access:

-   `\pgfcalendarprefix` The ⟨prefix⟩ parameter. This prefix is
    recommended for nodes inside the calendar, but you have to use it
    yourself explicitly.

-   `\pgfcalendarbeginiso` The ⟨start date⟩ of range being typeset in
    ISO format (like 2006-01-10).

-   `\pgfcalendarbeginjulian` Julian day number of ⟨start date⟩.

-   `\pgfcalendarendiso` The ⟨end date⟩ of range being typeset in ISO
    format.

-   `\pgfcalendarendjulian` Julian day number of ⟨end date⟩.

-   `\pgfcalendarcurrentjulian` This TeX count holds the Julian day
    number of the day currently being rendered.

-   `\pgfcalendarcurrentweekday` The weekday (a number with zero
    representing Monday) of the current date.

-   `\pgfcalendarcurrentyear` The year of the current date.

-   `\pgfcalendarcurrentmonth` The month of the current date (always two
    digits with a leading zero, if necessary).

-   `\pgfcalendarcurrentday` The day of month of the current date
    (always two digits).

**The `\ifdate` command.** Inside the `\pgfcalendar` the macro `\ifdate`
is available locally:

**Examples.** In a first example, let us create a very simple calendar:
It just lists the dates in a certain range.

    \pgfcalendar{cal}{2007-01-20}{2007-02-10}{\pgfcalendarcurrentday\ }

Let us now make this a little more interesting: Let us add a line break
after each Sunday.

    \pgfcalendar{cal}{2007-01-20}{2007-02-10}
    {
      \pgfcalendarcurrentday\
      \ifdate{Sunday}{\par}{}
    }

We now want to have all Mondays to be aligned on a column. For this,
different approaches work. Here is one based positioning each day
horizontally using a skip.

    \pgfcalendar{cal}{2007-01-20}{2007-02-10}
    {%
      \leavevmode%
      \hbox to0pt{\hskip\pgfcalendarcurrentweekday cm\pgfcalendarcurrentday\hss}%
      \ifdate{Sunday}{\par}{}%
    }

Let us now typeset two complete months.

    \pgfcalendar{cal}{2007-01-01}{2007-02-28}{%
      \ifdate{day of month=1}{
        \par\bigskip\hbox to7.5cm{\itshape\hss\pgfcalendarshorthand mt\hss}\par
      }{}%
      \leavevmode%
      {%
        \ifdate{weekend}{\color{black!50}}{\color{black}}%
        \hbox to0pt{%
          \hskip\pgfcalendarcurrentweekday cm%
          \hbox to1cm{\hss\pgfcalendarshorthand d-}\hss%
        }%
      }%
      \ifdate{Sunday}{\par}{}%
    }

For our final example, we use a `{tikzpicture}`.

    \begin{tikzpicture}
      \pgfcalendar{cal}{2007-01-20}{2007-02-10}{%
        \ifdate{workday}
          {\tikzset{filling/.style={fill=blue!20}}}
          {\tikzset{filling/.style={fill=red!20}}}
        \node (\pgfcalendarsuggestedname) at (\pgfcalendarcurrentweekday,0)
          [anchor=base,circle,filling] {\pgfcalendarcurrentday};
        \ifdate{Sunday}{\pgftransformyshift{-3em}}{}%
      }
      \draw (cal-2007-01-21) -- (cal-2007-02-03);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendar"
  },
  pgfcalendardatetojulian = {
    arguments = {{meta = "date"}, {meta = "counter"}},
    details = [[
This macro converts a date in a format to be described in a moment to
the Julian day number in the Gregorian calendar. The ⟨date⟩ should
expand to a string of the following form:

1.  It should start with a number representing the year. Use `\year` for
    the current year, that is, the year the file is being typeset.

2.  The year must be followed by a hyphen.

3.  Next should come a number representing the month. Use `\month` for
    the current month. You can, but need not, use leading zeros. For
    example, `02` represents February, just like `2`.

4.  The month must also be followed by a hyphen.

5.  Next you must either provide a day of month (again, a number and,
    again, `\day` yields the current day of month) or the keyword
    `last`. This keyword refers to the last day of the month, which is
    automatically computed (and which is a bit tricky to compute,
    especially for February).

6.  Optionally, you can next provide a plus sign followed by positive or
    negative number. This number of days will be added to the computed
    date.

Here are some examples:

-   `2006-01-01` refers to the first day of 2006.

-   `2006-02-last` refers to February 28, 2006.

-   `\year-\month-\day` refers to today.

-   `2006-01-01+2` refers to January 3, 2006.

-   `\year-\month-\day+1` refers to tomorrow.

-   `\year-\month-\day+-1` refers to yesterday.

The conversion method is taken from the English Wikipedia entry on
Julian days.

`\pgfcalendardatetojulian{2007-01-14}{\mycount}` sets `\mycount` to .
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendardatetojulian"
  },
  pgfcalendareastersunday = {
    arguments = {{meta = "year"}, {meta = "counter"}},
    details = [[
This command computes the date of Easter Sunday as a Julian date and
stores it in ⟨counter⟩.

`\pgfcalendareastersunday{2019}{\mycount}` sets `\mycount` to , which
corresponds to ``.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendareastersunday"
  },
  pgfcalendarifdate = {
    arguments = {
      {meta = "date"},
      {meta = "tests"},
      {meta = "code"},
      {meta = "else code"}
    },
    details = [[
\[pgfcalendarifdate\] This command is used to execute code based on
properties of ⟨date⟩. The ⟨date⟩ must be a date in ISO-format. For this
date, the ⟨tests⟩ are checked (to be detailed later) and if one of the
tests succeeds, the ⟨code⟩ is executed. If none of the tests succeeds,
the ⟨else code⟩ is executed.

`\pgfcalendarifdate{2007-02-07}{Wednesday}{Is a Wednesday}{Is not a Wednesday}`
yields ``.

The ⟨tests⟩ is a comma-separated list of key--value pairs. The following
are defined by default:

This test is passed by all dates. This test is passed by all dates that
are Mondays. as above. as above. as above. as above. as above. as above.
Passed by Mondays, Tuesdays, Wednesdays, Thursdays, and Fridays. Passed
by Saturdays and Sundays. `=`⟨reference⟩ The ⟨reference⟩ can be in one
of two forms: Either, it is a full ISO format date like `2007-01-01` or
the year may be missing as in `12-31`. In the first case, the test is
passed if ⟨date⟩ is the same as ⟨reference⟩. In the second case, the
test is passed if the month and day part of ⟨date⟩ is the same as
⟨reference⟩.

For example, the test `equals=2007-01-10` will only be passed by this
particular date. The test `equals=05-01` will be passed by every first
of May on any year. `=`⟨reference⟩ This test works similarly to the
`equals` test, only it is checked whether ⟨date⟩ is equal to ⟨reference⟩
or to any later date. Again, the ⟨reference⟩ can be a full date like
`2007-01-01` or a short version like `07-01`. For example,
`at least=07-01` is true for every day in the second half of any year.
`=`⟨reference⟩ as above. `=`⟨start reference⟩` and `⟨end reference⟩ This
test checks whether the current date lies between the two given
reference dates. Both full and short version may be given.

For example `between=2007-01-01 and 2007-02-28` is true for the days in
January and February of 2007.

For another example, `between=05-01 and 05-07` is true for the days of
the first week of May of any year. `=`⟨number⟩ Passed by the day of
month of the ⟨date⟩ that is ⟨number⟩. For example, the test
`day of month=1` is passed by every first of every month. `=`⟨number⟩
Passed by the day of month of the ⟨date⟩ that is ⟨number⟩ from the end
of the month. For example, the test `end of month=1` is passed by the
last day of every month, the test `end of month=2` is passed by the
second last day of every month. If ⟨number⟩ is omitted, it is assumed to
be `1`. `=`⟨number⟩ This test checks whether the given date is Easter
Sunday. The optional number can be used for offsets from Easter Sunday,
e.g. `Easter=-3` for Maundy Thursday, `Easter=-2` for Good Friday,
`Easter=1` for Easter Monday. Since the dates of other Christian
holidays are determined by the date of Easter, these can be accessed as
well, e.g. `Easter=39` for Feast of the Ascension, `Easter=49` for
Pentecost, and `Easter=50` for Whit Monday.

In addition to the above checks, you can also define new checks. To do
so, you must add a new key to the path `/pgf/calendar/` using the
`\pgfkeys` command. The job of the code of this new key is to possibly
set the TeX-if `\ifpgfcalendarmatches` to true (if it is already true,
no action should be taken) to indicate that the ⟨date⟩ passes the test
setup by this new key.

In order to perform the test, the key code needs to know the date that
should be checked. The date is available through a macro, but a whole
bunch of additional information about this date is also available
through the following macros:

-   `\pgfcalendarifdatejulian` is the Julian day number of the ⟨date⟩ to
    be checked.

-   `\pgfcalendarifdateweekday` is the weekday of the ⟨date⟩ to be
    checked.

-   `\pgfcalendarifdateyear` is the year of the ⟨date⟩ to be checked.

-   `\pgfcalendarifdatemonth` is the month of the ⟨date⟩ to be checked.

-   `\pgfcalendarifdateday` is the day of month of the ⟨date⟩ to be
    checked.

For example, let us define a new key that checks whether the ⟨date⟩ is a
Workers day (May 1st). This can be done as follows:

    \pgfkeys{/pgf/calendar/workers day/.code=%
    {
      \ifnum\pgfcalendarifdatemonth=5\relax
        \ifnum\pgfcalendarifdateday=1\relax
          \pgfcalendarmatchestrue
        \fi
      \fi
    }}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendarifdate"
  },
  pgfcalendarjuliantodate = {
    arguments = {
      {meta = "Julian day"},
      {meta = "year macro"},
      {meta = "month macro"},
      {meta = "day macro"}
    },
    details = [[
This command converts a Julian day number to an ISO-date. The ⟨Julian
day⟩ must be a number or TeX counter, the ⟨year macro⟩, ⟨month macro⟩
and ⟨day macro⟩ must be TeX macro names. They will be set to numbers
representing the year, month, and day of the given Julian day in the
Gregorian calendar.

The ⟨year macro⟩ will be assigned the year without leading zeros. Note
that this macro will produce year 0 (as opposed to other calendars,
where year 0 does not exist). However, if you really need calendars for
before the year 1, it is expected that you know what you are doing
anyway.

The ⟨month macro⟩ gets assigned a two-digit number representing the
month (with a leading zero, if necessary). Thus, the macro is set to
`01` for January.

The ⟨day macro⟩ gets assigned a two-digit number representing the day of
the month (again, possibly with a leading zero).

To convert a Julian day number to an ISO-date you use code like the
following:

    \pgfcalendarjuliantodate{2454115}{\myyear}{\mymonth}{\myday}
    \edef\isodate{\myyear-\mymonth-\myday}

The above code sets `\isodate` to ``.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendarjuliantodate"
  },
  pgfcalendarjuliantoweekday = {
    arguments = {{meta = "Julian day"}, {meta = "week day counter"}},
    details = [[
This command converts a Julian day to a week day by computing the day
modulo 7. The ⟨week day counter⟩ must be a TeX counter. It will be set
to 0 for a Monday, to 1 for a Tuesday, and so on.

`\pgfcalendarjuliantoweekday{2454115}{\mycount}` sets `\mycount` to  (it
was a Sunday).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendarjuliantoweekday"
  },
  pgfcalendarmonthname = {
    arguments = {{meta = "month number"}},
    details = [[
This command expands to a textual representation of the month, which is
given by the ⟨month number⟩.

`\pgfcalendarmonthname{12}` yields ``.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendarmonthname"
  },
  pgfcalendarmonthshortname = {
    arguments = {{meta = "month number"}},
    details = [[
As above, only an abbreviated version is produced.

`\pgfcalendarmonthshortname{12}` yields ``.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendarmonthshortname"
  },
  pgfcalendarshorthand = {
    arguments = {{meta = "kind"}, {meta = "representation"}},
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendarshorthand"
  },
  pgfcalendarsuggestedname = {
    details = [[
This macro expands to a suggested name for nodes representing days in a
calendar. If the ⟨prefix⟩ is empty, it expands to the empty string,
otherwise it expands to the ⟨prefix⟩ of the calendar, followed by a
hyphen, followed by the ISO format version of the date. Thus, when the
date `2007-01-01` is typeset in a calendar for the prefix `mycal`, the
macro expands to `mycal-2007-01-01`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendarsuggestedname"
  },
  pgfcalendarweekdayname = {
    arguments = {{meta = "week day number"}},
    details = [[
This command expands to a textual representation of the day of week,
given by the ⟨week day number⟩. Thus, `\pgfcalendarweekdayname{0}`
expands to `Monday` if the current language is English and to `Montag`
if the current language is German, and so on. See Section ?? for more
details on translations.

`\pgfcalendarweekdayname{2}` yields ``.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendarweekdayname"
  },
  pgfcalendarweekdayshortname = {
    arguments = {{meta = "week day number"}},
    details = [[
This command works similarly to the previous command, only an
abbreviated version of the week day is produced.

`\pgfcalendarweekdayshortname{2}` yields ``.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcalendarweekdayshortname"
  },
  pgfclearid = {
    details = [[
Clears the current id (and type) for the local scope.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfclearid"
  },
  pgfcoordinate = {
    arguments = {{meta = "name"}, {meta = "coordinate"}},
    details = [[
This command creates a node of shape `coordinate` at the given
⟨coordinate⟩. Exactly the same effect can be achieved using first a
shift of the coordinate system to ⟨coordinate⟩, followed by creating a
node of shape `coordinate` named ⟨name⟩. However, this command is easier
and more natural to use and, more importantly, it is much faster.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcoordinate"
  },
  pgfcurvilineardistancetotime = {
    arguments = {{meta = "distance"}},
    details = [[
This command does a "distance-to-time-conversion": It tries to compute a
time $t$, returned in `\pgf@x`, that corresponds to travelling
⟨distance⟩ along the curve that has last been installed using the
command `\pgfsetcurvilinearbeziercurve`. The distance-to-time-conversion
uses the precomputations done by that command. Note that several
compromises had to be made between speed and accuracy:

-   The conversion will be best near the start of the curve.

-   The more "degenerate" the curve, the worse the results.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfcurvilineardistancetotime"
  },
  pgfdata = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:pgf#/keys/pgf",
        meta = "options",
        optional = true
      },
      {meta = "inline data"}
    },
    details = [[
This command is used to feed data to the visualization pipeline. This
command can only be used when a data visualization object has been
properly setup, see Section ??.

**Basic options.** The `\pgfdata` command may be followed by ⟨options⟩,
which are executed with the path `/pgf/data/`. Depending on these
options, the ⟨options⟩ may either be followed by ⟨inline data⟩ or,
alternatively, no ⟨inline data⟩ is present and the data is read from an
external source.

The first important option is ⟨source⟩, which governs which of these two
alternatives applies:

The second important key is `format`, which is used to specify the data
format:

In case all your data is in a certain format, you may wish to generally
set the above key somewhere at the beginning of your file.
Alternatively, you can use the following style to setup the `format` key
and possibly further keys concerning the data format:

**Gathering of the data.** Once the data format and the source have been
decided upon, the data is "gathered". During this phase the data is not
actually parsed in detail, but just gathered so that it can later be
parsed during the visualization. There are two different ways in which
the data is gathered:

-   In case you have specified an external source, the data
    visualization object is told (by means of invoking the `add data`
    method) that it should (later) read data from the file specified by
    the `source` key using the format specified by the `format` key. The
    file is not read at this point, but only later during the actual
    visualization.

-   Otherwise, namely when data is given inline, depending on which
    format is used, some catcodes get changed. This is necessary since
    TeX's special characters are often not-so-special in a certain
    format.

    Independently of the format, the end-of-line character (carriage
    return) is made an active character.

    Finally, the ⟨inline data⟩ is then read as a normal argument and the
    data visualization object is told that later on it should parse this
    data using the given format parser. Note that in this case the data
    visualization object must store the whole data internally.

In both cases the "data visualization object" is the object stored in
the `/pgf/data visualization/obj` key.

**Parsing of the data.** During the actual data visualization, all code
that has been added to the data visualization object by means of the
`add data` method is executed several times. It is the job of this code
to call the `\pgfdatapoint` method for all data points present in the
data.

When the `\pgfdata` method calls `add data`, the code that is passed to
the data visualization object is just a call to internal macros of
`\pgfdata`, which are able to parse the data stored in an external file
or in the inlined data. Independently of where the data is stored, these
macros always do the following:

1.  The catcodes are setup according to what the data format requires.

2.  Format-specific startup code gets called, which can initialize
    internal variables of the parsing process. (The catcode changes are
    not part of the startup code since in order to read inline data
    `\pgfdata` must be able to setup to temporarily setup the catcodes
    needed later on by the parsers, but since no reading is to be done,
    no startup code should be called at this point.)

3.  For each line of the data a format-specific code handler, which
    depends on the data format, is called. This handler gets the current
    line as input and should call `\pgfdatapoint` once for each data
    point that is encoded by this line (a line might define multiple
    data points or none at all). Empty lines are handled by special
    format-specific code.

4.  At the end, format-specific end code is executed.

For an example of how this works, see the description of the
`\pgfdeclaredataformat` command.

**Data sets.** There are three options that allow you to create *data
sets*. Such a data set is essentially a macro that stores a pre-parsed
set of data that can be used multiple times in subsequent visualizations
(or even in the same visualization).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdata"
  },
  pgfdeclarearrow = {
    arguments = {{meta = "config"}},
    details = [[
This command is both used to define a new arrow tip kind and to to
declare a so-called shorthand. We have a look at the case that a
complete new arrow tip kind is created and then have a look how the
command can be used to create shorthands.

**Defining a Complete New Arrow Tip Kind.** The ⟨config⟩ is a key--value
list in which different keys are used to setup the to-be defined arrow.
The following keys can be given:

-   `name``=`⟨name⟩ or `name=`⟨start name⟩`-`⟨end name⟩

    This defines the name of the arrow tip. It is legal to define an
    arrow tip a second time, in this case the previous definition will
    be overwritten in the current TeX scope. It is customary to use a
    name with an uppercase first letter for a "complete" arrow tip kind.
    Short names and lower case names should be used for shorthands that
    change their meaning inside a document, while arrow tips with
    uppercase first letters should not be redefined.

    If the name contains a hyphen, the second syntax is assumed and
    everything before the hyphen will be the name used in start arrow
    specifications, while the text after the hyphen is the name used in
    end specifications.

-   `parameters``=``{list of macros}`

    As explained earlier, an arrow tip typically needs to be redrawn
    each time an option like `length` or `inset` is changed. However,
    for some arrow tips, the `inset` has no influence, while for other
    it is important whether the arrow is reversed or not. (How keys like
    `length` actually set TeX dimensions like `\pgfarrowlength` is
    explained in Section ??.)

    The job of the `parameters` key is to specify which dependencies the
    arrow tip has. Everything that will influence any of the parameters
    computed in the setup code or used in the drawing code should be
    listed here.

    The ⟨list of macros⟩ will be used inside a `\csname`-`\endcsname`
    pair and should expand to the current values of the relevant
    parameters have. For example, if the arrow tip depends on the
    current value of `\pgfarrowlength` and `\pgfarrowwidth` only, then
    ⟨list of macros⟩ should be set to
    `\the\pgfarrowlength,\the\pgfarrowwidth`. (Actually, the comma is
    optional, the ⟨list of macros⟩ does not really have to be a list,
    just something that can be expanded unambiguously.)

    Note that the line width (`\pgflinewidth`) and the inner line width
    (`\pgfinnerlinewidth`) are always parameters and need not be
    specified in the `parameters`.

    It is important to get this parameter right. Otherwise, arrow tips
    may look wrong because PGF thinks that it can reuse some code when,
    in reality, this code actually depends on a parameter not listed
    here.

-   `setup code``=``{code}`

    When an arrow tip is used, the value stored in `parameters` is
    expanded and it is tested whether the result was encountered before.
    If not, the ⟨code⟩ gets executed (only this once). The code can now
    do arbitrarily complicated computations the prepare the later
    drawing of the arrow tip. Also the ⟨code⟩ must specify the different
    tip and back ends and the convex hull points. This is done by
    calling the following macros inside the ⟨code⟩:

-   `drawing code``=``{code}`

    This code will be executed at least once for each setting of the
    parameters when the time arrow tip is actually drawn. Usually, this
    one execution will be all and the low-level commands generated
    inside the ⟨code⟩ will we stored in a special cache; but in some
    cases the ⟨code⟩ gets executed each time the arrow tip is used, so
    do not assume anything about it. Inside the ⟨code⟩, you have access
    to all values that were saved in the setup code as well as to the
    line width.

    The ⟨code⟩ should draw the arrow tip "going right along the
    $x$-axis". PGF will take care of setting up a canvas transformation
    beforehand to a rotation such that when the drawing is rendered, the
    arrow tip that is actually drawn points in the direction of the
    line. Alternatively, when bending is switched on, even more
    complicated low-level transformations will be done automatically.

    The are some special considerations concerning the ⟨code⟩:

    -   In the ⟨code⟩ you may *not* use `\pgfusepath` since this would
        try to add arrow tips to the arrow tip and lead to a recursion.
        Use the "quick" versions `\pgfusepathqstroke` and so on instead,
        which never try to add arrow tips.

    -   If you stroke the path that you construct, you should first set
        the dashing to solid and set up fixed joins and caps, as needed.
        This will ensure that the arrow tip will always look the same.

    -   When the arrow tip code is executed, it is automatically put
        inside a low-level scope, so nothing will "leak out" from the
        scope.

    -   The high-level coordinate transformation matrix will be set to
        the identity matrix when the code is executed for the first
        time.

-   `cache``=`⟨true or false⟩

    When set to `true`, which is the default, the ⟨code⟩ will be
    executed only once for a particular value of parameters and the
    low-level commands created by the drawing code (using the system
    layer protocol subsystem, see Section ??) will be cached and reused
    later on. However, when the drawing code contains "uncachable" code
    like a call to `\pgftext`, caching must be switched off by saying
    `cache=false`.

-   `bending mode``=`⟨mode⟩

    This key is important only when the `bend` option is used with an
    arrow, see Section ?? for an introduction to this option. The `bend`
    option asks us to, well, bend the arrow head. For some arrow head
    this is not possible or leads to very strange drawings (for
    instance, when the `\pgftext` command is used) and then it is better
    to switch bending off for the arrow head (`flex` will then be used
    instead). To achieve this, set ⟨mode⟩ to `none`.

    For most arrow tips it does, however, make sense to bend them. There
    are (at least) two different mathematical ways of doing so, see
    Section ?? for details. Which of these ways is use can be configured
    by setting ⟨mode⟩ to either `orthogonal` or to `polar`. It is best
    to try simply try out both when designing an arrow tip to see which
    works better. Since `orthogonal` is quicker and often gives good
    oder even better results, it is the default. Some arrow tips,
    however, profit from saying `bending mode=polar`.

-   `defaults``=`⟨arrow keys⟩

    The ⟨arrow keys⟩ allow you to configure the default values for the
    parameters on which an arrow tip depends. The ⟨arrow keys⟩ will be
    executed first before any other arrow tip options are executed, see
    Section ?? for the exact sequence. Also see Section ?? below for
    more details on arrow options.

This concludes the description of the keys you provide for the
declaration of an arrow. Let us now have a look at a simple example that
uses these features: We want to define an arrow tip kind `foo` that
produces the arrow tip we used as our running example. However, to make
things a bit more interesting, let us make it "configurable" insofar as
the length of the arrow tip can be configured using the `length` option,
which sets the `\pgfarrowlength`. By default, this length should be the
gigantic 4cm we say in the example, but uses should be able to set it to
anything they like. We will not worry about the arrow width or insets,
of arrow line width, or harpoons, or anything else in this example to
keep it simple.

Here is the code:

    \pgfdeclarearrow{
      name = foo,
      parameters = { \the\pgfarrowlength },
      setup code = {
        % The different end values:
        \pgfarrowssettipend{.25\pgfarrowlength}
        \pgfarrowssetlineend{-.25\pgfarrowlength}
        \pgfarrowssetvisualbackend{-.5\pgfarrowlength}
        \pgfarrowssetbackend{-.75\pgfarrowlength}
        % The hull
        \pgfarrowshullpoint{.25\pgfarrowlength}{0pt}
        \pgfarrowshullpoint{-.75\pgfarrowlength}{.5\pgfarrowlength}
        \pgfarrowshullpoint{-.75\pgfarrowlength}{-.5\pgfarrowlength}
        % Saves: Only the length:
        \pgfarrowssavethe\pgfarrowlength
      },
      drawing code = {
        \pgfpathmoveto{\pgfqpoint{.25\pgfarrowlength}{0pt}}
        \pgfpathlineto{\pgfqpoint{-.75\pgfarrowlength}{.5\pgfarrowlength}}
        \pgfpathlineto{\pgfqpoint{-.5\pgfarrowlength}{0pt}}
        \pgfpathlineto{\pgfqpoint{-.75\pgfarrowlength}{-.5\pgfarrowlength}}
        \pgfpathclose
        \pgfusepathqfill
      },
      defaults = { length = 4cm }
    }

We can now use it:

    \tikz \draw [-foo] (0,0) -- (8,0);

    \tikz \draw [-{foo[length=2cm,bend]}] (0,0) to [bend left] (3,0);

**Defining a Shorthand.** The `\pgfdeclarearrow` command can also used
to define *shorthands*. This works as follows:

-   First, you must provide a `name` just in the same way as when you
    define a full-flung new arrow tip kind.

-   Second, instead of all of the other options listed above, you just
    use one more option:

    `means``=`⟨end arrow specification⟩

    This sets up things so that whenever ⟨name⟩ is now used in an arrow
    specification, it will be replaced by the ⟨end arrow specification⟩
    (the problems resulting form the ⟨name⟩ begin used in a start arrow
    specification are taken care of automatically). See also Section ??
    for details on the order in which options get executed in such
    cases.

    Note that the ⟨end arrow specification⟩ will be executed immediately
    to build the so-called arrow option caches, a concept explored in
    more detail in Section ??. In practice, this has mainly two effects:
    First, all arrow tips referred to in the specification must already
    exist (at least as "dummy" versions). Second, all dimensions
    mentioned in options of the ⟨end arrow specification⟩ will be
    evaluated immediately. For instance, when you write

        \pgfdeclarearrow{ name=foo, means = bar[length=2cm+\mydimen] }

    The value `2cm+\mydimen` is evaluated immediately. When `foo` is
    used later on and `\mydimen` has changed, this has no effect.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclarearrow"
  },
  pgfdeclaredataformat = {
    arguments = {
      {meta = "format name"},
      {meta = "catcode code"},
      {meta = "startup code"},
      {meta = "line arguments"},
      {meta = "line code"},
      {meta = "empty line code"},
      {meta = "end code"}
    },
    details = [[
This command defines a new data format called ⟨format name⟩, which can
subsequently be used in the `\pgfdata` command. (The TikZ's `data` maps
directly to `\pgfdata`, so the following applies to TikZ as well.)

As explained in the description of the `\pgfdata` command, when data is
being parsed that is formatted according to ⟨format name⟩, the following
happens:

1.  The ⟨catcode code⟩ is executed. This code should just contain
    catcode changes. The ⟨catcode code⟩ will also be executed when
    inline data is read.

2.  Next, the ⟨startup code⟩ is executed.

3.  Next, for each non-empty line of the data, the line is passed to a
    macro whose argument list is given by ⟨line arguments⟩ and whose
    body is given by ⟨line code⟩. The idea is that you can use TeX's
    powerful pattern matching capabilities to parse the non-empty lines.
    See also the below example.

4.  Empty lines are not processed by the ⟨line code⟩, but rather by the
    ⟨empty line code⟩. Typically, empty lines can simply be ignored and
    in this case you can let this parameter be empty.

5.  At the end of the data, the ⟨end code⟩ is executed.

As an example, let us now define a simple data format for reading files
formatted in the following manner: Each line should contain a coordinate
pair as in `(1.2,3.2)`, so two numbers separated by a comma and
surrounded by parentheses. To make things more interesting, suppose that
the hash mark symbol can be used to indicate comments. Here is an
example of some data given in this format:

    # This is some data formatted according to the "coordinates" format
    (0,0)
    (0.5,0.25)
    (1,1)
    (1.5,2.25)
    (2,4)

A format parser for this format could be defined as follows:

    \pgfdeclaredataformat{coordinates}
    % First comes the catcode argument. We turn the hash mark into a comment character.
    {\catcode`\#=14\relax}
    % Second comes the startup code. Since we do not need to setup things, we can leave
    % it empty. Note that we could also set it to something like \begingroup, provided we
    % put an \endgroup in the end code
    {}
    % Now comes the arguments for non-empty lines. Well, these should be of the form
    % (#1,#2), so we specify that:
    {(#1,#2)}
    % Now we must do something with a line of this form. We store the #1 argument in
    % /data point/x and #2 in /data point/y. Then we call \pgfdatapoint to create a data point.
    {
      \pgfkeyssetvalue{/data point/x}{#1}
      \pgfkeyssetvalue{/data point/y}{#2}
      \pgfdatapoint
    }
    % We ignore empty lines:
    {}
    % And we also have no end-of-line code.
    {}

This format could now be used as follows:

    \begin{tikzpicture}
      \datavisualization[school book axes, visualize as smooth line]
      data [format=coordinates] {
        # This is some data formatted according
        # to the "coordinates" format
        (0,0)
        (0.5,0.25)
        (1,1)
        (1.5,2.25)
        (2,4)
      };
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclaredataformat"
  },
  pgfdeclaredecoration = {
    arguments = {{meta = "name"}, {meta = "initial state"}, {meta = "states"}},
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclaredecoration"
  },
  pgfdeclarefading = {
    arguments = {{meta = "name"}, {meta = "contents"}},
    details = [[
This command declares a fading named ⟨name⟩ for later use. The "picture"
on which the fading is based is given by the ⟨contents⟩. The ⟨contents⟩
are normally typeset in a TeX box. The resulting box is then used as the
"picture". In particular, inside the ⟨contents⟩ you must explicitly open
a `{pgfpicture}` environment if you wish to use PGF commands.

Let's start with an easy example. Our first fading picture is just some
text:

    \pgfdeclarefading{fading1}{\textcolor{white}{Ti\emph{k}Z}}
    \begin{tikzpicture}
      \fill [black!20] (0,0) rectangle (2,2);
      \fill [black!30] (0,0) arc (180:0:1);
      \pgfsetfading{fading1}{\pgftransformshift{\pgfpoint{1cm}{1cm}}}
      \fill [red] (0,0) rectangle (2,2);
    \end{tikzpicture}

What's happening here? The "fading picture" is mostly transparent,
except for the pixels that are part of the word Ti*k*Z. Now, these
pixels are *white* and, thus, have a high luminosity. This in turn means
that these pixels of the fading will be highly opaque. For this reason,
only those pixels of the big red rectangle "shine through" that are at
the positions of these opaque pixels.

It is somewhat counter-intuitive that the white pixels in a fading
picture are opaque in a fading. For this reason, the color
`pgftransparent` is defined to be the same as `black`. This allows one
to write `pgftransparent` for completely transparent parts of a fading
picture and `pgftransparent!0` for the opaque parts and things like
`pgftransparent!20` for parts that are 20% transparent.

Furthermore, the color `pgftransparent!0` (which is the same as white
and which corresponds to completely opaque) is installed at the
beginning of a fading picture. Thus, in the above example the
`\color{white}` was not really necessary.

Next, let us create a fading that gets more and more transparent as we
go from left to right. For this, we put a shading inside the fading
picture that has the color `pgftransparent!0` at the left-hand side and
the color `pgftransparent!100` at the right-hand side.

    \pgfdeclarefading{fading2}
    {\tikz \shade[left color=pgftransparent!0,
                  right color=pgftransparent!100] (0,0) rectangle (2,2);}
    \begin{tikzpicture}
      \fill [black!20] (0,0) rectangle (2,2);
      \fill [black!30] (0,0) arc (180:0:1);
      \pgfsetfading{fading2}{\pgftransformshift{\pgfpoint{1cm}{1cm}}}
      \fill [red] (0,0) rectangle (2,2);
    \end{tikzpicture}

In our final example, we create a fading that is based on a radial
shading.

    \pgfdeclareradialshading{myshading}{\pgfpointorigin}
    {
      color(0mm)=(pgftransparent!0);
      color(5mm)=(pgftransparent!0);
      color(8mm)=(pgftransparent!100);
      color(15mm)=(pgftransparent!100)
    }
    \pgfdeclarefading{fading3}{\pgfuseshading{myshading}}
    \begin{tikzpicture}
      \fill [black!20] (0,0) rectangle (2,2);
      \fill [black!30] (0,0) arc (180:0:1);
      \pgfsetfading{fading3}{\pgftransformshift{\pgfpoint{1cm}{1cm}}}
      \fill [red] (0,0) rectangle (2,2);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclarefading"
  },
  pgfdeclarefunctionalshading = {
    arguments = {
      {delimiters = {"[", "]"}, meta = "color list", optional = true},
      {meta = "shading name"},
      {meta = "lower left corner"},
      {meta = "upper right corner"},
      {meta = "init code"},
      {meta = "type 4 function"}
    },
    details = [[
*Warning: These shadings are the least portable of all and they put the
heaviest burden of the renderer. They are slow and, possibly, will not
print correctly!*

This command creates a *functional shading*. For such a shading, the
color of each point is calculated by calling a function that takes the
coordinates of the point as input and yields the color as an output.
Note that the function is evaluated by the *renderer*, not by PGF or
TeX or someone else at compile-time. This means that the evaluation of
this function has to be done *extremely quickly* and the function should
be *very simple*. For this reason, only a very restricted set of
operations are possible in the function and functions should be kept
small. Any errors in the function will only be noticed by the renderer.

The syntax for specifying functions is the following: You use a
simplified form of a subset of the PostScript language. This subset will
be understood by the PDF-renderer (yes, PDF-renderers do have a basic
understanding of PostScript) and also by PostScript renders. This subset
is detailed in Section 3.9.4 of the PDF-specification (version 1.7). In
essence, the specification states that these functions may contain
"expressions involving integers, real numbers, and boolean values only.
There are no composite data structures such as strings or arrays, no
procedures, and no variables or names." The allowed operators are
(exactly) the following: `abs`, `add`, `atan`, `ceiling`, `cos`, `cvi`,
`cvr`, `div`, `exp`, `floor`, `idiv`, `ln`, `log`, `mod`, `mul`, `neg`,
`round`, `sin`, `sqrt`, `sub`, `truncate`, `and`, `bitshift`, `eq`,
`false`, `ge`, `gt`, `le`, `lt`, `ne`, `not`, `or`, `true`, `xor`, `if`,
`ifelse`, `copy`, `dup`, `exch`, `index`, `pop`.

When the function is evaluated, the top two stack elements are the
coordinates of the point for which the color should be computed. The
coordinates are dimensionless and given in big points, so for the
coordinate $(50bp, 72.27pt)$ the top two stack elements would be `50.0`
and `72.0`. Otherwise, the (virtual) stack is empty (or should be
treated as if it were empty). The function should then replace these two
values by three values, representing the red, green, and blue color of
the point for an RGB shading, four colors, representing the cyan,
magenta, yellow, and black color of the point for a CMYK shading, or one
value representing the gray color for a grayscale shading. The numbers
should be real values, not integers since, Apple's PDF renderer is
broken in this regard (use `cvr` at the end if necessary).

Conceptually, the function will be evaluated once for each point of the
rectangle ⟨lower left corner⟩ to ⟨upper right corner⟩, which should be a
PGF-point expression like `\pgfpoint{100bp}{100bp}`. A renderer may
choose to evaluate the function at less points, but, in principle, the
function will be evaluated for each pixel independently.

Because of the rather difficult PostScript syntax, use this macro only
*if you know what you are doing* (or if you are adventurous, of course).

As for other shadings, the optional ⟨color list⟩ is used to determine
whether a shading needs to be recalculated when a color has changed.

The ⟨init code⟩ is executed each time a shading is (re)calculated.
Typically, it will contain code to extract coordinates from colors.

    \pgfdeclarefunctionalshading{twospots}
        {\pgfpointorigin}{\pgfpoint{4cm}{4cm}}{}{
      % Save coordinates for later
      2 copy
      % Compute distance from (40bp,45bp), with x doubled
      45 sub dup mul exch
      40 sub dup mul 0.5 mul add sqrt
      % exponential decay
      dup mul neg 1.0005 exch exp 1.0 exch sub
      % Compute distance from (70bp,70bp) from stored coordinate, scaled
      3 1 roll
      70 sub dup mul .5 mul exch
      70 sub dup mul add sqrt
      % Decay
      dup mul neg 1.002 exch exp 1.0 exch sub
      % red component
      1.0 3 1 roll
    }
    \pgfuseshading{twospots}

Inside the PostScript function ⟨type 4 function⟩ you cannot use colors
directly. Rather, you must push the color components on the stack. For
this, it is useful to call one of `\pgfshadecolortorgb`,
`\pgfshadecolortocmyk`, or `\pgfshadecolortogray` in the ⟨init code⟩:

    \pgfdeclarefunctionalshading[col1,col2,col3,col4]{bilinear interpolation}
    {\pgfpointorigin}{\pgfpoint{100bp}{100bp}}
    {
    \pgfshadecolortorgb{col1}{\first}\pgfshadecolortorgb{col2}{\second}
    \pgfshadecolortorgb{col3}{\third}\pgfshadecolortorgb{col4}{\fourth}
    }{
      100 div exch 100 div 2 copy                   % Calculate y/100 x/100.
      neg 1 add exch neg 1 add                      % Calculate 1-y/100 1-x/100.
      3 1 roll 2 copy exch 5 2 roll 6 copy 6 copy   % Set up stack.
      \firstred mul exch \secondred mul add mul     % Process red component.
      4 1 roll
      \thirdred mul exch \fourthred mul add mul
      add
      13 1 roll
      \firstgreen mul exch \secondgreen mul add mul % Process green component.
      4 1 roll
      \thirdgreen mul exch \fourthgreen mul add mul
      add
      7 1 roll
      \firstblue mul exch \secondblue mul add mul   % Process blue component.
      4 1 roll
      \thirdblue mul exch \fourthblue mul add mul
      add
    }

    \colorlet{col1}{blue}
    \colorlet{col2}{yellow}
    \colorlet{col3}{red}
    \colorlet{col4}{green}
    \pgfuseshading{bilinear interpolation}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclarefunctionalshading"
  },
  pgfdeclarehorizontalshading = {
    arguments = {
      {delimiters = {"[", "]"}, meta = "color list", optional = true},
      {meta = "shading name"},
      {meta = "shading height"},
      {meta = "color specification"}
    },
    details = [[
Declares a horizontal shading named ⟨shading name⟩ of the specified
⟨height⟩ with the specified colors. The width of the bar is deduced
automatically from the maximum dimension in the specification.

    \pgfdeclarehorizontalshading{myshadingA}
      {1cm}{rgb(0cm)=(1,0,0); color(2cm)=(green); color(4cm)=(blue)}
    \pgfuseshading{myshadingA}

The effect of the ⟨color list⟩, which is a comma-separated list of
colors, is the following: Normally, when this list is empty, once a
shading has been declared, it becomes "frozen". This means that even if
you change a color that was used in the declaration of the shading later
on, the shading will not change. By specifying a ⟨color list⟩ you can
specify that the shading should be recalculated whenever one of the
colors listed in the list changes (this includes effects like color
mixins and `xcolor` color models). Thus, when you specify a ⟨color
list⟩, whenever the shading is used, PGF first converts the colors in
the list to tuples in the current `xcolor` color model using the current
values of the colors and taking any mixins and blends into account. If
the resulting tuples have not yet been used, a new shading is internally
created and used. Note that if the option ⟨color list⟩ is used, then no
shading is created until the first use of `\pgfuseshading`. In
particular, the colors mentioned in the shading need not be defined when
the declaration is given.

When a shading is recalculated because of a change in the colors
mentioned in ⟨color list⟩, the complete shading is recalculated. Thus
even colors not mentioned in the list will be used with their current
values, not with the values they had upon declaration.

    \pgfdeclarehorizontalshading[mycolor]{myshadingB}
      {1cm}{rgb(0cm)=(1,0,0); color(2cm)=(mycolor)}
    \colorlet{mycolor}{green}
    \pgfuseshading{myshadingB}
    \colorlet{mycolor}{blue}
    \pgfuseshading{myshadingB}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclarehorizontalshading"
  },
  pgfdeclareimage = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:pgf#/keys/pgf",
        meta = "options",
        optional = true
      },
      {meta = "image name"},
      {meta = "filename"}
    },
    details = [[
Declares an image, but does not paint anything. To draw the image, use
`\pgfuseimage{`⟨image name⟩`}`. The ⟨filename⟩ may not have an
extension. For PDF, the extensions `.pdf`, `.jpg`, and `.png` will
automatically tried. For PostScript, the extensions `.eps`, `.epsi`, and
`.ps` will be tried.

The following options are possible:

-   `height=`⟨dimension⟩ sets the height of the image. If the width is
    not specified simultaneously, the aspect ratio of the image is kept.

-   `width=`⟨dimension⟩ sets the width of the image. If the height is
    not specified simultaneously, the aspect ratio of the image is kept.

-   `page=`⟨page number⟩ selects a given page number from a multipage
    document. Specifying this option will have the following effect:
    first, PGF tries to find a file named

    > ⟨filename⟩`.page`⟨page number⟩`.`⟨extension⟩

    If such a file is found, it will be used instead of the originally
    specified filename. If not, PGF inserts the image stored in
    ⟨filename⟩`.`⟨extension⟩ and if a recent version of `pdflatex` is
    used, only the selected page is inserted. For older versions of
    `pdflatex` and for `dvips` the complete document is inserted and a
    warning is printed.

-   `interpolate=`⟨true or false⟩ selects whether the image should be
    "smoothed" when zoomed. False by default.

-   `mask=`⟨mask name⟩ selects a transparency mask. The mask must
    previously be declared using `\pgfdeclaremask` (see below). This
    option only has an effect for `pdf`. Not all viewers support
    masking.

 

    \pgfdeclareimage[interpolate=true,height=1cm]{image1}{brave-gnu-world-logo}
    \pgfdeclareimage[interpolate=true,width=1cm,height=1cm]{image2}{brave-gnu-world-logo}
    \pgfdeclareimage[interpolate=true,height=1cm]{image3}{brave-gnu-world-logo}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclareimage"
  },
  pgfdeclarelayer = {
    arguments = {{meta = "name"}},
    details = [[
This command declares a layer named ⟨name⟩ for later use. Mainly, this
will set up some internal bookkeeping.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclarelayer"
  },
  pgfdeclarelindenmayersystem = {
    arguments = {{meta = "name"}, {meta = "specification"}},
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclarelindenmayersystem"
  },
  pgfdeclaremask = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:pgf#/keys/pgf",
        meta = "options",
        optional = true
      },
      {meta = "mask name"},
      {meta = "filename"}
    },
    details = [[
Declares a transparency mask named ⟨mask name⟩ (called a *soft mask* in
the PDF specification). This mask is read from the file ⟨filename⟩. This
file should contain a grayscale image that is as large as the actual
image. A white pixel in the mask will correspond to "transparent", a
black pixel to "solid", and gray values correspond to intermediate
values. The mask must have a single "color channel". This means that the
mask must be a "real" grayscale image, not an RGB-image in which all
RGB-triples happen to have the same components.

You can only mask images that are in a "pixel format". For drivers with
PDF output, these are `.jpg` and `.png` image files; you cannot mask
`.pdf` images in this way. Pixel images for the `dvips`+`ps2pdf`
workflow must be provided as `.eps` or `.ps` files. Also, again, the
mask file and the image file must have the same size.

The following options may be given:

-   `matte=``{color components}` sets the so-called *matte* of the
    actual image (strangely, this has to be specified together with the
    mask, not with the image itself). The matte is the color that has
    been used to preblend the image. For example, if the image has been
    preblended with a red background, then ⟨color components⟩ should be
    set to `{1 0 0}`. The default is `{1 1 1}`, which is white in the
    rgb model.

    The matte is specified in terms of the parent's image color space.
    Thus, if the parent is a grayscale image, the matte has to be set to
    `{1}`.

 

    %% Draw a large colorful background
    \pgfdeclarehorizontalshading{colorful}{5cm}{color(0cm)=(red);
    color(2cm)=(green); color(4cm)=(blue); color(6cm)=(red);
    color(8cm)=(green); color(10cm)=(blue); color(12cm)=(red);
    color(14cm)=(green)}
    \hbox{\pgfuseshading{colorful}\hskip-14cm\hskip1cm
    \pgfimage[height=4cm]{brave-gnu-world-logo}\hskip1cm
    \pgfimage[height=4cm]{brave-gnu-world-logo-mask}\hskip1cm
    \pgfdeclaremask{mymask}{brave-gnu-world-logo-mask}
    \pgfimage[mask=mymask,height=4cm,interpolate=true]{brave-gnu-world-logo}}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclaremask"
  },
  pgfdeclaremetadecorate = {
    arguments = {{meta = "name"}, {meta = "initial state"}, {meta = "states"}},
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclaremetadecorate"
  },
  pgfdeclarepattern = {
    arguments = {{meta = "config"}},
    details = [[
This command is used to declare a new pattern. In contrast to the normal
patterns and in the spirit of `arrows.meta` this command takes a list of
keys and values to define the pattern. The following keys are available:
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclarepattern"
  },
  pgfdeclarepatternformonly = {
    arguments = {
      {delimiters = {"[", "]"}, meta = "variables", optional = true},
      {meta = "name"},
      {meta = "bottom left"},
      {meta = "top right"},
      {meta = "tile size"},
      {meta = "code"}
    },
    details = [[
This command declares a new form-only pattern. The ⟨name⟩ is a name for
later reference. The two parameters ⟨lower left⟩ and ⟨upper right⟩ must
describe a bounding box that is large enough to encompass the complete
tile.

The size of a tile is given by ⟨tile size⟩, that is, a tile is a
rectangle whose lower left corner is the origin and whose upper right
corner is given by ⟨tile size⟩. This might make you wonder why the
second and third parameters are needed. First, the bounding box might be
smaller than the tile size if the tile is larger than the picture on the
tile. Second, the bounding box might be bigger, in which case the
picture will "bleed" over the tile.

The ⟨code⟩ should be PGF code than can be protocolled. It should not
contain any color code.

    \pgfdeclarepatternformonly{stars}
    {\pgfpointorigin}{\pgfpoint{1cm}{1cm}}
    {\pgfpoint{1cm}{1cm}}
    {
      \pgftransformshift{\pgfpoint{.5cm}{.5cm}}
      \pgfpathmoveto{\pgfpointpolar{0}{4mm}}
      \pgfpathlineto{\pgfpointpolar{144}{4mm}}
      \pgfpathlineto{\pgfpointpolar{288}{4mm}}
      \pgfpathlineto{\pgfpointpolar{72}{4mm}}
      \pgfpathlineto{\pgfpointpolar{216}{4mm}}
      \pgfpathclose%
      \pgfusepath{fill}
    }
    \begin{tikzpicture}
      \filldraw[pattern=stars] (0,0)   rectangle (1.5,2);
      \filldraw[pattern=stars,pattern color=red]
                               (1.5,0) rectangle (3,2);
    \end{tikzpicture}

The optional argument ⟨variables⟩ consists of a comma separated list of
macros, registers or keys, representing the parameters of the pattern
that may vary. If a variable is a key, then the full path name must be
used (specifically, it must start with `/`). As an example, a list might
look like the following: `\mymacro,\mydimen,/pgf/my key`. Note that
macros and keys should be "simple". They should only store values in
themselves.

The effect of ⟨variables⟩, is the following: Normally, when this
argument is empty, once a pattern has been declared, it becomes
"frozen". This means that it is not possible to enlarge the pattern or
change the line width later on. By specifying ⟨variables⟩, no pattern is
actually created. Instead, the arguments are stored away (so the macros,
registers or keys do not have to be defined in advance).

When the fill pattern is set, PGF checks if the pattern has already been
created with the ⟨variables⟩ set to their current values (PGF is usually
"smart enough" to distinguish between macros, registers and keys). If
so, this already-declared-pattern is used as the fill pattern. If not, a
new instance of the pattern (which will have a unique internal name) is
declared using the current values of ⟨variables⟩. These values are then
saved and the fill pattern set accordingly.

The following shows an example of a pattern which varies according to
the values of the macro `\size`, the key `/tikz/radius`, and the TeX
dimension `\thickness`.

    \pgfdeclarepatternformonly[/tikz/radius,\thickness,\size]{rings}
    {\pgfpoint{-0.5*\size}{-0.5*\size}}
    {\pgfpoint{0.5*\size}{0.5*\size}}
    {\pgfpoint{\size}{\size}}
    {
      \pgfsetlinewidth{\thickness}
      \pgfpathcircle\pgfpointorigin{\pgfkeysvalueof{/tikz/radius}}
      \pgfusepath{stroke}
    }
    \newdimen\thickness
    \tikzset{
      radius/.initial=4pt,
      size/.store in=\size, size=20pt,
      thickness/.code={\thickness=#1},
      thickness=0.75pt
    }
    \begin{tikzpicture}[rings/.style={pattern=rings}]
      \filldraw [rings, radius=2pt, size=6pt]      (0,0)   rectangle +(1.5,2);
      \filldraw [rings, radius=2pt, size=8pt]      (2,0)   rectangle +(1.5,2);
      \filldraw [rings, radius=6pt, thickness=2pt] (0,2.5) rectangle +(1.5,2);
      \filldraw [rings, radius=8pt, thickness=4pt] (2,2.5) rectangle +(1.5,2);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclarepatternformonly"
  },
  pgfdeclarepatterninherentlycolored = {
    arguments = {
      {delimiters = {"[", "]"}, meta = "variables", optional = true},
      {meta = "name"},
      {meta = "lower left"},
      {meta = "upper right"},
      {meta = "tile size"},
      {meta = "code"}
    },
    details = [[
This command works like `\pgfdeclarepatternuncolored`, only the pattern
will have an inherent color. To set the color, you should use PGF's
color commands, not the `\color` command, since this fill is not
protocolled.

    \pgfdeclarepatterninherentlycolored{green stars}
    {\pgfpointorigin}{\pgfpoint{1cm}{1cm}}
    {\pgfpoint{1cm}{1cm}}
    {
      \pgfsetfillcolor{green!50!black}
      \pgftransformshift{\pgfpoint{.5cm}{.5cm}}
      \pgfpathmoveto{\pgfpointpolar{0}{4mm}}
      \pgfpathlineto{\pgfpointpolar{144}{4mm}}
      \pgfpathlineto{\pgfpointpolar{288}{4mm}}
      \pgfpathlineto{\pgfpointpolar{72}{4mm}}
      \pgfpathlineto{\pgfpointpolar{216}{4mm}}
      \pgfpathclose%
      \pgfusepath{stroke,fill}
    }
    \begin{tikzpicture}
      \filldraw[pattern=green stars] (0,0) rectangle (3,2);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclarepatterninherentlycolored"
  },
  pgfdeclareplothandler = {
    arguments = {{meta = "macro"}, {meta = "arguments"}, {meta = "configuration"}},
    details = [[
This command creates a new plot handler that can subsequently be called
using the macro ⟨macro⟩. This macro take the arguments given in
⟨arguments⟩, which can be a list like `# 1# 2` if ⟨macro⟩ should be
invoked with two arguments. Here is a typical example:

    \pgfdeclareplothandler{\myhandler}{#1}{...}
    ...
    \myhandler{foo}
    \pgfplotstreamstart
    ...
    \pgfplotstreamend

The ⟨configuration⟩ is used to define the behavior of the handler. It is
a list of key--value pairs, where the following keys are allowed:

-   `start=`⟨code⟩. The ⟨code⟩ will be executed whenever
    `\pgfplotstreamstart` is used while the handler ⟨macro⟩ is selected.
    Inside the ⟨code⟩, you can use `# 1`, `# 2`, and so on to refer to
    the parameters that were given to ⟨macro⟩:

        \pgfdeclareplothandler{\myhandler}{#1}{
          start = Hi #1.,
          end   = Bye #1.,
        }
        \myhandler{foo}
        \pgfplotstreamstart
        \pgfplotstreamend
        \myhandler{bar}
        \pgfplotstreamstart
        \pgfplotstreamend

-   `end=`⟨code⟩ Works just like `start`.

-   `point=`⟨code⟩. The ⟨code⟩ will be executed whenever
    `\pgfplotstreampoint` is used while the handler ⟨macro⟩ is in force.
    Inside the ⟨code⟩, you can use `# 1`, `# 2`, and so on to refer to
    the arguments give to ⟨macro⟩, while you can use `# # 1` to refer to
    the argument given to `\pgfplotstreampoint` itself (this will be the
    coordinate).

        \pgfdeclareplothandler{\myhandler}{#1}{
          point=\pgfpathcircle{##1}{#1} % ##1 is the coordinate,
                                        % #1 the parameter for \myhandler
        }
        \begin{pgfpicture}
          \myhandler{1pt}
          \pgfplotstreamstart
          \pgfplotstreampoint{\pgfpoint{0pt}{0pt}}
          \pgfplotstreampoint{\pgfpoint{3pt}{3pt}}
          \pgfplotstreampoint{\pgfpoint{6pt}{3pt}}
          \pgfplotstreampoint{\pgfpoint{9pt}{0pt}}
          \pgfplotstreamend
          \pgfusepath{stroke}
          \myhandler{3pt}
          \pgfplotstreamstart
          \pgfplotstreampoint{\pgfpoint{0pt}{0pt}}
          \pgfplotstreampoint{\pgfpoint{9pt}{0pt}}
          \pgfplotstreamend
          \pgfusepath{stroke}
        \end{pgfpicture}

    The ⟨code⟩ will also be called for `\pgfplotstreampointoutlier` when
    this command has been configured to `plot` the outliers.

-   `jump=`⟨code⟩ The ⟨code⟩ will be called whenever a jump has been
    requested indirectly via an outlier point, and undefined point, or a
    new data set (for each of which the command needs to be configured
    to `jump`). As always, inside the ⟨code⟩ you can access `# 1` and so
    on.

-   `special=`⟨code⟩ Causes ⟨code⟩ to be executed whenever
    `\pgfplotstreamspecial``{something}` is used. Inside the ⟨code⟩, you
    can access ⟨something⟩ via `# # 1` and the parameters of ⟨macro⟩ as
    `# 1`, `# 2`, and so on.

In addition to the above keys, there exist also "code macro versions" of
them:

-   `point macro=`⟨some macro⟩. Causes `\pgfplotstreampoint` to call
    ⟨some macro⟩ directly (actually, `\pgf@plotstreampoint` is set to be
    equal to ⟨some macro⟩). Inside the ⟨some macro⟩ you can use `# 1` to
    access the coordinate passed to `\pgfplotstreampoint` and you can no
    longer access the parameters passed to the original call to ⟨macro⟩
    that installed the handler. So, ⟨some macro⟩ must take exactly one
    argument, namely `# 1`.

-   `special macro=`⟨some macro⟩. As `point macro`, only for specials.

-   `start macro=`⟨some macro⟩. Causes ⟨some macro⟩ to be executed at
    the start. This macro, like the below ones, may not take any
    parameters and will not have access to the parameters passed to the
    original ⟨macro⟩.

-   `end macro=`⟨some macro⟩. As above.

-   `jump macro=`⟨some macro⟩. As above.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclareplothandler"
  },
  pgfdeclareplotmark = {
    arguments = {{meta = "plot mark name"}, {meta = "code"}},
    details = [[
Declares a plot mark for later used with the `\pgfuseplotmark` command.

    \pgfdeclareplotmark{my plot mark}
      {\pgfpathcircle{\pgfpoint{0cm}{1ex}}{1ex}\pgfusepathqstroke}
    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlermark{\pgfuseplotmark{my plot mark}}
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclareplotmark"
  },
  pgfdeclareradialshading = {
    arguments = {
      {delimiters = {"[", "]"}, meta = "color list", optional = true},
      {meta = "shading name"},
      {meta = "center point"},
      {meta = "color specification"}
    },
    details = [[
Declares a radial shading. A radial shading is a circle whose inner
color changes as specified by the color specification. Assuming that the
center of the shading is at the origin, the color of the center will be
the color specified for 0cm and the color of the border of the circle
will be the color for the maximum dimension given in the ⟨color
specified⟩. This maximum will also be the radius of the circle. If the
⟨center point⟩ is not at the origin, the whole shading inside the circle
(whose size remains exactly the same) will be distorted such that the
given center now has the color specified for 0cm. The effect of ⟨color
list⟩ is the same as for horizontal shadings.

    \pgfdeclareradialshading{sphere}{\pgfpoint{0.5cm}{0.5cm}}%
      {rgb(0cm)=(0.9,0,0);
       rgb(0.7cm)=(0.7,0,0);
       rgb(1cm)=(0.5,0,0);
       rgb(1.05cm)=(1,1,1)}
    \pgfuseshading{sphere}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclareradialshading"
  },
  pgfdeclareshape = {
    arguments = {{meta = "shape name"}, {meta = "shape specification"}},
    details = [[
This command declares a new shape named ⟨shape name⟩. The shape name can
later be used in commands like `\pgfnode`.

The ⟨shape specification⟩ is some TeX code containing calls to special
commands that are only defined inside the ⟨shape specification⟩
(similarly to commands like `\draw` that are only available inside the
`{tikzpicture}` environment).

Here is the code of the `coordinate` shape:

    \pgfdeclareshape{coordinate}
    {
      \savedanchor\centerpoint{%
        \pgf@x=.5\wd\pgfnodeparttextbox%
        \pgf@y=.5\ht\pgfnodeparttextbox%
        \advance\pgf@y by -.5\dp\pgfnodeparttextbox%
      }
      \anchor{center}{\centerpoint}
      \anchorborder{\centerpoint}
    }

The special commands are explained next. In the examples given for the
special commands a new shape will be constructed, which we might call
`simple rectangle`. It should behave like the normal rectangle shape,
only without bothering about the fine details like inner and outer
separations. The skeleton for the shape is the following.

    \pgfdeclareshape{simple rectangle}{
      ...
    }

The following example shows how a shape can be defined that relies
heavily on inheritance:

    \pgfdeclareshape{document}{
      \inheritsavedanchors[from=rectangle] % this is nearly a rectangle
      \inheritanchorborder[from=rectangle]
      \inheritanchor[from=rectangle]{center}
      \inheritanchor[from=rectangle]{north}
      \inheritanchor[from=rectangle]{south}
      \inheritanchor[from=rectangle]{west}
      \inheritanchor[from=rectangle]{east}
      % ... and possibly more
      \backgroundpath{% this is new
        % store lower right in xa/ya and upper right in xb/yb
        \southwest \pgf@xa=\pgf@x \pgf@ya=\pgf@y
        \northeast \pgf@xb=\pgf@x \pgf@yb=\pgf@y
        % compute corner of ``flipped page''
        \pgf@xc=\pgf@xb \advance\pgf@xc by-5pt % this should be a parameter
        \pgf@yc=\pgf@yb \advance\pgf@yc by-5pt
        % construct main path
        \pgfpathmoveto{\pgfpoint{\pgf@xa}{\pgf@ya}}
        \pgfpathlineto{\pgfpoint{\pgf@xa}{\pgf@yb}}
        \pgfpathlineto{\pgfpoint{\pgf@xc}{\pgf@yb}}
        \pgfpathlineto{\pgfpoint{\pgf@xb}{\pgf@yc}}
        \pgfpathlineto{\pgfpoint{\pgf@xb}{\pgf@ya}}
        \pgfpathclose
        % add little corner
        \pgfpathmoveto{\pgfpoint{\pgf@xc}{\pgf@yb}}
        \pgfpathlineto{\pgfpoint{\pgf@xc}{\pgf@yc}}
        \pgfpathlineto{\pgfpoint{\pgf@xb}{\pgf@yc}}
        \pgfpathlineto{\pgfpoint{\pgf@xc}{\pgf@yc}}
     }
    }\hskip-1.2cm
    \begin{tikzpicture}
      \node[shade,draw,shape=document,inner sep=2ex] (x) {Remark};
      \node[fill=yellow!80!black,draw,ellipse,double]
        at ([shift=(-80:3cm)]x) (y) {Use Case};

      \draw[dashed] (x) -- (y);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclareshape"
  },
  pgfdeclareverticalshading = {
    arguments = {
      {delimiters = {"[", "]"}, meta = "color list", optional = true},
      {meta = "shading name"},
      {meta = "shading width"},
      {meta = "color specification"}
    },
    details = [[
Declares a vertical shading named ⟨shading name⟩ of the specified
⟨width⟩. The height of the bar is deduced automatically. The effect of
⟨color list⟩ is the same as for horizontal shadings.

    \pgfdeclareverticalshading{myshadingC}
      {4cm}{rgb(0cm)=(1,0,0); rgb(1.5cm)=(0,1,0); rgb(2cm)=(0,0,1)}
    \pgfuseshading{myshadingC}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdeclareverticalshading"
  },
  pgfdecorateaftercode = {
    details = [[
Code executed as ⟨after code⟩, see the description of `\pgfdecorate`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecorateaftercode"
  },
  pgfdecoratebeforecode = {
    details = [[
Code executed as ⟨before code⟩, see the description of `\pgfdecorate`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratebeforecode"
  },
  pgfdecoratecurrentpath = {
    arguments = {{meta = "name"}},
    details = [[
Decorate the preexisting path with the decoration ⟨name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratecurrentpath"
  },
  pgfdecoratedangle = {
    details = [[
The angle of the tangent to the decorated path at the *origin* of the
current segment. The transformation matrix applied at the beginning of a
state includes a rotation equivalent to this angle.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratedangle"
  },
  pgfdecoratedcompleteddistance = {
    details = [[
The completed distance on the input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratedcompleteddistance"
  },
  pgfdecoratedinputsegmentcompleteddistance = {
    details = [[
The completed distance on the current input segment of the input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratedinputsegmentcompleteddistance"
  },
  pgfdecoratedinputsegmentlength = {
    details = [[
The length of the current input segment of the input path. "Current
input segment" refers to the input segment on which the current point
lies.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratedinputsegmentlength"
  },
  pgfdecoratedinputsegmentremainingdistance = {
    details = [[
The remaining distance on the current input segment of the input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratedinputsegmentremainingdistance"
  },
  pgfdecoratedpath = {
    details = [[
The (total) input path (that is, the path created by the environment
contents).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratedpath"
  },
  pgfdecoratedpathlength = {
    details = [[
The length of the input path. If the input path consists of several
input segments, this number is the sum of the lengths of the input
segments.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratedpathlength"
  },
  pgfdecoratedremainingdistance = {
    details = [[
The remaining distance on the input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratedremainingdistance"
  },
  pgfdecorateexistingpath = {
    details = [[
The preexisting path before the environment was entered.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecorateexistingpath"
  },
  pgfdecoratepath = {
    arguments = {{meta = "name"}, {meta = "path commands"}},
    details = [[
Decorate the path described by ⟨path commands⟩ with the decoration
⟨name⟩. This is equivalent to

    \pgfdecorate{{name}{\pgfdecoratedpathlength}
                 {\pgfdecoratebeforecode}{\pgfdecorateaftercode}}
      // the path commands.
    \endpgfdecorate
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecoratepath"
  },
  pgfdecorationpath = {
    details = [[
The output path. If the path is used, this macro contains only the last
unused part of the output path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdecorationpath"
  },
  pgfdvdeclarestylesheet = {
    arguments = {{meta = "name"}, {meta = "keys"}},
    details = [[
This command executes the ⟨keys⟩ with the path prefix
`/pgf/data visualization/style sheets/`⟨name⟩. The above definition of
the traffic light style sheet could be rewritten as follows:

    \pgfdvdeclarestylesheet{traffic light}{
      1/.style={green!50!black},
      2/.style={yellow!90!black},
      3/.style={red!80!black},
      default style/.style={black}
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfdvdeclarestylesheet"
  },
  pgferror = {
    arguments = {{meta = "message"}},
    details = [[
Stops the processing of the current document and prints out the
⟨message⟩. In LaTeX, this will be done using `\PackageError`, otherwise
`\errmessage` is used directly.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgferror"
  },
  pgfextra = {
    arguments = {{meta = "code"}},
    details = [[
This command may only be used inside a TikZ path. There it is used like
a normal path operation. The construction of the path is temporarily
suspended and the ⟨code⟩ is executed. Then, the path construction is
resumed.

    \newdimen\mydim
    \begin{tikzpicture}
      \mydim=1cm
      \draw (0pt,\mydim) \pgfextra{\mydim=2cm} -- (0pt,\mydim);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfextra"
  },
  pgfextractx = {
    arguments = {{meta = "dimension"}, {meta = "point"}},
    details = [[
Sets the TeX-⟨dimension⟩ to the $x$-coordinate of the point.

    \newdimen\mydim
    \pgfextractx{\mydim}{\pgfpoint{2cm}{4pt}}
    %% \mydim is now 2cm
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfextractx"
  },
  pgfextracty = {
    arguments = {{meta = "dimension"}, {meta = "point"}},
    details = [[
Like `\pgfextractx`, except for the $y$-coordinate.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfextracty"
  },
  pgffuncshadingcmyktogray = {
    details = [[
Within the ⟨type 4 function⟩ argument of  
texttt  
textbackslash pgfdeclarefunctionalshading, this command can be used to
convert the top 4 elements on the stack from CMYK to grayscale. In
combination with the  
texttt  
textbackslash ifpgfshadingmodelgray conditional this macro can be used
to make functional shading declarations more portable across color
models.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgffuncshadingcmyktogray"
  },
  pgffuncshadingcmyktorgb = {
    details = [[
Within the ⟨type 4 function⟩ argument of  
texttt  
textbackslash pgfdeclarefunctionalshading, this command can be used to
convert the top 4 elements on the stack from CMYK to RGB. In combination
with the  
texttt  
textbackslash ifpgfshadingmodelrgb conditional this macro can be used to
make functional shading declarations more portable across color models.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgffuncshadingcmyktorgb"
  },
  pgffuncshadinggraytocmyk = {
    details = [[
Within the ⟨type 4 function⟩ argument of  
texttt  
textbackslash pgfdeclarefunctionalshading, this command can be used to
convert the top element on the stack from grayscale to CMYK. In
combination with the  
texttt  
textbackslash ifpgfshadingmodelcmyk conditional this macro can be used
to make functional shading declarations more portable across color
models.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgffuncshadinggraytocmyk"
  },
  pgffuncshadinggraytorgb = {
    details = [[
Within the ⟨type 4 function⟩ argument of  
texttt  
textbackslash pgfdeclarefunctionalshading, this command can be used to
convert the top element on the stack from grayscale to RGB. In
combination with the  
texttt  
textbackslash ifpgfshadingmodelrgb conditional this macro can be used to
make functional shading declarations more portable across color models.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgffuncshadinggraytorgb"
  },
  pgffuncshadingrgbtocmyk = {
    details = [[
Within the ⟨type 4 function⟩ argument of  
texttt  
textbackslash pgfdeclarefunctionalshading, this command can be used to
convert the top 3 elements on the stack from RGB to CMYK. In combination
with the  
texttt  
textbackslash ifpgfshadingmodelcmyk conditional this macro can be used
to make functional shading declarations more portable across color
models.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgffuncshadingrgbtocmyk"
  },
  pgffuncshadingrgbtogray = {
    details = [[
Within the ⟨type 4 function⟩ argument of  
texttt  
textbackslash pgfdeclarefunctionalshading, this command can be used to
convert the top 3 elements on the stack from RGB to grayscale. In
combination with the  
texttt  
textbackslash ifpgfshadingmodelgray conditional this macro can be used
to make functional shading declarations more portable across color
models.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgffuncshadingrgbtogray"
  },
  pgfgaliasid = {
    arguments = {{meta = "1"}, {meta = "2"}},
    details = [[
Like `\pgfaliasid`, only the alias is set globally.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgaliasid"
  },
  pgfgdaddspecificationhook = {
    arguments = {{meta = "code"}},
    details = [[
This command adds the ⟨code⟩ to the code that is executed whenever a
graph drawing scope starts. For instance, the TikZ library
`graphdrawing` uses this macro to add some ⟨code⟩ that will redirect the
`edge` and `edge from parent` path commands to `\pgfgdedge`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdaddspecificationhook"
  },
  pgfgdbegineventgroup = {
    arguments = {{meta = "parameter"}},
    details = [[
Starts an event group. This just means that an `Event` of kind `begin`
is created with the given ⟨parameter⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdbegineventgroup"
  },
  pgfgdbeginlayout = {
    details = [[
This command first starts a new TeX scope and then informs the display
layer that a new (sub)layout should be started. For each graph there may
be a hierarchy of layouts, each of which contains a certain number of
vertices and edges. This hierarchy is created through calls to this
macros and the corresponding calls of `\pgfgdendlayout`. For each graph
drawing scope there has to be exactly one main layout that encompasses
all nodes and edges and also all sublayouts. Thus, after a graph drawing
scope has been opened, a layout scope also needs to be opened almost
immediately.

For each layout created via this macro, a graph drawing algorithm will
be run later on the subgraph of all nodes that make up the layout. Which
algorithm is run for the layout is dictated by which layout key (one of
the `... layout` keys) is "in force" when the macro is called. Thus,
using a layout key for selecting an algorithm must always be done
*before* the layout is started. (However, see the discussion of layout
keys in the next subsection for more details on what really happens.)

A vertex can be part of several layouts, either because they are nested
or because they overlap (this happens when a node is later on added to
another layout by calling `\pgfgdsetlatenodeoption`). This means that it
is not immediately obvious how conflicts arising from the different ways
different algorithms "would like to place nodes" should be resolved. The
method for this resolving is detailed in Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdbeginlayout"
  },
  pgfgdbeginscope = {
    details = [[
This macro starts a TeX scope inside which the following things happen:

1.  The display layer method `beginGraphDrawingScope` is called, which
    created a new graph drawing scope inside the graph drawing system
    and places it on top of an internal stack. From now on, all
    subsequent interface calls will refer to this scope until
    `\pgfgdendscope` is called, which will pop the scope once more.

2.  Inside the TeX scope, nodes are not placed immediately. Rather,
    `\pgfpositionnodelater`, see Section ??, is used to call
    `InterfaceToDisplay.createVertex` for all nodes created inside the
    scope. This will cause them to be put inside some internal table.

3.  Some additional ⟨code⟩ is executed, which has been set using the
    following command:

4.  `\pgftransformreset` is called.

5.  The following TeX-if is set to true:

    Will be true inside a graph drawing scope.

The above has a number of consequences for what can happen inside a
graph drawing scope:

-   Since nodes are not actually created before the end of the scope,
    you cannot reference these nodes. Thus, you cannot write

        \tikz [spring layout] {
          \node (a) {a};
          \node (b) {b};
          \draw (a) -- (b);
        }

    The problem is that we cannot connect `(a)` and `(b)` via a straight
    line since these nodes do not exist at that point (they are
    available only deeply inside the Lua).

-   In order to create edges between nodes inside a graph drawing scope,
    you need to call the `\pgfgdedge` command, described below.

Additionally, when TikZ is used, the following things also happen:

-   If the `graphs` library has been loaded, the default positioning
    mechanisms of this library are switched off, leaving the positioning
    to the graph drawing engine. Also, when an edge is created by the
    `graphs` library, this is signalled to the `graphdrawing` library.
    (To be more precise: The keys `new ->` and so on are redefined so
    that they call `\pgfgdedge` instead of creating an edge.

-   The `edge` path command is modified so that it also calls
    `\pgfgdedge` instead of immediately creating any edges.

-   The `edge from parent` path command is modified so that is also
    calls `\pgfgdedge`.

-   The keys `append after command` and `prefix after command` keys are
    modified so that they are executed only via `late options` when the
    node has "reached its final parking position".

Note that inside a graph drawing scope you first have to open a (main)
layout scope (using the `\pgfgdbeginlayout` command described later on)
before you can add nodes and edges to the scope.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdbeginscope"
  },
  pgfgdedge = {
    arguments = {
      {meta = "first node"},
      {meta = "second node"},
      {meta = "edge direction"},
      {meta = "edge options"},
      {meta = "edge nodes"}
    },
    details = [[
This command is used to tell the graph drawing engine that there is an
edge between ⟨first node⟩ and ⟨second node⟩ in your graph. The "kind" of
connection is indicated by ⟨direction⟩, which may be one of the
following:

-   `->` indicates a directed edge (also known as an arc) from ⟨first
    node⟩ to ⟨second node⟩.

-   `–` indicates an undirected edge between ⟨first node⟩ and ⟨second
    node⟩,

-   `<-` indicates a directed edge from ⟨second node⟩ to ⟨first node⟩,
    but with the "additional hint" that this is a "backward" edge. A
    graph drawing algorithm may or may not take this hint into account.

-   `<->` indicates a bi-directed edge between ⟨first node⟩ and ⟨second
    node⟩.

-   `-!-` indicates that the edge from ⟨first node⟩ to ⟨second node⟩ is
    "missing".

Note that in all cases, the syntactic digraph will contain an arc from
⟨first node⟩ to ⟨second node⟩, regardless of the value of ⟨direction⟩.
The ⟨direction⟩ is "just" a "semantic annotation".

The parameters ⟨edge options⟩ and ⟨edge nodes⟩ are a bit more tricky.
When an edge between two vertices of a graph is created via
`\pgfgdedge`, nothing is actually done immediately. After all, without
knowing the final positions of the nodes ⟨first node⟩ and ⟨second node⟩,
there is no way of creating the actual drawing commands for the edge.
Thus, the actual drawing of the edge is done only when the graph drawing
algorithm is done (namely in the macro `\pgfgdedgecallback`, see later).

Because of this "delayed" drawing of edges, options that influence the
edge must be retained until the moment when the edge is actually drawn.
Parameters ⟨edge options⟩ and ⟨edge nodes⟩ store such options.

Let us start with ⟨edge options⟩. This parameter should be set to a list
of key--value pairs like

    /tikz/.cd, color=red, very thick, orient=down

Some of these options may be of interest to the graph drawing algorithm
(like the last option) while others will only be important during the
drawing of edge (like the first option). The options that are important
for the graph drawing algorithm must be pushed onto the graph drawing
system's option stack.

The tricky part is that options that are of interest to the graph
drawing algorithm must be executed *before* the algorithm starts, but
the options as a whole are usually only executed during the drawing of
the edges, which is *after* the algorithm has finished. To overcome this
problem, the following happens:

The options in ⟨edge options⟩ are executed "tentatively" inside
`\pgfgdedge`. However, this execution is done in a "heavily guarded
sandbox" where all effects of the options (like changing the color or
the line width) do not propagate beyond the sandbox. Only the changes of
the graph drawing edge parameters leave the sandbox. These parameters
are then passed down to the graph drawing system.

Later, when the edge is drawn using `\pgfgdedgecallback`, the options
⟨edge options⟩ are available once more and then they are executed
normally.

Note that when the options in ⟨edge options⟩ are executed, no path is
preset. Thus, you typically need to start it with, say, `/tikz/.cd`.
Also note that the sandbox is not perfect and changing global values
will have an effect outside the sandbox. Indeed, "putting things in a
sandbox" just means that the options are executed inside a TeX scope
inside an interrupted path inside a TeX box that is thrown away
immediately.

The text in ⟨edge nodes⟩ is some "auxiliary" text that is simply stored
away and later directed to `\pgfgdedgecallback`. This is used for
instance by TikZ to store its node labels.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdedge"
  },
  pgfgdendeventgroup = {
    details = [[
Ends an event group. This is done by adding an event of kind `end`
without any parameters to the event string.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdendeventgroup"
  },
  pgfgdendlayout = {
    details = [[
This command ends the TeX scope of the current layout. Once closed, no
nodes or edges can be added to a layout.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdendlayout"
  },
  pgfgdendscope = {
    details = [[
This macro is used to end a graph drawing scope. It must be given on the
same TeX grouping level as the corresponding `\pgfgdbeginscope`. When
the macro is called, it triggers a lot of new calls:

1.  The special treatment of newly created boxes is ended. Nodes are
    once more created normally.

2.  The effects of the ⟨code⟩ that was inserted via the specification
    hook command also ends (provided it had no global effects).

3.  We call `InterfaceToDisplay.runGraphDrawingAlgorithm`. This will
    cause the algorithm(s) for the graph to be executed (since a graph
    can have sublayouts, several algorithms may be run). See Section ??
    below.

4.  Next, we call `InterfaceToDisplay.endGraphDrawingScope`. This causes
    all nodes that were intercepted during the graph drawing scope to be
    reinserted into the output stream at the positions that were
    computed for them. Also, for each edge that was requested via
    `\pgfgdedge`, the callback macro is called (see below).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdendscope"
  },
  pgfgdevent = {
    arguments = {{meta = "kind"}, {meta = "parameter"}},
    details = [[
Calls `createEvent` of the graph drawing system's interface class. This
creates a new `Event` object on the Lua layer whose `kind` field is set
to ⟨kind⟩ and the `parameters` field to ⟨parameter⟩. You must be inside
a graph drawing scope to use this command.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdevent"
  },
  pgfgdeventgroup = {
    arguments = {{meta = "parameters"}},
    details = [[
Starts an event group just like `\pgfgdbegineventgroup`, but adds a
corresponding closing `end` event at the end of the current TeX group
(using `\aftergroup`).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdeventgroup"
  },
  pgfgdsetedgecallback = {
    arguments = {{meta = "macro"}},
    details = [[
This command allows you to change the ⟨macro⟩ that gets called form
inside the graph drawing system at the end of the creation of a graph,
when the nodes have been positioned. The ⟨macro⟩ will be called once for
each edge with the following parameters:

> ⟨macro⟩`{first node}``{second node}``{direction}``{edge options}``{edge nodes}`  
> `{algorithm-generated options}``{bend information}``{animations}`

The first five parameters are the original values that were passed down
to the `\pgfgdedge` command.

The ⟨algorithm-generated options⟩ have been "computed by the algorithm".
For instance, an algorithm might have determined, say, flow capacities
for edges and it might now wish to communicate this information back to
the upper layers. These options should be executed with the path
`/graph drawing`.

The parameter ⟨bend information⟩ contains algorithmically-computed
information concerning how the edge should bend. This will be a text
like `(10pt,20pt)–(30pt,40pt)` in TikZ-syntax and may include the path
commands `–`, `..` (followed by Bézier coordinates), and `–cycle`.

The parameter ⟨animations⟩ contains algorithmically-generated animation
commands (calls to `\pgfanimateattribute`. The `whom` will be set to
`pgf@gd`.

The default ⟨macro⟩ simply draws a line between the nodes. When the
`graphdrawing` library of the TikZ layer is loaded, a more fancy ⟨macro⟩
is used that takes all of the parameters into account.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdsetedgecallback"
  },
  pgfgdsetlatenodeoption = {
    arguments = {{meta = "node name"}},
    details = [[
This command can only be called when the node named ⟨node name⟩ has
already been created inside the current graph drawing scope. The effect
of calling this macro will be that all options currently on the graph
drawing system's option stack will be added to the node's option,
possibly overwriting the original option settings. Furthermore, the node
will become part of all layouts currently on the option stack. This
means that you can use this command to add a node to several layouts
that are not included in one another.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdsetlatenodeoption"
  },
  pgfgdsetrequestcallback = {
    arguments = {{meta = "macro"}},
    details = [[
This command sets up ⟨macro⟩ as the macro that is called whenever a
layout key "requests" that a layout and, possibly, a graph drawing scope
is opened. When ⟨macro⟩ is called, it gets two parameters, the ⟨begin
code⟩ and the ⟨end code⟩. In addition to whatever setup the ⟨macro⟩
would like to do, it should execute the ⟨begin code⟩ at the beginning of
a TeX scope (the code will open graph drawing and layout scopes) and the
⟨end code⟩ at the end of the same TeX scope.

The need for this slightly strange macro arises from the fact that in
TikZ we often write things like `[spring layout,node sep=2cm]`. The
point is that when the `spring layout` key is executed, we do *not* wish
to open a layout scope immediately. Rather, this should happen only
after the option `nodes sep=2cm` has been executed. For this reason,
TikZ sets up a special ⟨macro⟩ that "delays" the execution of the ⟨begin
code⟩ until the end of the opening of the next scope.

Because of this, in TikZ layout keys can only be used as an option when
a TikZ scope is started. Thus, you can pass them to `\tikz`, to
`{tikzpicture}`, to `\scoped`, to `{scope}`, to `graph`, and to
`{graph}`. For instance, the `tree layout` option can be used in the
following ways:

    \tikz [tree layout] \graph        {1 -> {b,c}};
    \tikz \graph [tree layout]        {2 -> {b,c}};
    \tikz \path graph [tree layout]   {3 -> {b,c}};

    \begin{tikzpicture}[tree layout]
      \graph                          {4 -> {b,c}};
    \end{tikzpicture}

    \begin{tikzpicture}
      \scoped [tree layout] \graph    {5 -> {b,c}};

      \begin{scope}[tree layout, xshift=1.5cm]
        \graph                        {6 -> {b,c}};
      \end{scope}
    \end{tikzpicture}

You can *not* use layout keys with a single node or on a path. In
particular, to typeset a tree given in the `child` syntax somewhere
inside a `{tikzpicture}`, you must prefix it with the `\scoped` command:

    \begin{tikzpicture}
      \scoped [tree layout]
        \node {root}
        child { node {left child} }
        child { node {right child} };
    \end{tikzpicture}

Naturally, the above could have been written more succinctly as

    \tikz [tree layout]
      \node {root}
      child { node {left child} }
      child { node {right child} };

Or even more succinctly:

    \tikz \graph [tree layout] { root -- {left child, right child} };
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdsetrequestcallback"
  },
  pgfgdsubgraphnode = {
    arguments = {{meta = "name"}, {meta = "node options"}, {meta = "node text"}},
    details = [[
A subgraph node is a node that "surrounds" the nodes of a subgraph. The
special property of a subgraph node opposed to a normal node is that it
is created only after the subgraph has been laid out. However, the
difference to a collection like `hyper` is that the node is available
immediately as a normal node in the sense that you can connect edges to
it.

What happens internally is that subgraph nodes get "registered"
immediately both on the PGF level and on the Lua level, but the actual
node is only created inside the layout pipeline using a callback. The
actual node creation happens when the innermost layout in which the
subgraph node is declared has finished.

When you create a subgraph node using this macro, you also start a
collection (of an internal kind) that stores the subgraph. All following
nodes in the current TeX scope will become part of this collection.

The ⟨name⟩ is the node name by which you can refer to this node in the
following. The ⟨node options⟩ are normal PGF options (like `red` or
`draw` or `circle`) that will influence the appearance when it is
created later on. The ⟨node text⟩ is the text that will be passed to
`\pgfnode` upon creation of the node.

See `InterfaceToDisplay.pushSubgraphVertex` for more details.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgdsubgraphnode"
  },
  pgfgetlastxy = {
    arguments = {{meta = "macro for $x$"}, {meta = "macro for $y$"}},
    details = [[
Stores the most recently used $(x,y)$ coordinates into two macros.

    \pgfpoint{2cm}{4cm}
    \pgfgetlastxy{\macrox}{\macroy}
    Macro $x$ is `\macrox' and macro $y$ is `\macroy'.

Since $(x,y)$ coordinates are usually assigned globally, it is safe to
use this command after path operations.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgetlastxy"
  },
  pgfgettransform = {
    arguments = {{meta = "macro"}},
    details = [[
This command will (locally) define ⟨macro⟩ to a representation of the
current coordinate transformation matrix. This matrix can later on be
reinstalled using `\pgfsettransform`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgettransform"
  },
  pgfgettransformentries = {
    arguments = {
      {meta = "macro for a"},
      {meta = "macro for b"},
      {meta = "macro for c"},
      {meta = "macro for d"},
      {meta = "macro for shift x"},
      {meta = "macro for shift y"}
    },
    details = [[
This command is similar to `\pgfgettransform` except that it stores the
current coordinate transformation matrix in a set of six macros.

The matrix can later on be reinstalled using `\pgfsettransformentries`.
Furthermore, all these macros (or just a few of them) can be used as
arguments for `\pgftransformcm`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfgettransformentries"
  },
  pgfhorizontaltransformationadjustment = {
    details = [[
When you scale the length of a horizontal line by this factor in the
current transformation, you compensate for the scaling. Formally, it is
$1/\\texttt{\textbackslash mathit\{transform\}(1,0)\textbackslash }_2$,
where $\mathit{transform}$ applies the current transformations matrix to
the given number.

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (2,2);
      \begin{scope}[xscale=2,thick]
        \draw [red] (1,1) -- ++(1,0);

        \pgftransformationadjustments
        \draw [blue] (1,0) -- ++(\pgfhorizontaltransformationadjustment,0);
      \end{scope}
    \end{tikzpicture}

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (2,2);
      \begin{scope}[xscale=2,thick,rotate=90]
        \draw [red] (1,1) -- ++(1,0);

        \pgftransformationadjustments
        \draw [blue] (1,0) -- ++(\pgfhorizontaltransformationadjustment,0);
      \end{scope}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfhorizontaltransformationadjustment"
  },
  pgfidrefnextuse = {
    arguments = {{meta = "macro"}, {meta = "name"}},
    details = [[
This command assigns a system layer identifier (the identifier returned
by `\pgfsys@new@id`) to the ⟨macro⟩, namely the one that will be used
the *next* time `\pgfuseid` is used. You use this command for "forward
referencing".

A typical use case is the following: A key like `whom` for animations
uses this command to get the system identifier that will be used for a
future object. Then, this identifier can be passed to system layer
commands like `\pgfsys@animation@whom`.

Note that the "next" use need not be on the same page (or there may not
even be any use at all), in which case the reference will not refer to
any object.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfidrefnextuse"
  },
  pgfidrefprevuse = {
    arguments = {{meta = "macro"}, {meta = "name"}},
    details = [[
Works like `\pgfidrefnextuse`, only it references the most recent
*previous* use of the ⟨name⟩. As for `\pgfidrefnextuse`, the most recent
use need not be on the same page.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfidrefprevuse"
  },
  pgfifidreferenced = {
    arguments = {{meta = "name"}, {meta = "then code"}, {meta = "else code"}},
    details = [[
If ⟨name⟩ has been referenced, ⟨then code⟩ is executed, otherwise ⟨else
code⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfifidreferenced"
  },
  pgfimage = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:pgf#/keys/pgf",
        meta = "options",
        optional = true
      },
      {meta = "filename"}
    },
    details = [[
Declares the image under the name `pgflastimage` and immediately uses
it. You can "save" the image for later usage by invoking
`\pgfaliasimage` on `pgflastimage`.

    \begin{colormixin}{25!white}
    \begin{pgfpicture}
      \pgftext[at=\pgfpoint{1cm}{5cm},left,base]
        {\pgfimage[interpolate=true,width=1cm,height=1cm]{brave-gnu-world-logo}}
      \pgftext[at=\pgfpoint{1cm}{3cm},left,base]
        {\pgfimage[interpolate=true,width=1cm]{brave-gnu-world-logo}}
      \pgftext[at=\pgfpoint{1cm}{1cm},left,base]
        {\pgfimage[interpolate=true,height=1cm]{brave-gnu-world-logo}}

      \pgfpathrectangle{\pgfpoint{1cm}{5cm}}{\pgfpoint{1cm}{1cm}}
      \pgfpathrectangle{\pgfpoint{1cm}{3cm}}{\pgfpoint{1cm}{1cm}}
      \pgfpathrectangle{\pgfpoint{1cm}{1cm}}{\pgfpoint{1cm}{1cm}}
      \pgfusepath{stroke}
    \end{pgfpicture}
    \end{colormixin}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfimage"
  },
  pgfintersectionofpaths = {
    arguments = {{meta = "path 1"}, {meta = "path 2"}},
    details = [[
This command finds the intersection points on the paths ⟨path 1⟩ and
⟨path 2⟩. The number of intersection points ("solutions") that are found
will be stored, and each point can be accessed afterward. The code for
⟨path 1⟩ and ⟨path 2⟩ is executed within a TeX group and so can contain
transformations (which will be in addition to any existing
transformations). The code should not use the path in any way, unless
the path is saved first and restored afterward. PGF will regard
solutions as "a bit special", in that the points returned will be
"absolute" and unaffected by any further transformations.

    \begin{pgfpicture}
    \pgfintersectionofpaths
    {
      \pgfpathellipse{\pgfpointxy{0}{0}}{\pgfpointxy{1}{0}}{\pgfpointxy{0}{2}}
      \pgfgetpath\temppath
      \pgfusepath{stroke}
      \pgfsetpath\temppath
    }
    {
      \pgftransformrotate{-30}
      \pgfpathrectangle{\pgfpointorigin}{\pgfpointxy{2}{2}}
      \pgfgetpath\temppath
      \pgfusepath{stroke}
      \pgfsetpath\temppath
    }
    \foreach \s in {1,...,\pgfintersectionsolutions}
      {\pgfpathcircle{\pgfpointintersectionsolution{\s}}{2pt}}
    \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfintersectionofpaths"
  },
  pgfintersectionsolutions = {
    details = [[
After using the `\pgfintersectionofpaths` command, this TeX-macro will
indicate the number of solutions found.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfintersectionsolutions"
  },
  pgfintersectionsortbyfirstpath = {
    details = [[
Using this command will mean the solutions will be sorted along ⟨path
1⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfintersectionsortbyfirstpath"
  },
  pgfintersectionsortbysecondpath = {
    details = [[
Using this command will mean the solutions will be sorted along ⟨path
2⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfintersectionsortbysecondpath"
  },
  pgfkeys = {
    arguments = {{meta = "key list"}},
    details = [[
The ⟨key list⟩ should be a list of key--value pairs, separated by
commas. A key--value pair can have the following two forms:
⟨key⟩`=`⟨value⟩ or just ⟨key⟩. Any spaces around the ⟨key⟩ or around the
⟨value⟩ are removed. It is permissible to surround both the ⟨key⟩ or the
⟨value⟩ in curly braces, which are also removed. Especially putting the
⟨value⟩ in curly braces needs to be done quite often, namely whenever
the ⟨value⟩ contains an equal-sign or a comma.

The key--value pairs in the list are handled in the order they appear.
How this handling is done, exactly, is described in the rest of this
section.

If a ⟨key⟩ is a partial key, the current value of the default path is
prefixed to the ⟨key⟩ and this "upgraded" key is then used. The default
path is just the root path `/` when the first key is handled, but it may
change later on. At the end of the command, the default path is reset to
the value it had before this command was executed.

Calls of this command may be nested. Thus, it is permissible to call
`\pgfkeys` inside the code that is executed for a key. Since the default
path is restored after a call of `\pgfkeys`, the default path will not
change when you call `\pgfkeys` while executing code for a key (which is
exactly what you want).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeys"
  },
  pgfkeysactivatefamilies = {
    arguments = {{meta = "family list"}, {meta = "deactivate macro name"}},
    details = [[
Activates each family in ⟨family list⟩ and creates a macro ⟨deactivate
macro name⟩ which deactivates each family in ⟨family list⟩.

    \pgfkeysactivatefamilies{/family 1,/family 2,/family 3}{\deactivatename}
    \pgfkeysfiltered{foo,bar}
    \deactivatename
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysactivatefamilies"
  },
  pgfkeysactivatefamiliesandfilteroptions = {
    arguments = {{meta = "family list"}, {meta = "key--value-list"}},
    details = [[
A simple shortcut macro which activates any family in the comma
separated `{family list}`, invokes `\pgfkeysfiltered`⟨key--value-list⟩
and deactivates the families afterwards.

Please note that you will need to install a family key filter, otherwise
family activation has no effect.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysactivatefamiliesandfilteroptions"
  },
  pgfkeysactivatefamily = {
    arguments = {{meta = "family name"}},
    details = [[
Equivalent to `\pgfkeys{`⟨family name⟩`/.activate family}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysactivatefamily"
  },
  pgfkeysactivatesinglefamilyandfilteroptions = {
    arguments = {{meta = "family name"}, {meta = "key--value-list"}},
    details = [[
A shortcut macro which activates a single family and invokes
`\pgfkeysfiltered`.

Please note that you will need to install a family key filter, otherwise
family activation has no effect.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysactivatesinglefamilyandfilteroptions"
  },
  pgfkeysalso = {
    arguments = {{meta = "key list"}},
    details = [[
This command has exactly the same effect as `\pgfkeys`, only the default
path is not modified before or after the keys are being set. This
command is mainly intended to be called by the code that is being
processed for a key.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysalso"
  },
  pgfkeysalsofiltered = {
    arguments = {{meta = "key--value-list"}},
    details = [[
This command works as `\pgfkeysfiltered`, but it does not change the
current default path. See the documentation of `\pgfkeysalso` for more
details.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysalsofiltered"
  },
  pgfkeysalsofilteredfrom = {
    arguments = {{meta = "macro"}},
    details = [[
A variant of `\pgfkeysalsofiltered` which loads its key list from
`{macro}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysalsofilteredfrom"
  },
  pgfkeysalsofrom = {
    arguments = {{meta = "macro"}},
    details = [[
A variant of `\pgfkeysalso` which loads its key list from `{macro}`.

It is useful in conjunction with the
`/pgf/key filter handlers/append filtered to=`⟨macro⟩ handler.

The following example uses the same settings as in the intro section ??.

    \pgfkeys{/pgf/key filter handlers/append filtered to/.install key filter handler=\remainingoptions}
    \def\remainingoptions{}
    \pgfkeysfiltered{/my group/A1=a1, /my group/A2=a2,
     /my group/B=b,  /my group/C=c, /tikz/color=blue, /my group/A3=a3}

    Remaining: `\remainingoptions'.
    \pgfkeysalsofrom{\remainingoptions}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysalsofrom"
  },
  pgfkeysdeactivatefamily = {
    arguments = {{meta = "family name"}},
    details = [[
Equivalent to `\pgfkeys{`⟨family name⟩`/.deactivate family}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysdeactivatefamily"
  },
  pgfkeysdef = {
    arguments = {{meta = "key"}, {meta = "code"}},
    details = [[
This command temporarily defines a TeX-macro with the argument list
`# 1\pgfeov` and then lets ⟨key⟩`/.@cmd` be equal to this macro. The net
effect of all this is that you have then set up code for the key ⟨key⟩
so that when you write `\pgfkeys{`⟨key⟩`=`⟨value⟩`}`, then the ⟨code⟩ is
executed with all occurrences of `# 1` in ⟨code⟩ being replaced by
⟨value⟩. (This behavior is quite similar to the `\define@key` command of
`keyval` and `xkeyval`).

    \pgfkeysdef{/my key}{#1, #1.}
    \pgfkeys{/my key=hello}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysdef"
  },
  pgfkeysdefargs = {
    arguments = {{meta = "key"}, {meta = "argument pattern"}, {meta = "code"}},
    details = [[
This command works like `\pgfkeysdefnargs`, but it allows you to provide
an arbitrary ⟨argument pattern⟩ rather than just a number of arguments.

    \pgfkeysdefargs{/my key}{#1+#2}{\def\a{#1}\def\b{#2}}
    \pgfkeys{/my key=hello+world}

    |\a| is \a, |\b| is \b.

Note that `\pgfkeysdefnargs` is *better* when it comes to simple
argument *counts*[1].

[1] When the resulting keys are used, the `defnargs` variant allows
spaces between arguments whereas the `defargs` variant does not; it
considers the spaces as part of the argument.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysdefargs"
  },
  pgfkeysdefnargs = {
    arguments = {{meta = "key"}, {meta = "argument count"}, {meta = "code"}},
    details = [[
This command works like `\pgfkeysdef`, but it allows you to provide an
arbitrary ⟨argument count⟩ between $0$ and $9$ (inclusive).

    \pgfkeysdefnargs{/my key}{2}{\def\a{#1}\def\b{#2}}
    \pgfkeys{/my key=
        {hello}
        {world}}

    |\a| is `\a', |\b| is `\b'.

The resulting key will expect exactly `{argument count}` arguments.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysdefnargs"
  },
  pgfkeysedef = {
    arguments = {{meta = "key"}, {meta = "code"}},
    details = [[
This command works like `\pgfkeysdef`, but it uses `\edef` rather than
`\def` when defining the key macro. If you do not know the difference
between the two, then you will not need this command; and if you know
the difference, then you will know when you need this command.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysedef"
  },
  pgfkeysedefargs = {
    arguments = {{meta = "key"}, {meta = "argument pattern"}, {meta = "code"}},
    details = [[
The `\edef` version of `\pgfkeysdefargs`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysedefargs"
  },
  pgfkeysedefnargs = {
    arguments = {{meta = "key"}, {meta = "argument count"}, {meta = "code"}},
    details = [[
The `\edef` version of `\pgfkeysdefnargs`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysedefnargs"
  },
  pgfkeysevalkeyfilterwith = {
    arguments = {{meta = "full key"}, {literal = "="}, {meta = "filter arguments"}},
    details = [[
Evaluates a fully qualified key filter ⟨full key⟩ with argument(s)
⟨filter arguments⟩.

    \pgfkeysevalkeyfilterwith{/pgf/key filters/equals=/tikz}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysevalkeyfilterwith"
  },
  pgfkeysfiltered = {
    arguments = {{meta = "key--value-list"}},
    details = [[
Processes all options in exactly the same way as
`\pgfkeys``{key–value-list}`, but a key filter is considered as soon as
key identification is complete.

The key filter tells `\pgfkeysfiltered` whether it should continue to
apply the current option (return value is 'true') or whether something
different shall be done (filter returns 'false').

There is exactly one key filter in effect, and it is installed by the
`.install key filter` handler or by `\pgfkeysinstallkeyfilter`.

If the key filter returns 'false', a unique key filter handler gets
control. This handler is installed by the `.install key filter handler`
method and has access to the key's full name, value and (possibly) path.

Key filtering applies to any (possibly nested) call to `\pgfkeys`,
`\pgfkeysalso`, `\pgfqkeys` and `\pgfqkeysalso` during the evaluation of
`{key–value-list}`. It does *not* apply to routines like
`\pgfkeyssetvalue` or `\pgfkeysgetvalue`. Furthermore, keys belonging to
`/errors` are always processed. Key filtering routines can't be nested:
you can't combine different key filters automatically.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysfiltered"
  },
  pgfkeysgetfamily = {
    arguments = {{meta = "full key"}, {meta = "resultmacro"}},
    details = [[
Returns the family associated to a ⟨full key⟩ into macro ⟨resultmacro⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysgetfamily"
  },
  pgfkeysgetvalue = {
    arguments = {{meta = "full key"}, {meta = "macro"}},
    details = [[
Retrieves the tokens stored in the ⟨full key⟩ and lets ⟨macro⟩ be equal
to these tokens. If the key has not been set, the ⟨macro⟩ will be equal
to `\relax`.

    \pgfkeyssetvalue{/my family/my key}{Hello, world!}
    \pgfkeysgetvalue{/my family/my key}{\helloworld}
    \helloworld
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysgetvalue"
  },
  pgfkeysifdefined = {
    arguments = {{meta = "full key"}, {meta = "if"}, {meta = "else"}},
    details = [[
Checks whether this key was previously set using either
`\pgfkeyssetvalue` or `\pgfkeyslet`. If so, the code in ⟨if⟩ is
executed, otherwise the code in ⟨else⟩.

This command will use eTeX's `\ifcsname` command, if available, for
efficiency. This means, however, that it may behave differently for
TeX and for eTeX when you set keys to `\relax`. For this reason you
should not do so.

    \pgfkeyssetvalue{/my family/my key}{Hello, world!}
    \pgfkeysifdefined{/my family/my key}{yes}{no}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysifdefined"
  },
  pgfkeysiffamilydefined = {
    arguments = {{meta = "family"}, {meta = "true case"}, {meta = "false case"}},
    details = [[
Checks whether the full key ⟨family⟩ is a family and executes either
⟨true case⟩ or ⟨false case⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysiffamilydefined"
  },
  pgfkeysinstallkeyfilter = {
    arguments = {{meta = "full key"}, {meta = "optional arguments"}},
    details = [[
The command `\pgfkeysinstallkeyfilter{`⟨full key⟩`}{`⟨optional
arguments⟩`}` has the same effect as `\pgfkeys{`⟨full
key⟩`/.install key filter={`⟨optional arguments⟩`}}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysinstallkeyfilter"
  },
  pgfkeysinstallkeyfilterhandler = {
    arguments = {{meta = "full key"}, {meta = "optional arguments"}},
    details = [[
The command `\pgfkeysinstallkeyfilterhandler{`⟨full key⟩`}{`⟨optional
arguments⟩`}` has the same effect as `\pgfkeys{`⟨full
key⟩`/.install key filter handler={`⟨optional arguments⟩`}}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysinstallkeyfilterhandler"
  },
  pgfkeysisfamilyactive = {
    arguments = {{meta = "family"}},
    details = [[
Sets the TeX-boolean `\ifpgfkeysfiltercontinue` to whether ⟨family⟩ is
active or not.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysisfamilyactive"
  },
  pgfkeyslet = {
    arguments = {{meta = "full key"}, {meta = "macro"}},
    details = [[
Performs a `\let` statement so the ⟨full key⟩ points to the contents of
⟨macro⟩.

    \def\helloworld{Hello, world!}
    \pgfkeyslet{/my family/my key}{\helloworld}
    \pgfkeysvalueof{/my family/my key}

You should never let a key be equal to `\relax`. Such a key may or may
not be indistinguishable from an undefined key.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeyslet"
  },
  pgfkeyssavekeyfilterstateto = {
    arguments = {{meta = "macro"}},
    details = [[
Creates `{macro}` which contains commands to re-activate the current key
filter and key filter handler. It can be used to temporarily switch the
key filter.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeyssavekeyfilterstateto"
  },
  pgfkeyssetevalue = {
    arguments = {{meta = "full key"}, {meta = "token text"}},
    details = [[
The `\edef` version of `\pgfkeyssetvalue`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeyssetevalue"
  },
  pgfkeyssetfamily = {
    arguments = {{meta = "full key"}, {meta = "family"}},
    details = [[
The command `\pgfkeyssetfamily``{full key}``{family}` has the same
effect as `\pgfkeys{`⟨full key⟩`/.belongs to family=``{family}``}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeyssetfamily"
  },
  pgfkeyssetvalue = {
    arguments = {{meta = "full key"}, {meta = "token text"}},
    details = [[
Stores the ⟨token text⟩ in the ⟨full key⟩. The ⟨full key⟩ may not be a
partial key, so no default-path-adding is done. The ⟨token text⟩ can be
arbitrary tokens and may even contain things like `# ` or unbalanced
TeX-ifs.

    \pgfkeyssetvalue{/my family/my key}{Hello, world!}
    \pgfkeysvalueof{/my family/my key}

The setting of a key is always local to the current TeX group.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeyssetvalue"
  },
  pgfkeysvalueof = {
    arguments = {{meta = "full key"}},
    details = [[
Inserts the value stored in ⟨full key⟩ at the current position into the
text.

    \pgfkeyssetvalue{/my family/my key}{Hello, world!}
    \pgfkeysvalueof{/my family/my key}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfkeysvalueof"
  },
  pgflibraryfpuifactive = {
    arguments = {{meta = "true-code"}, {meta = "false-code"}},
    details = [[
This command can be used to execute either ⟨true-code⟩ or ⟨false-code⟩,
depending on whether the FPU has been activated or not.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflibraryfpuifactive"
  },
  pgflindenmayersystem = {
    arguments = {{meta = "name"}, {meta = "axiom"}, {meta = "order"}},
    details = [[
Runs the L-system called ⟨name⟩ using the input string ⟨axiom⟩ for
⟨order⟩ iterations. In general, prior to calling this command, the
transformation matrix should be set appropriately for shifting and
rotating, and a move-to to the (transformed) origin should be executed.
This origin will be where the L-system starts. In addition, the relevant
keys should be set appropriately.

    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \pgfset{lindenmayer system/.cd, angle=60, step=2pt}
      \foreach \x/\y in {0cm/1cm, 1.5cm/1.5cm, 2.5cm/0.5cm, 1cm/0cm}{
        \pgftransformshift{\pgfqpoint{\x}{\y}}
        \pgfpathmoveto{\pgfpointorigin}
        \pgflindenmayersystem{Koch curve}{F++F++F}{2}
        \pgfusepath{stroke}
      }
    \end{tikzpicture}

Note that it is perfectly feasible for an L-system to define special
symbols which perform the move-to and use-path operations.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflindenmayersystem"
  },
  pgflowlevel = {
    arguments = {{meta = "transformation code"}},
    details = [[
This command concatenates the canvas transformation matrix with the
coordinate transformation specified by ⟨transformation code⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfsetlinewidth{1pt}
      \pgflowlevel{\pgftransformscale{5}}
      \draw      (0,0) -- (0.4,.2);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflowlevel"
  },
  pgflowlevelobj = {
    arguments = {{meta = "transformation code"}, {meta = "code"}},
    details = [[
This command creates a local `{pgfscope}`. Inside this scope,
`\pgflowlevel` is first called with the argument ⟨transformation code⟩,
then the ⟨code⟩ is inserted.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfsetlinewidth{1pt}
      \pgflowlevelobj{\pgftransformscale{5}}    {\draw (0,0) -- (0.4,.2);}
      \pgflowlevelobj{\pgftransformxshift{-1cm}}{\draw (0,0) -- (0.4,.2);}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflowlevelobj"
  },
  pgflowlevelsynccm = {
    details = [[
This command concatenates the canvas transformation matrix with the
current coordinate transformation matrix. Afterward, the coordinate
transformation matrix is reset.

The effect of this command is to "synchronize" the coordinate
transformation matrix and the canvas transformation matrix. All
transformations that were previously applied by the coordinate
transformations matrix are now applied by the canvas transformation
matrix.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfsetlinewidth{1pt}
      \pgftransformscale{5}
      \draw      (0,0) -- (0.4,.2);
      \pgftransformxshift{0.2cm}
      \pgflowlevelsynccm
      \draw[red] (0,0) -- (0.4,.2);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflowlevelsynccm"
  },
  pgflsystemcurrentleftangle = {
    details = [[
The angle the L-system will turn when it turns left. The value stored in
this macro may be changed if `\pgflsystemrandomizeleftangle` is used.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemcurrentleftangle"
  },
  pgflsystemcurrentrightangle = {
    details = [[
The angle the L-system will turn when it turns right. The value stored
in this macro may be changed if `\pgflsystemrandomizerightangle` is
used.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemcurrentrightangle"
  },
  pgflsystemcurrentstep = {
    details = [[
The current "step" of the L-system (i.e., how far the system will move
forward if required). This is initially set to the value in the
TeX-dimensions `\pgflsystemstep`, but the actual value may be changed if
`\pgflsystemrandomizestep` is used (see below).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemcurrentstep"
  },
  pgflsystemdrawforward = {
    details = [[
Move forward in the current direction, by `\pgflsystemcurrentstep`,
drawing a line in the process. This macro calls
`\pgflsystemrandomizestep`. Internally, PGF simply shifts the
transformation matrix in the positive direction of the current
(transformed) x-axis by `\pgflsystemstep` and then executes a line-to to
the (newly transformed) origin.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemdrawforward"
  },
  pgflsystemmoveforward = {
    details = [[
Move forward in the current direction, by `\pgflsystemcurrentstep`,
without drawing a line. This macro calls `\pgflsystemrandomizestep`. PGF
executes a transformation as above, but executes a move-to to the (newly
transformed) origin.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemmoveforward"
  },
  pgflsystemrandomizeleftangle = {
    details = [[
Randomizes the value in `\pgflsystemcurrentleftangle` according to the
value of the `randomize angle percent` key.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemrandomizeleftangle"
  },
  pgflsystemrandomizerightangle = {
    details = [[
Randomizes the value in `\pgflsystemcurrentrightangle` according to the
value of the `randomize angle` key.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemrandomizerightangle"
  },
  pgflsystemrandomizestep = {
    details = [[
Randomizes the value in `\pgflsystemcurrentstep` according to the
current value of the key `randomize step percent`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemrandomizestep"
  },
  pgflsystemrestorestate = {
    details = [[
Restore the last saved position and orientation. Internally, PGF closes
a TeX-group, restoring the transformation matrix of the outer scope, and
a move-to command is executed to the (transformed) origin.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemrestorestate"
  },
  pgflsystemsavestate = {
    details = [[
Save the current position and orientation. Internally, PGF simply starts
a new TeX-group.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemsavestate"
  },
  pgflsystemturnleft = {
    details = [[
Turn left by `\pgflsystemcurrentleftangle`. Internally, PGF simply
rotates the transformation matrix. This macro calls
`\pgflsystemrandomizeleftangle`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemturnleft"
  },
  pgflsystemturnright = {
    details = [[
Turn right by `\pgflsystemcurrentrightangle`. Internally, PGF simply
rotates the transformation matrix. This macro calls
`\pgflsystemrandomizerightangle`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgflsystemturnright"
  },
  pgfmathaddtocount = {
    arguments = {{meta = "count register"}, {meta = "expression"}},
    details = [[
Adds the *truncated* value of ⟨expression⟩ to the TeX ⟨count register⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathaddtocount"
  },
  pgfmathaddtocounter = {
    arguments = {{meta = "counter"}, {meta = "expression"}},
    details = [[
Adds the *truncated* value of ⟨expression⟩ to ⟨counter⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathaddtocounter"
  },
  pgfmathaddtolength = {
    arguments = {{meta = "register"}, {meta = "expression"}},
    details = [[
Adds the value of ⟨expression⟩ to the TeX ⟨register⟩. All of the special
consideration mentioned for `\pgfmathsetlength` also apply here in the
same way.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathaddtolength"
  },
  pgfmathanglebetweenlines = {
    arguments = {
      {meta = "$p_1$"},
      {meta = "$q_1$"},
      {meta = "$p_2$"},
      {meta = "$q_2$"}
    },
    details = [[
Returns the clockwise angle between a line going through $p_1$ and $q_1$
and a line going through $p_2$ and $q_2$.

    \pgfmathanglebetweenlines{\pgfpoint{1cm}{3cm}}{\pgfpoint{2cm}{4cm}}
                             {\pgfpoint{0cm}{1cm}}{\pgfpoint{1cm}{0cm}}
    \pgfmathresult
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathanglebetweenlines"
  },
  pgfmathanglebetweenpoints = {
    arguments = {{meta = "p"}, {meta = "q"}},
    details = [[
Returns the angle of a line from ⟨p⟩ to ⟨q⟩ relative to a line going
straight right from ⟨p⟩.

    \pgfmathanglebetweenpoints{\pgfpoint{1cm}{3cm}}{\pgfpoint{2cm}{4cm}}
    \pgfmathresult
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathanglebetweenpoints"
  },
  pgfmathapproxequalto = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
Defines `\pgfmathresult` 1.0 if $\rvert ⟨x⟩ - ⟨y⟩ \lvert <
    0.0001$, but 0.0 otherwise. As a side-effect, the global boolean
`\ifpgfmathcomparison` will be set accordingly.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathapproxequalto"
  },
  pgfmathbasetoBase = {
    arguments = {
      {meta = "macro"},
      {meta = "number"},
      {meta = "base-1"},
      {meta = "base-2"}
    },
    details = [[
Defines ⟨macro⟩ as the result of converting ⟨number⟩ from base ⟨base-1⟩
to base ⟨base-2⟩. Alphabetic digits in ⟨number⟩ can be upper or lower
case, but any resulting alphabetic digits are in *upper case*.

    \pgfmathbasetoBase\mynumber{121212}{3}{12} \mynumber
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathbasetoBase"
  },
  pgfmathbasetobase = {
    arguments = {
      {meta = "macro"},
      {meta = "number"},
      {meta = "base-1"},
      {meta = "base-2"}
    },
    details = [[
Defines ⟨macro⟩ as the result of converting ⟨number⟩ from base ⟨base-1⟩
to base ⟨base-2⟩. Alphabetic digits in ⟨number⟩ can be upper or lower
case, but any resulting alphabetic digits are in *lower case*.

    \pgfmathbasetobase\mynumber{11011011}{2}{16} \mynumber
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathbasetobase"
  },
  pgfmathbasetodec = {
    arguments = {{meta = "macro"}, {meta = "number"}, {meta = "base"}},
    details = [[
Defines ⟨macro⟩ as the result of converting ⟨number⟩ from base ⟨base⟩ to
base 10. Alphabetic digits can be upper or lower case.

    \pgfmathbasetodec\mynumber{107f}{16} \mynumber

Note that, as usual in TeX, the braces around an argument can be omitted
if the argument is just a single token (a macro name is a single token).

    \pgfmathbasetodec\mynumber{33FC}{20} \mynumber
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathbasetodec"
  },
  pgfmathdeclarefunction = {
    arguments = {
      {literal = "*"},
      {meta = "function name"},
      {meta = "number of arguments"},
      {meta = "code"}
    },
    details = [[
This will set up the parser to recognize a function called ⟨name⟩. The
name of the function can consist of, uppercase or lowercase letters,
numbers or the underscore `_ `. In line with many programming languages,
a function name cannot begin with a number or contain any spaces. The
function may not have been declared earlier, unless the optional star
(`*`) is provided, which forces an "overwriting" of the function by the
new function. Note that you *should never change the arity of standard
functions* and you should normally use `\pgfmathredeclarefunction`,
which does not allow you to do anything wrong here.

The ⟨number of arguments⟩ can be any positive integer, zero, or the
value `...`, which indicates a variable number of arguments. PGF treats
constants, such as `pi` and `e`, as functions with zero arguments.
Functions with more than nine arguments or with a variable number of
arguments are a "bit special" and are discussed below.

The effect of ⟨code⟩ should be to set the macro `\pgfmathresult` to the
correct value (namely to the result of the computation without units).
Furthermore, the function should have no other side effects, that is, it
should not change any global values. As an example, consider the
creation of a new function `double`, which takes one argument, and
returns the value of that argument times two.

    \makeatletter
    \pgfmathdeclarefunction{double}{1}{
      \begingroup
        \pgf@x=#1pt\relax
        \multiply\pgf@x by2\relax
        \pgfmathreturn\pgf@x
      \endgroup
    }
    \makeatother
    \pgfmathparse{double(44.3)}\pgfmathresult

The macro `\pgfmathreturn`⟨tokens⟩ must be directly followed by an
`\endgroup` and will save the result of the computation, by defining
`\pgfmathresult` as the expansion of ⟨tokens⟩ (without units) outside
the group, so ⟨tokens⟩ must be something that can be assigned to a
dimension register.

Alternatively, the `\pgfmathsmuggle`⟨macro⟩ can be used. This must also
be directly followed by an `\endgroup` and will simply "smuggle" the
definition of ⟨macro⟩ outside the TeX-group.

By performing computations within a TeX-group, PGF registers such as
`\pgf@x`, `\pgf@y` and `\c@pgf@counta`, `\c@pgfcountb`, and so forth,
can be used at will.

Beyond setting up the parser, this command also defines two macros which
provide access to the function independently of the parser:

-   `\pgfmath`⟨function name⟩

    This macro will provide a "public" interface for the function
    ⟨function name⟩ allowing the function to be called independently of
    the parser. All arguments passed to this macro are evaluated using
    `\pgfmathparse` and then passed on to the following macro:

-   `\pgfmath`⟨function name⟩`@`

    This macro is the "private" implementation of the function's
    algorithm (but note that, for speed, the parser calls this macro
    rather than the "public" one). Arguments passed to this macro are
    expected to be numbers without units. It is defined using ⟨code⟩,
    but need not be self-contained.

For functions that are declared with less than ten arguments, the public
macro is defined in the same way as normal TeX macros using, for
example, `\def\pgfmathNoArgs{`⟨code⟩`}` for a function with no
arguments, or `\def\pgfmathThreeArgs# 1# 2# 3{`⟨code⟩`}` for a function
with three arguments. The private macro is defined in the same way, and
each argument can therefore be accessed in ⟨code⟩ using `# 1`, `# 2` and
so on.

For functions with more than nine arguments, or functions with a
variable number of arguments, these macros are only defined as taking
*one* argument. The public macro expects its arguments to be comma
separated, for example, `\pgfmathVariableArgs{1.1,3.5,-1.5,2.6}`. Each
argument is parsed and passed on to the private macro as follows:
`\pgfmathVariableArgs@{{1.1}{3.5}{-1.5}{2.6}}`. This means that some
"extra work" will be required to access each argument (although it is a
fairly simple task).

Note that there are two exceptions to this arrangement: the public
versions of the `min` and `max` functions still take two arguments for
compatibility with older versions, but each of these arguments can take
several comma separated values.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathdeclarefunction"
  },
  pgfmathdeclarerandomlist = {
    arguments = {{meta = "list name"}},
    details = [[
This creates a list of items with the name ⟨list name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathdeclarerandomlist"
  },
  pgfmathdectoBase = {
    arguments = {{meta = "macro"}, {meta = "number"}, {meta = "base"}},
    details = [[
Defines ⟨macro⟩ as the result of converting ⟨number⟩ from base 10 to
base ⟨base⟩. Any resulting alphabetic digits are in *upper case*.

    \pgfmathdectoBase\mynumber{65535}{16} \mynumber
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathdectoBase"
  },
  pgfmathdectobase = {
    arguments = {{meta = "macro"}, {meta = "number"}, {meta = "base"}},
    details = [[
Defines ⟨macro⟩ as the result of converting ⟨number⟩ from base 10 to
base ⟨base⟩. Any resulting alphabetic digits are in *lower case*.

    \pgfmathdectobase\mynumber{65535}{16} \mynumber
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathdectobase"
  },
  pgfmathfloat = {
    arguments = {{meta = "op"}},
    details = [[
Methods of this form constitute the replacement operations where ⟨op⟩
can be any of the well-known math operations.

Thus, `\pgfmathfloatadd` is the counterpart for `\pgfmathadd` and so on.
The semantics and number of arguments is the same, but all input and
output arguments are *expected* to be floating point numbers.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloat"
  },
  pgfmathfloatabserror = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
Defines `\pgfmathresult` to be the absolute error between two floating
point numbers $x$ and $y$, $\lvert x - y\rvert$ and returns the result
as floating point number.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatabserror"
  },
  pgfmathfloatcreate = {
    arguments = {{meta = "flags"}, {meta = "mantissa"}, {meta = "exponent"}},
    details = [[
Defines `\pgfmathresult` as the floating point number encoded by
⟨flags⟩, ⟨mantissa⟩ and ⟨exponent⟩.

All arguments are characters and will be expanded using `\edef`.

    \pgfmathfloatcreate{1}{1.0}{327}
    \pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
    Flags: \F; Mantissa \M; Exponent \E
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatcreate"
  },
  pgfmathfloatgetexponent = {
    arguments = {{meta = "x"}, {meta = "exponentcount"}},
    details = [[
Extracts the exponent of ⟨x⟩ into the count register ⟨exponentcount⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatgetexponent"
  },
  pgfmathfloatgetflags = {
    arguments = {{meta = "x"}, {meta = "flagscount"}},
    details = [[
Extracts the flags of ⟨x⟩ into the count register ⟨flagscount⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatgetflags"
  },
  pgfmathfloatgetflagstomacro = {
    arguments = {{meta = "x"}, {meta = "macro"}},
    details = [[
Extracts the flags of ⟨x⟩ into the macro ⟨macro⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatgetflagstomacro"
  },
  pgfmathfloatgetmantissa = {
    arguments = {{meta = "x"}, {meta = "mantissadimen"}},
    details = [[
Extracts the mantissa of ⟨x⟩ into the dimen register ⟨mantissadimen⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatgetmantissa"
  },
  pgfmathfloatgetmantissatok = {
    arguments = {{meta = "x"}, {meta = "mantissatoks"}},
    details = [[
Extracts the mantissa of ⟨x⟩ into the token register ⟨mantissatoks⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatgetmantissatok"
  },
  pgfmathfloatifapproxequalrel = {
    arguments = {
      {meta = "a"},
      {meta = "b"},
      {meta = "true-code"},
      {meta = "false-code"}
    },
    details = [[
Computes the relative error between ⟨a⟩ and ⟨b⟩ (assuming ⟨b⟩$\neq 0$)
and invokes ⟨true-code⟩ if the relative error is below
`/pgf/fpu/rel thresh` and ⟨false-code⟩ if that is not the case.

The input arguments will be parsed with `\pgfmathfloatparsenumber`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatifapproxequalrel"
  },
  pgfmathfloatifflags = {
    arguments = {
      {meta = "floating point number"},
      {meta = "flag"},
      {meta = "true-code"},
      {meta = "false-code"}
    },
    details = [[
Invokes ⟨true-code⟩ if the flag of ⟨floating point number⟩ equals ⟨flag⟩
and ⟨false-code⟩ otherwise.

The argument ⟨flag⟩ can be one of

0  
to test for zero,

1  
to test for positive numbers,

\+  
to test for positive numbers,

2  
to test for negative numbers,

\-  
to test for negative numbers,

3  
for "not-a-number",

4  
for $+\infty$,

5  
for $-\infty$.

&nbsp;

    \pgfmathfloatparsenumber{42}
    \pgfmathfloatifflags{\pgfmathresult}{0}{It's zero!}{It's not zero!}
    \pgfmathfloatifflags{\pgfmathresult}{1}{It's positive!}{It's not positive!}
    \pgfmathfloatifflags{\pgfmathresult}{2}{It's negative!}{It's not negative!}

    % or, equivalently
    \pgfmathfloatifflags{\pgfmathresult}{+}{It's positive!}{It's not positive!}
    \pgfmathfloatifflags{\pgfmathresult}{-}{It's negative!}{It's not negative!}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatifflags"
  },
  pgfmathfloatint = {
    arguments = {{meta = "x"}},
    details = [[
Returns the integer part of the floating point number ⟨x⟩, by truncating
any digits after the period. This methods truncates the absolute value
$\rvert x \lvert$ to the next smaller integer and restores the original
sign afterwards.

The result is returned as floating point number as well.

See also `\pgfmathfloattoint` which returns the number in integer
format.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatint"
  },
  pgfmathfloatlessthan = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
Defines `\pgfmathresult` as $1.0$ if $⟨x⟩ < ⟨y⟩$, but $0.0$ otherwise.
It also sets the global TeX-boolean `\pgfmathfloatcomparison`
accordingly. The arguments ⟨x⟩ and ⟨y⟩ are expected to be numbers which
have already been processed by `\pgfmathfloatparsenumber`. Arithmetic is
carried out using TeX-registers for exponent- and mantissa comparison.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatlessthan"
  },
  pgfmathfloatmultiplyfixed = {
    arguments = {{meta = "float"}, {meta = "fixed"}},
    details = [[
Defines `\pgfmathresult` to be $⟨float⟩ \cdot ⟨fixed⟩$ where ⟨float⟩ is
a floating point number and ⟨fixed⟩ is a fixed point number. The
computation is performed in floating point arithmetics, that means we
compute $m \cdot ⟨fixed⟩$ and renormalize the result where $m$ is the
mantissa of ⟨float⟩.

This operation renormalizes ⟨float⟩ with
`\pgfmathfloattoextentedprecision` before the operation, that means it
is intended for relatively small arguments of ⟨fixed⟩. The result is a
floating point number.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatmultiplyfixed"
  },
  pgfmathfloatparsenumber = {
    arguments = {{meta = "x"}},
    details = [[
Reads a number of arbitrary magnitude and precision and stores its
result into `\pgfmathresult` as floating point number $m \cdot 10^e$
with mantissa and exponent base $10$.

The algorithm and the storage format is purely text-based. The number is
stored as a triple of flags, a positive mantissa and an exponent, such
as

    \pgfmathfloatparsenumber{2}
    \pgfmathresult

Please do not rely on the low-level representation here, use
`\pgfmathfloattomacro` (and its variants) and `\pgfmathfloatcreate` if
you want to work with these components.

The flags encoded in `\pgfmathresult` are represented as a digit where
'$0$' stands for the number $\pm 0\cdot 10^0$, '$1$' stands for a
positive sign, '$2$' means a negative sign, '$3$' stands for 'not a
number', '$4$' means $+\infty$ and '$5$' stands for $-\infty$.

The mantissa is a normalized real number $m \in \mathbb{R}$, $1 \le m <
    10$. It always contains a period and at least one digit after the
period. The exponent is an integer.

Examples:

    \pgfmathfloatparsenumber{0}
    \pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
    Flags: \F; Mantissa \M; Exponent \E.

    \pgfmathfloatparsenumber{0.2}
    \pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
    Flags: \F; Mantissa \M; Exponent \E.

    \pgfmathfloatparsenumber{42}
    \pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
    Flags: \F; Mantissa \M; Exponent \E.

    \pgfmathfloatparsenumber{20.5E+2}
    \pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
    Flags: \F; Mantissa \M; Exponent \E.

    \pgfmathfloatparsenumber{1e6}
    \pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
    Flags: \F; Mantissa \M; Exponent \E.

    \pgfmathfloatparsenumber{5.21513e-11}
    \pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
    Flags: \F; Mantissa \M; Exponent \E.

The argument ⟨x⟩ may be given in fixed point format or the scientific
"e" (or "E") notation. The scientific notation does not necessarily need
to be normalized. The supported exponent range is (currently) only
limited by the TeX-integer range (which uses 31 bit integer numbers).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatparsenumber"
  },
  pgfmathfloatqparsenumber = {
    arguments = {{meta = "x"}},
    details = [[
The same as `\pgfmathfloatparsenumber`, but does not perform sanity
checking.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatqparsenumber"
  },
  pgfmathfloatrelerror = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
Defines `\pgfmathresult` to be the relative error between two floating
point numbers $x$ and $y$, $\lvert x - y\rvert / \lvert y \rvert$ and
returns the result as floating point number.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatrelerror"
  },
  pgfmathfloatround = {
    arguments = {{meta = "x"}},
    details = [[
Rounds a normalized floating point number to a prescribed precision and
writes the result to `\pgfmathresult`.

The desired precision can be configured with
`/pgf/number format/precision`, see section ??.

This method employs `\pgfmathroundto` to round the mantissa and applies
renormalization if necessary.

As a side effect, the global boolean `\ifpgfmathfloatroundhasperiod`
will be set to true if and only if the resulting mantissa has a period.

    \pgfmathfloatparsenumber{52.5864}
    \pgfmathfloatround{\pgfmathresult}
    \pgfmathfloattosci{\pgfmathresult}
    \pgfmathresult

    \pgfmathfloatparsenumber{9.995}
    \pgfmathfloatround{\pgfmathresult}
    \pgfmathfloattosci{\pgfmathresult}
    \pgfmathresult
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatround"
  },
  pgfmathfloatroundzerofill = {
    arguments = {{meta = "x"}},
    details = [[
A variant of `\pgfmathfloatround` produces always the same number of
digits after the period (it includes zeros if necessary).

    \pgfmathfloatparsenumber{52.5864}
    \pgfmathfloatroundzerofill{\pgfmathresult}
    \pgfmathfloattosci{\pgfmathresult}
    \pgfmathresult

    \pgfmathfloatparsenumber{9.995}
    \pgfmathfloatroundzerofill{\pgfmathresult}
    \pgfmathfloattosci{\pgfmathresult}
    \pgfmathresult
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatroundzerofill"
  },
  pgfmathfloatsetextprecision = {
    arguments = {{meta = "shift"}},
    details = [[
Sets the precision used inside of `\pgfmathfloattoextentedprecision` to
⟨shift⟩.

The different choices are

  --- ------------------ -------- ----------------- -------------------------------------------------
  0   normalization to        $0$ $\le m < 1$       (disable extended precision)
  1   normalization to       $10$ $\le m < 100$     
  2   normalization to      $100$ $\le m < 1000$    (default of `\pgfmathfloattoextentedprecision`)
  3   normalization to     $1000$ $\le m < 10000$   
  --- ------------------ -------- ----------------- -------------------------------------------------
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatsetextprecision"
  },
  pgfmathfloatshift = {
    arguments = {{meta = "x"}, {meta = "num"}},
    details = [[
Defines `\pgfmathresult` to be $⟨x⟩ \cdot 10^{⟨num⟩}$. The operation is
an arithmetic shift base ten and modifies only the exponent of ⟨x⟩. The
argument ⟨num⟩ is expected to be a (positive or negative) integer.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatshift"
  },
  pgfmathfloattoextentedprecision = {
    arguments = {{meta = "x"}},
    details = [[
Renormalizes ⟨x⟩ to extended precision mantissa, meaning $100 \le m <
    1000$ instead of $1 \le m < 10$.

The "extended precision" means we have higher accuracy when we apply
pgfmath operations to mantissas.

The input argument is expected to be a normalized floating point number;
the output argument is a non-normalized floating point number (well,
normalized to extended precision).

The operation is supposed to be very fast.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloattoextentedprecision"
  },
  pgfmathfloattofixed = {
    arguments = {{meta = "x"}},
    details = [[
Converts a number in floating point representation to a fixed point
number. It is a counterpart to `\pgfmathfloatparsenumber`. The algorithm
is purely text based and defines `\pgfmathresult` as a string sequence
which represents the floating point number ⟨x⟩ as a fixed point number
(of arbitrary precision).

    \pgfmathfloatparsenumber{0.00052}
    \pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
    Flags: \F; Mantissa \M; Exponent \E
    $\to$
    \pgfmathfloattofixed{\pgfmathresult}
    \pgfmathresult

    \pgfmathfloatparsenumber{123.456e4}
    \pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
    Flags: \F; Mantissa \M; Exponent \E
    $\to$
    \pgfmathfloattofixed{\pgfmathresult}
    \pgfmathresult
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloattofixed"
  },
  pgfmathfloattoint = {
    arguments = {{meta = "x"}},
    details = [[
Converts a number from low-level floating point representation to an
integer (by truncating the fractional part).

    \pgfmathfloatparsenumber{123456}
    \pgfmathfloattoint{\pgfmathresult}
    \pgfmathresult

See also `\pgfmathfloatint` which returns the result as float.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloattoint"
  },
  pgfmathfloattomacro = {
    arguments = {
      {meta = "x"},
      {meta = "flagsmacro"},
      {meta = "mantissamacro"},
      {meta = "exponentmacro"}
    },
    details = [[
Extracts the flags of a floating point number ⟨x⟩ to ⟨flagsmacro⟩, the
mantissa to ⟨mantissamacro⟩ and the exponent to ⟨exponentmacro⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloattomacro"
  },
  pgfmathfloattoregisters = {
    arguments = {
      {meta = "x"},
      {meta = "flagscount"},
      {meta = "mantissadimen"},
      {meta = "exponentcount"}
    },
    details = [[
Takes a floating point number ⟨x⟩ as input and writes flags to count
register ⟨flagscount⟩, mantissa to dimen register ⟨mantissadimen⟩ and
exponent to count register ⟨exponentcount⟩.

Please note that this method rounds the mantissa to TeX-precision.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloattoregisters"
  },
  pgfmathfloattoregisterstok = {
    arguments = {
      {meta = "x"},
      {meta = "flagscount"},
      {meta = "mantissatoks"},
      {meta = "exponentcount"}
    },
    details = [[
A variant of `\pgfmathfloattoregisters` which writes the mantissa into a
token register. It maintains the full input precision.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloattoregisterstok"
  },
  pgfmathfloattosci = {
    arguments = {{meta = "float"}},
    details = [[
Converts a number from low-level floating point representation to
scientific format, $1.234e4$. The result will be assigned to the macro
`\pgfmathresult`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloattosci"
  },
  pgfmathfloatvalueof = {
    arguments = {{meta = "float"}},
    details = [[
Expands a number from low-level floating point representation to
scientific format, $1.234e4$.

Use `\pgfmathfloatvalueof` in contexts where only expandable macros are
allowed.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathfloatvalueof"
  },
  pgfmathgeneratepseudorandomnumber = {
    details = [[
Defines `\pgfmathresult` as a pseudo-random integer between 1 and
$2^{31}-1$. This uses a linear congruency generator, based on ideas of
Erich Janka.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathgeneratepseudorandomnumber"
  },
  pgfmathifisint = {
    arguments = {
      {meta = "number constant"},
      {meta = "true code"},
      {meta = "false code"}
    },
    details = [[
A command which does the same check as `int detect`, but it invokes
⟨true code⟩ if the ⟨number constant⟩ actually is an integer and the
⟨false code⟩ if not.

As a side-effect, `\pgfretval` will contain the parsed number, either in
integer format or as parsed floating point number.

The argument ⟨number constant⟩ will be parsed with
`\pgfmathfloatparsenumber`.

    15 \pgfmathifisint{15}{is an int: \pgfretval.}{is no int}\hspace{1em}
    15.5 \pgfmathifisint{15.5}{is an int: \pgfretval.}{is no int}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathifisint"
  },
  pgfmathlog = {
    arguments = {{meta = "x"}},
    details = [[
Defines `\pgfmathresult` to be the natural logarithm of ⟨x⟩, $\ln(⟨x⟩)$.
This method is logically the same as `\pgfmathln`, but it applies
floating point arithmetics to read number ⟨x⟩ and employs the logarithm
identity $$\ln(m \cdot 10^e) = \ln(m) + e \cdot \ln(10)$$ to get the
result. The factor $\ln(10)$ is a constant, so only $\ln(m)$ with
$1 \le m < 10$ needs to be computed. This is done using standard pgf
math operations.

Please note that ⟨x⟩ needs to be a number, expression parsing is not
possible here.

If ⟨x⟩ is *not* a bounded positive real number (for example
$⟨x⟩ \le 0$), `\pgfmathresult` will be *empty*, no error message will be
generated.

    \pgfmathlog{1.452e-7}
    \pgfmathresult

    \pgfmathlog{6.426e+8}
    \pgfmathresult
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathlog"
  },
  pgfmathparse = {
    arguments = {{meta = "expression"}},
    details = [[
This macro parses ⟨expression⟩ and returns the result without units in
the macro `\pgfmathresult`.

`\pgfmathparse{2pt+3.5pt}` will set `\pgfmathresult` to the text `5.5`.

In the following, the special properties of this command are explained.
The exact syntax of mathematical expressions is explained in Sections ??
and ??.

-   The result stored in the macro `\pgfmathresult` is a decimal
    *without units*. This is true regardless of whether the ⟨expression⟩
    contains any unit specification. All numbers with units are
    converted to points first. See Section ?? for details on units.

-   The parser will recognize TeX registers and box dimensions, so
    `\mydimen`, `0.5\mydimen`, `\wd\mybox`, `0.5\dp\mybox`,
    `\mycount\mydimen` and so on can be parsed.

-   The $\varepsilon$-TeX extensions `\dimexpr`, `\numexpr`,
    `\glueexpr`, and `\muexpr` are recognized and evaluated. The values
    they result in will be used in the further evaluation, as if you had
    put `\the` before them.

-   Parenthesis can be used to change the order of the evaluation.

-   Various functions are recognized, so it is possible to parse
    `sin(.5*pi r)*60`, which means "the sine of $0.5$ times $\pi$
    radians, multiplied by 60". The argument of functions can be any
    expression.

-   Scientific notation in the form `1.234e+4` is recognized (but the
    restriction on the range of values still applies). The exponent
    symbol can be upper or lower case (i.e., `E` or `e`).

-   An integer with a zero-prefix (excluding, of course zero itself), is
    interpreted as an octal number and is automatically converted to
    base 10.

-   An integer with prefix `0x` or `0X` is interpreted as a hexadecimal
    number and is automatically converted to base 10. Alphabetic digits
    can be in uppercase or lowercase.

-   An integer with prefix `0b` or `0B` is interpreted as a binary
    number and is automatically converted to base 10.

-   An expression (or part of an expression) surrounded with double
    quotes (i.e., the character `"`) will not be evaluated. Obviously
    this should be used with great care.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathparse"
  },
  pgfmathpostparse = {
    details = [[
At the end of the parse this command is executed, allowing some custom
action to be performed on the result of the parse. When this command is
executed, the macro `\pgfmathresult` will hold the result of the parse
(as always, without units). The result of the custom action should be
used to redefine `\pgfmathresult` appropriately. By default, this
command is equivalent to `\relax`. This differs from previous versions,
where, if the parsed expression contained no units, the result of the
parse was scaled according to the value in `\pgfmathresultunitscale`
(which by default was `1`).

This scaling can be turned on again using:
`\let\pgfmathpostparse=\pgfmathscaleresult`. Note, however that by
scaling the result, the base conversion functions will not work, and the
`"` character should not be used to quote parts of an expression.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathpostparse"
  },
  pgfmathprintnumber = {
    arguments = {{meta = "x"}},
    details = [[
Generates pretty-printed output for the (real) number ⟨x⟩. The input
number ⟨x⟩ is parsed using `\pgfmathfloatparsenumber` which allows
arbitrary precision.

Numbers are typeset in math mode using the current set of number
printing options, see below. Optional arguments can also be provided
using `\pgfmathprintnumber[`⟨options⟩`]`⟨x⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathprintnumber"
  },
  pgfmathprintnumberto = {
    arguments = {{meta = "x"}, {meta = "macro"}},
    details = [[
Returns the resulting number into ⟨macro⟩ instead of typesetting it
directly.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathprintnumberto"
  },
  pgfmathqparse = {
    arguments = {{meta = "expression"}},
    details = [[
This macro is similar to `\pgfmathparse`: it parses ⟨expression⟩ and
returns the result in the macro `\pgfmathresult`. It differs in two
respects. Firstly, `\pgfmathqparse` does not parse functions, scientific
notation, the prefixes for binary octal, or hexadecimal numbers, nor
does it accept the special use of `"`, `?` or `:` characters. Secondly,
numbers in ⟨expression⟩ *must* specify a TeX unit (except in such
instances as `0.5\pgf@x`), which greatly simplifies the problem of
parsing real numbers. As a result of these restrictions `\pgfmathqparse`
is about twice as fast as `\pgfmathparse`. Note that the result will
still be a number without units.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathqparse"
  },
  pgfmathrandominteger = {
    arguments = {{meta = "macro"}, {meta = "minimum"}, {meta = "maximum"}},
    details = [[
This defines ⟨macro⟩ as a pseudo-randomly generated integer from the
range ⟨minimum⟩ to ⟨maximum⟩ (inclusive).

    \begin{pgfpicture}
       \foreach \x in {1,...,50}{
          \pgfmathrandominteger{\a}{1}{50}
          \pgfmathrandominteger{\b}{1}{50}
          \pgfpathcircle{\pgfpoint{+\a pt}{+\b pt}}{+2pt}
          \color{blue!40!white}
          \pgfsetstrokecolor{blue!80!black}
          \pgfusepath{stroke, fill}
       }
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathrandominteger"
  },
  pgfmathrandomitem = {
    arguments = {{meta = "macro"}, {meta = "list name"}},
    details = [[
Select an item from a random list ⟨list name⟩. The selected item is
placed in ⟨macro⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathrandomitem"
  },
  pgfmathreciprocal = {
    arguments = {{meta = "x"}},
    details = [[
Defines `\pgfmathresult` as $1\div⟨x⟩$. This provides greatest accuracy
when x is small.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathreciprocal"
  },
  pgfmathredeclarefunction = {
    arguments = {{meta = "function name"}, {meta = "code"}},
    details = [[
This command redefines the `\pgfmath`⟨function name⟩`@` macro with the
new ⟨code⟩. See the description of the `\pgfmathdeclarefunction` for
details. You cannot change the number of arguments for an existing
function.

    \makeatletter
    \pgfmathdeclarefunction{foo}{1}{
      \begingroup
        \pgf@x=#1pt\relax
        \multiply\pgf@x by2\relax
        \pgfmathreturn\pgf@x
      \endgroup
    }
    \pgfmathparse{foo(42)}\pgfmathresult
    \pgfmathredeclarefunction{foo}{
      \begingroup
        \pgf@x=#1pt\relax
        \multiply\pgf@x by3\relax
        \pgfmathreturn\pgf@x
      \endgroup
    }
    \pgfmathparse{foo(42)}\pgfmathresult
    \makeatother
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathredeclarefunction"
  },
  pgfmathroundto = {
    arguments = {{meta = "x"}},
    details = [[
Rounds a fixed point number to prescribed precision and writes the
result to `\pgfmathresult`.

The desired precision can be configured with
`/pgf/number format/precision`, see section ??. This section does also
contain application examples.

Any trailing zeros after the period are discarded. The algorithm is
purely text based and allows to deal with precisions beyond TeX's fixed
point support.

As a side effect, the global boolean `\ifpgfmathfloatroundhasperiod`
will be set to true if and only if the resulting mantissa has a period.
Furthermore, `\ifpgfmathfloatroundmayneedrenormalize` will be set to
true if and only if the rounding result's floating point representation
would have a larger exponent than ⟨x⟩.

    \pgfmathroundto{1}
    \pgfmathresult

    \pgfmathroundto{4.685}
    \pgfmathresult

    \pgfmathroundto{19999.9996}
    \pgfmathresult
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathroundto"
  },
  pgfmathroundtozerofill = {
    arguments = {{meta = "x"}},
    details = [[
A variant of `\pgfmathroundto` which always uses a fixed number of
digits behind the period. It fills missing digits with zeros.

    \pgfmathroundtozerofill{1}
    \pgfmathresult

    \pgfmathroundto{4.685}
    \pgfmathresult

    \pgfmathroundtozerofill{19999.9996}
    \pgfmathresult
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathroundtozerofill"
  },
  pgfmathsetbasenumberlength = {
    arguments = {{meta = "integer"}},
    details = [[
Sets the number of digits in the result of a base conversion to
⟨integer⟩. If the result of a conversion has less digits than this
number, it is prefixed with zeros.

    \pgfmathsetbasenumberlength{8}
    \pgfmathdectobase\mynumber{15}{2} \mynumber
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathsetbasenumberlength"
  },
  pgfmathsetcount = {
    arguments = {{meta = "count register"}, {meta = "expression"}},
    details = [[
Sets the value of the TeX ⟨count register⟩, to the *truncated* value
specified by ⟨expression⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathsetcount"
  },
  pgfmathsetcounter = {
    arguments = {{meta = "counter"}, {meta = "expression"}},
    details = [[
Sets the value of the LaTeX ⟨counter⟩ to the *truncated* value specified
by ⟨expression⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathsetcounter"
  },
  pgfmathsetlength = {
    arguments = {{meta = "register"}, {meta = "expression"}},
    details = [[
Basically, this command sets the length of the TeX ⟨register⟩ to the
value specified by ⟨expression⟩. However, there is some fine print:

First, in case ⟨expression⟩ starts with a `+`, a simple TeX assignment
is done. In particular, ⟨register⟩ can be a glue register and
⟨expression⟩ be something like `+1pt plus 1fil` and the ⟨register⟩ will
be assigned the expected value.

Second, when the ⟨expression⟩ does not start with `+`, it is first
parsed using `\pgfmathparse`, resulting in a (dimensionless) value
`\pgfmathresult`. Now, if the parser encountered the unit `mu` somewhere
in the expression, it assumes that ⟨register⟩ is a `\muskip` register
and will try to assign to ⟨register⟩ the value `\pgfmathresult` followed
by `mu`. Otherwise, in case `mu` was not encountered, it is assumed that
⟨register⟩ is a dimension register or a glue register and we assign
`\pgfmathresult` followed by `pt` to it.

The net effect of the above is that you can write things like

      \muskipdef\mymuskip=0
      \pgfmathsetlength{\mymuskip}{1mu+3*4mu} \the\mymuskip

      \dimendef\mydimen=0
      \pgfmathsetlength{\mydimen}{1pt+3*4pt}  \the\mydimen

      \skipdef\myskip=0
      \pgfmathsetlength{\myskip}{1pt+3*4pt}  \the\myskip

One thing that will *not* work is
`\pgfmathsetlength{\myskip}{1pt plus 1fil}` since the parser does not
support fill's. You can, however, use the `+` notation in this case:

      \skipdef\myskip=0
      \pgfmathsetlength{\myskip}{+1pt plus 1fil}  \the\myskip
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathsetlength"
  },
  pgfmathsetlengthmacro = {
    arguments = {{meta = "macro"}, {meta = "expression"}},
    details = [[
Defines ⟨macro⟩ as the value of ⟨expression⟩ LaTeX *in points*.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathsetlengthmacro"
  },
  pgfmathsetmacro = {
    arguments = {{meta = "macro"}, {meta = "expression"}},
    details = [[
Defines ⟨macro⟩ as the value of ⟨expression⟩. The result is a decimal
without units.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathsetmacro"
  },
  pgfmathsetseed = {
    arguments = {{meta = "integer"}},
    details = [[
Explicitly sets the seed for the pseudo-random number generator. By
default it is set to the value of `\time`$\times$`\year`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathsetseed"
  },
  pgfmathtodigitlist = {
    arguments = {{meta = "macro"}, {meta = "number"}},
    details = [[
This command converts ⟨number⟩ into a comma-separated list of digits and
stores the result in ⟨macro⟩. The `{number}` is *not* parsed before
processing.

    \pgfmathsetbasenumberlength{8}
    \begin{tikzpicture}[x=0.25cm, y=0.25cm]
      \foreach \n [count=\y] in {0, 60, 102, 102, 126, 102, 102, 102, 0}{
        \pgfmathdectobase{\binary}{\n}{2}
        \pgfmathtodigitlist{\digitlist}{\binary}
        \foreach \digit [count=\x, evaluate={\c=\digit*50+15;}] in \digitlist
          \fill [fill=black!\c] (\x, -\y) rectangle ++(1,1);
      }
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathtodigitlist"
  },
  pgfmathtruncatemacro = {
    arguments = {{meta = "macro"}, {meta = "expression"}},
    details = [[
Defines ⟨macro⟩ as the truncated value of ⟨expression⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmathtruncatemacro"
  },
  pgfmatrix = {
    arguments = {
      {meta = "shape"},
      {meta = "anchor"},
      {meta = "name"},
      {meta = "usage"},
      {meta = "shift"},
      {meta = "pre-code"},
      {meta = "matrix cells"}
    },
    details = [[
This command creates a node that contains a matrix. The name of the node
is ⟨name⟩, its shape is ⟨shape⟩ and the node is anchored at ⟨anchor⟩.

The ⟨matrix cell⟩ parameter contains the cells of the matrix. In each
cell drawing commands may be given, which create a so-called cell
picture. For each cell picture a bounding box is computed and the cells
are aligned according to the rules outlined in the previous section.

The resulting matrix is used as the `text` box of the node. As for a
normal node, the ⟨usage⟩ commands are applied, so that the path(s) of
the resulting node is (are) stroked or filled or whatever.

**Specifying the cells and rows. ** Even though this command uses
`\halign` internally, there are two special rules for indicating cells:

1.  Cells in the same row must be separated using the macro
    `\pgfmatrixnextcell` rather than `& `. Using `& ` will result in an
    error message.

    However, you can make `& ` an active character and have it expand to
    `\pgfmatrixnextcell`. This way, it will "look" as if `& ` is used.

2.  Rows are ended using the command `\pgfmatrixendrow`, but `\\` is set
    up to mean the same by default. However, some environments like
    `{minipage}` redefine `\\`, so it is good to have `\pgfmatrixendrow`
    as a "fallback".

3.  Every row *including the last row* must be ended using the command
    `\\` or `\pgfmatrixendrow`.

Both `\pgfmatrixnextcell` and `\pgfmatrixendrow` (and, thus, also `\\`)
take an optional argument as explained in the Section ??

    \begin{tikzpicture}
      \pgfmatrix{rectangle}{center}{mymatrix}
        {\pgfusepath{}}{\pgfpointorigin}{}
        {
          \node {a}; \pgfmatrixnextcell \node {b}; \pgfmatrixendrow
          \node {c}; \pgfmatrixnextcell \node {d}; \pgfmatrixendrow
        }
    \end{tikzpicture}

**Anchoring matrices at nodes inside the matrix. ** The parameter
⟨shift⟩ is an additional negative shift for the node. Normally, such a
shift could be given beforehand (that is, the shift could be preapplied
to the current transformation matrix). However, when ⟨shift⟩ is
evaluated, you can refer to *temporary* positions of nodes inside the
matrix. In detail, the following happens: When the matrix has been
typeset, all nodes in the matrix temporarily get assigned their
positions in the matrix box. The origin of this coordinate system is at
the left baseline end of the matrix box, which corresponds to the `text`
anchor. The position ⟨shift⟩ is then interpreted inside this coordinate
system and then used for shifting.

This allows you to use the parameter ⟨shift⟩ in the following way: If
you use `text` as the ⟨anchor⟩ and specify
`\pgfpointanchor{inner node}{some anchor}` for the parameter ⟨shift⟩,
where `inner node` is a node that is created in the matrix, then the
whole matrix will be shifted such that `inner node.some anchor` lies at
the origin of the whole picture.

**Rotations and scaling. ** The matrix node is never rotated or scaled,
because the current coordinate transformation matrix is reset (except
for the translational part) at the beginning of `\pgfmatrix`. This is
intentional and will not change in the future. If you need to rotate or
scale the matrix, you must install an appropriate canvas transformation
yourself.

However, nodes and stuff inside the cell pictures can be rotated and
scaled normally.

**Callbacks. ** At the beginning and at the end of each cell the special
macros `\pgfmatrixbegincode`, `\pgfmatrixendcode` and possibly
`\pgfmatrixemptycode` are called. The effect is explained in Section ??.

**Executing extra code. ** The parameter ⟨pre-code⟩ is executed at the
beginning of the outermost TeX-group enclosing the matrix node. It is
inside this TeX-group, but outside the matrix itself. It can be used for
different purposes:

1.  It can be used to simplify the next cell macro. For example, saying
    `\let\& =\pgfmatrixnextcell` allows you to use `\& ` instead of
    `\pgfmatrixnextcell`. You can also set the catcode of `& ` to
    active.

2.  It can be used to issue an `\aftergroup` command. This allows you to
    regain control after the `\pgfmatrix` command. (If you do not know
    the `\aftergroup` command, you are probably blessed with a simple
    and happy life.)

**Special considerations concerning macro expansion. ** As said before,
the matrix is typeset using `\halign` internally. This command does a
lot of strange and magic things like expanding the first macro of every
cell in a most unusual manner. Here are some effects you may wish to be
aware of:

-   It is not necessary to actually mention `\pgfmatrixnextcell` or
    `\pgfmatrixendrow` inside the ⟨matrix cells⟩. It suffices that the
    macros inside ⟨matrix cells⟩ expand to these macros sooner or later.

-   In particular, you can define clever macros that insert columns and
    rows as needed for special effects.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmatrix"
  },
  pgfmatrixbegincode = {
    details = [[
This macro is executed at the beginning of non-empty cells.
Correspondingly, `\pgfmatrixendcode` is added at the end of every
non-empty cell.

    \begin{tikzpicture}
      \def\pgfmatrixbegincode{\node[draw]\bgroup}
      \def\pgfmatrixendcode{\egroup;}
      \pgfmatrix{rectangle}{center}{mymatrix}
        {\pgfusepath{}}{\pgfpointorigin}{\let\&=\pgfmatrixnextcell}
      {
        a \& b \& c \\
        d \&   \& e \\
      }
    \end{tikzpicture}

Note that between `\pgfmatrixbegincode` and `\pgfmatrixendcode` there
will *not* only be the contents of the cell. Rather, PGF will add some
(invisible) commands for book-keeping purposes that involve `\let` and
`\gdef`. In particular, it is not a good idea to have
`\pgfmatrixbegincode` end with `\csname` and `\pgfmatrixendcode` start
with `\endcsname`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmatrixbegincode"
  },
  pgfmatrixcurrentcolumn = {
    details = [[
This counter stores the current column of the current cell of the
matrix.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmatrixcurrentcolumn"
  },
  pgfmatrixcurrentrow = {
    details = [[
This counter stores the current row of the current cell of the matrix.
Do not even think about changing this counter.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmatrixcurrentrow"
  },
  pgfmatrixemptycode = {
    details = [[
This macro is executed for empty cells. This means that PGF uses some
macro magic to determine whether a cell is empty (it immediately ends
with `\pgfmatrixemptycode` or `\pgfmatrixendrow`) and, if so, put this
macro inside the cell.

    \begin{tikzpicture}
      \def\pgfmatrixemptycode{\node{empty};}
      \pgfmatrix{rectangle}{center}{mymatrix}
        {\pgfusepath{}}{\pgfpointorigin}{\let\&=\pgfmatrixnextcell}
      {
        \node {a}; \&           \& \node {b}; \\
                   \& \node{c}; \& \node {d}; \& \\
      }
    \end{tikzpicture}

As can be seen, the macro is not executed for empty cells at the end of
row when columns are added only later on.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmatrixemptycode"
  },
  pgfmatrixendcode = {
    details = [[
See the explanation above.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmatrixendcode"
  },
  pgfmatrixendrow = {
    arguments = {
      {
        delimiters = {"[", "]"},
        meta = "additional sep list",
        optional = true
      }
    },
    details = [[
This command ends a line. The optional ⟨additional sep list⟩ is used to
determine the spacing between the row being ended and the next row. The
modes and the computation of $d$ is done in the same way as for columns.
For the last row the optional argument has no effect.

Inside matrices (and only there) the command `\\` is set up to mean the
same as this command.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmatrixendrow"
  },
  pgfmatrixnextcell = {
    arguments = {
      {
        delimiters = {"[", "]"},
        meta = "additional sep list",
        optional = true
      }
    },
    details = [[
This command has two purposes: First, it is used to separate cells.
Second, by providing the optional argument ⟨additional sep list⟩ you can
modify the spacing between the columns that are separated by this
command.

The optional ⟨additional sep list⟩ may only be provided when the
`\pgfmatrixnextcell` command starts a new column. Normally, this will
only be the case in the first row, but sometimes a later row has more
elements than the first row. In this case, the `\pgfmatrixnextcell`
commands that start the new columns in the later row may also have the
optional argument. Once a column has been started, subsequent uses of
this optional argument for the column have no effect.

To determine the space between the two columns that are separated by
`\pgfmatrixnextcell`, the following algorithm is executed:

1.  Both the default separation list (as set up by
    `\pgfsetmatrixcolumnsep`) and the ⟨additional sep list⟩ are
    processed, in this order. If the ⟨additional sep list⟩ argument is
    missing, only the default separation list is processed.

2.  Both lists may contain dimensions, separated by commas, as well as
    occurrences of the keywords `between origins` and `between borders`.

3.  All dimensions occurring in either list are added together to arrive
    at a dimension $d$.

4.  The last occurrence of either of the keywords is located. If neither
    keyword is present, we proceed as if `between borders` were present.

At the end of the algorithm, a dimension $d$ has been computed and one
of the two *modes* `between borders` and `between origins` has been
determined. Depending on which mode has been determined, the following
happens:

-   For the `between borders` mode, an additional horizontal space of
    $d$ is added between the two columns. Note that $d$ may be negative.

-   For the `between origins` mode, the spacing between the two columns
    is computed differently: Recall that the origins of the cell
    pictures in both pictures lie on two vertical lines. The spacing
    between the two columns is set up such that the horizontal distance
    between these two lines is exactly $d$.

    This mode may only be used between columns *already introduced in
    the first row*.

All of the above rules boil down to the following effects:

-   A default spacing between columns should be set up using
    `\pgfsetmatrixcolumnsep`. For example, you might say
    `\pgfsetmatrixcolumnsep{5pt}` to have columns spaced apart by `5pt`.
    You could say

        \pgfsetmatrixcolumnsep{1cm,between origins}

    to specify that horizontal space between the origins of cell
    pictures in adjacent columns should be 1cm by default -- regardless
    of the actual size of the cell pictures.

-   You can now use the optional argument of `\pgfmatrixnextcell` to
    locally overrule the spacing between two columns. By saying
    `\pgfmatrixnextcell[5pt]` you *add* 5pt to the space between of the
    two columns, regardless of the mode.

    You can also (locally) change the spacing mode for these two
    columns. For example, even if the normal spacing mode is
    `between origins`, you can say

        \pgfmatrixnextcell[5pt,between borders]

    to locally change the mode for these columns to `between borders`.

&nbsp;

    \begin{tikzpicture}[every node/.style=draw]
      \pgfsetmatrixcolumnsep{1mm}
      \pgfmatrix{rectangle}{center}{mymatrix}
        {\pgfusepath{}}{\pgfpointorigin}{\let\&=\pgfmatrixnextcell}
      {
        \node {8}; \&[2mm] \node{1}; \&[-1mm] \node {6}; \\
        \node {3}; \&      \node{5}; \&       \node {7}; \\
        \node {4}; \&      \node{9}; \&       \node {2}; \\
      }
    \end{tikzpicture}

    \begin{tikzpicture}[every node/.style=draw]
      \pgfsetmatrixcolumnsep{1mm}
      \pgfmatrix{rectangle}{center}{mymatrix}
        {\pgfusepath{}}{\pgfpointorigin}{\let\&=\pgfmatrixnextcell}
      {
        \node {8}; \&[2mm] \node(a){1}; \&[1cm,between origins] \node(b){6}; \\
        \node {3}; \&      \node   {5}; \&                      \node   {7}; \\
        \node {4}; \&      \node   {9}; \&                      \node   {2}; \\
      }
      \draw [<->,red,thick,every node/.style=] (a.center) -- (b.center)
            node [above,midway] {11mm};
    \end{tikzpicture}

    \begin{tikzpicture}[every node/.style=draw]
      \pgfsetmatrixcolumnsep{1cm,between origins}
      \pgfmatrix{rectangle}{center}{mymatrix}
        {\pgfusepath{}}{\pgfpointorigin}{\let\&=\pgfmatrixnextcell}
      {
        \node (a) {8}; \& \node (b) {1}; \&[between borders] \node (c) {6}; \\
        \node     {3}; \& \node     {5}; \&                  \node     {7}; \\
        \node     {4}; \& \node     {9}; \&                  \node     {2}; \\
      }
      \begin{scope}[every node/.style=]
        \draw [<->,red,thick] (a.center) -- (b.center) node [above,midway] {10mm};
        \draw [<->,red,thick] (b.east) -- (c.west) node [above,midway]
        {10mm};
      \end{scope}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmatrixnextcell"
  },
  pgfmetadecoratedcompleteddistance = {
    details = [[
The completed distance on the entire input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmetadecoratedcompleteddistance"
  },
  pgfmetadecoratedinputsegmentcompleteddistance = {
    details = [[
The completed distance on the current input segment of the entire input
path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmetadecoratedinputsegmentcompleteddistance"
  },
  pgfmetadecoratedinputsegmentremainingdistance = {
    details = [[
The remaining distance on the current input segment of the entire input
path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmetadecoratedinputsegmentremainingdistance"
  },
  pgfmetadecoratedpathlength = {
    details = [[
The entire length of the entire input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmetadecoratedpathlength"
  },
  pgfmetadecoratedremainingdistance = {
    details = [[
The remaining distance on the entire input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmetadecoratedremainingdistance"
  },
  pgfmultipartnode = {
    arguments = {
      {meta = "shape"},
      {meta = "anchor"},
      {meta = "name"},
      {meta = "path usage command"}
    },
    details = [[
This command is the more general (and less user-friendly) version of the
`\pgfnode` command. While the `\pgfnode` command can only be used for
shapes that have a single part (which is the case for most shapes), this
command can also be used with multi-part nodes.

When this command is called, for each node part of the node you must
have set up one TeX-box. Suppose the shape has two parts: The `text`
part and the `lower` part. Then, prior to calling `\pgfmultipartnode`,
you must have set up the boxes `\pgfnodeparttextbox` and
`\pgfnodepartlowerbox`. These boxes may contain any TeX-text. The shape
code will then compute the positions of the shape's anchors based on the
sizes of the these shapes. Finally, when the node is drawn, the boxes
are placed at the anchor positions `text` and `lower`.

    \setbox\pgfnodeparttextbox=\hbox{$q_1$}
    \setbox\pgfnodepartlowerbox=\hbox{01}
    \begin{pgfpicture}
      \pgfmultipartnode{circle split}{center}{my state}{\pgfusepath{stroke}}
    \end{pgfpicture}

*Note:* Be careful when using the `\setbox` command inside a
`{pgfpicture}` command. You will have to use `\pgfinterruptpath` at the
beginning of the box and `\endpgfinterruptpath` at the end of the box to
make sure that the box is typeset correctly. In the above example this
problem was sidestepped by moving the box construction outside the
environment.

*Note:* It is not necessary to use `\newbox` for every node part name.
Although you need a different box for each part of a single shape, two
different shapes may very well use the same box even when the names of
the parts are different. Suppose you have a `circle split` shape that
has a `lower` part and you have a `uml class` shape that has a `methods`
part. Then, in order to avoid exhausting TeX's limited number of box
registers, you can say

    \newbox\pgfnodepartlowerbox
    \let\pgfnodepartmethodsbox=\pgfnodepartlowerbox

Also, when you have a node part name with spaces like `class name`, it
may be useful to create an alias:

    \newbox\mybox
    \expandafter\let\csname pgfnodepartclass namebox\endcsname=\mybox
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfmultipartnode"
  },
  pgfnode = {
    arguments = {
      {meta = "shape"},
      {meta = "anchor"},
      {meta = "label text"},
      {meta = "name"},
      {meta = "path usage command"}
    },
    details = [[
This command creates a new node. The ⟨shape⟩ of the node must have been
declared previously using `\pgfdeclareshape`.

The shape is shifted such that the ⟨anchor⟩ is at the origin. In order
to place the shape somewhere else, use the coordinate transformation
prior to calling this command.

The ⟨name⟩ is a name for later reference. If no name is given, nothing
will be "saved" for the node, it will just be drawn.

The ⟨path usage command⟩ is executed for the background and the
foreground path (if the shape defines them).

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (4,3);
      {
        \pgftransformshift{\pgfpoint{1.5cm}{1cm}}
        \pgfnode{rectangle}{north}{Hello World}{hellonode}{\pgfusepath{stroke}}
      }
      {
        \color{red!20}
        \pgftransformrotate{10}
        \pgftransformshift{\pgfpoint{3cm}{1cm}}
        \pgfnode{rectangle}{center}
          {\color{black}Hello World}{hellonode}{\pgfusepath{fill}}
      }
    \end{tikzpicture}

As can be seen, all coordinate transformations are also applied to the
text of the shape. Sometimes, it is desirable that the transformations
are applied to the point where the shape will be anchored, but you do
not wish the shape itself to be transformed. In this case, you should
call `\pgftransformresetnontranslations` prior to calling the `\pgfnode`
command.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (4,3);
      {
        \color{red!20}
        \pgftransformrotate{10}
        \pgftransformshift{\pgfpoint{3cm}{1cm}}
        \pgftransformresetnontranslations
        \pgfnode{rectangle}{center}
          {\color{black}Hello World}{hellonode}{\pgfusepath{fill}}
      }
    \end{tikzpicture}

The ⟨label text⟩ is typeset inside the TeX-box `\pgfnodeparttextbox`.
This box is shown at the `text` anchor of the node, if the node has a
`text` part. See the description of `\pgfmultipartnode` for details.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfnode"
  },
  pgfnodealias = {
    arguments = {{meta = "new name"}, {meta = "existing node"}},
    details = [[
This command does not actually create a new node. Rather, it allows you
to subsequently access the node ⟨existing node⟩ using the name ⟨new
name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfnodealias"
  },
  pgfnodepostsetupcode = {
    arguments = {{meta = "node name"}, {meta = "code"}},
    details = [[
When you call this macro inside a scope for which the
`\pgfpositionnodelater` has been called, the ⟨code⟩ will be stored
internally. Later, when the node named ⟨node name⟩ is actually
positioned using `\pgfpositionnodenow`, the ⟨code⟩ will be executed.
When this macro is called multiple times with the same ⟨node name⟩, the
⟨code⟩ accumulates. However, When `\pgfpositionnodenow` is called, the
code stored for the node is cleared.

The main purpose of this mechanism is to allow TikZ to store so-called
"late options" with a node that will be positioned only later.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfnodepostsetupcode"
  },
  pgfnoderename = {
    arguments = {{meta = "new name"}, {meta = "existing node"}},
    details = [[
This command renames an existing node.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfnoderename"
  },
  pgfooappend = {
    arguments = {{meta = "attribute"}, {meta = "value"}},
    details = [[
This method adds the given ⟨value⟩ to the ⟨attribute⟩ at the end.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfooappend"
  },
  pgfooclass = {
    arguments = {
      {delimiters = {"(", ")"}, meta = "list of superclasses"},
      {meta = "class name"},
      {meta = "body"}
    },
    details = [[
This command defines a class named ⟨class name⟩. The name of the class
can contain spaces and most other characters, but no periods. So, valid
class names are `MyClass` or `my class` or `Class_ C++_ emulation??1`.
The ⟨list of superclasses⟩ is optional just like the parenthesis around
it.

The ⟨body⟩ is actually just executed, so any normal TeX-code is
permissible here. However, while the ⟨body⟩ is being executed, the
macros `\method` and `\attribute` are set up so that they can be used to
define methods and attributes for this class (the original meanings are
restored afterward).

The definition of a class is local to the scope where the class has been
defined.

    \pgfooclass{stamp}{
      % This is the class stamp

      \attribute text;
      \attribute rotation angle=20;

      \method stamp(#1) { % The constructor
        ...
      }

      \method apply(#1,#2) { % Causes the stamp to be shown at coordinate (#1,#2)
        ...
      }
    }

    % We can now create objects of type "stamp"

Concerning the list of base classes, the Method Resolution Order (MRO)
is computed using the C3 algorithm also used in Python, v2.3 and higher.
The linearization computed by the algorithm respects both local
precedence ordering and monotonicity. Resolution of both methods and
attributes depends on the MRO: when a method method name is called on an
object of class $C$, the system invokes method method name from the
first class in the MRO of $C$ which defines method method name; when an
object is created, each attribute `attr` is initialized to the value
specified in the first class in the MRO of $C$ which declares attribute
`attr`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfooclass"
  },
  pgfooeset = {
    arguments = {{meta = "attribute"}, {meta = "value"}},
    details = [[
Performs the same action as `\pgfooset` but in an `\edef` full expansion
context.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfooeset"
  },
  pgfoogc = {
    details = [[
This command causes the "garbage collector" to be invoked. The job of
this garbage collector is to free the global TeX-macros that are used by
"dead" objects (objects whose life-time has ended). This macro is called
automatically after every scope in which an object has been created, so
you normally do not need to call this macro yourself.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfoogc"
  },
  pgfooget = {
    arguments = {{meta = "attribute"}, {meta = "macro"}},
    details = [[
Reads the current value of ⟨attribute⟩ and stores the result in ⟨macro⟩.

    ...
      \method get rotation (#1) {
        \pgfooget{rotation angle}{#1}
      }
    ...

    \mystamp.get rotation(\therotation)
    ``\therotation'' is now ``20'' (or whatever).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfooget"
  },
  pgfoolet = {
    arguments = {{meta = "attribute"}, {meta = "macro"}},
    details = [[
Sets the ⟨attribute⟩ of the current value to the current value of
⟨macro⟩ using TeX's `\let` command.

    \method foo () {
      \pgfoolet{my func}\myfunc
      % Changing \myfunc now has no effect on the value of attribute my func
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfoolet"
  },
  pgfoonew = {
    arguments = {
      {meta = "object handle or attribute"},
      {literal = "="},
      {literal = "new "},
      {meta = "class name"},
      {delimiters = {"(", ")"}, meta = "constructor arguments"}
    },
    details = [[
Causes a new object to be created. The class of the object will be
⟨class name⟩, which must previously have been declared using
`\pgfooclass`. Once the object has been created, the constructor method
of the object will be called with the parameter list set to ⟨constructor
arguments⟩.

The resulting object is stored internally and its lifetime will end
exactly at the end of the current scope.

Here is an example in which three stamp objects are created.

    \pgfoonew \firststamp=new stamp()
    \pgfoonew \secondstamp=new stamp()
    {
      \pgfoonew \thirdstamp=new stamp()
      ...
    }
    % \thirdstamp no longer exists, but \firststamp and \secondstamp do
    % even if you try to store \thirdstamp in a global variable, trying
    % to access it will result in an error.

The optional ⟨object handle or attribute⟩ can either be an ⟨object
handle⟩ or an ⟨attribute⟩. When an ⟨object handle⟩ is given, it must be
a normal TeX macro name that will "point" to the object (handles are
discussed in more detail in Section ??). You can use this macro to call
methods of the object as discussed in the following section. When an
⟨attribute⟩ is given, it must be given in curly braces (the curly braces
are used to detect the presence of an attribute). In this case, a handle
to the newly created object is stored in this attribute.

    \pgfooclass{foo}
    {
      \attribute stamp obj;
      \attribute another object;

      \method foo() {
        \pgfoonew{stamp obj}=new stamp()
        \pgfoonew{another object}=new bar()
      }
      ...
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfoonew"
  },
  pgfooobj = {
    arguments = {{meta = "id"}},
    details = [[
Provided that ⟨id⟩ is the id of an existing object (an object whose
life-time has not expired), calling this command yields a handle to this
object. The handle can then be used to call methods:

    % Create a new object:
    \pgfoonew \mystamp=new stamp()

    % Get the object's id and store it in \myid:
    \mystamp.get id(\myid)

    % The following two calls have the same effect:
    \mystamp.apply(1,1)
    \pgfooobj{\myid}.apply(1,1)
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfooobj"
  },
  pgfooprefix = {
    arguments = {{meta = "attribute"}, {meta = "value"}},
    details = [[
This method adds the given ⟨value⟩ to the ⟨attribute⟩ at the beginning.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfooprefix"
  },
  pgfooset = {
    arguments = {{meta = "attribute"}, {meta = "value"}},
    details = [[
Sets the ⟨attribute⟩ of the current object to ⟨value⟩.

    \method set rotation (#1) {
      \pgfooset{rotation angle}{#1}
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfooset"
  },
  pgfoosuper = {
    arguments = {{literal = "("}, {meta = "class"}},
    details = [[
This macro gives you finer control over which method gets invoked in
case of multiple inheritance. This macro calls ⟨method name⟩ of the
object specified by ⟨object handle⟩, but which implementation of the
method is called is determined as follows: it will be the implementation
in the first class (in the method resolution order) after ⟨class⟩ that
defines ⟨method name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfoosuper"
  },
  pgfoothis = {
    details = [[
This object handle is well-defined only when a method is being executed.
There, it is then set to point to the object for which the method is
being called, which allows you to call another method for the same
object.

    \pgfooclass{stamp}{
      % This is the class stamp

      \method stamp() {}

      \method apply(#1,#2) {
        \pgfoothis.shift origin(#1,#2)

        % Draw the stamp:
        \node [rotate=20,font=\huge] {Passed};
      }

      % Private method:
      \method shift origin(#1,#2) {
        \tikzset{xshift=#1,yshift=#2}
      }
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfoothis"
  },
  pgfoovalueof = {
    arguments = {{meta = "attribute"}},
    details = [[
Expands (eventually) to the current value of ⟨attribute⟩ of the current
object.

    \method apply(#1,#2) {
      \pgfoothis.shift origin(#1,#2)

      \node [rotate=\pgfoovalueof{rotation angle},font=\huge]
        {\pgfoovalueof{text}};
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfoovalueof"
  },
  pgfpagescurrentpagewillbelogicalpage = {
    arguments = {{meta = "number"}},
    details = [[
When the current TeX page has been typeset, it will be become the given
logical page ⟨number⟩. This command "interrupts" the normal order of
logical pages, that is, it behaves like the previous command and does
not update the ⟨current logical page⟩ counter.

    \pgfpagesuselayout{two screens with optional second}
    ...
    Text for main page.
    \clearpage

    \pgfpagescurrentpagewillbelogicalpage{2}
    Text that goes to second page
    \clearpage

    Text for main page.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpagescurrentpagewillbelogicalpage"
  },
  pgfpagesdeclarelayout = {
    arguments = {
      {meta = "layout"},
      {meta = "before actions"},
      {meta = "after actions"}
    },
    details = [[
This command predefines a ⟨layout⟩ that can later be installed using the
`\pgfpagesuselayout` command.

When `\pgfpagesuselayout``{layout}``[options]` is called, the following
happens: First, the ⟨before actions⟩ are executed. They can be used, for
example, to set up default values for keys. Next,
`\setkeys{pgfpagesuselayoutoption}``{options}` is executed. Finally, the
⟨after actions⟩ are executed.

Here is an example:

    \pgfpagesdeclarelayout{resize to}
    {
      \def\pgfpageoptionborder{0pt}
    }
    {
      \pgfpagesphysicalpageoptions
      {%
        logical pages=1,%
        physical height=\pgfpageoptionheight,%
        physical width=\pgfpageoptionwidth%
      }
      \pgfpageslogicalpageoptions{1}
      {%
        resized width=\pgfphysicalwidth,%
        resized height=\pgfphysicalheight,%
        border shrink=\pgfpageoptionborder,%
        center=\pgfpoint{.5\pgfphysicalwidth}{.5\pgfphysicalheight}%
      }%
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpagesdeclarelayout"
  },
  pgfpageslogicalpageoptions = {
    arguments = {
      {meta = "logical page number"},
      {keys = "$ref:pgf#/keys/pgf", meta = "options"}
    },
    details = [[
This command is used to specify where the logical page number ⟨logical
page number⟩ will be placed on the physical page. In addition, this
command can be used to install additional "code" to be executed when
this page is put on the physical page.

The number ⟨logical page number⟩ should be between 1 and ⟨logical
pages⟩, which has previously been installed using the
`\pgfpagesphysicalpageoptions` command.

The following ⟨options⟩ may be given:

-   `center=`⟨pgf point⟩ specifies the center of the logical page inside
    the physical page as a PGF-point. The origin of the coordinate
    system of the physical page is at the *lower* left corner.

        \pgfpageslogicalpageoptions{1}
        {% center logical page on middle of left side
          center=\pgfpoint{.25\pgfphysicalwidth}{.5\pgfphysicalheight}%
          resized width=.5\pgfphysicalwidth,%
          resized height=\pgfphysicalheight,%
        }

-   `resized width=`⟨size⟩ specifies the width that the logical page
    should have *at most* on the physical page. To achieve this width,
    the pages is scaled down appropriately *or more*. The "or more" part
    can happen if the `resize height` option is also used. In this case,
    the scaling is chosen such that both the specified height and width
    are met. The aspect ratio of a logical page is not modified.

-   `resized height=`⟨height⟩ specifies the maximum height of the
    logical page.

-   `original width=`⟨width⟩ specifies the width the TeX "thinks" that
    the logical page has. This width is `\paperwidth` at the point of
    invocation, by default. Note that setting this width to something
    different from `\paperwidth` does *not* change the `\pagewidth`
    during TeX's typesetting. You have to do that yourself.

    You need this option only for special logical pages that have a
    height or width different from the normal one and for which you will
    (later on) set these sizes yourself.

-   `original height=`⟨height⟩ works like `original width`.

-   `scale=`⟨factor⟩ scales the page by at least the given ⟨factor⟩. A
    ⟨factor⟩ of `0.5` will half the size of the page, a factor or `2`
    will double the size. "At least" means that if options like
    `resize height` are given and if the scaling required to meet that
    option is less than ⟨factor⟩, that other scaling is used instead.

-   `xscale=`⟨factor⟩ scales the logical page along the $x$-axis by the
    given ⟨factor⟩. This scaling is done independently of any other
    scaling. Mostly, this option is useful for a factor of `-1`, which
    flips the page along the $y$-axis. The aspect ratio is not kept.

-   `yscale=`⟨factor⟩ works like `xscale`, only for the $y$-axis.

-   `rotation=`⟨degree⟩ rotates the page by ⟨degree⟩ around its center.
    Use a degree of `90` or `-90` to go from portrait to landscape and
    back. The rotation need not be a multiple of `90`.

-   `copy from=`⟨logical page number⟩. Normally, after a physical
    shipout has occurred, all logical pages are voided in a loop.
    However, if this option is given, the current logical page is filled
    with the contents of the old logical page number ⟨logical page
    number⟩.

    Have logical page 2 retain its contents:

        \pgfpageslogicalpageoptions{2}{copy from=2}

    Let logical page 2 show what logical page 1 showed on the
    just-shipped-out physical page:

        \pgfpageslogicalpageoptions{2}{copy from=1}

-   `border shrink`=⟨size⟩ specifies an additional reduction of the size
    to which the page is page is scaled.

-   `border code`=⟨code⟩. When this option is given, the ⟨code⟩ is
    executed before the page box is inserted with a path preinstalled
    that is a rectangle around the current logical page. Thus, setting
    ⟨code⟩ to `\pgfstroke` draws a rectangle around the logical page.
    Setting ⟨code⟩ to `\pgfsetlinewidth{3pt}\pgfstroke` results in a
    thick (ugly) frame. Adding dashes and filling can result in
    arbitrarily funky and distracting borders.

    You can also call `\pgfdiscardpath` and add your own path
    construction code (for example to paint a rectangle with rounded
    corners). The coordinate system is set up in such a way that a
    rectangle starting at the origin and having the height and width of
    TeX-box 0 will result in a rectangle filling exactly the logical
    page currently being put on the physical page. The logical page is
    inserted *after* these commands have been executed.

    Add a rectangle around the page:

        \pgfpageslogicalpageoptions{1}{border code=\pgfstroke}

-   `corner width`=⟨size⟩ adds black "rounded corners" to the page. See
    the description of the predefined layout `rounded corners` on
    page ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpageslogicalpageoptions"
  },
  pgfpagesphysicalpageoptions = {
    arguments = {{keys = "$ref:pgf#/keys/pgf", meta = "options"}},
    details = [[
This command sets the characteristics of the "physical" page. For
example, it is used to specify how many logical pages there are and how
many logical pages must be accumulated before a physical page is shipped
out. How each individual logical page is typeset is specified using the
command `\pgfpageslogicalpageoptions`, described later.

A layout for putting two portrait pages on a single landscape page:

    \pgfpagesphysicalpageoptions
    {%
      logical pages=2,%
      physical height=\paperwidth,%
      physical width=\paperheight,%
    }

    \pgfpageslogicalpageoptions{1}
    {%
      resized width=.5\pgfphysicalwidth,%
      resized height=\pgfphysicalheight,%
      center=\pgfpoint{.25\pgfphysicalwidth}{.5\pgfphysicalheight}%
    }%
    \pgfpageslogicalpageoptions{2}
    {%
      resized width=.5\pgfphysicalwidth,%
      resized height=\pgfphysicalheight,%
      center=\pgfpoint{.75\pgfphysicalwidth}{.5\pgfphysicalheight}%
    }%

The following ⟨options⟩ may be set:

-   `logical pages=`⟨logical pages⟩ specified how many logical pages
    there are, in total. These are numbered 1 to ⟨logical pages⟩.

-   `first logical shipout=`⟨first⟩. See the next option. By default,
    ⟨first⟩ is 1.

-   `last logical shipout=`⟨last⟩. Together with the previous option,
    these two options define an interval of pages inside the range 1 to
    ⟨logical pages⟩. Only this range is used to store the pages that are
    shipped out by TeX. This means that after a physical shipout has
    just occurred (or at the beginning), the first time TeX wishes to
    perform a shipout, the page to be shipped out is stored in logical
    page ⟨first⟩. The next time TeX performs a shipout, the page is
    stored in logical page $⟨first⟩ +1$ and so on, until the logical
    page ⟨last⟩ is also filled. Once this happens, a physical shipout
    occurs and the process starts once more.

    Note that logical pages that lie outside the interval between
    ⟨first⟩ and ⟨last⟩ are filled only indirectly or when special
    commands are used.

    By default, ⟨last⟩ equals ⟨logical pages⟩.

-   `current logical shipout=`⟨current⟩ changes an internal counter such
    that TeX's next logical shipout will be stored in logical page
    ⟨current⟩.

    This option can be used to "warp" the logical page filling mechanism
    to a certain page. You can both skip logical pages and overwrite
    already filled logical pages. After the logical page ⟨current⟩ has
    been filled, the internal counter is incremented normally as if the
    logical page ⟨current⟩ had been "reached" normally. If you specify a
    ⟨current⟩ larger than ⟨last⟩, a physical shipout will occur after
    the logical page ⟨current⟩ has been filled.

-   `physical height=`⟨height⟩ specifies the height of the physical
    pages. This height is typically different from the normal
    `\paperheight`, which is used by TeX for its typesetting and page
    breaking purposes.

-   `physical width=`⟨width⟩ specifies the physical width.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpagesphysicalpageoptions"
  },
  pgfpagesshipoutlogicalpage = {
    arguments = {{meta = "number"}, {meta = "box"}},
    details = [[
This command sets to logical page ⟨number⟩ to ⟨box⟩. The ⟨box⟩ should be
the code of a TeX box command. This command does not influence the
counter ⟨current logical page⟩ and does not cause a physical shipout.

    \pgfpagesshipoutlogicalpage{0}\vbox{Hi!}

This command can be used to set the contents of logical pages that are
normally not filled.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpagesshipoutlogicalpage"
  },
  pgfpagesuselayout = {
    arguments = {
      {meta = "layout"},
      {
        delimiters = {"[", "]"},
        keys = "$ref:pgf#/keys/pgf",
        meta = "options",
        optional = true
      }
    },
    details = [[
Installs the specified ⟨layout⟩ with the given ⟨options⟩. The predefined
layouts and their permissible options are explained below.

If this function is called multiple times, only the last call "wins".
You can thereby overwrite any previous settings. In particular, layouts
*do not* accumulate.

`\pgfpagesuselayout{resize to}[a4paper]`
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpagesuselayout"
  },
  pgfparserdeffinal = {
    arguments = {{meta = "parser name"}, {meta = "action"}},
    details = [[
Every parser can call a final ⟨action⟩ after the state was switched to
`final`. This ⟨action⟩ is executed after everything else, so you can use
something that grabs more arguments if you want to.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparserdeffinal"
  },
  pgfparserdefunknown = {
    arguments = {{meta = "parser name"}, {meta = "state"}, {meta = "action"}},
    details = [[
With this macro you can define an ⟨action⟩ for the ⟨parser name⟩ parser
in ⟨state⟩ if no action was defined for the letter which was
encountered.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparserdefunknown"
  },
  pgfparserifmark = {
    arguments = {{meta = "arg"}, {meta = "true"}, {meta = "false"}},
    details = [[
Remember that some of the optional argument types set special marks?
With `\pgfparserifmark` you can test whether ⟨arg⟩ is such a mark. So if
there was no optional argument for the argument types `o` and `d` the
⟨true⟩ branch will be executed, else the ⟨false⟩ branch. For the `t`
type argument the ⟨true⟩ branch is executed if the token was
encountered.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparserifmark"
  },
  pgfparserletter = {
    details = [[
This macro stores the letter to which `\pgfparsertoken` was let. So if
you'd use `\pgfparserparse{foo}a` this macro would be defined with
`\def\pgfparserletter{a}`. This definition is done before any action
code is executed. There are four special cases: If the next token is of
category code 1, 2, 6, or 10, so with standard category codes the tokens
`{`, `}`, `# `, and  (a space), it would be treated differently. In
those cases this macro expands to `\bgroup`, `\egroup`, `# # `, and  for
the categories 1, 2, 6, and 10, respectively.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparserletter"
  },
  pgfparserparse = {
    arguments = {{meta = "parser name"}, {meta = "text"}},
    details = [[
This command is used to parse the ⟨text⟩ using the (previously defined)
parser named ⟨parser name⟩.

The ⟨text⟩ is not contained in curly braces, rather it is all the text
that follows. The end of the text is determined implicitly, namely when
the final state of the parser has been reached. If you defined a final
action for the parser using `\pgfparserdeffinal` it is executed now.

The parser works as follows: At any moment, it is in a certain *state*,
initially this state is called `initial`. Then, the first letter of the
⟨text⟩ is examined (using the `\futurelet` command). For each possible
state and each possible letter, some action code is stored in the parser
in a table. This code is then executed. This code may, but need not,
trigger a *state switch*, causing a new state to be set. The parser then
moves on to the next character of the text and repeats the whole
procedure, unless it is in the state `final`, which causes the parsing
process to stop immediately.

In the following example, the parser counts the number of `a`'s in the
text, ignoring any `b`'s. The ⟨text⟩ ends with the first `c`.

    \newcount\mycount
    \pgfparserdef{myparser}{initial}{the letter a}%
    {\advance\mycount by 1\relax}%
    \pgfparserdef{myparser}{initial}{the letter b}%
    {} % do nothing
    \pgfparserdef{myparser}{initial}{the letter c}%
    {\pgfparserswitch{final}}% done!

    \pgfparserparse{myparser}aabaabababbbbbabaabcccc
    There are \the\mycount\ a's.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparserparse"
  },
  pgfparserreinsert = {
    details = [[
You can use this as the final macro in an action of `\pgfparserdef` or
`\pgfparserdefunknown`. This has the effect that the contents of
`\pgfparserletter` will be parsed next. Without any redefinition the
result will be that the last token will be parsed again. You can change
the definition of `\pgfparserletter` just before `\pgfparserreinsert` as
well to parse some specific tokens next.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparserreinsert"
  },
  pgfparserset = {
    arguments = {{meta = "key list"}},
    details = [[
The `pgfparser` module has a few keys you can access through this macro.
It is just a shortcut for `\pgfset{/pgfparser/.cd,# 1}`. The available
keys are listed in subsection ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparserset"
  },
  pgfparserstate = {
    details = [[
Expands to the current state of the parser.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparserstate"
  },
  pgfparserswitch = {
    arguments = {{meta = "state"}},
    details = [[
This command can be called inside the action code of a parser to cause a
state switch to ⟨state⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparserswitch"
  },
  pgfparsertoken = {
    details = [[
This is the macro which is let to the following token with `\futurelet`.
You can use it inside an action code.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparsertoken"
  },
  pgfparsetime = {
    arguments = {{meta = "time"}},
    details = [[
This command works like `\pgfmathparse` (indeed, it calls is
internally), but returns the result in the macro `\pgftimeresult` rather
than `\pgfmathresult`. Furthermore, the following changes are installed:

-   The postfix operator `s` is added, which has no effect.

-   The postfix operator `ms` is added, which divides a number by 1000,
    so `2ms` equals 0.002s.

-   The postfix operator `min` is added, which multiplies a number
    by 60.

-   The postfix operator `h` is added, which multiplies a number
    by 3600.

-   The infix operator `:` is redefined, so that it multiplies its first
    argument by 60 and adds the second. This implies that `1:20` equals
    80s and `01:00:00` equals 3600s.

-   The parsing of octal numbers is switched off to allow things like
    `01:08` for 68s.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfparsetime"
  },
  pgfpatharc = {
    arguments = {
      {meta = "start angle"},
      {meta = "end angle"},
      {literal = "{"},
      {meta = "radius"},
      {literal = " and "},
      {meta = "y-radius"},
      {literal = "}"}
    },
    details = [[
This command appends a part of a circle (or an ellipse) to the current
path. Imagine the curve between ⟨start angle⟩ and ⟨end angle⟩ on a
circle of radius ⟨radius⟩ (if $⟨start angle⟩ < ⟨end
    angle⟩$, the curve goes around the circle counterclockwise,
otherwise clockwise). This curve is now moved such that the point where
the curve starts is the previous last point of the path. Note that this
command will *not* start a new part of the path, which is important for
example for filling purposes.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{0cm}{1cm}}
      \pgfpatharc{180}{90}{.5cm}
      \pgfpathlineto{\pgfpoint{3cm}{1.5cm}}
      \pgfpatharc{90}{-45}{.5cm}
      \pgfusepath{fill}
    \end{tikzpicture}

Saying `\pgfpatharc{0}{360}{1cm}` "nearly" gives you a full circle. The
"nearly" refers to the fact that the circle will not be closed. You can
close it using `\pgfpathclose`.

If the optional ⟨y-radius⟩ is given, the ⟨radius⟩ is the $x$-radius and
the ⟨y-radius⟩ the $y$-radius of the ellipse from which the curve is
taken:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpatharc{180}{45}{2cm and 1cm}
      \pgfusepath{draw}
    \end{tikzpicture}

The axes of the circle or ellipse from which the arc is "taken" always
point up and right. However, the current coordinate transformation
matrix will have an effect on the arc. This can be used to, say, rotate
an arc:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgftransformrotate{30}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpatharc{180}{45}{2cm and 1cm}
      \pgfusepath{draw}
    \end{tikzpicture}

The command will update the bounding box of the current path and
picture, if necessary. Unless rotation or shearing transformations are
applied, the bounding box will be tight.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpatharc"
  },
  pgfpatharcaxes = {
    arguments = {
      {meta = "start angle"},
      {meta = "end angle"},
      {meta = "first axis"},
      {meta = "second axis"}
    },
    details = [[
This command is similar to `\pgfpatharc`. The main difference is how the
ellipse or circle is specified from which the arc is taken. The two
parameters ⟨first axis⟩ and ⟨second axis⟩ are the $0^\circ$-axis and the
$90^\circ$-axis of the ellipse from which the path is taken. Thus,
`\pgfpatharc{0}{90}{1cm and 2cm}` has the same effect as

    \pgfpatharcaxes{0}{90}{\pgfpoint{1cm}{0cm}}{\pgfpoint{0cm}{2cm}}

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw (0,0) -- (2cm,5mm) (0,0) -- (0cm,1cm);

      \pgfpathmoveto{\pgfpoint{2cm}{5mm}}
      \pgfpatharcaxes{0}{90}{\pgfpoint{2cm}{5mm}}{\pgfpoint{0cm}{1cm}}
      \pgfusepath{draw}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpatharcaxes"
  },
  pgfpatharcto = {
    arguments = {
      {meta = "x-radius"},
      {meta = "y-radius"},
      {meta = "rotation"},
      {meta = "large arc flag"},
      {meta = "counterclockwise flag"},
      {meta = "target point"}
    },
    details = [[
This command (which directly corresponds to the arc-path command of SVG)
is used to add an arc to the path that starts at the current point and
ends at ⟨target point⟩. This arc is part of an ellipse that is
determined in the following way: Imagine an ellipse with radii
⟨x-radius⟩ and ⟨y-radius⟩ that is rotated around its center by
⟨rotation⟩ degrees. When you move this ellipse around in the plane,
there will be exactly two positions such that the two current point and
the target point lie on the border of the ellipse (excluding
pathological cases). The flags ⟨large arc flag⟩ and ⟨clockwise flag⟩ are
then used to decide which of these ellipses should be picked and which
arc on the picked ellipsis should be used.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \pgfpathmoveto{\pgfpoint{0mm}{20mm}}
      \pgfpatharcto{3cm}{1cm}{0}{0}{0}{\pgfpoint{3cm}{1cm}}
      \pgfusepath{draw}
    \end{tikzpicture}

Both flags are considered to be false exactly if they evaluate to `0`,
otherwise they are true. If the ⟨large arc flag⟩ is true, then the angle
spanned by the arc will be greater than $180^\circ$, otherwise it will
be less than $180^\circ$. The ⟨clockwise flag⟩ is used to determine
which of the two ellipses should be used: if the flag is true, then the
arc goes from the current point to the target point in a
counterclockwise direction, otherwise in a clockwise fashion.

    \begin{tikzpicture}
      \pgfsetlinewidth{2pt}
      % Flags 0 0: red
      \pgfsetstrokecolor{red}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpatharcto{20pt}{10pt}{0}{0}{0}{\pgfpoint{20pt}{10pt}}
      \pgfusepath{stroke}
      % Flags 0 1: blue
      \pgfsetstrokecolor{blue}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpatharcto{20pt}{10pt}{0}{0}{1}{\pgfpoint{20pt}{10pt}}
      \pgfusepath{stroke}
      % Flags 1 0: orange
      \pgfsetstrokecolor{orange}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpatharcto{20pt}{10pt}{0}{1}{0}{\pgfpoint{20pt}{10pt}}
      \pgfusepath{stroke}
      % Flags 1 1: black
      \pgfsetstrokecolor{black}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpatharcto{20pt}{10pt}{0}{1}{1}{\pgfpoint{20pt}{10pt}}
      \pgfusepath{stroke}
    \end{tikzpicture}

*Warning:* The internal computations necessary for this command are
numerically very unstable. In particular, the arc will not always really
end at the ⟨target coordinate⟩, but may be off by up to several points.
A more precise positioning is currently infeasible due to TeX's
numerical weaknesses. The only case it works quite nicely is when the
resulting angle is a multiple of $90^\circ$.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpatharcto"
  },
  pgfpatharctomaxstepsize = {
    details = [[
The quality of arc approximation taken by `\pgfpatharctoprecomputed` by
means of Bézier splines is controlled by a mesh width, which is
initially

`\def\pgfpatharctoprecomputed{45}`.

The mesh width is provided in (full!) degrees. The smaller the mesh
width, the more precise the arc approximation.

Use an empty value to disable spline approximation (uses a single cubic
polynomial for the complete arc).

The value must be an integer!
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpatharctomaxstepsize"
  },
  pgfpatharctoprecomputed = {
    arguments = {
      {meta = "center point"},
      {meta = "start angle"},
      {meta = "end angle"},
      {meta = "end point"},
      {meta = "x-radius"},
      {meta = "y-radius"},
      {meta = "ratio x-radius/y-radius"},
      {meta = "ratio y-radius/x-radius"}
    },
    details = [[
A specialized arc operation which is fast and numerically stable,
provided a lot of information is given in advance.

In contrast to `\pgfpatharc`, it explicitly interpolates start and end
points.

In contrast to `\pgfpatharcto`, this routine is numerically stable and
quite fast since it relies on a lot of available information.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \def\cx{1.5cm}% center x
      \def\cy{1cm}% center y
      \def\startangle{0}%
      \def\endangle{270}%
      \def\a{1.5cm}% xradius
      \def\b{0.5cm}% yradius
      \pgfmathparse{\a/\b}\let\abratio=\pgfmathresult
      \pgfmathparse{\b/\a}\let\baratio=\pgfmathresult
      %
      % start point:
      \pgfpathmoveto{\pgfpoint{\cx+\a*cos(\startangle)}{\cy+\b*sin(\startangle)}}%
      \pgfpatharctoprecomputed
        {\pgfpoint{\cx}{\cy}}
        {\startangle}
        {\endangle}
        {\pgfpoint{\cx+\a*cos(\endangle)}{\cy+\b*sin(\endangle)}}% end point
        {\a}
        {\b}
        {\abratio}
        {\baratio}
      \pgfusepath{draw}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpatharctoprecomputed"
  },
  pgfpathcircle = {
    arguments = {{meta = "center"}, {meta = "radius"}},
    details = [[
A shorthand for `\pgfpathellipse` applied to ⟨center⟩ and the two axis
vectors $(⟨radius⟩,0)$ and $(0,⟨radius⟩)$.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathcircle"
  },
  pgfpathclose = {
    details = [[
This command closes the current part of the path by appending a straight
line to the start point of the current part. Note that there *is* a
difference between closing a path and using the line-to operation to add
a straight line to the start of the current path. The difference is
demonstrated by the upper corners of the triangles in the following
example:

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfsetlinewidth{5pt}
      \pgfpathmoveto{\pgfpoint{1cm}{1cm}}
      \pgfpathlineto{\pgfpoint{0cm}{-1cm}}
      \pgfpathlineto{\pgfpoint{1cm}{-1cm}}
      \pgfpathclose
      \pgfpathmoveto{\pgfpoint{2.5cm}{1cm}}
      \pgfpathlineto{\pgfpoint{1.5cm}{-1cm}}
      \pgfpathlineto{\pgfpoint{2.5cm}{-1cm}}
      \pgfpathlineto{\pgfpoint{2.5cm}{1cm}}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathclose"
  },
  pgfpathcosine = {
    arguments = {{meta = "vector"}},
    details = [[
This command appends a cosine curve in the interval $[0,\pi/2]$ to the
current path. The curve is squeezed or stretched such that the curve
starts at the current point and ends at the current point plus ⟨vector⟩.
Using several sine and cosine operations in sequence allows you to
produce a complete sine or cosine curve

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpoint{0cm}{0cm}}
      \pgfpathsine{\pgfpoint{1cm}{1cm}}
      \pgfpathcosine{\pgfpoint{1cm}{-1cm}}
      \pgfpathsine{\pgfpoint{1cm}{-1cm}}
      \pgfpathcosine{\pgfpoint{1cm}{1cm}}
      \pgfsetfillcolor{yellow!80!black}
      \pgfusepath{fill,stroke}
    \end{pgfpicture}

The command will apply coordinate transformations and update the
bounding boxes.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathcosine"
  },
  pgfpathcurvebetweentime = {
    arguments = {
      {meta = "time $t_1$"},
      {meta = "time $t_2$"},
      {meta = "point p"},
      {meta = "point $s_1$"},
      {meta = "point $s_2$"},
      {meta = "point q"}
    },
    details = [[
This command draws the part of the curve described by $p$, $s_1$, $s_2$
and $q$ between the times $t_1$ and $t_2$. A time value of 0 indicates
the point $p$ and a time value of 1 indicates point $q$. This command
includes a moveto operation to the first point.

    \begin{tikzpicture}
      \draw [thin] (0,0) .. controls (0,2) and (3,0) .. (3,2);
      \pgfpathcurvebetweentime{0.25}{0.9}{\pgfpointxy{0}{0}}{\pgfpointxy{0}{2}}
        {\pgfpointxy{3}{0}}{\pgfpointxy{3}{2}}
      \pgfsetstrokecolor{red}
      \pgfsetstrokeopacity{0.5}
      \pgfsetlinewidth{2pt}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathcurvebetweentime"
  },
  pgfpathcurvebetweentimecontinue = {
    arguments = {
      {meta = "time $t_1$"},
      {meta = "time $t_2$"},
      {meta = "point p"},
      {meta = "point $s_1$"},
      {meta = "point $s_2$"},
      {meta = "point q"}
    },
    details = [[
This command works like `\pgfpathcurvebetweentime`, except that a moveto
operation is *not* made to the first point.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathcurvebetweentimecontinue"
  },
  pgfpathcurveto = {
    arguments = {{meta = "support 1"}, {meta = "support 2"}, {meta = "coordinate"}},
    details = [[
This command extends the current path with a Bézier curve from the last
point of the path to ⟨coordinate⟩. The ⟨support 1⟩ and ⟨support 2⟩ are
the first and second support point of the Bézier curve. For more
information on Bézier curves, please consult a standard textbook on
computer graphics.

Like the line-to command, this command may not be the first path
construction command in a path.

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathcurveto
        {\pgfpoint{1cm}{1cm}}{\pgfpoint{2cm}{1cm}}{\pgfpoint{3cm}{0cm}}
      \pgfsetfillcolor{yellow!80!black}
      \pgfusepath{fill,stroke}
    \end{pgfpicture}

The command will apply the current coordinate transformation matrix to
⟨coordinate⟩ before using it.

It will update the bounding box of the current path and picture, if
necessary. However, the bounding box is simply made large enough such
that it encompasses all of the support points and the ⟨coordinate⟩. This
will guarantee that the curve is completely inside the bounding box, but
the bounding box will typically be quite a bit too large. It is not
clear (to me) how this can be avoided without resorting to "some serious
math" in order to calculate a precise bounding box.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathcurveto"
  },
  pgfpathellipse = {
    arguments = {{meta = "center"}, {meta = "first axis"}, {meta = "second axis"}},
    details = [[
The effect of this command is to append an ellipse to the current path
(if the path is not empty, a new part is started). The ellipse's center
will be ⟨center⟩ and ⟨first axis⟩ and ⟨second axis⟩ are the axis
*vectors*. The same effect as this command can also be achieved using an
appropriate sequence of move-to, arc, and close operations, but this
command is easier and faster.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathellipse{\pgfpoint{1cm}{0cm}}
                     {\pgfpoint{1.5cm}{0cm}}
                     {\pgfpoint{0cm}{1cm}}
      \pgfusepath{draw}
      \color{red}
      \pgfpathellipse{\pgfpoint{1cm}{0cm}}
                     {\pgfpoint{1cm}{1cm}}
                     {\pgfpoint{-0.5cm}{0.5cm}}
      \pgfusepath{draw}
    \end{tikzpicture}

The command will apply coordinate transformations to all coordinates of
the ellipse. However, the coordinate transformations are applied only
after the ellipse is "finished conceptually". Thus, a transformation of
1cm to the right will simply shift the ellipse one centimeter to the
right; it will not add 1cm to the $x$-coordinates of the two axis
vectors.

The command will update the bounding box of the current path and
picture, if necessary.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathellipse"
  },
  pgfpathgrid = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:pgf#/keys/pgf",
        meta = "options",
        optional = true
      },
      {meta = "first corner"},
      {meta = "second corner"}
    },
    details = [[
Appends a grid to the current path. That is, a (possibly large) number
of parts are added to the path, each part consisting of a single
horizontal or vertical straight line segment.

Conceptually, the origin is part of the grid and the grid is clipped to
the rectangle specified by the ⟨first corner⟩ and the ⟨second corner⟩.
However, no clipping occurs (this command just adds parts to the current
path) and the points where the lines enter and leave the "clipping area"
are computed and used to add simple lines to the current path.

The following keys influence the grid:

    \begin{pgfpicture}
      \pgfsetlinewidth{0.8pt}
      \pgfpathgrid[step={\pgfpoint{1cm}{1cm}}]
        {\pgfpoint{-3mm}{-3mm}}{\pgfpoint{33mm}{23mm}}
      \pgfusepath{stroke}
      \pgfsetlinewidth{0.4pt}
      \pgfpathgrid[stepx=1mm,stepy=1mm]
        {\pgfpoint{-1.5mm}{-1.5mm}}{\pgfpoint{31.5mm}{21.5mm}}
      \pgfusepath{stroke}
    \end{pgfpicture}

The command will apply coordinate transformations and update the
bounding boxes. As for ellipses, the transformations are applied to the
"conceptually finished" grid.

    \begin{pgfpicture}
      \pgftransformrotate{10}
      \pgfpathgrid[stepx=1mm,stepy=2mm]{\pgfpoint{0mm}{0mm}}{\pgfpoint{30mm}{30mm}}
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathgrid"
  },
  pgfpathlineto = {
    arguments = {{meta = "coordinate"}},
    details = [[
This command extends the current path in a straight line to the given
⟨coordinate⟩. If this command is given at the beginning of path without
any other path construction command given before (in particular without
a move-to operation), the TeX file may compile without an error message,
but a viewer application may display an error message when trying to
render the picture.

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{1cm}{1cm}}
      \pgfpathlineto{\pgfpoint{2cm}{1cm}}
      \pgfsetfillcolor{yellow!80!black}
      \pgfusepath{fill,stroke}
    \end{pgfpicture}

The command will apply the current coordinate transformation matrix to
⟨coordinate⟩ before using it.

It will update the bounding box of the current path and picture, if
necessary.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathlineto"
  },
  pgfpathmoveto = {
    arguments = {{meta = "coordinate"}},
    details = [[
This command expects a PGF-coordinate like `\pgfpointorigin` as its
parameter. When the current path is empty, this operation will start the
path at the given ⟨coordinate⟩. If a path has already been partly
constructed, this command will end the current part of the path and
start a new one.

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{1cm}{1cm}}
      \pgfpathlineto{\pgfpoint{2cm}{1cm}}
      \pgfpathlineto{\pgfpoint{3cm}{0.5cm}}
      \pgfpathlineto{\pgfpoint{3cm}{0cm}}
      \pgfsetfillcolor{yellow!80!black}
      \pgfusepath{fill,stroke}
    \end{pgfpicture}

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{1cm}{1cm}}
      \pgfpathlineto{\pgfpoint{2cm}{1cm}}
      \pgfpathmoveto{\pgfpoint{2cm}{1cm}} % New part
      \pgfpathlineto{\pgfpoint{3cm}{0.5cm}}
      \pgfpathlineto{\pgfpoint{3cm}{0cm}}
      \pgfsetfillcolor{yellow!80!black}
      \pgfusepath{fill,stroke}
    \end{pgfpicture}

The command will apply the current coordinate transformation matrix to
⟨coordinate⟩ before using it.

It will update the bounding box of the current path and picture, if
necessary.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathmoveto"
  },
  pgfpathparabola = {
    arguments = {{meta = "bend vector"}, {meta = "end vector"}},
    details = [[
This command appends two half-parabolas to the current path. The first
starts at the current point and ends at the current point plus ⟨bend
vector⟩. At this point, it has its bend. The second half parabola starts
at that bend point and ends at point that is given by the bend plus ⟨end
vector⟩.

If you set ⟨end vector⟩ to the null vector, you append only a half
parabola that goes from the current point to the bend; by setting ⟨bend
vector⟩ to the null vector, you append only a half parabola that goes
through the current point and ⟨end vector⟩ and has its bend at the
current point.

It is not possible to use this command to draw a part of a parabola that
does not contain the bend.

    \begin{pgfpicture}
      % Half-parabola going ``up and right''
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathparabola{\pgfpointorigin}{\pgfpoint{2cm}{4cm}}
      \color{red}
      \pgfusepath{stroke}

      % Half-parabola going ``down and right''
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathparabola{\pgfpoint{-2cm}{4cm}}{\pgfpointorigin}
      \color{blue}
      \pgfusepath{stroke}

      % Full parabola
      \pgfpathmoveto{\pgfpoint{-2cm}{2cm}}
      \pgfpathparabola{\pgfpoint{1cm}{-1cm}}{\pgfpoint{2cm}{4cm}}
      \color{orange}
      \pgfusepath{stroke}
    \end{pgfpicture}

The command will apply coordinate transformations and update the
bounding boxes.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathparabola"
  },
  pgfpathqcircle = {
    arguments = {{meta = "radius"}},
    details = [[
Adds a radius around the origin of the given ⟨radius⟩. This command is
orders of magnitude faster than
`\pgfcircle{\pgfpointorigin}{`⟨radius⟩`}`.

    \colorlet{examplefill}{yellow!80!black}
    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (1,1);
      \pgfpathqcircle{10pt}
      \pgfsetfillcolor{examplefill}
      \pgfusepath{stroke,fill}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathqcircle"
  },
  pgfpathqcurveto = {
    arguments = {
      {meta = "$s^1_x$"},
      {meta = "$s^1_y$"},
      {meta = "$s^2_x$"},
      {meta = "$s^2_y$"},
      {meta = "$t_x$"},
      {meta = "$t_y$"}
    },
    details = [[
The quick version of the curve-to operation. The first support point is
$(s^1_x,s^1_y)$, the second support point is $(s^2_x,s^2_y)$, and the
target is $(t_x,t_y)$.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathqmoveto{0pt}{0pt}
      \pgfpathqcurveto{1cm}{1cm}{2cm}{1cm}{3cm}{0cm}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathqcurveto"
  },
  pgfpathqlineto = {
    arguments = {{meta = "x dimension"}, {meta = "y dimension"}},
    details = [[
The quick version of the line-to operation.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathqlineto"
  },
  pgfpathqmoveto = {
    arguments = {{meta = "x dimension"}, {meta = "y dimension"}},
    details = [[
Either starts a path or starts a new part of a path at the coordinate
$(⟨x dimension⟩,⟨y dimension⟩)$. The coordinate is *not* transformed by
the current coordinate transformation matrix. However, any low-level
transformations apply.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgftransformxshift{1cm}
      \pgfpathqmoveto{0pt}{0pt} % not transformed
      \pgfpathqlineto{1cm}{1cm} % not transformed
      \pgfpathlineto{\pgfpoint{2cm}{0cm}}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathqmoveto"
  },
  pgfpathquadraticcurveto = {
    arguments = {{meta = "support"}, {meta = "coordinate"}},
    details = [[
This command works like `\pgfpathcurveto`, only it uses a quadratic
Bézier curve rather than a cubic one. This means that only one support
point is needed.

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathquadraticcurveto
        {\pgfpoint{1cm}{1cm}}{\pgfpoint{2cm}{0cm}}
      \pgfsetfillcolor{yellow!80!black}
      \pgfusepath{fill,stroke}
    \end{pgfpicture}

Internally, the quadratic curve is converted into a cubic curve. The
only noticeable effect of this is that the points used for computing the
bounding box are the control points of the converted curve rather than
⟨support⟩. The main effect of this is that the bounding box will be a
bit tighter than might be expected. In particular, ⟨support⟩ will not
always be part of the bounding box.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathquadraticcurveto"
  },
  pgfpathrectangle = {
    arguments = {{meta = "corner"}, {meta = "diagonal vector"}},
    details = [[
Adds a rectangle to the path whose one corner is ⟨corner⟩ and whose
opposite corner is given by $⟨corner⟩ + ⟨diagonal vector⟩$.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathrectangle{\pgfpoint{1cm}{0cm}}{\pgfpoint{1.5cm}{1cm}}
      \pgfpathrectangle{\pgfpoint{1.5cm}{0.25cm}}{\pgfpoint{1.5cm}{1cm}}
      \pgfpathrectangle{\pgfpoint{2cm}{0.5cm}}{\pgfpoint{1.5cm}{1cm}}
      \pgfusepath{draw}
    \end{tikzpicture}

The command will apply coordinate transformations and update the
bounding boxes tightly.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathrectangle"
  },
  pgfpathrectanglecorners = {
    arguments = {{meta = "corner"}, {meta = "opposite corner"}},
    details = [[
Adds a rectangle to the path whose two opposing corners are ⟨corner⟩ and
⟨opposite corner⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathrectanglecorners{\pgfpoint{1cm}{0cm}}{\pgfpoint{1.5cm}{1cm}}
      \pgfusepath{draw}
    \end{tikzpicture}

The command will apply coordinate transformations and update the
bounding boxes tightly.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathrectanglecorners"
  },
  pgfpathsine = {
    arguments = {{meta = "vector"}},
    details = [[
This command appends a sine curve in the interval $[0,\pi/2]$ to the
current path. The sine curve is squeezed or stretched such that the
curve starts at the current point and ends at the current point plus
⟨vector⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,1);
      \pgfpathmoveto{\pgfpoint{1cm}{0cm}}
      \pgfpathsine{\pgfpoint{1cm}{1cm}}
      \pgfusepath{stroke}

      \color{red}
      \pgfpathmoveto{\pgfpoint{1cm}{0cm}}
      \pgfpathsine{\pgfpoint{-2cm}{-2cm}}
      \pgfusepath{stroke}
    \end{tikzpicture}

The command will apply coordinate transformations and update the
bounding boxes.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathsine"
  },
  pgfpathsvg = {
    arguments = {{meta = "path"}},
    details = [[
This command extends the current path by a ⟨path⟩ given in the
SVG-path-data syntax. This syntax is described in detail in Section 8.3
of the SVG-specification, Version 1.1.

In principle, the complete syntax is supported and the library just
provides a parser and a mapping to basic layer commands. For instance,
`M 0 10` is mapped to `\pgfpathmoveto{\pgfpoint{0pt}{10pt}}`. There are,
however, a few things to be aware of:

-   The computation underlying the arc commands `A` and `a` are not
    numerically stable, which may result in quite imprecise arcs. Bézier
    curves, both quadratic and cubic, are not affected, neither are arcs
    spanning degrees that are multiples of $90^{\circ}$.

-   The dimensionless units of SVG are always interpreted as points
    (`pt`). This is a problem with paths like `M 20000 0`, which will
    raise an error message since TeX cannot handle dimensions larger
    than about 16 000 points.

-   All coordinate and canvas transformations apply to the path in the
    usual fashion.

-   The `\pgfpathsvg` command can be freely intermixed with other path
    commands.

&nbsp;

    \begin{pgfpicture}
      \pgfpathsvg{M 0 0 l 20 0 0 20 -20 0 q 10 0 10 10
                  t 10 10 10 10 h -50 z}
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpathsvg"
  },
  pgfplotbarwidth = {
    details = [[
Expands to the value of `/pgf/bar width`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotbarwidth"
  },
  pgfplotfunction = {
    arguments = {{meta = "variable"}, {meta = "sample list"}, {meta = "point"}},
    details = [[
This command will produce coordinates by iterating the ⟨variable⟩ over
all values in ⟨sample list⟩, which should be a list in the `\foreach`
syntax. For each value of ⟨variable⟩, the ⟨point⟩ is evaluated and the
resulting coordinate is inserted into the plot stream.

    \begin{tikzpicture}[x=3.8cm/360]
      \pgfplothandlerlineto
      \pgfplotfunction{\x}{0,5,...,360}{\pgfpointxy{\x}{sin(\x)+sin(3*\x)}}
      \pgfusepath{stroke}
    \end{tikzpicture}

    \begin{tikzpicture}[y=3cm/360]
      \pgfplothandlerlineto
      \pgfplotfunction{\y}{0,5,...,360}{\pgfpointxyz{sin(2*\y)}{\y}{cos(2*\y)}}
      \pgfusepath{stroke}
    \end{tikzpicture}

Be warned that if the expressions that need to evaluated for each point
are complex, then this command can be very slow.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotfunction"
  },
  pgfplotgnuplot = {
    arguments = {
      {delimiters = {"[", "]"}, meta = "prefix", optional = true},
      {meta = "function"}
    },
    details = [[
This command will "try" to call the GNUPLOT program to generate the
coordinates of the ⟨function⟩. In detail, the following happens:

This command works with two files: ⟨prefix⟩`.gnuplot` and
⟨prefix⟩`.table`. If the optional argument ⟨prefix⟩ is not given, it is
set to `\jobname`.

Let us start with the situation where none of these files exists. Then
PGF will first generate the file ⟨prefix⟩`.gnuplot`. In this file it
writes

    set table "#1.table"; set format "%.5f"

where `# 1` is replaced by ⟨prefix⟩. Then, in a second line, it writes
the text ⟨function⟩.

Next, PGF will try to invoke the program `gnuplot` with the argument
⟨prefix⟩`.gnuplot`. This call may or may not succeed, depending on
whether the `\write18` mechanism (also known as shell escape) is
switched on and whether the `gnuplot` program is available.

Assuming that the call succeeded, the next step is to invoke
`\pgfplotxyfile` on the file ⟨prefix⟩`.table`; which is exactly the file
that has just been created by `gnuplot`.

    \begin{tikzpicture}
      \draw[help lines] (0,-1) grid (4,1);
      \pgfplothandlerlineto
      \pgfplotgnuplot[plots/pgfplotgnuplot-example]{plot [x=0:3.5] x*sin(x)}
      \pgfusepath{stroke}
    \end{tikzpicture}

The more difficult situation arises when the `.gnuplot` file exists,
which will be the case on the second run of TeX on the TeX file. In this
case PGF will read this file and check whether it contains exactly what
PGF "would have written" into this file. If this is not the case, the
file contents is overwritten with what "should be there" and, as above,
`gnuplot` is invoked to generate a new `.table` file. However, if the
file contents is "as expected", the external `gnuplot` program is *not*
called. Instead, the ⟨prefix⟩`.table` file is immediately read.

As explained in Section ??, the net effect of the above mechanism is
that `gnuplot` is called as seldom as possible and that when you pass
along the `.gnuplot` and `.table` files with your `.tex` file to someone
else, that person can TeX the `.tex` file without having `gnuplot`
installed and without having the `\write18` mechanism switched on.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotgnuplot"
  },
  pgfplothandlerclosedcurve = {
    details = [[
This handler works like the curve-to plot handler, only it will add a
new part to the current path that is a closed curve through the plot
points.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerclosedcurve
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerclosedcurve"
  },
  pgfplothandlerconstantlineto = {
    details = [[
This handler works like the line-to plot handler, only it will produce a
connected, piecewise constant path to connect the points.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerconstantlineto
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerconstantlineto"
  },
  pgfplothandlerconstantlinetomarkmid = {
    details = [[
A variant of `\pgfplothandlerconstantlineto` which places its mark on
the center of the line.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerconstantlinetomarkmid
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}

The plot handler always connects two data points by a horizontal line
starting from the previous data points, followed by a vertical line in
the middle between the two data points, followed by a horizontal line
between the middle and the current data point. This results in a
symmetric constant plot handler for constant mesh width.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerconstantlinetomarkmid"
  },
  pgfplothandlerconstantlinetomarkright = {
    details = [[
A variant of `\pgfplothandlerconstantlineto` which places its mark on
the right line ends.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerconstantlinetomarkright
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerconstantlinetomarkright"
  },
  pgfplothandlercurveto = {
    details = [[
This handler will issue a `\pgfpathcurveto` command for each point of
the plot, *except* possibly for the first. As for the line-to handler,
what happens with the first point can be specified using
`\pgfsetmovetofirstplotpoint` or `\pgfsetlinetofirstplotpoint`.

Obviously, the `\pgfpathcurveto` command needs, in addition to the
points on the path, some control points. These are generated
automatically using a somewhat "dumb" algorithm: Suppose you have three
points $x$, $y$, and $z$ on the curve such that $y$ is between $x$ and
$z$:

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlercurveto
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}

In order to determine the control points of the curve at the point $y$,
the handler computes the vector $z-x$ and scales it by the tension
factor (see below). Let us call the resulting vector $s$. Then $y+s$ and
$y-s$ will be the control points around $y$. The first control point at
the beginning of the curve will be the beginning itself, once more;
likewise the last control point is the end itself.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlercurveto"
  },
  pgfplothandlerdiscard = {
    details = [[
This handler will simply throw away the stream.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerdiscard"
  },
  pgfplothandlergapcycle = {
    details = [[
Works like `\pgfplothandlergaplineto`, but the last point is connected
to the first in the same fashion:

    \begin{tikzpicture}
      \pgfplothandlergapcycle
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlergapcycle"
  },
  pgfplothandlergaplineto = {
    details = [[
This handler will connect the points of the plots by straight line
segments. However, at the start and the end of the lines there will be a
small gap, given by the following key:

    \begin{tikzpicture}
      \pgfplothandlergaplineto
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlergaplineto"
  },
  pgfplothandlerjumpmarkleft = {
    details = [[
This handler works like the line-to plot handler, only it will produce a
non-connected, piecewise constant path to connect the points. If there
are any plot marks, they will be placed on the left open pieces.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerjumpmarkleft
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerjumpmarkleft"
  },
  pgfplothandlerjumpmarkmid = {
    details = [[
This handler works like the `\pgfplothandlerconstantlinetomarkmid`, but
it will produce a non-connected, piecewise constant path to connect the
points. If there are any plot marks, they will be placed in the center
of the horizontal line segment..

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerjumpmarkmid
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}

See `\pgfplothandlerconstantlinetomarkmid` for details.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerjumpmarkmid"
  },
  pgfplothandlerjumpmarkright = {
    details = [[
This handler works like the line-to plot handler, only it will produce a
non-connected, piecewise constant path to connect the points. If there
are any plot marks, they will be placed on the right open pieces.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerjumpmarkright
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerjumpmarkright"
  },
  pgfplothandlerlineto = {
    details = [[
This handler will issue a `\pgfpathlineto` command for each point of the
plot, *except* possibly for the first. What happens with the first point
can be specified using the two commands described below.

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfplothandlerlineto
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{1cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{3cm}{2cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{2cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerlineto"
  },
  pgfplothandlermark = {
    arguments = {{meta = "mark code"}},
    details = [[
This command will execute the ⟨mark code⟩ for some points of the plot,
but each time the coordinate transformation matrix will be set up such
that the origin is at the position of the point to be plotted. This way,
if the ⟨mark code⟩ draws a little circle around the origin, little
circles will be drawn at some point of the plot.

By default, a mark is drawn at all points of the plot. However, two
parameters $r$ and $p$ influence this. First, only every $r$th mark is
drawn. Second, the first mark drawn is the $p$th. These parameters can
be influenced using the commands below.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlermark{\pgfpathcircle{\pgfpointorigin}{4pt}\pgfusepath{stroke}}
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}

Typically, the ⟨code⟩ will be `\pgfuseplotmark{`⟨plot mark name⟩`}`,
where ⟨plot mark name⟩ is the name of a predefined plot mark.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlermark"
  },
  pgfplothandlermarklisted = {
    arguments = {{meta = "mark code"}, {meta = "index list"}},
    details = [[
This command works similar to the previous one. However, marks will only
be placed at those indices in the given ⟨index list⟩. The syntax for the
list is the same as for the `\foreach` statement. For example, if you
provide the list `1,3,...,25`, a mark will be placed only at every
second point. Similarly, `1,2,4,8,16,32` yields marks only at those
points that are powers of two.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlermarklisted
        {\pgfpathcircle{\pgfpointorigin}{4pt}\pgfusepath{stroke}}
        {1,3}
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlermarklisted"
  },
  pgfplothandlerpolarcomb = {
    details = [[
This handler converts each point in the plot stream into a line from the
origin to the point's coordinate.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerpolarcomb
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerpolarcomb"
  },
  pgfplothandlerpolygon = {
    details = [[
This handler works like the line-to plot handler, only the line is
closed at the end using `\pgfpathclose`, resulting in a polygon.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerpolygon"
  },
  pgfplothandlerrecord = {
    arguments = {{meta = "macro"}},
    details = [[
When this handler is installed, each time a plot stream command is
called, this command will be appended to ⟨macro⟩. Thus, at the end of
the stream, ⟨macro⟩ will contain all the commands that were issued on
the stream. You can then install another handler and invoke ⟨macro⟩ to
"replay" the stream (possibly many times).

    \begin{pgfpicture}
      \pgfplothandlerrecord{\mystream}
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{1cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{3cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{2cm}}
      \pgfplotstreamend
      \pgfplothandlerlineto
      \mystream
      \pgfplothandlerclosedcurve
      \mystream
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerrecord"
  },
  pgfplothandlerxbar = {
    details = [[
This handler converts each point in the plot stream into a rectangle
from the $y$-axis to the point's coordinate. The rectangle is placed
centered at the $y$-axis.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerxbar
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerxbar"
  },
  pgfplothandlerxbarinterval = {
    details = [[
As `\pgfplothandlerybarinterval`, this handler provides bar plots with
relative bar sizes and offsets, one bar for each $y$ coordinate
interval.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerxbarinterval"
  },
  pgfplothandlerxcomb = {
    details = [[
This handler converts each point in the plot stream into a line from the
$y$-axis to the point's coordinate, resulting in a "horizontal comb".

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerxcomb
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerxcomb"
  },
  pgfplothandlerybar = {
    details = [[
This handler converts each point in the plot stream into a rectangle
from the $x$-axis to the point's coordinate. The rectangle is placed
centered at the $x$-axis.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerybar
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerybar"
  },
  pgfplothandlerybarinterval = {
    details = [[
This handler is a variant of `\pgfplothandlerybar` which works with
intervals instead of points.

Bars are drawn between successive input coordinates and the width is
determined relatively to the interval length.

    \begin{tikzpicture}
      \draw[gray] (0,2) node {$x_1$} (1,1) node {$x_2$} (2,.5) node {$x_3$} (4,0.7) node {$x_4$};
      \pgfplothandlerybarinterval
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{2cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreampoint{\pgfpoint{4cm}{0.7cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}

In more detail, if $(x_i,y_i)$ and $(x_{i+1},y_{i+1})$ denote successive
input coordinates, the bar will be placed above the interval
$[x_i,x_{i+1}]$, centered at
$$x_i + ⟨bar interval shift⟩ \cdot (x_{i+1} - x_i)$$ with width
$$⟨bar interval width⟩ \cdot (x_{i+1} - x_i).$$ Here, ⟨bar interval
shift⟩ and ⟨bar interval width⟩ denote the current values of the
associated options.

If you have $N+1$ input points, you will get $N$ bars (one for each
interval). The $y$ value of the last point will be ignored.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerybarinterval"
  },
  pgfplothandlerycomb = {
    details = [[
This handler converts each point in the plot stream into a line from the
$x$-axis to the point's coordinate, resulting in a "vertical comb".

This handler is useful for creating "bar diagrams".

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlerycomb
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplothandlerycomb"
  },
  pgfplotstreamend = {
    details = [[
This command signals that a plot stream ends. It calls
`\pgf@plotstreamend`, which should now do any necessary "cleanup".
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotstreamend"
  },
  pgfplotstreamnewdataset = {
    details = [[
This command indicated that in the stream a "new data set" starts. So,
the stream does not end, but there is a logical break in the data. For
example, when a table is read from a file, empty lines are interpreted
as indicating new data sets. What happens when a new data set is
encountered is governed by the following key:
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotstreamnewdataset"
  },
  pgfplotstreampoint = {
    arguments = {{meta = "point"}},
    details = [[
This command adds a ⟨point⟩ to the current plot stream. The effect of
this command is to call the internal command `\pgf@plotstreampoint`,
which is also set by the current plot handler. This command should now
"handle" the point in some sensible way. For example, a line-to command
might be issued for the point.

When a plot handler is installed, it will setup the internal command
`\pgf@plotstreampoint` in some way. It is permissible to change the
meaning of this internal command during a stream. For instance, a
handler might setup `\pgf@plotstreampoint` in some sensible way for the
first point and then redefine it so that subsequent points are handled
in some other way.

As mentioned earlier, the `\pgfplotstreamstart` will always reset the
definition of the internal command to the initial meaning it had when
the handler was installed. This is true for the other commands mentioned
in the following.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotstreampoint"
  },
  pgfplotstreampointoutlier = {
    arguments = {{meta = "point"}},
    details = [[
An *outlier* is a point that is "out of bounds" in some way. For
instance, it might have very large coordinates or the coordinates might
just be outside some specified range. Nevertheless, an outlier is still
a well-defined point. This command is issued, for instance, by GNUPLOT
when a value is outside the specified range.

You can configure how outliers are treated using the following key:
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotstreampointoutlier"
  },
  pgfplotstreampointundefined = {
    details = [[
This command indicated that the stream contains an "undefined" point
like a point where some coordinate results for a division by zero. Such
a point cannot be plotted, which is why it is not given as a parameter.
However, such a point *can* result in a jump in the plot, depending on
the setting of the following key:
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotstreampointundefined"
  },
  pgfplotstreamspecial = {
    arguments = {{meta = "text"}},
    details = [[
This command causes `\pgf@plotstreamspecial` to be called with ⟨text⟩ as
its parameter. This allows handler-specific information to be passed to
the handler. All normal handlers ignore this command.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotstreamspecial"
  },
  pgfplotstreamstart = {
    details = [[
This command signals that a plot stream starts. The effect of this
command is to call the internal command `\pgf@plotstreamstart`, which is
set by the current plot handler to do whatever needs to be done at the
beginning of the plot. It will also reset the meaning of the internal
commands like `\pgf@plotstreampoint` to the initial setting for the plot
handler (what this means will be explained in a moment).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotstreamstart"
  },
  pgfplotxyfile = {
    arguments = {{meta = "filename"}},
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotxyfile"
  },
  pgfplotxyzfile = {
    arguments = {{meta = "filename"}},
    details = [[
This command works like `\pgfplotxyfile`, only *three* numbers are
expected on each non-empty line. They are converted into points in the
$xyz$-coordinate system. Consider, the following file:

    % Some comments
    # more comments
    2 -5  1 first entry
    2 -.2 2 o
    2 -5  2 third entry

It is turned into the following stream:

    \pgfplotstreamstart
    \pgfplotstreamnewdataset
    \pgfplotstreamnewdataset
    \pgfplotstreampoint{\pgfpointxyz{2}{-5}{1}}
    \pgfplotstreampointoutlier{\pgfpointxyz{2}{-.2}{2}}
    \pgfplotstreampoint{\pgfpointxyz{2}{-5}{2}}
    \pgfplotstreamend
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotxyzfile"
  },
  pgfplotxzerolevelstreamconstant = {
    arguments = {{meta = "dimension"}},
    details = [[
This zero level stream always returns `{dimension}` instead of $x=0$pt.

It is used for `xcomb` and `xbar`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotxzerolevelstreamconstant"
  },
  pgfplotyzerolevelstreamconstant = {
    arguments = {{meta = "dimension"}},
    details = [[
This zero level stream always returns `{dimension}` instead of $y=0$pt.

It is used for `ycomb` and `ybar`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfplotyzerolevelstreamconstant"
  },
  pgfpoint = {
    arguments = {{meta = "x coordinate"}, {meta = "y coordinate"}},
    details = [[
Yields a point location. The coordinates are given as TeX dimensions.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathcircle{\pgfpoint{1cm}{1cm}} {2pt}
      \pgfpathcircle{\pgfpoint{2cm}{5pt}} {2pt}
      \pgfpathcircle{\pgfpoint{0pt}{.5in}}{2pt}
      \pgfusepath{fill}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpoint"
  },
  pgfpointadd = {
    arguments = {{meta = "$v_1$"}, {meta = "$v_2$"}},
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointadd"
  },
  pgfpointanchor = {
    arguments = {{meta = "node"}, {meta = "anchor"}},
    details = [[
This command is another "point command" like the commands described in
Section ??. It returns the coordinate of the given ⟨anchor⟩ in the given
⟨node⟩. The command can be used in commands like `\pgfpathmoveto`.

    \begin{pgfpicture}
      \pgftransformrotate{30}
      \pgfnode{rectangle}{center}{Hello World!}{x}{\pgfusepath{stroke}}

      \pgfpathcircle{\pgfpointanchor{x}{north}}{2pt}
      \pgfpathcircle{\pgfpointanchor{x}{south}}{2pt}
      \pgfpathcircle{\pgfpointanchor{x}{east}}{2pt}
      \pgfpathcircle{\pgfpointanchor{x}{west}}{2pt}
      \pgfpathcircle{\pgfpointanchor{x}{north east}}{2pt}
      \pgfusepath{fill}
    \end{pgfpicture}

In the above example, you may have noticed something curious: The
rotation transformation is still in force when the anchors are invoked,
but it does not seem to have an effect. You might expect that the
rotation should apply to the already rotated points once more.

However, `\pgfpointanchor` returns a point that takes the current
transformation matrix into account: *The inverse transformation to the
current coordinate transformation is applied to an anchor point before
returning it.*

This behavior may seem a bit strange, but you will find it very natural
in most cases. If you really want to apply a transformation to an anchor
point (for example, to "shift it away" a little bit), you have to invoke
`\pgfpointanchor` without any transformations in force. Here is an
example:

    \begin{pgfpicture}
      \pgftransformrotate{30}
      \pgfnode{rectangle}{center}{Hello World!}{x}{\pgfusepath{stroke}}

      {
        \pgftransformreset
        \pgfpointanchor{x}{east}
        \xdef\mycoordinate{\noexpand\pgfpoint{\the\pgf@x}{\the\pgf@y}}
      }

      \pgfpathcircle{\mycoordinate}{2pt}
      \pgfusepath{fill}
    \end{pgfpicture}

A special situation arises when the ⟨node⟩ lies in a picture different
from the current picture. In this case, if you have not told PGF that
the picture should be "remembered", the ⟨node⟩ will be treated as if it
lay in the current picture. For example, if the ⟨node⟩ was at position
$(3,2)$ in the original picture, it is treated as if it lay at position
$(3,2)$ in the current picture. However, if you have told PGF to
remember the picture position of the node's picture and also of the
current picture, then `\pgfpointanchor` will return a coordinate that
corresponds to the position of the node's anchor on the page,
transformed into the current coordinate system. For examples and more
details see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointanchor"
  },
  pgfpointarcaxesattime = {
    arguments = {
      {meta = "time $t$"},
      {meta = "center"},
      {meta = "0-degree axis"},
      {meta = "90-degree axis"},
      {meta = "start angle"},
      {meta = "end angle"}
    },
    details = [[
Yields a point on the arc between ⟨start angle⟩ and ⟨end angle⟩ on an
ellipse whose center is at ⟨center⟩ and whose two principal axes are
⟨0-degree axis⟩ and ⟨90-degree axis⟩. For $t=0$ the point at the ⟨start
angle⟩ is returned and for $t=1$ the point at the ⟨end angle⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathmoveto{\pgfpoint{2cm}{1cm}}
      \pgfpatharcaxes{0}{60}{\pgfpoint{2cm}{0cm}}{\pgfpoint{0cm}{1cm}}
      \pgfusepath{stroke}
      \foreach \t in {0,0.25,0.5,0.75,1}
        {\pgftext[at=\pgfpointarcaxesattime{\t}{\pgfpoint{0cm}{1cm}}
           {\pgfpoint{2cm}{0cm}}{\pgfpoint{0cm}{1cm}}{0}{60}]{\t}}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointarcaxesattime"
  },
  pgfpointborderellipse = {
    arguments = {{meta = "direction point"}, {meta = "corner"}},
    details = [[
This command works like the corresponding command for rectangles, only
this time the ⟨corner⟩ is the corner of the bounding rectangle of an
ellipse.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (2,1.5);
      \pgfpathellipse{\pgfpointorigin}{\pgfpoint{1cm}{0cm}}{\pgfpoint{0cm}{1.25cm}}
      \pgfusepath{stroke}

      \pgfpathcircle{\pgfpoint{5pt}{5pt}}{2pt}
      \pgfpathcircle{\pgfpoint{-10pt}{5pt}}{2pt}
      \pgfusepath{fill}
      \color{red}
      \pgfpathcircle{\pgfpointborderellipse
        {\pgfpoint{5pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
      \pgfpathcircle{\pgfpointborderellipse
        {\pgfpoint{-10pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
      \pgfusepath{fill}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointborderellipse"
  },
  pgfpointborderrectangle = {
    arguments = {{meta = "direction point"}, {meta = "corner"}},
    details = [[
This command returns a point that lies on the intersection of a line
starting at the origin and going towards the point ⟨direction point⟩ and
a rectangle whose center is in the origin and whose upper right corner
is at ⟨corner⟩.

The ⟨direction point⟩ should have length "about 1pt", but it will be
normalized automatically. Nevertheless, the "nearer" the length is to
1pt, the less rounding errors.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (2,1.5);
      \pgfpathrectanglecorners{\pgfpoint{-1cm}{-1.25cm}}{\pgfpoint{1cm}{1.25cm}}
      \pgfusepath{stroke}

      \pgfpathcircle{\pgfpoint{5pt}{5pt}}{2pt}
      \pgfpathcircle{\pgfpoint{-10pt}{5pt}}{2pt}
      \pgfusepath{fill}
      \color{red}
      \pgfpathcircle{\pgfpointborderrectangle
        {\pgfpoint{5pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
      \pgfpathcircle{\pgfpointborderrectangle
        {\pgfpoint{-10pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
      \pgfusepath{fill}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointborderrectangle"
  },
  pgfpointcurveattime = {
    arguments = {
      {meta = "time $t$"},
      {meta = "point $p$"},
      {meta = "point $s_1$"},
      {meta = "point $s_2$"},
      {meta = "point $q$"}
    },
    details = [[
Yields a point that is on the Bézier curve from $p$ to $q$ with the
support points $s_1$ and $s_2$. The time $t$ is used to determine the
location, where $t=0$ yields $p$ and $t=1$ yields $q$.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathcurveto
        {\pgfpoint{0cm}{2cm}}{\pgfpoint{0cm}{2cm}}{\pgfpoint{3cm}{2cm}}
      \pgfusepath{stroke}
      \foreach \t in {0,0.25,0.5,0.75,1}
        {\pgftext[at=\pgfpointcurveattime{\t}{\pgfpointorigin}
                                             {\pgfpoint{0cm}{2cm}}
                                             {\pgfpoint{0cm}{2cm}}
                                             {\pgfpoint{3cm}{2cm}}]{\t}}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointcurveattime"
  },
  pgfpointcurvilinearbezierorthogonal = {
    arguments = {{meta = "distance"}, {meta = "offset"}},
    details = [[
This command computes the following point: Consider the curve last
installed using the command `\pgfsetcurvilinearbeziercurve`. We travel
along this curve by ⟨distance⟩, arriving at a point $p$. Then, we turn
by $90^\circ$ and travel by ⟨offset⟩ units "always from the curve",
arriving at a point $q$. This point $q$ will now be returned in `\pgf@x`
and `\pgf@y`; furthermore, the transformed local coordinate system at
point $q$ will also be returned `\pgf@xa` and the other registers, see
`\pgftransformnonlinear` for details.

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      {
        \pgfsetcurvilinearbeziercurve
          {\pgfpoint{0mm}{20mm}}
          {\pgfpoint{11mm}{20mm}}
          {\pgfpoint{20mm}{11mm}}
          {\pgfpoint{20mm}{0mm}}
        \pgftransformnonlinear{\pgfpointcurvilinearbezierorthogonal\pgf@x\pgf@y}%
        \draw (0,-30pt) grid [step=10pt] (80pt,30pt);
      }
      \draw[red, very thick]
        (0mm,20mm) .. controls (11mm,20mm) and (20mm,11mm) .. (20mm,0mm);
    \end{tikzpicture}

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      {
        \pgfsetcurvilinearbeziercurve
          {\pgfpoint{0mm}{20mm}}
          {\pgfpoint{10mm}{20mm}}
          {\pgfpoint{10mm}{10mm}}
          {\pgfpoint{20mm}{10mm}}
        \pgftransformnonlinear{\pgfpointcurvilinearbezierorthogonal\pgf@x\pgf@y}%
        \draw (0,-30pt) grid [step=10pt] (80pt,30pt);
      }
      \draw[red, very thick]
        (0mm,20mm) .. controls (10mm,20mm) and (10mm,10mm) .. (20mm,10mm);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointcurvilinearbezierorthogonal"
  },
  pgfpointcurvilinearbezierpolar = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
This command is similar to the previous version, but the transformation
is different: The idea is that a line form $(0,0)$ to $(x,0)$ gets
transformed to the curve from the start of the curve to a point at
distance $x$ along the curve. This is identical to what the "orthogonal"
transformation above also does. The difference is that a line from
$(0,0)$ to $(0,y)$ gets still transformed to an initial segment of the
curve of a length of $y$, but now rotated by $90^\circ$. In general, the
point $p = (x,y)$ gets transferred to a point that at distance
$\texttt{p} = \sqrt{x^2+y^2}$ along the curve, but rotated by the angle
of $p$ relative to the $x$-axis.

All of these computations mainly have the following effect: Two straight
lines from the start of the curve as in a `Straight Barb` arrow tip get
transformed to an initial segment of the curve whose length is the
length of the two lines, but this segment gets rotated by the angle of
the two lines.

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      {
        \pgfsetcurvilinearbeziercurve
          {\pgfpoint{0mm}{20mm}}
          {\pgfpoint{11mm}{20mm}}
          {\pgfpoint{20mm}{11mm}}
          {\pgfpoint{20mm}{0mm}}
        \pgftransformnonlinear{\pgfpointcurvilinearbezierpolar\pgf@x\pgf@y}%
        \draw (0,-30pt) grid [step=10pt] (80pt,30pt);
        % Add a "barb":
        \draw [blue, very thick] (20pt,10pt) -- (0,0) -- (20pt,-10pt);
      }
      \draw[red, very thick]
        (0mm,20mm) .. controls (11mm,20mm) and (20mm,11mm) .. (20mm,0mm);
    \end{tikzpicture}

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      {
        \pgfsetcurvilinearbeziercurve
          {\pgfpoint{0mm}{20mm}}
          {\pgfpoint{10mm}{20mm}}
          {\pgfpoint{10mm}{10mm}}
          {\pgfpoint{20mm}{10mm}}
        \pgftransformnonlinear{\pgfpointcurvilinearbezierpolar\pgf@x\pgf@y}%
        \draw (0,-30pt) grid [step=10pt] (80pt,30pt);
        % Add a "barb":
        \draw [blue, very thick] (20pt,10pt) -- (0,0) -- (20pt,-10pt);
      }
      \draw[red, very thick]
        (0mm,20mm) .. controls (10mm,20mm) and (10mm,10mm) .. (20mm,10mm);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointcurvilinearbezierpolar"
  },
  pgfpointcylindrical = {
    arguments = {{meta = "degree"}, {meta = "radius"}, {meta = "height"}},
    details = [[
This command yields the same as

    \pgfpointadd{\pgfpointpolarxy{degree}{radius}}{\pgfpointxyz{0}{0}{height}}

    \begin{tikzpicture}
      \draw [->] (0,0) -- (1,0,0) node [right] {$x$};
      \draw [->] (0,0) -- (0,1,0) node [above] {$y$};
      \draw [->] (0,0) -- (0,0,1) node [below left] {$z$};

      \pgfpathcircle{\pgfpointcylindrical{80}{1}{.5}}{2pt}
      \pgfusepath{fill}

      \draw[red] (0,0) -- (0,0,.5) -- +(80:1);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointcylindrical"
  },
  pgfpointdecoratedinputsegmentlast = {
    details = [[
The final point of the current input segment of the input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointdecoratedinputsegmentlast"
  },
  pgfpointdecoratedpathfirst = {
    details = [[
Returns the point corresponding to the start of the current input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointdecoratedpathfirst"
  },
  pgfpointdecoratedpathlast = {
    details = [[
The final point of the input path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointdecoratedpathlast"
  },
  pgfpointdecorationpathlast = {
    details = [[
The final point of the output path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointdecorationpathlast"
  },
  pgfpointdiff = {
    arguments = {{meta = "start"}, {meta = "end"}},
    details = [[
Returns the difference vector $⟨end⟩ - ⟨start⟩$.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathcircle{\pgfpointdiff{\pgfpoint{1cm}{0cm}}{\pgfpoint{1cm}{1cm}}}{2pt}
      \pgfusepath{fill}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointdiff"
  },
  pgfpointintersectionofcircles = {
    arguments = {
      {meta = "$p_1$"},
      {meta = "$p_2$"},
      {meta = "$r_1$"},
      {meta = "$r_2$"},
      {meta = "solution"}
    },
    details = [[
This command returns the intersection of the two circles centered at
$p_1$ and $p_2$ with radii $r_1$ and $r_2$. If ⟨solution⟩ is `1`, the
first intersection is returned, otherwise the second one is returned.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (2,2);
      \draw (0.5,0) circle (1);
      \draw (1.5,1) circle (.8);
      \pgfpathcircle{%
        \pgfpointintersectionofcircles
          {\pgfpointxy{.5}{0}}{\pgfpointxy{1.5}{1}}
          {1cm}{0.8cm}{1}}
        {2pt}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointintersectionofcircles"
  },
  pgfpointintersectionoflines = {
    arguments = {{meta = "$p$"}, {meta = "$q$"}, {meta = "$s$"}, {meta = "$t$"}},
    details = [[
This command returns the intersection of a line going through $p$ and
$q$ and a line going through $s$ and $t$. If the lines do not
intersection, an arithmetic overflow will occur.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (2,2);
      \draw (.5,0) -- (2,2);
      \draw (1,2) -- (2,0);
      \pgfpathcircle{%
        \pgfpointintersectionoflines
          {\pgfpointxy{.5}{0}}{\pgfpointxy{2}{2}}
          {\pgfpointxy{1}{2}}{\pgfpointxy{2}{0}}}
        {2pt}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointintersectionoflines"
  },
  pgfpointintersectionsolution = {
    arguments = {{meta = "number"}},
    details = [[
After using the `\pgfintersectionofpaths` command, this command will
return the point for solution ⟨number⟩ or the origin if this solution
was not found. By default, the intersections are simply returned in the
order that the intersection algorithm finds them. Unfortunately, this is
not necessarily a "helpful" ordering. However the following two commands
can be used to order the solutions more helpfully.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointintersectionsolution"
  },
  pgfpointlineatdistance = {
    arguments = {{meta = "distance"}, {meta = "start point"}, {meta = "end point"}},
    details = [[
Yields a point that is located ⟨distance⟩ many units away from the start
point in the direction of the end point. In other words, this is the
point that results if we travel ⟨distance⟩ steps from ⟨start point⟩
towards ⟨end point⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{3cm}{2cm}}
      \pgfusepath{stroke}
      \foreach \d in {0pt,20pt,40pt,70pt}
        {\pgftext[at=
          \pgfpointlineatdistance{\d}{\pgfpointorigin}{\pgfpoint{3cm}{2cm}}]{\d}}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointlineatdistance"
  },
  pgfpointlineattime = {
    arguments = {{meta = "time $t$"}, {meta = "point $p$"}, {meta = "point $q$"}},
    details = [[
Yields a point that is the $t$th fraction between $p$ and $q$, that is,
$p
    + t(q-p)$. For $t=1/2$ this is the middle of $p$ and $q$.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{2cm}{2cm}}
      \pgfusepath{stroke}
      \foreach \t in {0,0.25,...,1.25}
        {\pgftext[at=
          \pgfpointlineattime{\t}{\pgfpointorigin}{\pgfpoint{2cm}{2cm}}]{\t}}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointlineattime"
  },
  pgfpointmetadecoratedpathfirst = {
    details = [[
When the ⟨before code⟩ is executed, this macro stores the first point on
the current sub-input-path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointmetadecoratedpathfirst"
  },
  pgfpointmetadecoratedpathlast = {
    details = [[
When the ⟨after code⟩ is executed, this macro stores the last point on
the current sub-input-path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointmetadecoratedpathlast"
  },
  pgfpointnormalised = {
    arguments = {{meta = "point"}},
    details = [[
This command returns a normalised version of ⟨point⟩, that is, a vector
of length 1pt pointing in the direction of ⟨point⟩. If ⟨point⟩ is the
$0$-vector or extremely short, a vector of length 1pt pointing upwards
is returned.

This command is *not* implemented by calculating the length of the
vector, but rather by calculating the angle of the vector and then using
(something equivalent to) the `\pgfpointpolar` command. This ensures
that the point will really have length 1pt, but it is not guaranteed
that the vector will *precisely* point in the direction of ⟨point⟩ due
to the fact that the polar tables are accurate only up to one degree.
Normally, this is not a problem.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathcircle{\pgfpoint{2cm}{1cm}}{2pt}
      \pgfpathcircle{\pgfpointscale{20}
        {\pgfpointnormalised{\pgfpoint{2cm}{1cm}}}}{2pt}
      \pgfusepath{fill}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointnormalised"
  },
  pgfpointorigin = {
    details = [[
Yields the origin. Same as `\pgfpoint{0pt}{0pt}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointorigin"
  },
  pgfpointpolar = {
    arguments = {
      {meta = "degree"},
      {literal = "{"},
      {meta = "radius"},
      {literal = "/"},
      {meta = "y-radius"},
      {literal = "}"}
    },
    details = [[
Yields a point location given in polar coordinates. You can specify the
angle only in degrees, radians are not supported, currently.

If the optional ⟨y-radius⟩ is given, the polar coordinate is actually a
coordinate on an ellipse whose $x$-radius is given by ⟨radius⟩ and whose
$y$-radius is given by ⟨y-radius⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \foreach \angle in {0,10,...,90}
        {\pgfpathcircle{\pgfpointpolar{\angle}{1cm}}{2pt}}
      \pgfusepath{fill}
    \end{tikzpicture}

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \foreach \angle in {0,10,...,90}
        {\pgfpathcircle{\pgfpointpolar{\angle}{1cm and 2cm}}{2pt}}
      \pgfusepath{fill}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointpolar"
  },
  pgfpointpolarxy = {
    arguments = {
      {meta = "degree"},
      {literal = "{"},
      {meta = "radius"},
      {literal = "/"},
      {meta = "y-radius"},
      {literal = "}"}
    },
    details = [[
This command is similar to the `\pgfpointpolar` command, but the
⟨radius⟩ is now a factor to be interpreted in the $xy$-coordinate
system. This means that a degree of `0` is the same as the $x$-vector of
the $xy$-coordinate system times ⟨radius⟩ and a degree of `90` is the
$y$-vector times ⟨radius⟩. As for `\pgfpointpolar`, a ⟨radius⟩ can also
be a pair separated by a slash. In this case, the $x$- and $y$-vectors
are multiplied by different factors.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \begin{scope}[x={(1cm,-5mm)},y=1.5cm]
        \foreach \angle in {0,10,...,90}
          {\pgfpathcircle{\pgfpointpolarxy{\angle}{1}}{2pt}}
        \pgfusepath{fill}
      \end{scope}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointpolarxy"
  },
  pgfpointscale = {
    arguments = {{meta = "factor"}, {meta = "coordinate"}},
    details = [[
Returns the vector $⟨factor⟩⟨coordinate⟩$.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathcircle{\pgfpointscale{1.5}{\pgfpoint{1cm}{0cm}}}{2pt}
      \pgfusepath{fill}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointscale"
  },
  pgfpointshapeborder = {
    arguments = {{meta = "node"}, {meta = "point"}},
    details = [[
This command returns the point on the border of the shape that lies on a
straight line from the center of the node to ⟨point⟩. For complex shapes
it is not guaranteed that this point will actually lie on the border, it
may be on the border of a "simplified" version of the shape.

    \begin{pgfpicture}
      \begin{pgfscope}
        \pgftransformrotate{30}
        \pgfnode{rectangle}{center}{Hello World!}{x}{\pgfusepath{stroke}}
      \end{pgfscope}
      \pgfpathcircle{\pgfpointshapeborder{x}{\pgfpoint{2cm}{1cm}}}{2pt}
      \pgfpathcircle{\pgfpoint{2cm}{1cm}}{2pt}
      \pgfpathcircle{\pgfpointshapeborder{x}{\pgfpoint{-1cm}{1cm}}}{2pt}
      \pgfpathcircle{\pgfpoint{-1cm}{1cm}}{2pt}
      \pgfusepath{fill}
    \end{pgfpicture}

*Remark:* If the given ⟨point⟩ is almost identical to the center of
⟨node⟩, the node center is returned and a warning message will be
printed.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointshapeborder"
  },
  pgfpointspherical = {
    arguments = {{meta = "longitude"}, {meta = "latitude"}, {meta = "radius"}},
    details = [[
This command yields a point "on the surface of the earth" specified by
the ⟨longitude⟩ and the ⟨latitude⟩. The radius of the earth is given by
⟨radius⟩. The equator lies in the $xy$-plane.

    \begin{tikzpicture}
      \pgfsetfillcolor{lightgray}

      \foreach \latitude in {-90,-75,...,30}
      {
        \foreach \longitude in {0,20,...,360}
        {
          \pgfpathmoveto{\pgfpointspherical{\longitude}{\latitude}{1}}
          \pgfpathlineto{\pgfpointspherical{\longitude+20}{\latitude}{1}}
          \pgfpathlineto{\pgfpointspherical{\longitude+20}{\latitude+15}{1}}
          \pgfpathlineto{\pgfpointspherical{\longitude}{\latitude+15}{1}}
          \pgfpathclose
        }
        \pgfusepath{fill,stroke}
      }
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointspherical"
  },
  pgfpointtransformed = {
    arguments = {{meta = "point"}},
    details = [[
Applies current transformation matrix to `{point}` $(x,y)$ and returns a
transformed point $(ax+cy+s,bx+dy+t)$. Normally, this is done
automatically by commands like `\pgfpathlineto` or `\pgfpathmoveto`, but
sometimes you may wish to access a transformed point yourself.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointtransformed"
  },
  pgfpointtransformednonlinear = {
    arguments = {{meta = "point"}},
    details = [[
Works like `\pgfpointtransformed`, but also applies the current
nonlinear transformation; that is, it first applies the current linear
transformation and then the current nonlinear transformations. Note
that, just like `\pgfpointtransformed`, you normally do not call this
function directly since it is called internally by the path drawing
commands.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointtransformednonlinear"
  },
  pgfpointxy = {
    arguments = {{meta = "$s_x$"}, {meta = "$s_y$"}},
    details = [[
Yields a point that is situated at $s_x$ times the $x$-vector plus $s_y$
times the $y$-vector.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathmoveto{\pgfpointxy{1}{0}}
      \pgfpathlineto{\pgfpointxy{2}{2}}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointxy"
  },
  pgfpointxyz = {
    arguments = {{meta = "$s_x$"}, {meta = "$s_y$"}, {meta = "$s_z$"}},
    details = [[
Yields a point that is situated at $s_x$ times the $x$-vector plus $s_y$
times the $y$-vector plus $s_z$ times the $z$-vector.

    \begin{pgfpicture}
      \pgfsetarrowsend{to}

      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpointxyz{0}{0}{1}}
      \pgfusepath{stroke}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpointxyz{0}{1}{0}}
      \pgfusepath{stroke}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpointxyz{1}{0}{0}}
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpointxyz"
  },
  pgfpoptype = {
    details = [[
Restores the most recent type from the internal global stack of types.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpoptype"
  },
  pgfpositionnodelater = {
    arguments = {{meta = "macro name"}},
    details = [[
This command is not a replacement for `\pgfnode`. Rather, when this
command is used in a scope, all subsequent node creations in this scope
will be affected in the following way: When a node is created, it is not
inserted into the current picture. Instead, it is stored in the box
`\pgfpositionnodelaterbox`. Furthermore, the node is not relevant for
the picture's bounding box, but a bounding box for the node is computed
and stored in the macros `\pgfpositionnodelaterminx` to
`\pgfpositionnodelatermaxy`. Then, the ⟨macro name⟩ is called with the
following macros set up:

Once a late node has been created, you can add arbitrary code in the
same picture. Then, at some later point, you call `\pgfpositionnodenow`
to finally position the node at a given position. At this point, the
above macros must have the exact same values they had when ⟨macro name⟩
was called. Note that the above macros are local to a scope that ends
right after the call to ⟨macro name⟩, so it is your job to copy the
values to safety inside ⟨macro name⟩.

The following two macros will also be set inside the call to ⟨macro
name⟩, but they are only "informative" in the sense that you need *not*
restore these macros when `\pgfpositionnodenow` is called.

By setting ⟨macro name⟩ to `\relax` (which is the default), you can
switch off the whole mechanism. When a picture is interrupted, this is
done automatically.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpositionnodelater"
  },
  pgfpositionnodelaterbox = {
    details = [[
A box register number (`0` currently) that stores the node's paths and
texts. You should move the contents of this box to a box of your choice
inside ⟨macro name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpositionnodelaterbox"
  },
  pgfpositionnodelatermaxx = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpositionnodelatermaxx"
  },
  pgfpositionnodelatermaxy = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpositionnodelatermaxy"
  },
  pgfpositionnodelaterminx = {
    details = [[
The minimal $x$-position of a bounding box of the node. This bounding
box refers to the node when it is positioned with the anchor at the
origin. It is guaranteed, that this macro will contain a dimension in
the format ⟨number⟩`pt`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpositionnodelaterminx"
  },
  pgfpositionnodelaterminy = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpositionnodelaterminy"
  },
  pgfpositionnodelatername = {
    details = [[
The name of the just-created-node. This name will be the originally
"desired" name of the box plus the fixed prefix
`not yet positionedPGFINTERNAL`. The idea is to ensure that the original
name is not inadvertently used before the node is actually positioned.
When `\pgfpositionnodenow` is called, it will change the name to the
original name.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpositionnodelatername"
  },
  pgfpositionnodelaterpath = {
    details = [[
This macro stores the path of the background of the node. See Section ??
for an overview of how these paths are encode.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpositionnodelaterpath"
  },
  pgfpositionnodenow = {
    arguments = {{meta = "coordinate"}},
    details = [[
This command is used to position a node that has previously been created
using the command `\pgfpositionnodelater`. When `\pgfpositionnodenow` is
called, the macros and boxes mentioned in the description of
`\pgfpositionnodenow` must be set to the value they had when the ⟨macro
name⟩ was called. Provided this is the case, this command will insert
the box into the current picture, shifted by ⟨coordinate⟩. Then, the
late code (see below) is called. Subsequently, you can refer to the node
with its original name as if it had just been created.

    \newbox\mybox

    \def\mysaver{
      \global\setbox\mybox=\box\pgfpositionnodelaterbox
      \global\let\myname=\pgfpositionnodelatername
      \global\let\myminx=\pgfpositionnodelaterminx
      \global\let\myminy=\pgfpositionnodelaterminy
      \global\let\mymaxx=\pgfpositionnodelatermaxx
      \global\let\mymaxy=\pgfpositionnodelatermaxy
    }

    \begin{tikzpicture}
      {
        \pgfpositionnodelater{\mysaver}
        \node [fill=blue!20,below,rotate=30] (hi) {Hello world};
      }
      \draw [help lines] (0,0) grid (3,2);

      \let\pgfpositionnodelatername=\myname
      \let\pgfpositionnodelaterminx=\myminx
      \let\pgfpositionnodelaterminy=\myminy
      \let\pgfpositionnodelatermaxx=\mymaxx
      \let\pgfpositionnodelatermaxy=\mymaxy
      \setbox\pgfpositionnodelaterbox=\box\mybox
      \pgfpositionnodenow{\pgfqpoint{2cm}{2cm}}

      \draw (hi) -- (0,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpositionnodenow"
  },
  pgfprofileend = {
    arguments = {{meta = "profiler entry name"}},
    details = [[
Stops (or interrupts) timing of ⟨profiler entry name⟩.

This command finishes a preceding call to `\pgfprofilestart`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofileend"
  },
  pgfprofileifisrunning = {
    arguments = {
      {meta = "profiler entry name"},
      {meta = "true code"},
      {meta = "false code"}
    },
    details = [[
Invokes `{true code}` if `{profiler entry name}` is currently running
and `{false code}` otherwise.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofileifisrunning"
  },
  pgfprofilenew = {
    arguments = {{meta = "name"}},
    details = [[
Defines a new profiler entry named ⟨name⟩.

This updates a set of internal registers used to track the profiler
entry. The ⟨name⟩ can be arbitrary, it doesn't need to be related to any
TeX macro.

The actual job of counting seconds is accomplished using
`\pgfprofilestart``{name}` followed eventually by the command
`\pgfprofileend``{name}`.

It doesn't hurt if `\pgfprofilenew` is called multiple times with the
same name.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofilenew"
  },
  pgfprofilenewforcommand = {
    arguments = {
      {
        delimiters = {"[", "]"},
        meta = "profiler entry name",
        optional = true
      },
      {meta = "\\textbackslash macro"},
      {meta = "arguments"}
    },
    details = [[
Defines a new profiler entry which will measure the time spent in
⟨\\macro⟩. This calls `\pgfprofilenew` and replaces the current
definition of ⟨\\macro⟩ with a new one.

If `[profiler entry name]` has been provided, this defines the argument
for `\pgfprofilenew`. It is allowed to use the same name for multiple
commands; in this case, they are treated as if it where the same
command. If the optional argument is not used, the profiler entry will
be called '`\pgfprofilecs`⟨macro⟩' (⟨macro⟩ without backslash) where
`\pgfprofilecs` is predefined to be `<CS>`.

The replacement macro will collect all required arguments, start
counting, invoke the original macro definition and stop counting.

The following macro types are supported within
`\pgfprofilenewforcommand`:

-   commands which take one (optional) argument in square brackets
    followed by one optional argument which has to be delimited by curly
    braces (use an empty argument for ⟨arguments⟩ in this case),

-   commands which take one (optional) argument in square brackets and
    *exactly* ⟨arguments⟩ arguments afterwards.

Take a look at `\pgfprofilenewforcommandpattern` in case you have more
complicated commands.

Note that the library can't detect if a command has been redefined
somewhere.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofilenewforcommand"
  },
  pgfprofilenewforcommandpattern = {
    arguments = {
      {
        delimiters = {"[", "]"},
        meta = "profiler entry name",
        optional = true
      },
      {meta = "\\textbackslash macro"},
      {meta = "argument pattern"},
      {meta = "invocation pattern"}
    },
    details = [[
A variant of `\pgfprofilenewforcommand` which can be used with arbitrary
⟨argument patterns⟩. Example:

    \def\mymacro#1\to#2\in#3{ ... }
    \pgfprofilenewforcommandpattern{\mymacro}{#1\to#2\in#3}{{#1}\to{#2}\in{#3}}

Note that `\pgfprofilenewforcommand` is a special case of
`\pgfprofilenewforcommandpattern`:

    \def\mymacro#1#2{ ... }
    \pgfprofilenewforcommand\macro{2}
    \pgfprofilenewforcommandpattern{\mymacro}{#1#2}{{#1}{#2}}

Thus, ⟨argument pattern⟩ is a copy-paste from the definition of your
command. The ⟨invocation pattern⟩ is used by the `profiler` library to
invoke the *original* command, so it is closely related to ⟨argument
pattern⟩, but it needs extra curly braces around each argument.

The behavior of `\pgfprofilenewforcommandpattern` is the same as
discussed above: it defines a new profiler entry which will measure the
time spent in ⟨\\macro⟩. The details about this definition has already
been described. Note that up to one optional argument in square brackets
is also checked automatically.

If you like to profile a command which doesn't match here for whatever
reasons, you'll have to redefine it manually and insert
`\pgfprofilestart` and `\pgfprofileend` in appropriate places.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofilenewforcommandpattern"
  },
  pgfprofilenewforenvironment = {
    arguments = {
      {
        delimiters = {"[", "]"},
        meta = "profiler entry name",
        optional = true
      },
      {meta = "environment name"}
    },
    details = [[
Defines a new profiler entry which measures time spent in the
environment ⟨environment name⟩.

This calls `\pgfprofilenew` and handles the begin/end of the environment
automatically.

The argument for `\pgfprofilenew` is ⟨profiler entry name⟩, or, if this
optional argument is not used, it is '`\pgfprofileenv`⟨environment
name⟩' where `\pgfprofileenv` is predefined as `<ENV>`. Again, it is
permitted to use the same ⟨profiler entry name⟩ multiple times to merge
different commands into one output section.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofilenewforenvironment"
  },
  pgfprofilepostprocess = {
    details = [[
For LaTeX, this command is installed automatically in `\end{document}`.
It stops all running timings, evaluates them and returns the result into
the logfile. Furthermore, it generates a text table called
`\jobname.profiler.`⟨YYYY⟩`-`⟨MM⟩`-`⟨DD⟩`_ `⟨HH⟩`h_ `⟨MM⟩`m.dat` with
the same information.

Note that the `profiler` library predefines two profiler entries, namely
`main job` which counts time from the beginning of the document until
`\pgfprofilepostprocess` and `preamble` which counts time from the
beginning of the document until `\begin{document}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofilepostprocess"
  },
  pgfprofilesetrel = {
    arguments = {{meta = "profiler entry name"}},
    details = [[
Sets the profiler entry whose total time will be used to compute all
other relative times. Thus, ⟨profiler entry name⟩ will use $100\%$ of
the total time per definition, all other relative times are relative to
this one.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofilesetrel"
  },
  pgfprofileshowinvocationsexpandedfor = {
    arguments = {{meta = "profiler entry name"}},
    details = [[
A variant of `\pgfprofileshowinvocationsfor` which will expand all
arguments for ⟨profiler entry name⟩ before showing them. The invocation
as such is not affected by this expansion.

This expansion (with `\edef`) might yield unrecoverable errors for some
commands. Handle with care.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofileshowinvocationsexpandedfor"
  },
  pgfprofileshowinvocationsfor = {
    arguments = {{meta = "profiler entry name"}},
    details = [[
Enables verbose output for *every* invocation of ⟨profiler entry name⟩.

This is only available for profiler entries for commands (those created
by `\pgfprofilenewforcommand` for example). It will also show all given
arguments.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofileshowinvocationsfor"
  },
  pgfprofilestart = {
    arguments = {{meta = "profiler entry name"}},
    details = [[
Starts (or resumes) timing of ⟨profiler entry name⟩. The argument must
have been declared in the preamble using `\pgfprofilenew`.

Nested calls of `\pgfprofilestart` with the same argument will be
ignored.

The invocation of this command doesn't change the environment: it
doesn't introduce any TeX groups nor does it modify the token list.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfprofilestart"
  },
  pgfpushtype = {
    details = [[
Pushes the current type on an internal global stack. The idea is to
allow you to temporarily change the current type without having to open
a TeX scope.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfpushtype"
  },
  pgfqbox = {
    arguments = {{meta = "box number"}},
    details = [[
This command inserts a TeX box into a `{pgfpicture}` by "escaping" to
TeX, inserting the box number ⟨box number⟩ at the origin, and then
returning to the typesetting the picture.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqbox"
  },
  pgfqboxsynced = {
    arguments = {{meta = "box number"}},
    details = [[
This command works similarly to the `\pgfqbox` command. However, before
inserting the text in ⟨box number⟩, the current coordinate
transformation matrix is applied to the current canvas transformation
matrix (is it "synced" with this matrix, hence the name).

Thus, this command basically has the same effect as if you first called
`\pgflowlevelsynccm` followed by `\pgfqbox`. However, this command will
use `\hskip` and `\raise` commands for the "translational part" of the
coordinate transformation matrix, instead of adding the translational
part to the current canvas transformation matrix directly. Both methods
have the same effect (box ⟨box number⟩ is translated to where it should
be), but the method used by `\pgfqboxsynced` ensures that hyperlinks are
placed correctly. Note that scaling and rotation will not (cannot, even)
apply to hyperlinks.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqboxsynced"
  },
  pgfqkeys = {
    arguments = {{meta = "default path"}, {meta = "key list"}},
    details = [[
This command has the same effect as `\pgfkeys{`⟨default path⟩`/.cd,`⟨key
list⟩`}`, it is only marginally quicker. This command should not be used
in user code, but rather in commands like `\tikzset` or `\pgfset` that
get called very often.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqkeys"
  },
  pgfqkeysactivatefamiliesandfilteroptions = {
    arguments = {
      {meta = "family list"},
      {meta = "default path"},
      {meta = "key--value-list"}
    },
    details = [[
The 'quick' default path variant of
`\pgfkeysactivatefamiliesandfilteroptions`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqkeysactivatefamiliesandfilteroptions"
  },
  pgfqkeysactivatesinglefamilyandfilteroptions = {
    arguments = {
      {meta = "family name"},
      {meta = "default path"},
      {meta = "key--value-list"}
    },
    details = [[
The 'quick' default path variant of
`\pgfkeysactivatesinglefamilyandfilteroptions`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqkeysactivatesinglefamilyandfilteroptions"
  },
  pgfqkeysalso = {
    arguments = {{meta = "default path"}, {meta = "key list"}},
    details = [[
This command has the same effect as `\pgfkeysalso{`⟨default
path⟩`/.cd,`⟨key list⟩`}`, it is only quicker. Changing the default path
inside a `\pgfkeyalso` is dangerous, so use with care. A rather safe
place to call this command is at the beginning of a TeX group.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqkeysalso"
  },
  pgfqkeysfiltered = {
    arguments = {{meta = "default-path"}, {meta = "key--value-list"}},
    details = [[
A variant of `\pgfkeysfiltered` which uses the 'quick' search path
setting. It is the `\pgfqkeys` variant of `\pgfkeysfiltered`, see the
documentation for `\pgfqkeys` for more details.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqkeysfiltered"
  },
  pgfqpoint = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
This command does the same as `\pgfpoint`, but ⟨x⟩ and ⟨y⟩ must be
simple dimensions like `1pt` or `1cm`. Things like `2ex` or `2cm+1pt`
are not allowed.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqpoint"
  },
  pgfqpointscale = {
    arguments = {{meta = "factor"}, {meta = "coordinate"}},
    details = [[
As `\pgfpointscale`, but `{factor}` must be a simple number without
unit, as for the other "quick" commands.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqpointscale"
  },
  pgfqpointxy = {
    arguments = {{meta = "$s_x$"}, {meta = "$s_y$"}},
    details = [[
This command does the same as `\pgfpointxy`, but ⟨$s_x$⟩ and ⟨$s_y$⟩
must be simple numbers without unit, like `1.234` or `5.0`. Mathematical
expressions or units are not allowed.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqpointxy"
  },
  pgfqpointxyz = {
    arguments = {{meta = "$s_x$"}, {meta = "$s_y$"}, {meta = "$s_z$"}},
    details = [[
As `\pgfqpointxy`, but for three-dimensional coordinates. Any argument
needs to be a number without unit.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfqpointxyz"
  },
  pgfrdfabout = {
    arguments = {{meta = "text"}},
    details = [[
Adds the RDF attribute `about="`⟨text⟩`"` to the next id scope (please
see the RDFa specification for details on the semantics of `about` in
the context of the resource description framework).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfabout"
  },
  pgfrdfcontent = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfcontent"
  },
  pgfrdfdatatype = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfdatatype"
  },
  pgfrdfhref = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfhref"
  },
  pgfrdfinlist = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfinlist"
  },
  pgfrdfprefix = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfprefix"
  },
  pgfrdfproperty = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfproperty"
  },
  pgfrdfrel = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfrel"
  },
  pgfrdfresource = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfresource"
  },
  pgfrdfrev = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfrev"
  },
  pgfrdfsrc = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfsrc"
  },
  pgfrdftypeof = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdftypeof"
  },
  pgfrdfvocab = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrdfvocab"
  },
  pgfrealjobname = {
    arguments = {{meta = "name"}},
    details = [[
Tells PGF the real name of your job. For instance, if you have a file
called `survey.tex` that contains two graphics that you wish to be
called `survey-graphic1` and `survey-graphic2`, then you should write
the following.

    % This is file survey.tex
    \documentclass{article}
    ...
    \usepackage{tikz}
    \pgfrealjobname{survey}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfrealjobname"
  },
  pgfresetboundingbox = {
    details = [[
Resets the picture's bounding box. The picture will simply forget any
previous bounding box updates and start collecting from scratch.

You can use this together with `\pgfusepath{use as bounding box}` to
replace the bounding box by the one of a particular path (ignoring
subsequent paths).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfresetboundingbox"
  },
  pgfsetadditionalshadetransform = {
    arguments = {{meta = "transformation"}},
    details = [[
This command allows you to specify an additional transformation that
should be applied to shadings when the `\pgfshadepath` command is used.
The ⟨transformation⟩ should be transformation code like
`\pgftransformrotate{20}`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetadditionalshadetransform"
  },
  pgfsetarrows = {
    arguments = {{meta = "argument"}},
    details = [[
The ⟨argument⟩ can be of the form ⟨start arrow tip specification⟩`-`⟨end
arrow tip specification⟩. In this case, both the start and the end arrow
specification are set:

    \begin{pgfpicture}
      \pgfsetarrows{Latex[length=10pt]->>}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{1cm}{0cm}}
      \pgfusepath{stroke}
    \end{pgfpicture}

Alternatively, ⟨argument⟩ can be of the form `[`⟨arrow keys⟩`]`. In this
case, the ⟨arrow keys⟩ will be set for all arrow tips in the current
scope, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetarrows"
  },
  pgfsetarrowsend = {
    arguments = {{meta = "end arrow tip specification"}},
    details = [[
Sets the arrow tip kind used at the end of a path.

    \begin{pgfpicture}
      \pgfsetarrowsstart{Latex[length=10pt]}
      \pgfsetarrowsend{Computer Modern Rightarrow}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{1cm}{0cm}}
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetarrowsend"
  },
  pgfsetarrowsstart = {
    arguments = {{meta = "start arrow tip specification"}},
    details = [[
Sets the arrow tip kind used at the start of a (possibly curved) path.
The syntax of the ⟨start arrow specification⟩ is detailed in Section ??.

To "clear" the start arrow, say `\pgfsetarrowsstart{}`.

    \begin{pgfpicture}
      \pgfsetarrowsstart{Latex[length=10pt]}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{1cm}{0cm}}
      \pgfusepath{stroke}
      \pgfsetarrowsstart{Computer Modern Rightarrow}
      \pgfpathmoveto{\pgfpoint{0cm}{2mm}}
      \pgfpathlineto{\pgfpoint{1cm}{2mm}}
      \pgfusepath{stroke}
    \end{pgfpicture}

The effect of this command persists only till the end of the current
TeX scope.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetarrowsstart"
  },
  pgfsetbaseline = {
    arguments = {{meta = "dimension"}},
    details = [[
This command specifies a $y$-coordinate of the picture that should be
used as the baseline of the whole picture. When a PGF picture has been
typeset completely, PGF must decide at which height the baseline of the
picture should lie. Normally, the baseline is set to the $y$-coordinate
of the bottom of the picture, but it is often desirable to use a
different height.

    Text
    \begin{pgfpicture}
      \pgfpathcircle{\pgfpointorigin}{1ex}\pgfusepath{stroke}
    \end{pgfpicture},
    \begin{pgfpicture}
      \pgfsetbaseline{0pt}
      \pgfpathcircle{\pgfpointorigin}{1ex}\pgfusepath{stroke}
    \end{pgfpicture},
    \begin{pgfpicture}
      \pgfsetbaseline{.5ex}
      \pgfpathcircle{\pgfpointorigin}{1ex}\pgfusepath{stroke}
    \end{pgfpicture},
    \begin{pgfpicture}
      \pgfsetbaseline{-1ex}
      \pgfpathcircle{\pgfpointorigin}{1ex}\pgfusepath{stroke}
    \end{pgfpicture}.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetbaseline"
  },
  pgfsetbaselinepointlater = {
    arguments = {{meta = "point"}},
    details = [[
This command also specifies the baseline indirectly, but the
$y$-coordinate of the given ⟨point⟩ is only computed at the end of the
picture.

    Hello
    \begin{pgfpicture}
      \pgfsetbaselinepointlater{\pgfpointanchor{X}{base}}
      % Note: no shape X, yet
      \pgfnode{cross out}{center}{world.}{X}{\pgfusepath{stroke}}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetbaselinepointlater"
  },
  pgfsetbaselinepointnow = {
    arguments = {{meta = "point"}},
    details = [[
This command specifies the baseline indirectly, namely as the
$y$-coordinate that the given ⟨point⟩ has when the command is called.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetbaselinepointnow"
  },
  pgfsetbeveljoin = {
    details = [[
Sets the line join to a bevel join. See again Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetbeveljoin"
  },
  pgfsetblendmode = {
    arguments = {{meta = "mode"}},
    details = [[
Sets the blend mode to one of the values described in Section ??. As
described there, blend modes are an advanced feature of PDF and not
always rendered correctly.

    \tikz [transparency group] {
      \pgfsetblendmode{screen}

      \fill[red!90!black]   ( 90:.6) circle (1);
      \fill[green!80!black] (210:.6) circle (1);
      \fill[blue!90!black]  (330:.6) circle (1);
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetblendmode"
  },
  pgfsetbuttcap = {
    details = [[
Sets the line cap to a butt cap. See Section ?? for an explanation of
what this is.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetbuttcap"
  },
  pgfsetcolor = {
    arguments = {{meta = "color"}},
    details = [[
Sets both the stroke and fill color. The difference to the normal
`\color` command is that the effect lasts till the end of the current
`{pgfscope}`, not only till the end of the current TeX group.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetcolor"
  },
  pgfsetcornersarced = {
    arguments = {{meta = "point"}},
    details = [[
This command causes all subsequent corners to be replaced by little
arcs. The effect of this command lasts till the end of the current
TeX scope.

The ⟨point⟩ dictates how large the corner arc will be. Consider a corner
made by two lines $l$ and $r$ and assume that the line $l$ comes first
on the path. The $x$-dimension of the ⟨point⟩ decides by how much the
line $l$ will be shortened, the $y$-dimension of ⟨point⟩ decides by how
much the line $r$ will be shortened. Then, the shortened lines are
connected by an arc.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \pgfsetcornersarced{\pgfpoint{5mm}{5mm}}
      \pgfpathrectanglecorners{\pgfpointorigin}{\pgfpoint{3cm}{2cm}}
      \pgfusepath{stroke}
    \end{tikzpicture}

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \pgfsetcornersarced{\pgfpoint{10mm}{5mm}}
      % 10mm entering,
      % 5mm leaving.
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{0cm}{2cm}}
      \pgfpathlineto{\pgfpoint{3cm}{2cm}}
      \pgfpathcurveto
        {\pgfpoint{3cm}{0cm}}
        {\pgfpoint{2cm}{0cm}}
        {\pgfpoint{1cm}{0cm}}
      \pgfusepath{stroke}
    \end{tikzpicture}

If the $x$- and $y$-coordinates of ⟨point⟩ are the same and the corner
is a right angle, you will get a perfect quarter circle (well, not quite
perfect, but perfect up to six decimals). When the angle is not
$90^\circ$, you only get a fair approximation.

More or less "all" corners will be rounded, even the corner generated by
a `\pgfpathclose` command. (The author is a bit proud of this feature.)

    \begin{pgfpicture}
      \pgfsetcornersarced{\pgfpoint{4pt}{4pt}}
      \pgfpathmoveto{\pgfpointpolar{0}{1cm}}
      \pgfpathlineto{\pgfpointpolar{72}{1cm}}
      \pgfpathlineto{\pgfpointpolar{144}{1cm}}
      \pgfpathlineto{\pgfpointpolar{216}{1cm}}
      \pgfpathlineto{\pgfpointpolar{288}{1cm}}
      \pgfpathclose
      \pgfusepath{stroke}
    \end{pgfpicture}

To return to normal (unrounded) corners, use
`\pgfsetcornersarced{\pgfpointorigin}`.

Note that the rounding will produce strange and undesirable effects if
the lines at the corners are too short. In this case the shortening may
cause the lines to "suddenly extend over the other end" which is rarely
desirable.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetcornersarced"
  },
  pgfsetcurvilinearbeziercurve = {
    arguments = {
      {meta = "start"},
      {meta = "first support"},
      {meta = "second support"},
      {meta = "end"}
    },
    details = [[
Prior to using any other command from this library, you first call this
function to "install" a Bézier curve to which the commands will refer.
This curve will be local to the current TeX scope and you can install
only one curve at a time.

The main job of this command is to store the passed points internally
and to build a lookup table for distance-to-time conversions, see the
next command.

    \pgfsetcurvilinearbeziercurve
      {\pgfpointorigin}
      {\pgfpoint{1cm}{1cm}}
      {\pgfpoint{2cm}{1cm}}
      {\pgfpoint{3cm}{0cm}}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetcurvilinearbeziercurve"
  },
  pgfsetdash = {
    arguments = {{meta = "list of even length of dimensions"}, {meta = "phase"}},
    details = [[
Sets the dashing of a line. The first entry in the list specifies the
length of the first solid part of the list. The second entry specifies
the length of the following gap. Then comes the length of the second
solid part, following by the length of the second gap, and so on. The
⟨phase⟩ specifies where the first solid part starts relative to the
beginning of the line.

    \begin{pgfpicture}
      \pgfsetdash{{0.5cm}{0.5cm}{0.1cm}{0.2cm}}{0cm}
      \pgfpathmoveto{\pgfpoint{0mm}{0mm}}
      \pgfpathlineto{\pgfpoint{2cm}{0mm}}
      \pgfusepath{stroke}
      \pgfsetdash{{0.5cm}{0.5cm}{0.1cm}{0.2cm}}{0.1cm}
      \pgfpathmoveto{\pgfpoint{0mm}{1mm}}
      \pgfpathlineto{\pgfpoint{2cm}{1mm}}
      \pgfusepath{stroke}
      \pgfsetdash{{0.5cm}{0.5cm}{0.1cm}{0.2cm}}{0.2cm}
      \pgfpathmoveto{\pgfpoint{0mm}{2mm}}
      \pgfpathlineto{\pgfpoint{2cm}{2mm}}
      \pgfusepath{stroke}
    \end{pgfpicture}

Use `\pgfsetdash{}{0pt}` to get a solid dashing.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetdash"
  },
  pgfsetdecorationsegmenttransformation = {
    arguments = {{meta = "code"}},
    details = [[
The ⟨code⟩ will be executed at the very beginning of each segment. Note
when applying multiple decorations, this will be reset between
decorations, so it needs to be specified for each segment.

    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \begin{pgfdecoration}{
          {curveto}{\pgfdecoratedpathlength/3},
          {zigzag}{\pgfdecoratedpathlength/3}
          {
            \pgfdecorationsegmentlength=5pt
            \pgfsetdecorationsegmenttransformation{\pgftransformyshift{.5cm}}
          },
          {curveto}{\pgfdecoratedremainingdistance}
        }
        \pgfpathmoveto{\pgfpointorigin}
        \pgfpathcurveto
          {\pgfpoint{0cm}{2cm}}{\pgfpoint{3cm}{2cm}}{\pgfpoint{3cm}{0cm}}
      \end{pgfdecoration}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetdecorationsegmenttransformation"
  },
  pgfseteorule = {
    details = [[
Dictates that the even-odd rule is used in subsequent fillings in the
current *TeX scope*. Thus, for once, the effect of this command does not
persist past the current TeX scope.

    \begin{pgfpicture}
      \pgfseteorule
      \pgfpathcircle{\pgfpoint{0mm}{0cm}}{7mm}
      \pgfpathcircle{\pgfpoint{5mm}{0cm}}{7mm}
      \pgfusepath{fill}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfseteorule"
  },
  pgfsetfading = {
    arguments = {{meta = "name"}, {meta = "transformations"}},
    details = [[
This command sets the graphic state parameter "fading" to a previously
defined fading ⟨name⟩. This graphic state works like other graphic
states, that is, is persists till the end of the current scope or until
a different transparency setting is chosen.

When the fading is installed, it will be centered on the origin with its
natural size. Anything outside the fading picture's original bounding
box will be transparent and, thus, the fading effectively clips against
this bounding box.

The ⟨transformations⟩ are applied to the fading before it is used. They
contain normal PGF transformation commands like `\pgftransformshift`.
You can also scale the fading using this command. Note, however, that
the transformation needs to be inverted internally, which may result in
inaccuracies and the following graphics may be slightly distorted if you
use a strong ⟨transformation⟩.

    \pgfdeclarefading{fading2}
    {\tikz \shade[left color=pgftransparent!0,
                  right color=pgftransparent!100] (0,0) rectangle (2,2);}
    \begin{tikzpicture}
      \fill [black!20] (0,0) rectangle (2,2);
      \fill [black!30] (0,0) arc (180:0:1);
      \pgfsetfading{fading2}{}
      \fill [red] (0,0) rectangle (2,2);
    \end{tikzpicture}

     (0,0) rectangle (2,2);}}]
    \begin{tikzpicture}
      \fill [black!20] (0,0) rectangle (2,2);
      \fill [black!30] (0,0) arc (180:0:1);
      \pgfsetfading{fading2}{\pgftransformshift{\pgfpoint{1cm}{1cm}}
                             \pgftransformrotate{20}}
      \fill [red] (0,0) rectangle (2,2);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetfading"
  },
  pgfsetfadingforcurrentpath = {
    arguments = {{meta = "name"}, {meta = "transformations"}},
    details = [[
This command works like `\pgfsetfading`, but the fading is scaled and
transformed according to the following rules:

1.  If the current path is empty, the command has the same effect as
    `\pgfsetfading`.

2.  Otherwise it is assumed that the fading has a size of 100bp times
    100bp.

3.  The fading is resized and shifted (using appropriate
    transformations) such that the position
    $(25\mathrm{bp},25\mathrm{bp})$ lies at the lower-left corner of the
    current path and the position $(75\mathrm{bp},75\mathrm{bp})$ lies
    at the upper-right corner of the current path.

Note that these rules are the same as the ones used in `\pgfshadepath`
for shadings. After these transformations, the ⟨transformations⟩ are
executed (typically a rotation).

    \pgfdeclarehorizontalshading{shading}{100bp}
    { color(0pt)=(transparent!0);    color(25bp)=(transparent!0);
      color(75bp)=(transparent!100); color(100bp)=(transparent!100)}

    \pgfdeclarefading{fading}{\pgfuseshading{shading}}

    \begin{tikzpicture}
      \fill [black!20] (0,0) rectangle (2,2);
      \fill [black!30] (0,0) arc (180:0:1);

      \pgfpathrectangle{\pgfpointorigin}{\pgfpoint{2cm}{1cm}}
      \pgfsetfadingforcurrentpath{fading}{}
      \pgfusepath{discard}

      \fill [red] (0,0) rectangle (2,1);

      \pgfpathrectangle{\pgfpoint{0cm}{1cm}}{\pgfpoint{2cm}{1cm}}
      \pgfsetfadingforcurrentpath{fading}{\pgftransformrotate{90}}
      \pgfusepath{discard}

      \fill [red] (0,1) rectangle (2,2);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetfadingforcurrentpath"
  },
  pgfsetfadingforcurrentpathstroked = {
    arguments = {{meta = "name"}, {meta = "transformations"}},
    details = [[
This command works like `\pgfsetfadingforcurrentpath`, only the current
path is enlarged by the line width in both $x$- and $y$-direction. This
is exactly the enlargement necessary to compensate for the fact that if
the current path will be stroked, this much needs to be added around the
path's bounding box to actually contain the path.

    \begin{tikzpicture}
      \pgfsetlinewidth{2mm}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{2cm}{0cm}}
      \pgfsetfadingforcurrentpathstroked{fading}{}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetfadingforcurrentpathstroked"
  },
  pgfsetfillcolor = {
    arguments = {{meta = "color"}},
    details = [[
Sets the color used for filling paths to ⟨color⟩. Like the stroke color,
the effect lasts only till the next use of `\color`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetfillcolor"
  },
  pgfsetfillopacity = {
    arguments = {{meta = "value"}},
    details = [[
Sets the opacity of filling operations. As for stroking, the ⟨value⟩
should be a number between `0` and `1`.

The "filling transparency" will also be used for text and images.

    \begin{tikzpicture}
      \pgfsetfillopacity{0.5}
      \fill[red]   (90:1cm)  circle (11mm);
      \fill[green] (210:1cm) circle (11mm);
      \fill[blue]  (-30:1cm) circle (11mm);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetfillopacity"
  },
  pgfsetfillpattern = {
    arguments = {{meta = "name"}, {meta = "color"}},
    details = [[
This command specifies that paths that are filled should be filled with
the "color" by the pattern ⟨name⟩. For an inherently colored pattern,
the ⟨color⟩ parameter is ignored. For form-only patterns, the ⟨color⟩
parameter specifies the color to be used for the pattern.

    \begin{tikzpicture}
      \pgfsetfillpattern{stars}{red}
      \filldraw (0,0) rectangle (1.5,2);

      \pgfsetfillpattern{green stars}{red}
      \filldraw (1.5,0) rectangle (3,2);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetfillpattern"
  },
  pgfsetinnerlinewidth = {
    arguments = {{meta = "dimension"}},
    details = [[
This command sets the width of the inner line. Whenever a path is
stroked (and only then), it will be stroked normally and, afterward, it
is stroked once more with the color set to the inner line color and the
line width set to ⟨dimension⟩.

In case arrow tips are added to a path, the path is first stroked
normally, then the inner line is stroked, and then the arrow tip is
added. In case the main path is shortened because of the added arrow
tip, this shortened path is double stroked, not the original path (which
is exactly what you want).

When the inner line width is set to 0pt, which is the default, no inner
line is stroked at all (not even a line of width 0pt). So, in order to
"switch off" double stroking, set ⟨dimension⟩ to `0pt`.

The setting of the inner line width is local to the current TeX group
and *not* to the current PGF scope.

Note that inner lines will *not* be drawn for paths that are also used
for clipping. However, this may change in the future, so you should not
depend on this.

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{1cm}{1cm}}
      \pgfpathlineto{\pgfpoint{1cm}{0cm}}
      \pgfsetlinewidth{2pt}
      \pgfsetinnerlinewidth{1pt}
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetinnerlinewidth"
  },
  pgfsetinnerstrokecolor = {
    arguments = {{meta = "color"}},
    details = [[
This command sets the ⟨color⟩ that is to be used when the inner line is
stroked. The effect of this command is also local to the current
TeX group.

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfpathlineto{\pgfpoint{1cm}{1cm}}
      \pgfpathlineto{\pgfpoint{1cm}{0cm}}
      \pgfsetlinewidth{2pt}
      \pgfsetinnerlinewidth{1pt}
      \pgfsetinnerstrokecolor{red!50}
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetinnerstrokecolor"
  },
  pgfsetlayers = {
    arguments = {{meta = "layer list"}},
    details = [[
This command tells PGF which layers will be used in pictures. They are
stacked on top of each other in the order given. The layer `main` should
always be part of the list. Here is an example:

    \pgfdeclarelayer{background}
    \pgfdeclarelayer{foreground}
    \pgfsetlayers{background,main,foreground}

This command should be given either outside of any picture or "directly
inside" of a picture. Here, the "directly inside" means that there
should be no further level of TeX grouping between `\pgfsetlayers` and
the matching `\end{pgfpicture}` (no closing braces, no `\end{...}`). It
will also work if `\pgfsetlayers` is provided before `\end{tikzpicture}`
(with similar restrictions).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetlayers"
  },
  pgfsetlinetofirstplotpoint = {
    details = [[
Specifies that plot handlers should issue a line-to command for the
first point of the plot.

    \begin{pgfpicture}
      \pgfpathmoveto{\pgfpointorigin}
      \pgfsetlinetofirstplotpoint
      \pgfplothandlerlineto
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{1cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{3cm}{2cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{2cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetlinetofirstplotpoint"
  },
  pgfsetlinewidth = {
    arguments = {{meta = "line width"}},
    details = [[
This command sets the line width for subsequent strokes (in the current
`pgfscope`). The line width is given as a normal TeX dimension like
`0.4pt` or `1mm`.

    \begin{pgfpicture}
      \pgfsetlinewidth{1mm}
      \pgfpathmoveto{\pgfpoint{0mm}{0mm}}
      \pgfpathlineto{\pgfpoint{2cm}{0mm}}
      \pgfusepath{stroke}
      \pgfsetlinewidth{2\pgflinewidth} % double in size
      \pgfpathmoveto{\pgfpoint{0mm}{5mm}}
      \pgfpathlineto{\pgfpoint{2cm}{5mm}}
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetlinewidth"
  },
  pgfsetmatrixcolumnsep = {
    arguments = {{meta = "sep list"}},
    details = [[
This macro sets the default separation list for columns. The details of
the format of this list are explained in the description of the next
command.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetmatrixcolumnsep"
  },
  pgfsetmatrixrowsep = {
    arguments = {{meta = "sep list"}},
    details = [[
This macro sets the default separation list for rows.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetmatrixrowsep"
  },
  pgfsetmiterjoin = {
    details = [[
Sets the line join to a miter join. See again Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetmiterjoin"
  },
  pgfsetmiterlimit = {
    arguments = {{meta = "miter limit factor"}},
    details = [[
Sets the miter limit to ⟨miter limit factor⟩. See again Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetmiterlimit"
  },
  pgfsetmovetofirstplotpoint = {
    details = [[
Specifies that the line-to plot handler (and also some other plot
handlers) should issue a move-to command for the first point of the plot
instead of a line-to. This will start a new part of the current path,
which is not always, but often, desirable. This is the default.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetmovetofirstplotpoint"
  },
  pgfsetnonzerorule = {
    details = [[
Dictates that the nonzero winding number rule is used in subsequent
fillings in the current TeX scope. This is the default.

    \begin{pgfpicture}
      \pgfsetnonzerorule
      \pgfpathcircle{\pgfpoint{0mm}{0cm}}{7mm}
      \pgfpathcircle{\pgfpoint{5mm}{0cm}}{7mm}
      \pgfusepath{fill}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetnonzerorule"
  },
  pgfsetplotmarkphase = {
    arguments = {{meta = "phase"}},
    details = [[
Sets the $p$ parameter to ⟨phase⟩, that is, the first mark to be drawn
is the $p$th, followed by the $(p+r)$th, then the $(p+2r)$th, and so on.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetplotmarkphase"
  },
  pgfsetplotmarkrepeat = {
    arguments = {{meta = "repeat"}},
    details = [[
Sets the $r$ parameter to ⟨repeat⟩, that is, only every $r$th mark will
be drawn.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetplotmarkrepeat"
  },
  pgfsetplotmarksize = {
    arguments = {{meta = "dimension"}},
    details = [[
This command sets the TeX dimension `\pgfplotmarksize` to ⟨dimension⟩.
This dimension is a "recommendation" for plot mark code at which size
the plot mark should be drawn; plot mark code may choose to ignore this
⟨dimension⟩ altogether. For circles, ⟨dimension⟩ should be the radius,
for other shapes it should be about half the width/height.

The predefined plot marks all take this dimension into account.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfsetplotmarksize{1ex}
      \pgfplothandlermark{\pgfuseplotmark{*}}
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetplotmarksize"
  },
  pgfsetplottension = {
    arguments = {{meta = "value"}},
    details = [[
Sets the factor used by the curve plot handlers to determine the
distance of the control points from the points they control. The higher
the curvature of the curve points, the higher this value should be. A
value of $1$ will cause four points at quarter positions of a circle to
be connected using a circle. The default is $0.5$.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfsetplottension{0.75}
      \pgfplothandlercurveto
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetplottension"
  },
  pgfsetrectcap = {
    details = [[
Sets the line cap to a square cap. See again Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetrectcap"
  },
  pgfsetroundcap = {
    details = [[
Sets the line cap to a round cap. See again Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetroundcap"
  },
  pgfsetroundjoin = {
    details = [[
Sets the line join to a round join. See again Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetroundjoin"
  },
  pgfsetshortenend = {
    arguments = {{meta = "dimension"}},
    details = [[
Works like `\pgfsetshortenstart`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetshortenend"
  },
  pgfsetshortenstart = {
    arguments = {{meta = "dimension"}},
    details = [[
This command will shortened the start of every stroked path by the given
dimension. This shortening is done in addition to automatic shortening
done by a start arrow, but it can be used even if no start arrow is
given.

It is usually better to use the `sep` key with arrow tips.

This command is useful if you wish arrows or lines to "stop shortly
before" a given point.

    \begin{pgfpicture}
      \pgfpathcircle{\pgfpointorigin}{5mm}
      \pgfusepath{stroke}
      \pgfsetarrows{Latex-}
      \pgfsetshortenstart{4pt}
      \pgfpathmoveto{\pgfpoint{5mm}{0cm}} % would be on the circle
      \pgfpathlineto{\pgfpoint{2cm}{0cm}}
      \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetshortenstart"
  },
  pgfsetstrokecolor = {
    arguments = {{meta = "color"}},
    details = [[
Sets the color used for stroking lines to ⟨color⟩, where ⟨color⟩ is a
LaTeX color like `red` or `black!20!red`. Unlike the `\color` command,
the effect of this command lasts till the end of the current
`{pgfscope}` and not till the end of the current TeX group.

The color used for stroking may be different from the color used for
filling. However, a `\color` command will always "immediately override"
any special settings for the stroke and fill colors.

In plain TeX, this command will also work, but the problem of *defining*
a color arises. After all, plain TeX does not provide LaTeX colors. For
this reason, PGF implements a minimalistic "emulation" of the
`\definecolor`, `\colorlet`, and `\color` commands. Only gray-scale and
rgb colors are supported. For most cases this turns out to be enough.

    \begin{pgfpicture}
      \pgfsetlinewidth{1pt}
      \color{red}
      \pgfpathcircle{\pgfpoint{0cm}{0cm}}{3mm} \pgfusepath{fill,stroke}
      \pgfsetstrokecolor{black}
      \pgfpathcircle{\pgfpoint{1cm}{0cm}}{3mm} \pgfusepath{fill,stroke}
      \color{red}
      \pgfpathcircle{\pgfpoint{2cm}{0cm}}{3mm} \pgfusepath{fill,stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetstrokecolor"
  },
  pgfsetstrokeopacity = {
    arguments = {{meta = "value"}},
    details = [[
Sets the opacity of stroking operations. The ⟨value⟩ should be a number
between `0` and `1`, where `1` means "fully opaque" and `0` means "fully
transparent". A value like `0.5` will cause paths to be stroked in a
semitransparent way.

    \begin{pgfpicture}
      \pgfsetlinewidth{5mm}
      \color{red}
      \pgfpathcircle{\pgfpoint{0cm}{0cm}}{10mm} \pgfusepath{stroke}
      \color{black}
      \pgfsetstrokeopacity{0.5}
      \pgfpathcircle{\pgfpoint{1cm}{0cm}}{10mm} \pgfusepath{stroke}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetstrokeopacity"
  },
  pgfsettransform = {
    arguments = {{meta = "macro"}},
    details = [[
Reinstalls a coordinate transformation matrix that was previously saved
using `\pgfgettransform`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsettransform"
  },
  pgfsettransformentries = {
    arguments = {
      {meta = "a"},
      {meta = "b"},
      {meta = "c"},
      {meta = "d"},
      {meta = "shiftx"},
      {meta = "shifty"}
    },
    details = [[
Reinstalls a coordinate transformation matrix that was previously saved
using the storage command `\pgfgettransformentries`. This command can
also be used to replace any previously existing coordinate
transformation matrix (it is thus equivalent to `\pgftransformreset`
followed by `\pgftransformcm`).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsettransformentries"
  },
  pgfsettransformnonlinearflatness = {
    arguments = {{meta = "dimension"}},
    details = [[
Whenever in a to-be-drawn curve the $L^\infty$-distance (maximum of the
distances in $x$- and $y$-directions) between the start of a curve and
its first control point or between the first and second control points
or between the second control point and the end is more than ⟨distance⟩,
the curve gets split in the middle (more precisely, at time $t= 0.5$)
and we draw the two parts individually (for them, splitting may occur
again, if the curve is still too long).

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      \draw[red] (0:20mm) arc [start angle=0, end angle=90, radius=2cm];
      {
        \pgftransformnonlinear{\polartransformation}
        \pgfsettransformnonlinearflatness{2pt} % very precise
        \draw (0,20mm) -- (90pt,20mm);
      }
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsettransformnonlinearflatness"
  },
  pgfsetxvec = {
    arguments = {{meta = "point"}},
    details = [[
Sets that current $x$-vector for usage in the $xyz$-coordinate system.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);

      \pgfpathmoveto{\pgfpointxy{1}{0}}
      \pgfpathlineto{\pgfpointxy{2}{2}}
      \pgfusepath{stroke}

      \color{red}
      \pgfsetxvec{\pgfpoint{0.75cm}{0cm}}
      \pgfpathmoveto{\pgfpointxy{1}{0}}
      \pgfpathlineto{\pgfpointxy{2}{2}}
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetxvec"
  },
  pgfsetyvec = {
    arguments = {{meta = "point"}},
    details = [[
Works like `\pgfsetxvec`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetyvec"
  },
  pgfsetzvec = {
    arguments = {{meta = "point"}},
    details = [[
Works like `\pgfsetxvec`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsetzvec"
  },
  pgfshadecolortocmyk = {
    arguments = {{meta = "color name"}, {meta = "macro"}},
    details = [[
This command takes ⟨color name⟩ as input, converts it to CMYK and stores
the color's cyan/magenta/yellow/black components real numbers between
0.0 and 1.0 separated by spaces.

In addition, four macros suffixed with `cyan`, `magenta`, `yellow` and
`black` are defined, which store the individual components of ⟨color
name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfshadecolortocmyk"
  },
  pgfshadecolortogray = {
    arguments = {{meta = "color name"}, {meta = "macro"}},
    details = [[
This command takes ⟨color name⟩ as input converts it to grayscale and
stores the color's value as a real number between 0.0 and 1.0.

Although it's not needed, for consistency a second macro suffixed with
`gray` is also defined.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfshadecolortogray"
  },
  pgfshadecolortorgb = {
    arguments = {{meta = "color name"}, {meta = "macro"}},
    details = [[
This command takes ⟨color name⟩ as input, converts it to RGB and stores
the color's red/green/blue components real numbers between 0.0 and 1.0
separated by spaces (which is exactly what you need if you want to push
it on a stack) in ⟨macro⟩. This macro can then be used inside the ⟨type
4 function⟩ argument for `\pgfdeclarefunctionalshading`.

    \pgfdeclarefunctionalshading[mycol]{sweep}{\pgfpoint{-1cm}{-1cm}}
    {\pgfpoint{1cm}{1cm}}{\pgfshadecolortorgb{mycol}{\myrgb}}{
      2 copy        % whirl
      % Calculate "safe" atan of position
      2 copy abs exch abs add 0.0001 ge { atan } { pop } ifelse
      3 1 roll
      dup mul exch
      dup mul add sqrt
      30 mul
      add
      sin
      1 add 2 div
      dup
      \myrgb        % push mycol
      5 4 roll      % multiply all components by calculated value
      mul
      3 1 roll
      3 index
      mul
      3 1 roll
      4 3 roll
      mul
      3 1 roll
    }
    \colorlet{mycol}{white}%
    \pgfuseshading{sweep}%
    \colorlet{mycol}{red}%
    \pgfuseshading{sweep}

In addition, three macros suffixed with `red`, `green` and `blue` are
defined, which store the individual components of ⟨color name⟩. These
can also be used in the ⟨type 4 function⟩ argument.

    \pgfshadecolortorgb{orange}{\mycol}
    |\mycol|=\mycol |\mycolred|=\mycolred |\mycolgreen|=\mycolgreen |\mycolblue|=\mycolblue
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfshadecolortorgb"
  },
  pgfshadepath = {
    arguments = {{meta = "shading name"}, {meta = "angle"}},
    details = [[
This command must be used inside a `{pgfpicture}` environment. The
effect is a bit complex, so let us go over it step by step.

First, PGF will set up a local scope.

Second, it uses the current path to clip everything inside this scope.
However, the current path is once more available after the scope, so it
can be used, for example, to stroke it.

Now, the ⟨shading name⟩ should be a shading whose width and height are
100 bp, that is, 100 big points. PGF has a look at the bounding box of
the current path. This bounding box is computed automatically when a
path is computed; however, it can sometimes be (quite a bit) too large,
especially when complicated curves are involved.

Inside the scope, the low-level transformation matrix is modified. The
center of the shading is translated (moved) such that it lies on the
center of the bounding box of the path. The low-level coordinate system
is also scaled such that the shading "covers" the path (the details are
a bit more complex, see below). Then, the coordinate system is rotated
by ⟨angle⟩. Finally, if the macro `\pgfsetadditionalshadetransform` has
been used, an additional transformation is applied.

After everything has been set up, the shading is inserted. Due to the
transformations and clippings, the effect will be that the shading seems
to "fill" the path.

If both the path and the shadings were always rectangles and if
rotations were never involved, it would be easy to scale shadings such
they always cover the path. However, when a vertical shading is rotated,
it must obviously be "magnified" so that it still covers the path.
Things get worse when the path is not a rectangle itself.

For these reasons, things work slightly differently "in reality". The
shading is scaled and translated such that the point
$(50\mathrm{bp},50\mathrm{bp})$, which is the middle of the shading, is
at the middle of the path and such that the point
$(25\mathrm{bp},25\mathrm{bp})$ is at the lower left corner of the path
and that $(75\mathrm{bp},75\mathrm{bp})$ is at upper right corner.

In other words, only the center quarter of the shading will actually
"survive the clipping" if the path is a rectangle. If the path is not a
rectangle, but, say, a circle, even less is seen of the shading. Here is
an example that demonstrates this effect:

    \pgfdeclareverticalshading{myshadingE}{100bp}
     {color(0bp)=(red); color(25bp)=(green);  color(75bp)=(blue);  color(100bp)=(black)}
    \pgfuseshading{myshadingE}
    \hskip 1cm
    \begin{pgfpicture}
      \pgfpathrectangle{\pgfpointorigin}{\pgfpoint{2cm}{1cm}}
      \pgfshadepath{myshadingE}{0}
      \pgfusepath{stroke}
      \pgfpathrectangle{\pgfpoint{3cm}{0cm}}{\pgfpoint{1cm}{2cm}}
      \pgfshadepath{myshadingE}{0}
      \pgfusepath{stroke}
      \pgfpathrectangle{\pgfpoint{5cm}{0cm}}{\pgfpoint{2cm}{2cm}}
      \pgfshadepath{myshadingE}{45}
      \pgfusepath{stroke}
      \pgfpathcircle{\pgfpoint{9cm}{1cm}}{1cm}
      \pgfshadepath{myshadingE}{45}
      \pgfusepath{stroke}
    \end{pgfpicture}

As can be seen above in the last case, the "hidden" part of the shading
actually *can* become visible if the shading is rotated. The reason is
that it is scaled as if no rotation took place, then the rotation is
done.

The following graphics show which part of the shading are actually
shown:

    \pgfdeclareverticalshading{myshadingF}{100bp}
     {color(0bp)=(red); color(25bp)=(green);  color(75bp)=(blue);  color(100bp)=(black)}
    \begin{tikzpicture}
      \draw (50bp,50bp) node {\pgfuseshading{myshadingF}};
      \draw[white,thick] (25bp,25bp) rectangle (75bp,75bp);
      \draw (50bp,0bp) node[below] {first two applications};

      \begin{scope}[xshift=5cm]
        \draw (50bp,50bp) node{\pgfuseshading{myshadingF}};
        \draw[rotate around={45:(50bp,50bp)},white,thick] (25bp,25bp) rectangle (75bp,75bp);
        \draw (50bp,0bp) node[below] {third application};
      \end{scope}

      \begin{scope}[xshift=10cm]
        \draw (50bp,50bp) node{\pgfuseshading{myshadingF}};
        \draw[white,thick] (50bp,50bp) circle (25bp);
        \draw (50bp,0bp) node[below] {fourth application};
      \end{scope}
    \end{tikzpicture}

An advantage of this approach is that when you rotate a radial shading,
no distortion is introduced:

    \pgfdeclareradialshading{ballshading}{\pgfpoint{-10bp}{10bp}}
     {color(0bp)=(red!15!white); color(9bp)=(red!75!white);
     color(18bp)=(red!70!black); color(25bp)=(red!50!black); color(50bp)=(black)}
    \pgfuseshading{ballshading}
    \hskip 1cm
    \begin{pgfpicture}
      \pgfpathrectangle{\pgfpointorigin}{\pgfpoint{1cm}{1cm}}
      \pgfshadepath{ballshading}{0}
      \pgfusepath{}
      \pgfpathcircle{\pgfpoint{3cm}{0cm}}{1cm}
      \pgfshadepath{ballshading}{0}
      \pgfusepath{}
      \pgfpathcircle{\pgfpoint{6cm}{0cm}}{1cm}
      \pgfshadepath{ballshading}{45}
      \pgfusepath{}
    \end{pgfpicture}

If you specify a rotation of $90^\circ$ and if the path is not a square,
but an elongated rectangle, the "desired" effect results: The shading
will exactly vary between the colors at the 25bp and 75bp boundaries.
Here is an example:

    \pgfdeclareverticalshading{myshadingG}{100bp}
     {color(0bp)=(red); color(25bp)=(green);  color(75bp)=(blue);  color(100bp)=(black)}
    \begin{pgfpicture}
      \pgfpathrectangle{\pgfpointorigin}{\pgfpoint{2cm}{1cm}}
      \pgfshadepath{myshadingG}{0}
      \pgfusepath{stroke}
      \pgfpathrectangle{\pgfpoint{3cm}{0cm}}{\pgfpoint{2cm}{1cm}}
      \pgfshadepath{myshadingG}{90}
      \pgfusepath{stroke}
      \pgfpathrectangle{\pgfpoint{6cm}{0cm}}{\pgfpoint{2cm}{1cm}}
      \pgfshadepath{myshadingG}{45}
      \pgfusepath{stroke}
    \end{pgfpicture}

As a final example, let us define a "rainbow spectrum" shading for use
with TikZ.

    \pgfdeclareverticalshading{rainbow}{100bp}
     {color(0bp)=(red); color(25bp)=(red); color(35bp)=(yellow);
      color(45bp)=(green); color(55bp)=(cyan); color(65bp)=(blue);
      color(75bp)=(violet); color(100bp)=(violet)}
    \begin{tikzpicture}[shading=rainbow]
      \shade (0,0) rectangle node[white] {\textsc{pride}} (2,1);
      \shade[shading angle=90] (3,0) rectangle +(1,2);
    \end{tikzpicture}

Note that rainbow shadings are *way* too colorful in almost all
applications.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfshadepath"
  },
  pgfsnapshot = {
    arguments = {{meta = "time"}},
    details = [[
When this command is used inside a TeX scope, the behavior of
`\pgfanimateattribute` changes: Instead of adding an animation to the
object and the attribute, the object's attribute is set to value it
would have during the animation at time ⟨time⟩. Note that when this
command is used in a TeX scope, no animation is created and no support
by the driver is needed (so, it works with PDF).

    \tikz [make snapshot of=1s,
           animate = { myself: = {
             :rotate = { 0s = "0", 2s = "90" },
             :color  = { 0s = "red", 2s = "green" },
             :line width = { 0s = "0mm", 4s = "4mm" }
           }}]
      \node [fill=black!20, draw] { Node };

**Timing and Events.** The timeline of an animation normally starts at a
"moment `0s`" and the ⟨time⟩ is considered relative to this time. For
instance, if a timeline contains, say, the settings `entry={2s}{0}` and
`entry={3s}{10}` and `{time}` is set to `2.5s`, then the value the
attribute will get is 5.

It is, however, also possible to specify that animations begin and end
at certain times relative to events like a `click` event. *These events
are not relevant with respect to snapshots.* However, there is one key
that allows you to specify the beginning of the snapshot timeline:

Note that the `end` keys have no effect with snapshots, that is, with a
snapshot all animations always run till the end of the timeline (which
may or may not be "forever").

**Limitations.** For snapshots, the value an animation has at time
⟨time⟩ must be computed by TeX. While in many cases this is easy to
achieve, in some cases this is not trivial such as a timeline for a path
with repeats plus smoothing via splines. An additional complication is
the fact that an animation may be specified at a place far removed from
the actual to-be-animated object. For these reasons, certain limitations
apply to snapshots:

-   The `begin` and `begin on` keys have no effect (but `begin snapshot`
    has one.

-   The `end` and `end on` keys have no effect.

-   The `current value` may not be used in a timeline (since PGF cannot
    really determine this value).

-   The `accumulating` specification may not be used with paths, views,
    or motions.

-   Since the timing computations are done using TeX code, they are not
    necessarily stable. For instance, when a time interval is very small
    and there are many repeats or when a spline is very complicated, the
    calculated values may not be fully accurate.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsnapshot"
  },
  pgfsnapshotafter = {
    arguments = {{meta = "time"}},
    details = [[
This command works exactly like `\pgfsnapshot` only the "moment" that
⟨time⟩ refers to is conceptually $⟨time⟩ + \epsilon$: When timeline
specifies several values for ⟨time⟩, this command will select the last
value at ⟨time⟩, while `\pgfsnapshot` will select the first value at
⟨time⟩. Similarly, when a timeline ends at ⟨time⟩, `\pgfsnapshot` will
select the last value of the timeline while `\pgfsnapshotafter` will not
apply the animation any more:

    \foreach \t in {0,1,2,3,4} {
      \pgfsnapshot{\t}
      \tikz :rotate = { 0s = "0", 2s = "90", 2s = "180", 4s = "270" }
        \node [draw=blue, very thick] {f}; }

    \foreach \t in {0,1,2,3,4} {
      \pgfsnapshotafter{\t}
      \tikz :rotate = { 0s = "0", 2s = "90", 2s = "180", 4s = "270" }
        \node [draw=blue, very thick] {f}; }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsnapshotafter"
  },
  ["pgfsys@animate"] = {
    arguments = {{meta = "attribute"}},
    details = [[
The system layer animation subsystem follows the following philosophy:
An animation always concerns an *attribute* of a *graphic object*. A
*timeline* specifies how the attribute changes its value over time.
Finally, a set of *keys* configures the animation as a whole like
whether the timeline repeats or a event that triggers the start of the
animation. The four parts of an animation, namely the *attribute*, the
*graphic object*, the *timeline*, and the *keys*, are specified in
different ways:

1.  You choose the *attribute* using the system layer command
    `\pgfsysanimate`.

2.  The *graphic object* whose attribute is to be animated is *always*
    specified by naming the ID of the graphic object *before* this
    object is created, see Section ??. (However, in the context of TikZ,
    it suffices that the animation is given in the object's options
    since these are executed before the actual object is created).

3.  The *timeline* is specified using the commands `\pgfsysanimkeytime`,
    which specifies a time in seconds, and `\pgfsys@animation@val...`,
    which specify a value at this particular time. The timeline
    specifies for a sequence of times the values the attribute will have
    at these times. In between these *key times,* the value is
    interpolated.

4.  The *animation keys* are specified by commands starting
    `\pgfsys@animation@...` and have the following effect: They set some
    property (like, say, whether the animation repeats or whether its
    effect is additive) to a given value *for the current TeX scope,*
    but do not create any animations. Rather, when `\pgfsysanimate` is
    called, a snapshot of the current values of all animation keys is
    taken and added to this animation of the attribute.

    When you set an animation key to a value, this will replace the
    value previously stored for the key (all keys are empty by default
    at the beginning).

    Note that animation keys are local to TeX scopes, not graphics
    scopes; indeed, they have little to do with the settings of the
    graphics scope other than the fact that a graphic scope is also a
    TeX scope and thereby influence the values of these keys.

A typical example of how all of this works is the following:

    \pgfsysanimkeyrepeatindefinite % Both of the following animations
                                        % repeat indefinitely
    {
      \pgfsysanimkeywhom{\someid}{}% The id of a later object
      \pgfsysanimkeyevent{}{}{click}{0}{begin}% Begin on a click ...
      \pgfsysanimkeytime{5}{1}{1}{0}{0} % Timeline starts after 5s
      \pgfsysanimvalscalar{0} % With a value of 0
      \pgfsysanimkeytime{8}{1}{1}{0}{0} % Timeline ends after 8s
      \pgfsysanimvalscalar{0.9} % With a value of 0.9
      \pgfsysanimate{fillopacity}% ... and the attribute is the fill opacity
    }
    {
      \pgfsysanimkeywhom{\someid}{}% The id of a later object
      \pgfsysanimkeyoffset{0}{begin}% Begin right away ...
      \pgfsysanimkeytime{1}{1}{1}{0}{0} % Timeline starts after 1s
      \pgfsysanimvalcurrent % With the current value
      \pgfsysanimkeytime{5}{1}{1}{0}{0} % Timeline ends after 5s
      \pgfsysanimvaldimension{5pt} % With a value of 5pt
      \pgfsysanimate{linewidth}% ... and the attribute is the line width
    }

As a real-life example, consider the following definitions, which will
be used in many examples in the rest of this section: Both take three
parameters: The PGF/TikZ name of a to-be animated object, a type
(relevant for objects that have subtypes or parts), and some code for
triggering the actual animation. The animation will always start when
the button is clicked. The second macro sets up things in such a way
that the animation will last two seconds, while the first leaves the
timing open.

    \def\animationexample#1#2#3{
      \tikz[fill=blue!25, draw=blue, ultra thick] {
        \pgfidrefnextuse{\objid}{#1}
        \pgfsysanimkeywhom{\objid}{#2}
        \pgfidrefnextuse{\nodeid}{node}
        \pgfsysanimkeyevent{\nodeid}{}{click}{}{begin}
        #3
        \node [font=\scriptsize, circle, fill, draw, align=center]
          (node) {Click \\ here};
      }
    }

Now the example, where the circle will disappear, when clicked:

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvalscalar{1}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvalscalar{0}
      \pgfsysanimate{opacity}
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animate"
  },
  ["pgfsys@animation@accesskey"] = {
    arguments = {
      {meta = "character"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[
Begin or end the animation when a certain key is pressed. Note that this
event may not be supported by some browsers for security reasons
(prevent key loggers).

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyaccesskey{s}{}{begin}
      \pgfsysanimate{translate}
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@accesskey"
  },
  ["pgfsys@animation@accumulate"] = {
    details = [[
Specifies that each repeat of an animation works as if the last values
attained during previous repeats are added to the current value.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-5mm}
      \pgfsysanimkeyaccumulate
      \pgfsysanimkeyrepeatdur{5}
      \pgfsysanimate{translate}  }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@accumulate"
  },
  ["pgfsys@animation@base"] = {
    details = [[
This command can be used in any place where `\pgfsys@animation@time` is
usually used. The effect is that the next value does not become part of
the timeline, but will become the value used for the attribute when no
animation is active. (Normally, when the animation is not active, no
value is set at all and the value is inherited from the surrounding
scope.)
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@base"
  },
  ["pgfsys@animation@canvas@transform"] = {
    arguments = {{meta = "pre"}, {meta = "post"}},
    details = [[
In order to animate the canvas, you specify that, for instance, the
canvas should be shifted over, say, one second by 2cm from left to
right. In order to specify this, you specify that an additional shift
should be added to the canvas transformation matrix that starts out as
$(0,0)$ and ends at $(2\,\mathrm{cm},0)$. However, it is not immediately
clear what "to the right" or $(2\,\mathrm{cm},0)$ actually means:
"Right" relative to the paper? "Right" relative to the coordinate system
at the point when the animation is created? "Right" relative to the
object's local coordinate system?

Using this command you can specify the coordinate system relative to
which all canvas animations are specified. In detail, when you add an
animation $a$ of the canvas of an object foo, the following happens:

1.  We start with the canvas transformation matrix that is installed
    when the object starts. More precisely, this is the canvas
    transformation matrix that is in force when the command
    `\pgfsys@begin@idscope` is called for the object. The canvas
    transformation matrix that is in force when the animation is created
    (which is typically "way before" the object is created and may even
    be in a totally different graphics scope) is irrelevant for the
    animation.

2.  Now, when the object is created, the code ⟨pre⟩ is executed. It
    should call `\pgfsys@transformcm` at most once. This canvas
    transformation is added to the object's canvas transformation.

3.  Now, the animation $a$ of the canvas is relative to the resulting
    canvas transformation. That means, when the animation shifts the
    object "to the right" the animation will actually be along the
    current direction of "right" in the canvas transformation resulting
    from the two transformations above.

4.  Finally, at the point of creation of the to-be-animation object the
    code ⟨post⟩ is executed. Again, the code should call
    `\pgfsys@transformcm` at most once. The resulting transformation is
    also added to the object's canvas transformation, but does *not*
    influence the animation.

The net effect of the above is that, normally, you use the ⟨pre⟩ code to
setup a transformation matrix relative to which you wish to perform your
animation and, normally, you use ⟨post⟩ to undo this transformation
(using the inverted matrix) to ensure that when no animation is in
force, the object is placed at the same position as if no animation were
used.

Let us now have a look at some examples. We use the following macro,
which takes a pre and a post code and animates a red ball over 1cm to
the right in two seconds and rotates the blue ball over 90$^\circ$
around the origin. The ball is placed at $(1,0)$.

    \def\animationcanvasexample#1#2{%
      \animationexample{ball}{}{%
        \pgfsysanimkeycanvastransform{#1}{#2}%
        \pgfsysanimkeytime{0}{1}{1}{0}{0}
        \pgfsysanimvaltranslate{0cm}{0cm}%
        \pgfsysanimkeytime{2}{1}{1}{0}{0}
        \pgfsysanimvaltranslate{1cm}{0cm}%
        \pgfsysanimate{translate}
        \fill [ball color=red,name=ball] (1,0) circle [radius=3mm]; }
      \animationexample{ball}{}{%
        \pgfsysanimkeycanvastransform{#1}{#2}%
        \pgfsysanimkeytime{0}{1}{1}{0}{0}
        \pgfsysanimvalscalar{0}%
        \pgfsysanimkeytime{2}{1}{1}{0}{0}
        \pgfsysanimvalscalar{90}%
        \pgfsysanimate{rotate}
        \fill [ball color=blue,name=ball] (1,0) circle [radius=3mm]; } }

    \animationcanvasexample
    {}
    {}

    \animationcanvasexample
    {\pgfsys@transformshift{10mm}{0mm}}
    {\pgfsys@transformshift{-10mm}{0mm}}

    \animationcanvasexample
    {\pgfsys@transformcm{0.5}{0.5}{-0.5}{0.5}
                        {0pt}{0pt}}
    {}

    \animationcanvasexample
    {\pgfsys@transformcm{0.5}{0.5}{-0.5}{0.5}
                        {0pt}{0pt}}
    {\pgfsys@transformcm{1}{-1}{1}{1}
                        {0pt}{0pt}}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@canvas@transform"
  },
  ["pgfsys@animation@event"] = {
    arguments = {
      {meta = "id"},
      {meta = "type"},
      {meta = "event name"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[
Specifies that the animation should begin (or end) ⟨time offset⟩ many
seconds after a certain *event* has occurred. Which events are possible
depends on the specific output language, here are the events currently
supported in SVG:

-   `click` occurs when the object with the given ⟨id⟩ and ⟨type⟩ has
    been clicked.

-   `focusin` and `focusout` occur when the focus enters or leaves the
    object.

-   `mouseup`, `mousedown`, `mouseover`, `mousemove`, and `mouseout`
    occur when the mouse is pressed up or down on the object, moved onto
    the object, moved over the object, or moved off the object.

&nbsp;

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyevent{\nodeid}{}{mouseup}{}{begin}
      \pgfsysanimate{translate} }

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyevent{\nodeid}{}{mousedown}{}{begin}
      \pgfsysanimate{translate} }

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyevent{\nodeid}{}{mouseover}{}{begin}
      \pgfsysanimate{translate} }

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyevent{\nodeid}{}{mousemove}{}{begin}
      \pgfsysanimate{translate} }

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyevent{\nodeid}{}{mouseout}{}{begin}
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@event"
  },
  ["pgfsys@animation@freezeatend"] = {
    details = [[
When an animation ends, the question is whether the "effect" of the
animation (like changing a color or translating the coordinate system)
should disappear or "remain in force". Using this key, you specify that
at the end of the animation the last value of the attributes stays in
effect.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyfreezeatend
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@freezeatend"
  },
  ["pgfsys@animation@movealong"] = {
    arguments = {{meta = "path"}},
    details = [[
Defines the ⟨path⟩ along which the motion will occur. It will simply be
executed and must call `\pgfsys@lineto` and similar path-construction
commands, but should not call other commands.

    \animationexample{node}{}{
      \pgfsysanimkeymovealong{
        \pgfsyssoftpath@movetotoken{0pt}{0pt}
        \pgfsyssoftpath@linetotoken{0pt}{-5mm}
        \pgfsyssoftpath@curvetosupportatoken{0pt}{-1cm}%
        \pgfsyssoftpath@curvetosupportbtoken{0pt}{-1cm}%
        \pgfsyssoftpath@curvetotoken{-5mm}{-1cm} }
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvalscalar{0}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvalscalar{1}
      \pgfsysanimate{motion}
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@movealong"
  },
  ["pgfsys@animation@noaccumulate"] = {
    details = [[
Specifies that each repeat resets the to-be-animated value. This is the
default.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-5mm}
      \pgfsysanimkeynoaccumulate
      \pgfsysanimkeyrepeatdur{5}
      \pgfsysanimate{translate}  }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@noaccumulate"
  },
  ["pgfsys@animation@norotatealong"] = {
    details = [[
Indicates that no additional rotation should be added during the
movement. This is the default.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@norotatealong"
  },
  ["pgfsys@animation@offset"] = {
    arguments = {{meta = "time offset"}, {meta = "begin or end"}},
    details = [[
Specifies that (in addition to any other beginnings or endings) the
animation's timeline should begin (or end) ⟨time offset⟩ many seconds
after the graphic is shown. For instance, in the next example the
animation will start automatically after 5 s *or* when then button is
pressed.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyoffset{5}{begin}
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@offset"
  },
  ["pgfsys@animation@removeatend"] = {
    details = [[
The opposite of `\pgfsysanimkeyfreezeatend`. This is the default.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyremoveatend
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@removeatend"
  },
  ["pgfsys@animation@repeat"] = {
    arguments = {{meta = "number of times"}},
    details = [[
Specifies that the animation should repeat the specified ⟨number of
times⟩, which may be a fractional number.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyrepeat{2.5}
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@repeat"
  },
  ["pgfsys@animation@repeat@dur"] = {
    arguments = {{meta = "seconds"}},
    details = [[
Specifies that the animation should repeat until ⟨seconds⟩ have elapsed.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyrepeatdur{5}
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@repeat@dur"
  },
  ["pgfsys@animation@repeat@event"] = {
    arguments = {
      {meta = "id"},
      {meta = "type"},
      {meta = "repeat count"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[
The animation begins (or end) with a certain offset when another
animation has reached a certain repeat count.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-5mm}
      \pgfsysanimkeyrepeatdur{5}
      \pgfsys@new@id{\animationid}
      \pgfsys@use@id{\animationid}
      \pgfsysanimate{translate}
      \global\let\animationid\animationid }
    \tikz {
      \pgfidrefnextuse{\objid}{other}
      \pgfsysanimkeyrepeatevent{\animationid}{}{2}{0}{begin}
      \pgfsysanimkeysnapshotstart{4}
      \pgfsysanimkeywhom{\objid}{}
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-5mm}
      \pgfsysanimate{translate}
      \node [fill=red, text=white, circle] (other) {Other}; }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@repeat@event"
  },
  ["pgfsys@animation@repeat@indefinite"] = {
    details = [[
Specifies that the animation should repeat indefinitely.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyrepeatindefinite
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@repeat@indefinite"
  },
  ["pgfsys@animation@restart@always"] = {
    details = [[
Defines that the animation can be restarted at any time. This is the
default.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyrestartalways
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@restart@always"
  },
  ["pgfsys@animation@restart@never"] = {
    details = [[
Defines that the animation cannot be restarted once it has run.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyrestartnever
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@restart@never"
  },
  ["pgfsys@animation@restart@whennotactive"] = {
    details = [[
Defines that the animation cannot be restarted while it is running.

    \animationexample{node}{}{
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{0cm}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvaltranslate{0cm}{-1cm}
      \pgfsysanimkeyrestartwhennotactive
      \pgfsysanimate{translate} }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@restart@whennotactive"
  },
  ["pgfsys@animation@rotatealong"] = {
    details = [[
Indicates that the to-be-animated group should be rotated automatically
so that it points along the path as time progresses. This option is only
applicable to motion animations.

    \animationexample{node}{}{
      \pgfsysanimkeyrotatealong
      \pgfsysanimkeymovealong{%
        \pgfsyssoftpath@movetotoken{0pt}{0pt}%
        \pgfsyssoftpath@linetotoken{0pt}{-5mm}%
        \pgfsyssoftpath@curvetosupportatoken{0pt}{-1cm}%
        \pgfsyssoftpath@curvetosupportbtoken{0pt}{-1cm}%
        \pgfsyssoftpath@curvetotoken{-5mm}{-1cm}}
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvalscalar{0}%
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvalscalar{1}
      \pgfsysanimate{motion}
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@rotatealong"
  },
  ["pgfsys@animation@syncbegin"] = {
    arguments = {
      {meta = "sync base id"},
      {meta = "type"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[
Specifies that the animation should begin ⟨time offset⟩ many seconds
after the ⟨sync base id⟩ with the given ⟨type⟩ has begun. Here, the
⟨sync base id⟩ must have been obtained using `\pgfsys@new@id`.

The idea behind a sync base is that you setup an animation and name it,
other animations can start alongside this animation. An animation whose
sole purpose is to orchestrate other animations in this way is called a
*sync base*.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@syncbegin"
  },
  ["pgfsys@animation@syncend"] = {
    arguments = {
      {meta = "sync base id"},
      {meta = "type"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[
Works like `\pgfsysanimkeysyncbegin` only the animation begin (or ends)
when the sync base ends.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@syncend"
  },
  ["pgfsys@animation@time"] = {
    arguments = {
      {meta = "time"},
      {meta = "entry spline control x"},
      {meta = "entry spline control y"},
      {meta = "exit spline control x"},
      {meta = "exit spline control y"}
    },
    details = [[
The ⟨time⟩ is a number representing seconds (so `0.5` means 500 ms).

The spline between a time--value pair and the next is specified using
the four parameters following the time. The first two of these specify
the second control point of the interval preceding the time--value pair
(called the "entry" control point), the last two parameters specify the
first control point of the interval following the pair (called the
"exit" control point). Consider for instance, the following calls:

    \pgfsysanimkeytime{10}{0.1}{0.2}{0.3}{0.4}
    \pgfsysanimvalscalar{100}
    \pgfsysanimkeytime{15}{0.5}{0.6}{0.7}{0.8}
    \pgfsysanimvalscalar{200}

This will create (at least) the time interval
$[10\,\mathrm s,15\,\mathrm
    s]$ and the control points for this interval will be $(0.3,0.4)$ and
$(0.5,0.6)$.

Control points are specified in a different "coordinate" system from the
time--value pairs themselves: While the time--value pairs are specified
using a number representing seconds and a value using some special
commands, the control points are specified as numbers between $0$ and
$1$, each time representing a fraction of the time interval or the value
interval. In the example, the time interval is
$[10\,\mathrm s,15\,\mathrm
    s]$ and the value interval is $[100,200]$. This means that a control
point of $(0.3,0.4)$ actually refers to the time--value
$(11.5\,\mathrm s,140)$. The "time--value curve" in the interval thus
"`(10s,100) .. controls (11.5s,140) and (12.5s,160) .. (15s,200)`".

Note that by setting the control points always to $(1,1)$ and $(0,0)$
you get a linear interpolation between time--value pairs.

Two special cases are the following: When the two last parameters, the
exit spline, take the special values `stay` and `0`, the attribute's
value "stays" until the next value for the next time (it then "jumps" to
the next value then). This corresponds, roughly, to an "infinite" ⟨exit
spline control x⟩. Similarly, when the entry spline parameters take the
special values `jump` and `1`, the value immediately jumps from the
previous value to the next value when the previous value was specified.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@time"
  },
  ["pgfsys@animation@tip@markers"] = {
    arguments = {{meta = "start marker"}, {meta = "end marker"}},
    details = [[
This command specifies that during a path animation the two markers
provided as parameters should be added (and rotated and moved along with
the path) at the start and end. The ⟨start marker⟩ must either be empty
(in which case no marker is added at the start) or it must be a macro
storing a value returned by the command `\pgfsys@marker@declare`. In
this case, the marker declared symbol will be added to the start during
the animation. The same situation applies to the end of the path.

As pointed out earlier, only arrow tips / markers added to paths using
this command will be animated along with the path. In particular, you
should *not* add arrow tips to to-be-animated paths using
`\pgfsetarrow`. However, when you use a base value
(`\pgfsys@animation@base`) to set a path, the arrow tips will also be
added to this base path.

To sum up, the "correct" way of adding arrow tips to a path that is
animated is to proceed as follows:

1.  You specify arrow tips for a path using this command.

2.  You specify times and values of the to-be-animated path, shortened
    as necessary to accommodate the length of the arrow tips.

3.  You specify the first (or, possibly, some other) value in the
    time--value sequence as a base value.

4.  You create a path animation that applies to a future path.

5.  You create this future path as an empty path without arrow tips and
    draw it. Because of the setting of the base value, instead of the
    empty path the base path will be used as the "real" path and the
    animation's arrow tips will be added as arrow tips.

When you have more than one animation for a given path, these different
animations may use different arrow tips / markers. This allows you to
animate (change) which arrow tip is used on a path over time.

    % Declare a marker:
    \pgfsys@marker@declare\mymarker{%
      \pgfscope%
        \pgfsetcolor{red!75}%
        \pgfpathmoveto{\pgfpoint{0pt}{5pt}}\pgfpathlineto{\pgfpoint{8pt}{0pt}}%
        \pgfpathlineto{\pgfpoint{0pt}{0pt}}\pgfpathclose%
        \pgfusepathqfill%
      \endpgfscope%
      \pgfpathmoveto{\pgfpoint{0pt}{5pt}}\pgfpathlineto{\pgfpoint{8pt}{0pt}}%
      \pgfpathlineto{\pgfpoint{0pt}{-5pt}}\pgfpathclose%
      \pgfusepathqstroke%
    }%
    \animationexample{my path}{path}{
      \pgfsysanimkeytipmarkers{\mymarker}{\mymarker}
      \pgfsysanimkeybase
      \pgfsysanimvalpath{\pgfsys@moveto{1cm}{0cm}%
                         \pgfsys@lineto{1cm}{1cm}%
                         \pgfsys@lineto{2cm}{0cm}}
      \pgfsysanimkeytime{0}{1}{1}{0}{0}
      \pgfsysanimvalpath{\pgfsys@moveto{1cm}{0cm}%
                         \pgfsys@lineto{1cm}{1cm}%
                         \pgfsys@lineto{2cm}{0cm}}
      \pgfsysanimkeytime{2}{1}{1}{0}{0}
      \pgfsysanimvalpath{\pgfsys@moveto{1cm}{1cm}%
                         \pgfsys@lineto{2cm}{1cm}%
                         \pgfsys@lineto{1cm}{0cm}}
      \pgfsysanimate{path}
      \filldraw [ultra thick,draw=blue,fill=blue!20, name=my path];
      \path (1,0) (2,1);}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@tip@markers"
  },
  ["pgfsys@animation@val@color@cmy"] = {
    arguments = {{meta = "cyan"}, {meta = "magenta"}, {meta = "yellow"}},
    details = [[
Like the `\pgfsysanimvalcolorcmyk` only without the black part.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@color@cmy"
  },
  ["pgfsys@animation@val@color@cmyk"] = {
    arguments = {
      {meta = "cyan"},
      {meta = "magenta"},
      {meta = "yellow"},
      {meta = "black"}
    },
    details = [[
Creates a time--value pairs where the value is color specified by four
fractional values between 0 and 1 for the cyan, magenta, yellow, and
black part.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@color@cmyk"
  },
  ["pgfsys@animation@val@color@gray"] = {
    arguments = {{meta = "gray value"}},
    details = [[
Creates a time--value pairs where the value is gray value (a fraction
between 0 and 1).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@color@gray"
  },
  ["pgfsys@animation@val@color@rgb"] = {
    arguments = {{meta = "red"}, {meta = "green"}, {meta = "blue"}},
    details = [[
Creates a time--value pairs where the value is color specified by three
fractional values between 0 and 1 for the red, the green, and the blue
part.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@color@rgb"
  },
  ["pgfsys@animation@val@current"] = {
    details = [[
Creates a time--value pairs where the value is the current value that
the attribute has. This command can only be used in conjunction with
"real" animations, when you use it with a snapshot an error is raised.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@current"
  },
  ["pgfsys@animation@val@dash"] = {
    arguments = {{meta = "pattern"}, {meta = "phase"}},
    details = [[
Creates a time--value pairs where the value is dash pattern and phase
with the same syntax as `\pgfsys@setdash`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@dash"
  },
  ["pgfsys@animation@val@dimension"] = {
    arguments = {{meta = "dimension"}},
    details = [[
Creates a time--value pairs where the value is a TeX dimension like
`0.5pt` or `-2in`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@dimension"
  },
  ["pgfsys@animation@val@path"] = {
    arguments = {{meta = "low-level path construction command"}},
    details = [[
Creates a time--value pairs where the value is path. The ⟨low-level
commands⟩ must consist of a sequence of path construction commands like
`\pgfsys@lineto` or `\pgfsyssoftpath@linetotoken` (more precisely, the
commands must form a list of TeX tokens and dimensions surrounded by
braces). For each call of this command, the sequence of tokens and
numbers must be the some. During the animation, only and exactly the
numbers will be interpolated.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@path"
  },
  ["pgfsys@animation@val@scalar"] = {
    arguments = {{meta = "number"}},
    details = [[
Creates a time--value pairs where the value is a number like `0.5` or
`-2.25`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@scalar"
  },
  ["pgfsys@animation@val@scale"] = {
    arguments = {{meta = "x scale"}, {meta = "y scale"}},
    details = [[
Creates a time--value pairs where the value is pair of scalar values.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@scale"
  },
  ["pgfsys@animation@val@text"] = {
    arguments = {{meta = "text"}},
    details = [[
Creates a time--value pairs where the value is some text. Which texts
are permissible depends on the to-be-animated attribute.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@text"
  },
  ["pgfsys@animation@val@translate"] = {
    arguments = {{meta = "x dimension"}, {meta = "y dimension"}},
    details = [[
Creates a time--value pairs where the value is a coordinate. The
dimensions must be TeX dimensions.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@translate"
  },
  ["pgfsys@animation@val@viewbox"] = {
    arguments = {
      {meta = "$x_1$"},
      {meta = "$y_1$"},
      {meta = "$x_2$"},
      {meta = "$y_2$"}
    },
    details = [[
Creates a time--value pairs where the value is view box. The lower left
corner is given by $(x_1,y_1)$, consisting of two TeX dimensions, and
the upper right corner is $(x_2,y_2)$.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@val@viewbox"
  },
  ["pgfsys@animation@whom"] = {
    arguments = {{meta = "id"}, {meta = "type"}},
    details = [[
Sets the target of the animation. The `{id}` must previously have been
created using `\pgfsys@new@id`, `{type}` must be a type (the empty type
is also allowed). See Section ?? for details on ids and types.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@animation@whom"
  },
  ["pgfsys@append@type"] = {
    arguments = {{meta = "text"}},
    details = [[
Appends the ⟨text⟩ to the current type.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@append@type"
  },
  ["pgfsys@attach@to@id"] = {
    arguments = {
      {meta = "id"},
      {meta = "type"},
      {meta = "begin code"},
      {meta = "end code"},
      {meta = "setup code"}
    },
    details = [[
Attaches codes to the ⟨id⟩-⟨type⟩-pair, where ⟨id⟩ must have been
created using `\pgfsys@new@id`. The effect is that just before the id
scope for this pair is created, the ⟨setup code⟩ is executed, then the
scope is started, then the ⟨begin code⟩ is executed at the beginning,
and, finally, ⟨end code⟩ gets executed just before the scope ends.
Multiple calls of this macro accumulated.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@attach@to@id"
  },
  ["pgfsys@begin@idscope"] = {
    details = [[
Starts a (graphics) scope whose sole purpose is to assign it an
id-type-pair so that it can be referenced later. Note that this command
does not always produce a graphics scope: If not id is currently in use
or if the id-type-pair has already been used, a graphic scope may or may
not be created as defined by the driver (but always a TeX scope). This
allows drivers to minimize the number of graphic scopes created.

When an id scope is created, any code that has been "attached" to it
using `\pgfsys@attach@to@id` gets executed, see that command.

Note that `\pgfsys@beginscope` does not use the current id-type-pair.
You need to call this command to attach an id to a group.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@begin@idscope"
  },
  ["pgfsys@begininvisible"] = {
    details = [[
Between this command and the closing `\pgfsys@endinvisible` all output
should be suppressed. Nothing should be drawn at all, which includes all
paths, images and shadings. However, no groups (neither TeX groups nor
graphic state groups) should be opened by this command.

This command has a default implementation and need not be implemented by
a driver file.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@begininvisible"
  },
  ["pgfsys@beginpicture"] = {
    details = [[
Called at the beginning of a `{pgfpicture}`. This command should "set up
things".

Most drivers will need to implement this command.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@beginpicture"
  },
  ["pgfsys@beginpurepicture"] = {
    details = [[
This version of the `\pgfsys@beginpicture` picture command can be used
for pictures that are guaranteed not to contain any escaped boxes (see
below). In this case, a driver might provide a more compact version of
the command.

This command has a default implementation and need not be implemented by
a driver file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@beginpurepicture"
  },
  ["pgfsys@beginscope"] = {
    details = [[
Saves the current graphic state on a graphic state stack. All changes to
the graphic state parameters mentioned for `\pgfsys@stroke` and
`\pgfsys@fill` will be local to the current graphic state and the old
values will be restored after `\pgfsys@endscope` is used.

*Warning:* PDF and PostScript differ with respect to the question of
whether the current path is part of the graphic state or not. For this
reason, you should never use this command unless the path is currently
empty. For example, it might be a good idea to use `\pgfsys@discardpath`
prior to calling this command.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@beginscope"
  },
  ["pgfsys@beveljoin"] = {
    details = [[
Sets the join to a bevel join. See `\pgfsys@stroke`.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@beveljoin"
  },
  ["pgfsys@blend@mode"] = {
    arguments = {{meta = "value"}},
    details = [[
Sets the blend mode, see Section 7.2.4 of the PDF Specification,
Version 1.7.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@blend@mode"
  },
  ["pgfsys@buttcap"] = {
    details = [[
Sets the cap to a butt cap. See `\pgfsys@stroke`.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@buttcap"
  },
  ["pgfsys@clipfading"] = {
    details = [[
This command has a default implementation and need not be implemented by
driver files other than `pgfsys-dvips.def`. The macro is called in
`\pgfsetfadingforcurrentpath` and `\pgfsetfadingforcurrentpathstroked`
of the basic layer, where it invokes the current path for clipping the
shading just before installing it as an opacity mask for fading. The
default implementation is actually a non-operation, but with `dvips` it
is used to clip the fading as described.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@clipfading"
  },
  ["pgfsys@clipnext"] = {
    details = [[
This command should be issued after a path has been constructed, but
before it has been stroked and/or filled or discarded. When the command
is used, the next stroking/filling/discarding command will first be
executed normally. Then, afterwards, the just-used path will be used for
subsequent clipping. If there has already been a clipping region, this
region is intersected with the new clipping path (the clipping cannot
get bigger). The nonzero winding number rule is used to determine
whether a point is inside or outside the clipping area or the even-odd
rule, depending on whether `\ifpgfsys@eorule` holds.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@clipnext"
  },
  ["pgfsys@closepath"] = {
    details = [[
Close the current path. This results in joining the current point of the
path with the point specified by the last `\pgfsys@moveto` operation.
Typically, this is preferable over using `\pgfsys@lineto` to the last
point specified by a `\pgfsys@moveto`, since the line starting at this
point and the line ending at this point will be smoothly joined by
`\pgfsys@closepath`.

Consider

    \pgfsys@moveto{0pt}{0pt}
    \pgfsys@lineto{10bp}{10bp}
    \pgfsys@lineto{0bp}{10bp}
    \pgfsys@closepath
    \pgfsys@stroke

and

    \pgfsys@moveto{0bp}{0bp}
    \pgfsys@lineto{10bp}{10bp}
    \pgfsys@lineto{0bp}{10bp}
    \pgfsys@lineto{0bp}{0bp}
    \pgfsys@stroke

The difference between the above will be that in the second triangle the
corner at the origin will be wrong; it will just be the overlay of two
lines going in different directions, not a sharp pointed corner.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@closepath"
  },
  ["pgfsys@closestroke"] = {
    details = [[
This command should have the same effect as first closing the path and
then stroking it.

This command has a default implementation and need not be implemented by
a driver file.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@closestroke"
  },
  ["pgfsys@color@cmy"] = {
    arguments = {{meta = "cyan"}, {meta = "magenta"}, {meta = "yellow"}},
    details = [[
Sets the color used for stroking and filling operations to the given cmy
tuple (numbers between 0 and 1).

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@cmy"
  },
  ["pgfsys@color@cmy@fill"] = {
    arguments = {{meta = "cyan"}, {meta = "magenta"}, {meta = "yellow"}},
    details = [[
Sets the color used for filling operations to the given cmy tuple
(numbers between 0 and 1).

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@cmy@fill"
  },
  ["pgfsys@color@cmy@stroke"] = {
    arguments = {{meta = "cyan"}, {meta = "magenta"}, {meta = "yellow"}},
    details = [[
Sets the color used for stroking operations to the given cmy tuple
(numbers between 0 and 1).

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@cmy@stroke"
  },
  ["pgfsys@color@cmyk"] = {
    arguments = {
      {meta = "cyan"},
      {meta = "magenta"},
      {meta = "yellow"},
      {meta = "black"}
    },
    details = [[
Sets the color used for stroking and filling operations to the given
cmyk tuple (numbers between 0 and 1).

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@cmyk"
  },
  ["pgfsys@color@cmyk@fill"] = {
    arguments = {
      {meta = "cyan"},
      {meta = "magenta"},
      {meta = "yellow"},
      {meta = "black"}
    },
    details = [[
Sets the color used for filling operations to the given cmyk tuple
(numbers between 0 and 1).

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@cmyk@fill"
  },
  ["pgfsys@color@cmyk@stroke"] = {
    arguments = {
      {meta = "cyan"},
      {meta = "magenta"},
      {meta = "yellow"},
      {meta = "black"}
    },
    details = [[
Sets the color used for stroking operations to the given cmyk tuple
(numbers between 0 and 1).

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@cmyk@stroke"
  },
  ["pgfsys@color@gray"] = {
    arguments = {{meta = "black"}},
    details = [[
Sets the color used for stroking and filling operations to the given
black value, where 0 means black and 1 means white.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@gray"
  },
  ["pgfsys@color@gray@fill"] = {
    arguments = {{meta = "black"}},
    details = [[
Sets the color used for filling operations to the given black value,
where 0 means black and 1 means white.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@gray@fill"
  },
  ["pgfsys@color@gray@stroke"] = {
    arguments = {{meta = "black"}},
    details = [[
Sets the color used for stroking operations to the given black value,
where 0 means black and 1 means white.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@gray@stroke"
  },
  ["pgfsys@color@reset"] = {
    details = [[
This command will be called when the `\color` command is used. It should
purge any internal settings of stroking and filling color. After this
call, till the next use of a command like `\pgfsys@color@rgb@fill`, the
current color installed by the `\color` command should be used.

If the TeX-if `\pgfsys@color@reset@inorder` is set to true, this command
may "assume" that any call to a color command that sets the fill or
stroke color came "before" the call to this command and may try to
optimize the output accordingly.

An example of an incorrect "out of order" call would be using
`\pgfsys@color@reset` at the beginning of a box that is constructed
using `\setbox`. Then, when the box is constructed, no special fill or
stroke color might be in force. However, when the box is later on
inserted at some point, a special fill color might already have been
set. In this case, this command is not guaranteed to reset the color
correctly.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@reset"
  },
  ["pgfsys@color@reset@inorderfalse"] = {
    details = [[
Switches off the optimized color resetting.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@reset@inorderfalse"
  },
  ["pgfsys@color@reset@inordertrue"] = {
    details = [[
Sets the optimized "in order" version of the color resetting. This is
the default.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@reset@inordertrue"
  },
  ["pgfsys@color@rgb"] = {
    arguments = {{meta = "red"}, {meta = "green"}, {meta = "blue"}},
    details = [[
Sets the color used for stroking and filling operations to the given
red/green/blue tuple (numbers between 0 and 1).

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@rgb"
  },
  ["pgfsys@color@rgb@fill"] = {
    arguments = {{meta = "red"}, {meta = "green"}, {meta = "blue"}},
    details = [[
Sets the color used for filling operations to the given red/green/blue
tuple (numbers between 0 and 1). This color may be different from the
stroking color.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@rgb@fill"
  },
  ["pgfsys@color@rgb@stroke"] = {
    arguments = {{meta = "red"}, {meta = "green"}, {meta = "blue"}},
    details = [[
Sets the color used for stroking operations to the given red/green/blue
tuple (numbers between 0 and 1).

Make stroked text dark red: `\pgfsys@color@rgb@stroke{0.5}{0}{0}`

The special stroking color is only used if the stroking color has been
set since the last `\color` or `\pgfsys@color@...` command. Thus, each
`\color` command will reset both the stroking and filling colors by
calling `\pgfsys@color@reset`.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@rgb@stroke"
  },
  ["pgfsys@color@unstacked"] = {
    arguments = {{meta = "\\LaTeX\\ color"}},
    details = [[
This slightly obscure command causes the color stack to be tricked. When
called, this command should set the current color to ⟨LaTeX color⟩
without causing any change in the color stack.

`\pgfsys@color@unstacked{red}`
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@color@unstacked"
  },
  ["pgfsys@curveto"] = {
    arguments = {
      {meta = "$x_1$"},
      {meta = "$y_1$"},
      {meta = "$x_2$"},
      {meta = "$y_2$"},
      {meta = "$x_3$"},
      {meta = "$y_3$"}
    },
    details = [[
Continue the current path to $(x_3,y_3)$ with a Bézier curve that has
the two control points $(x_1,y_1)$ and $(x_2,y_2)$.

Draw a good approximation of a quarter circle:

    \pgfsys@moveto{10pt}{0pt}
    \pgfsys@curveto{10pt}{5.55pt}{5.55pt}{10pt}{0pt}{10pt}
    \pgfsys@stroke

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@curveto"
  },
  ["pgfsys@declarepattern"] = {
    arguments = {
      {meta = "name"},
      {meta = "$x_1$"},
      {meta = "$y_1$"},
      {meta = "$x_2$"},
      {meta = "$y_2$"},
      {meta = "$x$ step"},
      {meta = "$y$ step"},
      {meta = "$a$"},
      {meta = "$b$"},
      {meta = "$c$"},
      {meta = "$d$"}
    },
    details = [[
This command declares a new colored or uncolored pattern, depending on
whether ⟨flag⟩ is `0`, which means uncolored, or `1`, which means
colored. Uncolored patterns have no inherent color, the color is
provided when they are set. Colored patters have an inherent color.

The ⟨name⟩ is a name for later use when the pattern is to be shown. The
pairs $(x_1,y_1)$ and $(x_2,y_2)$ must describe a bounding box of the
pattern ⟨code⟩.

The tiling step of the pattern is given by ⟨$x$ step⟩ and ⟨$y$ step⟩.

The parameters ⟨$a$⟩ to ⟨$f$⟩ are entries of the transformation matrix
that is applied to the pattern, see `\pgfsys@patternmatrix` for more
information.

    \pgfsys@declarepattern
        {hori}{-.5pt}{0pt}{.5pt}{3pt}{3pt}{3pt}%
        {1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}%
        {\pgfsys@moveto{0pt}{0pt}\pgfsys@lineto{0pt}{3pt}\pgfsys@stroke}
        {0}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@declarepattern"
  },
  ["pgfsys@defineimage"] = {
    details = [[
Called, when an image should be defined.

This command does not take any parameters. Instead, certain macros will
be preinstalled with appropriate values when this command is invoked.
These are:

-   `\pgf@filename` File name of the image to be defined.

-   `\pgf@imagewidth` Will be set to the desired (scaled) width of the
    image.

-   `\pgf@imageheight` Will be set to the desired (scaled) height of the
    image.

    If this macro and also the height macro are empty, the image should
    have its "natural" size.

    If only one of them is specified, the undefined value the image is
    scaled so that the aspect ratio is kept.

    If both are set, the image is scaled in both directions
    independently, possibly changing the aspect ratio.

The following macros presumable mostly make sense for drivers that can
handle PDF:

-   `\pgf@imagepage` The desired page number to be extracted from a
    multi-page "image".

-   `\pgf@imagemask` If set, it will be set to `/SMask x 0 R` where `x`
    is the PDF object number of a soft mask to be applied to the image.

-   `\pgf@imageinterpolate` If set, it will be set to
    `/Interpolate true` or `/Interpolate false`, indicating whether the
    image should be interpolated in PDF.

The command should now set up the macro `\pgf@image` such that calling
this macro will result in typesetting the image. Thus, `\pgf@image` is
the "return value" of the command.

This command has a default implementation and need not be implemented by
a driver file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@defineimage"
  },
  ["pgfsys@definemask"] = {
    details = [[
This command declares a fading (known as a soft mask in this context)
based on an image and for usage with images. It works similar to
`\pgfsys@defineimage`: Certain macros are set when the command is
called. The result should be to set the macro `\pgf@mask` to a pdf
object count that can subsequently be used as a transparency mask. The
following macros will be set when this command is invoked:

-   `\pgf@filename` File name of the mask to be defined.

-   `\pgf@maskmatte` The so-called matte of the mask (see the
    PDF documentation for details). The matte is a color specification
    consisting of 1, 3 or 4 numbers between 0 and 1. The number of
    numbers depends on the number of color channels in the image (not in
    the mask!). It will be assumed that the image has been preblended
    with this color.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@definemask"
  },
  ["pgfsys@defobject"] = {
    arguments = {
      {meta = "name"},
      {meta = "lower left"},
      {meta = "upper right"},
      {meta = "code"}
    },
    details = [[
Declares an object for later use. The idea is that the object can be
precached in some way and then be rendered more quickly when used
several times. For example, an arrow head might be defined and
prerendered in this way.

The parameter ⟨name⟩ is the name for later use. ⟨lower left⟩ and ⟨upper
right⟩ are PGF points specifying a bounding box for the object. ⟨code⟩
is the code for the object. The code should not be too fancy.

This command has a default implementation and need not be implemented by
a driver file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@defobject"
  },
  ["pgfsys@discardpath"] = {
    details = [[
Normally, this command should "throw away" the current path. However,
after `\pgfsys@clipnext` has been called, the current path should
subsequently be used for clipping. See `\pgfsys@clipnext` for details.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@discardpath"
  },
  ["pgfsys@end@idscope"] = {
    details = [[
Ends the graphics id scope started by `\pgfsys@end@idscope`. It must
nest correctly with other graphic scopes and TeX scopes.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@end@idscope"
  },
  ["pgfsys@endinvisible"] = {
    details = [[
Ends the invisibility section, unless invisibility blocks have been
nested. In this case, only the "last" one restores visibility.

This command has a default implementation and need not be implemented by
a driver file.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@endinvisible"
  },
  ["pgfsys@endpicture"] = {
    details = [[
Called at the end of a `{pgfpicture}`.

Most drivers will need to implement this command.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@endpicture"
  },
  ["pgfsys@endpurepicture"] = {
    details = [[
Called at the end of a "pure" `{pgfpicture}`.

This command has a default implementation and need not be implemented by
a driver file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@endpurepicture"
  },
  ["pgfsys@endscope"] = {
    details = [[
Restores the last saved graphic state.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@endscope"
  },
  ["pgfsys@endviewbox"] = {
    details = [[
Ends a viewbox previously started using `\pgfsys@viewboxmeet` or the
`...slice` variant.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@endviewbox"
  },
  ["pgfsys@fadingfrombox"] = {
    arguments = {{meta = "name"}, {meta = "box"}},
    details = [[
Declares the fading ⟨name⟩. The ⟨box⟩ is a TeX-box. Its content's
luminosity determines the opacity of the resulting fading. This means
that the lighter a pixel inside the box, the more opaque the fading will
be at this position.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@fadingfrombox"
  },
  ["pgfsys@fill"] = {
    details = [[
This command fills the area surrounded by the current path. If the path
has not yet been closed, it is closed prior to filling. The path itself
is not stroked. For self-intersecting paths or paths consisting of
multiple parts, the nonzero winding number rule is used to determine
whether a point is inside or outside the path, except if
`\ifpgfsys@eorule` holds -- in which case the even-odd rule should be
used. (See the PDF or PostScript manual for details.)

The following graphic state parameters influence the filling:

Interior rule  
If `\ifpgfsys@eorule` is set, the even-odd rule is used, otherwise the
non-zero winding number rule.

Fill color  
If the fill color is not especially set, the current color is used.

Clipping area  
If a clipping area is established, only those parts of the filling area
that are inside the clipping area will be drawn.

In addition to filling the path, the path will also be used for clipping
if `\pgfsys@clipnext` is used prior to this command.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@fill"
  },
  ["pgfsys@fill@opacity"] = {
    arguments = {{meta = "value"}},
    details = [[
Sets the opacity of filling operations.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@fill@opacity"
  },
  ["pgfsys@fillstroke"] = {
    details = [[
First, the path is filled, then the path is stroked. If the fill and
stroke colors are the same (or if they are not specified and the current
color is used), this yields almost the same as a `\pgfsys@fill`.
However, due to the line thickness of the stroked path, the fill-stroked
area will be slightly larger.

In addition to stroking and filling the path, the path will also be used
for clipping if `\pgfsys@clipnext` is used prior to this command.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@fillstroke"
  },
  ["pgfsys@functionalshading"] = {
    arguments = {
      {meta = "name"},
      {meta = "lower left corner"},
      {meta = "upper right corner"},
      {meta = "type 4 function"}
    },
    details = [[
Declares a shading using a PostScript-like function that provides a
color for each point. Like the previous macros, this command should set
up the macro `\@pgfshading`⟨name⟩`!` so that it will produce a box
containing the desired shading.

Parameter ⟨name⟩ is the name of the shading. Parameter ⟨type 4 function⟩
is a Postscript-like function (type 4 function of the PDF specification)
as described in Section 3.9.4 of the PDF specification version 1.7.
Parameters ⟨lower left corner⟩ and ⟨upper right corner⟩ are PGF points
that specifies the lower left and upper right corners of the shading,
respectively.

When ⟨type 4 function⟩ is evaluated, the coordinate of the current point
will be on the (virtual) PostScript stack in bp units. After the
function has been evaluated, the stack should consist of three numbers
(not integers! -- the Apple PDF renderer is broken in this regard, so
add cvrs at the end if needed) that represent the red, green, and blue
components of the color.

A buggy function will result is *totally unpredictable chaos* during
rendering.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@functionalshading"
  },
  ["pgfsys@getposition"] = {
    arguments = {{meta = "name"}, {meta = "macro"}},
    details = [[
This command retrieves a position that has been marked on an earlier run
of TeX on the current file. The ⟨macro⟩ must be a macro name such as
`\mymacro`. It will be redefined such that it is

-   either just `\relax` or

-   a `\pgfpoint...` command.

The first case will happen when the position has not been marked at all
or when the file is typeset for the first time, when the coordinates are
not yet available.

In the second case, executing ⟨macro⟩ yields the position on the page
that is to be interpreted as follows: A coordinate like
`\pgfpoint{2cm}{3cm}` means "2cm to the right and 3cm up from the origin
of the page". The position of the origin of the page is not guaranteed
to be at the lower left corner, it is only guaranteed that all pictures
on a page use the same origin.

To determine the lower left corner of a page, you can call
`\pgfsys@getposition` with ⟨name⟩ set to the special name
`pgfpageorigin`. By shifting all positions by the amount returned by
this call you can position things absolutely on a page.

Referencing a point of the page:

    The value of $x$ is \pgfsys@markposition{here}important.

    Lots of text.

    \hbox{\pgfsys@markposition{myorigin}%
    \begin{pgfpicture}
      % Switch of size protocol
      \pgfpathmoveto{\pgfpointorigin}
      \pgfusepath{use as bounding box}

      \pgfsys@getposition{here}{\hereposition}
      \pgfsys@getposition{myorigin}{\thispictureposition}

      \pgftransformshift{\pgfpointscale{-1}{\thispictureposition}}
      \pgftransformshift{\hereposition}

      \pgfpathcircle{\pgfpointorigin}{1cm}
      \pgfusepath{draw}
    \end{pgfpicture}}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@getposition"
  },
  ["pgfsys@global@papersize"] = {
    arguments = {{meta = "width"}, {meta = "height"}},
    details = [[
Like the previous command, only for drivers where setting the paper size
parameters is a TeX-group-local operation, `\global` is prefixed to the
setting of the page sizes.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@global@papersize"
  },
  ["pgfsys@hbox"] = {
    arguments = {{meta = "box number"}},
    details = [[
Called to insert a (horizontal) TeX box inside a `{pgfpicture}`.

Most drivers will need to (re-)implement this command.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@hbox"
  },
  ["pgfsys@hboxsynced"] = {
    arguments = {{meta = "box number"}},
    details = [[
Called to insert a (horizontal) TeX box inside a `{pgfpicture}`, but
with the current coordinate transformation matrix synced with the canvas
transformation matrix.

This command should do the same as if you used `\pgflowlevelsynccm`
followed by `\pgfsys@hbox`. However, the default implementation of this
command will use a "TeX-translation" for the translation part of the
transformation matrix. This will ensure that hyperlinks "survive" at
least translations. On the other hand, a driver may choose to revert to
a simpler implementation. This is done, for example, for the SVG
implementation, where a TeX-translation makes no sense.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@hboxsynced"
  },
  ["pgfsys@horishading"] = {
    arguments = {{meta = "name"}, {meta = "height"}, {meta = "specification"}},
    details = [[
Declares a horizontal shading for later use. The effect of this command
should be the definition of a macro called `\@pgfshading`⟨name⟩`!` (or
`\csname @pdfshading`⟨name⟩`!\endcsname`, to be precise). When invoked,
this new macro should insert a shading at the current position.

⟨name⟩ is the name of the shading, which is also used in the output
macro name. ⟨height⟩ is the height of the shading and must be given as a
TeX dimension like `2cm` or `10pt`. ⟨specification⟩ is a shading color
specification as specified in Section ??. The shading specification
implicitly fixes the width of the shading.

When `\@pgfshading`⟨name⟩`!` is invoked, it should insert a box of
height ⟨height⟩ and the width implicit in the shading declaration.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@horishading"
  },
  ["pgfsys@imagesuffixlist"] = {
    details = [[
This macro should expand to a list of suffixes, separated by ':', that
will be tried when searching for an image.

`\def\pgfsys@imagesuffixlist{eps:epsi:ps}`
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@imagesuffixlist"
  },
  ["pgfsys@invoke"] = {
    arguments = {{meta = "literals"}},
    details = [[
This command gets protocolled literals and should insert them into the
`.pdf` or `.dvi` file using an appropriate `\special`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@invoke"
  },
  ["pgfsys@lineto"] = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
Continue the current path to $(x,y)$ with a straight line.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@lineto"
  },
  ["pgfsys@marker@declare"] = {
    arguments = {{meta = "macro"}, {meta = "code"}},
    details = [[
Declares a *marker* symbol for later use. The command is very similar to
`\pgfsys@defobject`, but the use case is slightly different: The graphic
object defined using the ⟨code⟩ is stored in such a way that it can be
used as an *arrow tip marker symbol* in animations. The ⟨macro⟩ is set
to an identifier by which the marker can be referenced later on.

This command has a default implementation and need not be implemented by
a driver file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@marker@declare"
  },
  ["pgfsys@marker@use"] = {
    arguments = {{meta = "macro"}},
    details = [[
Adds the marker object referenced by the ⟨macro⟩ to the current output.

This command has a default implementation and need not be implemented by
a driver file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@marker@use"
  },
  ["pgfsys@markposition"] = {
    arguments = {{meta = "name"}},
    details = [[
Marks a position on the page. This command should be given while normal
typesetting is done such as in

    The value of $x$ is \pgfsys@markposition{here}important.

It causes the position `here` to be saved when the page is shipped out.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@markposition"
  },
  ["pgfsys@miterjoin"] = {
    details = [[
Sets the join to a miter join. See `\pgfsys@stroke`.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@miterjoin"
  },
  ["pgfsys@moveto"] = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
This command is used to start a path at a specific point $(x,y)$ or to
move the current point of the current path to $(x,y)$ without drawing
anything upon stroking (the current path is "interrupted").

Both ⟨x⟩ and ⟨y⟩ are given as TeX dimensions. It is the driver's job to
transform these to the coordinate system of the backend. Typically, this
means converting the TeX dimension into a dimensionless multiple of
$\frac{1}{72}\mathrm{in}$. The function `\pgf@sys@bp` helps with this
conversion.

Draw a line from $(10\mathrm{pt},10\mathrm{pt})$ to the origin of the
picture.

    \pgfsys@moveto{10pt}{10pt}
    \pgfsys@lineto{0pt}{0pt}
    \pgfsys@stroke

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@moveto"
  },
  ["pgfsys@new@id"] = {
    arguments = {{meta = "macro"}},
    details = [[
Creates a new id for later use and stores it in ⟨macro⟩. It is an
internal text created by the driver and may not be changed or modified.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@new@id"
  },
  ["pgfsys@opacity"] = {
    arguments = {{meta = "value"}},
    details = [[
Sets the opacity of all operations, treating stroking and filling as a
transparency group. Some drivers support this operations, others do not
and set the fill and stroke individually. This difference can only be
seen when a path is stroked and filled at the same time: When the
drawing and fill opacities are set individually, the effect of filling
and drawing a path at the same time is the same as first filling the
path and then drawing it. On the other, if the opacity is set using this
command, the effect should rather be that same as first filling and then
drawing the path without any opacity in an off-screen area and then
copying the result to the target area with a homogeneous opacity of
⟨value⟩.

Since PDF does not support this form of opacity, this command is only
present on the system layer and not supported in the basic layer.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@opacity"
  },
  ["pgfsys@papersize"] = {
    arguments = {{meta = "width"}, {meta = "height"}},
    details = [[
Inserts the necessary `\special`s for the current driver into the output
stream to "locally" change the page size. Whether such a "local" change
is possible depends strongly on the driver. For instance, `dvips` will
honor the first call to this command that is part of the shipped-out
document and will ignore all other uses. In contrast, `pdftex` will use
the current value of the paper size for each page and, additionally,
setting the papersize is local to the current TeX group.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@papersize"
  },
  ["pgfsys@patternmatrix"] = {
    details = [[
For convenience PGF defines the transformation matrix that is applied to
all patterns defined with `\pgfdeclarepatternformonly` and
`\pgfdeclarepatterninherentlycolored` in a macro. This can be used as an
extension point for ad-hoc transformation of existing patterns. The
default definition is the identity matrix:

    \def\pgfsys@patternmatrix{{1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}}

The entries of the enclosed array
`{`⟨$a$⟩`}{`⟨$b$⟩`}{`⟨$c$⟩`}{`⟨$d$⟩`}{`⟨$e$⟩`}{`⟨$f$⟩`}` are entries in
the transformation matrix, identified as in the following transformation
prescription: $$\begin{pmatrix}
            x' \\
            y' \\
            1 \\
        \end{pmatrix}
        =
        \begin{pmatrix}
            a & c & e \\
            b & d & f \\
            0 & 0 & 1 \\
        \end{pmatrix}
        \begin{pmatrix}
            x \\
            y \\
            1 \\
        \end{pmatrix} .$$ Carrying out the matrix multiplication results
in the following system of equations $$\begin{aligned}
        x' &= a x + c y + e , \\
        y' &= b x + d y + f .
    \end{aligned}$$ Evidently, the parameters `{a}` to `{d}` have to be
dimensionless because they are scaling factors, but the parameters `{e}`
and `{f}` are offsets, therefore they have to carry a unit.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@patternmatrix"
  },
  ["pgfsys@pictureboxsynced"] = {
    arguments = {{meta = "box number"}},
    details = [[
Basically, this should do the same as doing a (scoped) low level sync
followed by inserting the box ⟨box number⟩ directly into the output
stream. However, the default implementation uses `\pgfsys@hboxsynced` in
conjunction with `\pgfsys@beginpicture` to ensure that, if possible,
hyperlinks survive in PDFs. Drivers that are sensitive to
picture-in-picture scopes should replace this implementation by

    \pgfsys@beginscope\pgflowlevelsynccm\box#1\pgfsys@endscope
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@pictureboxsynced"
  },
  ["pgfsys@pop@type"] = {
    details = [[
Restores the most recently pushed type.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@pop@type"
  },
  ["pgfsys@push@type"] = {
    details = [[
Pushes the current type on a global "stack of types" without opening a
TeX scope. The is useful when you temporarily wish to change the type
(for instance, by appending something to it), but you cannot create a
new scope.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@push@type"
  },
  ["pgfsys@radialshading"] = {
    arguments = {
      {meta = "name"},
      {meta = "starting point"},
      {meta = "specification"}
    },
    details = [[
Declares a radial shading. Like the previous macros, this command should
set up the macro `\@pgfshading`⟨name⟩`!`, which upon invocation should
insert a radial shading whose size is implicit in ⟨specification⟩.

The parameter ⟨starting point⟩ is a PGF point specifying the inner
starting point of the shading.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@radialshading"
  },
  ["pgfsys@rdf@about"] = {
    arguments = {{meta = "text"}},
    details = [[
Adds the RDF attribute `about="`⟨text⟩`"` to the next id scope (please
see the RDFa specification for details on the semantics of `about` in
the context of the resource description framework).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@about"
  },
  ["pgfsys@rdf@content"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@content"
  },
  ["pgfsys@rdf@datatype"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@datatype"
  },
  ["pgfsys@rdf@href"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@href"
  },
  ["pgfsys@rdf@inlist"] = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@inlist"
  },
  ["pgfsys@rdf@prefix"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@prefix"
  },
  ["pgfsys@rdf@property"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@property"
  },
  ["pgfsys@rdf@rel"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@rel"
  },
  ["pgfsys@rdf@resource"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@resource"
  },
  ["pgfsys@rdf@rev"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@rev"
  },
  ["pgfsys@rdf@src"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@src"
  },
  ["pgfsys@rdf@typeof"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@typeof"
  },
  ["pgfsys@rdf@vocab"] = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rdf@vocab"
  },
  ["pgfsys@rect"] = {
    arguments = {{meta = "x"}, {meta = "y"}, {meta = "width"}, {meta = "height"}},
    details = [[
Append a rectangle to the current path whose lower left corner is at
$(x,y)$ and whose width and height in big points are given by ⟨width⟩
and ⟨height⟩.

This command can be "mapped back" to `\pgfsys@moveto` and
`\pgfsys@lineto` commands, but it is included since PDF has a special,
quick version of this command.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rect"
  },
  ["pgfsys@rectcap"] = {
    details = [[
Sets the cap to a rectangular cap. See `\pgfsys@stroke`.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@rectcap"
  },
  ["pgfsys@roundcap"] = {
    details = [[
Sets the cap to a round cap. See `\pgfsys@stroke`.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@roundcap"
  },
  ["pgfsys@roundjoin"] = {
    details = [[
Sets the join to a round join. See `\pgfsys@stroke`.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@roundjoin"
  },
  ["pgfsys@setdash"] = {
    arguments = {{meta = "pattern"}, {meta = "phase"}},
    details = [[
Sets the dashing patter. ⟨pattern⟩ should be a list of TeX dimensions
separated by commas. ⟨phase⟩ should be a single dimension.

`\pgfsys@setdash{3pt,3pt}{0pt}`

The list of values in ⟨pattern⟩ is used to determine the lengths of the
"on" and "off" phases of the dashing. For example, if ⟨pattern⟩ is
`3bp,4bp`, then the dashing pattern is "3bp on followed by 4bp off,
followed by 3bp on, followed by 4bp off, and so on". A pattern of
`.5pt,4pt,3pt,1.5pt` means ".5pt on, 4pt off, 3pt on, 1.5pt off, .5pt
on, ..." If the number of entries is odd, the last one is used twice, so
`3pt` means "3pt on, 3pt off, 3pt on, 3pt off, ..." An empty list means
"always on".

The second argument determines the "phase" of the pattern. For example,
for a pattern of `3bp,4bp` and a phase of `1bp`, the pattern would
start: "2bp on, 4bp off, 3bp on, 4bp off, 3bp on, 4bp off, ..."

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@setdash"
  },
  ["pgfsys@setlinewidth"] = {
    arguments = {{meta = "width"}},
    details = [[
Sets the width of lines, when stroked, to ⟨width⟩, which must be a
TeX dimension.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@setlinewidth"
  },
  ["pgfsys@setmiterlimit"] = {
    arguments = {{meta = "factor"}},
    details = [[
Sets the miter limit of lines to ⟨factor⟩. See the PDF or PostScript for
details on what the miter limit is.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@setmiterlimit"
  },
  ["pgfsys@setpatterncolored"] = {
    arguments = {{meta = "name"}},
    details = [[
Sets the fill color to the pattern named ⟨name⟩. This pattern must have
been declared with the `1` flag.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@setpatterncolored"
  },
  ["pgfsys@setpatternuncolored"] = {
    arguments = {{meta = "name"}, {meta = "red"}, {meta = "green"}, {meta = "blue"}},
    details = [[
Sets the fill color to the pattern named ⟨name⟩. This pattern must
previously have been declared with ⟨flag⟩ set to `0`. The color of the
pattern is given in the parameters ⟨red⟩, ⟨green⟩, and ⟨blue⟩ in the
usual way.

The fill color "pattern" will persist till the next color command that
modifies the fill color.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@setpatternuncolored"
  },
  ["pgfsys@stroke"] = {
    details = [[
Stroke the current path (as if it were drawn with a pen). A number of
graphic state parameters influence this, which can be set using
appropriate system commands described later.

Line width  
The "thickness" of the line. A width of 0 is the thinnest width
renderable on the device. On a high-resolution printer this may become
invisible and should be avoided. A good choice is 0.4pt, which is the
default.

Stroke color  
This special color is used for stroking. If it is not set, the current
color is used.

Cap  
The cap describes how the endings of lines are drawn. A round cap adds a
little half circle to these endings. A butt cap ends the lines exactly
at the end (or start) point without anything added. A rectangular cap
ends the lines like the butt cap, but the lines protrude over the
endpoint by the line thickness. (See also the PDF manual.) If the path
has been closed, no cap is drawn.

Join  
This describes how a bend (a join) in a path is rendered. A round join
draws bends using small arcs. A bevel join just draws the two lines and
then fills the join minimally so that it becomes convex. A miter join
extends the lines so that they form a single sharp corner, but only up
to a certain miter limit. (See the PDF manual once more.)

Dash  
The line may be dashed according to a dashing pattern.

Clipping area  
If a clipping area is established, only those parts of the path that are
inside the clipping area will be drawn.

In addition to stroking a path, the path may also be used for clipping
after it has been stroked. This will happen if the `\pgfsys@clipnext` is
used prior to this command, see there for details.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@stroke"
  },
  ["pgfsys@stroke@opacity"] = {
    arguments = {{meta = "value"}},
    details = [[
Sets the opacity of stroking operations.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@stroke@opacity"
  },
  ["pgfsys@thepageheight"] = {
    details = [[
This macro expands to the current page's height, provided LaTeX is used,
otherwise a best guess is returned (currently just `\the\vsize`).
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@thepageheight"
  },
  ["pgfsys@thepagewidth"] = {
    details = [[
As above.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@thepagewidth"
  },
  ["pgfsys@transformcm"] = {
    arguments = {
      {meta = "a"},
      {meta = "b"},
      {meta = "c"},
      {meta = "d"},
      {meta = "e"},
      {meta = "f"}
    },
    details = [[
Perform a concatenation of the canvas transformation matrix with the
matrix given by the values ⟨a⟩ to ⟨f⟩, see the PDF or PostScript manual
for details. The values ⟨a⟩ to ⟨d⟩ are dimensionless factors, ⟨e⟩ and
⟨f⟩ are TeX dimensions

`\pgfsys@transformcm{1}{0}{0}{1}{1cm}{1cm}`.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@transformcm"
  },
  ["pgfsys@transformshift"] = {
    arguments = {{meta = "x displacement"}, {meta = "y displacement"}},
    details = [[
This command will change the origin of the canvas to $(x,y)$.

This command has a default implementation and need not be implemented by
a driver file.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@transformshift"
  },
  ["pgfsys@transformxyscale"] = {
    arguments = {{meta = "x scale"}, {meta = "y scale"}},
    details = [[
This command will scale the canvas (and everything that is drawn) by a
factor of ⟨x scale⟩ in the $x$-direction and ⟨y scale⟩ in the
$y$-direction. Note that this applies to everything, including lines. So
a scaled line will have a different width and may even have a different
width when going along the $x$-axis and when going along the $y$-axis,
if the scaling is different in these directions. Usually, you do not
want this.

This command has a default implementation and need not be implemented by
a driver file.

This command is protocolled, see Section ??.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@transformxyscale"
  },
  ["pgfsys@transparencygroupfrombox"] = {
    arguments = {{meta = "box"}},
    details = [[
This takes a TeX box and converts it into a transparency group. This
means that any transparency settings apply to the box as a whole. For
instance, if a box contains two overlapping black circles and you draw
the box and, thus, the two circles normally with 50% transparency, then
the overlap will be darker than the rest. By comparison, if the circles
are part of a transparency group, the overlap will get the same color as
the rest.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@transparencygroupfrombox"
  },
  ["pgfsys@typesetpicturebox"] = {
    arguments = {{meta = "box"}},
    details = [[
Called *after* a `{pgfpicture}` has been typeset. The picture will have
been put in box ⟨box⟩. This command should insert the box into the
normal text. The box ⟨box⟩ will still be a "raw" box that contains only
the `\special`'s that make up the description of the picture. The job of
this command is to resize and shift ⟨box⟩ according to the baseline
shift and the size of the box.

This command has a default implementation and need not be implemented by
a driver file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@typesetpicturebox"
  },
  ["pgfsys@use@id"] = {
    arguments = {{meta = "id"}},
    details = [[
"Uses" an id previously created using `\pgfsys@new@id`. This causes the
*next* graphic object to get the ⟨id⟩ (not the current one). Once used,
the id-type-pair becomes *invalid* and will not be attached to any other
graphics objects. It is, however, not an error to try this. If ⟨id⟩ is
empty, no id-type-pair is attached to the next object.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@use@id"
  },
  ["pgfsys@use@type"] = {
    arguments = {{meta = "type"}},
    details = [[
Changes the type used with the next graphic object. As mentioned
earlier, the id assigned to the next object is actually a pair
consisting of the currently used id and the currently used type.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@use@type"
  },
  ["pgfsys@usefading"] = {
    arguments = {
      {meta = "name"},
      {meta = "a"},
      {meta = "b"},
      {meta = "c"},
      {meta = "d"},
      {meta = "e"},
      {meta = "f"}
    },
    details = [[
Installs a previously declared fading ⟨name⟩ in the current graphics
state. Afterwards, all drawings will be masked by the fading. The fading
should be centered on the origin and have its original size, except that
the parameters ⟨a⟩ to ⟨f⟩ specify a transformation matrix that should be
applied additionally to the fading before it is installed. The
transformation should not apply to the following graphics, however.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@usefading"
  },
  ["pgfsys@useobject"] = {
    arguments = {{meta = "name"}, {meta = "extra code"}},
    details = [[
Renders a previously declared object. The first parameter is the name of
the object. The second parameter is extra code that should be executed
right *before* the object is rendered. Typically, this will be some
transformation code.

This command has a default implementation and need not be implemented by
a driver file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@useobject"
  },
  ["pgfsys@vertshading"] = {
    arguments = {{meta = "name"}, {meta = "width"}, {meta = "specification"}},
    details = [[
Like the horizontal version, only for vertical shadings. This time, the
height of the shading is implicit in ⟨specification⟩ and the width is
given as ⟨width⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@vertshading"
  },
  ["pgfsys@viewboxmeet"] = {
    arguments = {
      {meta = "$x_1$"},
      {meta = "$y_1$"},
      {meta = "$x_2$"},
      {meta = "$y_2$"},
      {meta = "$x'_1$"},
      {meta = "$y'_1$"},
      {meta = "$x'_2$"},
      {meta = "$y'_2$"}
    },
    details = [[
Starts a "view box" scope, which must be ended using
`\pgfsys@endviewbox` later on (with matching scopes).

The effect of this command is as follows: Consider the rectangles $R$
with lower left corner $(x_1,y_1)$ and upper right corner $(x_2,y_2)$
and $R'$ with corners $(x'_1,y'_1)$ and $(x'_2,y'_2)$. The command will
install a canvas translation and uniform scaling such that $R'$ then has
the same center as $R$ and additionally, has maximum size such that it
still fits inside $R$. (Think of this as "viewing" $R'$ through $R$ such
that the aspect ratio is kept.)

This command has a default implementation. Its main purpose is to allow
animations of the view box; for static drawings it is better to compute
the necessary transformations directly.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@viewboxmeet"
  },
  ["pgfsys@viewboxslice"] = {
    arguments = {
      {meta = "$x_1$"},
      {meta = "$y_1$"},
      {meta = "$x_2$"},
      {meta = "$y_2$"},
      {meta = "$x'_1$"},
      {meta = "$y'_1$"},
      {meta = "$x'_2$"},
      {meta = "$y'_2$"}
    },
    details = [[
Works like the previous command, but now $R'$ has minimal size such that
it encompasses all of $R$.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsys@viewboxslice"
  },
  pgfsysanimate = {
    arguments = {{meta = "attribute"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimate"
  },
  pgfsysanimkeyaccesskey = {
    arguments = {
      {meta = "character"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyaccesskey"
  },
  pgfsysanimkeyaccumulate = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyaccumulate"
  },
  pgfsysanimkeybase = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeybase"
  },
  pgfsysanimkeycanvastransform = {
    arguments = {{meta = "pre"}, {meta = "post"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeycanvastransform"
  },
  pgfsysanimkeyevent = {
    arguments = {
      {meta = "id"},
      {meta = "type"},
      {meta = "event name"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyevent"
  },
  pgfsysanimkeyfreezeatend = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyfreezeatend"
  },
  pgfsysanimkeymovealong = {
    arguments = {{meta = "path"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeymovealong"
  },
  pgfsysanimkeynoaccumulate = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeynoaccumulate"
  },
  pgfsysanimkeynorotatealong = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeynorotatealong"
  },
  pgfsysanimkeyoffset = {
    arguments = {{meta = "time offset"}, {meta = "begin or end"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyoffset"
  },
  pgfsysanimkeyremoveatend = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyremoveatend"
  },
  pgfsysanimkeyrepeat = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyrepeat"
  },
  pgfsysanimkeyrepeatdur = {
    arguments = {{meta = "seconds"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyrepeatdur"
  },
  pgfsysanimkeyrepeatevent = {
    arguments = {
      {meta = "id"},
      {meta = "type"},
      {meta = "repeat count"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyrepeatevent"
  },
  pgfsysanimkeyrepeatindefinite = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyrepeatindefinite"
  },
  pgfsysanimkeyrestartalways = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyrestartalways"
  },
  pgfsysanimkeyrestartnever = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyrestartnever"
  },
  pgfsysanimkeyrestartwhennotactive = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyrestartwhennotactive"
  },
  pgfsysanimkeyrotatealong = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeyrotatealong"
  },
  pgfsysanimkeysnapshotstart = {
    arguments = {{meta = "time offset"}},
    details = [[
This command specifies that for the current animation the "moment `0s`"
of the timeline is at ⟨time offset⟩. Thus, it works like
`\pgfsysanimkeyoffset`, only the offset is now solely for the snapshot
timeline. It has no effect on the actual animation.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeysnapshotstart"
  },
  pgfsysanimkeysyncbegin = {
    arguments = {
      {meta = "sync base id"},
      {meta = "type"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeysyncbegin"
  },
  pgfsysanimkeysyncend = {
    arguments = {
      {meta = "sync base id"},
      {meta = "type"},
      {meta = "time offset"},
      {meta = "begin or end"}
    },
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeysyncend"
  },
  pgfsysanimkeytime = {
    arguments = {
      {meta = "time"},
      {meta = "entry spline control x"},
      {meta = "entry spline control y"},
      {meta = "exit spline control x"},
      {meta = "exit spline control y"}
    },
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeytime"
  },
  pgfsysanimkeytipmarkers = {
    arguments = {{meta = "start marker"}, {meta = "end marker"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeytipmarkers"
  },
  pgfsysanimkeywhom = {
    arguments = {{meta = "id"}, {meta = "type"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimkeywhom"
  },
  pgfsysanimsnapshot = {
    arguments = {{meta = "time"}},
    details = [[
Use this command in a scope prior to calling any other commands
documented in this section concerning the configuration of animations.
In this case, all uses of `\pgfsysanimate` inside the TeX scope no
longer insert an animation into the output file. Instead, a "snapshot"
is inserted of what the animation "would like at time ⟨time⟩". For
instance, if an animation inserts a movement of an object by 4cm over a
time of 2s and you take a snapshot with $⟨time⟩ = 2\mathrm s$, you get a
picture in which the object is moved by 1cm.

A lot of care has been taken to make the output produced by the snapshot
be as close as possible as what the animation really would look like at
time ⟨time⟩, but note the following restrictions:

1.  Interactive events of all kinds (like `click` or `mouseover`) make
    little sense for snapshots, which are created once and for all
    during the typesetting of the document. For this reason, all events
    are ignored for snapshots (even sync bases, and `begin` and `end`
    events, which might make some sense also in a snapshot setting).

    However, there is one command which helps you with "simulating" the
    effect of events:

2.  The command `\pgfsysanimvalcurrent` cannot be used with snapshots
    since PGF has no chance of computing the correct current value. You
    always have to specify the start value explicitly.

3.  The computation of time splines (entry and exit splines) and the
    accumulation of values after a large number of repeats may not be
    numerically stable.

&nbsp;

    \foreach \t in {0.5,1,1.5,2} {
      \pgfsysanimsnapshot{\t}
      \tikz {
        \pgfidrefnextuse{\objid}{node}
        \pgfsysanimkeywhom{\objid}{}
        \pgfsysanimkeytime{0}{1}{1}{0}{0}
        \pgfsysanimvalscalar{1}
        \pgfsysanimkeytime{2}{1}{1}{0}{0}
        \pgfsysanimvalscalar{0}
        \pgfsysanimate{opacity}
        \node (node) [draw = blue, very thick, fill=blue!20, circle] {Hi};
      }
    }
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimsnapshot"
  },
  pgfsysanimsnapshotafter = {
    arguments = {{meta = "time"}},
    details = [[
Works like the previous command, only the "moment" that ⟨time⟩ refers to
is conceptually $⟨time⟩ + \epsilon$: When timeline specifies several
values for ⟨time⟩, this command will select the last value at ⟨time⟩,
while `\pgfsnapshot` will select the first value at ⟨time⟩. Similarly,
when a timeline ends at ⟨time⟩, `\pgfsnapshot` will select the last
value of the timeline while `\pgfsnapshotafter` will not apply the
animation any more.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimsnapshotafter"
  },
  pgfsysanimvalcolorcmy = {
    arguments = {{meta = "cyan"}, {meta = "magenta"}, {meta = "yellow"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvalcolorcmy"
  },
  pgfsysanimvalcolorcmyk = {
    arguments = {
      {meta = "cyan"},
      {meta = "magenta"},
      {meta = "yellow"},
      {meta = "black"}
    },
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvalcolorcmyk"
  },
  pgfsysanimvalcolorgray = {
    arguments = {{meta = "gray value"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvalcolorgray"
  },
  pgfsysanimvalcolorrgb = {
    arguments = {{meta = "red"}, {meta = "green"}, {meta = "blue"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvalcolorrgb"
  },
  pgfsysanimvalcurrent = {
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvalcurrent"
  },
  pgfsysanimvaldash = {
    arguments = {{meta = "pattern"}, {meta = "phase"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvaldash"
  },
  pgfsysanimvaldimension = {
    arguments = {{meta = "dimension"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvaldimension"
  },
  pgfsysanimvalpath = {
    arguments = {{meta = "low-level path construction commands"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvalpath"
  },
  pgfsysanimvalscalar = {
    arguments = {{meta = "number"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvalscalar"
  },
  pgfsysanimvalscale = {
    arguments = {{meta = "x scale"}, {meta = "y scale"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvalscale"
  },
  pgfsysanimvaltext = {
    arguments = {{meta = "text"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvaltext"
  },
  pgfsysanimvaltranslate = {
    arguments = {{meta = "x dimension"}, {meta = "y dimension"}},
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvaltranslate"
  },
  pgfsysanimvalviewbox = {
    arguments = {
      {meta = "$x_1$"},
      {meta = "$y_1$"},
      {meta = "$x_2$"},
      {meta = "$y_2$"}
    },
    details = [[

]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysanimvalviewbox"
  },
  pgfsysdriver = {
    details = [[
This macro should expand to the name of the driver to be used by
`pgfsys`. The default from `pgf.cfg` is `pgfsys-\Gin@driver`. This is
very likely to be correct if you are using LaTeX. For plain TeX, the
macro will be set to `pgfsys-pdftex.def` if `pdftex` is used and to
`pgfsys-dvips.def` otherwise.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysdriver"
  },
  ["pgfsysprotocol@bufferedfalse"] = {
    details = [[
Turns off protocolling. Subsequent calls of `\pgfsysprotocol@literal`
directly insert their argument into the current `.pdf` or `.ps`.

Note that if the current protocol is not empty when protocolling is
switched off, the next call to `\pgfsysprotocol@literal` will first
flush the current protocol, that is, insert it into the file.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysprotocol@bufferedfalse"
  },
  ["pgfsysprotocol@bufferedtrue"] = {
    details = [[
Turns on protocolling. All subsequent calls of `\pgfsysprotocol@literal`
will append their argument to the current protocol.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysprotocol@bufferedtrue"
  },
  ["pgfsysprotocol@flushcurrentprotocol"] = {
    details = [[
First inserts the current protocol, then sets the current protocol to
the empty string.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysprotocol@flushcurrentprotocol"
  },
  ["pgfsysprotocol@getcurrentprotocol"] = {
    arguments = {{meta = "macro name"}},
    details = [[
Stores the current protocol in ⟨macro name⟩ for later use.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysprotocol@getcurrentprotocol"
  },
  ["pgfsysprotocol@invokecurrentprotocol"] = {
    details = [[
Inserts the text stored in the current protocol into the `.pdf` or
`.dvi` file. This does *not* change the current protocol.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysprotocol@invokecurrentprotocol"
  },
  ["pgfsysprotocol@literal"] = {
    arguments = {{meta = "literal text"}},
    details = [[
First calls `\pgfsysprotocol@literalbuffered` on ⟨literal text⟩. Then,
if protocolling is currently switched off, the ⟨literal text⟩ is passed
on to `\pgfsys@invoke`.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysprotocol@literal"
  },
  ["pgfsysprotocol@literalbuffered"] = {
    arguments = {{meta = "literal text"}},
    details = [[
Adds the ⟨literal text⟩ to the current protocol, after it has been
"`\edef`ed". This command will always be protocolled.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysprotocol@literalbuffered"
  },
  ["pgfsysprotocol@setcurrentprotocol"] = {
    arguments = {{meta = "macro name"}},
    details = [[
Sets the current protocol to ⟨macro name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsysprotocol@setcurrentprotocol"
  },
  ["pgfsyssoftpath@closepath"] = {
    details = [[
Appends a "close-path" segment to the current soft path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsyssoftpath@closepath"
  },
  ["pgfsyssoftpath@curveto"] = {
    arguments = {
      {meta = "a"},
      {meta = "b"},
      {meta = "c"},
      {meta = "d"},
      {meta = "x"},
      {meta = "y"}
    },
    details = [[
Appends a "curve-to" segment to the current soft path with controls
$(a,b)$ and $(c,d)$.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsyssoftpath@curveto"
  },
  ["pgfsyssoftpath@flushcurrentpath"] = {
    details = [[
This command will invoke the current soft path and then set it to be
empty.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsyssoftpath@flushcurrentpath"
  },
  ["pgfsyssoftpath@getcurrentpath"] = {
    arguments = {{meta = "macro name"}},
    details = [[
This command will store the current soft path in ⟨macro name⟩.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsyssoftpath@getcurrentpath"
  },
  ["pgfsyssoftpath@invokecurrentpath"] = {
    details = [[
This command will turn the current soft path in a "hard" path. To do so,
it iterates over the soft path and calls an appropriate `\pgfsys@xxxx`
command for each element of the path. Note that the current soft path is
*not changed* by this command. Thus, in order to start a new soft path
after the old one has been invoked and is no longer needed, you need to
set the current soft path to be empty. This may seem strange, but it is
often useful to immediately use the last soft path again.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsyssoftpath@invokecurrentpath"
  },
  ["pgfsyssoftpath@lineto"] = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
Appends a "line-to" segment to the current soft path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsyssoftpath@lineto"
  },
  ["pgfsyssoftpath@moveto"] = {
    arguments = {{meta = "x"}, {meta = "y"}},
    details = [[
This command appends a "move-to" segment to the current soft path. The
coordinates ⟨x⟩ and ⟨y⟩ are given as normal TeX dimensions.

One way to draw a line:

    \pgfsyssoftpath@moveto{0pt}{0pt}
    \pgfsyssoftpath@lineto{10pt}{10pt}
    \pgfsyssoftpath@flushcurrentpath
    \pgfsys@stroke
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsyssoftpath@moveto"
  },
  ["pgfsyssoftpath@rect"] = {
    arguments = {
      {meta = "lower left x"},
      {meta = "lower left y"},
      {meta = "width"},
      {meta = "height"}
    },
    details = [[
Appends a rectangle segment to the current soft path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsyssoftpath@rect"
  },
  ["pgfsyssoftpath@setcurrentpath"] = {
    arguments = {{meta = "macro name"}},
    details = [[
This command will set the current soft path to be the path stored in
⟨macro name⟩. This macro should store a path that has previously been
extracted using the `\pgfsyssoftpath@getcurrentpath` command and has
possibly been modified subsequently.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfsyssoftpath@setcurrentpath"
  },
  pgftext = {
    arguments = {
      {
        delimiters = {"[", "]"},
        keys = "$ref:pgf#/keys/pgf",
        meta = "options",
        optional = true
      },
      {meta = "text"}
    },
    details = [[
This command will typeset ⟨text⟩ in normal TeX mode and insert the
resulting box into the `{pgfpicture}`. The bounding box of the graphic
will be updated so that all of the text box is inside. By default, the
text box is centered at the origin, but this can be changed either by
giving appropriate ⟨options⟩ or by applying an appropriate coordinate
transformation beforehand.

The ⟨text⟩ may contain verbatim text. (In other words, the ⟨text⟩
"argument" is not a normal argument, but is put in a box and some
`\aftergroup` hackery is used to find the end of the box.)

PGF's current (high-level) coordinate transformation is synchronized
with the canvas transformation matrix temporarily when the text box is
inserted. The effect is that if there is currently a high-level rotation
of, say, 30 degrees, the ⟨text⟩ will also be rotated by thirty degrees.
If you do not want this effect, you have to (possibly temporarily) reset
the high-level transformation matrix.

The ⟨options⟩ keys are used with the path `/pgf/text/`. The following
keys are defined for this path:
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftext"
  },
  pgftransformarcaxesattime = {
    arguments = {
      {meta = "time $t$"},
      {meta = "center"},
      {meta = "0-degree axis"},
      {meta = "90-degree axis"},
      {meta = "start angle"},
      {meta = "end angle"}
    },
    details = [[
Shifts coordinates by a specific point on an arc at a specific time, see
Section ?? once more.

As for the previous commands, `\ifpgfslopedattime` decides whether an
additional rotation should be applied and `\ifpgfallowupsidedowattime`
is also considered.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgfpathmoveto{\pgfpoint{2cm}{1cm}}
      \pgfpatharcaxes{0}{60}{\pgfpoint{2cm}{0cm}}{\pgfpoint{0cm}{1cm}}
      \pgfusepath{stroke}
      \pgfslopedattimetrue
      \pgftransformarcaxesattime{.25}
        {\pgfpoint{0cm}{1cm}}
        {\pgfpoint{2cm}{0cm}}{\pgfpoint{0cm}{1cm}}
        {0}{60}
      \pgftext{Hi!}
    \end{tikzpicture}

The value of `\ifpgfresetnontranslationsattime` is also taken into
account.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformarcaxesattime"
  },
  pgftransformarrow = {
    arguments = {{meta = "start"}, {meta = "end"}},
    details = [[
Shifts coordinates to the end of the line going from ⟨start⟩ to ⟨end⟩
with the correct rotation.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (3,1);
      \pgftransformarrow{\pgfpointorigin}{\pgfpoint{3cm}{1cm}}
      \pgftext{tip}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformarrow"
  },
  pgftransformationadjustments = {
    details = [[
This command computes "adjustments" for the current transformation
matrix so that even when you install a transformation matrix that scales
everything by a certain factor, you can still draw something of "an
absolute size". Suppose for instance that you install a transformation
matrix that scales everything by a factor of 4 and you now wish to draw
a horizontal line of length 1cm. Then, if you do not reset the
transformation matrix, you can draw a line of logical length 2.5mm,
which will then get scaled to a line of 1cm. Things get more difficult
in case you scale things only, say, vertically. In this case, the
adjustment necessary for horizontal lines is different from the one
needed for vertical lines.

This function computes two scaling factors, one for horizontal lines and
one for vertical lines, and stores them in the following macros:

Note that the "right" way to draw a line of absolute length 1cm in a
transformed coordinate system is to first compute the start point and to
then reset the transformation matrix. The transformation adjustments
computed here are important only in situations where you cannot do this,
for instance when an `outer xsep` must be set.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformationadjustments"
  },
  pgftransformcm = {
    arguments = {
      {meta = "a"},
      {meta = "b"},
      {meta = "c"},
      {meta = "d"},
      {meta = "point"}
    },
    details = [[
Applies the transformation matrix given by $a$, $b$, $c$, and $d$ and
the shift ⟨point⟩ to coordinates (in addition to any previous
transformations already in force).

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransformcm{1}{1}{0}{1}{\pgfpoint{.25cm}{.25cm}}
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformcm"
  },
  pgftransformcurveattime = {
    arguments = {
      {meta = "time"},
      {meta = "start"},
      {meta = "first support"},
      {meta = "second support"},
      {meta = "end"}
    },
    details = [[
Shifts coordinates by a specific point on a curve at a specific time,
see Section ?? once more.

As for the line-at-time transformation command, `\ifpgfslopedattime`
decides whether an additional rotation should be applied. Again, the
value of `\ifpgfallowupsidedowattime` is also considered.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) .. controls (0,2) and (1,2) .. (2,1);
      \pgftransformcurveattime{.25}{\pgfpointorigin}
        {\pgfpoint{0cm}{2cm}}{\pgfpoint{1cm}{2cm}}{\pgfpoint{2cm}{1cm}}
      \pgftext{Hi!}
    \end{tikzpicture}

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) .. controls (0,2) and (1,2) .. (2,1);
      \pgfslopedattimetrue
      \pgftransformcurveattime{.25}{\pgfpointorigin}
        {\pgfpoint{0cm}{2cm}}{\pgfpoint{1cm}{2cm}}{\pgfpoint{2cm}{1cm}}
      \pgftext{Hi!}
    \end{tikzpicture}

The value of `\ifpgfresetnontranslationsattime` is also taken into
account.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformcurveattime"
  },
  pgftransforminvert = {
    details = [[
Replaces the coordinate transformation matrix by a coordinate
transformation matrix that "exactly undoes the original transformation".
For example, if the original transformation was "scale by 2 and then
shift right by 1cm" the new one is "shift left by 1cm and then scale by
$1/2$".

This command will produce an error if the determinant of the matrix is
too small, that is, if the matrix is near-singular.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgftransformrotate{30}
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransforminvert
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransforminvert"
  },
  pgftransformlineattime = {
    arguments = {{meta = "time"}, {meta = "start"}, {meta = "end"}},
    details = [[
Shifts coordinates by a specific point on a line at a specific time. The
point by which the coordinate is shifted is calculated by calling
`\pgfpointlineattime`, see Section ??.

In addition to shifting the coordinate, a rotation *may* also be
applied. Whether this is the case depends on whether the TeX if
`\ifpgfslopedattime` is set to true or not.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1);
      \pgftransformlineattime{.25}{\pgfpointorigin}{\pgfpoint{2cm}{1cm}}
      \pgftext{Hi!}
    \end{tikzpicture}

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1);
      \pgfslopedattimetrue
      \pgftransformlineattime{.25}{\pgfpointorigin}{\pgfpoint{2cm}{1cm}}
      \pgftext{Hi!}
    \end{tikzpicture}

If `\ifpgfslopedattime` is true, another TeX `\if` is important:
`\ifpgfallowupsidedowattime`. If this is false, PGF will ensure that the
rotation is done in such a way that text is never "upside down".

There is another TeX `\if` that influences this command. If you set
`\ifpgfresetnontranslationattime` to true, then, between shifting the
coordinate and (possibly) rotating/sloping the coordinate, the command
`\pgftransformresetnontranslations` is called. See the description of
this command for details.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgftransformscale{1.5}
      \draw      (0,0) -- (2,1);
      \pgfslopedattimetrue
      \pgfresetnontranslationattimefalse
      \pgftransformlineattime{.25}{\pgfpointorigin}{\pgfpoint{2cm}{1cm}}
      \pgftext{Hi!}
    \end{tikzpicture}

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgftransformscale{1.5}
      \draw      (0,0) -- (2,1);
      \pgfslopedattimetrue
      \pgfresetnontranslationattimetrue
      \pgftransformlineattime{.25}{\pgfpointorigin}{\pgfpoint{2cm}{1cm}}
      \pgftext{Hi!}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformlineattime"
  },
  pgftransformnonlinear = {
    arguments = {{meta = "transformation code"}},
    details = [[
This command adds the ⟨transformation code⟩ to the list of non-linear
transformations currently in force. Thus, similar to linear coordinate
transformations, each additional call to this function adds another
transformation to the current TeX scope and the effect ends at the end
of the current scope. In practice, however, you typically will not have
more than one active nonlinear transformation.

The job of the ⟨transformation code⟩ is to map a point $p$ given in the
registers `\pgf@x` and `\pgf@y` to a new coordinate $f(p)$, which should
be returned in `\pgf@x` and `\pgf@y` as well. As an example, suppose we
wish to install polar coordinates as the nonlinear transformation. For
this, we need a bit of code:

    \def\polartransformation{%
      % \pgf@x will contain the radius
      % \pgf@y will contain the distance
      \pgfmathsincos@{\pgf@sys@tonumber\pgf@x}%
      % pgfmathresultx is now the cosine of radius and
      % pgfmathresulty is the sine of radius
      \pgf@x=\pgfmathresultx\pgf@y%
      \pgf@y=\pgfmathresulty\pgf@y%
    }

(In case you wonder why you cannot just call `\pgfpointpolar` at this
point: You can, but this function internally uses `\pgf@x` and `\pgf@y`
in complicated ways, so you would first have to safe them so some other
registers. Also, the above is faster.)

If we were to call this function again, we would get something funny
like "polar-polar coordinates", so let's not do this. Let us instead
have a look at the effect this call has: Once a nonlinear transformation
is installed, all subsequent path constructions are affected by this
transformation. In particular, a normal grid now becomes the typical
"polar grid".

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      % Start nonlinear transformation
      \pgftransformnonlinear{\polartransformation}% see above

      % Draw something with this transformation in force
      \draw (0pt,0mm) grid [xstep=10pt, ystep=5mm] (90pt, 20mm);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformnonlinear"
  },
  pgftransformreset = {
    details = [[
Resets the coordinate transformation matrix to the identity matrix.
Thus, once this command is given no transformations are applied till the
end of the scope.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgftransformrotate{30}
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransformreset
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformreset"
  },
  pgftransformresetnontranslations = {
    details = [[
This command sets the $a$, $b$, $c$, and $d$ part of the coordinate
transformation matrix to $a=1$, $b=0$, $c=0$, and $d=1$. However, the
current shifting of the matrix is not modified.

The effect of this command is that any rotation/scaling/slanting is
undone in the current TeX group, but the origin is not "moved back".

This command is mostly useful directly before a `\pgftext` command to
ensure that the text is not scaled or rotated.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgftransformscale{2}
      \pgftransformrotate{30}
      \pgftransformxshift{1cm}
      {\color{red}\pgftext{rotated}}
      \pgftransformresetnontranslations
      \pgftext{shifted only}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformresetnontranslations"
  },
  pgftransformrotate = {
    arguments = {{meta = "angles"}},
    details = [[
Rotates coordinates counterclockwise by ⟨angles⟩ given in degrees.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransformrotate{30}
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformrotate"
  },
  pgftransformscale = {
    arguments = {{meta = "factor"}},
    details = [[
Scales coordinates by ⟨factor⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransformscale{.75}
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformscale"
  },
  pgftransformshift = {
    arguments = {{meta = "point"}},
    details = [[
Shifts coordinates by ⟨point⟩.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransformshift{\pgfpoint{1cm}{1cm}}
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformshift"
  },
  pgftransformtriangle = {
    arguments = {{meta = "a"}, {meta = "b"}, {meta = "c"}},
    details = [[
This command transforms the coordinate system in such a way that the
triangle given by the points ⟨a⟩, ⟨b⟩ and ⟨c⟩ lies at the coordinates
$(0,0)$, $(1\mathrm{pt},0\mathrm{pt})$ and
$(0\mathrm{pt},1\mathrm{pt})$.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \pgftransformtriangle
      {\pgfpoint{1cm}{0cm}}
      {\pgfpoint{0cm}{2cm}}
      {\pgfpoint{3cm}{1cm}}

      \draw (0,0) -- (1pt,0pt) -- (0pt,1pt) -- cycle;
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformtriangle"
  },
  pgftransformxscale = {
    arguments = {{meta = "factor"}},
    details = [[
Scales coordinates by ⟨factor⟩ in the $x$-direction.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransformxscale{.75}
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformxscale"
  },
  pgftransformxshift = {
    arguments = {{meta = "dimensions"}},
    details = [[
Shifts coordinates by ⟨dimension⟩ along the $x$-axis.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransformxshift{.5cm}
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformxshift"
  },
  pgftransformxslant = {
    arguments = {{meta = "factor"}},
    details = [[
Slants coordinates by ⟨factor⟩ in the $x$-direction. Here, a factor of
`1` means $45^\circ$.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransformxslant{.5}
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformxslant"
  },
  pgftransformyscale = {
    arguments = {{meta = "factor"}},
    details = [[
Like `\pgftransformxscale`, only for the $y$-axis.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformyscale"
  },
  pgftransformyshift = {
    arguments = {{meta = "dimensions"}},
    details = [[
Like `\pgftransformxshift`, only for the $y$-axis.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformyshift"
  },
  pgftransformyslant = {
    arguments = {{meta = "factor"}},
    details = [[
Slants coordinates by ⟨factor⟩ in the $y$-direction.

    \begin{tikzpicture}
      \draw[help lines] (0,0) grid (3,2);
      \draw      (0,0) -- (2,1) -- (1,0);
      \pgftransformyslant{-1}
      \draw[red] (0,0) -- (2,1) -- (1,0);
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgftransformyslant"
  },
  pgfuseid = {
    arguments = {{meta = "name"}},
    details = [[
The ⟨name⟩ is a string by which the object will be referenced (see
`\pgfidrefnextuse`). The next time a graphic object is created in the
current TeX scope, the name will be attached to it (actually, it will
get a system layer identifier attached to it that is automatically
created using `\pgfsys@new@id`, the ⟨name⟩ is bound to that identifier
and it can be retrieved using `\pgfidrefnextuse`). This holds true only
for the next object: If a second object is created, it will not get the
name attached to it. This does not mean, however, that you cannot attach
the same name to different objects; you just need to call `\pgfuseid`
again before each object.

Besides the ⟨name⟩ (or, more precisely, besides the system layer
identifier is refers to), the current *identifier type* is also
important: Actually, a graphic object is not referenced by a system
layer identifier, but by the combination of the identifier and a type.
You can use the following commands for modifying the type used for the
creation of objects:
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfuseid"
  },
  pgfuseimage = {
    arguments = {{meta = "image name"}},
    details = [[
Inserts a previously declared image into the *normal text*. If you wish
to use it in a `{pgfpicture}` environment, you must put a `\pgftext`
around it.

If the macro `\pgfalternateextension` expands to some nonempty
⟨alternate extension⟩, PGF will first try to use the image named ⟨image
name⟩`.`⟨alternate extension⟩. If this image is not defined, PGF will
next check whether ⟨alternate extension⟩ contains a `!` character. If
so, everything up to this exclamation mark and including it is deleted
from ⟨alternate extension⟩ and the PGF again tries to use the image
⟨image name⟩`.`⟨alternate extension⟩. This is repeated until ⟨alternate
extension⟩ no longer contains a `!`. Then the original image is used.

The `xxcolor` package sets the alternate extension to the current color
mixin.

    \pgfdeclareimage[interpolate=true,width=1cm,height=1cm]
      {image1}{brave-gnu-world-logo}
    \pgfdeclareimage[interpolate=true,width=1cm]{image2}{brave-gnu-world-logo}
    \pgfdeclareimage[interpolate=true,height=1cm]{image3}{brave-gnu-world-logo}
    \begin{pgfpicture}
      \pgftext[at=\pgfpoint{1cm}{5cm},left,base]{\pgfuseimage{image1}}
      \pgftext[at=\pgfpoint{1cm}{3cm},left,base]{\pgfuseimage{image2}}
      \pgftext[at=\pgfpoint{1cm}{1cm},left,base]{\pgfuseimage{image3}}

      \pgfpathrectangle{\pgfpoint{1cm}{5cm}}{\pgfpoint{1cm}{1cm}}
      \pgfpathrectangle{\pgfpoint{1cm}{3cm}}{\pgfpoint{1cm}{1cm}}
      \pgfpathrectangle{\pgfpoint{1cm}{1cm}}{\pgfpoint{1cm}{1cm}}
      \pgfusepath{stroke}
    \end{pgfpicture}

The following example demonstrates the effect of using `\pgfuseimage`
inside a colormixin environment.

    \pgfdeclareimage[interpolate=true,width=1cm,height=1cm]
      {image1.!25!white}{brave-gnu-world-logo.25}
    \pgfdeclareimage[interpolate=true,width=1cm]
      {image2.25!white}{brave-gnu-world-logo.25}
    \pgfdeclareimage[interpolate=true,height=1cm]
      {image3.white}{brave-gnu-world-logo.25}
    \begin{colormixin}{25!white}
    \begin{pgfpicture}
      \pgftext[at=\pgfpoint{1cm}{5cm},left,base]{\pgfuseimage{image1}}
      \pgftext[at=\pgfpoint{1cm}{3cm},left,base]{\pgfuseimage{image2}}
      \pgftext[at=\pgfpoint{1cm}{1cm},left,base]{\pgfuseimage{image3}}

      \pgfpathrectangle{\pgfpoint{1cm}{5cm}}{\pgfpoint{1cm}{1cm}}
      \pgfpathrectangle{\pgfpoint{1cm}{3cm}}{\pgfpoint{1cm}{1cm}}
      \pgfpathrectangle{\pgfpoint{1cm}{1cm}}{\pgfpoint{1cm}{1cm}}
      \pgfusepath{stroke}
    \end{pgfpicture}
    \end{colormixin}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfuseimage"
  },
  pgfusepath = {
    arguments = {{meta = "actions"}},
    details = [[
Applies the given ⟨actions⟩ to the current path. Afterwards, the current
path is (globally) empty. The following actions are possible:

-   `fill` fills the path. See Section ?? for further details.

        \begin{pgfpicture}
          \pgfpathmoveto{\pgfpointorigin}
          \pgfpathlineto{\pgfpoint{1cm}{1cm}}
          \pgfpathlineto{\pgfpoint{1cm}{0cm}}
          \pgfusepath{fill}
        \end{pgfpicture}

-   `stroke` strokes the path. See Section ?? for further details.

        \begin{pgfpicture}
          \pgfpathmoveto{\pgfpointorigin}
          \pgfpathlineto{\pgfpoint{1cm}{1cm}}
          \pgfpathlineto{\pgfpoint{1cm}{0cm}}
          \pgfusepath{stroke}
        \end{pgfpicture}

-   `draw` has the same effect as `stroke`.

-   `clip` clips all subsequent drawings against the path. Always
    suppresses arrow tips. See Section ?? for further details.

        \begin{pgfpicture}
          \pgfpathmoveto{\pgfpointorigin}
          \pgfpathlineto{\pgfpoint{1cm}{1cm}}
          \pgfpathlineto{\pgfpoint{1cm}{0cm}}
          \pgfusepath{stroke,clip}
          \pgfpathcircle{\pgfpoint{1cm}{1cm}}{0.5cm}
          \pgfusepath{fill}
        \end{pgfpicture}

-   `discard` discards the path, that is, it is not used at all. Giving
    this option (alone) has the same effect as giving an empty options
    list.

When more than one of the first three actions are given, they are
applied in the above ordering, regardless of their ordering in
⟨actions⟩. Thus, `{stroke,fill}` and `{fill,stroke}` have the same
effect.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfusepath"
  },
  pgfusepathqclip = {
    details = [[
Clips all subsequent drawings against the current path. The path is not
processed.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfusepathqclip"
  },
  pgfusepathqfill = {
    details = [[
Fills the path without further ado.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfusepathqfill"
  },
  pgfusepathqfillstroke = {
    details = [[
Fills and then strokes the path without further ado.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfusepathqfillstroke"
  },
  pgfusepathqstroke = {
    details = [[
Strokes the path without further ado. No arrows are drawn, no corners
are arced.

    \begin{pgfpicture}
      \pgfpathqcircle{5pt}
      \pgfusepathqstroke
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfusepathqstroke"
  },
  pgfuseplotmark = {
    arguments = {{meta = "plot mark name"}},
    details = [[
Draws the given ⟨plot mark name⟩ at the origin. The ⟨plot mark name⟩
must have been previously declared using `\pgfdeclareplotmark`.

    \begin{tikzpicture}
      \draw[gray] (0,0) node {x} (1,1) node {y} (2,.5) node {z};
      \pgfplothandlermark{\pgfuseplotmark{pentagon}}
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{0cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreamend
      \pgfusepath{stroke}
    \end{tikzpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfuseplotmark"
  },
  pgfuseshading = {
    arguments = {{meta = "shading name"}},
    details = [[
Inserts a previously declared shading into the text. If you wish to use
it in a `pgfpicture` environment, you should put a `\pgftext` around it.

    \begin{pgfpicture}
      \pgfdeclareverticalshading{myshadingD}
        {20pt}{color(0pt)=(red); color(20pt)=(blue)}
      \pgftext[at=\pgfpoint{1cm}{0cm}]  {\pgfuseshading{myshadingD}}
      \pgftext[at=\pgfpoint{2cm}{0.5cm}]{\pgfuseshading{myshadingD}}
    \end{pgfpicture}
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfuseshading"
  },
  pgfusetype = {
    arguments = {{meta = "type"}},
    details = [[
Sets the type used for the referencing of graphic objects for the
current scope to ⟨type⟩ or, if ⟨type⟩ starts with a dot, appends ⟨type⟩
to the current type.

You use this command with compound graphic objects: Before each part of
a graphic object, set the type to an appropriate value. Now, if the
object is named using `\pgfuseid`, you can later on access all parts of
the compound object using the combination of the ⟨name⟩ used with
`\pgfuseid` and the type of the part.

As an example, this system is used to give you access to the different
parts of a node: When use say `\pgfuseid{mynode}` and then create a
node, you can use `mynode` with the empty type to reference the graphics
scope that encompasses the whole node, but also `mynode` together with
the type `background` to access the background path of the node.

In detail, PGF uses this command to set the following types:

-   Inside the command `\pgfviewboxscope`, the type `.view` is used for
    the view object.

-   Inside the command `\pgfmultipartnode`, the type
    `.behind background` is used for the scope of drawings behind the
    background. Similarly, `.before background` and `.behind foreground`
    and finally `.before foreground` are used with the respective parts
    of a node.

-   Also inside a node, `.background` and `.foreground` are used as
    types of the background and foreground paths, respectively.

-   Finally, inside a node, for each text part, the text part's name is
    used as a type (so `.text` is used for the main part).

In addition, TikZ uses this command in the following situations:

-   The type `.path` is used with a named path (named using the `name`
    key). This is the graphic object you need to reference when you wish
    to morph a path.

-   The type `.path picture` is used with the scope of the optional path
    picture.

-   The type `.path fill` is used with the path used for filling. This
    is not the same as the normal path in case the path is filled and
    patterned, for instance.

-   The type `.path shade` is used with the path used for shading a
    path.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfusetype"
  },
  pgfverticaltransformationadjustment = {
    details = [[
$1/\\texttt{\textbackslash mathit\{transform\}(0,1)\textbackslash }_2$.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfverticaltransformationadjustment"
  },
  pgfwarning = {
    arguments = {{meta = "message"}},
    details = [[
Prints the ⟨message⟩ on the output, but does not interrupt the
processing. In LaTeX, this will be done using `\PackageWarning`,
otherwise a write to stream $17$ is used.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/pgfwarning"
  },
  usepgflibrary = {
    arguments = {{meta = "list of libraries"}},
    details = [[
Use this command to load further libraries. The list of libraries should
contain the names of libraries separated by commas. Instead of curly
braces, you can also use square brackets. If you try to load a library a
second time, nothing will happen.

`\usepgflibrary{arrows}`

This command causes the file `pgflibrary`⟨library⟩`.code.tex` to be
loaded for each ⟨library⟩ in the ⟨list of libraries⟩. This means that in
order to write your own library file, place a file of the appropriate
name somewhere where TeX can find it. LaTeX, plain TeX, and ConTeXt
users can then use your library.

You should also consider adding a TikZ library that simply includes your
PGF library.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/usepgflibrary"
  },
  usepgfmodule = {
    arguments = {{meta = "module names"}},
    details = [[
Once the core has been loaded, you can use this command to load further
modules. The modules in the ⟨module names⟩ list should be separated by
commas. Instead of curly braces, you can also use square brackets, which
is something ConTeXt users will like. If you try to load a module a
second time, nothing will happen.

`\usepgfmodule{matrix,shapes}`

What this command does is to load the file
`pgfmodule`⟨module⟩`.code.tex` for each ⟨module⟩ in the list of ⟨module
names⟩. Thus, to write your own module, all you need to do is to place a
file of the appropriate name somewhere TeX can find it. LaTeX, plain
TeX, and ConTeXt users can then use your library.
]],
    documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf.back/usepgfmodule"
  }
}
keys = {
  pgf = {
    ["/pgfparser/silent"] = {
      details = [[
If `true` then no error will be thrown when a letter is parsed for which
no action is specified, silently ignoring it. This holds true for every
parser.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgfparser/silent",
      meta = "⟨boolean⟩"
    },
    ["/pgfparser/status"] = {
      details = [[
If `true` every parser prints a status message for every action
executed. This might help in debugging and understanding what the parser
does.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgfparser/status",
      meta = "⟨boolean⟩"
    },
    ["/pgfparser/⟨parser name⟩/silent"] = {
      details = [[
If `true` the parser ⟨parser name⟩ will silently ignore undefined
letters. This is an individual equivalent of `/pgfparser/silent` for
each defined parser.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgfparser/⟨parser:name⟩/silent",
      meta = "⟨boolean⟩"
    },
    ["and gate IEC symbol"] = {
      details = [[
Set the symbol for the `and gate`. Note that if the node is filled, this
color will be used for the symbol, making it invisible, so it will be
necessary set ⟨text⟩ to something like `\color{black}\char‘\& `.
Alternatively, the `logic gate IEC symbol color` key can be used to set
the color of all symbols simultaneously.

In TikZ, when the `use IEC style logic gates` key has been used, this
key can be replaced by `and gate symbol`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/and:gate:IEC:symbol",
      meta = "⟨text⟩"
    },
    ["animate/events/click"] = {
      details = [[
This is a shorthand for `event=click`. This event gets triggered when
the user clicks on the triggering object with a mouse (or something
equivalent).

    \tikz \node :rotate = { 0s="0", 2s="90", begin on = {click}}
      [fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animate/events/click"
    },
    ["animation/along"] = {
      details = [[
This key must be used with `motion` attribute to specify a path along
which the transformation matrix will be "moved" (that is, a shift
transformation will be added to the different points on the path).

The values passed to the `entry` key specify fractions of the distance
along the ⟨path⟩. That means, when you provide a value of `0`, you
reference the start point of the path, a value of `1` references the end
of the path and `0.5` referenced the point halfway along the path.

    \tikz [very thick] {
      \pgfanimateattribute{motion}{
        whom = node, begin on = {click},
        along = \pgfpathmoveto{\pgfpointorigin}
                \pgfpathlineto{\pgfpoint{0mm}{5mm}},
        entry = {0s}{0}, entry = {1s}{0.5}, entry = {2s}{0.25}, entry={3s}{1} }
      \node (node) [fill = blue!20, draw = blue, circle] {Click me!}; }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/along",
      meta = "⟨path⟩"
    },
    ["animation/arrows"] = {
      details = [[
This key specifies arrow tips during the animation of the path. The
syntax for the arrow tips is the same syntax as the `\pgfsetarrow`
command or TikZ's `arrows` key. The specified start and end arrow tips
are rendered as "markers", which are added to the path *only* during the
animation. The markers are rotated along with the path in exactly the
same way as normal arrow tips would be. To be precise, the rules used
for the computation of where arrow tips go and in which direction they
head is not always the same for "static" arrow tips (arrow tips added to
a normal path) and the "dynamic" arrow tips based on markers; namely
when the paths are very short or closed. For this reason, you should add
arrow tips to animated paths only when the paths are "nice and simple"
in the sense that they consist of a single segment whose ends are
reasonably long.

In addition to adding the arrow tips to the path during the animation,
the path gets shortened as necessary to compensate for the extend of the
arrow tips. However, for this to work, the arrow tips have to be
specified before path values are specified (since the shortening is done
immediately when a path value is parsed).

    \tikz {
      \pgfanimateattribute{path}{
        whom = p.path, begin on = {click, of next=node}, arrows = ->,
        entry = {1s}{\pgfpathmoveto{\pgfpoint{1cm}{0cm}}
                     \pgfpathlineto{\pgfpoint{2cm}{1cm}}},
        entry = {3s}{\pgfpathmoveto{\pgfpoint{1cm}{1cm}}
                     \pgfpathlineto{\pgfpoint{2cm}{5mm}}}}
      \node (node) [fill = blue!20, draw = blue, very thick, circle] {Click me!};
      \draw [very thick, blue, name=p] (1,0.5) -- (2,0.5);
    }

Note that the markers that visualize the arrow tips are rendered only
once per animation. In consequence, "bending" arrow tips cannot be
rendered correctly: As a path "morphs" a bend arrow tip needs not only
to rotate along, but must actually "bend along", which is not supported
(neither by PGF nor by SVG).

As pointed out earlier, an animated path cannot have "static" arrow
tips. However, when you specify a `base` value, which is the path used
whenever there is no active animation, *will* use the arrow tips. As a
result, you can use this to animate a path with an arrow tip:

    \tikz {
      \pgfanimateattribute{path}{
        whom = p.path, begin on = {click, of next=node}, arrows = ->,
        base = {\pgfpathmoveto{\pgfpoint{1cm}{5mm}}
                \pgfpathlineto{\pgfpoint{2cm}{5mm}}},
        entry = {1s}{\pgfpathmoveto{\pgfpoint{1cm}{0cm}}
                     \pgfpathlineto{\pgfpoint{2cm}{1cm}}},
        entry = {3s}{\pgfpathmoveto{\pgfpoint{1cm}{1cm}}
                     \pgfpathlineto{\pgfpoint{2cm}{5mm}}}}
      \node (node) [fill = blue!20, draw = blue, very thick, circle] {Click me!};
      \draw [very thick, blue, name=p];
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/arrows",
      meta = "⟨start tip spec⟩-⟨end tip spec⟩"
    },
    ["animation/begin"] = {
      details = [[
This key specifies when the "moment `0s`" should be relative to the
moment when the current graphic is first displayed. You can use this key
multiple times, in this case the timeline is restarted for each of the
times specified (if it is already running, it will be reset). If no
`begin` key is given at all, the effect is the same as if `begin=0s` had
been specified.

It is permissible to set ⟨time⟩ to a negative value.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/begin",
      meta = "⟨time⟩"
    },
    ["animation/begin on"] = {
      details = [[
Has the same effect as `/tikz/animate/option/begin on`, see Section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/begin:on",
      meta = "⟨options⟩"
    },
    ["animation/end"] = {
      details = [[
This key will truncate the timeline so that it ends ⟨time⟩ after the
display of the graphic, provided the timeline begins before the
specified end time. For instance, if you specify a timeline starting at
2 s and ending at 5 s and you set `begin` to 1 s and `end` to 4 s, the
timeline will run, relative to the moment when the graphic is displayed
from 3 s to 4 s.

    \tikz [very thick] {
      \pgfanimateattribute{rotate}{
        whom = node, begin = 2s, end = 4s,
        entry = {1s}{0}, entry = {2s}{90}, entry = {3s}{180}, entry = {4s}{270} }
      \node (node) [fill = blue!20, draw = blue, circle] {Turn after 3s!}; }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/end",
      meta = "⟨time⟩"
    },
    ["animation/end on"] = {
      details = [[
Works exactly like `begin on`, one possible end of the timeline is
specified using the ⟨options⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/end:on",
      meta = "⟨options⟩"
    },
    ["animation/entry"] = {
      details = [[
You use this key repeatedly to specify the different values that the
⟨attribute⟩ should have over time. At the ⟨time⟩ specified, the
⟨attribute⟩ will have the value specified as ⟨value⟩:

    \tikz {
      \pgfanimateattribute{rotate}{
        whom = node, begin on = {click},
        entry = {0s}{0}, entry = {1s}{90}, entry = {1.1s}{45}, entry = {2s}{90}
      }
      \node (node) [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }

You need to call `entry` once for each time in the timeline for which
you want to specify a ⟨value⟩ explicitly. Between these times, the
values get interpolated (see below for details). You need to specify the
⟨time⟩s in non-decreasing order (it is permissible and sometimes also
necessary to specify the same time twice, namely to create a "jump" of
the value of some attribute).

The ⟨time⟩ is parsed using the command `\pgfparsetime` described later.

**Start and end of the timeline.** The first and last times of the
timeline are a bit special: The timeline starts on the first time and
the duration of the timeline is the difference between the first and
last time. "Starting" on the start time actually means that any
beginnings (see the `begin` and `end` keys) get offset by the start
time; similarly end times are offset by this value.

**Syntax of the values.** The syntax of the ⟨value⟩ varies according to
the type of the ⟨attribute⟩. In detail, these are:

  ----------- ----------------------------------------------------------------
  *Type*      *Syntax*
  color       Standard color syntax like `red` or `black!10`
  scalar      A value parsed using `\pgfmathparse`
  dimension   A dimension parsed using `\pgfmathparse`
  path        A sequence of path construction commands
  softpath    A sequence of soft path construction commands
  scaling     A scalar value or a pair of scalar values separated by a comma
  point       A PGF-point like `\pgfpoint{1cm}{5mm}`
  viewbox     Two PGF-points
  boolean     `true` or `false`
  ----------- ----------------------------------------------------------------

**Interpolation between key times.** You use the `entry` key repeatedly,
namely once for each "key time", which is a time point for which you
specify the value of the attribute explicitly. Between these key times,
the attribute's value is interpolated. Normally, this is just a linear
interpolation, but you can influence this using the following keys, see
Section ?? for details.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/entry",
      meta = "{time}{value}"
    },
    ["animation/events/begin"] = {
      details = [[
Shorthand for `event=begin`. The "begin" refers to the beginning of
another animation, namely the one referenced by `of` or `of whom`. This
means that the current animation will begin when some other animation
begins.

    \tikz \node [animate = {
          myself:rotate = { 0s="0", 2s="90", begin on = {begin, of next=anim}},
          myself:xshift = { 0s="0mm", 2s="5mm", begin on = {click}, name=anim}
        },
        fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/begin"
    },
    ["animation/events/delay"] = {
      details = [[
Specifies that the timeline should not start with the event, but,
rather, be delayed by ⟨time⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/delay",
      meta = "⟨time⟩"
    },
    ["animation/events/end"] = {
      details = [[
Shorthand for `event=end`. Again, the "end" refers to the end of another
animation, namely the one referenced by `of` or `of whom`. This means
that the current animation will *begin* when some other animation
*ends*.

    \tikz \node [animate = {
        myself:rotate = { 0s="0", 2s="90", begin on = {end, of next=anim}},
        myself:xshift = { 0s="0mm", 2s="5mm", begin on = {click}, name=anim }
      },
      fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/end"
    },
    ["animation/events/event"] = {
      details = [[
Specifies the name of the event whose occurrence should start the
timeline. Which events are supported depends on the device on which the
animation is displayed, the output format (SVG or some other format),
and the setup of scripts, but here is a list of events supported by
"plain SVG": `click`, `focusin`, `focusout`, `mousedown`, `mouseup`,
`mouseover`, `mousemove`, `mouseout`, `begin`, `end`. However, the
following keys make using these events simpler:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/event",
      meta = "⟨event name⟩"
    },
    ["animation/events/focus in"] = {
      details = [[
This is a shorthand for `event=focusin`. This event gets triggered when
the graphic object gets the focus (this usually makes sense only for
text input fields).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/focus:in"
    },
    ["animation/events/focus out"] = {
      details = [[
This is a shorthand for `event=focusout`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/focus:out"
    },
    ["animation/events/key"] = {
      details = [[
The event is triggered when the keyboard key ⟨key⟩ has been pressed. For
security reasons, a viewer may suppress this.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/key",
      meta = "⟨key⟩"
    },
    ["animation/events/mouse down"] = {
      details = [[
Shorthand for `event=mousedown`. The event gets triggered when the user
presses a mouse button down on the object.

    \tikz \node :rotate = { 0s="0", 2s="90", begin on = {mouse down}}
      [fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/mouse:down"
    },
    ["animation/events/mouse move"] = {
      details = [[
Shorthand for `event=mousemove`. The event gets triggered lots of times,
namely each time the mouse moves while being "over" the object.

    \tikz \node :rotate = { 0s="0", 2s="90", begin on = {mouse move} }
      [fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/mouse:move"
    },
    ["animation/events/mouse out"] = {
      details = [[
Shorthand for `event=mouseout`. The opposite of `mouse over`: triggered
when the mouse leaves the object.

    \tikz \node :rotate = { 0s="0", 2s="90", begin on = {mouse out} }
      [fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/mouse:out"
    },
    ["animation/events/mouse over"] = {
      details = [[
Shorthand for `event=mouseover`. The event gets triggered the moment the
mouse cursor moves over the object.

    \tikz \node :rotate = { 0s="0", 2s="90", begin on = {mouse over} }
      [fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/mouse:over"
    },
    ["animation/events/mouse up"] = {
      details = [[
Shorthand for `event=mouseup` and gets triggered, of course, when a
pressed button is released on the object.

    \tikz \node :rotate = { 0s="0", 2s="90", begin on = {mouse up} }
      [fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/mouse:up"
    },
    ["animation/events/of"] = {
      details = [[
This specifies a graphic object id in the same way as the `whom` key,
also with an optional ⟨type⟩. This is the object that "causes" the event
to happen.

Unlike the `whom` key, which always refers to a not-yet-existing object,
this key always refers to an already existing object, namely to the most
recent use of the ⟨id⟩. In the following example, the referenced object
is the node with the label `2` since it is the most recently referenced
node with ⟨id⟩ `X`.

    \tikz [very thick] {
      \node (X) at (1,1.2)  [fill = blue!20, draw = blue, circle] {1};
      \node (X) at (1,0.4)  [fill = orange!20, draw = orange, circle] {2};
      \node (node) :rotate = {0s="0", 2s="90", begin on = {click, of = X}}
                   [fill = red!20, draw = red, rectangle] {Anim};
      \node (X) at (1,-0.4) [fill = blue!20, draw = blue, circle] {3};
      \node (X) at (1,-1.2) [fill = blue!20, draw = blue, circle] {4}; }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/of",
      meta = "⟨id⟩.⟨type⟩"
    },
    ["animation/events/of next"] = {
      details = [[
This key works like the `of` key, only it refers to a future (actually,
the next) object with the given ⟨id⟩, not to a previous one. This, in
the next example, the referenced node is the one with label `3`.

    \tikz [very thick] {
      \node (X) at (1,1.2)  [fill = blue!20, draw = blue, circle] {1};
      \node (X) at (1,0.4)  [fill = blue!20, draw = blue, circle] {2};
      \node (node) :rotate = {
                     0s="0", 2s="90", begin on = {click, of next = X}}
                   [fill = red!20, draw = red, rectangle] {Anim};
      \node (X) at (1,-0.4) [fill = orange!20, draw = orange, circle] {3};
      \node (X) at (1,-1.2) [fill = blue!20, draw = blue, circle] {4}; }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/of:next",
      meta = "⟨id⟩.⟨type⟩"
    },
    ["animation/events/repeat"] = {
      details = [[
The event is triggered when a repeating animation has been repeated
⟨number⟩ times.

    \tikz
      \node [animate = { myself: = {
        :rotate = { 0s="0", 2s="90", begin on = {repeat = 2, of next = anim },
                    begin snapshot = 2 },
        :xshift = { 0s="0mm", 2s="5mm", begin on=click, name=anim, repeats=4 }}},
        fill = blue!20, draw = blue, circle, ultra thick] {Here!};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/events/repeat",
      meta = "⟨number⟩"
    },
    ["animation/freeze at end"] = {
      details = [[
When set to `true`, whenever a timeline ends (either because the last
time of timeline has been reached or because an `end` or `end of` key
have ended it prematurely), the last value the attribute had because of
the animation "stays put". When set to `false`, which is the initial
value, once an animation ends, its effect will be removed "as if it
never happened".

    \tikz [very thick] {
      \pgfanimateattribute{rotate}{
        whom = node, begin on = {click}, freeze at end = false,
        entry = {0s}{0}, entry = {2s}{90} }
      \node (node) [fill = blue!20, draw = blue, circle] {Here!}; }

    \tikz [very thick] {
      \pgfanimateattribute{rotate}{
        whom = node, begin on = {click}, freeze at end,
        entry = {0s}{0}, entry = {2s}{90} }
      \node (node) [fill = blue!20, draw = blue, circle] {Here!}; }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/freeze:at:end",
      meta = "⟨true or false⟩"
    },
    ["animation/name"] = {
      details = [[
Assigns a name to the animation by which it can be referenced using the
`of` and `of next` keys in another animation.

    \tikz [very thick] {
      \pgfanimateattribute{rotate}{
        whom = node, begin on = {end, of next = my move animation, delay = 1s},
        entry = {0s}{0}, entry = {2s}{90}, begin snapshot = 3s, }
      \pgfanimateattribute{translate}{
        name = my move animation, whom = node, begin on = {click},
        entry = {0s}{\pgfpointorigin}, entry = {2s}{\pgfpoint{0cm}{-5mm}} }
      \node (node) [fill = blue!20, draw = blue, circle] {Here!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/name",
      meta = "⟨name⟩"
    },
    ["animation/origin"] = {
      details = [[
An animation of the canvas transformation is added to all other
transformations from surrounding or interior scopes. This means that, in
particular, the origin of a canvas transformation is, by default, the
origin of the canvas of the scope surrounding the transformation object.

For some canvas animations, like a rotation or a scaling, you will
typically wish to use a different origin (like the center of an object
that is to be rotated or scaled). You can achieve this effect by
surrounding the object by a scope that shifts the canvas to the desired
origin, followed by a scope whose transformation matrix you animate,
followed by a scope that shifts back the canvas.

The `origin` key simplifies this process by allowing you to specify the
origin of the transformation directly. Internally, however, all this key
does is to create the above-mentioned scopes with the necessary shifts.

    \tikz [very thick] {
      \pgfanimateattribute{rotate}{
        whom = node, begin on = {click},
        origin = \pgfpoint{-5mm}{0mm}, entry = {0s}{0}, entry = {2s}{90} }
      \node (node) [fill = blue!20, draw = blue, circle] {Click me!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/origin",
      meta = "⟨pgf point⟩"
    },
    ["animation/repeat"] = {
      details = [[
This is an alias for `repeats`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/repeat",
      meta = "⟨specification⟩"
    },
    ["animation/repeats"] = {
      details = [[
Use this key to specify that the timeline animation should repeat at the
end. The ⟨specification⟩ must consist of two parts, each of which may be
empty. The first part is one of the following:

-   Empty, in which case the timeline repeats forever.

        \tikz [very thick] {
          \pgfanimateattribute{rotate}{
            whom = node, begin on = {click}, repeats,
            entry = {0s}{0}, entry = {2s}{90} }
          \node (node) [fill = blue!20, draw = blue, circle] {Click me!}; }

-   A ⟨number⟩ (like `2` or `3.25`), in which case the timeline repeats
    ⟨number⟩ times.

        \tikz [very thick] {
          \pgfanimateattribute{rotate}{
            whom = node, begin on = {click}, repeats = 1.75,
            entry = {0s}{0}, entry = {2s}{90} }
          \node (node) [fill = blue!20, draw = blue, circle] {Click me!}; }

-   The text "`for` ⟨time⟩" (like `for 2s` or `for 300ms`), in which
    case the timeline repeats however often necessary so that it stops
    exactly after ⟨time⟩.

        \tikz [very thick] {
          \pgfanimateattribute{rotate}{
            whom = node, begin on = {click}, repeats = for 3.5s,
            entry = {0s}{0}, entry = {2s}{90} }
          \node (node) [fill = blue!20, draw = blue, circle] {Click me!}; }

The second part of the specification must be one of the following:

-   Empty, in which case each time the timeline is restarted, the
    attribute's value undergoes the same series of values it did
    previously.

-   The text `accumulating`. This has the effect that each time the
    timeline is restarted, the attribute values specified by the
    timeline are *added* to the value from the previous iteration(s). A
    typical example is an animation that shifts a scope by, say, 1 cm
    over a time of 1 s. Now, if you repeat this five times, normally the
    scope will shift 1 cm for 1 s then "jump back", shift again, jump
    back, and so on for five times. In contrast, when the repeats are
    accumulating, the scope will move by 5 cm over 5 s in total.

        \tikz [very thick] {
          \pgfanimateattribute{rotate}{
            whom = node, begin on = {click}, repeats = accumulating,
            entry = {0s}{0}, entry = {2s}{90} }
          \node (node) [fill = blue!20, draw = blue, circle] {Click me!}; }

        \tikz [very thick] {
          \pgfanimateattribute{rotate}{
            whom = node, begin on = {click}, repeats = 2 accumulating,
            entry = {0s}{0}, entry = {2s}{90} }
          \node (node) [fill = blue!20, draw = blue, circle] {Click me!}; }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/repeats",
      meta = "⟨specification⟩"
    },
    ["animation/restart"] = {
      details = [[
Has the same effect as `/tikz/animate/option/restart`, see Section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/restart",
      meta = "⟨choice⟩"
    },
    ["animation/rotate along"] = {
      details = [[
When set to `true`, the `along` key additionally adds a rotation that
varies in such a way that a tangent to the path always points right.

    \tikz [very thick] {
      \pgfanimateattribute{motion}{
        whom = node, begin on = {click},
        rotate along = true,
        along = \pgfpathmoveto {\pgfpointorigin}
                \pgfpathcurveto{\pgfpoint{5mm}{0cm}}{\pgfpoint{5mm}{0cm}}
                               {\pgfpoint{5mm}{5mm}},
        entry = {0s}{0}, entry = {2s}{1} }
      \node (node) [fill = blue!20, draw = blue, circle] {Click me!}; }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/rotate:along",
      meta = "⟨Boolean⟩"
    },
    ["animation/shorten <"] = {
      details = [[
Works like `shorten >`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/shorten:<",
      meta = "⟨dimension⟩"
    },
    ["animation/shorten >"] = {
      details = [[
Just like the normal TikZ key `shorten >`, this key specifies an extra
shortening of to-be-animated paths. Whenever a path is parsed as a value
for a path animation, it gets shortened at the end by the ⟨dimension⟩
(and, additionally, by the length of the attached arrow tip). Just like
the `arrows` key, this key must be given before the path entries are
specified.

    \tikz {
      \pgfanimateattribute{path}{
        whom = p.path, begin on = {click, of next=node}, arrows = ->,
        shorten > = 2mm,
        base = {\pgfpathmoveto{\pgfpoint{1cm}{5mm}}
                \pgfpathlineto{\pgfpoint{2cm}{5mm}}},
        entry = {1s}{\pgfpathmoveto{\pgfpoint{1cm}{0cm}}
                     \pgfpathlineto{\pgfpoint{2cm}{1cm}}},
        entry = {3s}{\pgfpathmoveto{\pgfpoint{1cm}{1cm}}
                     \pgfpathlineto{\pgfpoint{2cm}{5mm}}}}
      \node (node) [fill = blue!20, draw = blue, very thick, circle] {Click me!};
      \draw              (0.9,-0.1) grid (2.1,1.1);
      \draw [help lines] (0.9,-0.1) grid[step=1mm] (2.1,1.1);
      \draw [very thick, blue, name=p];
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/shorten:>",
      meta = "⟨dimension⟩"
    },
    ["animation/whom"] = {
      details = [[
You *must* use this key once which each call of the
`\pgfanimateattribute` command. The ⟨id⟩ and the optional ⟨type⟩ (which
is whatever follows the first dot) will be passed to `\pgfidrefnextuse`,
see that command for details.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animation/whom",
      meta = "⟨id⟩.⟨type⟩"
    },
    ["animations/entry control"] = {
      details = [[
Works like `exit control`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animations/entry:control",
      meta = "{time fraction}{value fraction}"
    },
    ["animations/exit control"] = {
      details = [[
Same as `/tikz/animate/options/exit control`.

    \tikz {
      \foreach \i in {0,0.1,...,1} \draw (-0.9,.9-\i) -- ++(1.8,0);
      \pgfanimateattribute{translate}{
        whom = node, begin on = {click},
        exit control={1}{0},
        entry = {0s}{\pgfpointorigin},
        linear, % revert to default
        entry = {1s}{\pgfpoint{0cm}{-5mm}},
        entry control={0}{1},
        entry = {2s}{\pgfpoint{0cm}{-10mm}} }
      \node (node) [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animations/exit:control",
      meta = "{time fraction}{value fraction}"
    },
    ["animations/jump"] = {
      details = [[
Same as `/tikz/animate/options/jump`.

    \tikz {
      \foreach \i in {0,0.1,...,1} \draw (-0.9,.9-\i) -- ++(1.8,0);
      \pgfanimateattribute{translate}{
        whom = node, begin on = {click},
        entry = {0s}{\pgfpointorigin},
        jump,
        entry = {1s}{\pgfpoint{0cm}{-1cm}},
        linear,
        entry = {2s}{\pgfpoint{0cm}{-2cm}} }
      \node (node) [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animations/jump"
    },
    ["animations/linear"] = {
      details = [[
A shorthand for `exit control={0}{0}, entry control={1}{1}`. This will
(re)install a linear curve.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animations/linear"
    },
    ["animations/stay"] = {
      details = [[
Same as `/tikz/animate/options/stay`.

    \tikz {
      \foreach \i in {0,0.1,...,1} \draw (-0.9,.9-\i) -- ++(1.8,0);
      \pgfanimateattribute{translate}{
        whom = node, begin on = {click},
        entry = {0s}{\pgfpointorigin},
        stay,
        entry = {1s}{\pgfpoint{0cm}{-5mm}},
        linear,
        entry = {2s}{\pgfpoint{0cm}{-10mm}},
        entry = {3s}{\pgfpoint{0cm}{-15mm}} }
      \node (node) [fill = blue!20, draw = blue, very thick, circle] {Click me!};
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/animations/stay"
    },
    ["arrow box arrows"] = {
      details = [[
Sets the distance that all arrows extend from the node. The
specification in ⟨list⟩ consists of the four compass points `north`,
`south`, `east` or `west`, separated by commas (so the list must be
contained within braces). The distances can be specified after each side
separated by a colon (e.g., `north:1cm`, or `west:5cm from center`). If
an item specifies no distance, the most recently specified distance will
be used (at the start of the list this is `0cm`, so the first item in
the list should specify a distance). Any sides not specified will not be
drawn with an arrow.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:box:arrows",
      meta = "{⟨list⟩}"
    },
    ["arrow box east arrow"] = {
      details = [[
Sets the distance the east arrow extends from the node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:box:east:arrow",
      meta = "⟨distance⟩"
    },
    ["arrow box head extend"] = {
      details = [[
Sets the distance the arrow head extends away from the shaft of the
arrow. This applies to all arrows.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:box:head:extend",
      meta = "⟨length⟩"
    },
    ["arrow box head indent"] = {
      details = [[
Moves the point where the arrow head joins the shaft of the arrow
*towards* the arrow tip. This applies to all arrows.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:box:head:indent",
      meta = "⟨length⟩"
    },
    ["arrow box north arrow"] = {
      details = [[
Sets the distance the north arrow extends from the node. By default this
is from the border of the shape, but by using the additional keyword
`from center`, the distance will be measured from the center of the
shape. If ⟨distance⟩ is `0pt` or a negative distance, the arrow will not
be drawn.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:box:north:arrow",
      meta = "⟨distance⟩"
    },
    ["arrow box shaft width"] = {
      details = [[
Sets the width of the shaft of all arrows.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:box:shaft:width",
      meta = "⟨length⟩"
    },
    ["arrow box south arrow"] = {
      details = [[
Sets the distance the south arrow extends from the node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:box:south:arrow",
      meta = "⟨distance⟩"
    },
    ["arrow box tip angle"] = {
      details = [[
Sets the angle at the arrow tip for all four arrows.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:box:tip:angle",
      meta = "⟨angle⟩"
    },
    ["arrow box west arrow"] = {
      details = [[
Sets the distance the west arrow extends from the node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:box:west:arrow",
      meta = "⟨distance⟩"
    },
    ["arrow keys/angle"] = {
      details = [[
This key sets the `length` and the `width` of an arrow tip at the same
time. The length will be the cosine of ⟨angle⟩, while the width will be
twice the sine of half the ⟨angle⟩ (this slightly awkward rule ensures
that a `Stealth` arrow will have an opening angle of ⟨angle⟩ at its tip
if this option is used). As for the `length` key, if the optional
factors are given, they add a certain multiple of the line width to the
⟨dimension⟩ before the sine and cosines are computed.

    \tikz \draw [arrows = {-Stealth[inset=0pt, angle=90:10pt]}] (0,0) -- (1,0);

    \tikz \draw [arrows = {-Stealth[inset=0pt, angle=30:10pt]}] (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/angle",
      meta = "⟨angle⟩:⟨dimension⟩ ⟨line width factor⟩ ⟨outer factor⟩"
    },
    ["arrow keys/angle'"] = {
      details = [[
Sets the width of the arrow to twice the tangent of $⟨angle⟩/2$ times
the arrow length. This results in an arrow tip with an opening angle of
⟨angle⟩ at its tip and with the specified `length` unchanged.

    \tikz \draw [arrows = {-Stealth[inset=0pt, length=10pt, angle'=90]}]
                (0,0) -- (1,0);

    \tikz \draw [arrows = {-Stealth[inset=0pt, length=10pt, angle'=30]}]
                (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/angle'",
      meta = "⟨angle⟩"
    },
    ["arrow keys/arc"] = {
      details = [[
Sets the angle of arcs in arrows to ⟨degrees⟩. Note that this key is
quite different from the `angle` key, which is "just a fancy way of
setting the length and width". In contrast, the `arc` key is used to set
the degrees of arcs that are part of an arrow tip:

    \tikz [ultra thick] {
      \draw [arrows = {-Hooks[]}]         (0,1)   -- (1,1);
      \draw [arrows = {-Hooks[arc=90]}]   (0,0.5) -- (1,0.5);
      \draw [arrows = {-Hooks[arc=270]}]  (0,0)   -- (1,0);
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/arc",
      meta = "⟨degrees⟩"
    },
    ["arrow keys/bend"] = {
      details = [[
*Bending* an arrow tip is a radical solution to the problem of
positioning arrow tips on a curved line: The arrow tip is no longer
"rigid" but the drawing itself will now bend along the curve. This has
the advantage that all the problems of flexing with wrong tangents and
overflexing disappear. The downsides are longer computation times
(bending an arrow is *much* more expensive that flexing it, let alone
than quick mode) and also the fact that excessive bending can lead to
ugly arrow tips. On the other hand, for most arrow tips their bend
version are visually quite pleasing and create a sophisticated look:

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{Stealth[length=20pt,bend]}]
            (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
    \end{tikzpicture}

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{[bend,sep]>>>}]
            (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
    \end{tikzpicture}

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{Stealth[bend,round,length=20pt]}]
            (0,-.5) .. controls (1,-.5) and (0.25,0) .. (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/bend"
    },
    ["arrow keys/cap angle"] = {
      details = [[
Sets `length` to an appropriate multiple of the line width so that the
angle of a `Triangle Cap` is exactly ⟨angle⟩ at the tip.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/cap:angle",
      meta = "⟨angle⟩"
    },
    ["arrow keys/color"] = {
      details = [[
Normally, an arrow tip gets the same color as the path to which it is
attached. More precisely, it will get the current "draw color", also
known as "stroke color", which you can set using `draw=`⟨some color⟩. By
adding the option `color=` to an arrow tip (note that an "empty" color
is specified in this way), you ask that the arrow tip gets this default
draw color of the path. Since this is the default behavior, you usually
do not need to specify anything:

    \tikz [ultra thick] \draw [red, arrows = {-Stealth}] (0,0) -- (1,0);

    \tikz [ultra thick] \draw [blue, arrows = {-Stealth}] (0,0) -- (1,0);

Now, when you provide a ⟨color⟩ with this option, you request that the
arrow tip should get this color *instead* of the color of the main path:

    \tikz [ultra thick] \draw [red, arrows = {-Stealth[color=blue]}] (0,0) -- (1,0);

    \tikz [ultra thick] \draw [red, arrows = {-Stealth[color=black]}] (0,0) -- (1,0);

Similar to the `color` option used in normal TikZ options, you may omit
the `color=` part of the option. Whenever an ⟨arrow key⟩ is encountered
that TikZ does not recognize, it will test whether the key is the name
of a color and, if so, execute `color=`⟨arrow key⟩. So, the first of the
above examples can be rewritten as follows:

    \tikz [ultra thick] \draw [red, arrows = {-Stealth[blue]}] (0,0) -- (1,0);

The ⟨color⟩ will apply both to any drawing and filling operations used
to construct the path. For instance, even though the `Stealth` arrow
tips looks like a filled quadrilateral, it is actually constructed by
drawing a quadrilateral and then filling it in the same color as the
drawing (see the `fill` option below to see the difference).

When `color` is set to an empty text, the drawing color is always used
to fill the arrow tips, even if a different color is specified for
filling the path:

    \tikz [ultra thick] \draw [draw=red, fill=red!50, arrows = {-Stealth[length=10pt]}]
                              (0,0) -- (1,1) -- (2,0);

As you can see in the above example, the filled area is not quite what
you might have expected. The reason is that the path was actually
internally shortened a bit so that the end of the "fat line" as inside
the arrow tip and we get a "clear" arrow tip.

In general, it is a good idea not to add arrow tips to paths that are
filled.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/color",
      meta = "⟨color or empty⟩"
    },
    ["arrow keys/fill"] = {
      details = [[
Use this key to explicitly set the color used for filling the arrow
tips. This color can be different from the color used to draw (stroke)
the arrow tip:

    \tikz {
      \draw [help lines] (0,-.5) grid [step=1mm] (1,.5);
      \draw [thick, red, arrows = {-Stealth[fill=white,length=15pt]}] (0,0) -- (1,0);
    }

You can also specify the special "color" `none`. In this case, the arrow
tip is not filled at all (not even with white):

    \tikz {
      \draw [help lines] (0,-.5) grid [step=1mm] (1,.5);
      \draw [thick, red, arrows = {-Stealth[fill=none,length=15pt]}] (0,0) -- (1,0);
    }

Note that such "open" arrow tips are a bit difficult to draw in some
case: The problem is that the line must be shortened by just the right
amount so that it ends exactly on the back end of the arrow tip. In some
cases, especially when double lines are used, this will not be possible.

When you use both the `color` and `fill` option, the `color` option must
come first since it will reset the filling to the color specified for
drawing.

    \tikz {
      \draw [help lines] (0,-.5) grid [step=1mm] (1,.5);
      \draw [thick, red, arrows = {-Stealth[color=blue, fill=white, length=15pt]}]
            (0,0) -- (1,0);
    }

Note that by setting `fill` to the special color `pgffillcolor`, you can
cause the arrow tips to be filled using the color used to fill the main
path. (This special color is always available and always set to the
current filling color of the graphic state.):

    \tikz [ultra thick] \draw [draw=red, fill=red!50,
                               arrows = {-Stealth[length=15pt, fill=pgffillcolor]}]
                              (0,0) -- (1,1) -- (2,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/fill",
      meta = "⟨color or none⟩"
    },
    ["arrow keys/flex"] = {
      details = [[
When the `bending` library is loaded, this key is applied to all arrow
tips by default. It has the following effect:

1.  Instead of simply shifting the visual end of the arrow along the
    tangent of the curve's end, we really move it along the curve by the
    necessary distance. This operation is more expensive than the
    `quick` operation -- but not *that* expensive, only expensive enough
    so that it is not selected by default for all arrow tips. Indeed,
    some compromises are made in the implementation where accuracy was
    traded for speed, so the distance by which the line end is shifted
    is not necessarily *exactly* 6.25mm; only something reasonably
    close.

2.  The supports of the line are updated accordingly so that the
    shortened line will still follow *exactly* the original line. This
    means that the curve deformation effect caused by the `quick`
    command does not happen here.

3.  Next, the arrow tip is rotated and shifted as follows: First, we
    shift it so that its tip is exactly at the tip end, where the
    original line ended. Then, the arrow is rotated so the *the visual
    end lies on the line*:

        \begin{tikzpicture}
          \wall
          \draw [red!25,line width=1mm] (-1,0) -- (1,0);
          \draw [red,line width=1mm,-{Stealth[length=1cm,open,blue,flex]}]
                (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
        \end{tikzpicture}

As can be seen in the example, the `flex` option gives a result that is
visually pleasing and does not deform the path.

There is, however, one possible problem with the `flex` option: The
arrow tip no longer points along the tangent of the end of the path.
This may or may not be a problem, put especially for larger arrow tips
readers will use the orientation of the arrow head to gauge the
direction of the tangent of the line. If this tangent is important (for
example, if it should be horizontal), then it may be necessary to
enforce that the arrow tip "really points in the direction of the
tangent".

To achieve this, the `flex` option takes an optional ⟨factor⟩ parameter,
which defaults to `1`. This factor specifies how much the arrow tip
should be rotated: If set to `0`, the arrow points exactly along a
tangent to curve at its tip. If set to `1`, the arrow point exactly
along a line from the visual end point on the curve to the tip. For
values in the middle, we interpolate the rotation between these two
extremes; so `flex=.5` will rotate the arrow's visual end "halfway away
from the tangent towards the actual position on the line".

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{Stealth[length=1cm,open,blue,flex=0]}]
            (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
    \end{tikzpicture}

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{Stealth[length=1cm,open,blue,flex=.5]}]
            (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
    \end{tikzpicture}

Note how in the above examples the red line is visible inside the open
arrow tip. Open arrow tips do not go well with a flex value other
than `1`. Here is a more realistic use of the `flex=0` key:

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{Stealth[length=1cm,flex=0]}]
            (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
    \end{tikzpicture}

If there are several arrow tips on a path, the `flex` option positions
them independently, so that each of them lies optimally on the path:

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{[flex,sep]>>>}]
            (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/flex",
      meta = "⟨factor⟩"
    },
    ["arrow keys/flex'"] = {
      details = [[
The `flex’` key is almost identical to the `flex` key. The only
difference is that a factor of `1` corresponds to rotating the arrow tip
so that the instead of the visual end, the "ultimate back end" of the
arrow tip lies on the red path. In the example instead of having the
arrow tip at a distance of `6.25mm` from the tip lie on the path, we
have the point at a distance of `1cm` from the tip lie on the path:

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{Stealth[length=1cm,open,blue,flex']}]
            (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
    \end{tikzpicture}

Otherwise, the factor works as for `flex` and, indeed `flex=0` and
`flex’=0` have the same effect.

The main use of this option is not so much with an arrow tip like
`Stealth` but rather with tips like the standard `>` in the context of a
strongly curved line:

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{Computer Modern Rightarrow[flex]}]
            (0,-.5) .. controls (1,-.5) and (0.5,0) .. (1,0);
    \end{tikzpicture}

In the example, the `flex` option does not really flex the arrow since
for a tip like the Computer Modern arrow, the visual end is the same as
the arrow tip -- after all, the red line does, indeed, end almost
exactly where it used to end.

Nevertheless, you may feel that the arrow tip looks "wrong" in the sense
that it should be rotated. This is exactly what the `flex’` option does
since it allows us to align the "back end" of the tip with the red line:

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{Computer Modern Rightarrow[flex'=.75]}]
            (0,-.5) .. controls (1,-.5) and (0.5,0) .. (1,0);
    \end{tikzpicture}

In the example, I used `flex’=.75` so as not to overpronounce the
effect. Usually, you will have to fiddle with it sometime to get the
"perfectly aligned arrow tip", but a value of `.75` is usually a good
start.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/flex'",
      meta = "⟨factor⟩"
    },
    ["arrow keys/harpoon"] = {
      details = [[
The key requests that only the "left half" of the arrow tip should
drawn:

    \tikz [ultra thick] \draw [arrows = {-Stealth[harpoon]}] (0,0) -- (1,0);

    \tikz [ultra thick] \draw [arrows = {->[harpoon]}] (0,0) -- (1,0);

Unlike the `reversed` key, which all arrows tip kinds support at least
in a basic way, designers of arrow tips really need to take this key
into account in their arrow tip code and often a lot of special
attention needs to do be paid to this key in the implementation. For
this reason, only some arrow tips will support it.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/harpoon"
    },
    ["arrow keys/inset"] = {
      details = [[
The key is relevant only for some arrow tips such as the `Stealth` arrow
tip. It specifies a distance by which something inside the arrow tip is
set inwards; for the `Stealth` arrow tip it is the distance by which the
back angle is moved inwards.

The computation of the distance works in the same way as for `length`
and `width`: To the ⟨dimension⟩ we add ⟨line width factor⟩ times that
line width, where the line width is computed based on the ⟨outer factor⟩
as described for the `length` key.

    \tikz \draw [arrows = {-Stealth[length=10pt, inset=5pt]}] (0,0) -- (1,0);

    \tikz \draw [arrows = {-Stealth[length=10pt, inset=2pt]}] (0,0) -- (1,0);

For most arrows for which there is no "natural inset" like, say,
`Latex`, this key has no effect.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/inset",
      meta = "⟨dimension⟩ ⟨line width factor⟩ ⟨outer factor⟩"
    },
    ["arrow keys/inset'"] = {
      details = [[
This key works like `inset`, only like `width’` the second parameter is
a factor of the arrow length rather than of the line width. For
instance, the `Stealth` arrow sets `inset’` to `0pt 0.325` to ensure
that the inset is always at $13/40$th of the arrow length if nothing
else is specified.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/inset'",
      meta = "⟨dimension⟩ ⟨length factor⟩ ⟨line width factor⟩"
    },
    ["arrow keys/left"] = {
      details = [[
A shorthand for `harpoon`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/left"
    },
    ["arrow keys/length"] = {
      details = [[
\[length-arrow-key\] This parameter is usually the most important
parameter that governs the size of an arrow tip: The ⟨dimension⟩ that
you provide dictates the distance from the "very tip" of the arrow to
its "back end" along the line:

    \tikz{
      \draw [-{Stealth[length=5mm]}] (0,0) -- (2,0);
      \draw [|<->|] (1.5,.4) -- node[above=1mm] {5mm} (2,.4);
    }

    \tikz{
      \draw [-{Latex[length=5mm]}] (0,0) -- (2,0);
      \draw [|<->|] (1.5,.4) -- node[above=1mm] {5mm} (2,.4);
    }

    \tikz{
      \draw [-{Classical TikZ Rightarrow[length=5mm]}] (0,0) -- (2,0);
      \draw [|<->|] (1.5,.6) -- node[above=1mm] {5mm} (2,.6);
    }

**The Line Width Factors.** Following the ⟨dimension⟩, you may put a
space followed by a ⟨line width factor⟩, which must be a plain number
(no `pt` or `cm` following). When you provide such a number, the size of
the arrow tip is not just ⟨dimension⟩, but rather
$⟨dimension⟩ + ⟨line width
    factor⟩\cdot w$ where $w$ is the width of the to-be-drawn path. This
makes it easy to vary the size of an arrow tip in accordance with the
line width -- usually a very good idea since thicker lines will need
thicker arrow tips.

As an example, when you write `length=0pt 5`, the length of the arrow
will be exactly five times the current line width. As another example,
the default length of a `Latex` arrow is `length=3pt 4.5 0.8`. Let us
ignore the 0.8 for a moment; the `3pt 4.5` then means that for the
standard line width of `0.4pt`, the length of a `Latex` arrow will be
exactly 4.8pt (3pt plus 4.5 times `0.4pt`).

Following the line width factor, you can additionally provide an ⟨outer
factor⟩, again preceded by a space (the `0.8` in the above example).
This factor is taken into consideration only when the `double` option is
used, that is, when a so-called "inner line width". For a double line,
we can identify three different "line widths", namely the inner line
width $w_i$, the line width $w_o$ of the two outer lines, and the "total
line width" $w_t = w_i + 2w_o$. In the below examples, we have
$w_i = 3\mathrm{pt}$, $w_o=1\mathrm{pt}$, and $w_t = 5\mathrm{pt}$. It
is not immediately clear which of these line widths should be considered
as $w$ in the above formula $⟨dimension⟩ + ⟨line width factor⟩\cdot
    w$ for the computation of the length. One can argue both for $w_t$
and also for $w_o$. Because of this, you use the ⟨outer factor⟩ to
decide on one of them or even mix them: TikZ sets
$w = ⟨outer factor⟩ w_o
    + (1-⟨outer factor⟩)w_t$. Thus, when the outer factor is $0$, as in
the first of the following examples and as is the default when it is not
specified, the computed $w$ will be the total line width $w_t =
    5\mathrm{pt}$. Since $w=5\mathrm{pt}$, we get a total length of
$15pt$ in the first example (because of the factor `3`). In contrast, in
the last example, the outer factor is 1 and, thus,
$w = w_o = \mathrm{1pt}$ and the resulting length is 3pt. Finally, for
the middle case, the "middle" between 5pt and 1pt is 3pt, so the length
is 9pt.

    \tikz \draw [line width=1pt, double distance=3pt,
                 arrows = {-Latex[length=0pt 3 0]}] (0,0) -- (1,0);

    \tikz \draw [line width=1pt, double distance=3pt,
                 arrows = {-Latex[length=0pt 3 .5]}] (0,0) -- (1,0);

    \tikz \draw [line width=1pt, double distance=3pt,
                 arrows = {-Latex[length=0pt 3 1]} ] (0,0) -- (1,0);

**The Exact Length.** For an arrow tip kind that is just an outline that
is filled with a color, the specified length should *exactly* equal the
distance from the tip to the back end. However, when the arrow tip is
drawn by stroking a line, it is no longer obvious whether the `length`
should refer to the extend of the stroked lines' path or of the
resulting pixels (which will be wider because of the thickness of the
stroking pen). The rules are as follows:

1.  If the arrow tip consists of a closed path (like `Stealth` or
    `Latex`), imagine the arrow tip drawn from left to right using a
    miter line cap. Then the `length` should be the horizontal distance
    from the first drawn "pixel" to the last drawn "pixel". Thus, the
    thickness of the stroked line and also the miter ends should be
    taken into account:

        \tikz{
          \draw [line width=1mm, -{Stealth[length=10mm, open]}]
                  (0,0) -- (2,0);
          \draw [|<->|] (2,.6) -- node[above=1mm] {10mm} ++(-10mm,0);
        }

2.  If, in the above case, the arrow is drawn using a round line join
    (see Section ?? for details on how to select this), the size of the
    arrow should still be the same as in the first case (that is, as if
    a miter join were used). This creates some "visual consistency" if
    the two modes are mixed or if you later want to change the mode.

        \tikz{
          \draw [line width=1mm, -{Stealth[length=10mm, open, round]}]
                  (0,0) -- (2,0);
          \draw [|<->|] (2,.6) -- node[above=1mm] {10mm} ++(-10mm,0);
        }

    As the above example shows, however, a rounded arrow will still
    exactly "tip" the point where the line should end (the point `(2,0)`
    in the above case). It is only the scaling of the arrow that is not
    affected.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/length",
      meta = "⟨dimension⟩ ⟨line width factor⟩ ⟨outer factor⟩"
    },
    ["arrow keys/line cap"] = {
      details = [[
Sets the line cap of all lines that are drawn in the arrow to a round
cap or a butt cap. (Unlike for normal lines, the `rect` cap is not
allowed.) Naturally, this key has no effect for arrows whose paths are
closed.

Each arrow tip has a default value for the line cap, which can be
overruled using this option.

Changing the cap should have no effect on the size of the arrow.
However, it will have an effect on where the exact "tip" of the arrow is
since this will always be exactly at the end of the arrow:

    \tikz [line width=2mm]
      \draw [arrows = {-Computer Modern Rightarrow[line cap=butt]}]
            (0,0) -- (1,0);

    \tikz [line width=2mm]
      \draw [arrows = {-Computer Modern Rightarrow[line cap=round]}]
            (0,0) -- (1,0);

    \tikz [line width=2mm]
      \draw [arrows = {-Bracket[reversed,line cap=butt]}]
            (0,0) -- (1,0);

    \tikz [line width=2mm]
      \draw [arrows = {-Bracket[reversed,line cap=round]}]
            (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/line:cap",
      meta = "⟨round or butt⟩"
    },
    ["arrow keys/line join"] = {
      details = [[
Sets the line join to round or miter (`bevel` is not allowed). This
time, the key only has an effect on paths that have "corners" in them.
The same rules as for `line cap` apply: the size is not affects, but the
tip end is:

    \tikz [line width=2mm]
      \draw [arrows = {-Computer Modern Rightarrow[line join=miter]}]
            (0,0) -- (1,0);

    \tikz [line width=2mm]
      \draw [arrows = {-Computer Modern Rightarrow[line join=round]}]
            (0,0) -- (1,0);

    \tikz [line width=2mm]
      \draw [arrows = {-Bracket[reversed,line join=miter]}]
            (0,0) -- (1,0);

    \tikz [line width=2mm]
      \draw [arrows = {-Bracket[reversed,line join=round]}]
            (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/line:join",
      meta = "⟨round or miter⟩"
    },
    ["arrow keys/line width"] = {
      details = [[
This key sets the line width inside an arrow tip for drawing (out)lines
of the arrow tip. When you set this width to `0pt`, which makes sense
only for closed tips, the arrow tip is only filled. This can result in
better rendering of some small arrow tips and in case of bend arrow tips
(because the line joins will also be bend and not "mitered".)

The meaning of the factors is as usual the same as for `length` or
`width`.

    \tikz \draw [arrows = {-Latex[line width=0.1pt, fill=white, length=10pt]}] (0,0) -- (1,0);

    \tikz \draw [arrows = {-Latex[line width=1pt, fill=white, length=10pt]}] (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/line:width",
      meta = "⟨dimension⟩ ⟨line width factor⟩ ⟨outer factor⟩"
    },
    ["arrow keys/line width'"] = {
      details = [[
Works like `line width` only the factor is with respect to the `length`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/line:width'",
      meta = "⟨dimension⟩ ⟨length factor⟩"
    },
    ["arrow keys/n"] = {
      details = [[
Sets the number of rays in a `Rays` arrow tip.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/n",
      meta = "⟨number⟩"
    },
    ["arrow keys/open"] = {
      details = [[
A shorthand for `fill=none`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/open"
    },
    ["arrow keys/quick"] = {
      details = [[
Recall that curves in TikZ are actually Bézier curves, which means that
they start and end at certain points and we specify two vectors, one for
the start and one for the end, that provide tangents to the curve at
these points. In particular, for the end of the curve, there is a point
called the *second support point* of the curve such that a tangent to
the curve at the end goes through this point. In our above example, the
second support point is at the middle of the light red line and, indeed,
a tangent to the red line at the point touching the wall is perfectly
horizontal.

In order to add our arrow tip to the curved path, our first objective is
to "shorten" the path by 6.25mm. Unfortunately, this is now much more
difficult than for a straight path. When the `quick` option is added to
an arrow tip (it is also the default if no special libraries are
loaded), we cheat somewhat: Instead of really moving along 6.25mm along
the path, we simply shift the end of the curve by 6.25mm *along the
tangent* (which is easy to compute). We also have to shift the second
support point by the same amount to ensure that the line still has the
same tangent at the end. This will result in the following:

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{Stealth[length=1cm,open,blue,quick]}]
            (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
    \end{tikzpicture}

They main problem with the above picture is that the red line is no
longer equal to the original red line (notice much sharper curvature
near its end). In our example this is not such a bad thing, but it
certainly "not a nice thing" that adding arrow tips to a curve changes
the overall shape of the curves. This is especially bothersome if there
are several similar curves that have different arrow heads. In this
case, the similar curves now suddenly look different.

Another big problem with the above approach is that it works only well
if there is only a single arrow tip. When there are multiple ones,
simply shifting them along the tangent as the `quick` option does
produces less-than-satisfactory results:

    \begin{tikzpicture}
      \wall
      \draw [red!25,line width=1mm] (-1,0) -- (1,0);
      \draw [red,line width=1mm,-{[quick,sep]>>>}]
            (-1,-.5) .. controls (0,-.5) and (0,0) .. (1,0);
    \end{tikzpicture}

Note that the third arrow tip does not really lie on the curve any more.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/quick"
    },
    ["arrow keys/reversed"] = {
      details = [[
Adding this key to an arrow tip will "reverse its direction" so that is
points in the opposite direction (but is still at that end of the line
where the non-reversed arrow tip would have been drawn; so only the tip
is reversed). For most arrow tips, this just results in an internal flip
of a coordinate system, but some arrow tips actually use a slightly
different version of the tip for reversed arrow tips (namely when the
joining of the tip with the line would look strange). All of this
happens automatically, so you do not need to worry about this.

If you apply this key twice, the effect cancels, which is useful for the
definition of shorthands (which will be discussed later).

    \tikz [ultra thick] \draw [arrows = {-Stealth[reversed]}] (0,0) -- (1,0);

    \tikz [ultra thick] \draw [arrows = {-Stealth[reversed, reversed]}] (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/reversed"
    },
    ["arrow keys/right"] = {
      details = [[
A shorthand for `harpoon, swap`.

    \tikz [ultra thick] \draw [arrows = {-Stealth[left]}] (0,0) -- (1,0);

    \tikz [ultra thick] \draw [arrows = {-Stealth[right]}] (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/right"
    },
    ["arrow keys/round"] = {
      details = [[
A shorthand for `line cap=round, line join=round`, resulting in
"rounded" arrow heads.

    \tikz [line width=2mm]
      \draw [arrows = {-Computer Modern Rightarrow[round]}] (0,0) -- (1,0);

    \tikz [line width=2mm]
      \draw [arrows = {-Bracket[reversed,round]}] (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/round"
    },
    ["arrow keys/sep"] = {
      details = [[
When a sequence of arrow tips is specified in an arrow tip specification
for the end of the line, the arrow tips are normally arranged in such a
way that the tip of each arrow ends exactly at the "back end" of the
next arrow tip (for start specifications, the ordering is inverted, of
course). Now, when the `sep` option is set, instead of exactly touching
the back end of the next arrow, the specified ⟨dimension⟩ is added as
additional space (the distance may also be negative, resulting in an
overlap of the arrow tips). The optional factors have the same meaning
as for the `length` key, see that key for details.

Let us now have a look at some examples. First, we use two arrow tips
with different separations between them:

    \tikz {
      \draw [-{>[sep=1pt]>[sep= 2pt]>}] (0,1.0) -- (1,1.0);
      \draw [-{>[sep=1pt]>[sep=-2pt]>}] (0,0.5) -- (1,0.5);
      \draw [-{>         >[sep]     >}] (0,0.0) -- (1,0.0);
    }

You can also specify a `sep` for the last arrow tip in the sequence (for
end specifications, otherwise for the first arrow tip). In this case,
this first arrow tip will not exactly "touch" the point where the path
ends, but will rather leave the specified amount of space. This is
usually quite desirable.

    \tikz {
      \node [draw] (A) {A};
      \node [draw] (B) [right=of A] {B};

      \draw [-{>>[sep=2pt]}] (A) to [bend left=45] (B);
      \draw [- >>          ] (A) to [bend right=45] (B);
    }

Indeed, adding a `sep` to an arrow tip is *very* desirable, so you will
usually write something like `>={To[sep]}` somewhere near the start of
your files.

One arrow tip kind can be quite useful in this context: The arrow tip
kind `_ `. It draws nothing and has zero length, *but* it has `sep` set
as a default option. Since it is a single letter shorthand, you can
write short and clean "code" in this way:

    \tikz \draw [->_>] (0,0) -- (1,0);

    \tikz \draw [->__>] (0,0) -- (1,0);

However, using the `sep` option will be faster than using the `_ ` arrow
tip and it also allows you to specify the desired length directly.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/sep",
      meta = "⟨dimension⟩ ⟨line width factor⟩ ⟨outer factor⟩"
    },
    ["arrow keys/sharp"] = {
      details = [[
A shorthand for `line cap=butt, line join=miter`, resulting in "sharp"
or "pointed" arrow heads.

    \tikz [line width=2mm]
      \draw [arrows = {-Computer Modern Rightarrow[sharp]}] (0,0) -- (1,0);

    \tikz [line width=2mm]
      \draw [arrows = {-Bracket[reversed,sharp]}] (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/sharp"
    },
    ["arrow keys/slant"] = {
      details = [[
Slanting is used to create an "italics" effect for arrow tips: All arrow
tips get "slanted" a little bit relative to the axis of the arrow:

    \tikz {
      \draw [arrows = {->[]}]         (0,1)   -- (1,1);
      \draw [arrows = {->[slant=.5]}] (0,0.5) -- (1,0.5);
      \draw [arrows = {->[slant=1]}]  (0,0)   -- (1,0);
    }

There is one thing to note about slanting: Slanting is done using a
so-called "canvas transformation" and has no effect on positioning of
the arrow tip. In particular, if an arrow tip gets slanted so strongly
that it starts to protrude over the arrow tip end, this does not change
the positioning of the arrow tip.

Here is another example where slanting is used to match italic text:

    \tikz [>={[slant=.3] To[] To[]}]
      \graph [math nodes] { A -> B <-> C };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/slant",
      meta = "⟨factor⟩"
    },
    ["arrow keys/swap"] = {
      details = [[
This key flips that arrow tip along the axis of the line. It makes sense
only for asymmetric arrow tips like the harpoons created using the
`harpoon` option.

    \tikz [ultra thick] \draw [arrows = {-Stealth[harpoon]}] (0,0) -- (1,0);

    \tikz [ultra thick] \draw [arrows = {-Stealth[harpoon,swap]}] (0,0) -- (1,0);

Swapping is always possible, no special code is needed on behalf of an
arrow tip implementer.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/swap"
    },
    ["arrow keys/width"] = {
      details = [[
This key works like the `length` key, only it specifies the "width" of
the arrow tip; so if width and length are identical, the arrow will just
touch the borders of a square. (An exception to this rule are "halved"
arrow tips, see Section ??.) The meaning of the two optional factor
numbers following the ⟨dimension⟩ is the same as for the `length` key.

    \tikz \draw [arrows = {-Latex[width=10pt, length=10pt]}] (0,0) -- (1,0);

    \tikz \draw [arrows = {-Latex[width=0pt 10, length=10pt]}] (0,0) -- (1,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/width",
      meta = "⟨dimension⟩ ⟨line width factor⟩ ⟨outer factor⟩"
    },
    ["arrow keys/width'"] = {
      details = [[
The key (note the prime) has a similar effect as the `width` key. The
difference is that the second, still optional parameter ⟨length factor⟩
specifies the width of the key not as a multiple of the line width, but
as a multiple of the arrow length.

The idea is that if you write, say, `width’=0pt 0.5`, the width of the
arrow will be half its length. Indeed, for standard arrow tips like
`Stealth` the default width is specified in this way so that if you
change the length of an arrow tip, you also change the width in such a
way that the aspect ratio of the arrow tip is kept. The other way round,
if you modify the factor in `width’` without changing the length, you
change the aspect ratio of the arrow tip.

Note that later changes of the length are taken into account for the
computation. For instance, if you write

    length = 10pt, width'=5pt 2, length=7pt

the resulting width will be $19\mathrm{pt} = 5\mathrm{pt} + 2\cdot
    7\mathrm{pt}$.

    \tikz \draw [arrows = {-Latex[width'=0pt .5, length=10pt]}] (0,0) -- (1,0);

    \tikz \draw [arrows = {-Latex[width'=0pt .5, length=15pt]}] (0,0) -- (1,0);

The third, also optional, parameter allows you to add a multiple of the
line width to the value computed in terms of the length.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrow:keys/width'",
      meta = "⟨dimension⟩ ⟨length factor⟩ ⟨line width factor⟩"
    },
    ["arrows keys/scale"] = {
      details = [[
After all the other options listed in the previous (and also the
following sections) have been processed, TikZ applies a *scaling* to the
computed length, inset, and width of the arrow tip (and, possibly, to
other size parameters defined by special-purpose arrow tip kinds).
Everything is simply scaled by the given ⟨factor⟩.

    \tikz {
      \draw [arrows = {-Stealth[]}]          (0,1)   -- (1,1);
      \draw [arrows = {-Stealth[scale=1.5]}] (0,0.5) -- (1,0.5);
      \draw [arrows = {-Stealth[scale=2]}]   (0,0)   -- (1,0);
    }

Note that scaling has *no* effect on the line width (as usual) and also
not on the arrow padding (the `sep`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrows:keys/scale",
      meta = "⟨factor⟩"
    },
    ["arrows keys/scale length"] = {
      details = [[
This factor works like `scale`, only it is applied only to dimensions
"along the axis of the arrow", that is, to the length and to the inset,
but not to the width.

    \tikz {
      \draw [arrows = {-Stealth[]}]                 (0,1)   -- (1,1);
      \draw [arrows = {-Stealth[scale length=1.5]}] (0,0.5) -- (1,0.5);
      \draw [arrows = {-Stealth[scale length=2]}]   (0,0)   -- (1,0);
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrows:keys/scale:length",
      meta = "⟨factor⟩"
    },
    ["arrows keys/scale width"] = {
      details = [[
Like `scale length`, but for dimensions related to the width.

    \tikz {
      \draw [arrows = {-Stealth[]}]                 (0,1)   -- (1,1);
      \draw [arrows = {-Stealth[scale width=1.5]}] (0,0.5) -- (1,0.5);
      \draw [arrows = {-Stealth[scale width=2]}]   (0,0)   -- (1,0);
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/arrows:keys/scale:width",
      meta = "⟨factor⟩"
    },
    aspect = {
      details = [[
The aspect is a recommendation for the quotient of the radii of the
cylinder end. This may be ignored if the shape is enlarged to some
minimum width.

    \begin{tikzpicture}[]
      \tikzset{every node/.style={cylinder, shape border rotate=90, draw}}
      \node [aspect=1.0]           {A};
      \node [aspect=0.5]  at (1,0) {B};
      \node [aspect=0.25] at (2,0) {C};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/aspect",
      meta = "⟨value⟩"
    },
    ["bar interval shift"] = {
      details = [[
\[key-bar-interval-shift\]

Sets the *relative* shift of `\pgfplothandlerxbarinterval` and
`\pgfplothandlerybarinterval` to ⟨factor⟩. As `/pgf/bar interval width`,
the argument is relative to the interval length of the input
coordinates.

The argument `{scale}` will be evaluated using the math parser.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/bar:interval:shift",
      meta = "{factor}"
    },
    ["bar interval width"] = {
      details = [[
\[key-bar-interval-width\]

Sets the *relative* width of `\pgfplothandlerxbarinterval` and
`\pgfplothandlerybarinterval` to `{scale}`. The argument is relative to
$(x_{i+1} - x_i)$ for $y$ bar plots and relative to $(y_{i+1}-y_i)$ for
$x$ bar plots.

The argument `{scale}` will be evaluated using the math parser.

    \begin{tikzpicture}[bar interval width=0.5]
      \draw[gray]
        (0,3) -- (0,-0.1)
        (1,3) -- (1,-0.1)
        (2,3) -- (2,-0.1)
        (4,3) -- (4,-0.1);
      \pgfplothandlerybarinterval
      \begin{scope}[bar interval shift=0.25,fill=blue]
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{2cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{1cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.5cm}}
      \pgfplotstreampoint{\pgfpoint{4cm}{0.7cm}}
      \pgfplotstreamend
      \pgfusepath{fill}
      \end{scope}
      \begin{scope}[bar interval shift=0.75,fill=red]
      \pgfplotstreamstart
      \pgfplotstreampoint{\pgfpoint{0cm}{3cm}}
      \pgfplotstreampoint{\pgfpoint{1cm}{0.2cm}}
      \pgfplotstreampoint{\pgfpoint{2cm}{0.7cm}}
      \pgfplotstreampoint{\pgfpoint{4cm}{0.2cm}}
      \pgfplotstreamend
      \pgfusepath{fill}
      \end{scope}
    \end{tikzpicture}

Please note that bars are always centered, so we have to use shifts
$0.25$ and $0.75$ instead of $0$ and $0.5$.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/bar:interval:width",
      meta = "{scale}"
    },
    ["bar shift"] = {
      details = [[
Sets a shift used by `\pgfplothandlerxbar` and `\pgfplothandlerybar` to
`{dimension}`. It has the same effect as `xshift`, but it applies only
to those bar plots. The argument `{dimension}` will be evaluated using
the math parser.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/bar:shift",
      meta = "{dimension}"
    },
    ["bar width"] = {
      details = [[
Sets the width of `\pgfplothandlerxbar` and `\pgfplothandlerybar` to
`{dimension}`. The argument `{dimension}` will be evaluated using the
math parser.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/bar:width",
      meta = "{dimension}"
    },
    ["buffer gate IEC symbol"] = {
      details = [[
Set the symbol for the `buffer gate`. In TikZ, when the
`use IEC style logic gates` key has been used, this key can be replaced
by `buffer gate symbol`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/buffer:gate:IEC:symbol",
      meta = "⟨text⟩"
    },
    ["callout absolute pointer"] = {
      details = [[
Sets the vector of the callout pointer absolutely within the picture.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/callout:absolute:pointer",
      meta = "⟨coordinate⟩"
    },
    ["callout pointer arc"] = {
      details = [[
Sets the width of the pointer at the border of the ellipse according to
an arc of length ⟨angle⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/callout:pointer:arc",
      meta = "⟨angle⟩"
    },
    ["callout pointer end size"] = {
      details = [[
Sets the size of the last ellipse in the pointer.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/callout:pointer:end:size",
      meta = "⟨value⟩"
    },
    ["callout pointer segments"] = {
      details = [[
Sets the number of segments in the pointer. Note that PGF will happily
overlap segments if too many are specified.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/callout:pointer:segments",
      meta = "⟨number⟩"
    },
    ["callout pointer shorten"] = {
      details = [[
Moves the callout pointer towards the center of the callout's main shape
by ⟨distance⟩.

    \begin{tikzpicture}
        \tikzset{callout/.style={ellipse callout, callout pointer arc=30,
          callout absolute pointer={#1}}}
      \draw (0,0) grid (3,2);
      \node[callout={(3,1.5)}, fill=red!50] at (0,1.5) {A};
      \node[callout={(3,.5)},  fill=green!50, callout pointer shorten=1cm]
        at (0,.5)  {B};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/callout:pointer:shorten",
      meta = "⟨distance⟩"
    },
    ["callout pointer start size"] = {
      details = [[
Sets the size of the first segment in the pointer (i.e., the segment
nearest the main cloud shape). There are three possible forms for
⟨value⟩:

-   A single dimension (e.g., `5pt`), in which case the first ellipse
    will have equal diameters of 5pt.

-   Two dimensions (e.g., `10pt and 2.5pt`), which sets the $x$ and $y$
    diameters of the first ellipse.

-   A decimal fraction (e.g., `.2 of callout`), in which case the $x$
    and $y$ diameters of the first ellipse will be set as fractions of
    the width and height of the main shape. The keyword `of callout`
    cannot be omitted.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/callout:pointer:start:size",
      meta = "⟨value⟩"
    },
    ["callout pointer width"] = {
      details = [[
Sets the width of the pointer at the border of the rectangle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/callout:pointer:width",
      meta = "⟨length⟩"
    },
    ["callout relative pointer"] = {
      details = [[
Sets the vector of the callout pointer 'relative' to the callout shape.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/callout:relative:pointer",
      meta = "⟨coordinate⟩"
    },
    ["chamfered rectangle angle"] = {
      details = [[
Sets the angle *from the vertical* for the chamfer.

    \begin{tikzpicture}
      \tikzset{every node/.style={chamfered rectangle, draw}}
      \node[chamfered rectangle angle=30] {abc};
      \node[chamfered rectangle angle=60] at (1.5,0) {123};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/chamfered:rectangle:angle",
      meta = "⟨angle⟩"
    },
    ["chamfered rectangle corners"] = {
      details = [[
Specifies which corners are chamfered. The corners are identified by
their "compass point" directions (i.e. `north east`, `north west`,
`south west`, and `south east`), and must be separated by commas (so if
there is more than one corner in the list, it must be surrounded by
braces). Any corners not mentioned in ⟨list⟩ are automatically not
chamfered. Two additional values `chamfer all` and `chamfer none`, are
also permitted.

    \begin{tikzpicture}
      \tikzset{every node/.style={chamfered rectangle, draw}}
      \node[chamfered rectangle corners=north west] {ghi};
      \node[chamfered rectangle corners={north east, south east}] at (1.5,0) {789};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/chamfered:rectangle:corners",
      meta = "⟨list⟩"
    },
    ["chamfered rectangle sep"] = {
      details = [[
Sets both the `xsep` and `ysep` simultaneously.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/chamfered:rectangle:sep",
      meta = "⟨length⟩"
    },
    ["chamfered rectangle xsep"] = {
      details = [[
Sets the distance that the chamfer extends horizontally beyond the node
contents (which includes the `inner sep`). If ⟨length⟩ is large, such
that the top and bottom chamfered edges would cross, then ⟨length⟩ is
ignored and the chamfered edges are drawn so that they meet in the
middle.

    \begin{tikzpicture}
      \tikzset{every node/.style={chamfered rectangle, draw}}
      \node[chamfered rectangle xsep=2pt] {def};
      \node[chamfered rectangle xsep=2cm] at (1.5,0) {456};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/chamfered:rectangle:xsep",
      meta = "⟨length⟩"
    },
    ["chamfered rectangle ysep"] = {
      details = [[
Sets the distance that the chamfer extends vertically beyond the node
contents. If ⟨length⟩ is large, such that the left and right chamfered
edges would cross, then ⟨length⟩ is ignored and the chamfered edges are
drawn so that they meet in the middle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/chamfered:rectangle:ysep",
      meta = "⟨length⟩"
    },
    ["circular sector angle"] = {
      details = [[
Sets the central angle of the sector.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/circular:sector:angle",
      meta = "⟨angle⟩"
    },
    ["cloud ignores aspect"] = {
      details = [[
Instruct PGF to ignore the `aspect` key. Internally, the TeX-if
`\ifpgfcloudignoresaspect` is set appropriately. The initial value is
`false`.

    \begin{tikzpicture}[aspect=1, every node/.style={cloud, cloud puffs=11, draw}]
      \node [fill=gray!20]                                {rain};
      \node [cloud ignores aspect, fill=white] at (1.5,0) {snow};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/cloud:ignores:aspect",
      meta = "⟨boolean⟩"
    },
    ["cloud puff arc"] = {
      details = [[
Sets the length of the puff arc (in degrees). A shorter arc can produce
better looking joins between puffs for larger line widths.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/cloud:puff:arc",
      meta = "⟨angle⟩"
    },
    ["cloud puffs"] = {
      details = [[
Sets the number of puffs for the cloud.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/cloud:puffs",
      meta = "⟨integer⟩"
    },
    ["cylinder body fill"] = {
      details = [[
Sets the color for the body of the cylinder.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/cylinder:body:fill",
      meta = "⟨color⟩"
    },
    ["cylinder end fill"] = {
      details = [[
Sets the color for the end of the cylinder.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/cylinder:end:fill",
      meta = "⟨color⟩"
    },
    ["cylinder uses custom fill"] = {
      details = [[
This enables the use of a custom fill for the body and the end of the
cylinder. The background path for the shape should not be filled (e.g.,
in TikZ, the `fill` option for the node must be implicity or explicitly
set to `none`). Internally, this key sets the TeX-if
`\ifpgfcylinderusescustomfill` appropriately.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/cylinder:uses:custom:fill",
      meta = "⟨boolean⟩"
    },
    ["dart tail angle"] = {
      details = [[
Sets the angle between the tails of the dart.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/dart:tail:angle",
      meta = "⟨angle⟩"
    },
    ["dart tip angle"] = {
      details = [[
Sets the angle at the tip of the dart.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/dart:tip:angle",
      meta = "⟨angle⟩"
    },
    ["data visualization/style sheets/⟨style sheet⟩/default style"] = {
      details = [[
This key gets during styling whenever
`/pgf/data visualization/style sheet/`⟨style sheet⟩`/`⟨value⟩ is not
defined.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data:visualization/style:sheets/⟨style:sheet⟩/default:style",
      meta = "⟨value⟩"
    },
    ["data/format"] = {
      details = [[
Use this key to locally set the format used for parsing the data. The
⟨format⟩ must be a format that has been previously declared using the
`\pgfdeclaredataformat` command. See the reference section for a list of
the predefined formats.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/format",
      meta = "⟨format⟩"
    },
    ["data/headline"] = {
      details = [[
When this key is set to a non-empty value, the value of ⟨headline⟩ is
used as the headline and the first line of the data is treated as a
normal line rather than as a headline.

    \begin{tikzpicture}
      \datavisualization [school book axes, visualize as line]
        data [headline={x, y}] {
          0, 0
          1, 1
          2, 1
          3, 0
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/headline",
      meta = "⟨headline⟩"
    },
    ["data/inline"] = {
      details = [[
This is a shorthand file `read from file={}`. You can add this to make
it clear(er) to the reader that data follows inline.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/inline"
    },
    ["data/new set"] = {
      details = [[
Creates an empty data set called ⟨name⟩. If a data set of the same name
already exists, it is overwritten and made empty. Data sets are global.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/new:set",
      meta = "⟨name⟩"
    },
    ["data/read from file"] = {
      details = [[
If you set the `read from file` attribute to a non-empty ⟨filename⟩, the
data will be read from this file. In this case, no ⟨inline data⟩ may be
present, not even empty curly braces should be provided. If
`read from file` is empty, the data must directly follow as ⟨inline
data⟩.

    % Data is read from two external files:
    \pgfdata[format=table, read from file=file1.csv]
    \pgfdata[format=table, read from file=file2.csv]

    % Data is given inline:
    \pgfdata[format=table]
    {
      x, y
      1, 2
      2, 3
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/read:from:file",
      meta = "⟨filename⟩"
    },
    ["data/samples"] = {
      details = [[
Sets the number of samples to be used when no sample number is
specified.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/samples",
      meta = "⟨number⟩"
    },
    ["data/separator"] = {
      details = [[
Use this key to change which character is used to separate values in the
headline and in the data lines. To set the separator to a space, either
set this key to an empty value or say `separator=\space`. Note that you
must surround a comma by curly braces if you which to (re)set the
separator character to a space.

    \begin{tikzpicture}
      \datavisualization [school book axes, visualize as line]
        data [separator=\space] {
          x y
          0 0
          1 1
          2 1
          3 0
        }
        data [separator=;] {
          x; y; z
          3; 1; 0
          2; 2; 0
        };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/separator",
      meta = "⟨character⟩"
    },
    ["data/set"] = {
      details = [[
Shorthand for `/data point/set=`⟨name⟩.

    \tikz \datavisualization
     [scientific axes=clean,
      visualize as line=sin,
      visualize as line=cos]
    data [set=sin] {
      x, y
      0, 0
      1, 1
      2, 0
      3, -1
      4, 0
    }
    data [set=cos] {
      x, y
      0, 1
      1, 0
      2, -1
      3, 0
      4, 1
    };
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/set",
      meta = "⟨name⟩"
    },
    ["data/store in set"] = {
      details = [[
When this key is set to any non-empty ⟨name⟩ and if this ⟨name⟩ has
previously been used with the `new set` key, then the following happens:
For the current `\pgfdata` command, all parsed data is not passed to the
rendering pipeline. Instead, the parsed data is appended to the data set
⟨name⟩. This includes all options parsed to the `\pgfdata` command,
which is why neither this key nor the previous key should be passed as
options to a `\pgfdata` command.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/store:in:set",
      meta = "⟨name⟩"
    },
    ["data/use set"] = {
      details = [[
This works similar to `read from file`. When this key is used with a
`\pgfdata` command, no inline data may follow. Instead, the data stored
in the data set ⟨name⟩ is used.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/data/use:set",
      meta = "⟨name⟩"
    },
    ["declare function"] = {
      details = [[
This key allows simple functions to be created locally. Its use is
perhaps best illustrated by an example:

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      \draw [blue, thick, x=0.0085cm, y=1cm,
        declare function={
          sines(\t,\a,\b)=1 + 0.5*(sin(\t)+sin(\t*\a)+sin(\t*\b));
        }]
        plot [domain=0:360, samples=144, smooth] (\x,{sines(\x,3,5)});
    \end{tikzpicture}

Each definition in ⟨function definitions⟩ takes the form
⟨name⟩`(`⟨arguments⟩`)=`⟨definition⟩`;` (note the semicolon at the end,
this is very important). If multiple functions are being defined, the
semicolon is used to separate them (*not* a comma). The function ⟨name⟩
can be any name that is not already a function name in the current
scope. The list of ⟨arguments⟩ are commands such as `\x`, or `\y` (it is
not possible to declare functions that take variable numbers of
arguments using this key). If the function takes no arguments, then the
parentheses need not be used. The ⟨definition⟩ should be an expression
that can be parsed by the mathematical engine and should use the
commands specified in ⟨arguments⟩.

When specifying multiple functions, functions that appear later on in
⟨function definitions⟩ can refer to earlier functions:

    \begin{tikzpicture}[
      declare function={
        excitation(\t,\w) = sin(\t*\w);
        noise             = rnd - 0.5;
        source(\t)        = excitation(\t,20) + noise;
        filter(\t)        = 1 - abs(sin(mod(\t, 90)));
        speech(\t)        = 1 + source(\t)*filter(\t);
      }
    ]
      \draw [help lines] (0,0) grid (3,2);
      \draw [blue, thick, x=0.0085cm, y=1cm] (0,1) --
        plot [domain=0:360, samples=144, smooth] (\x,{speech(\x)});
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/declare:function",
      meta = "⟨function definitions⟩"
    },
    ["declare function/execute at begin function"] = {
      details = [[
These ⟨tokens⟩ are inserted just before `\pgfmathdeclarefunction` scans
the body of the function definition. This is a rather low-level option,
so you should read the implementation to figure out where the ⟨tokens⟩
are inserted.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/declare:function/execute:at:begin:function",
      meta = "⟨tokens⟩"
    },
    ["declare function/execute at end function"] = {
      details = [[
These ⟨tokens⟩ are inserted just after `\pgfmathdeclarefunction` has
finished scanning the body of the function definition. This is a rather
low-level option, so you should read the implementation to figure out
where the ⟨tokens⟩ are inserted.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/declare:function/execute:at:end:function",
      meta = "⟨tokens⟩"
    },
    ["declare function/ignore spaces"] = {
      details = [[
Uses the two previously described keys
`/pgf/declare function/execute at begin function` and
`/pgf/declare function/execute at end function` to install catcodes such
that spaces inside the body of the function definition of
`\pgfmathdeclarefunction` are ignored. The usual TeX tokenization rules
apply, so if the body of the function had already been tokenized by
other means this will become ineffective. If you want to use a space you
can use ` ` in the function body which has its catcode set to 10
(space).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/declare:function/ignore:spaces",
      meta = "⟨boolean⟩"
    },
    decoration = {
      details = [[
This option is used to specify which decoration is used and how it will
look like. Note that this key will *not* cause any decorations to be
applied, immediately. It takes the `decorate` path command or the
`decorate` option to actually decorate a path. The `decoration` option
is only used to specify which decoration should be used, in principle.
You can also use this option at the beginning of a picture or a scope to
specify the decoration to be used with each invocation of the `decorate`
path command. Naturally, any local options of the `decorate` path
command override these "global" options.

    \begin{tikzpicture}[decoration=zigzag]
      \draw       decorate                      {(0,0) -- (3,2)};
      \draw [red] decorate [decoration=crosses] {(0,2) -- (3,0)};
    \end{tikzpicture}

The ⟨decoration options⟩ are special options (which have the path prefix
`/pgf/decoration/`) that determine the properties of the decoration.
Which options are appropriate for a decoration strongly depend on the
decoration, you will have to look up the appropriate options in the
documentation of the decoration, see Section ??.

There is one option (available only in TikZ) that is special:

Further options allow you to adjust the position of decorations relative
to the to-be-decorated path. See Section ?? below for details.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration",
      meta = "⟨decoration options⟩"
    },
    ["decoration automaton/auto corner on length"] = {
      details = [[
This key has the following effect: Firstly, in case the TeX-if
`\ifpgfdecoratepathhascorners` is false, nothing happens. Otherwise, it
is tested whether the remaining distance on the current input segment is
at most ⟨dimension⟩. If so, a `lineto` operation is used to reach the
end of this input segment and the automaton continues with the next
input segment, but remains in the current state.

The main idea behind this option is to avoid having decoration segments
"overshoot" past a corner.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/auto:corner:on:length",
      meta = "⟨dimension⟩"
    },
    ["decoration automaton/auto end on length"] = {
      details = [[
This key is just included for convenience, it does nothing that cannot
be achieved using the previous options. The effect is the following: If
the remaining input path's length is at most ⟨dimension⟩, the decorated
path is ended with a straight line to the end of the input path and,
possibly, it is closed, namely if the input path ended with a closepath
operation. Otherwise, it is checked whether the current input segment is
a closepath segment and whether the remaining distance on the current
input segment is at most ⟨distance⟩. If so, then a closepath operation
is used to close the decorated path and the automaton continues with the
next subpath, remaining in the current state.

In all other cases, nothing happens.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/auto:end:on:length",
      meta = "⟨dimension⟩"
    },
    ["decoration automaton/if input segment is closepath"] = {
      details = [[
This key checks whether the current input segment is a closepath
operation. If so, the ⟨options⟩ get executed; otherwise nothing happens.
You can use this option to handle a closepath in some special way, for
instance, switching to a new state in which `\pgfpathclose` is executed.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/if:input:segment:is:closepath",
      meta = "⟨options⟩"
    },
    ["decoration automaton/next state"] = {
      details = [[
After the ⟨code⟩ for state has been executed for the last time, a state
switch to ⟨new state⟩ is performed. If this option is not given, the
next state is the same as the current state.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/next:state",
      meta = "⟨new state⟩"
    },
    ["decoration automaton/persistent postcomputation"] = {
      details = [[
Works like the `persistent precomputation` option, only the ⟨postcode⟩
is executed after (and also outside) the TeX-group of the main ⟨code⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/persistent:postcomputation",
      meta = "⟨postcode⟩"
    },
    ["decoration automaton/persistent precomputation"] = {
      details = [[
If the ⟨code⟩ of the state is executed, the ⟨precode⟩ is executed first
and it is executed outside the TeX-group of the ⟨code⟩. Note that when
the ⟨precode⟩ is executed, the transformation matrix is not set up.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/persistent:precomputation",
      meta = "⟨precode⟩"
    },
    ["decoration automaton/repeat state"] = {
      details = [[
Tells PGF how long the automaton stays "normally" in the current state.
This count is reset to ⟨repetitions⟩ each time one of the `switch if`
keys causes a state switch. If no state switches occur, the ⟨code⟩ is
executed and the repetition counter is decreased. Then, there is once
more a chance of a state change caused by any of the ⟨options⟩. If no
repetition occurs, the ⟨code⟩ is executed once more and the counter is
decreased once more. When the counter reaches zero, the ⟨code⟩ is
executed once more, but, then, a different state is entered, as
specified by the `next state` option.

Note, that the maximum number of times the state will be executed is
$⟨repetitions⟩+1$.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/repeat:state",
      meta = "⟨repetitions⟩"
    },
    ["decoration automaton/switch if input segment less than"] = {
      details = [[
When this key is encountered, PGF checks whether the remaining distance
to the end of the current input segment of the input path is less than
⟨dimension⟩. If so, an immediate state switch to ⟨new state⟩ occurs.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/switch:if:input:segment:less:than",
      meta = " ⟨dimension⟩ to ⟨new state⟩"
    },
    ["decoration automaton/switch if less than"] = {
      details = [[
When this key is encountered, PGF checks whether the remaining distance
to the end of the input path is less than ⟨dimension⟩. If so, an
immediate state switch to ⟨new state⟩ occurs.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/switch:if:less:than",
      meta = "⟨dimension⟩ to ⟨new state⟩"
    },
    ["decoration automaton/width"] = {
      details = [[
First, this option causes an immediate switch to the state `final` if
the remaining distance on the input path is less than ⟨dimension⟩. The
effect is the same as if you had said
`switch if less than=`⟨dimension⟩` to final` just before the `width`
option.

If no switch occurs, this option tells PGF the width of the segment. The
current point will travel along the input path (as described earlier) by
this distance.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration:automaton/width",
      meta = "⟨dimension⟩"
    },
    ["decoration/amplitude"] = {
      details = [[
This key determines the "desired height" (or amplitude) of decorations
for which this makes sense. For instance, the initial value of `2.5pt`
means that deforming decorations should deform a path by up to 2.5pt
away from the original path.

This key sets the TeX-dimension `\pgfdecorationsegmentamplitude`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/amplitude",
      meta = "⟨dimension⟩"
    },
    ["decoration/anchor"] = {
      details = [[
The anchor used to position the shape backgrounds.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/anchor",
      meta = "⟨anchor⟩"
    },
    ["decoration/angle"] = {
      details = [[
The way some decorations look like depends on a configurable angle. For
instance, a `wave` decoration consists of arcs and the opening angle of
these arcs is given by the `angle`.

This key sets the TeX-macro `\pgfdecorationsegmentangle`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/angle",
      meta = "⟨degree⟩"
    },
    ["decoration/aspect"] = {
      details = [[
For some decorations there is a natural aspect ratio. For instance, for
a `brace` decoration the aspect ratio determines where the brace point
will be.

This key sets the TeX-macro `\pgfdecorationsegmentaspect`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/aspect",
      meta = "⟨factor⟩"
    },
    ["decoration/closepath code"] = {
      details = [[
Set the code to be executed for every closepath input segment.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/closepath:code",
      meta = "⟨code⟩"
    },
    ["decoration/curveto code"] = {
      details = [[
Set the code to be executed for every curveto input segment.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/curveto:code",
      meta = "⟨code⟩"
    },
    ["decoration/end radius"] = {
      details = [[
For some decorations there is a natural end radius (of some circle,
presumably).

This key stores the value directly inside the key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/end:radius",
      meta = "⟨dimension⟩"
    },
    ["decoration/foot angle"] = {
      details = [[
Footprints are rotated by this much.

    \begin{tikzpicture}[decoration={footprints,foot angle=60}]
      \fill [decorate] (0,0) -- (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/foot:angle"
    },
    ["decoration/foot length"] = {
      details = [[
The length or size of the footprint itself. A larger value makes the
footprint larger, but does not change the stride length.

    \begin{tikzpicture}[decoration={footprints,foot length=20pt}]
      \fill [decorate] (0,0) -- (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/foot:length"
    },
    ["decoration/foot of"] = {
      details = [[
The species whose footprints are shown. Possible values are:

  -------------------- -------------
  *Species*            *Result*
  `gnome`              \[PICTURE\]
  `human`              \[PICTURE\]
  `bird`               \[PICTURE\]
  `felis silvestris`   \[PICTURE\]
  -------------------- -------------
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/foot:of"
    },
    ["decoration/foot sep"] = {
      details = [[
The separation in the middle between the footprints. The footprints are
moved away from the path by half this amount.

    \begin{tikzpicture}[decoration={footprints,foot sep=10pt}]
      \fill [decorate] (0,0) -- (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/foot:sep"
    },
    ["decoration/lineto code"] = {
      details = [[
Set the code to be executed for every lineto input segment.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/lineto:code",
      meta = "⟨code⟩"
    },
    ["decoration/mark"] = {
      details = [[
This works similarly to the `at position` version of this option, only
multiple marks are placed, starting at ⟨start pos⟩ and then spaced apart
by ⟨stepping⟩. The ⟨start pos⟩, the ⟨end pos⟩, and also the ⟨stepping⟩
may all be specified in the same way as for the `at position` version,
that is, either using units or no units and also using positive or
negative values.

Let us start with a simple example in which we place ten crosses along a
path starting with the beginning of the path ($⟨start pos⟩ = 0$) and
ending at the end ($⟨end pos⟩ = 1$).

    \begin{tikzpicture}[decoration={markings,
        mark=between positions 0 and 1 step 0.1
             with { \draw (-2pt,-2pt) -- (2pt,2pt);
                    \draw (2pt,-2pt) -- (-2pt,2pt); }} ]
      \draw [help lines] grid (3,2);
      \draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
    \end{tikzpicture}

In the next example we place arrow shapes on the path instead of
crosses. Note the use of the `transform shape` option to ensure that the
nodes are actually rotated.

    \begin{tikzpicture}[decoration={markings,
        mark=between positions 0 and 1 step 1cm
          with { \node [single arrow,fill=red,
                        single arrow head extend=3pt,transform shape] {};}}]
      \draw [help lines] grid (3,2);
      \draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
    \end{tikzpicture}

Using the key `sequence number` we can also "number" the nodes and even
refer to them later on.

    \begin{tikzpicture}[decoration={markings,
        mark=between positions 0 and 1 step 1cm with {
          \node [draw,
            name=mark-\pgfkeysvalueof{/pgf/decoration/mark info/sequence number},
            transform shape]
          {\pgfkeysvalueof{/pgf/decoration/mark info/sequence number}};}}]
      \draw [help lines] grid (3,2);
      \draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
      \draw [red,->] (mark-3) -- (mark-7);
    \end{tikzpicture}

In the following example we use the distance info to place "length
information" on a path:

    \begin{tikzpicture}[decoration={markings,
        % Main marks
        mark=between positions 0 and 1 step 40pt with
          { \draw [help lines] (0,0) -- (0,0.5)
            node[above,font=\tiny]{
              \pgfkeysvalueof{/pgf/decoration/mark info/distance from start}}; },
        mark=at position -0.1pt with
          { \draw [help lines] (0,0) -- (0,0.5)
            node[above,font=\tiny]{
              \pgfkeysvalueof{/pgf/decoration/mark info/distance from start}}; }}]
      \draw [help lines] grid (5,3);
      \draw [postaction={decorate}]  (0,0) .. controls (8,3) and (0,3) .. (5,0) ;
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/mark",
      meta = "between positions ⟨start pos⟩ and ⟨end pos⟩ step ⟨stepping⟩ with ⟨code⟩"
    },
    ["decoration/mark connection node"] = {
      details = [[
When this key is set to a non-empty ⟨node name⟩ while the decoration is
being processed, the following happens: The marking code should, among
possibly other things, define a node named ⟨node name⟩. Then, the output
path of this decoration will contain a line-to to "one end" of this
node, followed by a moveto to the "other end" of the node. More
precisely, the first end is given by the position on the border of ⟨node
name⟩ that lies in the direction "from which the path heads toward the
node" while the other end lies on the border "where the path heads away
from the node". Furthermore, this option causes the decoration to end
with a line-to to the end instead of a move-to.

The net effect of all this is that when you decorate a straight line
with one or more markings that contain just a node, the line will
effectively connect these nodes.

Here are two examples that show how this works:

    \begin{tikzpicture}[decoration={markings,
        mark connection node=my node,
        mark=at position .5 with
          {\node [draw,blue,transform shape] (my node) {my node};}}]
      \draw [help lines] grid (3,2);
      \draw decorate { (0,0) -- (3,2) };
    \end{tikzpicture}

    \begin{tikzpicture}[decoration={markings,
        mark connection node=my node,
        mark=at position .25 with
          {\node [draw,red] (my node) {my node};}}]
      \draw [help lines] grid (3,2);
      \draw decorate { (0,0) -- (3,2) };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/mark:connection:node",
      meta = "⟨node name⟩"
    },
    ["decoration/mark info/distance from start"] = {
      details = [[
This key can only be read. Its value is the distance of the marking from
the start of the path in points. For instance, if the path length is
100pt and the marking is in the middle of the path, the value of this
key would be `50.0pt`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/mark:info/distance:from:start"
    },
    ["decoration/mark info/sequence number"] = {
      details = [[
This key can only be read. Its value (which can be obtained using the
`\pgfkeysvalueof` command) is a "sequence number" of the mark. The first
mark that is added to a path has number `1`, the second number `2`, and
so on. This key is mainly useful in conjunction with repeated markings
(see below).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/mark:info/sequence:number"
    },
    ["decoration/meta-amplitude"] = {
      details = [[
This key determines the amplitude for a meta-decoration.

The key sets the TeX-macro (!) `\pgfmetadecorationsegmentamplitude`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/meta-amplitude",
      meta = "⟨dimension⟩"
    },
    ["decoration/meta-segment length"] = {
      details = [[
This determined the length of the meta-segments from which a
meta-decoration is made up.

This key sets the TeX-macro (!) `\pgfmetadecorationsegmentlength`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/meta-segment:length",
      meta = "⟨dimension⟩"
    },
    ["decoration/mirror"] = {
      details = [[
Causes the segments of the decoration to be mirrored along the
to-be-decorated path. This is done after and in addition to any
transformations set using the `transform` and/or `raise` options.

    \begin{tikzpicture}
      \node (a)          {A};
      \node (b) at (2,1) {B};
      \draw                                                    (a) -- (b);
      \draw[decorate,decoration=brace]                         (a) -- (b);
      \draw[decorate,decoration={brace,mirror},red]            (a) -- (b);
      \draw[decorate,decoration={brace,mirror,raise=5pt},blue] (a) -- (b);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/mirror",
      meta = "⟨boolean⟩"
    },
    ["decoration/moveto code"] = {
      details = [[
Set the code to be executed for every moveto input segment. It is
important to remember that the transformations applied by the decoration
automaton are turned *off* when ⟨code⟩ is executed.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/moveto:code",
      meta = "⟨code⟩"
    },
    ["decoration/name"] = {
      details = [[
Use this key to set which decoration is to be used. The ⟨name⟩ can both
be a decoration or a meta-decoration (you need to worry about the
difference only if you wish to define your own decorations).

If you set ⟨name⟩ to `none`, no decorations are added.

    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \draw decorate [decoration={name=zigzag}]
             { (0,0) .. controls (0,2) and (3,0) .. (3,2) };
    \end{tikzpicture}

Since this option is used so often, you can also leave out the `name=`
part. Thus, the above example can be rewritten more succinctly:

    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \draw decorate [decoration=zigzag]
             { (0,0) .. controls (0,2) and (3,0) .. (3,2) };
    \end{tikzpicture}

In general, when ⟨decoration options⟩ are parsed, for each unknown key
it is checked whether that key happens to be a (meta-)decoration and, if
so, the `name` option is executed for this key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/name",
      meta = "⟨name⟩"
    },
    ["decoration/path has corners"] = {
      details = [[
This is a hint to the decoration code as to whether the path has corners
or not. If a path has a sharp corner, setting this option to `true` may
result in better rendering of the decoration because the joins of input
segments are approached "more carefully" than when this key is set to
false. However, if the path is, say, a smooth circle, setting this key
to `true` will usually look worse. Most decorations ignore this key,
anyway. Internally, it sets the TeX-if `\ifpgfdecoratepathhascorners`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/path:has:corners",
      meta = "⟨boolean⟩"
    },
    ["decoration/pre"] = {
      details = [[
This key sets a decoration that should be used before the main
decoration starts. The ⟨decoration⟩ will be used for a length of
`pre length`, which `0pt` by default. Thus, for the `pre` option to have
any effect, you also need to set the `pre length` option.

    \tikz [decoration={zigzag,pre=lineto,pre length=1cm}]
      \draw [decorate] (0,0) -- (2,1) arc (90:0:1);

    \tikz [decoration={zigzag,pre=moveto,pre length=1cm}]
      \draw [decorate] (0,0) -- (2,1) arc (90:0:1);

    \tikz [decoration={zigzag,pre=crosses,pre length=1cm}]
      \draw [decorate] (0,0) -- (2,1) arc (90:0:1);

Note that the default `pre` option is `lineto`, not `curveto`. This
means that the default `pre` decoration will not follow curves (for
efficiency reasons). Change the `pre` key to `curveto` if you have a
curved path.

    \tikz [decoration={zigzag,pre length=3cm}]
      \draw [decorate] (0,0) -- (2,1) arc (90:0:1);

    \tikz [decoration={zigzag,pre=curveto,pre length=3cm}]
      \draw [decorate] (0,0) -- (2,1) arc (90:0:1);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/pre",
      meta = "⟨decoration⟩"
    },
    ["decoration/pre length"] = {
      details = [[
This key sets the distance along which the pre-decoration should be
used. If you do not need/wish a pre-decoration, set this key to `0pt`
(exactly this string, not just to something that evaluates to the same
things such as `0cm`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/pre:length",
      meta = "⟨dimension⟩"
    },
    ["decoration/radius"] = {
      details = [[
Sets the start and end radius simultaneously.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/radius",
      meta = "⟨dimension⟩"
    },
    ["decoration/raise"] = {
      details = [[
The segments of the decoration are raised by ⟨dimension⟩ relative to the
to-be-decorated path. More precisely, the segments of the path are
offset by this much "to the left" of the path as we travel along the
path. This raising is done after and in addition to any transformations
set using the `transform` option (see below).

A negative ⟨dimension⟩ will offset the decoration "to the right" of the
to-be-decorated path.

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);

      \draw (0,0) -- (1,1) arc (90:0:2 and 1);
      \draw      decorate [decoration=crosses]
            { (0,0) -- (1,1) arc (90:0:2 and 1) };
      \draw[red] decorate [decoration={crosses,raise=5pt}]
            { (0,0) -- (1,1) arc (90:0:2 and 1) };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/raise",
      meta = "⟨dimension⟩"
    },
    ["decoration/reset marks"] = {
      details = [[
Since `mark` options accumulate, there needs to be a way to "reset"
things, so that any `mark` options set in an enclosing scope do not
interfere. This option does exactly this. Note that when the ⟨code⟩ of a
marking is executed, the markings are automatically reset.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/reset:marks"
    },
    ["decoration/reverse path"] = {
      details = [[
This key reverses the path. This is especially useful for typesetting
text along different sides of curves.

    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \draw [gray, ->]
        [postaction={decoration={text along path,
          text={a big juicy apple}, text color=red}, decorate}]
        [postaction={decoration={text along path,
          text={a big juicy apple}, text color=blue, reverse path}, decorate}]
        (3,0) .. controls (3,2) and (0,2) .. (0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/reverse:path",
      meta = "⟨boolean⟩"
    },
    ["decoration/segment length"] = {
      details = [[
Many decorations are made up of small segments. This key determines the
desired length of such segments.

This key sets the TeX-dimension `\pgfdecorationsegmentlength`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/segment:length",
      meta = "⟨dimension⟩"
    },
    ["decoration/shape"] = {
      details = [[
The shape whose background path is used.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape",
      meta = "⟨shape name⟩"
    },
    ["decoration/shape end height"] = {
      details = [[
The recommended ending height of the shape.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:end:height",
      meta = "⟨length⟩"
    },
    ["decoration/shape end size"] = {
      details = [[
Set both the end height and end width simultaneously.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:end:size",
      meta = "⟨length⟩"
    },
    ["decoration/shape end width"] = {
      details = [[
The recommended ending width of the shape. Note that this is the width
that a shape will take only if it is drawn exactly at the end of the
path.

    \tikzset{
      bigger/.style={decoration={shape start size=.25cm, shape end size=1cm}},
      smaller/.style={decoration={shape start size=1cm, shape end size=.25cm}},
      decoration={shape backgrounds,
                  shape sep={.25cm, between borders},shape scaled}
    }
    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \fill [decorate,bigger,
             decoration={shape sep={.25cm, between borders}}, blue!50]
        (0,1.5) -- (3,1.5);
      \fill [decorate,smaller,
             decoration={shape sep={1cm, between centers}},   red!50]
        (0,.5)  -- (3,.5);
      \draw [gray, dotted] (0,1.625) -- (3,2)    (0,1.375) -- (3,1)
                           (0,1)     -- (3,.625) (0,0)     -- (3,.375);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:end:width",
      meta = "⟨length⟩"
    },
    ["decoration/shape evenly spread"] = {
      details = [[
This key overrides the `shape sep` key and forces the decoration to fit
⟨number⟩ shapes evenly across the path. If ⟨number⟩ is less than `1`,
then no shapes will be used. If ⟨number⟩ equals `1`, then one shape is
put in the middle of the path. The additional keywords `by centers` (the
default, if no keyword is specified) and `by borders` can be used (both
preceded by a comma), to specify how the distance between shapes is
determined. These keywords will only have a noticeable effect if the
shapes sizes differ over time.

    \tikzset{
      paint/.style={draw=#1!50!black, fill=#1!50},
      spreading/.style={
        decorate,decoration={shape backgrounds, shape=rectangle,
        shape start size=4mm,shape end size=1mm,shape evenly spread={#1}}}
    }
    \begin{tikzpicture}
      \fill [paint=green,spreading={5, by borders},
             decoration={shape scaled}]            (0,2)   -- (3,2);
      \fill [paint=blue,spreading={5, by centers},
             decoration={shape scaled}]            (0,1.5) -- (3,1.5);
      \fill [paint=red,    spreading=5]            (0,1)   -- (3,1);
      \fill [paint=orange, spreading=4]            (0,.5)  -- (3,.5);
      \fill [paint=gray,    spreading=1]            (0,0)   -- (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:evenly:spread",
      meta = "⟨number⟩"
    },
    ["decoration/shape height"] = {
      details = [[
Works like the previous key, only for the height.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:height",
      meta = "⟨dimension⟩"
    },
    ["decoration/shape scaled"] = {
      details = [[
    \tikzset{
      bigger/.style={decoration={shape start size=.125cm, shape end size=.5cm}},
      smaller/.style={decoration={shape start size=.5cm, shape end size=.125cm}},
      decoration={shape backgrounds,
                  shape sep={.25cm, between borders},shape scaled}
    }
    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \fill [decorate, bigger, red!50]   (0,1) -- (3,2);
      \fill [decorate, smaller, blue!50] (0,0) -- (3,1);
    \end{tikzpicture}

If this key is set to false (which is the default), then only the start
width and height are used. Note that the keys `shape width` and
`shape height` set the start and end height simultaneously.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:scaled",
      meta = "⟨boolean⟩"
    },
    ["decoration/shape sep"] = {
      details = [[
Set the spacing between the shapes on the decorations path. This can be
just a distance on its own, but the additional keywords
`between centers`, and `between borders` (which must be preceded by a
comma), specify that the distance is between the center anchors of the
shapes or between the edges of the *boundaries* of the shape borders.

    \begin{tikzpicture}[
        decoration={shape backgrounds,shape size=.5cm,shape=signal},
        signal from=west, signal to=east,
        paint/.style={decorate, draw=#1!50!black, fill=#1!50}]
      \draw [help lines] grid (3,2);
      \draw [paint=red, decoration={shape sep=.5cm}]
        (0,2) -- (3,2);
      \draw [paint=green, decoration={shape sep={1cm, between centers}}]
        (0,1) -- (3,1);
      \draw [paint=blue, decoration={shape sep={1cm, between borders}}]
        (0,0) -- (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:sep",
      meta = "⟨spacing⟩"
    },
    ["decoration/shape size"] = {
      details = [[
Sets the desired width and height simultaneously.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:size",
      meta = "⟨dimension⟩"
    },
    ["decoration/shape sloped"] = {
      details = [[
By default, shapes are rotated to the slope of the decorations path. If
⟨boolean⟩ is the value `false`, then this rotation is turned off.
Internally this sets the TeX-if `\ifpgfshapedecorationsloped`
accordingly.

    \tikzset{
      paint/.style={draw=#1!50!black, fill=#1!50}
    }
    \begin{tikzpicture}[decoration={
        shape width=.65cm, shape height=.45cm,
        shape=isosceles triangle, shape sep=.75cm,
        shape backgrounds}]
      \draw [help lines] grid (3,2);
      \draw [paint=red,decorate] (0,0) -- (2,2);
      \draw [paint=blue,decorate,decoration={shape sloped=false}]
                                 (1,0) -- (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:sloped",
      meta = "⟨boolean⟩"
    },
    ["decoration/shape start height"] = {
      details = [[
The starting height of the shape.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:start:height",
      meta = "⟨length⟩"
    },
    ["decoration/shape start size"] = {
      details = [[
Sets both the start height and start width simultaneously.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:start:size",
      meta = "⟨length⟩"
    },
    ["decoration/shape start width"] = {
      details = [[
The starting width of the shape.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:start:width",
      meta = "⟨length⟩"
    },
    ["decoration/shape width"] = {
      details = [[
The desired width of the shapes. For decorations that support varying
shape sizes, this key sets both the start and end width (which can be
overwritten using options like `shape start width`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/shape:width",
      meta = "⟨dimension⟩"
    },
    ["decoration/start radius"] = {
      details = [[
For some decorations there is a natural start radius (of some circle,
presumably).

This key stores the value directly inside the key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/start:radius",
      meta = "⟨dimension⟩"
    },
    ["decoration/stride length"] = {
      details = [[
The length of strides. This is the distance between the beginnings of
left footprints along the path.

    \begin{tikzpicture}[decoration={footprints,stride length=50pt}]
      \fill [decorate] (0,0) -- (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/stride:length"
    },
    ["decoration/text"] = {
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text",
      meta = "⟨text⟩"
    },
    ["decoration/text align"] = {
      details = [[
This changes the key path to `/pgf/decoration/text align` and executes
⟨alignment options⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:align",
      meta = "{⟨alignment options⟩}"
    },
    ["decoration/text align/align"] = {
      details = [[
Aligns the text according to ⟨alignment⟩, which should be one of `left`,
`right`, or `center`.

    \begin{tikzpicture}
    \draw [help lines] grid (3,2);
    \draw [red, dashed]
    [postaction={decoration={text along path, text={a big juicy apple},
      text align={align=right}}, decorate}]
    (0,0) .. controls (0,2) and (3,2) .. (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:align/align",
      meta = "⟨alignment⟩"
    },
    ["decoration/text align/center"] = {
      details = [[
Aligns the text to the center of the path.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:align/center"
    },
    ["decoration/text align/fit to path"] = {
      details = [[
This key makes the decoration automaton try to fit the text to the
length of the path. The automaton shifts forward by a small amount
between each character in order to fit the text to the path. If,
however, the length of the text is longer than the length of the path
(i.e., the automaton would have to shift *backwards* between characters)
this key will have no effect.

    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \draw [red, dashed]
        [postaction={decoration={text along path, text={a big juicy apple},
          text align=fit to path}, decorate}]
        (0,0) .. controls (0,2) and (3,2) .. (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:align/fit:to:path",
      meta = "⟨boolean⟩"
    },
    ["decoration/text align/fit to path stretching spaces"] = {
      details = [[
This key works like the previous key except the automaton shifts forward
only for space characters (including `\space`, but *excluding* `\`).

    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \draw [red, dashed]
        [postaction={decoration={text along path, text={a big juicy apple},
          text align={fit to path stretching spaces}}, decorate}]
        (0,0) .. controls (0,2) and (3,2) .. (3,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:align/fit:to:path:stretching:spaces",
      meta = "⟨boolean⟩"
    },
    ["decoration/text align/left"] = {
      details = [[
Aligns the text to the left end of the path.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:align/left"
    },
    ["decoration/text align/left indent"] = {
      details = [[
Specifies a distance which the automaton should move along before it
starts typesetting the text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:align/left:indent",
      meta = "⟨length⟩"
    },
    ["decoration/text align/right"] = {
      details = [[
Aligns the text to the right end of the path.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:align/right"
    },
    ["decoration/text align/right indent"] = {
      details = [[
Specifies a distance before the end of the path, where the automaton
should stop typesetting the text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:align/right:indent",
      meta = "⟨length⟩"
    },
    ["decoration/text color"] = {
      details = [[
The color of the text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:color",
      meta = "⟨color⟩"
    },
    ["decoration/text effects/character command"] = {
      details = [[
This key specifies a command that is executed when each character is
placed in the node. The ⟨macro⟩ should be an ordinary TeX macro which
takes one argument. The argument will be a macro which when expanded
will contain the current character.

    \def\mycommand#1{#1$_\n$}
    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text, path from text angle=60, group letters,
        word count=\n,
        every word/.style={character command=\mycommand},
        characters={text along path}}]

    \path [decorate] (0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/character:command",
      meta = "⟨macro⟩"
    },
    ["decoration/text effects/character count"] = {
      details = [[
Store the number of the character being typeset in ⟨macro⟩.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text,
        character count=\i, every word separator/.style={fill=red!30},
        characters={text along path, shape=circle, fill=gray!50}}]

    \path [decorate, text effects={characters/.append={label=above:\footnotesize\i}}] (0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/character:count",
      meta = "⟨macro⟩"
    },
    ["decoration/text effects/character total"] = {
      details = [[
Store the total number of the characters in the decoration text in
⟨macro⟩. This key can be used with the `character count` key to produce
some quite pleasing effects:

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        character count=\i, character total=\n,
        characters={text along path, evaluate={\c=\i/\n*100;},
          text=orange!\c!blue, scale=\i/\n+0.5}}]

    \path [decorate]
      (0,0) .. controls ++(1,0) and ++(-1,0) .. (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/character:total",
      meta = "⟨macro⟩"
    },
    ["decoration/text effects/character widths"] = {
      details = [[
Shorthand for the `every character width` style.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!}, text align=center,
      text effects/.cd,
        character count=\i,
        characters={xslant=0.5, text along path, name=c-\i}}]

    \path [decorate] (0,0) -- (3,2);
    \path [decorate,
      text effects={character widths={inner xsep=0pt, xslant=0}}]
      (0,1) -- (3,3);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/character:widths",
      meta = "{effects}"
    },
    ["decoration/text effects/character ⟨number⟩"] = {
      details = [[
Specify additional effects for the character ⟨number⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/character:⟨number⟩"
    },
    ["decoration/text effects/characters"] = {
      details = [[
Shorthand for the `every character`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/characters",
      meta = "{effects}"
    },
    ["decoration/text effects/every character"] = {
      details = [[
Set the effects that will be applied to every character in the
decoration text. The effects will typically be TikZ node options.
Initially, this style is empty so the decoration simply positions nodes
at the appropriate position along the path. In order to make the text
'follow the path' like the `text along path` decoration the following
key can be added to the `every character` style.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/every:character"
    },
    ["decoration/text effects/every character width"] = {
      details = [[
This style is applied to the (invisible) nodes used for calculating the
width of a character node.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/every:character:width"
    },
    ["decoration/text effects/every first letter"] = {
      details = [[
Specify additional effects for the first letter in *every* word.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/every:first:letter"
    },
    ["decoration/text effects/every last letter"] = {
      details = [[
Specify additional effects for the last letter in *every* word.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/every:last:letter"
    },
    ["decoration/text effects/every letter"] = {
      details = [[
Specify additional effects for every letter (i.e., every character that
isn't the word separator) in the decoration text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/every:letter"
    },
    ["decoration/text effects/every word"] = {
      details = [[
Specify additional effects for every word in the decoration text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/every:word"
    },
    ["decoration/text effects/every word separator"] = {
      details = [[
Specify additional effects for every character that is a word separator.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/every:word:separator"
    },
    ["decoration/text effects/fit text to path"] = {
      details = [[
This key will make the decoration increase the space between characters
so that the entire path is used by the decoration.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/every character/.style={text along path}}]

    \path [draw=gray, postaction={decorate}, rotate=90]
      (0,0) .. controls ++(2,0) and ++(-1,0) .. (5,-1);
    \path [draw=gray, postaction={decorate}, rotate=90, yshift=-1cm,
      text effects={fit text to path}]
      (0,0) .. controls ++(2,0) and ++(-1,0) .. (5,-1);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/fit:text:to:path",
      meta = "⟨true or false⟩"
    },
    ["decoration/text effects/group letters"] = {
      details = [[
Group sequences of letters together so they are treated as a single
'character'.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text, path from text angle=60,
        every word separator/.style={fill=none},
        character count=\i, character total=\n,
        characters={text along path, fill=gray!50, scale=\i/\n+0.5}}]

    \path [decorate] (0,0);
    \path [decorate, text effects={group letters,
      characters/.append={fill=red!20}}]
      (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/group:letters"
    },
    ["decoration/text effects/letter count"] = {
      details = [[
Store the number of letter being typeset (i.e., the position of the
character in the word) in ⟨macro⟩. Numbering starts at `1` and the
character acting as a word separator is numbered `0`.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text, letter count=\i, every word separator/.style={fill=red!30},
        characters={text along path, shape=circle, fill=gray!50}}]

    \path [decorate, text effects={characters/.append={label=above:\footnotesize\i}}] (0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/letter:count",
      meta = "⟨macro⟩"
    },
    ["decoration/text effects/letter ⟨number⟩"] = {
      details = [[
Specify the effects for letter ⟨number⟩ in *every* word.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/letter:⟨number⟩"
    },
    ["decoration/text effects/path from text"] = {
      details = [[
When this key is set to `true` and the decorated path consists only of a
single point, the decoration will calculate the width of the decoration
text using all the specified parameters as if the decorated path was
actually a straight line starting from the given point. This 'virtual'
straight line is then decorated with the text.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text,
        character count=\i, character total=\n,
        characters={text along path, scale=\i/\n+0.5}}]

    \path [decorate] (0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/path:from:text",
      meta = "{true or false}"
    },
    ["decoration/text effects/path from text angle"] = {
      details = [[
When used in conjunction with the `path from text` key, the straight
line that is used as the decorated path is rotated by ⟨angle⟩ around the
starting point.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text, path from text angle=60,
        character count=\i, character total=\n,
        characters={text along path, scale=\i/\n+0.5}}]

    \path [decorate] (0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/path:from:text:angle",
      meta = "⟨angle⟩"
    },
    ["decoration/text effects/repeat text"] = {
      details = [[
Usually, when the decoration runs out of text, it simply stops. This key
will make the decoration repeat the decoration text for the specified
number of ⟨times⟩. If no value is given the text will be repeated until
the path is finished. There are two points to remember however. Firstly
the numbering of characters, letters and words will be restarted each
time the text is repeated. Secondly, the options for alignment, scaling
or fitting the text to the path, fitting the path to the text, and so
on, are computed using the decoration text before the decoration starts.
If any of these options are given the behavior of the `repeat text` key
is undefined, but typically it will be ignored.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!\ },
      text effects/.cd,
        repeat text,
        character count=\m, character total=\n,
        characters={text along path, scale=0.5+\m/\n/2}}]

    \path [draw=gray, ultra thin, postaction=decorate]
      (180:2) \foreach \a in {0,...,12}{ arc (180-\a*90:90-\a*90:1.5-\a/10) };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/repeat:text",
      meta = "⟨times⟩"
    },
    ["decoration/text effects/replace characters"] = {
      details = [[
Replace the node for each character in ⟨characters⟩ with ⟨code⟩. The
⟨code⟩ can be thought of as describing a little picture or marking which
will be used instead of the character node. The origin will be the
current point along the decoration path. Any transformations associated
with the ⟨characters⟩ (e.g., applied with the `every character` or
`every letter` styles) will also be applied to ⟨code⟩.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text, path from text angle=60,
        replace characters=e with {\fill [red!20]   (0,1mm) circle [radius=1mm];},
        replace characters=a with {\fill [black!20] (0,1mm) circle [radius=1mm];},
        character count=\i, character total=\n,
        characters={text along path, scale=\i/\n+0.5}}]

    \path [decorate] (0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/replace:characters",
      meta = "⟨characters⟩ with {code}"
    },
    ["decoration/text effects/reverse text"] = {
      details = [[
Reverse the order of the characters in the decoration text. This may be
useful if using 'right-to-left' languages. Unfortunately, any leading
'soft' spaces in the original text will be lost.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text, path from text angle=60,
        reverse text,
        character count=\i, character total=\n,
        characters={text along path, scale=\i/\n+0.5}}]

    \path [decorate] (0,0) .. controls ++(1,0) and ++(-1,0) .. (3,2);
    \end{tikzpicture}

It is important to note that the `reverse text` key reverses the text
*before* doing anything else. This means that the numbering of
characters, letters and words will still be in the normal order, so any
parameterized effects will have to take this into account.
Alternatively, to get the numbering to follow the reversed text, it is
possible to reverse the path and then invert the scale:

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text, path from text angle=60,
        character count=\i, character total=\n,
        characters={text along path, scale=\i/\n+0.5}}]

    \path [decorate, text effects={reverse text}] (0,0);
    \path [blue, decorate, decoration={reverse path},
        text effects={characters/.append={scale=-1}}] (1,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/reverse:text"
    },
    ["decoration/text effects/scale text to path"] = {
      details = [[
This key will make the decoration scale the text so that the entire path
is used by the decoration.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/every character/.style={text along path}}]

    \path [draw=gray, postaction={decorate}, rotate=90]
      (0,0) .. controls ++(2,0) and ++(-1,0) .. (5,-1);
    \path [draw=gray, postaction={decorate}, rotate=90, yshift=-1cm,
      text effects={scale text to path}]
      (0,0) .. controls ++(2,0) and ++(-1,0) .. (5,-1);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/scale:text:to:path",
      meta = "⟨true or false⟩"
    },
    ["decoration/text effects/style characters"] = {
      details = [[
This key enables ⟨effects⟩ to be applied to every character in the
decoration text that is specified in ⟨characters⟩.

    \begin{tikzpicture}[decoration={text effects along path,
      text={Falsches {\"U}ben von Xylophonmusik qu{\"a}lt jeden gr{\"o}{\ss}eren Zwerg},
      text effects/.cd,
        path from text,
        style characters=aeiou{\"U}{\"a}{\"o} with {text=blue},
        characters={text along path}}]

    \path [decorate] (0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/style:characters",
      meta = "{characters} with {effects}"
    },
    ["decoration/text effects/text along path"] = {
      details = [[
This style automatically sets the TikZ keys `transform shape` (to make
the character slope with the path), `anchor=baseline` (to make the
baseline of the characters 'sit' on the path) and `inner xsep=0pt` (to
horizontally fit each node to the character it contains, reducing the
spacing between characters).

    \begin{tikzpicture}[decoration={text effects along path,
        text={text effects along path!}}]

    \path [draw=red, dotted, postaction={decorate}]
      (0,0) .. controls ++(1,0) and ++(-1,0) .. (3,2);
    \path [draw=blue, dotted, yshift=1cm, postaction={decorate},
      text effects={text along path}]
      (0,0) .. controls ++(1,0) and ++(-1,0) .. (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/text:along:path"
    },
    ["decoration/text effects/word count"] = {
      details = [[
Store the number of words in the decoration text in ⟨macro⟩. Numbering
starts at `1`. When the character is the word separator, ⟨macro⟩ takes
the number of the previous word. If the decoration text starts with a
word separator ⟨macro⟩ will be `0`.

    \begin{tikzpicture}[decoration={text effects along path,
      text={text effects along path!},
      text effects/.cd,
        path from text, word count=\i, every word separator/.style={fill=red!30},
        characters={text along path, shape=circle, fill=gray!50}}]

     \path [decorate, text effects={characters/.append={label=above:\footnotesize\i}}] (0,0);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/word:count",
      meta = "⟨macro⟩"
    },
    ["decoration/text effects/word separator"] = {
      details = [[
Specify the character that is to be used as the word separator. This
*must* be a single character such as `a` or `-` or the special value
`space` (which should be used to indicate that spaces should be used as
the separator).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/word:separator",
      meta = "⟨character⟩"
    },
    ["decoration/text effects/word total"] = {
      details = [[
Store the total number of words in the decoration text in ⟨macro⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/word:total",
      meta = "⟨macro⟩"
    },
    ["decoration/text effects/word ⟨m⟩ letter ⟨n⟩"] = {
      details = [[
Specify additional effects for letter ⟨n⟩ in word ⟨m⟩ in the decoration
text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/word:⟨m⟩:letter:⟨n⟩"
    },
    ["decoration/text effects/word ⟨number⟩"] = {
      details = [[
Specify additional effects for word ⟨number⟩ in the decoration text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:effects/word:⟨number⟩"
    },
    ["decoration/text format delimiters"] = {
      details = [[
'  
texttt

13

Set the characters that the text decoration will use to parse formatting
commands. If \\meta{after} is empty, then \\meta{before} will be used
for both delimiters. In general you should stick to characters whose
category codes are

11` or `12`. As `+` is used to indicate that the specified format commands are added to any existing ones, you should avoid using `+|
as a delimiter.

    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \path [decorate, decoration={text along path,text format delimiters={[}{]},
               text={A big [\color{red}]red[] and [\color{green}]green[] apple.}}]
        (0,0) .. controls (0,2) and (3,0) .. (3,2);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text:format:delimiters",
      meta = "{before}{after}"
    },
    ["decoration/text/effetcs/letter total"] = {
      details = [[
Store the number of letters in the current word in ⟨macro⟩. When the
character is the word separator, this value is `0`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/text/effetcs/letter:total",
      meta = "⟨macro⟩"
    },
    ["decoration/transform"] = {
      details = [[
This key allows you to specify general ⟨transformations⟩ to be applied
to the segments of a decoration. These transformations are applied
before and independently of `raise` and `mirror` transformations. The
⟨transformations⟩ should be normal TikZ transformations like `shift` or
`rotate`.

In the following example the `shift only` transformation is used to make
sure that the crosses are *not* sloped along the path.

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);

      \draw (0,0) -- (1,1) arc (90:0:2 and 1);
      \draw[red,very thick] decorate [decoration={
                   crosses,transform={shift only},shape size=1.5mm}]
            { (0,0) -- (1,1) arc (90:0:2 and 1) };
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decoration/transform",
      meta = "⟨transformations⟩"
    },
    ["decorations/post"] = {
      details = [[
Works like `pre`, only for the end of the decoration.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decorations/post",
      meta = "⟨decoration⟩"
    },
    ["decorations/post length"] = {
      details = [[
Works like `pre length`, only for the end of the decoration.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/decorations/post:length",
      meta = "⟨dimension⟩"
    },
    ["direction ee arrow"] = {
      details = [[
The value of this key will be used for the arrow tip depicted in an
`direction ee` shape.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/direction:ee:arrow",
      meta = "⟨right arrow tip name⟩"
    },
    ["double arrow head extend"] = {
      details = [[
This sets the distance between the shaft of the arrow and the outer end
of the arrow heads. This may change if the shape is enlarged to some
minimum width.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/double:arrow:head:extend",
      meta = "⟨length⟩"
    },
    ["double arrow head indent"] = {
      details = [[
This moves the point where the arrow heads join the shaft of the arrow
*towards* the arrow tips, by ⟨length⟩.

    \begin{tikzpicture}[every node/.style={double arrow, draw=none, rotate=-60}]
      \node [fill=red!50]                                           {arrow 1};
      \node [fill=blue!50, double arrow head indent=1ex] at (1.5,0) {arrow 2};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/double:arrow:head:indent",
      meta = "⟨length⟩"
    },
    ["double arrow tip angle"] = {
      details = [[
Sets the angle for the arrow tip. Enlarging the arrow to some minimum
width may increase the height of the shape to maintain this angle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/double:arrow:tip:angle",
      meta = "⟨angle⟩"
    },
    ["every data"] = {
      details = [[
This style is executed by `\pgfdata` before the ⟨options⟩ are parsed.

Note that the path of this key is just `/pgf/`, not `/pgf/data/`. Also
note that TikZ internally sets the value of this key up in such a way
that the keys `/tikz/every data` and also
`/tikz/data visualization/every data` are executed. The bottom line of
this is that when using TikZ, you should not set this key directly, set
`/tikz/every data` instead.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/every:data"
    },
    ["every decoration"] = {
      details = [[
This style is executed for every decoration.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/every:decoration"
    },
    ["fixed point arithmetic"] = {
      details = [[
This key will set the key path to `/pgf/fixed point`, and execute
⟨options⟩. Then it will install the necessary commands so that the PGF
parser will use `fp` to perform calculations. The best way to use this
key is as an argument to a scope or picture. This means that `fp` does
not always have to be used, and PGF can use its own mathematical engine
at other times, which can lead to a significant reduction in the time
for a document to compile.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fixed:point:arithmetic",
      meta = "⟨options⟩"
    },
    ["fixed point/scale file plot x"] = {
      details = [[
This key will scale the first column of data read from a file before it
is plotted. It is independent of the `scale results` key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fixed:point/scale:file:plot:x",
      meta = "⟨factor⟩"
    },
    ["fixed point/scale file plot y"] = {
      details = [[
This key will scale the second column of data read from a file before it
is plotted.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fixed:point/scale:file:plot:y",
      meta = "⟨factor⟩"
    },
    ["fixed point/scale file plot z"] = {
      details = [[
This key will scale the third column of data read from a file before it
is plotted.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fixed:point/scale:file:plot:z",
      meta = "⟨factor⟩"
    },
    ["fixed point/scale results"] = {
      details = [[
As noted above, `fp` can process a far greater range of numbers than PGF
and TikZ. In order to use results from `fp` in a `{pgfpicture}` or a
`{tikzpicture}` they need to be scaled. When this key is used PGF will
scale results of any evaluation by ⟨factor⟩. However, as it is not
desirable for every part of every expression to be scaled, scaling will
only take place if a special prefix `*` is used. If `*` is used at the
beginning of an expression the evaluation of the expression will
evaluated and then multiplied by ⟨factor⟩.

    \begin{tikzpicture}[fixed point arithmetic={scale results=10^-6}]
    \draw [help lines] grid (3,2);
    \draw (0,0) -- (2,2);
    \draw [red, line width=4pt] (*1.0e6,0) -- (*3.0e6,*2.0e6);
    \end{tikzpicture}

A special case of scaling involves plots of data containing large
numbers from files. It is possible to "pre-process" a file, typically
using the application that generates the data, to either precede the
relevant column with `*` or to perform the scaling as part of the
calculation process. However, it may be desirable for the data in a plot
to appear in a table as well, so, two files would be required, one
pre-processed for plotting, and one not. This extra work may be
undesirable so the following keys are provided:
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fixed:point/scale:results",
      meta = "⟨factor⟩"
    },
    ["foreach/count"] = {
      details = [[
This key allows ⟨macro⟩ to hold the position in the list of the current
item. The optional `from `⟨value⟩ statement allows the counting to begin
from ⟨value⟩.

    \tikz[x=0.75cm,y=0.75cm]
      \foreach \x [count=\xi] in {a,...,e}
        \foreach \y [count=\yi] in {\x,...,e}
          \node [draw, top color=white, bottom color=blue!50, minimum size=0.666cm]
            at (\xi,-\yi) {$\mathstrut\x\y$};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/foreach/count",
      meta = "⟨macro⟩ from ⟨value⟩"
    },
    ["foreach/evaluate"] = {
      details = [[
By default, list items are not evaluated: `1+2`, yields `1+2`, not `3`.
This key allows a variable to be evaluated using the mathematical
engine. The variable must have been specified either using the `var` key
or in the ⟨variables⟩ argument of the `foreach` command. By default, the
result of the evaluation will be stored in ⟨variable⟩. However, the
optional `as `⟨macro⟩ statement can be used to store the result in
⟨macro⟩.

    \foreach \x [evaluate=\x] in {2^0,2^...,2^8}{$\x$, }

    \foreach \x [evaluate=\x as \xeval] in {2^0,2^...,2^8}{$\x=\xeval$, }

The optional `using `⟨formula⟩ statement means an evaluation does not
have to be explicitly stated for each item in ⟨list⟩. The ⟨formula⟩
should contain at least one reference to ⟨variable⟩.

    \tikz\foreach \x [evaluate=\x as \shade using \x*10] in {0,1,...,10}
      \node [fill=red!\shade!yellow, minimum size=0.65cm] at (\x,0) {\x};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/foreach/evaluate",
      meta = "⟨variable⟩ as ⟨macro⟩ using ⟨formula⟩"
    },
    ["foreach/expand list"] = {
      details = [[
If this key is set to true the contents of the list are fully expanded
with `\edef` before further processing. This allows using complex macros
which generate a list upon expansion without having to use an
intermediate macro.

    \def\Iota#1#2{%
      \ifnum\numexpr#1\relax<\numexpr#2\relax
        \the\numexpr#1\relax,%
        \expandafter\Iota\expandafter{\the\numexpr(#1)+1\relax}{#2}%
      \else
        \the\numexpr#2\relax
      \fi}
    \foreach [expand list=true] \x in {\Iota{1}{5}} {
      \x
    }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/foreach/expand:list",
      meta = "{boolean}"
    },
    ["foreach/parse"] = {
      details = [[
If this key is set to true the upper bound in the loop will be fed into
`\pgfmathparse`. This allows to use complex expressions as the upper
bound. However, the expression must be safe for evaluation in
`\pgfmathparse`. It is known that internal TeX registers can cause
trouble.

    \foreach \x [parse=true] in {1,...,1.0e+1 - 1}{ \x }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/foreach/parse",
      meta = "{boolean}"
    },
    ["foreach/remember"] = {
      details = [[
This key allows the item value stored in ⟨variable⟩ to be remembered
during the next iteration, stored in ⟨macro⟩. If a variable is
evaluated, the result of this evaluation is remembered. By default the
value of ⟨variable⟩ is zero for the first iteration, however, the
optional `(initially `⟨value⟩`)` statement, allows the ⟨macro⟩ to be
initially defined as ⟨value⟩.

    \foreach \x [remember=\x as \lastx (initially A)] in {B,...,H}{$\overrightarrow{\lastx\x}$, }
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/foreach/remember",
      meta = "⟨variable⟩ as ⟨macro⟩ (initially ⟨value⟩)"
    },
    ["foreach/var"] = {
      details = [[
This key provides an alternative way to specify variables:
`\foreach [var=\x,var=\y]` is the same as `\foreach \x/\y`. If used,
this key should be used before the other keys.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/foreach/var",
      meta = "⟨variable⟩"
    },
    fpu = {
      details = [[
This key installs or uninstalls the FPU. The installation exchanges any
routines of the standard math parser with those of the FPU:
`\pgfmathadd` will be replaced with `\pgfmathfloatadd` and so on.
Furthermore, any number will be parsed with `\pgfmathfloatparsenumber`.

    \pgfkeys{/pgf/fpu}
    \pgfmathparse{1+1}\pgfmathresult

The FPU uses a low-level number representation consisting of flags,
mantissa and exponent [1]. To avoid unnecessary format conversions,
`\pgfmathresult` will usually contain such a cryptic number. Depending
on the context, the result may need to be converted into something which
is suitable for PGF processing (like coordinates) or may need to be
typeset. The FPU provides such methods as well.

Use `fpu=false` to deactivate the FPU. This will restore any change.
Please note that this is not necessary if the FPU is used inside of a
TeX group -- it will be deactivated afterwards anyway.

It does not hurt to call `fpu=true` or `fpu=false` multiple times.

Please note that if the `fixedpointarithmetic` library of PGF will be
activated after the FPU, the FPU will be deactivated automatically.

[1] Users should *always* use high level routines to manipulate floating
point numbers as the format may change in a future release.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fpu",
      meta = "{boolean}"
    },
    ["fpu/handlers/empty number"] = {
      details = [[
This command key is invoked in case an empty string is parsed inside of
`\pgfmathfloatparsenumber`. You can overwrite it to assign a replacement
`\pgfmathresult` (in float!).

The initial setting is to invoke `invalid number`, see below.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fpu/handlers/empty:number",
      meta = "{input}{unreadable part}"
    },
    ["fpu/handlers/invalid number"] = {
      details = [[
This command key is invoked in case an invalid string is parsed inside
of `\pgfmathfloatparsenumber`. You can overwrite it to assign a
replacement `\pgfmathresult` (in float!).

The initial setting is to generate an error message.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fpu/handlers/invalid:number",
      meta = "{input}{unreadable part}"
    },
    ["fpu/handlers/wrong lowlevel format"] = {
      details = [[
This command key is invoked whenever `\pgfmathfloattoregisters` or its
variants encounter something which is not a properly formatted low-level
floating point number. As for `invalid number`, this key may assign a
new `\pgfmathresult` (in floating point) which will be used instead of
the offending ⟨input⟩.

The initial setting is to generate an error message.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fpu/handlers/wrong:lowlevel:format",
      meta = "{input}{unreadable part}"
    },
    ["fpu/install only"] = {
      details = [[
\[fpu-install-only\] Unfortunately, the FPU is currently incompatible
with drawing operations. However, it can still be useful to replace
single definitions with FPU counterparts to avoid errors of the kind
`Dimension too large` which tend to happen when transformation matrices
are inverted.

This key allows to specify a list of definitions to be pulled into the
current scope. *Note that there is no reverse operation to uninstall
these definitions at the moment*, so it is advisable to do this in a
group. Conveniently, TikZ paths form an implicit group, so you can use
this key on a path as well.

You have to be aware of the limitations that the FPU imposes. It will
not magically give TeX better precision, but it will avoid overflow or
underflow situations for large or small operands by rescaling them. In
the following example, in the first case the FPU variant performs much
better than the normal variant, however, in the second case where a
rescaling would not in fact be needed the rescaling introduces a small
round-off error.

    \begingroup
    \pgfkeys{/pgf/fpu/install only={divide}}
    \pgfmathparse{12.34/0.001234}\pgfmathresult (good)
    \pgfmathparse{12/4}\pgfmathresult (bad)
    \endgroup

This key is introduced in PGFv3.1.6 and marked stable since PGF v3.1.8.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fpu/install:only",
      meta = "{list of names}"
    },
    ["fpu/output format"] = {
      details = [[
This key allows to change the number format in which the FPU assigns
`\pgfmathresult`.

The predefined choice `float` uses the low-level format used by the FPU.
This is useful for further processing inside of any library.

    \pgfkeys{/pgf/fpu,/pgf/fpu/output format=float}
    \pgfmathparse{exp(50)*42}\pgfmathresult

The choice `sci` returns numbers in the format ⟨mantissa⟩`e`⟨exponent⟩.
It provides almost no computational overhead.

    \pgfkeys{/pgf/fpu,/pgf/fpu/output format=sci}
    \pgfmathparse{4.22e-8^-2}\pgfmathresult

The choice `fixed` returns normal fixed point numbers and provides the
highest compatibility with the PGF engine. It is activated automatically
in case the FPU scales results.

    \pgfkeys{/pgf/fpu,/pgf/fpu/output format=fixed}
    \pgfmathparse{sqrt(1e-12)}\pgfmathresult
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fpu/output:format",
      meta = "⟨float,sci,fixed⟩"
    },
    ["fpu/rel thresh"] = {
      details = [[
A threshold used by `\pgfmathfloatifapproxequalrel` to decide whether
numbers are approximately equal.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fpu/rel:thresh",
      meta = "{number}"
    },
    ["fpu/scale results"] = {
      details = [[
A feature which allows semi-automatic result scaling. Setting this key
has two effects: first, the output format for *any* computation will be
set to `fixed` (assuming results will be processed by PGF's kernel).
Second, any expression which starts with a star, `*`, will be multiplied
with ⟨scale⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/fpu/scale:results",
      meta = "{scale}"
    },
    ["gap around stream point"] = {
      details = [[
The ⟨dimension⟩ by which the lines between consecutive stream points are
shortened at the beginning and end.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/gap:around:stream:point",
      meta = "⟨dimension⟩"
    },
    ["generic circle IEC/before background"] = {
      details = [[
When a node of shape `generic circle IEC` is created, the current
setting of this key is used as the "before background path". This means
that after the circle's background has been drawn/filled/whatever, the
⟨code⟩ is executed.

When the ⟨code⟩ is executed, the coordinate system will have been
transformed in such a way that the point $(1\mathrm{pt},0\mathrm{pt})$
lies at the right end of the circle and $(0\mathrm{pt},1\mathrm{pt})$
lies at the top of the circle. (More precisely, these points will lie
exactly on the middle of the radial line.)
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/generic:circle:IEC/before:background",
      meta = "⟨code⟩"
    },
    ["generic diode IEC/before background"] = {
      details = [[
Similarly to the `generic circle IEC` shape, when a node of shape
`generic diode IEC` is created, the current setting of this key is used
as the "before background path". When the ⟨code⟩ is executed, the
coordinate system will have been transformed in such a way that the
origin is at the "tip" of the diode's triangle, the point
$(0\mathrm{pt},1\mathrm{pt})$ is exactly half the diode's height above
this origin, and the point $(1\mathrm{pt},0\mathrm{pt})$ is half the
diode's height to the right of the origin.

The idea is that you use this key to draw different kinds of diode
endings.

    \tikz \node [minimum size=1cm,generic diode IEC,
                 /pgf/generic diode IEC/before background={
                   \pgfpathmoveto{\pgfqpoint{-.5pt}{-1pt}}
                   \pgfpathlineto{\pgfqpoint{.5pt}{-1pt}}
                   \pgfpathmoveto{\pgfqpoint{0pt}{-1pt}}
                   \pgfpathlineto{\pgfqpoint{0pt}{1pt}}
                   \pgfpathmoveto{\pgfqpoint{-.5pt}{1pt}}
                   \pgfpathlineto{\pgfqpoint{.5pt}{1pt}}
                   \pgfusepathqstroke
                 },
                 draw] {};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/generic:diode:IEC/before:background",
      meta = "⟨code⟩"
    },
    ["handle new data sets in plots"] = {
      details = [[
You can set ⟨how⟩ to one of the following values:

-   `ignore` The command will be completely ignored, just as if the
    command had not been used at all.

-   `jump` This causes the internal macro `\pgf@plotstreamjump` to be
    called.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/handle:new:data:sets:in:plots",
      meta = "⟨how⟩"
    },
    ["handle outlier points in plots"] = {
      details = [[
You can set ⟨how⟩ to one of the following values:

-   `plot` This will cause the outlier to be drawn normally, just as if
    `\pgfplotstreampoint` had been used rather than this command.

-   `ignore` The outlier will be completely ignored, just as if the
    command had not been used at all.

-   `jump` This causes the internal macro `\pgf@plotstreamjump` to be
    called. A "jump" in a stream is a position where a "gap" is
    introduced. For instance, a simple line-to plot handler will stop
    the current subpath at a jump position and begin with a move-to
    operation at the next normal point of the stream.

    The net effect of this setting is that at outlier points plots get
    interrupted and "restarted" when the points are no longer outliers.
    This is usually the behavior you will be looking for.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/handle:outlier:points:in:plots",
      meta = "⟨how⟩"
    },
    ["handle undefined points in plots"] = {
      details = [[
You can set ⟨how⟩ to one of the following values:

-   `ignore` The undefined point will be completely ignored, just as if
    the command had not been used at all.

-   `jump` This causes the internal macro `\pgf@plotstreamjump` to be
    called.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/handle:undefined:points:in:plots",
      meta = "⟨how⟩"
    },
    ["images/external info"] = {
      details = [[
If this key is activated, the size for any externalized image will be
stored explicitly into the associated `.dpth` file.

When the file is included by `\pgfincludeexternalgraphics` (or
automatically by the `external` library), the width is available as
`\pgfexternalwidth` and the height as `\pgfexternalheight`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/images/external:info",
      meta = "{boolean}"
    },
    ["images/include external"] = {
      details = [[
\[pgf:includeexternalkey\] This key constitutes the public interface to
exchange the `\includegraphics` command used for the image inclusion.

Redefining this key allows to provide bounding box or viewport options:

    \pgfkeys{/pgf/images/include external/.code={\includegraphics[viewport=0 0 211.28 175.686]{#1}}}

Do not forget the `.code` here which redefines the command.

One application could be image externalization and bounding box
restrictions: As far as I know, a `.pdf` graphics with restricted
bounding box is always cropped (which is not always desired). One
solution could be to use `latex` and `dvips` which doesn't have this
restriction. Another is to manually provide the `viewport` option as
shown above.

A possible value for `viewport` can be found in the `.pdf` image, search
for `/MediaBox = [ ... ]`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/images/include:external"
    },
    ["inner sep"] = {
      details = [[
This style sets both `/pgf/inner xsep` and `/pgf/inner ysep` to
⟨dimension⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/inner:sep",
      meta = "⟨dimension⟩"
    },
    ["inner xsep"] = {
      details = [[
This key stores the *recommended* horizontal inner separation between
the label text and the background path. As before, this value is just a
recommendation and a shape may choose to ignore this key.

    \begin{tikzpicture}
      \draw[help lines] (-2,0) grid (2,1);

      \pgfset{inner xsep=1cm}
      \pgfnode{rectangle}{center}{Hello World}{}{\pgfusepath{stroke}}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/inner:xsep",
      meta = "⟨dimension⟩"
    },
    ["inner ysep"] = {
      details = [[
Works like `/pgf/inner xsep`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/inner:ysep",
      meta = "⟨dimension⟩"
    },
    ["isosceles triangle apex angle"] = {
      details = [[
Sets the angle of the apex of the isosceles triangle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/isosceles:triangle:apex:angle",
      meta = "⟨angle⟩"
    },
    ["isosceles triangle stretches"] = {
      details = [[
By default ⟨boolean⟩ is `false`. This means, that when applying any
minimum width or minimum height requirements, increasing the height will
increase the width (and vice versa), in order to keep the apex angle the
same.

    \begin{tikzpicture}[paint/.style={draw=#1!75, fill=#1!20}]
      \tikzset{every node/.style={isosceles triangle, draw, inner sep=0pt,
        anchor=left corner, shape border rotate=90}}
      \draw[help lines] grid(4,2);
      \foreach \a/\c in {1.5/blue, 1/green, 0.5/red}{
        \node[paint=\c, minimum height=\a cm] at (0,0) {};
        \node[paint=\c, minimum width=\a cm] at (2,0) {};
      }
    \end{tikzpicture}

However, by setting ⟨boolean⟩ to `true`, minimum width and height can be
applied independently.

    \begin{tikzpicture}[paint/.style={draw=#1!75, fill=#1!20}]
      \tikzset{every node/.style={isosceles triangle, draw, inner sep=0pt,
         anchor=south, shape border rotate=90, isosceles triangle stretches}}
      \draw[help lines] grid(4,2);
      \foreach \a/\c in {1.5/blue, 1/green, 0.5/red}{
        \node[paint=\c, minimum height=\a cm, minimum width=1.5cm] at (0.75,0) {};
        \node[paint=\c, minimum width=\a cm, minimum height=1.5cm] at (3,0)    {};
      }
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/isosceles:triangle:stretches",
      meta = "⟨boolean⟩"
    },
    ["key filter handlers/append filtered to"] = {
      details = [[
Install this filter handler to append any unprocessed options to macro
`{macro}`.

    \pgfkeys{/pgf/key filter handlers/append filtered to/.install key filter handler=\remainingoptions}
    \def\remainingoptions{}
    \pgfkeysfiltered{/my group/A1=a1, /my group/A2=a2,
     /my group/B=b,  /my group/C=c, /tikz/color=blue}

    Remaining options: `\remainingoptions'.

This example uses the same keys as defined in the intro section ??.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filter:handlers/append:filtered:to",
      meta = "{macro}"
    },
    ["key filter handlers/ignore"] = {
      details = [[
Install this filter handler if you simply want to ignore any unprocessed
option. This is the default.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filter:handlers/ignore"
    },
    ["key filter handlers/log"] = {
      details = [[
This key filter handler writes messages for any unprocessed option to
your logfile (and terminal).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filter:handlers/log"
    },
    ["key filters/active families"] = {
      details = [[
Install this key filter if `\pgfkeysfiltered` should only process
activated families. If a key does not belong to any family, it is not
processed. If a key is completely unknown within the default path, the
normal 'unknown' handlers of `\pgfkeys` are invoked.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/active:families"
    },
    ["key filters/active families and known"] = {
      details = [[
A fast alias for

`/pgf/key filters/active families or no family=`

`{/pgf/keys filters/false}`

`{/pgf/keys filters/false}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/active:families:and:known"
    },
    ["key filters/active families or descendants of"] = {
      details = [[
A fast alias for

`/pgf/key filters/active families or no family=`

`{/pgf/keys filters/is descendant of=``{path prefix}``}`

`{/pgf/keys filters/false}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/active:families:or:descendants:of",
      meta = "{path prefix}"
    },
    ["key filters/active families or no family"] = {
      details = [[
This key filter configures `\pgfkeysfiltered` to work as follows.

1.  If the current key belongs to a family, set
    `\ifpgfkeysfiltercontinue` to true if and only if its family is
    active.

2.  If the current key does *not* belong to a family, assign
    `\ifpgfkeysfiltercontinue` as result of `{key filter 1}`.

3.  If the current key is unknown within the default path, assign
    `\ifpgfkeysfiltercontinue` as result of `{key filter 2}`.

The arguments `{key filter 1}` and `{key filter 2}` are other key
filters (possibly with options) and allow fine-grained control over the
filtering process.

        \pgfkeysinstallkeyfilter
            {/pgf/key filters/active families or no family}
            {{/pgf/key filters/is descendant of=/tikz}% for keys without family
             {/pgf/key filters/false}% for unknown keys
            }%

This key filter will return true for any option with active family. If
an option has no family, the return value is true if and only if it
belongs to `/tikz`. If the option is unknown, the return value is
`false` and unknown handlers won't be called.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/active:families:or:no:family",
      meta = "{key filter 1}{key filter 2}"
    },
    ["key filters/active families or no family DEBUG"] = {
      details = [[
A variant of `active families or no family` which protocols each action
on your terminal (log-file).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/active:families:or:no:family:DEBUG",
      meta = "{key filter 1}{key filter 2}"
    },
    ["key filters/and"] = {
      details = [[
This key filter returns true if and only if both, `{key filter 1}` and
`{key filter 2}` return true.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/and",
      meta = "{key filter 1}{key filter 2}"
    },
    ["key filters/defined"] = {
      details = [[
This key filter returns false if the current key is unknown, which
avoids calling the unknown handlers.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/defined"
    },
    ["key filters/equals"] = {
      details = [[
Install this key filter to process only the fully qualified option
`{full key}`. The filter returns true for any unknown key or if the key
equals `{full key}`.

    \pgfkeys{
    /group 1/A/.code={(A:#1)},
    /group 1/B/.code={(B:#1)},
    /pgf/key filters/equals/.install key filter=/group 1/A}
    \pgfqkeysfiltered{/group 1}{A=a,B=b}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/equals",
      meta = "{full key}"
    },
    ["key filters/false"] = {
      details = [[
This key filter returns always false (including unknown keys).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/false"
    },
    ["key filters/is descendant of"] = {
      details = [[
Install this key filter to process only options belonging to the key
tree ⟨path⟩. It returns true for every key whose key path is equal to
⟨path⟩. It also returns true for any unknown key, that means unknown
keys are processed using the standard unknown handlers of PGF.

    \pgfkeys{
    /group 1/A/.code={(A:#1)},
    /group 1/foo/bar/B/.code={(B:#1)},
    /group 2/C/.code={(C:#1)},
    /pgf/key filters/is descendant of/.install key filter=/group 1}
    \pgfkeysfiltered{/group 1/A=a,/group 1/foo/bar/B=b,/group 2/C=c}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/is:descendant:of",
      meta = "{path}"
    },
    ["key filters/not"] = {
      details = [[
This key filter logically inverts the result of `{key filter}`.

    \pgfkeys{
    /group 1/A/.code={(A:#1)},
    /group 1/foo/bar/B/.code={(B:#1)},
    /group 2/C/.code={(C:#1)},
    /pgf/key filters/not/.install key filter=
        {/pgf/key filters/is descendant of=/group 1}}
    \pgfkeysfiltered{/group 1/A=a,/group 1/foo/bar/B=b,/group 2/C=c}

Please note that unknown keys will be handed to the usual unknown
handlers.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/not",
      meta = "{key filter}"
    },
    ["key filters/or"] = {
      details = [[
This key filter returns true if one of `{key filter 1}` and
`{key filter 2}` returns true.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/or",
      meta = "{key filter 1}{key filter 2}"
    },
    ["key filters/true"] = {
      details = [[
This key filter returns always true.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/key:filters/true"
    },
    ["kite lower vertex angle"] = {
      details = [[
Sets the lower internal angle of the kite.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/kite:lower:vertex:angle",
      meta = "⟨angle⟩"
    },
    ["kite upper vertex angle"] = {
      details = [[
Sets the upper internal angle of the kite.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/kite:upper:vertex:angle",
      meta = "⟨angle⟩"
    },
    ["kite vertex angles"] = {
      details = [[
This key sets the keys for both the upper and lower vertex angles (it
stores no value itself). ⟨angle specification⟩ can be pair of angles in
the form ⟨upper angle⟩ `and` ⟨lower angle⟩, or a single angle. In this
latter case, both the upper and lower vertex angles will be the same.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/kite:vertex:angles",
      meta = "⟨angle specification⟩"
    },
    ["l-system"] = {
      details = [[
A more compact version of the previous key.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/l-system",
      meta = "{keys}"
    },
    ["lindenmayer system"] = {
      details = [[
This key changes the key path to `/pgf/lindenmayer systems` and executes
⟨keys⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system",
      meta = "{keys}"
    },
    ["lindenmayer system/anchor"] = {
      details = [[
Be default, when this key is not used, the L-system will start from the
last specified coordinate. By using this key, the L-system will be
placed inside a special (rectangle) node which can be positioned using
⟨anchor⟩.

    \begin{tikzpicture}[l-system={step=1.75pt, order=5, angle=60}]
      \pgfdeclarelindenmayersystem{Sierpinski triangle}{
        \symbol{X}{\pgflsystemdrawforward}
        \symbol{Y}{\pgflsystemdrawforward}
        \rule{X -> Y-X-Y}
        \rule{Y -> X+Y+X}
      }
      \draw [help lines] grid (3,2);
      \draw [red] (0,0) l-system
        [l-system={Sierpinski triangle, axiom=+++X, anchor=south west}];
      \draw [blue] (3,2) l-system
        [l-system={Sierpinski triangle, axiom=X, anchor=north east}];
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/anchor",
      meta = "⟨anchor⟩"
    },
    ["lindenmayer system/axiom"] = {
      details = [[
Sets the axiom (or input string) for the L-system.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/axiom",
      meta = "{string}"
    },
    ["lindenmayer system/left angle"] = {
      details = [[
This key sets the angle through which the L-system turns when it turns
left. The value is stored in the TeX macro `\pgflsystemrleftangle`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/left:angle",
      meta = "⟨angle⟩"
    },
    ["lindenmayer system/name"] = {
      details = [[
Sets the name for the L-system.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/name",
      meta = "{name}"
    },
    ["lindenmayer system/order"] = {
      details = [[
Sets the number of iterations the L-system will perform.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/order",
      meta = "{integer}"
    },
    ["lindenmayer system/randomize angle percent"] = {
      details = [[
If the angles are to be randomized, this key specifies by how much. The
value is stored in the TeX macro `\pgflsystemrandomizeanglepercent`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/randomize:angle:percent",
      meta = "⟨percentage⟩"
    },
    ["lindenmayer system/randomize step percent"] = {
      details = [[
If the step is to be randomized, this key specifies by how much. The
value is stored in the TeX macro `\pgflsystemrandomizesteppercent`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/randomize:step:percent",
      meta = "⟨percentage⟩"
    },
    ["lindenmayer system/right angle"] = {
      details = [[
This key sets the angle through which the L-system turns when it turns
right. The value is stored in the TeX macro `\pgflsystemrrightangle`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/right:angle",
      meta = "⟨angle⟩"
    },
    ["lindenmayer system/rule set"] = {
      details = [[
This key allows an (anonymous) L-system to be declared "on-line". There
is, however, a restriction that only the default symbols can be used for
drawing (empty symbols can still be used to control the growth of the
system). The rules in ⟨list⟩ should be separated by commas.

    \tikz[rotate=65]\draw [green!60!black] l-system
      [l-system={rule set={F -> F[+F]F[-F]}, axiom=F, order=4, angle=25,step=3pt}];
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/rule:set",
      meta = "{list}"
    },
    ["lindenmayer system/step"] = {
      details = [[
How far the L-system moves forward if required. This key sets the TeX
dimension `\pgflsystemstep`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/lindenmayer:system/step",
      meta = "⟨length⟩"
    },
    ["local bounding box"] = {
      details = [[
This defines a new node ⟨node name⟩ whose size is the bounding box
around all objects in the current scope starting at the position where
this option was given. After the end of the scope, the ⟨node name⟩ is
still available. You can use this option to keep track of the size of a
certain area. Note that excessive use of this option (keeping track of
dozens of bounding boxes at the same time) will slow things down.

    \begin{tikzpicture}
      \draw [help lines] (0,0) grid (3,2);
      { [local bounding box=outer box]
        \draw (1,1) circle (.5) [local bounding box=inner box] (2,2) circle (.5);
      }
      \draw      (outer box.south west) rectangle (outer box.north east);
      \draw[red] (inner box.south west) rectangle (inner box.north east);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/local:bounding:box",
      meta = "⟨node name⟩"
    },
    ["logic gate IEC symbol align"] = {
      details = [[
Set the alignment of the logic gate symbol (in TikZ, when the
`use IEC style logic gates` key has been used, `IEC` can be omitted).
The specification in ⟨align⟩ is a comma separated list from `top`,
`bottom`, `left` or `right`. The distance between the border of the node
and the outer edge of the symbol is determined by the values of the
`inner xsep` and `inner ysep`.

    \begin{tikzpicture}[minimum size=1cm, use IEC style logic gates]
        \tikzset{every node/.style={nor gate, draw}}
      \node (A) at (0,1.5) {};
      \node [logic gate symbol align={bottom, right}] (B) at (0,0) {};
      \foreach \g in {A, B}{
        \foreach \i in {1,2}
          \draw ([xshift=-0.5cm]\g.input \i) -- (\g.input \i);
        \draw (\g.output) -- ([xshift=0.5cm]\g.output);
      }
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/logic:gate:IEC:symbol:align",
      meta = "⟨align⟩"
    },
    ["logic gate IEC symbol color"] = {
      details = [[
This key sets the color for all symbols simultaneously. This color can
be overridden on a case by case basis by specifying a color when setting
the symbol text.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/logic:gate:IEC:symbol:color",
      meta = "⟨color⟩"
    },
    ["logic gate anchors use bounding box"] = {
      details = [[
When set to `true` this key will ensure that the compass point anchors
use the bounding rectangle of the main shape, which, ignore any inverted
inputs or outputs, but includes any `outer sep`. This *only* affects the
compass point anchors and is not set on a shape by shape basis: whether
the bounding box is used is determined by value of this key when the
anchor is accessed.

    \begin{tikzpicture}[minimum height=1.5cm]
      \node[xnor gate US, draw, gray!50,line width=2pt] (A) {};
      \foreach \x/\y/\z in {false/blue/1pt, true/red/2pt}
        \foreach \a in {north, south, east, west, north east,
          south east, north west, south west}
          \draw[logic gate anchors use bounding box=\x, color=\y]
            (A.\a) circle(\z);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/logic:gate:anchors:use:bounding:box",
      meta = "⟨boolean⟩"
    },
    ["logic gate input sep"] = {
      details = [[
Set the distance between the *centers* of the inputs to the logic gate.

    \begin{tikzpicture}[minimum size=0.75cm]
      \draw [help lines] grid (3,2);
      \tikzset{every node/.style={shape=and gate IEC, draw, logic gate inputs=ini}}
      \node[logic gate input sep=0.33333cm] at (1,1)(A) {A};
      \node[logic gate input sep=0.5cm]     at (3,1) (B) {B};
      \foreach \a in {1,...,3}
        \draw (A.input \a -| 0,0) -- (A.input \a)
              (B.input \a -| 2,0) -- (B.input \a);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/logic:gate:input:sep",
      meta = "⟨length⟩"
    },
    ["logic gate inputs"] = {
      details = [[
\[logic-gate-inputs\] Specify the inputs for the logic gate. The keyword
`inverted` indicates an inverted input which will mean PGF will draw a
circle attached to the main shape of the logic gate. Any keyword that is
not `inverted` will be treated as a "normal" or "non-inverted" input
(however, for readability, you may wish to use `normal` or
`non-inverted`), and PGF will not draw the circle. In both cases the
anchors for the inputs will be set up appropriately, numbered from top
to bottom `input 1`, `input 2`, ...and so on. If the gate only supports
one input the anchor is simply called `input` with no numerical index.

    \begin{tikzpicture}[minimum height=0.75cm]
      \node[and gate IEC, draw, logic gate inputs={inverted, normal, inverted}]
        (A) {};
      \foreach \a in {1,...,3}
        \draw (A.input \a -| -1,0) -- (A.input \a);
      \draw (A.output) -- ([xshift=0.5cm]A.output);
    \end{tikzpicture}

For multiple inputs it may be somewhat unwieldy to specify a long list,
thus, the following "shorthand" is permitted (this is an extension of
ideas due to Jürgen Werber and Christoph Bartoschek): Using `i` for
inverted and `n` for normal inputs, ⟨input list⟩ can be specified
*without the commas*. So, for example, `ini` is equivalent to
`inverted, normal, inverted`.

    \begin{tikzpicture}[minimum height=0.75cm]
      \node[or gate US, draw,logic gate inputs=inini] (A) {};
      \foreach \a in {1,...,5}
        \draw (A.input \a -| -1,0) -- (A.input \a);
      \draw (A.output) -- ([xshift=0.5cm]A.output);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/logic:gate:inputs",
      meta = "⟨input list⟩"
    },
    ["logic gate inverted radius"] = {
      details = [[
Set the radius of the circle that is used to indicate inverted inputs.
This is also the radius of the circle used for the inverted output of
the `nand`, `nor`, `xnor` and `not` gates.

    \begin{tikzpicture}[minimum height=0.75cm]
      \tikzset{every node/.style={shape=nand gate CDH, draw, logic gate inputs=ii}}
      \node[logic gate inverted radius=2pt] {A};
      \node[logic gate inverted radius=4pt] at (0,-1) {B};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/logic:gate:inverted:radius",
      meta = "⟨length⟩"
    },
    ["magnetic tape tail"] = {
      details = [[
This key sets the thickness of the 'tail' to be ⟨proportion⟩ times the
radius of the shape. The ⟨proportion⟩ should be between `0.0` and `1.0`.

    \begin{tikzpicture}[every node/.style={magnetic tape, draw}]
      \node [magnetic tape tail=0.5, magnetic tape tail extend=0.5cm] {A};
      \node [magnetic tape tail=0.25] at (0,1) {B};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/magnetic:tape:tail",
      meta = "⟨proportion⟩"
    },
    ["magnetic tape tail extend"] = {
      details = [[
This key sets how far the tail extends beyond the radius of the tape.
Negative values will be ignored.

    \begin{tikzpicture}[every node/.style={magnetic tape, draw}]
      \node [magnetic tape tail extend=0cm]    at (0,0) {A};
      \node [magnetic tape tail extend=0.25cm] at (0,1) {B};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/magnetic:tape:tail:extend",
      meta = "⟨distance⟩"
    },
    ["magnifying glass handle angle aspect"] = {
      details = [[
The length of the handle as a multiple of the circle radius.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/magnifying:glass:handle:angle:aspect",
      meta = "⟨factor⟩"
    },
    ["magnifying glass handle angle fill"] = {
      details = [[
The angle of the handle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/magnifying:glass:handle:angle:fill",
      meta = "⟨degree⟩"
    },
    ["mark color"] = {
      details = [[
Defines the additional fill color for the `halfcircle`, `halfcircle*`,
`halfdiamond*` and `halfsquare*` markers. An empty value uses `white`
(which is the initial configuration). The special value `none` disables
filling of the respective parts.

Note that `halfsquare` will be filled with `mark color`, and the starred
variant `halfsquare*` will be filled half with `mark color` and half
with the actual `fill` color.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/mark:color",
      meta = "{color}"
    },
    ["meta-decoration automaton/next state"] = {
      details = [[
After the code for a state has been executed, a state switch to ⟨new
state⟩ is performed. If this option is not given, the next state is the
same as the current state.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/meta-decoration:automaton/next:state",
      meta = "⟨new state⟩"
    },
    ["meta-decoration automaton/switch if less than"] = {
      details = [[
This causes PGF to check whether the remaining distance to the end of
the input path is less than ⟨dimension⟩, and, if so, to immediately
switch to the state ⟨new state⟩. When this key is evaluated, the macro
`\pgfmetadecoratedpathlength` will be defined as the total length of the
decoration path, allowing for values such as
`\pgfmetadecoratedpathlength/8`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/meta-decoration:automaton/switch:if:less:than",
      meta = "⟨dimension⟩ to ⟨new state⟩"
    },
    ["meta-decoration automaton/width"] = {
      details = [[
As always, this option will cause an immediate switch to the state
`final` if the remaining distance on the input path is less than
⟨dimension⟩.

Otherwise, this option tells PGF the width of the "meta-segment", that
is, the length of the sub-input-path which the decoration automaton
specified in ⟨code⟩ will decorate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/meta-decoration:automaton/width",
      meta = "⟨dimension⟩"
    },
    ["minimum height"] = {
      details = [[
Works like `/pgf/minimum width`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/minimum:height",
      meta = "⟨dimension⟩"
    },
    ["minimum size"] = {
      details = [[
This style both `/pgf/minimum width` and `/pgf/minimum height` to
⟨dimension⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/minimum:size",
      meta = "⟨dimension⟩"
    },
    ["minimum width"] = {
      details = [[
This key stores the *recommended* minimum width of a shape. Thus, when a
shape is drawn and when the shape's width would be smaller than
⟨dimension⟩, the shape's width is enlarged by adding some empty space.

Note that this value is just a recommendation. A shape may choose to
ignore this key.

    \begin{tikzpicture}
      \draw[help lines] (-2,0) grid (2,1);

      \pgfset{minimum width=3cm}
      \pgfnode{rectangle}{center}{Hello World}{}{\pgfusepath{stroke}}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/minimum:width",
      meta = "⟨dimension⟩"
    },
    ["nand gate IEC symbol"] = {
      details = [[
Set the symbol for the `nand gate`. In TikZ, when the
`use IEC style logic gates` key has been used, this key can be replaced
by `nand gate symbol`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/nand:gate:IEC:symbol",
      meta = "⟨text⟩"
    },
    ["nor gate IEC symbol"] = {
      details = [[
Set the symbol for the `nor gate`. In TikZ, when the
`use IEC style logic gates` key has been used, this key can be replaced
by `nor gate symbol`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/nor:gate:IEC:symbol",
      meta = "⟨text⟩"
    },
    ["not gate IEC symbol"] = {
      details = [[
Set the symbol for the `not gate`. In TikZ, when the
`use IEC style logic gates` key has been used, this key can be replaced
by `not gate symbol`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/not:gate:IEC:symbol",
      meta = "⟨text⟩"
    },
    ["number format/1000 sep"] = {
      details = [[
Just another name for `set thousands separator`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/1000:sep",
      meta = "{text}"
    },
    ["number format/1000 sep in fractionals"] = {
      details = [[
Configures whether the fractional part should also be grouped into
groups of three digits.

The value `true` will active the `1000 sep` for both, integer and
fractional parts. The value `false` will active `1000 sep` only for the
integer part.

    \pgfkeys{/pgf/number format/.cd,
        fixed,
        precision=999,
        set thousands separator={\,},
        1000 sep in fractionals,
        }
    \pgfmathprintnumber{1234.1234567}

    \pgfkeys{/pgf/number format/.cd,
        fixed,fixed zerofill,
        precision=9,
        set thousands separator={\,},
        1000 sep in fractionals,
        }
    \pgfmathprintnumber{1234.1234567}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/1000:sep:in:fractionals",
      meta = "{boolean}"
    },
    ["number format/\\protect\\atmarktext dec sep mark"] = {
      details = [[
Will be placed right before the place where a decimal separator belongs
to. However, `{text}` will be inserted even if there is no decimal
separator. It is intended as place-holder for auxiliary routines to find
alignment positions.

This key should never be used to change the decimal separator! Use
`dec sep` instead.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/\\protect\\atmarktext:dec:sep:mark",
      meta = "{text}"
    },
    ["number format/\\protect\\atmarktext sci exponent mark"] = {
      details = [[
Will be placed right before exponents in scientific notation. It is
intended as place-holder for auxiliary routines to find alignment
positions.

This key should never be used to change the exponent!
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/\\protect\\atmarktext:sci:exponent:mark",
      meta = "{text}"
    },
    ["number format/assume math mode"] = {
      details = [[
Set this to `true` if you don't want any checks for math mode. The
initial setting checks whether math mode is active using
`\pgfutilensuremath` for each final number.

Use `assume math mode=true` if you know that math mode is active. In
that case, the final number is typeset as-is, no further checking is
performed.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/assume:math:mode",
      meta = "{boolean}"
    },
    ["number format/dec sep"] = {
      details = [[
Just another name for `set decimal separator`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/dec:sep",
      meta = "{text}"
    },
    ["number format/every relative"] = {
      details = [[
A style which configures how the `relative` method finally displays its
results.

The initial configuration is

    \pgfkeys{/pgf/number format/every relative/.style=std}

Note that rounding is turned off when the resulting style is being
evaluated (since `relative` already rounded the number).

Although supported, I discourage from using `fixed zerofill` or
`sci zerofill` in this context -- it may lead to a suggestion of higher
precision than is actually used (because `fixed zerofill` might simply
add `.00` although there was a different information before `relative`
rounded the result).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/every:relative"
    },
    ["number format/fixed"] = {
      details = [[
Configures `\pgfmathprintnumber` to round the number to a fixed number
of digits after the period, discarding any trailing zeros.

    \pgfkeys{/pgf/number format/.cd,fixed,precision=2}
    \pgfmathprintnumber{4.568}\hspace{1em}
    \pgfmathprintnumber{5e-04}\hspace{1em}
    \pgfmathprintnumber{0.1}\hspace{1em}
    \pgfmathprintnumber{24415.98123}\hspace{1em}
    \pgfmathprintnumber{123456.12345}

See section ?? for how to change the appearance.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/fixed"
    },
    ["number format/fixed zerofill"] = {
      details = [[
Enables or disables zero filling for any number drawn in fixed point
format.

    \pgfkeys{/pgf/number format/.cd,fixed,fixed zerofill,precision=2}
    \pgfmathprintnumber{4.568}\hspace{1em}
    \pgfmathprintnumber{5e-04}\hspace{1em}
    \pgfmathprintnumber{0.1}\hspace{1em}
    \pgfmathprintnumber{24415.98123}\hspace{1em}
    \pgfmathprintnumber{123456.12345}

This key affects numbers drawn with `fixed` or `std` styles (the latter
only if no scientific format is chosen).

    \pgfkeys{/pgf/number format/.cd,std,fixed zerofill,precision=2}
    \pgfmathprintnumber{4.568}\hspace{1em}
    \pgfmathprintnumber{5e-05}\hspace{1em}
    \pgfmathprintnumber{1}\hspace{1em}
    \pgfmathprintnumber{123456.12345}

See section ?? for how to change the appearance.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/fixed:zerofill",
      meta = "{boolean}"
    },
    ["number format/frac"] = {
      details = [[
Displays numbers as fractionals.

    \pgfkeys{/pgf/number format/frac}
    \pgfmathprintnumber{0.333333333333333}\hspace{1em}
    \pgfmathprintnumber{0.5}\hspace{1em}
    \pgfmathprintnumber{2.133333333333325e-01}\hspace{1em}
    \pgfmathprintnumber{0.12}\hspace{1em}
    \pgfmathprintnumber{2.666666666666646e-02}\hspace{1em}
    \pgfmathprintnumber{-1.333333333333334e-02}\hspace{1em}
    \pgfmathprintnumber{7.200000000000000e-01}\hspace{1em}
    \pgfmathprintnumber{6.666666666666667e-02}\hspace{1em}
    \pgfmathprintnumber{1.333333333333333e-01}\hspace{1em}
    \pgfmathprintnumber{-1.333333333333333e-02}\hspace{1em}
    \pgfmathprintnumber{3.3333333}\hspace{1em}
    \pgfmathprintnumber{1.2345}\hspace{1em}
    \pgfmathprintnumber{1}\hspace{1em}
    \pgfmathprintnumber{-6}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/frac"
    },
    ["number format/frac TeX"] = {
      details = [[
Allows to use a different implementation for `\frac` inside of the
`frac` display type.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/frac:TeX",
      meta = "{\\macro}"
    },
    ["number format/frac denom"] = {
      details = [[
Allows to provide a custom denominator for `frac`.

    \pgfkeys{/pgf/number format/.cd,frac, frac denom=10}
    \pgfmathprintnumber{0.1}\hspace{1em}
    \pgfmathprintnumber{0.5}\hspace{1em}
    \pgfmathprintnumber{1.2}\hspace{1em}
    \pgfmathprintnumber{-0.6}\hspace{1em}
    \pgfmathprintnumber{-1.4}\hspace{1em}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/frac:denom",
      meta = "⟨int⟩"
    },
    ["number format/frac shift"] = {
      details = [[
In case you experience problems because of stability problems, try
experimenting with a different `frac shift`. Higher shift values $k$
yield higher sensitivity to inaccurate data or inaccurate arithmetics.

Technically, the following happens. If $r < 1$ is the fractional part of
the mantissa, then a scale $i = 1/r \cdot 10^k$ is computed where $k$ is
the shift; fractional parts of $i$ are neglected. The value $1/r$ is
computed internally, its error is amplified.

If you still experience stability problems, use `\usepackage{fp}` in
your preamble. The `frac` style will then automatically employ the
higher absolute precision of `fp` for the computation of $1/r$.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/frac:shift",
      meta = "{integer}"
    },
    ["number format/frac whole"] = {
      details = [[
Configures whether complete integer parts shall be placed in front of
the fractional part. In this case, the fractional part will be less then
$1$. Use `frac whole=false` to avoid whole number parts.

    \pgfkeys{/pgf/number format/.cd,frac, frac whole=false}
    \pgfmathprintnumber{20.1}\hspace{1em}
    \pgfmathprintnumber{5.5}\hspace{1em}
    \pgfmathprintnumber{1.2}\hspace{1em}
    \pgfmathprintnumber{-5.6}\hspace{1em}
    \pgfmathprintnumber{-1.4}\hspace{1em}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/frac:whole",
      meta = "⟨true,false⟩"
    },
    ["number format/int detect"] = {
      details = [[
Configures `\pgfmathprintnumber` to detect integers automatically. If
the input number is an integer, no period is displayed at all. If not,
the scientific format is chosen.

    \pgfkeys{/pgf/number format/.cd,int detect,precision=2}
    \pgfmathprintnumber{15}\hspace{1em}
    \pgfmathprintnumber{20}\hspace{1em}
    \pgfmathprintnumber{20.4}\hspace{1em}
    \pgfmathprintnumber{0.01}\hspace{1em}
    \pgfmathprintnumber{0}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/int:detect"
    },
    ["number format/int trunc"] = {
      details = [[
Truncates every number to integers (discards any digit after the
period).

    \pgfkeys{/pgf/number format/.cd,int trunc}
    \pgfmathprintnumber{4.568}\hspace{1em}
    \pgfmathprintnumber{5e-04}\hspace{1em}
    \pgfmathprintnumber{0.1}\hspace{1em}
    \pgfmathprintnumber{24415.98123}\hspace{1em}
    \pgfmathprintnumber{123456.12345}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/int:trunc"
    },
    ["number format/min exponent for 1000 sep"] = {
      details = [[
Defines the smallest exponent in scientific notation which is required
to draw thousand separators. The exponent is the number of digits minus
one, so $⟨number⟩=4$ will use thousand separators starting with $1e4 =
    10000$.

    \pgfkeys{/pgf/number format/.cd,
        int detect,
        1000 sep={\,},
        min exponent for 1000 sep=0}
    \pgfmathprintnumber{5000}; \pgfmathprintnumber{1000000}

    \pgfkeys{/pgf/number format/.cd,
        int detect,
        1000 sep={\,},
        min exponent for 1000 sep=4}
    \pgfmathprintnumber{1000}; \pgfmathprintnumber{5000}

    \pgfkeys{/pgf/number format/.cd,
        int detect,
        1000 sep={\,},
        min exponent for 1000 sep=4}
    \pgfmathprintnumber{10000}; \pgfmathprintnumber{1000000}

A value of `0` disables this feature (negative values are ignored).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/min:exponent:for:1000:sep",
      meta = "{number}"
    },
    ["number format/precision"] = {
      details = [[
Sets the desired rounding precision for any display operation. For
scientific format, this affects the mantissa.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/precision",
      meta = "{number}"
    },
    ["number format/print sign"] = {
      details = [[
A style which is simply an alias for `showpos=``{boolean}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/print:sign",
      meta = "{boolean}"
    },
    ["number format/read comma as period"] = {
      details = [[
This is one of the few keys which allows to customize the number parser.
If this switch is turned on, a comma is read just as a period.

    \pgfkeys{/pgf/number format/read comma as period}
    \pgfmathprintnumber{1234,56}

This is typically undesired as it can cause side-effects with math
parsing instructions. However, it is supported to format input numbers
or input tables. Consider `use comma` to typeset the result with a comma
as well.

    \pgfkeys{/pgf/number format/.cd,
        read comma as period,
        use comma}
    \pgfmathprintnumber{1234,56}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/read:comma:as:period",
      meta = "⟨true,false⟩"
    },
    ["number format/relative style"] = {
      details = [[
The same as `every relative/.append style=``{options}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/relative:style",
      meta = "{options}"
    },
    ["number format/retain unit mantissa"] = {
      details = [[
Allows to omit a unit mantissa.

    \pgfkeys{
        /pgf/number format/.cd,
        sci, retain unit mantissa=false}
    \pgfmathprintnumber{10.5};
    \pgfmathprintnumber{10};
    \pgfmathprintnumber{1010};
    \pgfmathprintnumber[precision=1]{-1010};

The feature is applied after rounding to the desired precision: if the
remaining mantissa is equal to $1$, it will be omitted. It applies to
all styles involving the scientific format (including `std`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/retain:unit:mantissa",
      meta = "⟨true,false⟩"
    },
    ["number format/sci"] = {
      details = [[
Configures `\pgfmathprintnumber` to display numbers in scientific
format, that means sign, mantissa and exponent (basis $10$). The
mantissa is rounded to the desired `precision` (or `sci precision`, see
below).

    \pgfkeys{/pgf/number format/.cd,sci,precision=2}
    \pgfmathprintnumber{4.568}\hspace{1em}
    \pgfmathprintnumber{5e-04}\hspace{1em}
    \pgfmathprintnumber{0.1}\hspace{1em}
    \pgfmathprintnumber{24415.98123}\hspace{1em}
    \pgfmathprintnumber{123456.12345}

See section ?? for how to change the exponential display style.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci"
    },
    ["number format/sci 10\\textasciicircum e"] = {
      details = [[
The same as '`sci 10e`'.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:10\\textasciicircum:e"
    },
    ["number format/sci 10e"] = {
      details = [[
Uses $m \cdot 10^e$ for any number displayed in scientific format.

    \pgfkeys{/pgf/number format/.cd,sci,sci 10e}
    \pgfmathprintnumber{12.345}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:10e"
    },
    ["number format/sci E"] = {
      details = [[
The same with an uppercase '`E`'.

    \pgfkeys{/pgf/number format/.cd,sci,sci E}
    \pgfmathprintnumber{12.345}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:E"
    },
    ["number format/sci e"] = {
      details = [[
Uses the '$1e{+}0$' format which is generated by common scientific tools
for any number displayed in scientific format.

    \pgfkeys{/pgf/number format/.cd,sci,sci e}
    \pgfmathprintnumber{12.345}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:e"
    },
    ["number format/sci generic"] = {
      details = [[
Allows to define an own number style for the scientific format. Here,
⟨keys⟩ can be one of the following choices (omit the long key prefix):

    \pgfkeys{
        /pgf/number format/.cd,
        sci,
        sci generic={mantissa sep=\times,exponent={10^{#1}}}}
    \pgfmathprintnumber{12.345};
    \pgfmathprintnumber{0.00012345}

The ⟨keys⟩ can depend on three parameters, namely on `# 1` which is the
exponent, `# 2` containing the flags entity of the floating point number
and `# 3` is the (unprocessed and unformatted) mantissa.

Note that `sci generic` is *not* suitable to modify the appearance of
fixed point numbers, nor can it be used to format the mantissa (which is
typeset like fixed point numbers). Use `dec sep`, `1000 sep` and
`print sign` to customize the mantissa.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:generic",
      meta = "{keys}"
    },
    ["number format/sci generic/exponent"] = {
      details = [[
Provides text to format the exponent. The actual exponent is available
as argument `# 1` (see below).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:generic/exponent",
      meta = "{text}"
    },
    ["number format/sci generic/mantissa sep"] = {
      details = [[
Provides the separator between a mantissa and the exponent. It might be
`\cdot`, for example,
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:generic/mantissa:sep",
      meta = "{text}"
    },
    ["number format/sci precision"] = {
      details = [[
Sets the desired rounding precision only for `sci` styles.

Use `sci precision={}` to restore the initial configuration (which uses
the argument provided to `precision` for all number styles).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:precision",
      meta = "⟨number or empty⟩"
    },
    ["number format/sci subscript"] = {
      details = [[
Typesets the exponent as subscript for any number displayed in
scientific format. This style requires very little space.

    \pgfkeys{/pgf/number format/.cd,sci,sci subscript}
    \pgfmathprintnumber{12.345}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:subscript"
    },
    ["number format/sci superscript"] = {
      details = [[
Typesets the exponent as superscript for any number displayed in
scientific format. This style requires very little space.

    \pgfkeys{/pgf/number format/.cd,sci,sci superscript}
    \pgfmathprintnumber{12.345}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:superscript"
    },
    ["number format/sci zerofill"] = {
      details = [[
Enables or disables zero filling for any number drawn in scientific
format.

    \pgfkeys{/pgf/number format/.cd,sci,sci zerofill,precision=2}
    \pgfmathprintnumber{4.568}\hspace{1em}
    \pgfmathprintnumber{5e-04}\hspace{1em}
    \pgfmathprintnumber{0.1}\hspace{1em}
    \pgfmathprintnumber{24415.98123}\hspace{1em}
    \pgfmathprintnumber{123456.12345}

As with `fixed zerofill`, this option does only affect numbers drawn in
`sci` format (or `std` if the scientific format is chosen).

See section ?? for how to change the exponential display style.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/sci:zerofill",
      meta = "{boolean}"
    },
    ["number format/set decimal separator"] = {
      details = [[
Assigns `{text}` as decimal separator for any fixed point numbers
(including the mantissa in sci format).

Use `\pgfkeysgetvalue{/pgf/number format/set decimal separator}\value`
to get the current separator into `\value`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/set:decimal:separator",
      meta = "{text}"
    },
    ["number format/set thousands separator"] = {
      details = [[
Assigns `{text}` as thousands separator for any fixed point numbers
(including the mantissa in sci format).

    \pgfkeys{/pgf/number format/.cd,
        fixed,
        fixed zerofill,
        precision=2,
        set thousands separator={}}
    \pgfmathprintnumber{1234.56}

    \pgfkeys{/pgf/number format/.cd,
        fixed,
        fixed zerofill,
        precision=2,
        set thousands separator={}}
    \pgfmathprintnumber{1234567890}

    \pgfkeys{/pgf/number format/.cd,
        fixed,
        fixed zerofill,
        precision=2,
        set thousands separator={.}}
    \pgfmathprintnumber{1234567890}

    \pgfkeys{/pgf/number format/.cd,
        fixed,
        fixed zerofill,
        precision=2,
        set thousands separator={,}}
    \pgfmathprintnumber{1234567890}

    \pgfkeys{/pgf/number format/.cd,
        fixed,
        fixed zerofill,
        precision=2,
        set thousands separator={{{,}}}}
    \pgfmathprintnumber{1234567890}

The last example employs commas and disables the default comma-spacing.

Use `\pgfkeysgetvalue{/pgf/number format/set thousands separator}\value`
to get the current separator into `\value`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/set:thousands:separator",
      meta = "{text}"
    },
    ["number format/showpos"] = {
      details = [[
Enables or disables the display of plus signs for non-negative numbers.

    \pgfkeys{/pgf/number format/showpos}
    \pgfmathprintnumber{12.345}

    \pgfkeys{/pgf/number format/showpos=false}
    \pgfmathprintnumber{12.345}

    \pgfkeys{/pgf/number format/.cd,showpos,sci}
    \pgfmathprintnumber{12.345}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/showpos",
      meta = "{boolean}"
    },
    ["number format/skip 0."] = {
      details = [[
Configures whether numbers like $0.1$ shall be typeset as $.1$ or not.

    \pgfkeys{/pgf/number format/.cd,
        fixed,
        fixed zerofill,precision=2,
        skip 0.}
    \pgfmathprintnumber{0.56}

    \pgfkeys{/pgf/number format/.cd,
        fixed,
        fixed zerofill,precision=2,
        skip 0.=false}
    \pgfmathprintnumber{0.56}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/skip:0.",
      meta = "{boolean}"
    },
    ["number format/use comma"] = {
      details = [[
A predefined style which installs commas "`,`" as decimal separators and
periods "`.`" as thousands separators.

    \pgfkeys{/pgf/number format/.cd,fixed,precision=2,use comma}
    \pgfmathprintnumber{12.3456}

    \pgfkeys{/pgf/number format/.cd,fixed,precision=2,use comma}
    \pgfmathprintnumber{1234.56}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/use:comma"
    },
    ["number format/use period"] = {
      details = [[
A predefined style which installs periods "`.`" as decimal separators
and commas "`,`" as thousands separators. This style is the default.

    \pgfkeys{/pgf/number format/.cd,fixed,precision=2,use period}
    \pgfmathprintnumber{12.3456}

    \pgfkeys{/pgf/number format/.cd,fixed,precision=2,use period}
    \pgfmathprintnumber{1234.56}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/use:period"
    },
    ["number format/verbatim"] = {
      details = [[
A style which configures the number printer to produce verbatim text
output, i.e., it doesn't contain TeX macros.

    \pgfkeys{
        /pgf/fpu,
        /pgf/number format/.cd,
        sci,
        verbatim}
    \pgfmathprintnumber{12.345};
    \pgfmathprintnumber{0.00012345};
    \pgfmathparse{exp(15)}
    \pgfmathprintnumber{\pgfmathresult}

The style resets `1000 sep`, `dec sep`, `print sign`, `skip 0.` and sets
`assume math mode`. Furthermore, it installs a `sci generic` format for
verbatim output of scientific numbers.

However, it will still respect `precision`, `fixed zerofill`,
`sci zerofill` and the overall styles `fixed`, `sci`, `int detect` (and
their variants). It might be useful if you intend to write output files.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/verbatim"
    },
    ["number format/zerofill"] = {
      details = [[
Sets both `fixed zerofill` and `sci zerofill` at once.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/number:format/zerofill",
      meta = "{boolean}"
    },
    ["or gate IEC symbol"] = {
      details = [[
Set the symbol for the `or gate`. In TikZ, when the
`use IEC style logic gates` key has been used, this key can be replaced
by `or gate symbol`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/or:gate:IEC:symbol",
      meta = "⟨text⟩"
    },
    ["outer sep"] = {
      details = [[
This option adds an additional (invisible) separation space of
⟨dimension⟩ outside the background path. The main effect of this option
is that all anchors will move a little "to the outside".

For those familiar with CSS, this is same as *margin*.

The default for this option is half the line width. When the default is
used and when the background path is draw, the anchors will lie exactly
on the "outside border" of the path (not on the path itself).

    \begin{tikzpicture}
      \draw[line width=5pt]
        (0,0)  node[fill=yellow!80!black] (f) {filled}
        (2,0)  node[draw]                 (d) {drawn}
        (1,-2) node[draw,scale=2]         (s) {scaled};

      \draw[->] (1,-1) -- (f);
      \draw[->] (1,-1) -- (d);
      \draw[->] (1,-1) -- (s);
    \end{tikzpicture}

As the above example demonstrates, the standard settings for the outer
sep are not always "correct". First, when a shape is filled, but not
drawn, the outer sep should actually be `0`. Second, when a node is
scaled, for instance by a factor of 5, the outer separation also gets
scaled by a factor of 5, while the line width stays at its original
width; again causing problems.

In such cases, you can say `outer sep=auto` to make TikZ *try* to
compensate for the effects described above. This is done by, firstly,
setting the outer sep to `0` when no drawing is done and, secondly,
setting the outer separations to half the line width (as before) times
two adjustment factors, one for the horizontal separations and one for
the vertical separations (see Section ?? for details on these factors).
Note, however, that these factors can compensate only for
transformations that are either scalings plus rotations or scalings with
different magnitudes in the horizontal and the vertical direction. If
you apply slanting, the factors will only approximate the correct
values.

In general, it is a good idea to say `outer sep=auto` at some early
stage. It is not the default mainly for compatibility with earlier
versions.

    \begin{tikzpicture}[outer sep=auto]
      \draw[line width=5pt]
        (0,0)  node[fill=yellow!80!black] (f) {filled}
        (2,0)  node[draw]                 (d) {drawn}
        (1,-2) node[draw,scale=2]         (s) {scaled};

      \draw[->] (1,-1) -- (f);
      \draw[->] (1,-1) -- (d);
      \draw[->] (1,-1) -- (s);
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/outer:sep",
      meta = "⟨dimension or ``auto''⟩"
    },
    ["outer xsep"] = {
      details = [[
This key stores the recommended horizontal separation between the
background path and the "outer anchors". For example, if ⟨dimension⟩ is
`1cm` then the `east` anchor will be 1cm to the right of the right
border of the background path. As before, this value is just a
recommendation.

    \begin{tikzpicture}
      \draw[help lines] (-2,0) grid (2,1);

      \pgfset{outer xsep=.5cm}
      \pgfnode{rectangle}{center}{Hello World}{x}{\pgfusepath{stroke}}

      \pgfpathcircle{\pgfpointanchor{x}{north}}{2pt}
      \pgfpathcircle{\pgfpointanchor{x}{south}}{2pt}
      \pgfpathcircle{\pgfpointanchor{x}{east}}{2pt}
      \pgfpathcircle{\pgfpointanchor{x}{west}}{2pt}
      \pgfpathcircle{\pgfpointanchor{x}{north east}}{2pt}
      \pgfusepath{fill}
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/outer:xsep",
      meta = "⟨dimension⟩"
    },
    ["outer ysep"] = {
      details = [[
Works like `/pgf/outer xsep`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/outer:ysep",
      meta = "⟨dimension⟩"
    },
    ["pattern keys/angle"] = {
      details = [[
By default the stars are arranged on a regular grid. The whole pattern
is rotated by this angle. The rotation angle is measured in the
mathematically positive sense.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/pattern:keys/angle"
    },
    ["pattern keys/distance"] = {
      details = [[
Distance between stars.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/pattern:keys/distance"
    },
    ["pattern keys/line width"] = {
      details = [[
Thickness of the lines.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/pattern:keys/line:width"
    },
    ["pattern keys/points"] = {
      details = [[
Number of pointy ends of the stars.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/pattern:keys/points"
    },
    ["pattern keys/radius"] = {
      details = [[
Outer radius of the enclosing circle of the stars.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/pattern:keys/radius"
    },
    ["pattern keys/xshift"] = {
      details = [[
Shifts the whole pattern in $x$-direction (before applying the
rotation).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/pattern:keys/xshift"
    },
    ["pattern keys/yshift"] = {
      details = [[
Shifts the whole pattern in $y$-direction (before applying the
rotation).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/pattern:keys/yshift"
    },
    ["patterns/bottom left"] = {
      details = [[
Bottom left corner of the pattern's bounding box,
e.g. `\pgfqpoint{-.1pt}{-.1pt}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/bottom:left",
      meta = "⟨pgfpoint⟩"
    },
    ["patterns/code"] = {
      details = [[
The code should be PGF code that can be protocolled. It should not
contain any color code or nodes.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/code",
      meta = "⟨code⟩"
    },
    ["patterns/defaults"] = {
      details = [[
This list holds default assignments to the parameters passed to the
pattern. The default keys can then be found under the
`/pgf/pattern keys/` prefix.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/defaults",
      meta = "⟨comma separated list⟩"
    },
    ["patterns/name"] = {
      details = [[
The name of the pattern by which it can be used later on.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/name",
      meta = "⟨name⟩"
    },
    ["patterns/parameters"] = {
      details = [[
A list of parameters that are passed to the pattern. This is usually a
list of TeX macros. It is very important that these macros are fully
expandable because the values they hold are being used for deduplication
in the PDF file.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/parameters",
      meta = "⟨comma separated list⟩"
    },
    ["patterns/set up code"] = {
      details = [[
This code can be set if parameters have to be preprocessed before the
actual pattern code can be run.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/set:up:code",
      meta = "⟨code⟩"
    },
    ["patterns/tile size"] = {
      details = [[
Width and height of a single of the pattern as a PGF point
specification, i.e. the $x$ coordinate is the width and the $y$
specification, i.e. the $x$ coordinate is the width and the $y$
coordinate is the height, e.g. `\pgfqpoint{3pt}{3pt}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/tile:size",
      meta = "⟨pgfpoint⟩"
    },
    ["patterns/tile transformation"] = {
      details = [[
A PGF transformation, e.g. `\pgftransformrotate{30}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/tile:transformation",
      meta = "⟨pgftransformation⟩"
    },
    ["patterns/top right"] = {
      details = [[
Top right corner of the pattern's bounding box,
e.g. `\pgfqpoint{3.1pt}{3.1pt}`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/top:right",
      meta = "⟨pgfpoint⟩"
    },
    ["patterns/type"] = {
      details = [[
The type of the pattern maps to what was called "form only" and
"inherently colored" in the language of the normal patterns. The
available choices are:

-   `uncolored` the pattern will obey the surrounding color.

-   `colored` the pattern will have an intrinsic color.

-   `form only` synonym for `uncolored`

-   `inherently colored` synonym for `colored`
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/type",
      meta = "⟨type⟩"
    },
    ["patterns/x"] = {
      details = [[
Unit vector of the coordinate system in the $x$-direction.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/x",
      meta = "⟨dimension⟩"
    },
    ["patterns/y"] = {
      details = [[
Unit vector of the coordinate system in the $y$-direction.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/patterns/y",
      meta = "⟨dimension⟩"
    },
    ["plot/gnuplot call"] = {
      details = [[
This key can be used to change the way gnuplot is called.

Some portable MiKTeX distribution needs something like the following.

      \pgfkeys{/pgf/plot/gnuplot call="/Programs/gnuplot/binary/gnuplot"}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/plot/gnuplot:call",
      meta = "⟨gnuplot invocation⟩"
    },
    ["random starburst"] = {
      details = [[
Sets the seed for the random number generator for creating the
starburst. The maximum value for ⟨integer⟩ is `16383`. If ⟨integer⟩`=0`,
the random number generator will not be used, and the maximum point
height will be used for all outer points. If ⟨integer⟩ is omitted, a
seed will be randomly chosen.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/random:starburst",
      meta = "⟨integer⟩"
    },
    ["rectangle split allocate boxes"] = {
      details = [[
This key checks if ⟨number⟩ boxes have been allocated, and if not, it
allocates the required boxes using `\newbox` (some "magic" is performed
to get around the fact that `\newbox` is declared `\outer` in plain
TeX).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:allocate:boxes",
      meta = "⟨number⟩"
    },
    ["rectangle split draw splits"] = {
      details = [[
Sets whether the line or lines between node parts will be drawn.
Internally, this sets the TeX-if `\ifpgfrectanglesplitdrawsplits`
appropriately.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:draw:splits",
      meta = "⟨boolean⟩"
    },
    ["rectangle split empty part depth"] = {
      details = [[
Sets the default depth for a node part box if it is empty and empty
parts are not ignored.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:empty:part:depth",
      meta = "⟨length⟩"
    },
    ["rectangle split empty part height"] = {
      details = [[
Sets the default height for a node part box if it is empty and empty
parts are not ignored.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:empty:part:height",
      meta = "⟨length⟩"
    },
    ["rectangle split empty part width"] = {
      details = [[
Sets the default width for a node part box if it is empty and empty
parts are not ignored.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:empty:part:width",
      meta = "⟨length⟩"
    },
    ["rectangle split horizontal"] = {
      details = [[
This key determines whether the rectangle is split horizontally or
vertically
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:horizontal",
      meta = "⟨boolean⟩"
    },
    ["rectangle split ignore empty parts"] = {
      details = [[
When ⟨boolean⟩ is true, PGF will ignore any part that is empty *except
the text part*. This effectively overrides the `rectangle split parts`
key in that, if 3 parts (for example) are specified, but one is empty,
only two will be shown.

    \begin{tikzpicture}[every node/.style={draw, anchor=text, rectangle split,
        rectangle split parts=3}]
      \node {text \nodepart{second} \nodepart{third}third};
      \node [rectangle split ignore empty parts] at (2,0)
            {text \nodepart{second} \nodepart{third}third};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:ignore:empty:parts",
      meta = "⟨boolean⟩"
    },
    ["rectangle split part align"] = {
      details = [[
Sets the alignment of the boxes inside the node parts. Each item in
⟨list⟩ should be separated by commas (so if there is more than one item
in ⟨list⟩, it must be surrounded by braces).

When the rectangle is split vertically, the entries in ⟨list⟩ must be
one of `left`, `right`, or `center`. If ⟨list⟩ has less entries than
node parts then the remaining boxes are aligned according to the last
entry in the list. Note that this only aligns the boxes in each part and
*does not* affect the alignment of the contents of the boxes.

    \def\x{one \nodepart{two} 2 \nodepart{three} three \nodepart{four} 4}
    \begin{tikzpicture}[
      every node/.style={rectangle split, rectangle split parts=4,
        draw}
      ]
      \node[rectangle split part align={center, left, right}] at (0,0)    {\x};
      \node[rectangle split part align={center, left}]        at (1.25,0) {\x};
      \node[rectangle split part align={center}]              at (2.5,0)  {\x};
    \end{tikzpicture}

When the rectangle is split horizontally, the entries in ⟨list⟩ must be
one of `top`, `bottom`, `center` or `base`. Note that using the value
`base` will only make sense if all the node part boxes are being aligned
in this way. This is because the `base` value aligns the boxes in
relation to each other, whereas the other values align the boxes in
relation to the part of the shape they occupy.

    \def\x{\Large w\nodepart{two}x\nodepart{three}\Huge y\nodepart{four}\tiny z}
    \begin{tikzpicture}[
      every node/.style={rectangle split, rectangle split parts=4,
        draw, rectangle split horizontal}
      ]
      \node[rectangle split part align={center, top, bottom}] at (0,0)     {\x};
      \node[rectangle split part align={center, top}]         at (0,-1.25) {\x};
      \node[rectangle split part align={center}]              at (0,-2.5)  {\x};
      \node[rectangle split part align=base]                  at (0,-3.75) {\x};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:part:align",
      meta = "{⟨list⟩}"
    },
    ["rectangle split part fill"] = {
      details = [[
Sets the custom fill color for each node part shape. The items in ⟨list⟩
should be separated by commas (so if there is more than one item in
⟨list⟩, it must be surrounded by braces). If ⟨list⟩ has less entries
than node parts, then the remaining node parts use the color from the
last entry in the list. This key will automatically set
`/pgf/rectangle split use custom fill`.

    \begin{tikzpicture}
      \tikzset{every node/.style={rectangle split, draw, minimum width=.5cm}}
      \node[rectangle split part fill={red!50, green!50, blue!50, yellow!50}]  {};
      \node[rectangle split part fill={red!50, green!50, blue!50}] at (0.75,0) {};
      \node[rectangle split part fill={red!50, green!50}]          at (1.5,0)  {};
      \node[rectangle split part fill={red!50}]                    at (2.25,0) {};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:part:fill",
      meta = "{⟨list⟩}"
    },
    ["rectangle split parts"] = {
      details = [[
Split the rectangle into ⟨number⟩ parts, which should be in the range
`1` to `20`. If more than four parts are needed, the boxes should be
allocated in advance as described above.

    \begin{tikzpicture}[every text node part/.style={align=center}]
      \node[rectangle split, rectangle split parts=3, draw, text width=2.75cm]
        {Student
         \nodepart{two}
           age:int \\
           name:String
         \nodepart{three}
           getAge():int \\
           getName():String};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:parts",
      meta = "⟨number⟩"
    },
    ["rectangle split use custom fill"] = {
      details = [[
This enables the use of a custom fill for each of the node parts
(including the area covered by the `inner sep`). The background path for
the shape should not be filled (e.g., in TikZ, the `fill` option for the
node must be implicity or explicitly set to `none`). Internally, this
key sets the TeX-if `\ifpgfrectanglesplitusecustomfill` appropriately.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rectangle:split:use:custom:fill",
      meta = "⟨boolean⟩"
    },
    ["regular polygon sides"] = {
      details = [[

]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/regular:polygon:sides",
      meta = "⟨integer⟩"
    },
    ["rounded rectangle arc length"] = {
      details = [[
Sets the length of the arcs for the rounded ends. Recommended values for
⟨angle⟩ are between `90` and `180`.

    \begin{tikzpicture}
      \matrix[row sep=5pt, every node/.style={draw, rounded rectangle}]{
        \node[rounded rectangle arc length=180] {180}; \\
        \node[rounded rectangle arc length=120] {120}; \\
        \node[rounded rectangle arc length=90]  {90};  \\};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rounded:rectangle:arc:length",
      meta = "⟨angle⟩"
    },
    ["rounded rectangle east arc"] = {
      details = [[
Sets the style of the rounding for the east side.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rounded:rectangle:east:arc",
      meta = "⟨arc type⟩"
    },
    ["rounded rectangle left arc"] = {
      details = [[
Alternative key for specifying the west arc.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rounded:rectangle:left:arc",
      meta = "⟨arc type⟩"
    },
    ["rounded rectangle right arc"] = {
      details = [[
Alternative key for specifying the east arc.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rounded:rectangle:right:arc",
      meta = "⟨arc type⟩"
    },
    ["rounded rectangle west arc"] = {
      details = [[
Sets the style of the rounding for the left side. The permitted values
for ⟨arc type⟩ are `concave`, `convex`, or `none`.

    \begin{tikzpicture}
      \matrix[row sep=5pt, every node/.style={draw, rounded rectangle}]{
        \node[rounded rectangle west arc=concave] {Concave}; \\
        \node[rounded rectangle west arc=convex]  {Convex};  \\
        \node[rounded rectangle left arc=none]    {None};    \\};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/rounded:rectangle:west:arc",
      meta = "⟨arc type⟩"
    },
    ["shape aspect"] = {
      details = [[
Sets a desired aspect ratio for the shape. For the `diamond` shape, this
option sets the ratio between width and height of the shape.

    \begin{tikzpicture}
      \draw (0,0)  node[shape aspect=1,diamond,draw] {aspect 1};
      \draw (0,-2) node[shape aspect=2,diamond,draw] {aspect 2};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/shape:aspect",
      meta = "⟨aspect ratio⟩"
    },
    ["shape border rotate"] = {
      details = [[
Rotates the border of a shape independently of the node contents, but in
addition to any other transformations. If the shape border is not
constructed using the incircle, the rotation will be rounded to the
nearest integer multiple of 90 degrees when the shape is drawn.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/shape:border:rotate",
      meta = "⟨angle⟩"
    },
    ["shape border uses incircle"] = {
      details = [[
Determines if the border of a shape is constructed using the incircle.
If no value is given ⟨boolean⟩ will take the default value `true`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/shape:border:uses:incircle",
      meta = "⟨boolean⟩"
    },
    ["signal from"] = {
      details = [[
Sets which sides take an inward pointer (i.e., that points towards the
center of the shape). The possible values for ⟨direction⟩ and ⟨opposite
direction⟩ are the compass point directions `north`, `south`, `east` and
`west` (or `above`, `below`, `right` and `left`). An additional keyword
`nowhere` can be used to reset the sides so they have no pointers. When
used with `signal from` key, this only resets inward pointers; used with
the `signal to` key, it only resets outward pointers.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/signal:from",
      meta = "⟨direction⟩ and ⟨opposite direction⟩"
    },
    ["signal pointer angle"] = {
      details = [[
Sets the angle for the pointed sides of the shape. This angle is
maintained when enforcing any minimum size requirements, so any
adjustment to the width will affect the height, and vice versa.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/signal:pointer:angle",
      meta = "⟨angle⟩"
    },
    ["signal to"] = {
      details = [[
Sets which sides take an outward pointer (i.e., that points away from
the shape).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/signal:to",
      meta = "⟨direction⟩ and ⟨opposite direction⟩"
    },
    ["single arrow head extend"] = {
      details = [[
This sets the distance between the tail of the arrow and the outer end
of the arrow head. This may change if the shape is enlarged to some
minimum width.

    \begin{tikzpicture}
      \node[single arrow, draw, single arrow head extend=.5cm, gray!50, rotate=60]
         (a) {Arrow};
      \draw[red, |<->|] (a.before tip) -- (a.before head)
        node [midway, below, sloped, black] {head extend};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/single:arrow:head:extend",
      meta = "⟨length⟩"
    },
    ["single arrow head indent"] = {
      details = [[
This moves the point where the arrow head joins the shaft of the arrow
*towards* the arrow tip, by ⟨length⟩.

    \begin{tikzpicture}[every node/.style={single arrow, draw=none, rotate=60}]
      \node [fill=red!50]                                           {arrow 1};
      \node [fill=blue!50, single arrow head indent=1ex] at (1.5,0) {arrow 2};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/single:arrow:head:indent",
      meta = "⟨length⟩"
    },
    ["single arrow tip angle"] = {
      details = [[
Sets the angle for the arrow tip. Enlarging the arrow to some minimum
width may increase the height of the shape to maintain this angle.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/single:arrow:tip:angle",
      meta = "⟨angle⟩"
    },
    ["star point height"] = {
      details = [[
Sets the height of the star points. This is the distance between the
inner point and outer point radii. If the star is enlarged to some
specified minimum size, the inner radius is increased to maintain the
point height.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/star:point:height",
      meta = "⟨distance⟩"
    },
    ["star point ratio"] = {
      details = [[
Sets the ratio between the inner point and outer point radii. If the
star is enlarged to some specified minimum size, the inner radius is
increased to maintain the ratio.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/star:point:ratio",
      meta = "⟨number⟩"
    },
    ["star points"] = {
      details = [[
Sets the number of points for the star.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/star:points",
      meta = "⟨integer⟩"
    },
    ["starburst point height"] = {
      details = [[
Sets the *maximum* distance between the inner point radius and the outer
point radius.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/starburst:point:height",
      meta = "⟨length⟩"
    },
    ["starburst points"] = {
      details = [[
Sets the number of outer points for the starburst.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/starburst:points",
      meta = "⟨integer⟩"
    },
    step = {
      details = [[
Sets the horizontal stepping to the $x$-coordinate of ⟨vector⟩ and the
vertical stepping to its $y$-coordinate.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/step",
      meta = "⟨vector⟩"
    },
    stepx = {
      details = [[
The horizontal stepping.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/stepx",
      meta = "⟨dimension⟩"
    },
    stepy = {
      details = [[
The vertical stepping.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/stepy",
      meta = "⟨dimension⟩"
    },
    ["tape bend bottom"] = {
      details = [[
Specifies how the bottom side bends.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/tape:bend:bottom",
      meta = "⟨bend style⟩"
    },
    ["tape bend height"] = {
      details = [[
Sets the total height for a side with a bend.

    \begin{tikzpicture}[>=stealth]
      \draw [help lines] grid(3,2);
      \node [tape, fill, minimum size=2cm, red!50, tape bend top=none,
             tape bend height=1cm] at (1.5,1.5) (t) {};
      \draw [|<->|, blue] (1.5,0) -- (1.5,1)
             node [at end, above, black]{tape bend height};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/tape:bend:height",
      meta = "⟨length⟩"
    },
    ["tape bend top"] = {
      details = [[
Specifies how the top side bends. The ⟨bend style⟩ is either
`in and out`, `out and in` or `none` (i.e., a straight line). The
bending sides are drawn in a clockwise direction, and using the bend
style `in and out` will mean the side will first bend inwards and then
bend outwards. The opposite holds true for `out and in`.

    \begin{tikzpicture}[-stealth]
      \node[tape, draw, gray, minimum width=2cm](t){Tape};
      \draw [blue]([yshift=5pt] t.north west) -- ([yshift=5pt]t.north east)
             node[midway, above, black]{in and out};
      \draw [blue]([yshift=-5pt]t.south east) -- ([yshift=-5pt]t.south west)
             node[sloped, allow upside down, midway, above, black]{in and out};
    \end{tikzpicture}

This might take a bit of getting used to, but just remember that when
you want the bendy sides to be parallel, the sides take the same bend
style. It is possible for the top and bottom sides to take opposite bend
styles, but the author of this shape cannot think of a single use for
such a combination.

    \begin{tikzpicture}[every node/.style={tape, draw}]
      \node [tape bend top=out and in, tape bend bottom=out and in] {Parallel};
      \node at (2,0) [tape bend bottom=out and in]                  {Why?};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/tape:bend:top",
      meta = "⟨bend style⟩"
    },
    ["tex4ht node/class"] = {
      details = [[
This option allows you to give a class name to the node, allowing it to
be styled by a CSS file (only with `tex4ht node/escape=true`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/tex4ht:node/class",
      meta = "⟨class name⟩"
    },
    ["tex4ht node/css"] = {
      details = [[
This option allows you to tell the browser what CSS file it should use
to style the display of the node (only with `tex4ht node/escape=true`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/tex4ht:node/css",
      meta = "⟨filename⟩"
    },
    ["tex4ht node/escape"] = {
      details = [[
Selects the rendering method for a text node with the tex4ht driver.

When this key is set to `false`, text is translated into SVG text, which
is somewhat limited: simple characters (letters, numerals, punctuation,
$\sum$, $\int$, ...), subscripts and superscripts (but not
subsubscripts) will display but everything else will be filtered out,
ignored or will produce invalid HTML code (in the worst case). This
means that two kind of texts render reasonably well:

1.  First, plain text without math mode, special characters or anything
    else special.

2.  Second, *very* simple mathematical text that contains subscripts or
    superscripts. Even then, variables are not correctly set in italics
    and, in general, text simple does not look very nice.

If you use text that contains anything special, even something as simple
as `\textbackslash alpha`, this may corrupt the graphic.

    \tikz \node[draw,/pgf/tex4ht node/escape=false] {Example : $(a+b)^2=a^2+2ab+b^2$};

When you write `node[/pgf/tex4ht node/escape=true] {`⟨text⟩`}`,
PGF escapes back to HTML to render the ⟨text⟩. This method produces
valid HTML code in most cases and the support for complicated text nodes
is much better since code that renders well outside a `{pgfpicture}`,
should also render well inside a text node. Another advantage is that
inside text nodes with fixed width, HTML will produce line breaks for
long lines. On the other hand, you need a browser with good SVG support
to display the picture. Also, the text will display differently,
depending on your browsers, the fonts you have on your system and your
settings. Finally, PGF has to guess the size of the text rendered by the
browser to scale it and prevent it from sticking from the node. When it
fails, the text will be either cropped or too small.

    \tikz \node[draw,/pgf/tex4ht node/escape=true]
      {Example : $\int_0^\infty\frac{1}{1+t^2}dt=\frac{\pi}{2}$};
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/tex4ht:node/escape",
      meta = "⟨boolean⟩"
    },
    ["tex4ht node/id"] = {
      details = [[
This option allows you to give a unique id to the node, allowing it to
be styled by a CSS file (only with `tex4ht node/escape=true`).
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/tex4ht:node/id",
      meta = "⟨id name⟩"
    },
    ["text mark"] = {
      details = [[
Changes the text shown by `mark=text`.

With `/pgf/text mark=m`:

With `/pgf/text mark=A`:

There is no limitation about the number of characters or whatever. In
fact, any TeX material can be inserted as `{text}`, including images.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text:mark",
      meta = "{text}"
    },
    ["text mark as node"] = {
      details = [[
Configures how `mark=text` will be drawn: either as `\node` or as
`\pgftext`.

The first choice is highly flexible and possibly slow, the second is
very fast and usually enough.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text:mark:as:node",
      meta = "{boolean}"
    },
    ["text mark style"] = {
      details = [[
Defines a set of options which control the appearance of `mark=text`.

If `/pgf/text mark as node=false` (the default), `{options}` is provided
as argument to `\pgftext` -- which provides only some basic keys like
`left`, `right`, `top`, `bottom`, `base` and `rotate`.

If `/pgf/text mark as node=true`, `{options}` is provided as argument to
`\node`. This means you can provide a very powerful set of options
including `anchor`, `scale`, `fill`, `draw`, `rounded corners` etc.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text:mark:style",
      meta = "{options for mark=text}"
    },
    ["text/at"] = {
      details = [[
Translates the origin (that is, the point where the text is shown) to
⟨point⟩.

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[base,at={\pgfpoint{1cm}{0cm}}] {lovely}}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text/at",
      meta = "⟨point⟩"
    },
    ["text/base"] = {
      details = [[
This key causes the text box to be placed such that its baseline is on
the origin.

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[base] {lovely}}

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[base,right] {lovely}}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text/base"
    },
    ["text/bottom"] = {
      details = [[
This key causes the text box to be placed such that its bottom is on the
origin.

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[bottom] {lovely}}

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[bottom,right] {lovely}}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text/bottom"
    },
    ["text/left"] = {
      details = [[
The key causes the text box to be placed such that its left border is on
the origin.

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[left] {lovely}}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text/left"
    },
    ["text/right"] = {
      details = [[
The key causes the text box to be placed such that its right border is
on the origin.

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[right] {lovely}}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text/right"
    },
    ["text/rotate"] = {
      details = [[
Rotates the coordinate system by ⟨degree⟩. This will also rotate the
text box.

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[base,x=1cm,y=-0.5cm,rotate=30] {lovely}}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text/rotate",
      meta = "⟨degree⟩"
    },
    ["text/top"] = {
      details = [[
This key causes the text box to be placed such that its top is on the
origin. This option can be used together with the `left` or `right`
option.

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[top] {lovely}}

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[top,right] {lovely}}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text/top"
    },
    ["text/x"] = {
      details = [[
Translates the origin by ⟨dimension⟩ along the $x$-axis.

    \tikz{\draw[help lines] (-1,-.5) grid (1,.5);
         \pgftext[base,x=1cm,y=-0.5cm] {lovely}}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text/x",
      meta = "⟨dimension⟩"
    },
    ["text/y"] = {
      details = [[
This key works like the `x` option.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/text/y",
      meta = "⟨dimension⟩"
    },
    tips = {
      details = [[
This key governs in what situations arrow tips are added to a path. The
following ⟨values⟩ are permissible:

-   `true` (the value used when no ⟨value⟩ is specified)

-   `proper`

-   `on draw` (the initial value, if the key has not yet been used at
    all)

-   `on proper draw`

-   `never` or `false` (same effect)

Firstly, there are a whole bunch of situations where the setting of
these (or other) options causes no arrow tips to be shown:

-   If no arrow tips have been specified (for instance, by having said
    `arrows=-`), no arrow tips are drawn.

-   If the `clip` option is set, no arrow tips are drawn.

-   If `tips` has been set to `never` or `false`, no arrow tips are
    drawn.

-   If `tips` has been set to `on draw` or `on proper draw`, but the
    `draw` option is not set, no arrow tips are drawn.

-   If the path is empty (as in `\path ;`), no arrow tips are drawn.

-   If at least one of the subpaths of a path is closed (`cycle` is used
    somewhere or something like `circle` or `rectangle`), arrow tips are
    never drawn anywhere -- even if there are open subpaths.

Now, if we pass all of the above tests, we must have a closer look at
the path. All its subpaths must now be open and there must be at least
one subpath. We consider the last one. Arrow tips will only be added to
this last subpath.

1.  If this last subpath not degenerate (all coordinates on the subpath
    are the same as in a single "move-to" `\path (0,0);` or in a
    "move-to" followed by a "line-to" to the same position as in
    `\path (1,2) – (1,2)`), arrow tips are added to this last subpath
    now.

2.  If the last subpath is degenerate, we add arrow tips pointing upward
    at the single coordinate mentioned in the path, but only for `tips`
    begin set to `true` or to `on draw` -- and not for `proper` nor for
    `on proper draw`. In other words, "proper" suppresses arrow tips on
    degenerate paths.

&nbsp;

    % No path, no arrow tips:
    \tikz [<->] \draw;

    % Degenerate path, draw arrow tips (but no path, it is degenerate...)
    \tikz [<->] \draw (0,0);

    % Degenerate path, tips=proper suppresses arrows
    \tikz [<->] \draw [tips=proper] (0,0);

    % Normal case:
    \tikz [<->] \draw (0,0) -- (1,0);

    % Two subpaths, only second gets tips
    \tikz [<->] \draw (0,0) -- (1,0) (2,0) -- (3,0);

    % Two subpaths, second degenerate, but still gets tips
    \tikz [<->] \draw (0,0) -- (1,0) (2,0);

    % Two subpaths, second degenerate, proper suppresses them
    \tikz [<->] \draw [tips=on proper draw] (0,0) -- (1,0) (2,0);

    % Two subpaths, but one is closed: No tips, even though last subpath is open
    \tikz [<->] \draw (0,0) circle[radius=2pt] (2,0) -- (3,0);
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/tips",
      meta = "⟨value⟩"
    },
    ["trapezium angle"] = {
      details = [[
This key stores no value itself, but sets the value of the previous two
keys to ⟨angle⟩.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/trapezium:angle",
      meta = "⟨angle⟩"
    },
    ["trapezium left angle"] = {
      details = [[
Sets the lower internal angle of the left side.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/trapezium:left:angle",
      meta = "⟨angle⟩"
    },
    ["trapezium right angle"] = {
      details = [[
Sets the lower internal angle of the right side.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/trapezium:right:angle",
      meta = "⟨angle⟩"
    },
    ["trapezium stretches"] = {
      details = [[
This key controls whether PGF allows the width and the height of the
trapezium to be enlarged independently, when considering any minimum
size specification. This is initially `false`, ensuring that the shape
"looks the same but bigger" when enlarged.

    \tikzset{my node/.style={trapezium, fill=#1!20, draw=#1!75, text=black}}
    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \node [my node=red]                                      {A};
      \node [my node=green, minimum height=1.5cm] at (1, 1.25) {B};
      \node [my node=blue,  minimum width=1.5cm]  at (2, 0)    {C};
    \end{tikzpicture}

By setting ⟨boolean⟩ to `true`, the trapezium can be stretched
horizontally or vertically.

    \tikzset{my node/.style={trapezium, fill=#1!20, draw=#1!75, text=black}}
    \begin{tikzpicture}
    \tikzset{trapezium stretches=true}
      \draw [help lines] grid (3,2);
      \node [my node=red]                                      {A};
      \node [my node=green, minimum height=1.5cm] at (1, 1.25) {B};
      \node [my node=blue,  minimum width=1.5cm]  at (2, 0)    {C};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/trapezium:stretches",
      meta = "⟨boolean⟩"
    },
    ["trapezium stretches body"] = {
      details = [[
This is similar to the `trapezium stretches` key except that when
⟨boolean⟩ is `true`, PGF enlarges only the body of the trapezium when
applying minimum width.

    \tikzset{my node/.style={trapezium, fill=#1!20, draw=#1!75, text=black}}
    \begin{tikzpicture}
      \draw [help lines] grid (3,2);
      \node [my node=red]                      at (1.5,.25)  {A};
      \node [my node=green, minimum width=3cm, trapezium stretches]
        at (1.5,1)    {B};
      \node [my node=blue,  minimum width=3cm, trapezium stretches body]
        at (1.5,1.75) {C};
    \end{tikzpicture}
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/trapezium:stretches:body",
      meta = "⟨boolean⟩"
    },
    ["trig format"] = {
      details = [[
Allows to define whether trigonometric math functions (i.e. all in this
subsection) operate with degrees or with radians.

    \pgfmathparse{cos(45)} \pgfmathresult

    \pgfkeys{/pgf/trig format=rad}
    \pgfmathparse{cos(pi/2)} \pgfmathresult

The initial configuration `trig format=deg` is the base of PGF: almost
all of it is based on degrees.

Specifying `trig format=rad` is most useful for data visualization where
the angles are typically given in radians. However, it is applied to all
trigonometric functions for which the option applies, including any
drawing instructions which operate on angles.

    \begin{tikzpicture}
        \draw[-stealth]
            (0:1) -- (45:1) -- (90:1) -- (135:1) -- (180:1);

        \draw[-stealth,trig format=rad,red]
            (pi:1) -- (5/4*pi:1) -- (6/4*pi:1) -- (7/4*pi:1) -- (2*pi:1);
    \end{tikzpicture}

#### Warning:

At the time of this writing, this feature is "experimental". Please
handle it with care: there may be path instructions or libraries in
PGF which rely on `trig format=deg`. The intended usage of
`trig format=rad` is for local scopes -- and as option for data
visualization.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/trig:format",
      meta = "⟨deg,rad⟩"
    },
    ["trim lowlevel"] = {
      details = [[
This affects only the basic level image externalization: the initial
configuration `trim lowlevel=false` stores the normal image, without
trimming, and the trimming into a separate file. This allows reduced
bounding boxes without clipping the rest away. The `trim lowlevel=true`
information causes the image externalization to store the trimmed image,
possibly resulting in clipping.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/trim:lowlevel",
      meta = "⟨true,false⟩"
    },
    ["xnor gate IEC symbol"] = {
      details = [[
Set the symbol for the `xnor gate`. In TikZ, when the
`use IEC style logic gates` key has been used, this key can be replaced
by `xnor gate symbol`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/xnor:gate:IEC:symbol",
      meta = "⟨text⟩"
    },
    ["xor gate IEC symbol"] = {
      details = [[
Set the symbol for the `xor gate`. Note the necessity for braces, as the
symbol contains `=`. In TikZ, when the `use IEC style logic gates` key
has been used, this key can be replaced by `xor gate symbol`.
]],
      documentation = "texmf:doc/generic/pgf/pgfmanual.pdf#pgf./pgf/xor:gate:IEC:symbol",
      meta = "⟨text⟩"
    }
  }
}