1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
|
\documentstyle[aps,preprint]{revtex}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\lbl}[1]{\label{#1}}
\newcommand{\reff}[1]{eq~\ref{#1}}
\newcommand{\be}[1]{ \begin{equation} \lbl{#1} }
\newcommand{\ee}{\end{equation}}
\newcommand{\bea}[1]{ \begin{eqnarray} \lbl{#1} }
\newcommand{\eea}{\end{eqnarray}}
\newcommand{\dd}{\partial}
\newcommand{\vk}{\bf k}
\newcommand{\vb}{\bf b}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\title{Phase equilibria in associating rodlike and flexible chains}
\date{\today}
\author{R. Stepanyan$^{\dagger}$,
A. Subbotin$^{\dagger ,\sharp}$,
O. Ikkala$^{\ddagger}$,
G. ten Brinke$^{\dagger}$}
\address{$^{\dagger }$
Department of Polymer Science and Material Science Center,\\
University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;}
\address{$^{\sharp }$
Institute of Petrochemical Synthesis, Russian Academy of\\
Sciences, Moscow 119991, Russia;}
\address{$^{\ddagger }$
Department of Engineering Physics and Mathematics, \\
Helsinki University of Technology, P.O. Box 2200,\\
FIN-02015 HUT, Espoo, Finland}
\date{\today}
\maketitle
\begin{abstract}
Abstract goes here
\end{abstract}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Introduction}
Introduction......
\cite{MB1091,BF525,bookdeGennesScalingConcepts,Leibler}.
%-----------------------------------------------------------------
\section{The model and the free energy of the reference system}
Let us consider a melt consisting of rigid rods of length $L$ and diameter
$d$ and flexible coils consisting of $N$ beads of volume $\nu$ and statistical
segment of length $a$. The coil size is $R_c = a \sqrt{N}$. We will assume that
each rod contains $M$ associating groups (an average distance between two
succesive groups is $b=L/M \ll R_c$) which can form bonds with the
associating end of the coil (FIGURE). It is assumed that each coil has only one
associating end. The energy of association between rod and coil equals
to $-\epsilon $. The concentration of rods in the melt is $c$ and their volume
fraction is $f=(\pi /4)Ld^2c$.
The interactions between rods and coils can be introduced in the
following way. It is well known that rods and polymer coils in the
molten state are practically incompartible and separate on the nematic phase
consisting of rods and isotropic phase consisting of the flexible
polymers \cite{Flory:MML:11:1138,AbeBallauff}.
Let us consider the interface between the nematic and isotropic phases
(FIGURE fig.1)
which is assumed to be sharp so that the polymer segments can not
penetrate into the nematic phase, and introduce the interfacial tension
$\gamma$ corresponding to planar orientation of rods at the interface
($k_B \equiv 1$)
%
\be{eq0}
\gamma =(w+sT)/d^2
\ee
%
where $w$ is the energetic part of the surface energy and $s$ is the
entropic part
(here $T$ is temperature, ??we will also assume that $s \sim 1$??).
According to the defenition \reff{eq0} if a rod penetrates into the polymer
melt its energy loss approximatly equals
%
\be{eq01}
\mu _r\simeq 2Ld\gamma =\frac{2L}d\left( w+sT\right)
\ee
The free energy of the isotropic phase with small amount of rigid rods
therefore is given by
\be{eq02}
{\cal F}_I^{*} =
T V c
\ln \left( \frac{f}{e} \right) +
T V \frac{1-f}{N\nu}
\ln \left( \frac{1-f}{e} \right) +
V c \frac{2L}{d} \left( w+sT \right)
\ee
%
Here we omitted interaction between the rods. $V$ is the volume of the
system. In \reff{eq02} the first two terms imply the translational
energy of the rods and coils correspondingly and the last term is the energy of
rods.
The coils can also penetrate into the nematic phase where they become
stretched. In order to write the free energy of the nematic phase with small
amount of coils we introduce a chemical potential of the coil in the
nematic phase $\mu _c$ which includes both energetic and entropic
parts and limits to infinity,
\be{eq05}
\mu _c/T\rightarrow \infty
\ee
for arbitrary $T$. As we will see below it means that the coils
practically do not penetrate in the nematic phase.
The free energy of the nematic phase contains also a term connected with
orientational ordering of rods. The last one can be estimated as
\cite{KhokhlovTBOA,SemenovKhokhlov}
$T \ln ( 4 \pi /\Omega )$,
where $\Omega$ is the characteristic fluctuation angle,
$\Omega \simeq 2\pi (d/L)^2$. Thus the free energy is given by
%
\be{eq03}
{\cal F}_N^{*}=
T V c \ln \left( \frac{f}{e} \right) +
T V \frac{1-f}{N\nu}
\ln \left( \frac{1-f}e \right) +
2 T V c \ln \left( \frac{L}{d} \right) +
V \frac{1-f}{N\nu} \mu _c
\ee
The phase equilibrium between the nematic and isotropic phases can be found
in a usuall way by equating the chemical potentials and osmotic pressures in
both phases.
%
\begin{eqnarray}
\mu_I^{*} & = & \mu _N^{*}; \quad
\mu _{I,N}^{*} = \frac{1}{V} \frac{\dd {\cal F}_{I,N}^{*}}{\dd c}
\nonumber\\
%
P_I &=&P_N; \quad
P_{I,N}=\frac{1}{V}
\left(
c \, \frac{\dd {\cal F}_{I,N}^{*}}{\dd c} - {\cal F}_{I,N}^{*}
\right)
\lbl{eq04}
\end{eqnarray}
Considering limit \reff{eq05}, solution of these equations is given by
%
\be{eq06}
f_N \simeq 1,\quad
f_I \simeq
\left( \frac{L}{d} \right) ^2
\exp \left( -\frac{2L}{d}\left( \frac wT+s \right)
\right) \ll 1
\ee
\section{Nematic-isotropic liquid phase coexistence: effect of association}
%
In this section we study the influence of association between rods and
coils on the macrophase separation described above.
We start from the free energy of association between
rods and coils, ${\cal F}_{bond}$, assuming that they are
ideal (without excluded volume). Let us introduce the probability of bond
$p$. The total number of bonds in the system is $VMcp$ and
equals to the number of associated coils.
Therefore the number of free coils in the system is
$(V/N\nu)(1-f-f\kappa pN)$, where $\kappa \equiv \nu/(\pi b d^2/4)$. The free
energy of bonds can be written through the partition function $Z_{bond}$ as
\cite{SemenovRubinstein1,Erukhimovich:Gel}
%
\be{eq3}
{\cal F}_{bond}=-T\ln Z_{bond}
\ee
where
%
\be{eq4}
Z_{bond} =
P_{comb}
\left( \frac{v_b}V \right)^{V M c p}
\exp \left( \frac{\epsilon \, V M c p}{T} \right)
\ee
and $P_{comb}$ is the number of different ways to bond rods and coils
for a fixed probability of bond $p$; $v_b$ is a bond volume. If we denote
the number of rods in the system as ${\cal N}_r=Vc$, and the number of coils
as ${\cal N}_c=V(1-f)/N\nu$ then the number of ways to choose ${\cal N}_rMp$
coils for bonds formation is a binomial coefficient
%
\be{eq5}
C_{{\cal N}_c}^{{\cal N}_rMp}=\frac{{\cal N}_c!}{({\cal N}_rMp)!({\cal N}_c-%
{\cal N}_rMp)!}
\ee
%
On the other hand there are
%
\be{eq6}
\frac{({\cal N}_rM)!}{({\cal N}_rM(1-p))!}
\ee
different ways to select ${\cal N}_rMp$ bonds from ${\cal N}_rM$
associating groups. Therefore
\be{eq7}
P_{comb} = C_{{\cal N}_c}^{{\cal N}_rMp}
\frac{ ({\cal N}_rM)! }{ ({\cal N}_rM(1-p))! }
\ee
and the free energy of bonds is given by
%
\begin{eqnarray}
{\cal F}_{bond} & = &
VMcp
\left[
T \ln \left( \frac{N\nu}{v_b} \right) - \epsilon
\right] +
TVcM
\left[
p\ln p + (1-p) \ln (1-p)
\right] \nonumber\\
%
& & +
TV \frac{\left( 1-f-f\kappa Np\right) }{N\nu}
\ln \left( \frac{1-f-f\kappa Np}{e} \right) -
TV \frac{(1-f)}{N\nu}
\ln \left( \frac{1-f}{e} \right)
\lbl{eq8}
\end{eqnarray}
Thus the free energy of the isotropic phase can be presented as the following
%
\be{eq9}
{\cal F}_I = {\cal F}_I^{*} + {\cal F}_{bond} + {\cal F}_{el}
\ee
%
where ${\cal F}_{el}$ is the elastic free energy of the side chains
of the hairy
rod when the density of association is high enough. We approximate it
by \cite{3dFlex,2sorts}
\be{eq10}
{ \cal F}_{el}=
\left[
\begin{array}{cl}
TVc\frac{3\kappa d^2}{32a^2}Mp^2\ln \left( \kappa Np\right) ,\quad &
p>\frac{1}{\kappa N} \\
0, \quad &
\textrm{otherwise}
\end{array}
\right.
\ee
Hence the final expression for the free energy of the isotropic phase is
given by (per volume of one rod $(\pi /4)Ld^2)$
%
\begin{eqnarray}
\frac{F_I(f,p)}T &=&
f\frac{2L}{d} \left( \frac wT+s \right)
+Mfp\left[ \ln \left( \frac{N\nu}{v_b}\right) -\frac \epsilon T \right]
+fM\left[ p\ln p+(1-p)\ln (1-p)\right] \nonumber\\
&&
+f\ln \left( \frac fe \right)
+M \frac{\left( 1-f-f \kappa Np \right) }{N\kappa }
\ln \left( \frac{1-f-f\kappa Np}{e} \right) \nonumber\\
&&
+f\frac{3\kappa d^2}{32a^2} Mp^2
\ln \left( \kappa Np \right) H\left( p-\frac 1{\kappa N}\right)
\lbl{eq11}
\end{eqnarray}
%
where
%
$$
H(x)=
\left[
\begin{array}{cl}
1,\quad & x \geq 0 \\
0,\quad & x < 0
\end{array}
\right.
$$
is the Heavyside's function.
Similarly, the free energy of the nematic phase is
%
\begin{eqnarray}
\frac{F_N(f,p)}T &=&
2 f \ln \left( \frac Ld \right)
+M\frac{1-f}{N\kappa }\frac{\mu _c}T
+Mfp\left[ \ln \left( \frac{N\nu}{v_b}\right)
-\frac \epsilon T\right]
+fM\left[ p\ln p+(1-p)\ln (1-p)\right] \nonumber\\
&&
+f\ln \left( \frac fe\right)
+M\frac{\left( 1-f-f\kappa Np\right) }{ N\kappa }
\ln \left( \frac{1-f-f\kappa Np}e\right)
\lbl{eq12}
\end{eqnarray}
%
%
The probability of bonding in both phases can be found from the minimization
of the corresponding free energies
%
\be{eq13}
\frac{\dd F_I}{\dd p}=0;
\quad
\frac{\dd F_N}{\dd p}=0
\ee
%
and is given by ($N^* \equiv N \nu / v_b$)
%
\be{eq14}
p= \frac{1}{2\kappa Nf}
\left[
1-f+\kappa Nf-\epsilon /(TN^{*})-
\sqrt{
\left(1-f+\kappa Nf-\epsilon /(TN^{*}) \right) ^2
-4\kappa Nf(1-f)
}
\right]
\ee
for the nematic phase and for the isotropic phase when $p<\frac 1{\kappa N}$.
%Here $N^{*}\equiv N\nu/v_b.$
For $p>\frac 1{\kappa N}$ the probability of
bonding in the isotropic phase obeys
%
\be{eq15}
\ln
\left[
\frac{ pN^{*}e^{-\epsilon /T} }
{ \left( 1-p\right) \left(1-f_I-f_I\kappa Np\right) }
\right]
+\frac{3\kappa d^2p}{16a^2}\ln \left( \kappa Npe\right)
= 0
\ee
%
and for a small volume fraction of rods, $f_I \ll 1$, is approximately given by
%
\be{eq24}
p \simeq \frac 1{ 1 + N^{*} e^{-\epsilon^{*}/T}},
\quad
\epsilon ^{*} = \epsilon -
\frac{3\kappa d^2T}{32a^2} \,
\frac{1}{1+N^{*}e^{-\epsilon /T}}
\ln \left( \frac{\kappa N}{1+N^{*} e^{-\epsilon /T}} \right)
\ee
%
Phase equilibrium between the isotropic and nematic phases can be found in a
standard way from the equilibrium equations
%
\begin{eqnarray}
\frac{\dd F_I}{\dd f_I} &=& \frac{\dd F_N}{\dd f_N}
\nonumber \\
f_I\frac{\dd F_I}{\dd f_I}-F_I &=& f_N\frac{\dd F_N}{\dd f_N}-F_N
\lbl{eq16}
\end{eqnarray}
using eqs.~\ref{eq11},\ref{eq12} together with \reff{eq14} and \reff{eq24}.
When the probability of bonding in the
isotropic phase $p_I<\frac 1{\kappa N}$
(or equivalently $\frac{\epsilon}{T} < \ln \frac{\nu}{\kappa v_b}$),
expression \reff{eq14} can be used giving the volume fraction of rods
%
\begin{eqnarray}
f_N & \simeq & 1,
\nonumber\\
f_I & \simeq &
\left( \frac Ld \right) ^2
\exp
\left(
-\frac{2L}{d}
\left( \frac wT+s\right)
+\frac M{1+N^{*}e^{-\epsilon /T}}
\left( \frac \epsilon T-\ln N^{*}\right)
\right) \ll 1
\lbl{eq17}
\end{eqnarray}
%
However, if
$p_I>\frac 1{\kappa N}$
(or $\frac \epsilon T>\ln \frac \nu{\kappa v_b}$),
the volume fraction of rods in the nematic phase
is still close to the unity whereas $f_I$ obeys the equation
%
\be{eq18}
\ln f_I
- Mp_I \ln \left( 1-f_I-f_I\kappa Np_I \right)
\simeq
2 \ln \left( \frac L d\right)
+ \frac M{N\kappa} - \frac{2Ls}{d}
-Mp_I\ln N^{*}
+\frac{1}{T} \left( Mp_I\epsilon -\frac{2Lw}d \right)
\ee
where $p_I$ has to be determined from \reff{eq15}.
Obviously, for $T \to 0$ $p_I \to 1$ and therefore the last term
in eq.\ref{eq17} becomes dominant. Depending on its sign two
characteristical assymptotics can be distinguished
%
\begin{eqnarray}
f_I \to 0 \qquad\qquad\textrm{if }\quad M\epsilon <\frac{2Lw}d
\nonumber\\
f_I \to \frac 1{1+N\kappa } \quad\textrm{if }\quad M\epsilon >\frac{2Lw}d
\label{eq19}
\end{eqnarray}
Thus for $\epsilon /w>2b/d$ rods and coils become partially compartible.
This fact has a clear physical meaning. Negative sign of
$-\epsilon + \frac{2Lw}{Md}$ corresponds to the negative ``total'' energy
($\epsilon$-part plus $\gamma$-part)
due to attaching of a coil to a rod, i.e. making it favorable to keep
\emph{all} coils bonded (for $T\to 0$, of course).
Further on we consider only the case $\epsilon /w>2b/d$,
where a region of compatibility of rods and coils exists.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Phase equilibria between nematic, isotropic liquid and microphases}
There are two mechanisms of attraction between hairy rods, namely due to
incompartibility of the rods and coils and due to nonhomogeneous
distribution of the free polymer coils which is created by the hairy rods.
These mechanisms ultimately result in formation hexagonal and lamellar
structures in the blend. Moreover we can separate two different hexagonal
phases. In one of the phases (we call it H1) the mechanism connected with
nonhomogeneous distribution of the free polymers is dominant and the
''cylinders'' contain only one rod per unit cell $(Q=1)$. In the second
phase (H2) the surface term becomes important so that rods attract each
other and the cylinders contain $Q>1$ rods per unit cell (fig.2FIGURE). With
decreasing temperature the cylinders first adopts elipsoidal form and
finally transform to the lamellar phase.
\subsection{Separation of the hexagonal phase H1}
Let us start with calculation of the interaction energy between the
cylinders in the hexoganal phases (H1, H2). It is connected with
nonhomogeneous distribution of the free polymer coils and is given by (per
cylinder of unit length)
\be{eq20}
U_H(Q)=
\frac{N\nu(Qp)^2}{2b}
\left[
\frac 2{\sqrt{3} \, \ell ^2}
\sum_{\{ \vb \}}
\frac{h^2(\frac{a^2N{\vk}^2}6)}{g(\frac{a^2N{\vk}^2}6)}
-\frac 1{4\pi ^2}
\int d{\vk}\frac{h^2(\frac{a^2N{\vk}^2}6)}{g(\frac{a^2N{\vk}^2}6)}
\right]
\ee
where $\ell $ is the period of the structure, $\{ \vb \}$ are the vectors
of the reciprocal lattice,
$$h(u) =\frac 1u\left( 1-e^{-u}\right) $$
$$g(u) =\frac 2{u^2}\left( u-1+e^{-u}\right)$$
After calculation of the sum and integral in eq.\ref{eq20} we find the
interaction energy per volume $(\pi /4)Ld^2$
\be{eq21}
U_H(Q)=-\frac 3{32}\frac{\kappa MQp^2fd^2}{a^2N}
\left[
3.457
+\ln \left( \frac{a^2Nf}{Qd^2}\right)
\right]
\ee
Thus the free energy of H1 phase is given by
%
\begin{eqnarray}
\frac{F_{H1}}T &=&
f\frac{2L}{d} \left( \frac wT+s\right)
- Mfp\left[ \frac \epsilon T - \ln N^{*} \right]
+ fM\left[ p\ln p+(1-p)\ln (1-p) \right]
+ 2f\ln \left( \frac Ld \right)
\nonumber \\
&&
+ M\frac{\left( 1-f-f\kappa Np\right) }{N\kappa }
\ln \left( \frac{1-f-f\kappa Np}e\right)
+ f\frac{3\kappa d^2}{32a^2}Mp^2\ln \left( \kappa Np\right)
\nonumber \\
&&
- \frac{3}{32} \frac{\kappa Mp^2fd^2}{a^2N}
\left[ 3.457+\ln \left( \frac{a^2Nf}{d^2}\right) \right]
\lbl{eq22}
\end{eqnarray}
Here we approximated the loss of the orientational energy of rod by the term
$2Tf\ln \left( \frac Ld\right) $, and omitted the loss of it translational
entropy because it is relatively small. Phase equilibrium between isotropic
phase and H1 phase can be found from the equilibrium equations
%
\begin{eqnarray}
\frac{\dd F_I}{\dd f_I} =\frac{\dd F_{H1}}{\dd f_{H1}},
&\quad&
\frac{\dd F_I}{\dd p_I}=\frac{\dd F_{H1}}{\dd p_{H1}}=0
\nonumber\\
f_I\frac{\dd F_I}{\dd f_I}-F_I
&=&
f_{H1}\frac{\dd F_{H1}}{\dd f_{H1}}-F_{H1}
\lbl{eq23}
\end{eqnarray}
and the probability of bonding and the binodal lines are
%
\begin{eqnarray}
& p_1 \simeq & p_{H1}\simeq 1,
\nonumber \\
& f_{H1}^{(1)} \simeq & \frac 3{16}\frac{d^2}{a^2 N},
\nonumber \\
& f_I \simeq &
\left( \frac Ld\right) ^2
\exp \left( -\frac 3{16}\frac{d^2p^2\kappa M}{a^2}\right) \simeq 0
\lbl{eq26}
\end{eqnarray}
Similarly the phase equilibrium between the nematic and H1 phases follow
from equations
%
\begin{eqnarray}
\frac{\dd F_N}{\dd f_N} =\frac{\dd F_{H1}}{\dd f_{H1}},
&\quad&
\frac{\dd F_N}{\dd p_N}=\frac{\dd F_{H1}}{\dd p_{H1}}=0
\nonumber\\
f_N\frac{\dd F_N}{\dd f_N}-F_N
&=&
f_{H1}\frac{\dd F_{H1}}{\dd f_{H1}}-F_{H1}
\lbl{eq25}
\end{eqnarray}
%
and solution is given by
%
\begin{eqnarray}
& p_N \simeq &0, \quad p_{H1}\simeq 1, \nonumber \\
& f_N \simeq &1, \nonumber\\
& f_{H1}^{(2)} \simeq &\frac 1{1+\kappa N}
\left[
1-\exp
\left(
-\frac{\epsilon}{T}
+\frac{2bw}{Td}
+\frac{2bs}d+\ln N^{*}
+\frac{3\kappa d^2}{32a^2}\ln \left( \kappa N\right)
\right)
\right]
\lbl{eq251}
\end{eqnarray}
The critical temperature $(\epsilon /T)_c$ can be obtained from the
intersection of the curves $f_{H1}^{(1)}$ and $f_{H1}^{(2)}$, and obeys the
following equation
%
\be{eq27}
(\epsilon /T)_c =
\frac{1}{1-\frac{2bw}{\epsilon d}}
\left( \frac{2bs}d+\ln
N^{*}+\frac{3\kappa d^2}{32a^2} \ln \left( \kappa N \right)
\right)
\ee
where the probability of bonding $p_c\simeq 1.$ Thus the hexagonal H1 phase
is stable for $f_{H1}^{(1)}<f<f_{H1}^{(2)}$; for $f_I<f<f_{H1}^{(1)}$ the
system separates on the isotropic and H1 phase and for $f_{H1}^{(1)}<f<f_N$
it separates on the H1 and nematic phase.
\subsection{Separation of the hexagonal phase H2}
Let us follow along the binodal line $f_{H1}^{(1)}(T)$ decreasing the
temperature. At some temperature H1 phase becomes unstable with respect to
separation of the isotropic phase and the hexagonal H2 phase. The
corresponding triple point can be obtained from the system of equations
\begin{eqnarray}
\frac{\dd F_I}{\dd f_I}
=\frac{\dd F_{H1}}{\dd f_{H1}}
=\frac{\dd F_{H2}}{\dd f_{H2}} \, ,
\qquad
\frac{\dd F_I}{\dd p_I}
=\frac{\dd F_{H1}}{\dd p_{H1}}
=\frac{\dd F_{H2}}{\dd p_{H2}}
=0
\nonumber \\
f_I\frac{\dd F_I}{\dd f_I}-F_I
=f_{H1}\frac{\dd F_{H1}}{\dd f_{H1}}-F_{H1}
=f_{H2}\frac{\dd F_{H2}}{\dd f_{H2}}-F_{H2}
\lbl{eq23a}
\end{eqnarray}
%
where the free energy of the H2 phase for $Q<\sqrt{N}$ is given by
%
\begin{eqnarray}
\frac{F_{H2}}T
&=&
f\frac Ld\left( \frac wT+s\right) \left( 1+\frac 2Q\right)
+Mfp\left[ \ln N^{*}-\frac \epsilon T\right]
+fM\left[ p\ln p+(1-p)\ln (1-p)\right]
\nonumber \\
&&
+2f\ln \left( \frac Ld\right)
+M\frac{\left( 1-f-f\kappa Np\right) }{\kappa N}
\ln \left( \frac{1-f-f\kappa Np}e\right)
+f\frac{3d^2\kappa Q}{32a^2}Mp^2\ln \left( \kappa Np\right)
\nonumber \\
&&
-\frac 3{32}\frac{\kappa MQp^2fd^2}{a^2N}
\left[ 3.457+\ln \left( \frac{a^2Nf}{Qd^2}\right) \right]
\lbl{eq28}
\end{eqnarray}
and the number of rods $Q$ in the cross-section of the cylinder can be
calculated from the minimum condition $\dd F_{H2}/\dd Q=0$,
%
\be{eq28a}
Q \simeq
\sqrt{
\frac{64ba^2}{3\kappa p^2d^3 \ln \left( \kappa N \right) }
\left( \frac wT+s \right)
}
\ee
Solution of the eqs.~\ref{eq23a} is given by
%
\begin{eqnarray}
&& p_I \simeq p_{H1} \simeq p_{H2}\simeq 1 \nonumber \\
&& Q_1 \simeq 2+\sqrt{2},
\quad
f_I\simeq 0,
\quad
f_{H1}^{(1)} \simeq \frac 3{16} \frac{d^2}{a^2N},
\quad
f_{H2}^{(1)} \simeq \frac 3{16}\frac{Q_1d^2}{a^2N}
\lbl{eq28b}
\end{eqnarray}
and the critical temperature is
\be{eq23e}
\frac w{T_{c1}} \simeq -s+\frac{3\kappa d^3 Q_1^2}{64 b a^2}
\ln \left( \kappa N \right)
\ee
Similarly we the binodal line $f_{H1}^{(1)}(T)$ finishes at the triple point
which can be found from the system of equations
\begin{eqnarray}
&&\frac{\dd F_N}{\dd f_N} =
\frac{\dd F_{H1}}{\dd f_{H1}} =
\frac{\dd F_{H2}}{\dd f_{H2}},
\quad
\frac{\dd F_N}{\dd p_N} =
\frac{\dd F_{H1}}{\dd p_{H1}} =
\frac{\dd F_{H2}}{\dd p_{H2}} =0
\nonumber \\
&&f_N\frac{\dd F_N}{\dd f_N}-F_N =
f_{H1}\frac{\dd F_{H1}}{\dd f_{H1}}-F_{H1}=
f_{H2}\frac{\dd F_{H2}}{\dd f_{H2}}-F_{H2}
\lbl{eq23c}
\end{eqnarray}
%
and is characterized by
%
\begin{eqnarray}
&&
p_N \simeq 0,
\quad
p_{H1} \simeq p_{H2} \simeq 1
\nonumber\\
&&
Q_1^{^{\prime }} \simeq Q_1\simeq 2+\sqrt{2}, \quad f_N \simeq 1,
\nonumber \\
&&
f_{H1}^{(2)}\simeq \frac 1{1+\kappa N}\left[ 1-\exp \left( -\frac \epsilon {%
T_{c1}}+\frac{2bw}{T_{c1}d}+\frac{2bs}d+\ln N^{*}+\frac{3d^2\kappa }{32a^2}%
\ln \left( \kappa N\right) \right) \right]
\nonumber\\
&&
f_{H2}^{(2)}\simeq \frac 1{1+\kappa N}\left[ 1-\exp \left( -\frac \epsilon {%
T_{c1}}+\left( \frac{2bw}{T_{c1}d}+\frac{2bs}d\right) \left( 1+\frac 2{Q_1}%
\right) +\ln N^{*}+\frac{3d^2\kappa Q_1}{32a^2}\ln \left( \kappa N\right)
\right) \right]
%
\lbl{eq23d}
\end{eqnarray}
In the first approximation the corresponding critical temperature coinside
with the critical temperature \reff{eq23e}. Note, the small difference
between these critical temperatures, which we do not consider here, result
in a small area of phase separation between H1 and H2 phases.
The phase equilibrium between the isotropic and the hexagonal H2 phase can
be found based on the equations
%
\begin{eqnarray}
&&
\frac{\dd F_I}{\dd f_I} =\frac{\dd F_{H2}}{\dd f_{H2}},
\quad
\frac{\dd F_I}{\dd p_I} = \frac{\dd F_{H2}}{\dd p_{H2}} =0
\nonumber\\
&&
f_I\frac{\dd F_I}{\dd f_I}-F_I = f_{H2}\frac{\dd F_{H2}}{\dd f_{H2}}-F_{H2}
\lbl{eq231}
\end{eqnarray}
and for $1\ll Q<\sqrt{N\text{ }}$ the probability of bonding and the binodal
lines are given by
\begin{eqnarray}
&& p_I \simeq p_{H2}\simeq 1,
\nonumber\\
&& f_I \simeq 0,\quad
\nonumber \\
&& f_{H2}^{(1)} \simeq
\frac 1{1+\kappa N}
\left[
1-\exp \left( -\frac 3{16}\frac{Qd^2}{a^2N}\right)
\right]
\lbl{eq28b1}
\end{eqnarray}
%
where $Q$ defined by \reff{eq28a}. Similarly the equilibrium between the
nematic and the hexagonal H2 phase obeys equations
%
\begin{eqnarray}
&&
\frac{\dd F_N}{\dd f_N} = \frac{\dd F_{H2}}{\dd f_{H2}},
\quad
\frac{\dd F_N}{\dd p_N} = \frac{\dd F_{H2}}{\dd p_{H2}}=0
\nonumber \\
&&
f_N\frac{\dd F_N}{\dd f_N}-F_N = f_{H2}\frac{\dd F_{H2}}{\dd f_{H2}}-F_{H2}
\lbl{eq232}
\end{eqnarray}
and the corresponding probabilities and binodals are
%
\begin{eqnarray}
&&
p_N \simeq 0,\quad p_{H2}\simeq 1,
\nonumber \\
&&
f_N \simeq 1,
\nonumber \\
&&
f_{H2}^{(2)} \simeq \frac 1{1+\kappa N}
\left[
1-\exp \left( -\frac{\epsilon}{T}
+\left( \frac{2bw}{Td}+\frac{2bs}d \right) \left( 1+\frac{2}{Q} \right)
+\ln N^{*}+\frac{3d^2\kappa Q}{32a^2} \ln \left( \kappa N\right) \right)
\right]
\lbl{eq28b21}
\end{eqnarray}
With further decreasing temperature the number of rods in the cross-section $%
Q$ becomes larger than $\sqrt{N}$ and the cylinders become elongated in one
direction.
\subsection{Separation of the lamellar phase}
The free energy of the lamellar phase is
%
\begin{eqnarray}
\frac{F_L}T &=&
f\frac Ld\left( \frac wT+s\right)
+Mfp\left[ \ln N^{*}-\frac \epsilon T\right]
+fM\left[ p\ln p+(1-p)\ln (1-p)\right]
\nonumber \\
&&
+2f\ln \left( \frac Ld\right)
+M\frac{\left( 1-f-f\kappa Np\right) }{\kappa N}
\ln \left( \frac{2h^{*}}\xi \frac{1-f-f\kappa Np}e\right)
+f\frac{ 3\pi ^2d^2\kappa ^2}{32a^2}NMp^3
\nonumber \\
&&
-0.227f^{*}M \left( \frac{p^2a^2}{\kappa ^2d^2N}\right) ^{1/3}
-1.312M \frac{(f-f^{*})}{f^{*}}
\left( \frac{p^2d^2}{\kappa a^2N^2}\right) ^{1/3}
%
\lbl{eq29}
\end{eqnarray}
where
%
$$
h^{*}=\frac{\pi d}2\left( 1+\kappa Np \right) ;
\quad
\xi =\frac a{6\pi } \left( \frac{aN}{\kappa pd}\right) ^{1/3}
$$
%
The phase equilibrium between the isotropic and the lamellar phase can be
found from the equations
%
\begin{eqnarray}
&&
\frac{\dd F_I}{\dd f_I} =\frac{\dd F_L}{\dd f_L},
\quad
\frac{\dd F_I}{\dd p_I}=\frac{\dd F_L}{\dd p_L}
\nonumber \\
&&
f_I\frac{\dd F_I}{\dd f_I}-F_I = f_L\frac{\dd F_L}{\dd f_L}-F_L
\lbl{eq2311}
\end{eqnarray}
and the probability of bonding and the binodals are given by
%
\begin{eqnarray}
&&
p_I \simeq p_L\simeq 1,
\nonumber\\
&&
f_I \simeq 0,
\nonumber \\
&&
f_L^{(1)} \simeq \frac{1}{1+\kappa N}
\left[
1-\frac \xi {2h^{*}}
\exp \left( -1.312\left( \frac{\kappa ^2d^2N}{a^2}\right) ^{1/3}\right)
\right]
\label{eq28b2}
\end{eqnarray}
Similarly the equilibrium between the nematic and the lamellar phase obeys
equations
%
\begin{eqnarray}
&&
\frac{\dd F_N}{\dd f_N} = \frac{\dd F_L}{\dd f_L},
\quad
\frac{\dd F_N}{\dd p_N} = \frac{\dd F_L}{\dd p_L}
\nonumber \\
&&
f_N \frac{\dd F_N}{\dd f_N}-F_N = f_L\frac{\dd F_L}{\dd f_L}-F_L
\lbl{eq2321}
\end{eqnarray}
and the corresponding probabilities and binodals are
%
\begin{eqnarray}
&&
p_N \simeq 0,
\quad
p_L\simeq 1,
\nonumber\\
&&
f_N \simeq 1,
\quad
\nonumber \\
&&
f_L^{(2)} \simeq \frac{1}{1+\kappa N}
\left[
1-\exp \left( -\frac \epsilon T
+\frac{2bw}{Td}+\frac{2bs}d+\ln N^{*}
+\frac{3\pi ^2d^2\kappa ^2N}{32a^2}\right)
\right]
\lbl{eq28b3}
\end{eqnarray}
\section{Discussion}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
{\bf Literature}
Relevant literature
\cite{SemenovKhokhlov,SemenovRubinstein1,Erukhimovich:Gel}
\cite{AndrikopoulosVlassopoulosVoyiatzis,Benmouna}
\cite{KhalaturKhokhlov1,KhalaturKhokhlov2}
\cite{SemenovNyrkovaKhokhlov,3dFlex}
\cite{Angerman:PhaseAssocDiblock,Dormidontova:PhaseHbondBrush}
Theory:
\cite{Ballauff:CompatHairyRodsCoils,Ballauff:PhaseHairyRodsCoils}
Lattice:
\cite{SemenovBlockHomo,Leibler,bookChaikinLubensky,bookKorn}
Hairy rods:
Experiment:
\cite{SteuerRehahnBallauff,AdamSpiess,SteuerHorthBallauff}
\cite{GaldaKistnerMartinBallauff,PetekidisVlassopoulosFytas2}
\cite{PetekidisVlassopoulosFytas1}
\begin{references}
\end{references}
\end{document}
|