summaryrefslogtreecommitdiff
path: root/obsolete/macros/latex209/contrib/springer/ljour/linvmat.dem
blob: 0877d4ba54ea3c1e366ebdbc6785a0a9c6bb5575 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
%                                                           linvmat.dem
% LaTeX package LJour1 1.0: demo file for Inventiones mathematicae
% (c) Springer-Verlag HD
%----------------------------------------------------------------------
%
% customization
\documentstyle[bibay]{pljour1}
\journalname{Inventiones mathematicae}   % State name of journal
\newcommand{\DXDYCZ}[3]{\left( \frac{ \partial #1 }{ \partial #2 }
                        \right)_{#3}}
% end of customization
%
\begin{document}
%
\title{ Optimality relationships for $p$-cyclic
  SOR\thanks{Research supported in part by the US Air Force under
  grant no. AFOSR-88-0285 and the National Science Foundation under
  grant no. DMS-85-0285.}\fnmsep\thanks{In memory of J.L. Verdier}}
\subtitle{A demonstration text}
\author{Daniel J. Pierce\inst{1} \and Apostolos
  Jadjidimos\inst{2}\fnmsep\thanks{{\it Present address:\/} Department
  of Computer Science, Purdue University, West Lafayette, IN 47907, USA.}
  \and Robert J. Plemmons\inst{3}}
\mail{R. Plemmons}
\titlerunning{Optimality relationships for $p$-cyclic SOR}
\authorrunning{D. J. Pierce et al.}
\institute{Boeing Computer Service, P.O. Box 24346, MS 7L-21,
    Seattle, WA 98124-0346, USA \and
  Department of Mathematics, University of Ioannina, GR-45 1210
    Ionnanina, Greece \and
  Department of Computer Science and Mathematics, North Carolina
    State University, Raleigh, NC 27695-8205, USA}
\date{Oblatum 20-I-1989 \& 3-VIII-1991}
\maketitle
\begin{abstract}
  The optimality question for block $p$-cyclic matrix into a block
  $q$-cyclic form, $q < p$, results in asymptotically faster SOR
  convergence for the same amount of work per iteration. As a
  consequence block 2-cyclic SOR is optimal under these conditions.
\end{abstract}

\section{Introduction}
This text was compiled to demonstrate the use of the Springer
\LaTeX\ macropackages {\em LJour1\/} for one-column journals.
Please refer to \cite{leslie} for general information on coding \LaTeX{}
and to the \cite{springer} for information concerning the Springer
layout.

Parts of this ``article" were taken from different real articles, but
may have been changed to show a special feature of a macro.

\section{Notation}

Here are a few examples of how to use special fonts. Vectors are denoted
by boldface letters: $\vec V,\; \vec W$. Tensors are denoted by sans
serif letters: $\tens{A, B}$. If no tensors are needed, sans serif
letters may be reserved for other purposes. Vector spaces may be denoted
by gothic letters: $\frak{G, H}$. Sets of functions are denoted by
script letters: ${\cal W}_i,{\cal F}$. Sets of numbers are denoted by
special roman letters ${\Bbb R}, {\Bbb C}$.

You are of course (within limits) free to design your own notation but
sticking to conventions makes your article easier for others to read.

\section{Preliminaries}
Let us state a few well known results and demonstrate how to typeset
lists. The functions $f$ and $g$ of (1) and (2) fulfill the following
assumptions:

\begin{enumerate}
\item $f: B_f \subset {\Bbb R}^n \times {\Bbb R}^n \times [a,b] \to
{\Bbb R}^n$ \\
$f^\prime _x$, $f^\prime_y$ exist and are continous
\item ker$(f^\prime _y (y, x, t)) = N (t)\quad  \forall (y, x, t)
\in B_f$ \\
${\rm rank} (f^\prime _y (y, x, t)) = r$ \\
${\rm dim} (N (t)) = n - r$
\item $Q(t)$ denotes a projection onto $N(t)$ \\
$Q$ is smooth and $P(t) := I - Q (t)$
\item The matrix $G (y, x, t) := f^\prime _y (y, x, t) + f^\prime
_x (y, x, t) Q (t)$ is nonsingular \\
$\forall (y, x, t) \in B_f$\quad  (i.e. (1) is transferable)
\item $g: B_g \subset {\Bbb R}^n \times {\Bbb R}^n \to M \subset
{\Bbb R}^n$ \\
$g^\prime _{x_a} , g^\prime _{x_b}$ exist and are continuous\\
${\rm im} (g^\prime _{x_a} , g^\prime _{x_b}) =: M$
\end{enumerate}

Now we give another example of a list with changed indentation.

\begin{description}[Shoot.]

\item[Shoot.]
Collocation methods for this type of equations are considered in
\cite{yser} and \cite{wendl}. Shooting and difference methods for
linear, {\it solvable} DAE's in the sense of [9], also with higher
index, are treated in [8] under the assumption that consistent initial
values can be calculated and a stable integration method is available.

\item[Diff.]
This paper aims at constructing an algorithm for solving a BVP in
transferable nonlinear DAE's with nonsingular Jacobian and the same
dimension as in the ODE case.

\begin{description}[Jacob.]

\item[Jacob.] We also deal with Jacobians, which means that we
explain the functions, advantages and inconveniences of calling them not
Jacobians.....

\item[Nonl.] Nonlinear functions play an important role in
this connection. Please note that we always call them nonlinear whenever
there is no............

\end{description}

\end{description}

\section{The shooting method}
The natural way to construct a shooting method for DAE's is described by
\cite{yser}.

The physical meaning of $ \sigma_0 $ and $K$ is clearly visible in
the equations above. $\sigma_0$ represents a frequency of the order one
per free-fall time. $K$ is
proportional to the ratio of the free-fall time and the cooling time.
Substituting into Baker's criteria, using thermodynamic identities
and definitions of thermodynamic quantities,
\begin{displaymath}
   \Gamma_1        = \DXDYCZ{\ln P}{\ln \rho}{S}    \, , \;
   \chi^{}_\rho    = \DXDYCZ{\ln P}{\ln \rho}{T}    \, , \;
   \kappa^{}_{P}   = \DXDYCZ{\ln \kappa}{\ln P}{T}
\end{displaymath}
\begin{displaymath}
   \nabla_{\rm ad} = \DXDYCZ{\ln T}{\ln P}{S}       \, , \;
   \chi^{}_T       = \DXDYCZ{\ln P}{\ln T}{\rho}    \, , \;
   \kappa^{}_{T}   = \DXDYCZ{\ln \kappa}{\ln T}{T}
\end{displaymath}
one obtains, after some pages of algebra, the conditions for
{\em stability} given
below:
\begin{eqnarray}
      \frac{\pi^2}{8} \frac{1}{\tau_{\rm ff}^2}
                ( 3 \Gamma_1 - 4 )
         & > & 0 \label{ZSDynSta} \\
      \frac{\pi^2}{\tau_{\rm co}
                   \tau_{\rm ff}^2}
                   \Gamma_1 \nabla_{\rm ad}
                   \left[ \frac{ 1- 3/4 \chi^{}_\rho }{ \chi^{}_T }
                          ( \kappa^{}_T - 4 )
                        + \kappa^{}_P + 1
                   \right]
        & > & 0 \label{ZSSecSta} \\
     \frac{\pi^2}{4} \frac{3}{\tau_{ \rm co }
                              \tau_{ \rm ff }^2
                             }
         \Gamma_1^2 \, \nabla_{\rm ad} \left[
                                   4 \nabla_{\rm ad}
                                   - ( \nabla_{\rm ad} \kappa^{}_T
                                     + \kappa^{}_P
                                     )
                                   - \frac{4}{3 \Gamma_1}
                                \right]
        & > & 0   \label{ZSVibSta}
\end{eqnarray}

For a physical discussion of the stability criteria see \cite{tetz}
or \cite{yser}.

\subsection{Disadvantages of the method}

The disadvantage of Eq. (\ref{ZSVibSta}) is the singularity of the
Jacobian. If we use the representation of
$z_i = P_i z_i + Q_i z_i =: u_i + v_i$, we obtain the following system

\begin{eqnarray}
g (u_0 + v_0 , x (t_m, t_{m-1}, u_{m-1}))& = & 0 \label{dis}\\
u_i - P_i x (t_i; t_{i-1}, u_{i-1}) & = & 0\;,
 \quad  i = 1, \ldots , m-1\;. \label{das}
\end{eqnarray}

\subsection{Specialization of $V$}

Now we specialize $V := \hat S^\prime $ in. Let $P_D$ be a
projector with ${\rm im} (P_D) = M$. If we demand Eq. (\ref{das}) and
\begin{eqnarray*}
VV^- &=& P_D \\
V^-V &=& P\; ,
\end{eqnarray*}
%
the generalized inverse $V^-$ in uniquely determined. Using Lemma 1 we
construct a regular matrix $K$ so that ${\rm im} (P_D) \oplus {\rm im}
(K^{-1} Q) = {\Bbb R}^n$. This provides the possibility to add without
loss $(K^{-1} Q) = {\Bbb R}^n$. This provides the possibility to add,
without loss of information, the Eqs.\ts (\ref{dis}) and (\ref{six})
(after multiplying by $K^{-1})$. The following shooting operator is
created
\begin{equation}
\quad S (\xi ) := \left\{
\begin{array}{ll}
  S_1 (\xi):= & \left\{
  \begin{array} {ll}
    g (u_0 + v_0, x (t_m; t_{m-1}, u_{m-1})) + K^{-1} Q_0 u_0
    &\quad (a)\\
    u_i - P_i x (t_i; t_{i-1} , u_{i-1})\; i = 1, \ldots , m-1
    & \quad(b)
  \end{array} \right. \\
  S_2 (\xi) := & \left\{
  \begin{array} {ll}
    Q_0 y_0 + P_0 v_0 & \quad (c)\\
    f(y_0, u_0 + v_0, t_0) & \quad (d) \quad ,
  \end{array}
  \right.
\end{array} \right.\label{six}
\end{equation}
%
with $\xi := (u_0 , u_1, \ldots , u_{m-1} , y_0, v_0)^{\rm T}$.

\begin{lemma}
Let $V$ be a singular matrix and $V^-$ a reflexive inverse of $V$ with
Sect. (2.3) and $VV^- = P_D$, $V^-V = P$, where $P$ and $P_D$ satisfy
the conditions of Lemma 2.1. Then the matrix $V + K^{-1} Q$ is
nonsingular and
%
\[ (V + K^{-1} Q) ^{-1} = V^- + QK\; , \]
%
where $K$ is defined in Sect. (2.2).
\end{lemma}

\begin{proof}
\begin{eqnarray*}
(V + K^{-1}Q)(V^- + QK) & = & VV^- + VQK + K^{-1}QV^- + K^{-1} QK \\
& = & P_D + 0 + 0 + Q_D = I\; . \quad\qed
\end{eqnarray*}
\end{proof}

\begin{remark}
The value $w := (P_s v_0 + Q_0 G^{-1} f (y_0, u_0 + v_0, t_0))$ at
the right-hand side of Eq. (16) is the solution of the linear system
\begin{equation}
  J_4 \left(\begin{array}{c} \eta \\ w \end{array} \right)
  = \left(\begin{array}{c} Q_0 y_0 + P_0 v_0 \\
  f (y_0, u_0 + v_0, t_0) \end{array} \right)
\end{equation}
\end{remark}

\begin{figure}\picplace {4 cm}
\firstcaption{The doping profile $C (t)$ has the same structure as
$N_-$}
\secondcaption{The doping profile of $C (z)$}
\end{figure}

This leads to the following algorithm to compute the iteration $\xi^i$:
\begin{description}[5 ---]
\item[0 -- ] initial value $\xi^0 := (u_0^0 , \ldots , u^0_{m-1} , y_0^0
, v_0^0)$
\item[1 -- ] $i:= 0$
\item[2 -- ] compute $u^{i+1}$ with (3.16)
\item[3 -- ] compute $y^{i+1}_0, v_0^{i+1}$ with (3.17) using $\Delta
u^{i+1} := u^{i+1} - u^i$
\item[4 -- ]$i:= i + 1$
\item[5 -- ]{\tt IF} accuracy not reached {\tt THEN GOTO 2 ELSE STOP}
\end{description}

\begin{theorem} Let the assumptions (A), (B) be fulfilled. Then the
non-linear equation
$$
S (\xi) = 0
$$
has a nonsingular Jacobian in a neighbourhood of
$$
\xi = \xi_\star := (u_{\star 0}, \ldots , u_{\star m-1} , y_{\star 0},
v_{\star 0})\; ,
$$
which corresponds with $x_\star$.
\end{theorem}

\section{Implementation}
If listing of a program is desired, this is possible too \cite{darnell}

\begin{verbatim}
void get_two_kbd_chars()
{
     extern char KEYBOARD;
     char c0, c1;

     c0 = KEYBOARD;
     c1 = KEYBOARD;
}
\end{verbatim}

\section{Solutions}
We solve this problem with the relative accuracy of integration $1d-4$.
The experimental tests of the Standard Model and thereby of the
unification of the weak and electromagnetic interactions have reached a
new level of accuracy. The results are given in Table \ref{KapSou}.

\begin{table}
  \caption{Opacity sources}\label{KapSou}
  \centering
     \begin{tabular}{ll}
        \hline\noalign{\smallskip}
        Source      &  T/[K] \\
        \noalign{\smallskip}
        \hline
        \noalign{\smallskip}
        Yorke 1979, Yorke 1980a & $\leq 1700^{\rm a}$     \\
        Kr\"ugel 1971           & $1700 \leq T \leq 5000$ \\
        Cox and Stewart 1969    & $5000 \leq $            \\
        \noalign{\smallskip}\hline\noalign{\smallskip}
        $^{\rm a}$ This is a footnote.
     \end{tabular}
\end{table}

\begin{acknowledgement}I wish to thank Prof. Dr. Roswitha M\"arz for
many helpful discussions.\end{acknowledgement}

\begin{thebibliography}[9]{References}
% Note that space for square brackets is added to the width of the label
% specified in the [] argument. If you don't use []s in your
% bibliography, specify a narrower label or omit the specification
% altogether. In this case \parindent is used.

\bibitem{1.}{darnell}{[1]}
Darnell, P.A., Margolis, P.E.: C, A software engineering
approach. Berlin Heidelberg New York: Springer-Verlag, 1988

\bibitem{2.}{leslie}{[2]}
Lamport, L.: \LaTeX: A document preparation system.
Addison-Wesley Publishing Company, Inc., 1986

\bibitem{3.}{seroul}{[3]}
Seroul, R., Levy, S.: A beginner's book of \TeX{}. New York Berlin
Heidelberg: Springer, 1989

\bibitem{4.}{springer}{[4]}
LJour1: Springer's \LaTeX{} style file for journals with one-column
layout. Heidelberg: Springer-Verlag, 1993

\bibitem{5.}{stroud}{[5]}
Strout, A.H.: Approximate calculation of multiple integrals.
Englewood Cliffs, N.J.: Prentice Hall, 1971

\bibitem{6.}{tetz}{[6]}
Tetzlaff, A.: Stability in the Common Market. (To appear)

\bibitem{7.}{wendl}{[7]}
Wendland, W.L.: Strongly elliptic boundary integral equations.
In: A. Iserles, M. Powell, (eds.) The state of the art in numerical
analysis. Oxford: Clarendon Press, 1987, pp. 511--561

\bibitem{8.}{yser}{[8]}
Yserentant, H.: A remark on the numerical computation of
improper integrals. Computing {\bf 30}, 179--183 (1983)

\medskip\noindent
\bibitem{Please}{}{}refer to a recent issue of the journal for further
examples on how to format references.

\end{thebibliography}
\end{document}