summaryrefslogtreecommitdiff
path: root/macros/plain/contrib/jns/jnsl.dem
blob: 2bdea91d070438631cff16a1c6219bde1eb5a4a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
% This is JNSL.DEM the demonstration file of
% the LaTeX macro package from Springer-Verlag
% for the Journal of Nonlinear Science
% version of 16 July 1990
\def\12{{1\ov 2}}
\def\al{\alpha}
\def\Aun{A_\un}
\def\aun{a_\un}
\def\bullet{\cdot}
\def\Bun{B_\un}
\def\bun{b_\un}
\def\de{\delta}
\def\dx{\dot x}
\def\ep{\varepsilon}
\def\fa{\forall}
\def\for{{\rm for}}
\def\Lai{\Lambda}
\def\lb{\left[}
\def\lg{\left\{}
\def\degr{\hbox{$^\circ$}}
\def\arcmin{\hbox{$^\prime$}}
\def\arcsec{\hbox{$^{\prime\prime}$}}
\def\liminfuu{{\rm lim inf}\,}
\def\liminfu{\mathop{\vphantom{\tst\sum}\hbox{\liminfuu}}}
\def\limsupuu{{\rm lim sup}\,}
\def\limsupu{\mathop{\vphantom{\tst\sum}\hbox{\limsupuu}}}
\def\lr{\left(}
\def\lss{\left\|}
\def\Min{{\rm Min\,}}
\def\NN{\bbbn}
\def\ol{\overline}
\def\om{\omega}
\def\ov{\over}
\def\rb{\right]}
\def\rg{\right\}}
\def\RRn{\bbbr^{2n}}
\def\RR{\bbbr}
\def\rr{\right)}
\def\rss{\right\|}
\def\sm{\setminus}
\def\tst{\textstyle}
\def\tx{\wt x}
\def\un{\infty}
\def\wt{\widetilde}
\def\ZZ{\bbbz}
\documentstyle{jns}
\begin{document}
 
\title{Haupttitel 14 pt halbfett/Title boldface -- 14/16}
\titlerunning{Expression of Cellular Oncogenes}
\subtitle{Untertitel 10 pt halbfett/Subtitle boldface -- 10/11}
 
\author{Ivar Ekeland\inst{1} and Roger Temam\inst{2}}
\authorrunning{R. M\"uller}
 
\institute{Princeton University, Princeton NJ 08544, USA
\and
Universit\'e de Paris-Sud,
Laboratoire d'Analyse Num\'erique, B\^atiment 425,\\
F-91405 Orsay Cedex, France}
 
\date{Received June 5, 1989}
 
\maketitle
 
\begin{abstract}
A new variant of the multi-grid algorithms is presented. It uses
multiple coarse-grid corrections with particularly associated
prolongations and restrictions. In this paper the robustness with
respect to anisotropic problems is considered.
 
\keywords multi-grid method -- coarse--grid correction --
singular perturbation -- robustness.
\end{abstract}
 
\section{The Anisotropic Equation and Standard Multi-Grid Methods}
\subsection{Introduction}
Multi-grid methods are known as very fast solvers of a large class of
discretised partial differential equations. However, the multi-grid
method cannot be understood as a fixed algorithm. Usually, the
components of the multi-grid iteration have to be adapted to the given
problem and sometimes the problems are modified in order to make them
acceptable for multi-grid methods. In particular, the smoothing
iteration is the most delicated part of the multi-grid process.
 
An iteration is called a {\em robust} one, if it works for a sufficient
large class of problems. Attempts have been made to construct robust
multi-grid iterations by means of sophisticated smoothing processes\dots
\newpage
With this chapter, the preliminaries are over, and we begin the search
for periodic solutions to Hamiltonian systems. All this will be done in
the convex case; that is, we shall study the boundary-value problem
\begin{eqnarray*}\dot x&=&JH' (t,x)\\ x(0) &=& x(T)
\end{eqnarray*}
with $H(t,\bullet )$ a convex function of $x$, going to $+\un$ when
$\lss x\rss \to \un$.
 
\subsection{Autonomous Systems}
In this section, we will consider the case when the Hamiltonian $H(x)$
is autonomous. For the sake of simplicity, we shall also assume that it
is $C^1$.
 
We shall first consider the question of nontriviality, within the
general framework of $\lr \Aun , \Bun\rr$-subquadratic Hamiltonians. In
the second subsection, we shall look into the special case when $H$ is
$\lr 0,\bun\rr$-subquadratic, and we shall try to derive additional
information.
\subsubsection{ The General Case: Nontriviality.}
We assume that $H$ is $\lr \Aun , \Bun \rr$-sub\-qua\-dra\-tic at infinity,
for some constant symmetric matrices $\Aun$ and $\Bun$, with $\Bun
-\Aun$ positive definite. Set:
\begin{eqnarray}
\gamma :&=&{\rm smallest\ eigenvalue\  of}\ \ \Bun - \Aun \\
\lambda : &=& {\rm largest\ negative\ eigenvalue\ of}\ \ J {d\ov dt}
+\Aun\ . \end{eqnarray}
 
Theorem 21 tells us that if $\lambda +\gamma < 0$, the boundary-value
problem:
\begin{equation}\begin{array}{rcl} \dx&=&JH' (x)\\
x(0)&=&x (T)\end{array}\end{equation}
has at least one solution $\ol x$, which is found by minimizing the dual
action functional:
\begin{equation} \psi (u) = \int_o^T \lb \12 \lr \Lai_o^{-1} u,u\rr + N^\ast (-u)\rb
dt\end{equation}
 
\noindent on the range of $\Lai$, which is a subspace $R (\Lai )\sb L^2$ with
finite codimension. Here
\begin{equation} N(x) := H(x) - \12 \lr \Aun x,x\rr\end{equation}
is a convex function, and
\begin{equation} N(x) \le \12 \lr \lr \Bun - \Aun\rr x,x\rr + c\ \ \ \fa x\
.\end{equation}
 
\begin{proposition} Assume $H'(0)=0$ and $ H(0)=0$. Set:
\begin{equation} \de := \liminfu_{x\to 0} 2 N (x) \lss x\rss^{-2}\ .
\label{eq:one}
\end{equation}
 
If $\gamma < - \lambda < \de$, the solution $\ol u$ is non-zero:
\begin{equation} \ol x (t) \ne 0\ \ \ \fa t\ .\end{equation}
\end{proposition}
\begin{proof} Condition (\ref{eq:one}) means that, for every $\de ' >
\de$, there is some $\ep > 0$ such that
\begin{equation} \lss x\rss \le \ep \Rightarrow N (x) \le {\de '\ov 2} \lss x\rss^2\
.\end{equation}
 
It is an exercise in convex analysis, into which we shall not go, to
show that this implies that there is an $\eta > 0$ such that
\begin{equation} f\lss x\rss \le \eta \Rightarrow N^\ast (y) \le {1\ov 2\de '} \lss
y\rss^2\ .\label{eq:two}\end{equation}
 
\begin{figure}
\vspace{2.5cm}
\caption{This is the caption of the figure displaying a white eagle and
a white horse on a snow field}
\end{figure}
 
Since $u_1$ is a smooth function, we will have $\lss hu_1\rss_\un \le
\eta$ for $h$ small enough, and inequality (\ref{eq:two}) will hold,
yielding thereby:
\begin{equation} \psi (hu_1) \le {h^2\ov 2} {1\ov \lambda} \lss u_1 \rss_2^2 + {h^2\ov 2}
{1\ov \de '} \lss u_1\rss^2\ .\end{equation}
 
If we choose $\de '$ close enough to $\de$, the quantity $\lr {1\ov \lambda}
+ {1\ov \de '}\rr$ will be negative, and we end up with
\begin{equation} \psi (hu_1) < 0\ \ \ \ \ \for\
\ h\ne 0\ \ {\rm small}\ .\end{equation}
 
On the other hand, we check directly that $\psi (0) = 0$. This shows
that 0 cannot be a minimizer of $\psi$, not even a local one. So $\ol u
\ne 0$ and $\ol u \ne \Lai_o^{-1} (0) = 0$. \qed
\end{proof}
\begin{corollary} Assume $H$ is $C^2$ and $\lr \aun
,\bun\rr$-subquadratic at infinity. Let
$\xi_1,\allowbreak\dots,\allowbreak\xi_N$  be the
equilibria, that is, the solutions of $H' (\xi ) = 0$. Denote by $\om_k$
the smallest eigenvalue of $H'' \lr \xi_k\rr$, and set:
\begin{equation} \om : = \Min \lg \om_1 , \dots , \om_k\rg\ .\end{equation}
If:
\begin{equation} {T\ov 2\pi} \bun < - E \lb - {T\ov 2\pi}\aun\rb < {T\ov
2\pi}\om\label{eq:three}\end{equation}
then minimization of $\psi$ yields a non-constant $T$-periodic solution
$\ol x$.\end{corollary}
 
We recall once more that by the integer part $E [\al ]$ of $\al \in
\RR$, we mean the $a\in \ZZ$ such that $a< \al \le a+1$. For instance,
if we take $\aun = 0$, Corollary 2 tells us that $\ol x$ exists and is
non-constant provided that:
 
\begin{equation} {T\ov 2\pi} \bun < 1 < {T\ov 2\pi}\end{equation}
or
\begin{equation} T\in \lr {2\pi\ov \om},{2\pi\ov \bun}\rr\ .
\label{eq:four}\end{equation}
 
\begin{proof} The spectrum of $\Lai$ is ${2\pi\ov T} \ZZ +\aun$. The
largest negative eigenvalue $\lambda$ is given by ${2\pi\ov T}k_o +\aun$,
where
\begin{equation} {2\pi\ov T}k_o + \aun < 0\le {2\pi\ov T} (k_o +1) + \aun\
.\end{equation}
Hence:
\begin{equation} k_o = E \lb - {T\ov 2\pi} \aun\rb \ .\end{equation}
 
The condition $\gamma < -\lambda < \de$ now becomes:
\begin{equation} \bun - \aun < - {2\pi\ov T} k_o -\aun < \om -\aun\end{equation}
which is precisely condition (\ref{eq:three}).\qed
\end{proof}
 
\begin{lemma} Assume that $H$ is $C^2$ on $\RRn \sm \{ 0\}$ and
that $H'' (x)$ is non-de\-gen\-er\-ate for any $x\ne 0$. Then any local
minimizer $\tx$ of $\psi$ has minimal period $T$.\end{lemma}
\begin{proof} We know that $\tx$, or $\tx + \xi$ for some constant $\xi
\in \RRn$, is a $T$-periodic solution of the Hamiltonian system:
\begin{equation} \dx = JH' (x)\ .\end{equation}
 
There is no loss of generality in taking $\xi = 0$. So $\psi (x) \ge
\psi (\tx )$ for all $\tx$ in some neighbourhood of $x$ in $W^{1,2} \lr
\RR / T\ZZ ; \RRn\rr$.
 
But this index is precisely the index $i_T (\tx )$ of the $T$-periodic
solution $\tx$ over the interval $(0,T)$, as defined in Sect.~2.6. So
\begin{equation} i_T (\tx ) = 0\ .\label{eq:five}\end{equation}
 
Now if $\tx$ has a lower period, $T/k$ say, we would have, by Corollary
31:
\begin{equation} i_T (\tx ) = i_{kT/k}(\tx ) \ge ki_{T/k} (\tx ) + k-1 \ge k-1 \ge
1\ .\end{equation}
 
This would contradict (\ref{eq:five}), and thus cannot happen.\qed
\end{proof}
\paragraph{Notes and Comments.} The results in this section are a
refined version of \cite{clar:eke}; the minimality result of Proposition
14 was the first of its kind.
 
To understand the nontriviality conditions, such as the one in formula
(\ref{eq:four}), one may think of a one-parameter family $x_T$, $T\in
\lr 2\pi\om^{-1}, 2\pi \bun^{-1}\rr$ of periodic solutions, $x_T (0) =
x_T (T)$, with $x_T$ going away to infinity when $T\to 2\pi \om^{-1}$,
which is the period of the linearized system at 0.
 
\begin{table}
\caption[ ]{Observational results from NGC 4827}
\begin{flushleft}
\renewcommand{\arraystretch}{1.2}
\begin{tabular}{llllllllllllll}
\hline
 & & \multicolumn{3}{l}{RA (1950)} &\ & \multicolumn{3}{l}{Dec (1950)}
     & $S$   & Pol   & \% & $\log P$\\
\cline{3-5}\cline{7-9}
     &         &(h) &(m) & (s)     &  & (\degr) & (\arcmin) & (\arcsec)
       & (mJy) & (mJy) &    & (W Hz$^{-1}$)\\
\hline
Core & (5 GHz) & 12 & 54 & 18.0    &  & 27      & 26         & 56.2
       & 8     &       &    & 21.64    \\
Total&(327 MHz)&    &    &         &  &         &            &
       & 210   &       &    & 23.13    \\
     &(1.4 GHz)&    &    &         &  &         &            &
       & 57    & 1.3   & 2  & 22.49    \\
     & (5 GHz) &    &    &         &  &         &            &
       & 26    & 0.73  & 3  & 22.15    \\
\hline
\end{tabular}
\renewcommand{\arraystretch}{1}
\end{flushleft}
\end{table}
\begin{theorem} [(Ghoussoub-Preiss)]  Assume $H(t,x)$ is
$(0,\ep )$-subquadratic at
infinity for all $\ep > 0$, and $T$-periodic in $t$
\begin{equation} H (t,\bullet )\ \ \ \ \ {\rm is\ convex}\ \ \fa t\end{equation}
\begin{equation} H (\bullet ,x)\ \ \ \ \ {\rm is}\ \ T{\rm -periodic}\ \ \fa x
\end{equation}
\begin{equation} H (t,x)\ge n\lr \lss x\rss\rr\ \ \ \ \ {\rm with}\ \ n (s)s^{-1}\to
\un\ \ {\rm as}\ \ s\to \un\end{equation}
\begin{equation} \fa \ep > 0\ ,\ \ \ \exists c\ :\ H(t,x) \le {\ep\ov 2}\lss x\rss^2 +
c\ .\end{equation}
 
Assume also that $H$ is $C^2$, and $H'' (t,x)$ is positive definite
everywhere. Then there is a sequence $x_k$, $k\in \NN$, of $kT$-periodic
solutions of the system
\begin{equation} \dx = JH' (t,x)\end{equation}
such that, for every $k\in \NN$, there is some $p_o\in\NN$ with:
\begin{equation} p\ge p_o\Rightarrow x_{pk} \ne x_k\ .
\end{equation}
\qed
\end{theorem}
\begin{example} [{\rm(External forcing)}] Consider the system:
\begin{equation} \dx = JH' (x) + f(t)\end{equation}
where the Hamiltonian $H$ is $\lr 0,\bun\rr$-subquadratic, and the
forcing term is a distribution on the circle:
\begin{equation} f = {d\ov dt} F + f_o\ \ \ \ \ {\rm with}\ \ F\in L^2 \lr \RR / T\ZZ
; \RRn\rr\ ,\end{equation}
where $f_o : = T^{-1}\int_o^T f (t) dt$. For instance,
\begin{equation} f (t) = \sum_{k\in \NN} \de_k \xi\ ,\end{equation}
where $\de_k$ is the Dirac mass at $t= k$ and $\xi \in \RRn$ is a
constant, fits the prescription. This means that the system $\dx = JH'
(x)$ is being excited by a series of identical shocks at interval $T$.
\end{example}
\begin{definition} Let $A_\un (t)$ and $B_\un (t)$ be symmetric
operators in $\RRn$, depending continuously on $t\in [0,T]$, such that
$A_\un (t) \le B_\un (t)$ for all $t$.
 
A Borelian function $H: [0,T]\times \RRn \to \RR$ is called $\lr A_\un
,B_\un\rr$-{\it subquadratic at infinity} if there exists a function
$N(t,x)$ such that:
\begin{equation} H (t,x) = \12 \lr A_\un (t) x,x\rr + N(t,x)\end{equation}
\begin{equation} \fa t\ ,\ \ \ N(t,x)\ \ \ \ \ {\rm is\ convex\ with\  respect\  to}\
\ x\end{equation}
\begin{equation} N(t,x) \ge n\lr \lss x\rss\rr\ \ \ \ \ {\rm with}\ \ n(s)s^{-1}\to
+\un\ \ {\rm as}\ \ s\to +\un\end{equation}
\begin{equation} \exists c\in \RR\ :\ \ \ H (t,x) \le \12 \lr B_\un (t) x,x\rr + c\ \
\ \fa x\ .\end{equation}
 
If $A_\un (t) = a_\un I$ and $B_\un (t) = b_\un I$, with $a_\un \le
b_\un \in \RR$, we shall say that $H$ is $\lr a_\un
,b_\un\rr$-subquadratic at infinity. As an example, the function $\lss x
\rss^\al$, with $1\le \al < 2$, is $(0,\ep )$-subquadratic at infinity
for every $\ep > 0$. Similarly, the Hamiltonian
\begin{equation} H (t,x) = \12 k \lss k\rss^2 +\lss x\rss^\al\end{equation}
is $(k,k+\ep )$-subquadratic for every $\ep > 0$. Note that, if $k<0$,
it is not convex.
\end{definition}
 
\paragraph{Notes and Comments.} The first results on subharmonics were
obtained by Rabinowitz in \cite{rab}, who showed the existence of
infinitely many subharmonics both in the subquadratic and superquadratic
case, with suitable growth conditions on $H'$. Again the duality
approach enabled Clarke and Ekeland in \cite{clar:eke:2} to treat the
same problem in the convex-subquadratic case, with growth conditions on
$H$ only.
 
Recently, Michalek and Tarantello (see \cite{mich:tar} and \cite{tar})
have obtained lower bound on the number of subharmonics of period $kT$,
based on symmetry considerations and on pinching estimates, as in
Sect.~5.2 of this article.
 
\begin{thebibliography}{MT1}
\bibitem[CE1]{clar:eke} Clarke, F., Ekeland, I.: Nonlinear oscillations
and
boundary-value problems for Hamiltonian systems. Arch. Rat. Mech. Anal.
{\bf 78} (1982) 315--333
\bibitem[CE2]{clar:eke:2} Clarke, F., Ekeland, I.: Solutions
p\'eriodiques, du
p\'eriode donn\'ee, des \'equations hamiltoniennes. Note CRAS Paris {\bf
287} (1978) 1013--1015
\bibitem[MT1]{mich:tar} Michalek, R., Tarantello, G.: Subharmonic
solutions with
prescribed minimal period for nonautonomous Hamiltonian systems. J.
Diff. Eq. {\bf 72} (1988) 28--55
\bibitem[Ta1]{tar} Tarantello, G.: Subharmonic solutions for Hamiltonian
systems via a $\bbbz_p$ pseudoindex theory. Annali di Matematica Pura
(to appear)
\bibitem[Ra1]{rab} Rabinowitz, P.: On subharmonic solutions of a
Hamiltonian
system. Comm. Pure Appl. Math. {\bf 33} (1980) 609--633
\end{thebibliography}
\end{document}