summaryrefslogtreecommitdiff
path: root/macros/luatex/latex/luamaths/luamaths-fractions.lua
blob: 6900b25ec4ecef42a2980e7a4cf878bb3be593ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
-- The luafractions module
-- Authors: Chetan Shirore and Ajit Kumar
-- version 1.3, Date=23-Aug-2023
-- Licensed under LaTeX Project Public License v1.3c or later. The complete license text is available at http://www.latex-project.org/lppl.txt.

M = {}       -- the module
frac_mt = {} -- the metatable
function M.new (n, d, mode)
   mode = mode or 'fracs'
   if mode == 'nofracs' then
      return (n/d)
   end
   if mode == 'fracs' then
      if n~=math.floor(n) or d~=math.floor(d) then
         error('Only integers are expected.')
      end
      if  d == 0 then
         error('Invalid fraction')
      end
      local fr = {}
      local g = M.lgcd(n,d)
      fr = {n=n/g, d=d/g}
      return setmetatable(fr,frac_mt)
   end
end
lfrac = M.new

function M.lgcd (a, b)
   local r
   while (b ~= 0) do
      r = a % b
      a = b
      b = r
   end
   return a
end

function M.simp (num)
   local cf = gcd(num[1], num[2])
   return M.new(num[1] / cf, num2[2] / cf)
end

function M.toFnumber(c)
if getmetatable( c ) == frac_mt then
   return c.n / c.d
end
return c
end

function M.toFrac(x)
   if type(x) == "number" then
      if x==math.floor(x) then
         return M.new(math.floor(x),1)
      else
         return x
      end
   end
   return x
end


function addFracs (c1, c2)
   return M.new(c1.n * c2.d + c1.d * c2.n, c1.d*c2.d)
end

function subFracs (c1, c2)
   return M.new(c1.n * c2.d - c1.d * c2.n, c1.d*c2.d)
end

function mulFracs (c1, c2)
   return M.new(c1.n * c2.n, c1.d*c2.d)
end

function divFracs (c1, c2)
   return M.new(c1.n * c2.d, c1.d*c2.n)
end

function minusFracs (c1)
   return M.new(-c1.n,c1.d)
end

function powerFracs (c1,m)
   return M.new((c1.n)^m,(c1.d)^m)
end


function M.add(a, b)
   if type(a) == "number" then
      if a==math.floor(a) then
         return addFracs(M.new(a,1),b)
      else
         return a + M.toFnumber(b)
      end
   end

   if type(b) == "number" then
      if b==math.floor(b) then
         return addFracs(a,M.new(b,1))
      else
         return M.toFnumber(a) + b
      end
   end

   if type( a ) == "table" and type(b) =="table" then
      if getmetatable( a ) == frac_mt and getmetatable( b ) == complex_meta then
         return setmetatable( { a+b[1], b[2] }, complex_meta )
      end
   end

   if type( a ) == "table" and type(b) =="table" then
      if getmetatable( b ) == frac_mt and getmetatable( a ) == complex_meta then
         return setmetatable( { b+a[1], a[2] }, complex_meta )
      end
   end
   return addFracs(a, b)
end


function M.sub(a, b)
   if type(a) == "number" then
      if a==math.floor(a) then
         return subFracs(M.new(a,1),b)
      else
         return a - M.toFnumber(b)
      end
   end

   if type(b) == "number" then
      if b==math.floor(b) then
         return subFracs(a,M.new(b,1))
      else
         return M.toFnumber(a) - b
      end
   end

   if type( a ) == "table" and type(b) =="table" then
      if getmetatable( a ) == frac_mt and getmetatable( b ) == complex_meta then
         return setmetatable( { a-b[1], -b[2] }, complex_meta )
      end
   end

   if type( a ) == "table" and type(b) =="table" then
      if getmetatable( b ) == frac_mt and getmetatable( a ) == complex_meta then
         return setmetatable( { a[1]-b, a[2] }, complex_meta )
      end
   end
   return subFracs(a, b)
end


function M.mul(a, b)
   if type(a) == "number" then
      if a==math.floor(a) then
         return mulFracs(M.new(a,1),b)
      else
         return a * M.toFnumber(b)
      end
   end

   if type(b) == "number" then
      if b==math.floor(b) then
         return mulFracs(a,M.new(b,1))
      else
         return M.toFnumber(a) * b
      end
   end

   if type( a ) == "table" and type(b) =="table" then
      if getmetatable( a ) == frac_mt and getmetatable( b ) == complex_meta then
         return setmetatable( { a*b[1], a*b[2] }, complex_meta )
      end
   end

   if type( a ) == "table" and type(b) =="table" then
      if getmetatable( b ) == frac_mt and getmetatable( a ) == complex_meta then
         return setmetatable( { b*a[1], b*a[2] }, complex_meta )
      end
   end
   return mulFracs(a, b)
end


function M.div(a, b)
   if type(a) == "number" then
      if a==math.floor(a) then
         return divFracs(M.new(a,1),b)
      else
         return a / M.toFnumber(b)
      end
   end

   if type(b) == "number" then
      if b==math.floor(b) then
         return divFracs(a,M.new(b,1))
      else
         return M.toFnumber(a) / b
      end
   end

   if type( a ) == "table" and type(b) =="table" then
      if getmetatable( a ) == frac_mt and getmetatable( b ) == complex_meta then
         b= setmetatable( { M.toFrac(b[1]),  M.toFrac(b[2]) }, complex_meta )
         return a*(1/b)
      end
   end
   return divFracs(a, b)
end

function M.tostring (c)
   if c.n == 0  then
      return  string.format("%g",0)
   end
   if c.d == 1  then
      return  string.format("%g",c.n)
   end
   if c.d == -1  then
      return  string.format("%g",-c.n)
   end
   return string.format("\\frac{%g}{%g}", c.n, c.d)
end


function lnumChqEql(x, y) 
   
   if type(x) == "number" and type(y) == "number" then 
		return (x == y)
   end
   
   if getmetatable( x ) == frac_mt and getmetatable( y ) == frac_mt then 
		return (M.toFnumber(x) == M.toFnumber(y))
   end
   
   if type(x) == "number" and getmetatable( y ) == frac_mt then 
		return (M.toFnumber(y) == x)
   end
   
   if getmetatable( x ) == frac_mt and type(y) == "number" then 
		return (M.toFnumber(x) == y)
   end
  
   if getmetatable( x ) == complex_meta and getmetatable( y ) == complex_meta then 
		return M.toFnumber(x[1]) == M.toFnumber(y[1]) and M.toFnumber(x[2]) == M.toFnumber(y[2])
   end
   
   if type(x) == "number" and getmetatable( y ) == complex_meta then 
		return (M.toFnumber(y[1]) == x  and M.toFnumber(y[2]) == 0)
   end
   
   if getmetatable(x) == complex_meta and type( y ) == "number" then 
		return (M.toFnumber(x[1]) == y and M.toFnumber(x[2]) == 0)
   end
  
   if getmetatable( x ) == frac_mt and getmetatable( y ) == complex_meta then 
		return (M.toFnumber(x)==M.toFnumber(y[1]) and M.toFnumber(y[2]) == 0)
   end
   
   if getmetatable( x ) == complex_meta and getmetatable( y ) ==  frac_mt then 
		return (M.toFnumber(y)==M.toFnumber(x[1]) and M.toFnumber(x[2]) == 0)
   end
   
   return false
end

--Setting Metatable operations.
frac_mt.__add = M.add
frac_mt.__sub = M.sub
frac_mt.__mul = M.mul
frac_mt.__div = M.div
frac_mt.__unm = minusFracs
frac_mt.__pow = powerFracs
frac_mt.__tostring = M.tostring
frac_mt.__eq = lnumChqEql

return M