summaryrefslogtreecommitdiff
path: root/macros/luatex/latex/luacas/tex/algebra/luacas-integer.lua
blob: a3c54f498cc5e53c919573477f652eaa8f838949 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
--- @class Integer
--- Represents an element of the ring of integers.
--- @field self table<number, number>
--- @field sign number
Integer = {}
__Integer = {}

--------------------------
-- Static functionality --
--------------------------

-- The length of each digit in base 10. 10^15 < 2^53 < 10^16, so 15 is the highest value that will work with double-percision numbers.
-- For multiplication to work properly, however, this also must be even so we can take the square root of the digit size exactly.
-- 10^14 is still larger than 2^26, so it is still efficient to do multiplication this way.
Integer.DIGITLENGTH = 14
-- The maximum size for a digit. While this doesn't need to be a power of 10, it makes implementing converting to and from strings much easier.
Integer.DIGITSIZE = 10 ^ Integer.DIGITLENGTH
-- Partition size for multiplying integers so we can get both the upper and lower bits of each digits
Integer.PARTITIONSIZE = math.floor(math.sqrt(Integer.DIGITSIZE))

--- Method for computing the gcd of two integers using Euclid's algorithm.
--- @param a Integer
--- @param b Integer
--- @return Integer
function Integer.gcd(a, b)
    while b ~= Integer.zero() do
        a, b = b, a%b
    end
    return a
end

--- Method for computing the gcd of two integers using Euclid's algorithm.
--- Also returns Bezout's coefficients via extended gcd.
--- @param a Integer
--- @param b Integer
--- @return Integer, Integer, Integer
function Integer.extendedgcd(a, b)
    local oldr, r  = a, b
    local olds, s  = Integer.one(), Integer.zero()
    local oldt, t  = Integer.zero(), Integer.one()
    while r ~= Integer.zero() do
        local q = oldr // r
        oldr, r  = r, oldr - q*r
        olds, s = s, olds - q*s
        oldt, t = t, oldt - q*t
    end
    return oldr, olds, oldt
end

--- Method for computing the larger of two integers.
--- Also returns the other integer for sorting purposes.
--- @param a Integer
--- @param b Integer
--- @return Integer, Integer
function Integer.max(a, b)
    if a > b then
        return a, b
    end
    return b, a
end

--- Method for computing the smaller of two integers.
--- Also returns the other integer for sorting purposes.
--- @param a Integer
--- @param b Integer
--- @return Integer, Integer
function Integer.min(a, b)
    if a < b then
        return a, b
    end
    return b, a
end

--- Methods for computing the larger magnitude of two integers.
--- Also returns the other integer for sorting purposes, and the number -1 if the two values were swapped, 1 if not.
--- @param a Integer
--- @param b Integer
--- @return Integer, Integer, number
function Integer.absmax(a, b)
    if b:ltabs(a) then
        return a, b, 1
    end
    return b, a, -1
end

-- Returns the ceiling of the log base (defaults to 10) of a.
-- In other words, returns the least n such that base^n > a.
--- @param a Integer
--- @param base Integer
--- @return Integer
function Integer.ceillog(a, base)
    base = base or Integer(10)
    local k = Integer.zero()

    while (base ^ k) < a do
        k = k + Integer.one()
    end

    return k
end

--- Returns a ^ b (mod n). This should be used when a ^ b is potentially large.
--- @param a Integer
--- @param b Integer
--- @param n Integer
--- @return Integer
function Integer.powmod(a, b, n)
    if n == Integer.one() then
        return Integer.zero()
    else
        local r = Integer.one()
        a = a % n
        while b > Integer.zero() do
          if b % Integer(2) == Integer.one() then
            r = (r * a) % n
          end
          a = (a ^ Integer(2)) % n
          b = b // Integer(2)
        end
        return r
    end
end

--- @return RingIdentifier
local t = {ring=Integer}
t = setmetatable(t, {__index = Integer, __eq = function(a, b)
    return a["ring"] == b["ring"]
end, __tostring = function(a)
    return "ZZ"
end})
function Integer.makering()
    return t
end


----------------------------
-- Instance functionality --
----------------------------

-- So we don't have to copy the Euclidean operations each time we create an integer.
local __o = Copy(__EuclideanOperations)
__o.__index = Integer
__o.__tostring = function(a) -- Only works if the digit size is a power of 10
    local out = ""
    for i, digit in ipairs(a) do
        local pre = tostring(math.floor(digit))
        if i ~= #a then
            while #pre ~= Integer.DIGITLENGTH do
                pre = "0" .. pre
            end
        end
        out = pre .. out
    end
    if a.sign == -1 then
        out = "-" .. out
    end
    return out
end
__o.__div = function(a, b)   -- Constructor for a rational number disguised as division
    if not b.getring then
        return BinaryOperation.DIVEXP({a, b})
    end
    if(a:getring() == Integer:getring() and b:getring() == Integer:getring()) then
        return Rational(a, b)
    end
    return __FieldOperations.__div(a, b)
end
__o.__concat = function(a, b) -- Like a decimal, but fancier. Used mainly for the parser with decimal numbers.
    return a + b / (Integer(10) ^ Integer.ceillog(b))
end

--- Creates a new integer given a string or number representation of the integer.
--- @param n number|string|Integer
--- @return Integer
function Integer:new(n)
    local o = {}
    o = setmetatable(o, __o)

    if not n then
        o[1] = 0
        o.sign = 0
        return o
    end

    -- Can convert any floating-point number into an integer, though we generally only want to pass whole numbers into this.
    -- This will only approximate very large floating point numbers to a small proportion of the total significant digits
    -- After that the result will just be nonsense - strings should probably be used for big numbers
    if type(n) == "number" then
        n = math.floor(n)
        if n == 0 then
            o[1] = 0
            o.sign = 0
        else
            if n < 0 then
                n = -n
                o.sign = -1
            else
                o.sign = 1
            end
            local i = 1
            while n >= Integer.DIGITSIZE do
                o[i] = n % Integer.DIGITSIZE
                n = n // Integer.DIGITSIZE
                i = i + 1
            end
            o[i] = n
        end
    -- Only works on strings that are exact (signed) integers
    elseif type(n) == "string" then
        if not tonumber(n) then
            error("Sent parameter of wrong type: " .. n .. " is not an integer.")
        end
        if n == "0" then
            o[1] = 0
            o.sign = 0
        else
            local s = 1
            if string.sub(n, 1, 1) == "-" then
                s = s + 1
                o.sign = -1
            else
                o.sign = 1
            end

            while string.sub(n, s, s) == "0" do
                s = s + 1
            end

            local e = #n
            local i = 1
            while e > s + Integer.DIGITLENGTH - 1 do
                o[i] = tonumber(string.sub(n, e - Integer.DIGITLENGTH + 1, e))
                e = e - Integer.DIGITLENGTH
                i = i + 1
            end
            o[i] = tonumber(string.sub(n, s, e)) or 0
        end
    -- Copying is expensive in Lua, so this constructor probably should only sparsely be called with an Integer argument.
    elseif type(n) == "table" then
        o = Copy(n)
    else
        error("Sent parameter of wrong type: Integer does not accept " .. type(n) .. ".")
    end

    return o
end

--- Returns the ring this object is an element of.
--- @return RingIdentifier
function Integer:getring()
    return t
end

--- @param ring RingIdentifier
--- @return Ring
function Integer:inring(ring)
    if ring == self:getring() then
        return self
    end

    if ring == PolynomialRing:getring() then
        return PolynomialRing({self:inring(ring.child)}, ring.symbol)
    end

    if ring == Rational:getring() then
        if ring.child then
            return Rational(self:inring(ring.child), self:inring(ring.child):one(), true)
        end
        return Rational(self, Integer.one(), true):inring(ring)
    end

    if ring == IntegerModN:getring() then
        return IntegerModN(self, ring.modulus)
    end

    error("Unable to convert element to proper ring.")
end

--- @param b Integer
--- @return Integer
function Integer:add(b)
    if self.sign == 1 and b.sign == -1 then
        return self:usub(b, 1)
    end
    if self.sign == -1 and b.sign == 1 then
        return self:usub(b, -1)
    end

    local sign = self.sign
    if sign == 0 then
        sign = b.sign
    end
    return self:uadd(b, sign)
end

--- Addition without sign so we don't have to create an entire new integer when switching signs.
--- @param b Integer
--- @param sign number
--- @return Integer
function Integer:uadd(b, sign)
    local o = Integer()
    o.sign = sign

    local c = 0
    local n = math.max(#self, #b)
    for i = 1, n do
        local s = (self[i] or 0) + (b[i] or 0) + c
        if s >= Integer.DIGITSIZE then
            o[i] = s - Integer.DIGITSIZE
            c = 1
        else
            o[i] = s
            c = 0
        end
    end
    if c == 1 then
        o[n + 1] = c
    end
    return o
end

--- @param b Integer
--- @return Integer
function Integer:sub(b)
    if self.sign == 1 and b.sign == -1 then
        return self:uadd(b, 1)
    end
    if self.sign == -1 and b.sign == 1 then
        return self:uadd(b, -1)
    end

    local sign = self.sign
    if sign == 0 then
        sign = b.sign
    end
    return self:usub(b, sign)
end

-- Subtraction without sign so we don't have to create an entire new integer when switching signs.
-- Uses subtraction by compliments.
--- @param b Integer
--- @param sign number
--- @return Integer
function Integer:usub(b, sign)
    local a, b, swap = Integer.absmax(self, b)
    local o = Integer()
    o.sign = sign * swap

    local c = 0
    local n = #a
    for i = 1, n do
        local s = (a[i] or 0) + Integer.DIGITSIZE - 1 - (b[i] or 0) + c
        if i == 1 then
            s = s + 1
        end
        if s >= Integer.DIGITSIZE then
            o[i] = s - Integer.DIGITSIZE
            c = 1
        else
            o[i] = s
            c = 0
        end
    end

    -- Remove leading zero digits, since we want integer representations to be unique.
    while o[n] == 0 do
        o[n] = nil
        n = n - 1
    end

    if not o[1] then
        o[1] = 0
        o.sign = 0
    end

    return o
end

--- @return Integer
function Integer:neg()
    local o = Integer()
    o.sign = -self.sign
    for i, digit in ipairs(self) do
        o[i] = digit
    end
    return o
end

--- @param b Integer
--- @return Integer
function Integer:mul(b)
    local o = Integer()
    o.sign = self.sign * b.sign
    if o.sign == 0 then
        o[1] = 0
        return o
    end

    -- Fast single-digit multiplication in the most common case
    if #self == 1 and #b == 1 then
        o[2], o[1] = self:mulone(self[1], b[1])

        if o[2] == 0 then
            o[2] = nil
        end

        return o
    end

    -- "Grade school" multiplication algorithm for numbers with small numbers of digits works faster than Karatsuba
    local n = #self
    local m = #b
    o[1] = 0
    o[2] = 0
    for i = 2, n+m do
        o[i + 1] = 0
        for j = math.max(1, i-m), math.min(n, i-1) do
            local u, l = self:mulone(self[j], b[i - j])
            o[i - 1] = o[i - 1] + l
            o[i] = o[i] + u
            if o[i - 1] >= Integer.DIGITSIZE then
                o[i - 1] = o[i - 1] - Integer.DIGITSIZE
                o[i] = o[i] + 1
            end
            if o[i] >= Integer.DIGITSIZE then
                o[i] = o[i] - Integer.DIGITSIZE
                o[i + 1] = o[i + 1] + 1
            end
        end
    end

    -- Remove leading zero digits, since we want integer representations to be unique.
    if o[n+m+1] == 0 then
        o[n+m+1] = nil
    end

    if o[n+m] == 0 then
        o[n+m] = nil
    end

    return o
end

--- Multiplies two single-digit numbers and returns two digits.
--- @param a number
--- @param b number
--- @return number, number
function Integer:mulone(a, b)
    local P = Integer.PARTITIONSIZE

    local a1 = a // P
    local a2 = a % P
    local b1 = b // P
    local b2 = b % P

    local u = a1 * b1
    local l = a2 * b2

    local m = ((a1 * b2) + (b1 * a2))
    local mu = m // P
    local ml = m % P

    u = u + mu
    l = l + ml * P

    if l >= Integer.DIGITSIZE then
        l = l - Integer.DIGITSIZE
        u = u + 1
    end

    return u, l
end

--- Naive exponentiation is slow even for small exponents, so this uses binary exponentiation.
--- @param b Integer
--- @return Integer
function Integer:pow(b)
    if b < Integer.zero() then
        return Integer.one() / (self ^ -b)
    end

    if b == Integer.zero() then
        return Integer.one()
    end

    -- Fast single-digit exponentiation
    if #self == 1 and #b == 1 then
        local test = (self.sign * self[1]) ^ b[1]
        if test < Integer.DIGITSIZE and test > -Integer.DIGITSIZE then
            return Integer(test)
        end
    end

    local x = self
    local y = Integer.one()
    while b > Integer.one() do
        if b[1] % 2 == 0 then
            x = x * x
            b = b:divbytwo()
        else
            y = x * y
            x = x * x
            b = b:divbytwo()
        end
    end

    return x * y
end

-- Fast integer division by two for binary exponentiation.
--- @return Integer
function Integer:divbytwo()
    local o = Integer()
    o.sign = self.sign
    for i = #self, 1, -1 do
        if self[i] % 2 == 0 then
            o[i] = self[i] // 2
        else
            o[i] = self[i] // 2
            if i ~= 1 then
                o[i - 1] = self[i - 1] * 2
            end
        end
    end
    return o
end

--- Division with remainder over the integers. Uses the standard base 10 long division algorithm.
--- @param b Integer
--- @return Integer, Integer
function Integer:divremainder(b)
    if self >= Integer.zero() and b > self or self <= Integer.zero() and b < self then
        return Integer.zero(), Integer(self)
    end

    if #self == 1 and #b == 1 then
        return Integer((self[1]*self.sign) // (b[1]*b.sign)), Integer((self[1]*self.sign) % (b[1]*b.sign))
    end

    local Q = Integer()
    local R = Integer()

    Q.sign = self.sign * b.sign
    R.sign = 1
    local negativemod = false
    if b.sign == -1 then
        b.sign = -b.sign
        negativemod = true
    end

    for i = #self, 1, -1 do
        local s = tostring(math.floor(self[i]))
        while i ~= #self and #s ~= Integer.DIGITLENGTH do
            s = "0" .. s
        end
        Q[i] = 0
        for j = 1, #s do
            R = R:mulbyten()
            R[1] = R[1] + tonumber(string.sub(s, j, j))
            if R[1] > 0 then
                R.sign = 1
            end
            while R >= b do
                R = R - b
                Q[i] = Q[i] + 10^(#s - j)
            end
        end
    end

    -- Remove leading zero digits, since we want integer representations to be unique.
    while Q[#Q] == 0 do
        Q[#Q] = nil
    end

    if negativemod then
        R = -R
        b.sign = -b.sign
    elseif self.sign == -1 then
        R = b - R
    end

    return Q, R
end

--- Fast in-place multiplication by ten for the division algorithm. This means the number IS MODIFIED by this method unlike the rest of the library.
--- @return Integer
function Integer:mulbyten()
    local DIGITSIZE = Integer.DIGITSIZE
    for i, _ in ipairs(self) do
        self[i] = self[i] * 10
    end
    for i, _ in ipairs(self) do
        if self[i] > DIGITSIZE then
            local msd = self[i] // DIGITSIZE
            if self[i+1] then
                self[i+1] = self[i+1] + msd
            else
                self[i+1] = msd
            end
            self[i] = self[i] - DIGITSIZE*msd
        end
    end
    return self
end

--- @param b Integer
--- @return boolean
function Integer:eq(b)
    for i, digit in ipairs(self) do
        if not b[i] or not (b[i] == digit) then
            return false
        end
    end
    return #self == #b and self.sign == b.sign
end

--- @param b Integer
--- @return boolean
function Integer:lt(b)
    local selfsize = #self
    local bsize = #b
    if selfsize < bsize then
        return b.sign == 1
    end
    if selfsize > bsize then
        return self.sign == -1
    end
    local n = selfsize
    while n > 0 do
        if self[n]*self.sign < b[n]*b.sign then
            return true
        end
        if self[n]*self.sign > b[n]*b.sign then
            return false
        end
        n = n - 1
    end
    return false
end

--- Same as less than, but ignores signs.
--- @param b Integer
--- @return boolean
function Integer:ltabs(b)
    if #self < #b then
        return true
    end
    if #self > #b then
        return false
    end
    local n = #self
    while n > 0 do
        if self[n] < b[n] then
            return true
        end
        if self[n] > b[n] then
            return false
        end
        n = n - 1
    end
    return false
end

--- @param b Integer
--- @return boolean
function Integer:le(b)
    local selfsize = #self
    local bsize = #b
    if selfsize < bsize then
        return b.sign == 1
    end
    if selfsize > bsize then
        return self.sign == -1
    end
    local n = selfsize
    while n > 0 do
        if self[n]*self.sign < b[n]*b.sign then
            return true
        end
        if self[n]*self.sign > b[n]*b.sign then
            return false
        end
        n = n - 1
    end
    return true
end

local zero = Integer:new(0)
--- @return Integer
function Integer:zero()
    return zero
end

local one = Integer:new(1)
--- @return Integer
function Integer:one()
    return one
end

--- Returns this integer as a floating point number. Can only approximate the value of large integers.
--- @return number
function Integer:asnumber()
    local n = 0
    for i, digit in ipairs(self) do
        n = n + digit * Integer.DIGITSIZE ^ (i - 1)
    end
    return self.sign*math.floor(n)
end

--- Returns all positive divisors of the integer. Not guarenteed to be in any order.
--- @return table<number, Integer>
function Integer:divisors()
    local primefactors = self:primefactorizationrec()
    local divisors = {}

    local terms = {}
    for prime in pairs(primefactors) do
        if prime == Integer(-1) then
            primefactors[prime] = nil
        end
        terms[prime] = Integer.zero()
    end

    local divisor = Integer.one()

    while true do
        divisors[#divisors+1] = divisor
        for prime, power in pairs(primefactors) do
            if terms[prime] < power then
                terms[prime] = terms[prime] + Integer.one()
                divisor = divisor * prime
                break
            else
                terms[prime] = Integer.zero()
                divisor = divisor / (prime ^ power)
            end
        end
        if divisor == Integer.one() then
            break
        end
    end

    return divisors
end

--- Returns whether this integer is a prime power, of the form p^a for prime p and positive integer a.
--- If it is a prime power, also returns the prime and the power.
--- @return boolean, Expression|nil, Expression|nil
function Integer:isprimepower()
    if self <= Integer.one() then
        return false
    end
    local factorization = self:primefactorization()
    if factorization:type() == BinaryOperation and #factorization:subexpressions() == 1 then
        return true, factorization.expressions[1].expressions[2], factorization.expressions[1].expressions[1]
    end
    return false
end

--- Returns whether this integer is a perfect power, of the form a^b for positive integers a and b.
--- If it is a prime power, also returns the prime and the power.
--- @return boolean, Expression|nil, Expression|nil
function Integer:isperfectpower()
    if self <= Integer.one() then
        return false
    end
    local factorization = self:primefactorization()
    if factorization:type() ~= BinaryOperation then
        return false
    end
    local power = Integer.zero()
    for _, term in ipairs(factorization:subexpressions()) do
        power = Integer.gcd(power, term.expressions[2])
        if power == Integer.one() then
            return false
        end
    end
    local base = Integer.one()
    for _, term in ipairs(factorization:subexpressions()) do
        base = base * term.expressions[1] ^ (term.expressions[2] / power)
    end
    return true, base, power
end

--- Returns the prime factorization of this integer as a expression.
--- @return Expression
function Integer:primefactorization()
    if not Integer.FACTORIZATIONLIMIT then
        Integer.FACTORIZATIONLIMIT = Integer(Integer.DIGITSIZE)
    end
    if self > Integer.FACTORIZATIONLIMIT then
        return self
    end
    local result = self:primefactorizationrec()
    local mul = {}
    local i = 1
    for factor, degree in pairs(result) do
        mul[i] = BinaryOperation.POWEXP({factor, degree})
        i = i + 1
    end
    return BinaryOperation.MULEXP(mul):lock(Expression.NIL)
end

--- Recursive part of prime factorization using Pollard Rho.
function Integer:primefactorizationrec()
    if self < Integer.zero() then
        return Integer.mergefactors({[Integer(-1)]=Integer.one()}, (-self):primefactorizationrec())
    end
    if self == Integer.one() then
        return {[Integer.one()]=Integer.one()}
    end
    local result = self:findafactor()
    if result == self then
        return {[result]=Integer.one()}
    end
    local remaining = self / result
    return Integer.mergefactors(result:primefactorizationrec(), remaining:primefactorizationrec())
end


function Integer.mergefactors(a, b)
    local result = Copy(a)

    for factor, degree in pairs(b) do
        for ofactor, odegree in pairs(result) do
            if factor == ofactor then
                result[ofactor] = degree + odegree
                goto continue
            end
        end
        result[factor] = degree
        ::continue::
    end
    return result
end

-- Return a non-trivial factor of n via Pollard Rho, or returns n if n is prime.
function Integer:findafactor()
    if self:isprime() then
        return self
    end

    if self % Integer(2) == Integer.zero() then
        return Integer(2)
    end

    if self % Integer(3) == Integer.zero() then
        return Integer(3)
    end

    if self % Integer(5) == Integer.zero() then
        return Integer(5)
    end

    local g = function(x)
        local temp = Integer.powmod(x, Integer(2), self)
        return temp
    end

    local xstart = Integer(2)
    while xstart < self do
        local x = xstart
        local y = xstart
        local d = Integer.one()
        while d == Integer.one() do
            x = g(x)
            y = g(g(y))
            d = Integer.gcd((x - y):abs(), self)
        end

        if d < self then
            return d
        end

        xstart = xstart + Integer.one()
    end
end

--- Uses Miller-Rabin to determine whether a number is prime up to a very large number.
local smallprimes = {Integer:new(2), Integer:new(3), Integer:new(5), Integer:new(7), Integer:new(11), Integer:new(13), Integer:new(17),
Integer:new(19), Integer:new(23), Integer:new(29), Integer:new(31), Integer:new(37), Integer:new(41), Integer:new(43), Integer:new(47)}

function Integer:isprime()
    if self % Integer(2) == Integer.zero() then
        if self == Integer(2) then
            return true
        end
        return false
    end

    if self == Integer.one() then
        return false
    end

    for _, value in pairs(smallprimes) do
        if value == self then
            return true
        end
    end

    local r = Integer.zero()
    local d = self - Integer.one()
    while d % Integer(2) == Integer.zero() do
        r = r + Integer.one()
        d = d / Integer(2)
    end

    for _, a in ipairs(smallprimes) do
        local s = r
        local x = Integer.powmod(a, d, self)
        if x == Integer.one() or x == self - Integer.one() then
            goto continue
        end

        while s > Integer.zero() do
            x = Integer.powmod(x, Integer(2), self)
            if x == self - Integer.one() then
                goto continue
            end
            s = s - Integer.one()
        end
        do
            return false
        end
        ::continue::
    end

    return true
end

--- Returns the absolute value of an integer.
--- @return Integer
function Integer:abs()
    if self.sign >= 0 then
        return Integer(self)
    end
    return -self
end

-----------------
-- Inheritance --
-----------------

__Integer.__index = EuclideanDomain
__Integer.__call = Integer.new
Integer = setmetatable(Integer, __Integer)

----------------------
-- Static constants --
----------------------

Integer.FACTORIZATIONLIMIT = Integer(Integer.DIGITSIZE)